host.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239
  1. /*
  2. * This file is provided under a dual BSD/GPLv2 license. When using or
  3. * redistributing this file, you may do so under either license.
  4. *
  5. * GPL LICENSE SUMMARY
  6. *
  7. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21. * The full GNU General Public License is included in this distribution
  22. * in the file called LICENSE.GPL.
  23. *
  24. * BSD LICENSE
  25. *
  26. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27. * All rights reserved.
  28. *
  29. * Redistribution and use in source and binary forms, with or without
  30. * modification, are permitted provided that the following conditions
  31. * are met:
  32. *
  33. * * Redistributions of source code must retain the above copyright
  34. * notice, this list of conditions and the following disclaimer.
  35. * * Redistributions in binary form must reproduce the above copyright
  36. * notice, this list of conditions and the following disclaimer in
  37. * the documentation and/or other materials provided with the
  38. * distribution.
  39. * * Neither the name of Intel Corporation nor the names of its
  40. * contributors may be used to endorse or promote products derived
  41. * from this software without specific prior written permission.
  42. *
  43. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54. */
  55. #include <linux/device.h>
  56. #include <scsi/sas.h>
  57. #include "host.h"
  58. #include "isci.h"
  59. #include "port.h"
  60. #include "host.h"
  61. #include "probe_roms.h"
  62. #include "remote_device.h"
  63. #include "request.h"
  64. #include "scu_completion_codes.h"
  65. #include "scu_event_codes.h"
  66. #include "registers.h"
  67. #include "scu_remote_node_context.h"
  68. #include "scu_task_context.h"
  69. #include "scu_unsolicited_frame.h"
  70. #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
  71. /**
  72. * smu_dcc_get_max_ports() -
  73. *
  74. * This macro returns the maximum number of logical ports supported by the
  75. * hardware. The caller passes in the value read from the device context
  76. * capacity register and this macro will mash and shift the value appropriately.
  77. */
  78. #define smu_dcc_get_max_ports(dcc_value) \
  79. (\
  80. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
  81. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
  82. )
  83. /**
  84. * smu_dcc_get_max_task_context() -
  85. *
  86. * This macro returns the maximum number of task contexts supported by the
  87. * hardware. The caller passes in the value read from the device context
  88. * capacity register and this macro will mash and shift the value appropriately.
  89. */
  90. #define smu_dcc_get_max_task_context(dcc_value) \
  91. (\
  92. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
  93. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
  94. )
  95. /**
  96. * smu_dcc_get_max_remote_node_context() -
  97. *
  98. * This macro returns the maximum number of remote node contexts supported by
  99. * the hardware. The caller passes in the value read from the device context
  100. * capacity register and this macro will mash and shift the value appropriately.
  101. */
  102. #define smu_dcc_get_max_remote_node_context(dcc_value) \
  103. (\
  104. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
  105. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
  106. )
  107. #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
  108. /**
  109. *
  110. *
  111. * The number of milliseconds to wait while a given phy is consuming power
  112. * before allowing another set of phys to consume power. Ultimately, this will
  113. * be specified by OEM parameter.
  114. */
  115. #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
  116. /**
  117. * NORMALIZE_PUT_POINTER() -
  118. *
  119. * This macro will normalize the completion queue put pointer so its value can
  120. * be used as an array inde
  121. */
  122. #define NORMALIZE_PUT_POINTER(x) \
  123. ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
  124. /**
  125. * NORMALIZE_EVENT_POINTER() -
  126. *
  127. * This macro will normalize the completion queue event entry so its value can
  128. * be used as an index.
  129. */
  130. #define NORMALIZE_EVENT_POINTER(x) \
  131. (\
  132. ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
  133. >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
  134. )
  135. /**
  136. * INCREMENT_COMPLETION_QUEUE_GET() -
  137. *
  138. * This macro will increment the controllers completion queue index value and
  139. * possibly toggle the cycle bit if the completion queue index wraps back to 0.
  140. */
  141. #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
  142. INCREMENT_QUEUE_GET(\
  143. (index), \
  144. (cycle), \
  145. (controller)->completion_queue_entries, \
  146. SMU_CQGR_CYCLE_BIT \
  147. )
  148. /**
  149. * INCREMENT_EVENT_QUEUE_GET() -
  150. *
  151. * This macro will increment the controllers event queue index value and
  152. * possibly toggle the event cycle bit if the event queue index wraps back to 0.
  153. */
  154. #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
  155. INCREMENT_QUEUE_GET(\
  156. (index), \
  157. (cycle), \
  158. (controller)->completion_event_entries, \
  159. SMU_CQGR_EVENT_CYCLE_BIT \
  160. )
  161. /**
  162. * NORMALIZE_GET_POINTER() -
  163. *
  164. * This macro will normalize the completion queue get pointer so its value can
  165. * be used as an index into an array
  166. */
  167. #define NORMALIZE_GET_POINTER(x) \
  168. ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
  169. /**
  170. * NORMALIZE_GET_POINTER_CYCLE_BIT() -
  171. *
  172. * This macro will normalize the completion queue cycle pointer so it matches
  173. * the completion queue cycle bit
  174. */
  175. #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
  176. ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
  177. /**
  178. * COMPLETION_QUEUE_CYCLE_BIT() -
  179. *
  180. * This macro will return the cycle bit of the completion queue entry
  181. */
  182. #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
  183. /* Init the state machine and call the state entry function (if any) */
  184. void sci_init_sm(struct sci_base_state_machine *sm,
  185. const struct sci_base_state *state_table, u32 initial_state)
  186. {
  187. sci_state_transition_t handler;
  188. sm->initial_state_id = initial_state;
  189. sm->previous_state_id = initial_state;
  190. sm->current_state_id = initial_state;
  191. sm->state_table = state_table;
  192. handler = sm->state_table[initial_state].enter_state;
  193. if (handler)
  194. handler(sm);
  195. }
  196. /* Call the state exit fn, update the current state, call the state entry fn */
  197. void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
  198. {
  199. sci_state_transition_t handler;
  200. handler = sm->state_table[sm->current_state_id].exit_state;
  201. if (handler)
  202. handler(sm);
  203. sm->previous_state_id = sm->current_state_id;
  204. sm->current_state_id = next_state;
  205. handler = sm->state_table[sm->current_state_id].enter_state;
  206. if (handler)
  207. handler(sm);
  208. }
  209. static bool scic_sds_controller_completion_queue_has_entries(
  210. struct scic_sds_controller *scic)
  211. {
  212. u32 get_value = scic->completion_queue_get;
  213. u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
  214. if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
  215. COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
  216. return true;
  217. return false;
  218. }
  219. static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
  220. {
  221. if (scic_sds_controller_completion_queue_has_entries(scic)) {
  222. return true;
  223. } else {
  224. /*
  225. * we have a spurious interrupt it could be that we have already
  226. * emptied the completion queue from a previous interrupt */
  227. writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
  228. /*
  229. * There is a race in the hardware that could cause us not to be notified
  230. * of an interrupt completion if we do not take this step. We will mask
  231. * then unmask the interrupts so if there is another interrupt pending
  232. * the clearing of the interrupt source we get the next interrupt message. */
  233. writel(0xFF000000, &scic->smu_registers->interrupt_mask);
  234. writel(0, &scic->smu_registers->interrupt_mask);
  235. }
  236. return false;
  237. }
  238. irqreturn_t isci_msix_isr(int vec, void *data)
  239. {
  240. struct isci_host *ihost = data;
  241. if (scic_sds_controller_isr(&ihost->sci))
  242. tasklet_schedule(&ihost->completion_tasklet);
  243. return IRQ_HANDLED;
  244. }
  245. static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
  246. {
  247. u32 interrupt_status;
  248. interrupt_status =
  249. readl(&scic->smu_registers->interrupt_status);
  250. interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
  251. if (interrupt_status != 0) {
  252. /*
  253. * There is an error interrupt pending so let it through and handle
  254. * in the callback */
  255. return true;
  256. }
  257. /*
  258. * There is a race in the hardware that could cause us not to be notified
  259. * of an interrupt completion if we do not take this step. We will mask
  260. * then unmask the error interrupts so if there was another interrupt
  261. * pending we will be notified.
  262. * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
  263. writel(0xff, &scic->smu_registers->interrupt_mask);
  264. writel(0, &scic->smu_registers->interrupt_mask);
  265. return false;
  266. }
  267. static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
  268. u32 completion_entry)
  269. {
  270. u32 index;
  271. struct scic_sds_request *io_request;
  272. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  273. io_request = scic->io_request_table[index];
  274. /* Make sure that we really want to process this IO request */
  275. if (
  276. (io_request != NULL)
  277. && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
  278. && (
  279. scic_sds_io_tag_get_sequence(io_request->io_tag)
  280. == scic->io_request_sequence[index]
  281. )
  282. ) {
  283. /* Yep this is a valid io request pass it along to the io request handler */
  284. scic_sds_io_request_tc_completion(io_request, completion_entry);
  285. }
  286. }
  287. static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
  288. u32 completion_entry)
  289. {
  290. u32 index;
  291. struct scic_sds_request *io_request;
  292. struct scic_sds_remote_device *device;
  293. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  294. switch (scu_get_command_request_type(completion_entry)) {
  295. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
  296. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
  297. io_request = scic->io_request_table[index];
  298. dev_warn(scic_to_dev(scic),
  299. "%s: SCIC SDS Completion type SDMA %x for io request "
  300. "%p\n",
  301. __func__,
  302. completion_entry,
  303. io_request);
  304. /* @todo For a post TC operation we need to fail the IO
  305. * request
  306. */
  307. break;
  308. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
  309. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
  310. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
  311. device = scic->device_table[index];
  312. dev_warn(scic_to_dev(scic),
  313. "%s: SCIC SDS Completion type SDMA %x for remote "
  314. "device %p\n",
  315. __func__,
  316. completion_entry,
  317. device);
  318. /* @todo For a port RNC operation we need to fail the
  319. * device
  320. */
  321. break;
  322. default:
  323. dev_warn(scic_to_dev(scic),
  324. "%s: SCIC SDS Completion unknown SDMA completion "
  325. "type %x\n",
  326. __func__,
  327. completion_entry);
  328. break;
  329. }
  330. }
  331. static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
  332. u32 completion_entry)
  333. {
  334. u32 index;
  335. u32 frame_index;
  336. struct isci_host *ihost = scic_to_ihost(scic);
  337. struct scu_unsolicited_frame_header *frame_header;
  338. struct scic_sds_phy *phy;
  339. struct scic_sds_remote_device *device;
  340. enum sci_status result = SCI_FAILURE;
  341. frame_index = SCU_GET_FRAME_INDEX(completion_entry);
  342. frame_header = scic->uf_control.buffers.array[frame_index].header;
  343. scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
  344. if (SCU_GET_FRAME_ERROR(completion_entry)) {
  345. /*
  346. * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
  347. * / this cause a problem? We expect the phy initialization will
  348. * / fail if there is an error in the frame. */
  349. scic_sds_controller_release_frame(scic, frame_index);
  350. return;
  351. }
  352. if (frame_header->is_address_frame) {
  353. index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
  354. phy = &ihost->phys[index].sci;
  355. result = scic_sds_phy_frame_handler(phy, frame_index);
  356. } else {
  357. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  358. if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
  359. /*
  360. * This is a signature fis or a frame from a direct attached SATA
  361. * device that has not yet been created. In either case forwared
  362. * the frame to the PE and let it take care of the frame data. */
  363. index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
  364. phy = &ihost->phys[index].sci;
  365. result = scic_sds_phy_frame_handler(phy, frame_index);
  366. } else {
  367. if (index < scic->remote_node_entries)
  368. device = scic->device_table[index];
  369. else
  370. device = NULL;
  371. if (device != NULL)
  372. result = scic_sds_remote_device_frame_handler(device, frame_index);
  373. else
  374. scic_sds_controller_release_frame(scic, frame_index);
  375. }
  376. }
  377. if (result != SCI_SUCCESS) {
  378. /*
  379. * / @todo Is there any reason to report some additional error message
  380. * / when we get this failure notifiction? */
  381. }
  382. }
  383. static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
  384. u32 completion_entry)
  385. {
  386. struct isci_host *ihost = scic_to_ihost(scic);
  387. struct scic_sds_request *io_request;
  388. struct scic_sds_remote_device *device;
  389. struct scic_sds_phy *phy;
  390. u32 index;
  391. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  392. switch (scu_get_event_type(completion_entry)) {
  393. case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
  394. /* / @todo The driver did something wrong and we need to fix the condtion. */
  395. dev_err(scic_to_dev(scic),
  396. "%s: SCIC Controller 0x%p received SMU command error "
  397. "0x%x\n",
  398. __func__,
  399. scic,
  400. completion_entry);
  401. break;
  402. case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
  403. case SCU_EVENT_TYPE_SMU_ERROR:
  404. case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
  405. /*
  406. * / @todo This is a hardware failure and its likely that we want to
  407. * / reset the controller. */
  408. dev_err(scic_to_dev(scic),
  409. "%s: SCIC Controller 0x%p received fatal controller "
  410. "event 0x%x\n",
  411. __func__,
  412. scic,
  413. completion_entry);
  414. break;
  415. case SCU_EVENT_TYPE_TRANSPORT_ERROR:
  416. io_request = scic->io_request_table[index];
  417. scic_sds_io_request_event_handler(io_request, completion_entry);
  418. break;
  419. case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
  420. switch (scu_get_event_specifier(completion_entry)) {
  421. case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
  422. case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
  423. io_request = scic->io_request_table[index];
  424. if (io_request != NULL)
  425. scic_sds_io_request_event_handler(io_request, completion_entry);
  426. else
  427. dev_warn(scic_to_dev(scic),
  428. "%s: SCIC Controller 0x%p received "
  429. "event 0x%x for io request object "
  430. "that doesnt exist.\n",
  431. __func__,
  432. scic,
  433. completion_entry);
  434. break;
  435. case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
  436. device = scic->device_table[index];
  437. if (device != NULL)
  438. scic_sds_remote_device_event_handler(device, completion_entry);
  439. else
  440. dev_warn(scic_to_dev(scic),
  441. "%s: SCIC Controller 0x%p received "
  442. "event 0x%x for remote device object "
  443. "that doesnt exist.\n",
  444. __func__,
  445. scic,
  446. completion_entry);
  447. break;
  448. }
  449. break;
  450. case SCU_EVENT_TYPE_BROADCAST_CHANGE:
  451. /*
  452. * direct the broadcast change event to the phy first and then let
  453. * the phy redirect the broadcast change to the port object */
  454. case SCU_EVENT_TYPE_ERR_CNT_EVENT:
  455. /*
  456. * direct error counter event to the phy object since that is where
  457. * we get the event notification. This is a type 4 event. */
  458. case SCU_EVENT_TYPE_OSSP_EVENT:
  459. index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
  460. phy = &ihost->phys[index].sci;
  461. scic_sds_phy_event_handler(phy, completion_entry);
  462. break;
  463. case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
  464. case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
  465. case SCU_EVENT_TYPE_RNC_OPS_MISC:
  466. if (index < scic->remote_node_entries) {
  467. device = scic->device_table[index];
  468. if (device != NULL)
  469. scic_sds_remote_device_event_handler(device, completion_entry);
  470. } else
  471. dev_err(scic_to_dev(scic),
  472. "%s: SCIC Controller 0x%p received event 0x%x "
  473. "for remote device object 0x%0x that doesnt "
  474. "exist.\n",
  475. __func__,
  476. scic,
  477. completion_entry,
  478. index);
  479. break;
  480. default:
  481. dev_warn(scic_to_dev(scic),
  482. "%s: SCIC Controller received unknown event code %x\n",
  483. __func__,
  484. completion_entry);
  485. break;
  486. }
  487. }
  488. static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
  489. {
  490. u32 completion_count = 0;
  491. u32 completion_entry;
  492. u32 get_index;
  493. u32 get_cycle;
  494. u32 event_index;
  495. u32 event_cycle;
  496. dev_dbg(scic_to_dev(scic),
  497. "%s: completion queue begining get:0x%08x\n",
  498. __func__,
  499. scic->completion_queue_get);
  500. /* Get the component parts of the completion queue */
  501. get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
  502. get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
  503. event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
  504. event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
  505. while (
  506. NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
  507. == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
  508. ) {
  509. completion_count++;
  510. completion_entry = scic->completion_queue[get_index];
  511. INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
  512. dev_dbg(scic_to_dev(scic),
  513. "%s: completion queue entry:0x%08x\n",
  514. __func__,
  515. completion_entry);
  516. switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
  517. case SCU_COMPLETION_TYPE_TASK:
  518. scic_sds_controller_task_completion(scic, completion_entry);
  519. break;
  520. case SCU_COMPLETION_TYPE_SDMA:
  521. scic_sds_controller_sdma_completion(scic, completion_entry);
  522. break;
  523. case SCU_COMPLETION_TYPE_UFI:
  524. scic_sds_controller_unsolicited_frame(scic, completion_entry);
  525. break;
  526. case SCU_COMPLETION_TYPE_EVENT:
  527. INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
  528. scic_sds_controller_event_completion(scic, completion_entry);
  529. break;
  530. case SCU_COMPLETION_TYPE_NOTIFY:
  531. /*
  532. * Presently we do the same thing with a notify event that we do with the
  533. * other event codes. */
  534. INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
  535. scic_sds_controller_event_completion(scic, completion_entry);
  536. break;
  537. default:
  538. dev_warn(scic_to_dev(scic),
  539. "%s: SCIC Controller received unknown "
  540. "completion type %x\n",
  541. __func__,
  542. completion_entry);
  543. break;
  544. }
  545. }
  546. /* Update the get register if we completed one or more entries */
  547. if (completion_count > 0) {
  548. scic->completion_queue_get =
  549. SMU_CQGR_GEN_BIT(ENABLE) |
  550. SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
  551. event_cycle |
  552. SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
  553. get_cycle |
  554. SMU_CQGR_GEN_VAL(POINTER, get_index);
  555. writel(scic->completion_queue_get,
  556. &scic->smu_registers->completion_queue_get);
  557. }
  558. dev_dbg(scic_to_dev(scic),
  559. "%s: completion queue ending get:0x%08x\n",
  560. __func__,
  561. scic->completion_queue_get);
  562. }
  563. static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
  564. {
  565. u32 interrupt_status;
  566. interrupt_status =
  567. readl(&scic->smu_registers->interrupt_status);
  568. if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
  569. scic_sds_controller_completion_queue_has_entries(scic)) {
  570. scic_sds_controller_process_completions(scic);
  571. writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
  572. } else {
  573. dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
  574. interrupt_status);
  575. sci_change_state(&scic->sm, SCIC_FAILED);
  576. return;
  577. }
  578. /* If we dont process any completions I am not sure that we want to do this.
  579. * We are in the middle of a hardware fault and should probably be reset.
  580. */
  581. writel(0, &scic->smu_registers->interrupt_mask);
  582. }
  583. irqreturn_t isci_intx_isr(int vec, void *data)
  584. {
  585. irqreturn_t ret = IRQ_NONE;
  586. struct isci_host *ihost = data;
  587. struct scic_sds_controller *scic = &ihost->sci;
  588. if (scic_sds_controller_isr(scic)) {
  589. writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
  590. tasklet_schedule(&ihost->completion_tasklet);
  591. ret = IRQ_HANDLED;
  592. } else if (scic_sds_controller_error_isr(scic)) {
  593. spin_lock(&ihost->scic_lock);
  594. scic_sds_controller_error_handler(scic);
  595. spin_unlock(&ihost->scic_lock);
  596. ret = IRQ_HANDLED;
  597. }
  598. return ret;
  599. }
  600. irqreturn_t isci_error_isr(int vec, void *data)
  601. {
  602. struct isci_host *ihost = data;
  603. if (scic_sds_controller_error_isr(&ihost->sci))
  604. scic_sds_controller_error_handler(&ihost->sci);
  605. return IRQ_HANDLED;
  606. }
  607. /**
  608. * isci_host_start_complete() - This function is called by the core library,
  609. * through the ISCI Module, to indicate controller start status.
  610. * @isci_host: This parameter specifies the ISCI host object
  611. * @completion_status: This parameter specifies the completion status from the
  612. * core library.
  613. *
  614. */
  615. static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
  616. {
  617. if (completion_status != SCI_SUCCESS)
  618. dev_info(&ihost->pdev->dev,
  619. "controller start timed out, continuing...\n");
  620. isci_host_change_state(ihost, isci_ready);
  621. clear_bit(IHOST_START_PENDING, &ihost->flags);
  622. wake_up(&ihost->eventq);
  623. }
  624. int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
  625. {
  626. struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
  627. if (test_bit(IHOST_START_PENDING, &ihost->flags))
  628. return 0;
  629. /* todo: use sas_flush_discovery once it is upstream */
  630. scsi_flush_work(shost);
  631. scsi_flush_work(shost);
  632. dev_dbg(&ihost->pdev->dev,
  633. "%s: ihost->status = %d, time = %ld\n",
  634. __func__, isci_host_get_state(ihost), time);
  635. return 1;
  636. }
  637. /**
  638. * scic_controller_get_suggested_start_timeout() - This method returns the
  639. * suggested scic_controller_start() timeout amount. The user is free to
  640. * use any timeout value, but this method provides the suggested minimum
  641. * start timeout value. The returned value is based upon empirical
  642. * information determined as a result of interoperability testing.
  643. * @controller: the handle to the controller object for which to return the
  644. * suggested start timeout.
  645. *
  646. * This method returns the number of milliseconds for the suggested start
  647. * operation timeout.
  648. */
  649. static u32 scic_controller_get_suggested_start_timeout(
  650. struct scic_sds_controller *sc)
  651. {
  652. /* Validate the user supplied parameters. */
  653. if (sc == NULL)
  654. return 0;
  655. /*
  656. * The suggested minimum timeout value for a controller start operation:
  657. *
  658. * Signature FIS Timeout
  659. * + Phy Start Timeout
  660. * + Number of Phy Spin Up Intervals
  661. * ---------------------------------
  662. * Number of milliseconds for the controller start operation.
  663. *
  664. * NOTE: The number of phy spin up intervals will be equivalent
  665. * to the number of phys divided by the number phys allowed
  666. * per interval - 1 (once OEM parameters are supported).
  667. * Currently we assume only 1 phy per interval. */
  668. return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
  669. + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
  670. + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  671. }
  672. static void scic_controller_enable_interrupts(
  673. struct scic_sds_controller *scic)
  674. {
  675. BUG_ON(scic->smu_registers == NULL);
  676. writel(0, &scic->smu_registers->interrupt_mask);
  677. }
  678. void scic_controller_disable_interrupts(
  679. struct scic_sds_controller *scic)
  680. {
  681. BUG_ON(scic->smu_registers == NULL);
  682. writel(0xffffffff, &scic->smu_registers->interrupt_mask);
  683. }
  684. static void scic_sds_controller_enable_port_task_scheduler(
  685. struct scic_sds_controller *scic)
  686. {
  687. u32 port_task_scheduler_value;
  688. port_task_scheduler_value =
  689. readl(&scic->scu_registers->peg0.ptsg.control);
  690. port_task_scheduler_value |=
  691. (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
  692. SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
  693. writel(port_task_scheduler_value,
  694. &scic->scu_registers->peg0.ptsg.control);
  695. }
  696. static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
  697. {
  698. u32 task_assignment;
  699. /*
  700. * Assign all the TCs to function 0
  701. * TODO: Do we actually need to read this register to write it back?
  702. */
  703. task_assignment =
  704. readl(&scic->smu_registers->task_context_assignment[0]);
  705. task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
  706. (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
  707. (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
  708. writel(task_assignment,
  709. &scic->smu_registers->task_context_assignment[0]);
  710. }
  711. static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
  712. {
  713. u32 index;
  714. u32 completion_queue_control_value;
  715. u32 completion_queue_get_value;
  716. u32 completion_queue_put_value;
  717. scic->completion_queue_get = 0;
  718. completion_queue_control_value = (
  719. SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1)
  720. | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1)
  721. );
  722. writel(completion_queue_control_value,
  723. &scic->smu_registers->completion_queue_control);
  724. /* Set the completion queue get pointer and enable the queue */
  725. completion_queue_get_value = (
  726. (SMU_CQGR_GEN_VAL(POINTER, 0))
  727. | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
  728. | (SMU_CQGR_GEN_BIT(ENABLE))
  729. | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
  730. );
  731. writel(completion_queue_get_value,
  732. &scic->smu_registers->completion_queue_get);
  733. /* Set the completion queue put pointer */
  734. completion_queue_put_value = (
  735. (SMU_CQPR_GEN_VAL(POINTER, 0))
  736. | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
  737. );
  738. writel(completion_queue_put_value,
  739. &scic->smu_registers->completion_queue_put);
  740. /* Initialize the cycle bit of the completion queue entries */
  741. for (index = 0; index < scic->completion_queue_entries; index++) {
  742. /*
  743. * If get.cycle_bit != completion_queue.cycle_bit
  744. * its not a valid completion queue entry
  745. * so at system start all entries are invalid */
  746. scic->completion_queue[index] = 0x80000000;
  747. }
  748. }
  749. static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
  750. {
  751. u32 frame_queue_control_value;
  752. u32 frame_queue_get_value;
  753. u32 frame_queue_put_value;
  754. /* Write the queue size */
  755. frame_queue_control_value =
  756. SCU_UFQC_GEN_VAL(QUEUE_SIZE,
  757. scic->uf_control.address_table.count);
  758. writel(frame_queue_control_value,
  759. &scic->scu_registers->sdma.unsolicited_frame_queue_control);
  760. /* Setup the get pointer for the unsolicited frame queue */
  761. frame_queue_get_value = (
  762. SCU_UFQGP_GEN_VAL(POINTER, 0)
  763. | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
  764. );
  765. writel(frame_queue_get_value,
  766. &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
  767. /* Setup the put pointer for the unsolicited frame queue */
  768. frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
  769. writel(frame_queue_put_value,
  770. &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
  771. }
  772. /**
  773. * This method will attempt to transition into the ready state for the
  774. * controller and indicate that the controller start operation has completed
  775. * if all criteria are met.
  776. * @scic: This parameter indicates the controller object for which
  777. * to transition to ready.
  778. * @status: This parameter indicates the status value to be pass into the call
  779. * to scic_cb_controller_start_complete().
  780. *
  781. * none.
  782. */
  783. static void scic_sds_controller_transition_to_ready(
  784. struct scic_sds_controller *scic,
  785. enum sci_status status)
  786. {
  787. struct isci_host *ihost = scic_to_ihost(scic);
  788. if (scic->sm.current_state_id == SCIC_STARTING) {
  789. /*
  790. * We move into the ready state, because some of the phys/ports
  791. * may be up and operational.
  792. */
  793. sci_change_state(&scic->sm, SCIC_READY);
  794. isci_host_start_complete(ihost, status);
  795. }
  796. }
  797. static bool is_phy_starting(struct scic_sds_phy *sci_phy)
  798. {
  799. enum scic_sds_phy_states state;
  800. state = sci_phy->sm.current_state_id;
  801. switch (state) {
  802. case SCI_PHY_STARTING:
  803. case SCI_PHY_SUB_INITIAL:
  804. case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
  805. case SCI_PHY_SUB_AWAIT_IAF_UF:
  806. case SCI_PHY_SUB_AWAIT_SAS_POWER:
  807. case SCI_PHY_SUB_AWAIT_SATA_POWER:
  808. case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
  809. case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
  810. case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
  811. case SCI_PHY_SUB_FINAL:
  812. return true;
  813. default:
  814. return false;
  815. }
  816. }
  817. /**
  818. * scic_sds_controller_start_next_phy - start phy
  819. * @scic: controller
  820. *
  821. * If all the phys have been started, then attempt to transition the
  822. * controller to the READY state and inform the user
  823. * (scic_cb_controller_start_complete()).
  824. */
  825. static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
  826. {
  827. struct isci_host *ihost = scic_to_ihost(scic);
  828. struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
  829. struct scic_sds_phy *sci_phy;
  830. enum sci_status status;
  831. status = SCI_SUCCESS;
  832. if (scic->phy_startup_timer_pending)
  833. return status;
  834. if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
  835. bool is_controller_start_complete = true;
  836. u32 state;
  837. u8 index;
  838. for (index = 0; index < SCI_MAX_PHYS; index++) {
  839. sci_phy = &ihost->phys[index].sci;
  840. state = sci_phy->sm.current_state_id;
  841. if (!phy_get_non_dummy_port(sci_phy))
  842. continue;
  843. /* The controller start operation is complete iff:
  844. * - all links have been given an opportunity to start
  845. * - have no indication of a connected device
  846. * - have an indication of a connected device and it has
  847. * finished the link training process.
  848. */
  849. if ((sci_phy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
  850. (sci_phy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
  851. (sci_phy->is_in_link_training == true && is_phy_starting(sci_phy))) {
  852. is_controller_start_complete = false;
  853. break;
  854. }
  855. }
  856. /*
  857. * The controller has successfully finished the start process.
  858. * Inform the SCI Core user and transition to the READY state. */
  859. if (is_controller_start_complete == true) {
  860. scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
  861. sci_del_timer(&scic->phy_timer);
  862. scic->phy_startup_timer_pending = false;
  863. }
  864. } else {
  865. sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
  866. if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
  867. if (phy_get_non_dummy_port(sci_phy) == NULL) {
  868. scic->next_phy_to_start++;
  869. /* Caution recursion ahead be forwarned
  870. *
  871. * The PHY was never added to a PORT in MPC mode
  872. * so start the next phy in sequence This phy
  873. * will never go link up and will not draw power
  874. * the OEM parameters either configured the phy
  875. * incorrectly for the PORT or it was never
  876. * assigned to a PORT
  877. */
  878. return scic_sds_controller_start_next_phy(scic);
  879. }
  880. }
  881. status = scic_sds_phy_start(sci_phy);
  882. if (status == SCI_SUCCESS) {
  883. sci_mod_timer(&scic->phy_timer,
  884. SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
  885. scic->phy_startup_timer_pending = true;
  886. } else {
  887. dev_warn(scic_to_dev(scic),
  888. "%s: Controller stop operation failed "
  889. "to stop phy %d because of status "
  890. "%d.\n",
  891. __func__,
  892. ihost->phys[scic->next_phy_to_start].sci.phy_index,
  893. status);
  894. }
  895. scic->next_phy_to_start++;
  896. }
  897. return status;
  898. }
  899. static void phy_startup_timeout(unsigned long data)
  900. {
  901. struct sci_timer *tmr = (struct sci_timer *)data;
  902. struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), phy_timer);
  903. struct isci_host *ihost = scic_to_ihost(scic);
  904. unsigned long flags;
  905. enum sci_status status;
  906. spin_lock_irqsave(&ihost->scic_lock, flags);
  907. if (tmr->cancel)
  908. goto done;
  909. scic->phy_startup_timer_pending = false;
  910. do {
  911. status = scic_sds_controller_start_next_phy(scic);
  912. } while (status != SCI_SUCCESS);
  913. done:
  914. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  915. }
  916. static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
  917. u32 timeout)
  918. {
  919. struct isci_host *ihost = scic_to_ihost(scic);
  920. enum sci_status result;
  921. u16 index;
  922. if (scic->sm.current_state_id != SCIC_INITIALIZED) {
  923. dev_warn(scic_to_dev(scic),
  924. "SCIC Controller start operation requested in "
  925. "invalid state\n");
  926. return SCI_FAILURE_INVALID_STATE;
  927. }
  928. /* Build the TCi free pool */
  929. sci_pool_initialize(scic->tci_pool);
  930. for (index = 0; index < scic->task_context_entries; index++)
  931. sci_pool_put(scic->tci_pool, index);
  932. /* Build the RNi free pool */
  933. scic_sds_remote_node_table_initialize(
  934. &scic->available_remote_nodes,
  935. scic->remote_node_entries);
  936. /*
  937. * Before anything else lets make sure we will not be
  938. * interrupted by the hardware.
  939. */
  940. scic_controller_disable_interrupts(scic);
  941. /* Enable the port task scheduler */
  942. scic_sds_controller_enable_port_task_scheduler(scic);
  943. /* Assign all the task entries to scic physical function */
  944. scic_sds_controller_assign_task_entries(scic);
  945. /* Now initialize the completion queue */
  946. scic_sds_controller_initialize_completion_queue(scic);
  947. /* Initialize the unsolicited frame queue for use */
  948. scic_sds_controller_initialize_unsolicited_frame_queue(scic);
  949. /* Start all of the ports on this controller */
  950. for (index = 0; index < scic->logical_port_entries; index++) {
  951. struct scic_sds_port *sci_port = &ihost->ports[index].sci;
  952. result = scic_sds_port_start(sci_port);
  953. if (result)
  954. return result;
  955. }
  956. scic_sds_controller_start_next_phy(scic);
  957. sci_mod_timer(&scic->timer, timeout);
  958. sci_change_state(&scic->sm, SCIC_STARTING);
  959. return SCI_SUCCESS;
  960. }
  961. void isci_host_scan_start(struct Scsi_Host *shost)
  962. {
  963. struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
  964. unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
  965. set_bit(IHOST_START_PENDING, &ihost->flags);
  966. spin_lock_irq(&ihost->scic_lock);
  967. scic_controller_start(&ihost->sci, tmo);
  968. scic_controller_enable_interrupts(&ihost->sci);
  969. spin_unlock_irq(&ihost->scic_lock);
  970. }
  971. static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
  972. {
  973. isci_host_change_state(ihost, isci_stopped);
  974. scic_controller_disable_interrupts(&ihost->sci);
  975. clear_bit(IHOST_STOP_PENDING, &ihost->flags);
  976. wake_up(&ihost->eventq);
  977. }
  978. static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
  979. {
  980. /* Empty out the completion queue */
  981. if (scic_sds_controller_completion_queue_has_entries(scic))
  982. scic_sds_controller_process_completions(scic);
  983. /* Clear the interrupt and enable all interrupts again */
  984. writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
  985. /* Could we write the value of SMU_ISR_COMPLETION? */
  986. writel(0xFF000000, &scic->smu_registers->interrupt_mask);
  987. writel(0, &scic->smu_registers->interrupt_mask);
  988. }
  989. /**
  990. * isci_host_completion_routine() - This function is the delayed service
  991. * routine that calls the sci core library's completion handler. It's
  992. * scheduled as a tasklet from the interrupt service routine when interrupts
  993. * in use, or set as the timeout function in polled mode.
  994. * @data: This parameter specifies the ISCI host object
  995. *
  996. */
  997. static void isci_host_completion_routine(unsigned long data)
  998. {
  999. struct isci_host *isci_host = (struct isci_host *)data;
  1000. struct list_head completed_request_list;
  1001. struct list_head errored_request_list;
  1002. struct list_head *current_position;
  1003. struct list_head *next_position;
  1004. struct isci_request *request;
  1005. struct isci_request *next_request;
  1006. struct sas_task *task;
  1007. INIT_LIST_HEAD(&completed_request_list);
  1008. INIT_LIST_HEAD(&errored_request_list);
  1009. spin_lock_irq(&isci_host->scic_lock);
  1010. scic_sds_controller_completion_handler(&isci_host->sci);
  1011. /* Take the lists of completed I/Os from the host. */
  1012. list_splice_init(&isci_host->requests_to_complete,
  1013. &completed_request_list);
  1014. /* Take the list of errored I/Os from the host. */
  1015. list_splice_init(&isci_host->requests_to_errorback,
  1016. &errored_request_list);
  1017. spin_unlock_irq(&isci_host->scic_lock);
  1018. /* Process any completions in the lists. */
  1019. list_for_each_safe(current_position, next_position,
  1020. &completed_request_list) {
  1021. request = list_entry(current_position, struct isci_request,
  1022. completed_node);
  1023. task = isci_request_access_task(request);
  1024. /* Normal notification (task_done) */
  1025. dev_dbg(&isci_host->pdev->dev,
  1026. "%s: Normal - request/task = %p/%p\n",
  1027. __func__,
  1028. request,
  1029. task);
  1030. /* Return the task to libsas */
  1031. if (task != NULL) {
  1032. task->lldd_task = NULL;
  1033. if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  1034. /* If the task is already in the abort path,
  1035. * the task_done callback cannot be called.
  1036. */
  1037. task->task_done(task);
  1038. }
  1039. }
  1040. /* Free the request object. */
  1041. isci_request_free(isci_host, request);
  1042. }
  1043. list_for_each_entry_safe(request, next_request, &errored_request_list,
  1044. completed_node) {
  1045. task = isci_request_access_task(request);
  1046. /* Use sas_task_abort */
  1047. dev_warn(&isci_host->pdev->dev,
  1048. "%s: Error - request/task = %p/%p\n",
  1049. __func__,
  1050. request,
  1051. task);
  1052. if (task != NULL) {
  1053. /* Put the task into the abort path if it's not there
  1054. * already.
  1055. */
  1056. if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
  1057. sas_task_abort(task);
  1058. } else {
  1059. /* This is a case where the request has completed with a
  1060. * status such that it needed further target servicing,
  1061. * but the sas_task reference has already been removed
  1062. * from the request. Since it was errored, it was not
  1063. * being aborted, so there is nothing to do except free
  1064. * it.
  1065. */
  1066. spin_lock_irq(&isci_host->scic_lock);
  1067. /* Remove the request from the remote device's list
  1068. * of pending requests.
  1069. */
  1070. list_del_init(&request->dev_node);
  1071. spin_unlock_irq(&isci_host->scic_lock);
  1072. /* Free the request object. */
  1073. isci_request_free(isci_host, request);
  1074. }
  1075. }
  1076. }
  1077. /**
  1078. * scic_controller_stop() - This method will stop an individual controller
  1079. * object.This method will invoke the associated user callback upon
  1080. * completion. The completion callback is called when the following
  1081. * conditions are met: -# the method return status is SCI_SUCCESS. -# the
  1082. * controller has been quiesced. This method will ensure that all IO
  1083. * requests are quiesced, phys are stopped, and all additional operation by
  1084. * the hardware is halted.
  1085. * @controller: the handle to the controller object to stop.
  1086. * @timeout: This parameter specifies the number of milliseconds in which the
  1087. * stop operation should complete.
  1088. *
  1089. * The controller must be in the STARTED or STOPPED state. Indicate if the
  1090. * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
  1091. * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
  1092. * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
  1093. * controller is not either in the STARTED or STOPPED states.
  1094. */
  1095. static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
  1096. u32 timeout)
  1097. {
  1098. if (scic->sm.current_state_id != SCIC_READY) {
  1099. dev_warn(scic_to_dev(scic),
  1100. "SCIC Controller stop operation requested in "
  1101. "invalid state\n");
  1102. return SCI_FAILURE_INVALID_STATE;
  1103. }
  1104. sci_mod_timer(&scic->timer, timeout);
  1105. sci_change_state(&scic->sm, SCIC_STOPPING);
  1106. return SCI_SUCCESS;
  1107. }
  1108. /**
  1109. * scic_controller_reset() - This method will reset the supplied core
  1110. * controller regardless of the state of said controller. This operation is
  1111. * considered destructive. In other words, all current operations are wiped
  1112. * out. No IO completions for outstanding devices occur. Outstanding IO
  1113. * requests are not aborted or completed at the actual remote device.
  1114. * @controller: the handle to the controller object to reset.
  1115. *
  1116. * Indicate if the controller reset method succeeded or failed in some way.
  1117. * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
  1118. * the controller reset operation is unable to complete.
  1119. */
  1120. static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
  1121. {
  1122. switch (scic->sm.current_state_id) {
  1123. case SCIC_RESET:
  1124. case SCIC_READY:
  1125. case SCIC_STOPPED:
  1126. case SCIC_FAILED:
  1127. /*
  1128. * The reset operation is not a graceful cleanup, just
  1129. * perform the state transition.
  1130. */
  1131. sci_change_state(&scic->sm, SCIC_RESETTING);
  1132. return SCI_SUCCESS;
  1133. default:
  1134. dev_warn(scic_to_dev(scic),
  1135. "SCIC Controller reset operation requested in "
  1136. "invalid state\n");
  1137. return SCI_FAILURE_INVALID_STATE;
  1138. }
  1139. }
  1140. void isci_host_deinit(struct isci_host *ihost)
  1141. {
  1142. int i;
  1143. isci_host_change_state(ihost, isci_stopping);
  1144. for (i = 0; i < SCI_MAX_PORTS; i++) {
  1145. struct isci_port *iport = &ihost->ports[i];
  1146. struct isci_remote_device *idev, *d;
  1147. list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
  1148. isci_remote_device_change_state(idev, isci_stopping);
  1149. isci_remote_device_stop(ihost, idev);
  1150. }
  1151. }
  1152. set_bit(IHOST_STOP_PENDING, &ihost->flags);
  1153. spin_lock_irq(&ihost->scic_lock);
  1154. scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
  1155. spin_unlock_irq(&ihost->scic_lock);
  1156. wait_for_stop(ihost);
  1157. scic_controller_reset(&ihost->sci);
  1158. /* Cancel any/all outstanding port timers */
  1159. for (i = 0; i < ihost->sci.logical_port_entries; i++) {
  1160. struct scic_sds_port *sci_port = &ihost->ports[i].sci;
  1161. del_timer_sync(&sci_port->timer.timer);
  1162. }
  1163. /* Cancel any/all outstanding phy timers */
  1164. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1165. struct scic_sds_phy *sci_phy = &ihost->phys[i].sci;
  1166. del_timer_sync(&sci_phy->sata_timer.timer);
  1167. }
  1168. del_timer_sync(&ihost->sci.port_agent.timer.timer);
  1169. del_timer_sync(&ihost->sci.power_control.timer.timer);
  1170. del_timer_sync(&ihost->sci.timer.timer);
  1171. del_timer_sync(&ihost->sci.phy_timer.timer);
  1172. }
  1173. static void __iomem *scu_base(struct isci_host *isci_host)
  1174. {
  1175. struct pci_dev *pdev = isci_host->pdev;
  1176. int id = isci_host->id;
  1177. return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
  1178. }
  1179. static void __iomem *smu_base(struct isci_host *isci_host)
  1180. {
  1181. struct pci_dev *pdev = isci_host->pdev;
  1182. int id = isci_host->id;
  1183. return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
  1184. }
  1185. static void isci_user_parameters_get(
  1186. struct isci_host *isci_host,
  1187. union scic_user_parameters *scic_user_params)
  1188. {
  1189. struct scic_sds_user_parameters *u = &scic_user_params->sds1;
  1190. int i;
  1191. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1192. struct sci_phy_user_params *u_phy = &u->phys[i];
  1193. u_phy->max_speed_generation = phy_gen;
  1194. /* we are not exporting these for now */
  1195. u_phy->align_insertion_frequency = 0x7f;
  1196. u_phy->in_connection_align_insertion_frequency = 0xff;
  1197. u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
  1198. }
  1199. u->stp_inactivity_timeout = stp_inactive_to;
  1200. u->ssp_inactivity_timeout = ssp_inactive_to;
  1201. u->stp_max_occupancy_timeout = stp_max_occ_to;
  1202. u->ssp_max_occupancy_timeout = ssp_max_occ_to;
  1203. u->no_outbound_task_timeout = no_outbound_task_to;
  1204. u->max_number_concurrent_device_spin_up = max_concurr_spinup;
  1205. }
  1206. static void scic_sds_controller_initial_state_enter(struct sci_base_state_machine *sm)
  1207. {
  1208. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1209. sci_change_state(&scic->sm, SCIC_RESET);
  1210. }
  1211. static inline void scic_sds_controller_starting_state_exit(struct sci_base_state_machine *sm)
  1212. {
  1213. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1214. sci_del_timer(&scic->timer);
  1215. }
  1216. #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
  1217. #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
  1218. #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
  1219. #define INTERRUPT_COALESCE_NUMBER_MAX 256
  1220. #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
  1221. #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
  1222. /**
  1223. * scic_controller_set_interrupt_coalescence() - This method allows the user to
  1224. * configure the interrupt coalescence.
  1225. * @controller: This parameter represents the handle to the controller object
  1226. * for which its interrupt coalesce register is overridden.
  1227. * @coalesce_number: Used to control the number of entries in the Completion
  1228. * Queue before an interrupt is generated. If the number of entries exceed
  1229. * this number, an interrupt will be generated. The valid range of the input
  1230. * is [0, 256]. A setting of 0 results in coalescing being disabled.
  1231. * @coalesce_timeout: Timeout value in microseconds. The valid range of the
  1232. * input is [0, 2700000] . A setting of 0 is allowed and results in no
  1233. * interrupt coalescing timeout.
  1234. *
  1235. * Indicate if the user successfully set the interrupt coalesce parameters.
  1236. * SCI_SUCCESS The user successfully updated the interrutp coalescence.
  1237. * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
  1238. */
  1239. static enum sci_status scic_controller_set_interrupt_coalescence(
  1240. struct scic_sds_controller *scic_controller,
  1241. u32 coalesce_number,
  1242. u32 coalesce_timeout)
  1243. {
  1244. u8 timeout_encode = 0;
  1245. u32 min = 0;
  1246. u32 max = 0;
  1247. /* Check if the input parameters fall in the range. */
  1248. if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
  1249. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1250. /*
  1251. * Defined encoding for interrupt coalescing timeout:
  1252. * Value Min Max Units
  1253. * ----- --- --- -----
  1254. * 0 - - Disabled
  1255. * 1 13.3 20.0 ns
  1256. * 2 26.7 40.0
  1257. * 3 53.3 80.0
  1258. * 4 106.7 160.0
  1259. * 5 213.3 320.0
  1260. * 6 426.7 640.0
  1261. * 7 853.3 1280.0
  1262. * 8 1.7 2.6 us
  1263. * 9 3.4 5.1
  1264. * 10 6.8 10.2
  1265. * 11 13.7 20.5
  1266. * 12 27.3 41.0
  1267. * 13 54.6 81.9
  1268. * 14 109.2 163.8
  1269. * 15 218.5 327.7
  1270. * 16 436.9 655.4
  1271. * 17 873.8 1310.7
  1272. * 18 1.7 2.6 ms
  1273. * 19 3.5 5.2
  1274. * 20 7.0 10.5
  1275. * 21 14.0 21.0
  1276. * 22 28.0 41.9
  1277. * 23 55.9 83.9
  1278. * 24 111.8 167.8
  1279. * 25 223.7 335.5
  1280. * 26 447.4 671.1
  1281. * 27 894.8 1342.2
  1282. * 28 1.8 2.7 s
  1283. * Others Undefined */
  1284. /*
  1285. * Use the table above to decide the encode of interrupt coalescing timeout
  1286. * value for register writing. */
  1287. if (coalesce_timeout == 0)
  1288. timeout_encode = 0;
  1289. else{
  1290. /* make the timeout value in unit of (10 ns). */
  1291. coalesce_timeout = coalesce_timeout * 100;
  1292. min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
  1293. max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
  1294. /* get the encode of timeout for register writing. */
  1295. for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
  1296. timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
  1297. timeout_encode++) {
  1298. if (min <= coalesce_timeout && max > coalesce_timeout)
  1299. break;
  1300. else if (coalesce_timeout >= max && coalesce_timeout < min * 2
  1301. && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
  1302. if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
  1303. break;
  1304. else{
  1305. timeout_encode++;
  1306. break;
  1307. }
  1308. } else {
  1309. max = max * 2;
  1310. min = min * 2;
  1311. }
  1312. }
  1313. if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
  1314. /* the value is out of range. */
  1315. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1316. }
  1317. writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
  1318. SMU_ICC_GEN_VAL(TIMER, timeout_encode),
  1319. &scic_controller->smu_registers->interrupt_coalesce_control);
  1320. scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
  1321. scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
  1322. return SCI_SUCCESS;
  1323. }
  1324. static void scic_sds_controller_ready_state_enter(struct sci_base_state_machine *sm)
  1325. {
  1326. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1327. /* set the default interrupt coalescence number and timeout value. */
  1328. scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
  1329. }
  1330. static void scic_sds_controller_ready_state_exit(struct sci_base_state_machine *sm)
  1331. {
  1332. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1333. /* disable interrupt coalescence. */
  1334. scic_controller_set_interrupt_coalescence(scic, 0, 0);
  1335. }
  1336. static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
  1337. {
  1338. u32 index;
  1339. enum sci_status status;
  1340. enum sci_status phy_status;
  1341. struct isci_host *ihost = scic_to_ihost(scic);
  1342. status = SCI_SUCCESS;
  1343. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1344. phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
  1345. if (phy_status != SCI_SUCCESS &&
  1346. phy_status != SCI_FAILURE_INVALID_STATE) {
  1347. status = SCI_FAILURE;
  1348. dev_warn(scic_to_dev(scic),
  1349. "%s: Controller stop operation failed to stop "
  1350. "phy %d because of status %d.\n",
  1351. __func__,
  1352. ihost->phys[index].sci.phy_index, phy_status);
  1353. }
  1354. }
  1355. return status;
  1356. }
  1357. static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
  1358. {
  1359. u32 index;
  1360. enum sci_status port_status;
  1361. enum sci_status status = SCI_SUCCESS;
  1362. struct isci_host *ihost = scic_to_ihost(scic);
  1363. for (index = 0; index < scic->logical_port_entries; index++) {
  1364. struct scic_sds_port *sci_port = &ihost->ports[index].sci;
  1365. port_status = scic_sds_port_stop(sci_port);
  1366. if ((port_status != SCI_SUCCESS) &&
  1367. (port_status != SCI_FAILURE_INVALID_STATE)) {
  1368. status = SCI_FAILURE;
  1369. dev_warn(scic_to_dev(scic),
  1370. "%s: Controller stop operation failed to "
  1371. "stop port %d because of status %d.\n",
  1372. __func__,
  1373. sci_port->logical_port_index,
  1374. port_status);
  1375. }
  1376. }
  1377. return status;
  1378. }
  1379. static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
  1380. {
  1381. u32 index;
  1382. enum sci_status status;
  1383. enum sci_status device_status;
  1384. status = SCI_SUCCESS;
  1385. for (index = 0; index < scic->remote_node_entries; index++) {
  1386. if (scic->device_table[index] != NULL) {
  1387. /* / @todo What timeout value do we want to provide to this request? */
  1388. device_status = scic_remote_device_stop(scic->device_table[index], 0);
  1389. if ((device_status != SCI_SUCCESS) &&
  1390. (device_status != SCI_FAILURE_INVALID_STATE)) {
  1391. dev_warn(scic_to_dev(scic),
  1392. "%s: Controller stop operation failed "
  1393. "to stop device 0x%p because of "
  1394. "status %d.\n",
  1395. __func__,
  1396. scic->device_table[index], device_status);
  1397. }
  1398. }
  1399. }
  1400. return status;
  1401. }
  1402. static void scic_sds_controller_stopping_state_enter(struct sci_base_state_machine *sm)
  1403. {
  1404. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1405. /* Stop all of the components for this controller */
  1406. scic_sds_controller_stop_phys(scic);
  1407. scic_sds_controller_stop_ports(scic);
  1408. scic_sds_controller_stop_devices(scic);
  1409. }
  1410. static void scic_sds_controller_stopping_state_exit(struct sci_base_state_machine *sm)
  1411. {
  1412. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1413. sci_del_timer(&scic->timer);
  1414. }
  1415. /**
  1416. * scic_sds_controller_reset_hardware() -
  1417. *
  1418. * This method will reset the controller hardware.
  1419. */
  1420. static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
  1421. {
  1422. /* Disable interrupts so we dont take any spurious interrupts */
  1423. scic_controller_disable_interrupts(scic);
  1424. /* Reset the SCU */
  1425. writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
  1426. /* Delay for 1ms to before clearing the CQP and UFQPR. */
  1427. udelay(1000);
  1428. /* The write to the CQGR clears the CQP */
  1429. writel(0x00000000, &scic->smu_registers->completion_queue_get);
  1430. /* The write to the UFQGP clears the UFQPR */
  1431. writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
  1432. }
  1433. static void scic_sds_controller_resetting_state_enter(struct sci_base_state_machine *sm)
  1434. {
  1435. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1436. scic_sds_controller_reset_hardware(scic);
  1437. sci_change_state(&scic->sm, SCIC_RESET);
  1438. }
  1439. static const struct sci_base_state scic_sds_controller_state_table[] = {
  1440. [SCIC_INITIAL] = {
  1441. .enter_state = scic_sds_controller_initial_state_enter,
  1442. },
  1443. [SCIC_RESET] = {},
  1444. [SCIC_INITIALIZING] = {},
  1445. [SCIC_INITIALIZED] = {},
  1446. [SCIC_STARTING] = {
  1447. .exit_state = scic_sds_controller_starting_state_exit,
  1448. },
  1449. [SCIC_READY] = {
  1450. .enter_state = scic_sds_controller_ready_state_enter,
  1451. .exit_state = scic_sds_controller_ready_state_exit,
  1452. },
  1453. [SCIC_RESETTING] = {
  1454. .enter_state = scic_sds_controller_resetting_state_enter,
  1455. },
  1456. [SCIC_STOPPING] = {
  1457. .enter_state = scic_sds_controller_stopping_state_enter,
  1458. .exit_state = scic_sds_controller_stopping_state_exit,
  1459. },
  1460. [SCIC_STOPPED] = {},
  1461. [SCIC_FAILED] = {}
  1462. };
  1463. static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
  1464. {
  1465. /* these defaults are overridden by the platform / firmware */
  1466. struct isci_host *ihost = scic_to_ihost(scic);
  1467. u16 index;
  1468. /* Default to APC mode. */
  1469. scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
  1470. /* Default to APC mode. */
  1471. scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
  1472. /* Default to no SSC operation. */
  1473. scic->oem_parameters.sds1.controller.do_enable_ssc = false;
  1474. /* Initialize all of the port parameter information to narrow ports. */
  1475. for (index = 0; index < SCI_MAX_PORTS; index++) {
  1476. scic->oem_parameters.sds1.ports[index].phy_mask = 0;
  1477. }
  1478. /* Initialize all of the phy parameter information. */
  1479. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1480. /* Default to 6G (i.e. Gen 3) for now. */
  1481. scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
  1482. /* the frequencies cannot be 0 */
  1483. scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
  1484. scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
  1485. scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
  1486. /*
  1487. * Previous Vitesse based expanders had a arbitration issue that
  1488. * is worked around by having the upper 32-bits of SAS address
  1489. * with a value greater then the Vitesse company identifier.
  1490. * Hence, usage of 0x5FCFFFFF. */
  1491. scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
  1492. scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
  1493. }
  1494. scic->user_parameters.sds1.stp_inactivity_timeout = 5;
  1495. scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
  1496. scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
  1497. scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
  1498. scic->user_parameters.sds1.no_outbound_task_timeout = 20;
  1499. }
  1500. static void controller_timeout(unsigned long data)
  1501. {
  1502. struct sci_timer *tmr = (struct sci_timer *)data;
  1503. struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), timer);
  1504. struct isci_host *ihost = scic_to_ihost(scic);
  1505. struct sci_base_state_machine *sm = &scic->sm;
  1506. unsigned long flags;
  1507. spin_lock_irqsave(&ihost->scic_lock, flags);
  1508. if (tmr->cancel)
  1509. goto done;
  1510. if (sm->current_state_id == SCIC_STARTING)
  1511. scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
  1512. else if (sm->current_state_id == SCIC_STOPPING) {
  1513. sci_change_state(sm, SCIC_FAILED);
  1514. isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
  1515. } else /* / @todo Now what do we want to do in this case? */
  1516. dev_err(scic_to_dev(scic),
  1517. "%s: Controller timer fired when controller was not "
  1518. "in a state being timed.\n",
  1519. __func__);
  1520. done:
  1521. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  1522. }
  1523. /**
  1524. * scic_controller_construct() - This method will attempt to construct a
  1525. * controller object utilizing the supplied parameter information.
  1526. * @c: This parameter specifies the controller to be constructed.
  1527. * @scu_base: mapped base address of the scu registers
  1528. * @smu_base: mapped base address of the smu registers
  1529. *
  1530. * Indicate if the controller was successfully constructed or if it failed in
  1531. * some way. SCI_SUCCESS This value is returned if the controller was
  1532. * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
  1533. * if the interrupt coalescence timer may cause SAS compliance issues for SMP
  1534. * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
  1535. * This value is returned if the controller does not support the supplied type.
  1536. * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
  1537. * controller does not support the supplied initialization data version.
  1538. */
  1539. static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
  1540. void __iomem *scu_base,
  1541. void __iomem *smu_base)
  1542. {
  1543. struct isci_host *ihost = scic_to_ihost(scic);
  1544. u8 i;
  1545. sci_init_sm(&scic->sm, scic_sds_controller_state_table, SCIC_INITIAL);
  1546. scic->scu_registers = scu_base;
  1547. scic->smu_registers = smu_base;
  1548. scic_sds_port_configuration_agent_construct(&scic->port_agent);
  1549. /* Construct the ports for this controller */
  1550. for (i = 0; i < SCI_MAX_PORTS; i++)
  1551. scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
  1552. scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
  1553. /* Construct the phys for this controller */
  1554. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1555. /* Add all the PHYs to the dummy port */
  1556. scic_sds_phy_construct(&ihost->phys[i].sci,
  1557. &ihost->ports[SCI_MAX_PORTS].sci, i);
  1558. }
  1559. scic->invalid_phy_mask = 0;
  1560. sci_init_timer(&scic->timer, controller_timeout);
  1561. /* Set the default maximum values */
  1562. scic->completion_event_entries = SCU_EVENT_COUNT;
  1563. scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT;
  1564. scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
  1565. scic->logical_port_entries = SCI_MAX_PORTS;
  1566. scic->task_context_entries = SCU_IO_REQUEST_COUNT;
  1567. scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT;
  1568. scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT;
  1569. /* Initialize the User and OEM parameters to default values. */
  1570. scic_sds_controller_set_default_config_parameters(scic);
  1571. return scic_controller_reset(scic);
  1572. }
  1573. int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
  1574. {
  1575. int i;
  1576. for (i = 0; i < SCI_MAX_PORTS; i++)
  1577. if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
  1578. return -EINVAL;
  1579. for (i = 0; i < SCI_MAX_PHYS; i++)
  1580. if (oem->phys[i].sas_address.high == 0 &&
  1581. oem->phys[i].sas_address.low == 0)
  1582. return -EINVAL;
  1583. if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
  1584. for (i = 0; i < SCI_MAX_PHYS; i++)
  1585. if (oem->ports[i].phy_mask != 0)
  1586. return -EINVAL;
  1587. } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
  1588. u8 phy_mask = 0;
  1589. for (i = 0; i < SCI_MAX_PHYS; i++)
  1590. phy_mask |= oem->ports[i].phy_mask;
  1591. if (phy_mask == 0)
  1592. return -EINVAL;
  1593. } else
  1594. return -EINVAL;
  1595. if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
  1596. return -EINVAL;
  1597. return 0;
  1598. }
  1599. static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
  1600. union scic_oem_parameters *scic_parms)
  1601. {
  1602. u32 state = scic->sm.current_state_id;
  1603. if (state == SCIC_RESET ||
  1604. state == SCIC_INITIALIZING ||
  1605. state == SCIC_INITIALIZED) {
  1606. if (scic_oem_parameters_validate(&scic_parms->sds1))
  1607. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1608. scic->oem_parameters.sds1 = scic_parms->sds1;
  1609. return SCI_SUCCESS;
  1610. }
  1611. return SCI_FAILURE_INVALID_STATE;
  1612. }
  1613. void scic_oem_parameters_get(
  1614. struct scic_sds_controller *scic,
  1615. union scic_oem_parameters *scic_parms)
  1616. {
  1617. memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
  1618. }
  1619. static void power_control_timeout(unsigned long data)
  1620. {
  1621. struct sci_timer *tmr = (struct sci_timer *)data;
  1622. struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), power_control.timer);
  1623. struct isci_host *ihost = scic_to_ihost(scic);
  1624. struct scic_sds_phy *sci_phy;
  1625. unsigned long flags;
  1626. u8 i;
  1627. spin_lock_irqsave(&ihost->scic_lock, flags);
  1628. if (tmr->cancel)
  1629. goto done;
  1630. scic->power_control.phys_granted_power = 0;
  1631. if (scic->power_control.phys_waiting == 0) {
  1632. scic->power_control.timer_started = false;
  1633. goto done;
  1634. }
  1635. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1636. if (scic->power_control.phys_waiting == 0)
  1637. break;
  1638. sci_phy = scic->power_control.requesters[i];
  1639. if (sci_phy == NULL)
  1640. continue;
  1641. if (scic->power_control.phys_granted_power >=
  1642. scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up)
  1643. break;
  1644. scic->power_control.requesters[i] = NULL;
  1645. scic->power_control.phys_waiting--;
  1646. scic->power_control.phys_granted_power++;
  1647. scic_sds_phy_consume_power_handler(sci_phy);
  1648. }
  1649. /*
  1650. * It doesn't matter if the power list is empty, we need to start the
  1651. * timer in case another phy becomes ready.
  1652. */
  1653. sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  1654. scic->power_control.timer_started = true;
  1655. done:
  1656. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  1657. }
  1658. /**
  1659. * This method inserts the phy in the stagger spinup control queue.
  1660. * @scic:
  1661. *
  1662. *
  1663. */
  1664. void scic_sds_controller_power_control_queue_insert(
  1665. struct scic_sds_controller *scic,
  1666. struct scic_sds_phy *sci_phy)
  1667. {
  1668. BUG_ON(sci_phy == NULL);
  1669. if (scic->power_control.phys_granted_power <
  1670. scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
  1671. scic->power_control.phys_granted_power++;
  1672. scic_sds_phy_consume_power_handler(sci_phy);
  1673. /*
  1674. * stop and start the power_control timer. When the timer fires, the
  1675. * no_of_phys_granted_power will be set to 0
  1676. */
  1677. if (scic->power_control.timer_started)
  1678. sci_del_timer(&scic->power_control.timer);
  1679. sci_mod_timer(&scic->power_control.timer,
  1680. SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  1681. scic->power_control.timer_started = true;
  1682. } else {
  1683. /* Add the phy in the waiting list */
  1684. scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
  1685. scic->power_control.phys_waiting++;
  1686. }
  1687. }
  1688. /**
  1689. * This method removes the phy from the stagger spinup control queue.
  1690. * @scic:
  1691. *
  1692. *
  1693. */
  1694. void scic_sds_controller_power_control_queue_remove(
  1695. struct scic_sds_controller *scic,
  1696. struct scic_sds_phy *sci_phy)
  1697. {
  1698. BUG_ON(sci_phy == NULL);
  1699. if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
  1700. scic->power_control.phys_waiting--;
  1701. }
  1702. scic->power_control.requesters[sci_phy->phy_index] = NULL;
  1703. }
  1704. #define AFE_REGISTER_WRITE_DELAY 10
  1705. /* Initialize the AFE for this phy index. We need to read the AFE setup from
  1706. * the OEM parameters
  1707. */
  1708. static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
  1709. {
  1710. const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
  1711. u32 afe_status;
  1712. u32 phy_id;
  1713. /* Clear DFX Status registers */
  1714. writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
  1715. udelay(AFE_REGISTER_WRITE_DELAY);
  1716. if (is_b0()) {
  1717. /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
  1718. * Timer, PM Stagger Timer */
  1719. writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
  1720. udelay(AFE_REGISTER_WRITE_DELAY);
  1721. }
  1722. /* Configure bias currents to normal */
  1723. if (is_a0())
  1724. writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
  1725. else if (is_a2())
  1726. writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
  1727. else if (is_b0())
  1728. writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
  1729. udelay(AFE_REGISTER_WRITE_DELAY);
  1730. /* Enable PLL */
  1731. if (is_b0())
  1732. writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
  1733. else
  1734. writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
  1735. udelay(AFE_REGISTER_WRITE_DELAY);
  1736. /* Wait for the PLL to lock */
  1737. do {
  1738. afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
  1739. udelay(AFE_REGISTER_WRITE_DELAY);
  1740. } while ((afe_status & 0x00001000) == 0);
  1741. if (is_a0() || is_a2()) {
  1742. /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
  1743. writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
  1744. udelay(AFE_REGISTER_WRITE_DELAY);
  1745. }
  1746. for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
  1747. const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
  1748. if (is_b0()) {
  1749. /* Configure transmitter SSC parameters */
  1750. writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
  1751. udelay(AFE_REGISTER_WRITE_DELAY);
  1752. } else {
  1753. /*
  1754. * All defaults, except the Receive Word Alignament/Comma Detect
  1755. * Enable....(0xe800) */
  1756. writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1757. udelay(AFE_REGISTER_WRITE_DELAY);
  1758. writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
  1759. udelay(AFE_REGISTER_WRITE_DELAY);
  1760. }
  1761. /*
  1762. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1763. * & increase TX int & ext bias 20%....(0xe85c) */
  1764. if (is_a0())
  1765. writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1766. else if (is_a2())
  1767. writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1768. else {
  1769. /* Power down TX and RX (PWRDNTX and PWRDNRX) */
  1770. writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1771. udelay(AFE_REGISTER_WRITE_DELAY);
  1772. /*
  1773. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1774. * & increase TX int & ext bias 20%....(0xe85c) */
  1775. writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1776. }
  1777. udelay(AFE_REGISTER_WRITE_DELAY);
  1778. if (is_a0() || is_a2()) {
  1779. /* Enable TX equalization (0xe824) */
  1780. writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1781. udelay(AFE_REGISTER_WRITE_DELAY);
  1782. }
  1783. /*
  1784. * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
  1785. * RDD=0x0(RX Detect Enabled) ....(0xe800) */
  1786. writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1787. udelay(AFE_REGISTER_WRITE_DELAY);
  1788. /* Leave DFE/FFE on */
  1789. if (is_a0())
  1790. writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1791. else if (is_a2())
  1792. writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1793. else {
  1794. writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1795. udelay(AFE_REGISTER_WRITE_DELAY);
  1796. /* Enable TX equalization (0xe824) */
  1797. writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1798. }
  1799. udelay(AFE_REGISTER_WRITE_DELAY);
  1800. writel(oem_phy->afe_tx_amp_control0,
  1801. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
  1802. udelay(AFE_REGISTER_WRITE_DELAY);
  1803. writel(oem_phy->afe_tx_amp_control1,
  1804. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
  1805. udelay(AFE_REGISTER_WRITE_DELAY);
  1806. writel(oem_phy->afe_tx_amp_control2,
  1807. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
  1808. udelay(AFE_REGISTER_WRITE_DELAY);
  1809. writel(oem_phy->afe_tx_amp_control3,
  1810. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
  1811. udelay(AFE_REGISTER_WRITE_DELAY);
  1812. }
  1813. /* Transfer control to the PEs */
  1814. writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
  1815. udelay(AFE_REGISTER_WRITE_DELAY);
  1816. }
  1817. static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic,
  1818. enum sci_controller_mode operating_mode)
  1819. {
  1820. enum sci_status status = SCI_SUCCESS;
  1821. if ((scic->sm.current_state_id == SCIC_INITIALIZING) ||
  1822. (scic->sm.current_state_id == SCIC_INITIALIZED)) {
  1823. switch (operating_mode) {
  1824. case SCI_MODE_SPEED:
  1825. scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES;
  1826. scic->task_context_entries = SCU_IO_REQUEST_COUNT;
  1827. scic->uf_control.buffers.count =
  1828. SCU_UNSOLICITED_FRAME_COUNT;
  1829. scic->completion_event_entries = SCU_EVENT_COUNT;
  1830. scic->completion_queue_entries =
  1831. SCU_COMPLETION_QUEUE_COUNT;
  1832. break;
  1833. case SCI_MODE_SIZE:
  1834. scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES;
  1835. scic->task_context_entries = SCI_MIN_IO_REQUESTS;
  1836. scic->uf_control.buffers.count =
  1837. SCU_MIN_UNSOLICITED_FRAMES;
  1838. scic->completion_event_entries = SCU_MIN_EVENTS;
  1839. scic->completion_queue_entries =
  1840. SCU_MIN_COMPLETION_QUEUE_ENTRIES;
  1841. break;
  1842. default:
  1843. status = SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1844. break;
  1845. }
  1846. } else
  1847. status = SCI_FAILURE_INVALID_STATE;
  1848. return status;
  1849. }
  1850. static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
  1851. {
  1852. sci_init_timer(&scic->power_control.timer, power_control_timeout);
  1853. memset(scic->power_control.requesters, 0,
  1854. sizeof(scic->power_control.requesters));
  1855. scic->power_control.phys_waiting = 0;
  1856. scic->power_control.phys_granted_power = 0;
  1857. }
  1858. static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
  1859. {
  1860. struct sci_base_state_machine *sm = &scic->sm;
  1861. enum sci_status result = SCI_SUCCESS;
  1862. struct isci_host *ihost = scic_to_ihost(scic);
  1863. u32 index, state;
  1864. if (scic->sm.current_state_id != SCIC_RESET) {
  1865. dev_warn(scic_to_dev(scic),
  1866. "SCIC Controller initialize operation requested "
  1867. "in invalid state\n");
  1868. return SCI_FAILURE_INVALID_STATE;
  1869. }
  1870. sci_change_state(sm, SCIC_INITIALIZING);
  1871. sci_init_timer(&scic->phy_timer, phy_startup_timeout);
  1872. scic->next_phy_to_start = 0;
  1873. scic->phy_startup_timer_pending = false;
  1874. scic_sds_controller_initialize_power_control(scic);
  1875. /*
  1876. * There is nothing to do here for B0 since we do not have to
  1877. * program the AFE registers.
  1878. * / @todo The AFE settings are supposed to be correct for the B0 but
  1879. * / presently they seem to be wrong. */
  1880. scic_sds_controller_afe_initialization(scic);
  1881. if (result == SCI_SUCCESS) {
  1882. u32 status;
  1883. u32 terminate_loop;
  1884. /* Take the hardware out of reset */
  1885. writel(0, &scic->smu_registers->soft_reset_control);
  1886. /*
  1887. * / @todo Provide meaningfull error code for hardware failure
  1888. * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
  1889. result = SCI_FAILURE;
  1890. terminate_loop = 100;
  1891. while (terminate_loop-- && (result != SCI_SUCCESS)) {
  1892. /* Loop until the hardware reports success */
  1893. udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
  1894. status = readl(&scic->smu_registers->control_status);
  1895. if ((status & SCU_RAM_INIT_COMPLETED) ==
  1896. SCU_RAM_INIT_COMPLETED)
  1897. result = SCI_SUCCESS;
  1898. }
  1899. }
  1900. if (result == SCI_SUCCESS) {
  1901. u32 max_supported_ports;
  1902. u32 max_supported_devices;
  1903. u32 max_supported_io_requests;
  1904. u32 device_context_capacity;
  1905. /*
  1906. * Determine what are the actaul device capacities that the
  1907. * hardware will support */
  1908. device_context_capacity =
  1909. readl(&scic->smu_registers->device_context_capacity);
  1910. max_supported_ports = smu_dcc_get_max_ports(device_context_capacity);
  1911. max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity);
  1912. max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity);
  1913. /*
  1914. * Make all PEs that are unassigned match up with the
  1915. * logical ports
  1916. */
  1917. for (index = 0; index < max_supported_ports; index++) {
  1918. struct scu_port_task_scheduler_group_registers __iomem
  1919. *ptsg = &scic->scu_registers->peg0.ptsg;
  1920. writel(index, &ptsg->protocol_engine[index]);
  1921. }
  1922. /* Record the smaller of the two capacity values */
  1923. scic->logical_port_entries =
  1924. min(max_supported_ports, scic->logical_port_entries);
  1925. scic->task_context_entries =
  1926. min(max_supported_io_requests,
  1927. scic->task_context_entries);
  1928. scic->remote_node_entries =
  1929. min(max_supported_devices, scic->remote_node_entries);
  1930. /*
  1931. * Now that we have the correct hardware reported minimum values
  1932. * build the MDL for the controller. Default to a performance
  1933. * configuration.
  1934. */
  1935. scic_controller_set_mode(scic, SCI_MODE_SPEED);
  1936. }
  1937. /* Initialize hardware PCI Relaxed ordering in DMA engines */
  1938. if (result == SCI_SUCCESS) {
  1939. u32 dma_configuration;
  1940. /* Configure the payload DMA */
  1941. dma_configuration =
  1942. readl(&scic->scu_registers->sdma.pdma_configuration);
  1943. dma_configuration |=
  1944. SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
  1945. writel(dma_configuration,
  1946. &scic->scu_registers->sdma.pdma_configuration);
  1947. /* Configure the control DMA */
  1948. dma_configuration =
  1949. readl(&scic->scu_registers->sdma.cdma_configuration);
  1950. dma_configuration |=
  1951. SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
  1952. writel(dma_configuration,
  1953. &scic->scu_registers->sdma.cdma_configuration);
  1954. }
  1955. /*
  1956. * Initialize the PHYs before the PORTs because the PHY registers
  1957. * are accessed during the port initialization.
  1958. */
  1959. if (result == SCI_SUCCESS) {
  1960. /* Initialize the phys */
  1961. for (index = 0;
  1962. (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS);
  1963. index++) {
  1964. result = scic_sds_phy_initialize(
  1965. &ihost->phys[index].sci,
  1966. &scic->scu_registers->peg0.pe[index].tl,
  1967. &scic->scu_registers->peg0.pe[index].ll);
  1968. }
  1969. }
  1970. if (result == SCI_SUCCESS) {
  1971. /* Initialize the logical ports */
  1972. for (index = 0;
  1973. (index < scic->logical_port_entries) &&
  1974. (result == SCI_SUCCESS);
  1975. index++) {
  1976. result = scic_sds_port_initialize(
  1977. &ihost->ports[index].sci,
  1978. &scic->scu_registers->peg0.ptsg.port[index],
  1979. &scic->scu_registers->peg0.ptsg.protocol_engine,
  1980. &scic->scu_registers->peg0.viit[index]);
  1981. }
  1982. }
  1983. if (result == SCI_SUCCESS)
  1984. result = scic_sds_port_configuration_agent_initialize(
  1985. scic,
  1986. &scic->port_agent);
  1987. /* Advance the controller state machine */
  1988. if (result == SCI_SUCCESS)
  1989. state = SCIC_INITIALIZED;
  1990. else
  1991. state = SCIC_FAILED;
  1992. sci_change_state(sm, state);
  1993. return result;
  1994. }
  1995. static enum sci_status scic_user_parameters_set(
  1996. struct scic_sds_controller *scic,
  1997. union scic_user_parameters *scic_parms)
  1998. {
  1999. u32 state = scic->sm.current_state_id;
  2000. if (state == SCIC_RESET ||
  2001. state == SCIC_INITIALIZING ||
  2002. state == SCIC_INITIALIZED) {
  2003. u16 index;
  2004. /*
  2005. * Validate the user parameters. If they are not legal, then
  2006. * return a failure.
  2007. */
  2008. for (index = 0; index < SCI_MAX_PHYS; index++) {
  2009. struct sci_phy_user_params *user_phy;
  2010. user_phy = &scic_parms->sds1.phys[index];
  2011. if (!((user_phy->max_speed_generation <=
  2012. SCIC_SDS_PARM_MAX_SPEED) &&
  2013. (user_phy->max_speed_generation >
  2014. SCIC_SDS_PARM_NO_SPEED)))
  2015. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  2016. if (user_phy->in_connection_align_insertion_frequency <
  2017. 3)
  2018. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  2019. if ((user_phy->in_connection_align_insertion_frequency <
  2020. 3) ||
  2021. (user_phy->align_insertion_frequency == 0) ||
  2022. (user_phy->
  2023. notify_enable_spin_up_insertion_frequency ==
  2024. 0))
  2025. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  2026. }
  2027. if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
  2028. (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
  2029. (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
  2030. (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
  2031. (scic_parms->sds1.no_outbound_task_timeout == 0))
  2032. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  2033. memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
  2034. return SCI_SUCCESS;
  2035. }
  2036. return SCI_FAILURE_INVALID_STATE;
  2037. }
  2038. static int scic_controller_mem_init(struct scic_sds_controller *scic)
  2039. {
  2040. struct device *dev = scic_to_dev(scic);
  2041. dma_addr_t dma_handle;
  2042. enum sci_status result;
  2043. scic->completion_queue = dmam_alloc_coherent(dev,
  2044. scic->completion_queue_entries * sizeof(u32),
  2045. &dma_handle, GFP_KERNEL);
  2046. if (!scic->completion_queue)
  2047. return -ENOMEM;
  2048. writel(lower_32_bits(dma_handle),
  2049. &scic->smu_registers->completion_queue_lower);
  2050. writel(upper_32_bits(dma_handle),
  2051. &scic->smu_registers->completion_queue_upper);
  2052. scic->remote_node_context_table = dmam_alloc_coherent(dev,
  2053. scic->remote_node_entries *
  2054. sizeof(union scu_remote_node_context),
  2055. &dma_handle, GFP_KERNEL);
  2056. if (!scic->remote_node_context_table)
  2057. return -ENOMEM;
  2058. writel(lower_32_bits(dma_handle),
  2059. &scic->smu_registers->remote_node_context_lower);
  2060. writel(upper_32_bits(dma_handle),
  2061. &scic->smu_registers->remote_node_context_upper);
  2062. scic->task_context_table = dmam_alloc_coherent(dev,
  2063. scic->task_context_entries *
  2064. sizeof(struct scu_task_context),
  2065. &dma_handle, GFP_KERNEL);
  2066. if (!scic->task_context_table)
  2067. return -ENOMEM;
  2068. writel(lower_32_bits(dma_handle),
  2069. &scic->smu_registers->host_task_table_lower);
  2070. writel(upper_32_bits(dma_handle),
  2071. &scic->smu_registers->host_task_table_upper);
  2072. result = scic_sds_unsolicited_frame_control_construct(scic);
  2073. if (result)
  2074. return result;
  2075. /*
  2076. * Inform the silicon as to the location of the UF headers and
  2077. * address table.
  2078. */
  2079. writel(lower_32_bits(scic->uf_control.headers.physical_address),
  2080. &scic->scu_registers->sdma.uf_header_base_address_lower);
  2081. writel(upper_32_bits(scic->uf_control.headers.physical_address),
  2082. &scic->scu_registers->sdma.uf_header_base_address_upper);
  2083. writel(lower_32_bits(scic->uf_control.address_table.physical_address),
  2084. &scic->scu_registers->sdma.uf_address_table_lower);
  2085. writel(upper_32_bits(scic->uf_control.address_table.physical_address),
  2086. &scic->scu_registers->sdma.uf_address_table_upper);
  2087. return 0;
  2088. }
  2089. int isci_host_init(struct isci_host *isci_host)
  2090. {
  2091. int err = 0, i;
  2092. enum sci_status status;
  2093. union scic_oem_parameters oem;
  2094. union scic_user_parameters scic_user_params;
  2095. struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
  2096. spin_lock_init(&isci_host->state_lock);
  2097. spin_lock_init(&isci_host->scic_lock);
  2098. spin_lock_init(&isci_host->queue_lock);
  2099. init_waitqueue_head(&isci_host->eventq);
  2100. isci_host_change_state(isci_host, isci_starting);
  2101. isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
  2102. status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
  2103. smu_base(isci_host));
  2104. if (status != SCI_SUCCESS) {
  2105. dev_err(&isci_host->pdev->dev,
  2106. "%s: scic_controller_construct failed - status = %x\n",
  2107. __func__,
  2108. status);
  2109. return -ENODEV;
  2110. }
  2111. isci_host->sas_ha.dev = &isci_host->pdev->dev;
  2112. isci_host->sas_ha.lldd_ha = isci_host;
  2113. /*
  2114. * grab initial values stored in the controller object for OEM and USER
  2115. * parameters
  2116. */
  2117. isci_user_parameters_get(isci_host, &scic_user_params);
  2118. status = scic_user_parameters_set(&isci_host->sci,
  2119. &scic_user_params);
  2120. if (status != SCI_SUCCESS) {
  2121. dev_warn(&isci_host->pdev->dev,
  2122. "%s: scic_user_parameters_set failed\n",
  2123. __func__);
  2124. return -ENODEV;
  2125. }
  2126. scic_oem_parameters_get(&isci_host->sci, &oem);
  2127. /* grab any OEM parameters specified in orom */
  2128. if (pci_info->orom) {
  2129. status = isci_parse_oem_parameters(&oem,
  2130. pci_info->orom,
  2131. isci_host->id);
  2132. if (status != SCI_SUCCESS) {
  2133. dev_warn(&isci_host->pdev->dev,
  2134. "parsing firmware oem parameters failed\n");
  2135. return -EINVAL;
  2136. }
  2137. }
  2138. status = scic_oem_parameters_set(&isci_host->sci, &oem);
  2139. if (status != SCI_SUCCESS) {
  2140. dev_warn(&isci_host->pdev->dev,
  2141. "%s: scic_oem_parameters_set failed\n",
  2142. __func__);
  2143. return -ENODEV;
  2144. }
  2145. tasklet_init(&isci_host->completion_tasklet,
  2146. isci_host_completion_routine, (unsigned long)isci_host);
  2147. INIT_LIST_HEAD(&isci_host->requests_to_complete);
  2148. INIT_LIST_HEAD(&isci_host->requests_to_errorback);
  2149. spin_lock_irq(&isci_host->scic_lock);
  2150. status = scic_controller_initialize(&isci_host->sci);
  2151. spin_unlock_irq(&isci_host->scic_lock);
  2152. if (status != SCI_SUCCESS) {
  2153. dev_warn(&isci_host->pdev->dev,
  2154. "%s: scic_controller_initialize failed -"
  2155. " status = 0x%x\n",
  2156. __func__, status);
  2157. return -ENODEV;
  2158. }
  2159. err = scic_controller_mem_init(&isci_host->sci);
  2160. if (err)
  2161. return err;
  2162. isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
  2163. sizeof(struct isci_request),
  2164. SLAB_HWCACHE_ALIGN, 0);
  2165. if (!isci_host->dma_pool)
  2166. return -ENOMEM;
  2167. for (i = 0; i < SCI_MAX_PORTS; i++)
  2168. isci_port_init(&isci_host->ports[i], isci_host, i);
  2169. for (i = 0; i < SCI_MAX_PHYS; i++)
  2170. isci_phy_init(&isci_host->phys[i], isci_host, i);
  2171. for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
  2172. struct isci_remote_device *idev = &isci_host->devices[i];
  2173. INIT_LIST_HEAD(&idev->reqs_in_process);
  2174. INIT_LIST_HEAD(&idev->node);
  2175. spin_lock_init(&idev->state_lock);
  2176. }
  2177. return 0;
  2178. }
  2179. void scic_sds_controller_link_up(struct scic_sds_controller *scic,
  2180. struct scic_sds_port *port, struct scic_sds_phy *phy)
  2181. {
  2182. switch (scic->sm.current_state_id) {
  2183. case SCIC_STARTING:
  2184. sci_del_timer(&scic->phy_timer);
  2185. scic->phy_startup_timer_pending = false;
  2186. scic->port_agent.link_up_handler(scic, &scic->port_agent,
  2187. port, phy);
  2188. scic_sds_controller_start_next_phy(scic);
  2189. break;
  2190. case SCIC_READY:
  2191. scic->port_agent.link_up_handler(scic, &scic->port_agent,
  2192. port, phy);
  2193. break;
  2194. default:
  2195. dev_dbg(scic_to_dev(scic),
  2196. "%s: SCIC Controller linkup event from phy %d in "
  2197. "unexpected state %d\n", __func__, phy->phy_index,
  2198. scic->sm.current_state_id);
  2199. }
  2200. }
  2201. void scic_sds_controller_link_down(struct scic_sds_controller *scic,
  2202. struct scic_sds_port *port, struct scic_sds_phy *phy)
  2203. {
  2204. switch (scic->sm.current_state_id) {
  2205. case SCIC_STARTING:
  2206. case SCIC_READY:
  2207. scic->port_agent.link_down_handler(scic, &scic->port_agent,
  2208. port, phy);
  2209. break;
  2210. default:
  2211. dev_dbg(scic_to_dev(scic),
  2212. "%s: SCIC Controller linkdown event from phy %d in "
  2213. "unexpected state %d\n",
  2214. __func__,
  2215. phy->phy_index,
  2216. scic->sm.current_state_id);
  2217. }
  2218. }
  2219. /**
  2220. * This is a helper method to determine if any remote devices on this
  2221. * controller are still in the stopping state.
  2222. *
  2223. */
  2224. static bool scic_sds_controller_has_remote_devices_stopping(
  2225. struct scic_sds_controller *controller)
  2226. {
  2227. u32 index;
  2228. for (index = 0; index < controller->remote_node_entries; index++) {
  2229. if ((controller->device_table[index] != NULL) &&
  2230. (controller->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
  2231. return true;
  2232. }
  2233. return false;
  2234. }
  2235. /**
  2236. * This method is called by the remote device to inform the controller
  2237. * object that the remote device has stopped.
  2238. */
  2239. void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
  2240. struct scic_sds_remote_device *sci_dev)
  2241. {
  2242. if (scic->sm.current_state_id != SCIC_STOPPING) {
  2243. dev_dbg(scic_to_dev(scic),
  2244. "SCIC Controller 0x%p remote device stopped event "
  2245. "from device 0x%p in unexpected state %d\n",
  2246. scic, sci_dev,
  2247. scic->sm.current_state_id);
  2248. return;
  2249. }
  2250. if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
  2251. sci_change_state(&scic->sm, SCIC_STOPPED);
  2252. }
  2253. }
  2254. /**
  2255. * This method will write to the SCU PCP register the request value. The method
  2256. * is used to suspend/resume ports, devices, and phys.
  2257. * @scic:
  2258. *
  2259. *
  2260. */
  2261. void scic_sds_controller_post_request(
  2262. struct scic_sds_controller *scic,
  2263. u32 request)
  2264. {
  2265. dev_dbg(scic_to_dev(scic),
  2266. "%s: SCIC Controller 0x%p post request 0x%08x\n",
  2267. __func__,
  2268. scic,
  2269. request);
  2270. writel(request, &scic->smu_registers->post_context_port);
  2271. }
  2272. /**
  2273. * This method will copy the soft copy of the task context into the physical
  2274. * memory accessible by the controller.
  2275. * @scic: This parameter specifies the controller for which to copy
  2276. * the task context.
  2277. * @sci_req: This parameter specifies the request for which the task
  2278. * context is being copied.
  2279. *
  2280. * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
  2281. * the physical memory version of the task context. Thus, all subsequent
  2282. * updates to the task context are performed in the TC table (i.e. DMAable
  2283. * memory). none
  2284. */
  2285. void scic_sds_controller_copy_task_context(
  2286. struct scic_sds_controller *scic,
  2287. struct scic_sds_request *sci_req)
  2288. {
  2289. struct scu_task_context *task_context_buffer;
  2290. task_context_buffer = scic_sds_controller_get_task_context_buffer(
  2291. scic, sci_req->io_tag);
  2292. memcpy(task_context_buffer,
  2293. sci_req->task_context_buffer,
  2294. offsetof(struct scu_task_context, sgl_snapshot_ac));
  2295. /*
  2296. * Now that the soft copy of the TC has been copied into the TC
  2297. * table accessible by the silicon. Thus, any further changes to
  2298. * the TC (e.g. TC termination) occur in the appropriate location. */
  2299. sci_req->task_context_buffer = task_context_buffer;
  2300. }
  2301. /**
  2302. * This method returns the task context buffer for the given io tag.
  2303. * @scic:
  2304. * @io_tag:
  2305. *
  2306. * struct scu_task_context*
  2307. */
  2308. struct scu_task_context *scic_sds_controller_get_task_context_buffer(
  2309. struct scic_sds_controller *scic,
  2310. u16 io_tag
  2311. ) {
  2312. u16 task_index = scic_sds_io_tag_get_index(io_tag);
  2313. if (task_index < scic->task_context_entries) {
  2314. return &scic->task_context_table[task_index];
  2315. }
  2316. return NULL;
  2317. }
  2318. struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
  2319. u16 io_tag)
  2320. {
  2321. u16 task_index;
  2322. u16 task_sequence;
  2323. task_index = scic_sds_io_tag_get_index(io_tag);
  2324. if (task_index < scic->task_context_entries) {
  2325. if (scic->io_request_table[task_index] != NULL) {
  2326. task_sequence = scic_sds_io_tag_get_sequence(io_tag);
  2327. if (task_sequence == scic->io_request_sequence[task_index]) {
  2328. return scic->io_request_table[task_index];
  2329. }
  2330. }
  2331. }
  2332. return NULL;
  2333. }
  2334. /**
  2335. * This method allocates remote node index and the reserves the remote node
  2336. * context space for use. This method can fail if there are no more remote
  2337. * node index available.
  2338. * @scic: This is the controller object which contains the set of
  2339. * free remote node ids
  2340. * @sci_dev: This is the device object which is requesting the a remote node
  2341. * id
  2342. * @node_id: This is the remote node id that is assinged to the device if one
  2343. * is available
  2344. *
  2345. * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
  2346. * node index available.
  2347. */
  2348. enum sci_status scic_sds_controller_allocate_remote_node_context(
  2349. struct scic_sds_controller *scic,
  2350. struct scic_sds_remote_device *sci_dev,
  2351. u16 *node_id)
  2352. {
  2353. u16 node_index;
  2354. u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
  2355. node_index = scic_sds_remote_node_table_allocate_remote_node(
  2356. &scic->available_remote_nodes, remote_node_count
  2357. );
  2358. if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
  2359. scic->device_table[node_index] = sci_dev;
  2360. *node_id = node_index;
  2361. return SCI_SUCCESS;
  2362. }
  2363. return SCI_FAILURE_INSUFFICIENT_RESOURCES;
  2364. }
  2365. /**
  2366. * This method frees the remote node index back to the available pool. Once
  2367. * this is done the remote node context buffer is no longer valid and can
  2368. * not be used.
  2369. * @scic:
  2370. * @sci_dev:
  2371. * @node_id:
  2372. *
  2373. */
  2374. void scic_sds_controller_free_remote_node_context(
  2375. struct scic_sds_controller *scic,
  2376. struct scic_sds_remote_device *sci_dev,
  2377. u16 node_id)
  2378. {
  2379. u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
  2380. if (scic->device_table[node_id] == sci_dev) {
  2381. scic->device_table[node_id] = NULL;
  2382. scic_sds_remote_node_table_release_remote_node_index(
  2383. &scic->available_remote_nodes, remote_node_count, node_id
  2384. );
  2385. }
  2386. }
  2387. /**
  2388. * This method returns the union scu_remote_node_context for the specified remote
  2389. * node id.
  2390. * @scic:
  2391. * @node_id:
  2392. *
  2393. * union scu_remote_node_context*
  2394. */
  2395. union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
  2396. struct scic_sds_controller *scic,
  2397. u16 node_id
  2398. ) {
  2399. if (
  2400. (node_id < scic->remote_node_entries)
  2401. && (scic->device_table[node_id] != NULL)
  2402. ) {
  2403. return &scic->remote_node_context_table[node_id];
  2404. }
  2405. return NULL;
  2406. }
  2407. /**
  2408. *
  2409. * @resposne_buffer: This is the buffer into which the D2H register FIS will be
  2410. * constructed.
  2411. * @frame_header: This is the frame header returned by the hardware.
  2412. * @frame_buffer: This is the frame buffer returned by the hardware.
  2413. *
  2414. * This method will combind the frame header and frame buffer to create a SATA
  2415. * D2H register FIS none
  2416. */
  2417. void scic_sds_controller_copy_sata_response(
  2418. void *response_buffer,
  2419. void *frame_header,
  2420. void *frame_buffer)
  2421. {
  2422. memcpy(response_buffer, frame_header, sizeof(u32));
  2423. memcpy(response_buffer + sizeof(u32),
  2424. frame_buffer,
  2425. sizeof(struct dev_to_host_fis) - sizeof(u32));
  2426. }
  2427. /**
  2428. * This method releases the frame once this is done the frame is available for
  2429. * re-use by the hardware. The data contained in the frame header and frame
  2430. * buffer is no longer valid. The UF queue get pointer is only updated if UF
  2431. * control indicates this is appropriate.
  2432. * @scic:
  2433. * @frame_index:
  2434. *
  2435. */
  2436. void scic_sds_controller_release_frame(
  2437. struct scic_sds_controller *scic,
  2438. u32 frame_index)
  2439. {
  2440. if (scic_sds_unsolicited_frame_control_release_frame(
  2441. &scic->uf_control, frame_index) == true)
  2442. writel(scic->uf_control.get,
  2443. &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
  2444. }
  2445. /**
  2446. * scic_controller_start_io() - This method is called by the SCI user to
  2447. * send/start an IO request. If the method invocation is successful, then
  2448. * the IO request has been queued to the hardware for processing.
  2449. * @controller: the handle to the controller object for which to start an IO
  2450. * request.
  2451. * @remote_device: the handle to the remote device object for which to start an
  2452. * IO request.
  2453. * @io_request: the handle to the io request object to start.
  2454. * @io_tag: This parameter specifies a previously allocated IO tag that the
  2455. * user desires to be utilized for this request. This parameter is optional.
  2456. * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
  2457. * for this parameter.
  2458. *
  2459. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2460. * to ensure that each of the methods that may allocate or free available IO
  2461. * tags are handled in a mutually exclusive manner. This method is one of said
  2462. * methods requiring proper critical code section protection (e.g. semaphore,
  2463. * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
  2464. * result, it is expected the user will have set the NCQ tag field in the host
  2465. * to device register FIS prior to calling this method. There is also a
  2466. * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
  2467. * the scic_controller_start_io() method. scic_controller_allocate_tag() for
  2468. * more information on allocating a tag. Indicate if the controller
  2469. * successfully started the IO request. SCI_SUCCESS if the IO request was
  2470. * successfully started. Determine the failure situations and return values.
  2471. */
  2472. enum sci_status scic_controller_start_io(
  2473. struct scic_sds_controller *scic,
  2474. struct scic_sds_remote_device *rdev,
  2475. struct scic_sds_request *req,
  2476. u16 io_tag)
  2477. {
  2478. enum sci_status status;
  2479. if (scic->sm.current_state_id != SCIC_READY) {
  2480. dev_warn(scic_to_dev(scic), "invalid state to start I/O");
  2481. return SCI_FAILURE_INVALID_STATE;
  2482. }
  2483. status = scic_sds_remote_device_start_io(scic, rdev, req);
  2484. if (status != SCI_SUCCESS)
  2485. return status;
  2486. scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
  2487. scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
  2488. return SCI_SUCCESS;
  2489. }
  2490. /**
  2491. * scic_controller_terminate_request() - This method is called by the SCI Core
  2492. * user to terminate an ongoing (i.e. started) core IO request. This does
  2493. * not abort the IO request at the target, but rather removes the IO request
  2494. * from the host controller.
  2495. * @controller: the handle to the controller object for which to terminate a
  2496. * request.
  2497. * @remote_device: the handle to the remote device object for which to
  2498. * terminate a request.
  2499. * @request: the handle to the io or task management request object to
  2500. * terminate.
  2501. *
  2502. * Indicate if the controller successfully began the terminate process for the
  2503. * IO request. SCI_SUCCESS if the terminate process was successfully started
  2504. * for the request. Determine the failure situations and return values.
  2505. */
  2506. enum sci_status scic_controller_terminate_request(
  2507. struct scic_sds_controller *scic,
  2508. struct scic_sds_remote_device *rdev,
  2509. struct scic_sds_request *req)
  2510. {
  2511. enum sci_status status;
  2512. if (scic->sm.current_state_id != SCIC_READY) {
  2513. dev_warn(scic_to_dev(scic),
  2514. "invalid state to terminate request\n");
  2515. return SCI_FAILURE_INVALID_STATE;
  2516. }
  2517. status = scic_sds_io_request_terminate(req);
  2518. if (status != SCI_SUCCESS)
  2519. return status;
  2520. /*
  2521. * Utilize the original post context command and or in the POST_TC_ABORT
  2522. * request sub-type.
  2523. */
  2524. scic_sds_controller_post_request(scic,
  2525. scic_sds_request_get_post_context(req) |
  2526. SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
  2527. return SCI_SUCCESS;
  2528. }
  2529. /**
  2530. * scic_controller_complete_io() - This method will perform core specific
  2531. * completion operations for an IO request. After this method is invoked,
  2532. * the user should consider the IO request as invalid until it is properly
  2533. * reused (i.e. re-constructed).
  2534. * @controller: The handle to the controller object for which to complete the
  2535. * IO request.
  2536. * @remote_device: The handle to the remote device object for which to complete
  2537. * the IO request.
  2538. * @io_request: the handle to the io request object to complete.
  2539. *
  2540. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2541. * to ensure that each of the methods that may allocate or free available IO
  2542. * tags are handled in a mutually exclusive manner. This method is one of said
  2543. * methods requiring proper critical code section protection (e.g. semaphore,
  2544. * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
  2545. * Core user, using the scic_controller_allocate_io_tag() method, then it is
  2546. * the responsibility of the caller to invoke the scic_controller_free_io_tag()
  2547. * method to free the tag (i.e. this method will not free the IO tag). Indicate
  2548. * if the controller successfully completed the IO request. SCI_SUCCESS if the
  2549. * completion process was successful.
  2550. */
  2551. enum sci_status scic_controller_complete_io(
  2552. struct scic_sds_controller *scic,
  2553. struct scic_sds_remote_device *rdev,
  2554. struct scic_sds_request *request)
  2555. {
  2556. enum sci_status status;
  2557. u16 index;
  2558. switch (scic->sm.current_state_id) {
  2559. case SCIC_STOPPING:
  2560. /* XXX: Implement this function */
  2561. return SCI_FAILURE;
  2562. case SCIC_READY:
  2563. status = scic_sds_remote_device_complete_io(scic, rdev, request);
  2564. if (status != SCI_SUCCESS)
  2565. return status;
  2566. index = scic_sds_io_tag_get_index(request->io_tag);
  2567. scic->io_request_table[index] = NULL;
  2568. return SCI_SUCCESS;
  2569. default:
  2570. dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
  2571. return SCI_FAILURE_INVALID_STATE;
  2572. }
  2573. }
  2574. enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
  2575. {
  2576. struct scic_sds_controller *scic = sci_req->owning_controller;
  2577. if (scic->sm.current_state_id != SCIC_READY) {
  2578. dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
  2579. return SCI_FAILURE_INVALID_STATE;
  2580. }
  2581. scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
  2582. scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
  2583. return SCI_SUCCESS;
  2584. }
  2585. /**
  2586. * scic_controller_start_task() - This method is called by the SCIC user to
  2587. * send/start a framework task management request.
  2588. * @controller: the handle to the controller object for which to start the task
  2589. * management request.
  2590. * @remote_device: the handle to the remote device object for which to start
  2591. * the task management request.
  2592. * @task_request: the handle to the task request object to start.
  2593. * @io_tag: This parameter specifies a previously allocated IO tag that the
  2594. * user desires to be utilized for this request. Note this not the io_tag
  2595. * of the request being managed. It is to be utilized for the task request
  2596. * itself. This parameter is optional. The user is allowed to supply
  2597. * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
  2598. *
  2599. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2600. * to ensure that each of the methods that may allocate or free available IO
  2601. * tags are handled in a mutually exclusive manner. This method is one of said
  2602. * methods requiring proper critical code section protection (e.g. semaphore,
  2603. * spin-lock, etc.). - The user must synchronize this task with completion
  2604. * queue processing. If they are not synchronized then it is possible for the
  2605. * io requests that are being managed by the task request can complete before
  2606. * starting the task request. scic_controller_allocate_tag() for more
  2607. * information on allocating a tag. Indicate if the controller successfully
  2608. * started the IO request. SCI_TASK_SUCCESS if the task request was
  2609. * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
  2610. * returned if there is/are task(s) outstanding that require termination or
  2611. * completion before this request can succeed.
  2612. */
  2613. enum sci_task_status scic_controller_start_task(
  2614. struct scic_sds_controller *scic,
  2615. struct scic_sds_remote_device *rdev,
  2616. struct scic_sds_request *req,
  2617. u16 task_tag)
  2618. {
  2619. enum sci_status status;
  2620. if (scic->sm.current_state_id != SCIC_READY) {
  2621. dev_warn(scic_to_dev(scic),
  2622. "%s: SCIC Controller starting task from invalid "
  2623. "state\n",
  2624. __func__);
  2625. return SCI_TASK_FAILURE_INVALID_STATE;
  2626. }
  2627. status = scic_sds_remote_device_start_task(scic, rdev, req);
  2628. switch (status) {
  2629. case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
  2630. scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
  2631. /*
  2632. * We will let framework know this task request started successfully,
  2633. * although core is still woring on starting the request (to post tc when
  2634. * RNC is resumed.)
  2635. */
  2636. return SCI_SUCCESS;
  2637. case SCI_SUCCESS:
  2638. scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
  2639. scic_sds_controller_post_request(scic,
  2640. scic_sds_request_get_post_context(req));
  2641. break;
  2642. default:
  2643. break;
  2644. }
  2645. return status;
  2646. }
  2647. /**
  2648. * scic_controller_allocate_io_tag() - This method will allocate a tag from the
  2649. * pool of free IO tags. Direct allocation of IO tags by the SCI Core user
  2650. * is optional. The scic_controller_start_io() method will allocate an IO
  2651. * tag if this method is not utilized and the tag is not supplied to the IO
  2652. * construct routine. Direct allocation of IO tags may provide additional
  2653. * performance improvements in environments capable of supporting this usage
  2654. * model. Additionally, direct allocation of IO tags also provides
  2655. * additional flexibility to the SCI Core user. Specifically, the user may
  2656. * retain IO tags across the lives of multiple IO requests.
  2657. * @controller: the handle to the controller object for which to allocate the
  2658. * tag.
  2659. *
  2660. * IO tags are a protected resource. It is incumbent upon the SCI Core user to
  2661. * ensure that each of the methods that may allocate or free available IO tags
  2662. * are handled in a mutually exclusive manner. This method is one of said
  2663. * methods requiring proper critical code section protection (e.g. semaphore,
  2664. * spin-lock, etc.). An unsigned integer representing an available IO tag.
  2665. * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
  2666. * currently available tags to be allocated. All return other values indicate a
  2667. * legitimate tag.
  2668. */
  2669. u16 scic_controller_allocate_io_tag(
  2670. struct scic_sds_controller *scic)
  2671. {
  2672. u16 task_context;
  2673. u16 sequence_count;
  2674. if (!sci_pool_empty(scic->tci_pool)) {
  2675. sci_pool_get(scic->tci_pool, task_context);
  2676. sequence_count = scic->io_request_sequence[task_context];
  2677. return scic_sds_io_tag_construct(sequence_count, task_context);
  2678. }
  2679. return SCI_CONTROLLER_INVALID_IO_TAG;
  2680. }
  2681. /**
  2682. * scic_controller_free_io_tag() - This method will free an IO tag to the pool
  2683. * of free IO tags. This method provides the SCI Core user more flexibility
  2684. * with regards to IO tags. The user may desire to keep an IO tag after an
  2685. * IO request has completed, because they plan on re-using the tag for a
  2686. * subsequent IO request. This method is only legal if the tag was
  2687. * allocated via scic_controller_allocate_io_tag().
  2688. * @controller: This parameter specifies the handle to the controller object
  2689. * for which to free/return the tag.
  2690. * @io_tag: This parameter represents the tag to be freed to the pool of
  2691. * available tags.
  2692. *
  2693. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2694. * to ensure that each of the methods that may allocate or free available IO
  2695. * tags are handled in a mutually exclusive manner. This method is one of said
  2696. * methods requiring proper critical code section protection (e.g. semaphore,
  2697. * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
  2698. * Core user, using the scic_controller_allocate_io_tag() method, then it is
  2699. * the responsibility of the caller to invoke this method to free the tag. This
  2700. * method returns an indication of whether the tag was successfully put back
  2701. * (freed) to the pool of available tags. SCI_SUCCESS This return value
  2702. * indicates the tag was successfully placed into the pool of available IO
  2703. * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
  2704. * is not a valid IO tag value.
  2705. */
  2706. enum sci_status scic_controller_free_io_tag(
  2707. struct scic_sds_controller *scic,
  2708. u16 io_tag)
  2709. {
  2710. u16 sequence;
  2711. u16 index;
  2712. BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
  2713. sequence = scic_sds_io_tag_get_sequence(io_tag);
  2714. index = scic_sds_io_tag_get_index(io_tag);
  2715. if (!sci_pool_full(scic->tci_pool)) {
  2716. if (sequence == scic->io_request_sequence[index]) {
  2717. scic_sds_io_sequence_increment(
  2718. scic->io_request_sequence[index]);
  2719. sci_pool_put(scic->tci_pool, index);
  2720. return SCI_SUCCESS;
  2721. }
  2722. }
  2723. return SCI_FAILURE_INVALID_IO_TAG;
  2724. }