time-ts.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /*
  2. * Based on arm clockevents implementation and old bfin time tick.
  3. *
  4. * Copyright 2008-2009 Analog Devics Inc.
  5. * 2008 GeoTechnologies
  6. * Vitja Makarov
  7. *
  8. * Licensed under the GPL-2
  9. */
  10. #include <linux/module.h>
  11. #include <linux/profile.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/time.h>
  14. #include <linux/timex.h>
  15. #include <linux/irq.h>
  16. #include <linux/clocksource.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpufreq.h>
  19. #include <asm/blackfin.h>
  20. #include <asm/time.h>
  21. #include <asm/gptimers.h>
  22. #include <asm/nmi.h>
  23. /* Accelerators for sched_clock()
  24. * convert from cycles(64bits) => nanoseconds (64bits)
  25. * basic equation:
  26. * ns = cycles / (freq / ns_per_sec)
  27. * ns = cycles * (ns_per_sec / freq)
  28. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  29. * ns = cycles * (10^6 / cpu_khz)
  30. *
  31. * Then we use scaling math (suggested by george@mvista.com) to get:
  32. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  33. * ns = cycles * cyc2ns_scale / SC
  34. *
  35. * And since SC is a constant power of two, we can convert the div
  36. * into a shift.
  37. *
  38. * We can use khz divisor instead of mhz to keep a better precision, since
  39. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  40. * (mathieu.desnoyers@polymtl.ca)
  41. *
  42. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  43. */
  44. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  45. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  46. static notrace cycle_t bfin_read_cycles(struct clocksource *cs)
  47. {
  48. #ifdef CONFIG_CPU_FREQ
  49. return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
  50. #else
  51. return get_cycles();
  52. #endif
  53. }
  54. static struct clocksource bfin_cs_cycles = {
  55. .name = "bfin_cs_cycles",
  56. .rating = 400,
  57. .read = bfin_read_cycles,
  58. .mask = CLOCKSOURCE_MASK(64),
  59. .shift = CYC2NS_SCALE_FACTOR,
  60. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  61. };
  62. static inline unsigned long long bfin_cs_cycles_sched_clock(void)
  63. {
  64. return clocksource_cyc2ns(bfin_read_cycles(&bfin_cs_cycles),
  65. bfin_cs_cycles.mult, bfin_cs_cycles.shift);
  66. }
  67. static int __init bfin_cs_cycles_init(void)
  68. {
  69. bfin_cs_cycles.mult = \
  70. clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
  71. if (clocksource_register(&bfin_cs_cycles))
  72. panic("failed to register clocksource");
  73. return 0;
  74. }
  75. #else
  76. # define bfin_cs_cycles_init()
  77. #endif
  78. #ifdef CONFIG_GPTMR0_CLOCKSOURCE
  79. void __init setup_gptimer0(void)
  80. {
  81. disable_gptimers(TIMER0bit);
  82. set_gptimer_config(TIMER0_id, \
  83. TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  84. set_gptimer_period(TIMER0_id, -1);
  85. set_gptimer_pwidth(TIMER0_id, -2);
  86. SSYNC();
  87. enable_gptimers(TIMER0bit);
  88. }
  89. static cycle_t bfin_read_gptimer0(struct clocksource *cs)
  90. {
  91. return bfin_read_TIMER0_COUNTER();
  92. }
  93. static struct clocksource bfin_cs_gptimer0 = {
  94. .name = "bfin_cs_gptimer0",
  95. .rating = 350,
  96. .read = bfin_read_gptimer0,
  97. .mask = CLOCKSOURCE_MASK(32),
  98. .shift = CYC2NS_SCALE_FACTOR,
  99. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  100. };
  101. static inline unsigned long long bfin_cs_gptimer0_sched_clock(void)
  102. {
  103. return clocksource_cyc2ns(bfin_read_TIMER0_COUNTER(),
  104. bfin_cs_gptimer0.mult, bfin_cs_gptimer0.shift);
  105. }
  106. static int __init bfin_cs_gptimer0_init(void)
  107. {
  108. setup_gptimer0();
  109. bfin_cs_gptimer0.mult = \
  110. clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
  111. if (clocksource_register(&bfin_cs_gptimer0))
  112. panic("failed to register clocksource");
  113. return 0;
  114. }
  115. #else
  116. # define bfin_cs_gptimer0_init()
  117. #endif
  118. #if defined(CONFIG_GPTMR0_CLOCKSOURCE) || defined(CONFIG_CYCLES_CLOCKSOURCE)
  119. /* prefer to use cycles since it has higher rating */
  120. notrace unsigned long long sched_clock(void)
  121. {
  122. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  123. return bfin_cs_cycles_sched_clock();
  124. #else
  125. return bfin_cs_gptimer0_sched_clock();
  126. #endif
  127. }
  128. #endif
  129. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  130. static int bfin_gptmr0_set_next_event(unsigned long cycles,
  131. struct clock_event_device *evt)
  132. {
  133. disable_gptimers(TIMER0bit);
  134. /* it starts counting three SCLK cycles after the TIMENx bit is set */
  135. set_gptimer_pwidth(TIMER0_id, cycles - 3);
  136. enable_gptimers(TIMER0bit);
  137. return 0;
  138. }
  139. static void bfin_gptmr0_set_mode(enum clock_event_mode mode,
  140. struct clock_event_device *evt)
  141. {
  142. switch (mode) {
  143. case CLOCK_EVT_MODE_PERIODIC: {
  144. set_gptimer_config(TIMER0_id, \
  145. TIMER_OUT_DIS | TIMER_IRQ_ENA | \
  146. TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  147. set_gptimer_period(TIMER0_id, get_sclk() / HZ);
  148. set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
  149. enable_gptimers(TIMER0bit);
  150. break;
  151. }
  152. case CLOCK_EVT_MODE_ONESHOT:
  153. disable_gptimers(TIMER0bit);
  154. set_gptimer_config(TIMER0_id, \
  155. TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
  156. set_gptimer_period(TIMER0_id, 0);
  157. break;
  158. case CLOCK_EVT_MODE_UNUSED:
  159. case CLOCK_EVT_MODE_SHUTDOWN:
  160. disable_gptimers(TIMER0bit);
  161. break;
  162. case CLOCK_EVT_MODE_RESUME:
  163. break;
  164. }
  165. }
  166. static void bfin_gptmr0_ack(void)
  167. {
  168. set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
  169. }
  170. static void __init bfin_gptmr0_init(void)
  171. {
  172. disable_gptimers(TIMER0bit);
  173. }
  174. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  175. __attribute__((l1_text))
  176. #endif
  177. irqreturn_t bfin_gptmr0_interrupt(int irq, void *dev_id)
  178. {
  179. struct clock_event_device *evt = dev_id;
  180. smp_mb();
  181. evt->event_handler(evt);
  182. bfin_gptmr0_ack();
  183. return IRQ_HANDLED;
  184. }
  185. static struct irqaction gptmr0_irq = {
  186. .name = "Blackfin GPTimer0",
  187. .flags = IRQF_DISABLED | IRQF_TIMER | \
  188. IRQF_IRQPOLL | IRQF_PERCPU,
  189. .handler = bfin_gptmr0_interrupt,
  190. };
  191. static struct clock_event_device clockevent_gptmr0 = {
  192. .name = "bfin_gptimer0",
  193. .rating = 300,
  194. .irq = IRQ_TIMER0,
  195. .shift = 32,
  196. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  197. .set_next_event = bfin_gptmr0_set_next_event,
  198. .set_mode = bfin_gptmr0_set_mode,
  199. };
  200. static void __init bfin_gptmr0_clockevent_init(struct clock_event_device *evt)
  201. {
  202. unsigned long clock_tick;
  203. clock_tick = get_sclk();
  204. evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
  205. evt->max_delta_ns = clockevent_delta2ns(-1, evt);
  206. evt->min_delta_ns = clockevent_delta2ns(100, evt);
  207. evt->cpumask = cpumask_of(0);
  208. clockevents_register_device(evt);
  209. }
  210. #endif /* CONFIG_TICKSOURCE_GPTMR0 */
  211. #if defined(CONFIG_TICKSOURCE_CORETMR)
  212. /* per-cpu local core timer */
  213. static DEFINE_PER_CPU(struct clock_event_device, coretmr_events);
  214. static int bfin_coretmr_set_next_event(unsigned long cycles,
  215. struct clock_event_device *evt)
  216. {
  217. bfin_write_TCNTL(TMPWR);
  218. CSYNC();
  219. bfin_write_TCOUNT(cycles);
  220. CSYNC();
  221. bfin_write_TCNTL(TMPWR | TMREN);
  222. return 0;
  223. }
  224. static void bfin_coretmr_set_mode(enum clock_event_mode mode,
  225. struct clock_event_device *evt)
  226. {
  227. switch (mode) {
  228. case CLOCK_EVT_MODE_PERIODIC: {
  229. unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
  230. bfin_write_TCNTL(TMPWR);
  231. CSYNC();
  232. bfin_write_TSCALE(TIME_SCALE - 1);
  233. bfin_write_TPERIOD(tcount);
  234. bfin_write_TCOUNT(tcount);
  235. CSYNC();
  236. bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
  237. break;
  238. }
  239. case CLOCK_EVT_MODE_ONESHOT:
  240. bfin_write_TCNTL(TMPWR);
  241. CSYNC();
  242. bfin_write_TSCALE(TIME_SCALE - 1);
  243. bfin_write_TPERIOD(0);
  244. bfin_write_TCOUNT(0);
  245. break;
  246. case CLOCK_EVT_MODE_UNUSED:
  247. case CLOCK_EVT_MODE_SHUTDOWN:
  248. bfin_write_TCNTL(0);
  249. CSYNC();
  250. break;
  251. case CLOCK_EVT_MODE_RESUME:
  252. break;
  253. }
  254. }
  255. void bfin_coretmr_init(void)
  256. {
  257. /* power up the timer, but don't enable it just yet */
  258. bfin_write_TCNTL(TMPWR);
  259. CSYNC();
  260. /* the TSCALE prescaler counter. */
  261. bfin_write_TSCALE(TIME_SCALE - 1);
  262. bfin_write_TPERIOD(0);
  263. bfin_write_TCOUNT(0);
  264. CSYNC();
  265. }
  266. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  267. __attribute__((l1_text))
  268. #endif
  269. irqreturn_t bfin_coretmr_interrupt(int irq, void *dev_id)
  270. {
  271. int cpu = smp_processor_id();
  272. struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
  273. smp_mb();
  274. evt->event_handler(evt);
  275. touch_nmi_watchdog();
  276. return IRQ_HANDLED;
  277. }
  278. static struct irqaction coretmr_irq = {
  279. .name = "Blackfin CoreTimer",
  280. .flags = IRQF_DISABLED | IRQF_TIMER | \
  281. IRQF_IRQPOLL | IRQF_PERCPU,
  282. .handler = bfin_coretmr_interrupt,
  283. };
  284. void bfin_coretmr_clockevent_init(void)
  285. {
  286. unsigned long clock_tick;
  287. unsigned int cpu = smp_processor_id();
  288. struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
  289. evt->name = "bfin_core_timer";
  290. evt->rating = 350;
  291. evt->irq = -1;
  292. evt->shift = 32;
  293. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  294. evt->set_next_event = bfin_coretmr_set_next_event;
  295. evt->set_mode = bfin_coretmr_set_mode;
  296. clock_tick = get_cclk() / TIME_SCALE;
  297. evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
  298. evt->max_delta_ns = clockevent_delta2ns(-1, evt);
  299. evt->min_delta_ns = clockevent_delta2ns(100, evt);
  300. evt->cpumask = cpumask_of(cpu);
  301. clockevents_register_device(evt);
  302. }
  303. #endif /* CONFIG_TICKSOURCE_CORETMR */
  304. void read_persistent_clock(struct timespec *ts)
  305. {
  306. time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
  307. ts->tv_sec = secs_since_1970;
  308. ts->tv_nsec = 0;
  309. }
  310. void __init time_init(void)
  311. {
  312. #ifdef CONFIG_RTC_DRV_BFIN
  313. /* [#2663] hack to filter junk RTC values that would cause
  314. * userspace to have to deal with time values greater than
  315. * 2^31 seconds (which uClibc cannot cope with yet)
  316. */
  317. if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
  318. printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
  319. bfin_write_RTC_STAT(0);
  320. }
  321. #endif
  322. bfin_cs_cycles_init();
  323. bfin_cs_gptimer0_init();
  324. #if defined(CONFIG_TICKSOURCE_CORETMR)
  325. bfin_coretmr_init();
  326. setup_irq(IRQ_CORETMR, &coretmr_irq);
  327. bfin_coretmr_clockevent_init();
  328. #endif
  329. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  330. bfin_gptmr0_init();
  331. setup_irq(IRQ_TIMER0, &gptmr0_irq);
  332. gptmr0_irq.dev_id = &clockevent_gptmr0;
  333. bfin_gptmr0_clockevent_init(&clockevent_gptmr0);
  334. #endif
  335. #if !defined(CONFIG_TICKSOURCE_CORETMR) && !defined(CONFIG_TICKSOURCE_GPTMR0)
  336. # error at least one clock event device is required
  337. #endif
  338. }