spi_bfin5xx.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424
  1. /*
  2. * File: drivers/spi/bfin5xx_spi.c
  3. * Maintainer:
  4. * Bryan Wu <bryan.wu@analog.com>
  5. * Original Author:
  6. * Luke Yang (Analog Devices Inc.)
  7. *
  8. * Created: March. 10th 2006
  9. * Description: SPI controller driver for Blackfin BF5xx
  10. * Bugs: Enter bugs at http://blackfin.uclinux.org/
  11. *
  12. * Modified:
  13. * March 10, 2006 bfin5xx_spi.c Created. (Luke Yang)
  14. * August 7, 2006 added full duplex mode (Axel Weiss & Luke Yang)
  15. * July 17, 2007 add support for BF54x SPI0 controller (Bryan Wu)
  16. * July 30, 2007 add platfrom_resource interface to support multi-port
  17. * SPI controller (Bryan Wu)
  18. *
  19. * Copyright 2004-2007 Analog Devices Inc.
  20. *
  21. * This program is free software ; you can redistribute it and/or modify
  22. * it under the terms of the GNU General Public License as published by
  23. * the Free Software Foundation ; either version 2, or (at your option)
  24. * any later version.
  25. *
  26. * This program is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY ; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  29. * GNU General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU General Public License
  32. * along with this program ; see the file COPYING.
  33. * If not, write to the Free Software Foundation,
  34. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  35. */
  36. #include <linux/init.h>
  37. #include <linux/module.h>
  38. #include <linux/delay.h>
  39. #include <linux/device.h>
  40. #include <linux/io.h>
  41. #include <linux/ioport.h>
  42. #include <linux/irq.h>
  43. #include <linux/errno.h>
  44. #include <linux/interrupt.h>
  45. #include <linux/platform_device.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/spi/spi.h>
  48. #include <linux/workqueue.h>
  49. #include <asm/dma.h>
  50. #include <asm/portmux.h>
  51. #include <asm/bfin5xx_spi.h>
  52. #define DRV_NAME "bfin-spi"
  53. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  54. #define DRV_DESC "Blackfin BF5xx on-chip SPI Contoller Driver"
  55. #define DRV_VERSION "1.0"
  56. MODULE_AUTHOR(DRV_AUTHOR);
  57. MODULE_DESCRIPTION(DRV_DESC);
  58. MODULE_LICENSE("GPL");
  59. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  60. static u32 spi_dma_ch;
  61. static u32 spi_regs_base;
  62. #define DEFINE_SPI_REG(reg, off) \
  63. static inline u16 read_##reg(void) \
  64. { return bfin_read16(spi_regs_base + off); } \
  65. static inline void write_##reg(u16 v) \
  66. {bfin_write16(spi_regs_base + off, v); }
  67. DEFINE_SPI_REG(CTRL, 0x00)
  68. DEFINE_SPI_REG(FLAG, 0x04)
  69. DEFINE_SPI_REG(STAT, 0x08)
  70. DEFINE_SPI_REG(TDBR, 0x0C)
  71. DEFINE_SPI_REG(RDBR, 0x10)
  72. DEFINE_SPI_REG(BAUD, 0x14)
  73. DEFINE_SPI_REG(SHAW, 0x18)
  74. #define START_STATE ((void*)0)
  75. #define RUNNING_STATE ((void*)1)
  76. #define DONE_STATE ((void*)2)
  77. #define ERROR_STATE ((void*)-1)
  78. #define QUEUE_RUNNING 0
  79. #define QUEUE_STOPPED 1
  80. int dma_requested;
  81. struct driver_data {
  82. /* Driver model hookup */
  83. struct platform_device *pdev;
  84. /* SPI framework hookup */
  85. struct spi_master *master;
  86. /* BFIN hookup */
  87. struct bfin5xx_spi_master *master_info;
  88. /* Driver message queue */
  89. struct workqueue_struct *workqueue;
  90. struct work_struct pump_messages;
  91. spinlock_t lock;
  92. struct list_head queue;
  93. int busy;
  94. int run;
  95. /* Message Transfer pump */
  96. struct tasklet_struct pump_transfers;
  97. /* Current message transfer state info */
  98. struct spi_message *cur_msg;
  99. struct spi_transfer *cur_transfer;
  100. struct chip_data *cur_chip;
  101. size_t len_in_bytes;
  102. size_t len;
  103. void *tx;
  104. void *tx_end;
  105. void *rx;
  106. void *rx_end;
  107. int dma_mapped;
  108. dma_addr_t rx_dma;
  109. dma_addr_t tx_dma;
  110. size_t rx_map_len;
  111. size_t tx_map_len;
  112. u8 n_bytes;
  113. int cs_change;
  114. void (*write) (struct driver_data *);
  115. void (*read) (struct driver_data *);
  116. void (*duplex) (struct driver_data *);
  117. };
  118. struct chip_data {
  119. u16 ctl_reg;
  120. u16 baud;
  121. u16 flag;
  122. u8 chip_select_num;
  123. u8 n_bytes;
  124. u8 width; /* 0 or 1 */
  125. u8 enable_dma;
  126. u8 bits_per_word; /* 8 or 16 */
  127. u8 cs_change_per_word;
  128. u8 cs_chg_udelay;
  129. void (*write) (struct driver_data *);
  130. void (*read) (struct driver_data *);
  131. void (*duplex) (struct driver_data *);
  132. };
  133. static void bfin_spi_enable(struct driver_data *drv_data)
  134. {
  135. u16 cr;
  136. cr = read_CTRL();
  137. write_CTRL(cr | BIT_CTL_ENABLE);
  138. }
  139. static void bfin_spi_disable(struct driver_data *drv_data)
  140. {
  141. u16 cr;
  142. cr = read_CTRL();
  143. write_CTRL(cr & (~BIT_CTL_ENABLE));
  144. }
  145. /* Caculate the SPI_BAUD register value based on input HZ */
  146. static u16 hz_to_spi_baud(u32 speed_hz)
  147. {
  148. u_long sclk = get_sclk();
  149. u16 spi_baud = (sclk / (2 * speed_hz));
  150. if ((sclk % (2 * speed_hz)) > 0)
  151. spi_baud++;
  152. return spi_baud;
  153. }
  154. static int flush(struct driver_data *drv_data)
  155. {
  156. unsigned long limit = loops_per_jiffy << 1;
  157. /* wait for stop and clear stat */
  158. while (!(read_STAT() & BIT_STAT_SPIF) && limit--)
  159. continue;
  160. write_STAT(BIT_STAT_CLR);
  161. return limit;
  162. }
  163. /* Chip select operation functions for cs_change flag */
  164. static void cs_active(struct chip_data *chip)
  165. {
  166. u16 flag = read_FLAG();
  167. flag |= chip->flag;
  168. flag &= ~(chip->flag << 8);
  169. write_FLAG(flag);
  170. }
  171. static void cs_deactive(struct chip_data *chip)
  172. {
  173. u16 flag = read_FLAG();
  174. flag |= (chip->flag << 8);
  175. write_FLAG(flag);
  176. }
  177. #define MAX_SPI_SSEL 7
  178. /* stop controller and re-config current chip*/
  179. static int restore_state(struct driver_data *drv_data)
  180. {
  181. struct chip_data *chip = drv_data->cur_chip;
  182. int ret = 0;
  183. /* Clear status and disable clock */
  184. write_STAT(BIT_STAT_CLR);
  185. bfin_spi_disable(drv_data);
  186. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  187. /* Load the registers */
  188. write_CTRL(chip->ctl_reg);
  189. write_BAUD(chip->baud);
  190. cs_active(chip);
  191. if (ret)
  192. dev_dbg(&drv_data->pdev->dev,
  193. ": request chip select number %d failed\n",
  194. chip->chip_select_num);
  195. return ret;
  196. }
  197. /* used to kick off transfer in rx mode */
  198. static unsigned short dummy_read(void)
  199. {
  200. unsigned short tmp;
  201. tmp = read_RDBR();
  202. return tmp;
  203. }
  204. static void null_writer(struct driver_data *drv_data)
  205. {
  206. u8 n_bytes = drv_data->n_bytes;
  207. while (drv_data->tx < drv_data->tx_end) {
  208. write_TDBR(0);
  209. while ((read_STAT() & BIT_STAT_TXS))
  210. continue;
  211. drv_data->tx += n_bytes;
  212. }
  213. }
  214. static void null_reader(struct driver_data *drv_data)
  215. {
  216. u8 n_bytes = drv_data->n_bytes;
  217. dummy_read();
  218. while (drv_data->rx < drv_data->rx_end) {
  219. while (!(read_STAT() & BIT_STAT_RXS))
  220. continue;
  221. dummy_read();
  222. drv_data->rx += n_bytes;
  223. }
  224. }
  225. static void u8_writer(struct driver_data *drv_data)
  226. {
  227. dev_dbg(&drv_data->pdev->dev,
  228. "cr8-s is 0x%x\n", read_STAT());
  229. while (drv_data->tx < drv_data->tx_end) {
  230. write_TDBR(*(u8 *) (drv_data->tx));
  231. while (read_STAT() & BIT_STAT_TXS)
  232. continue;
  233. ++drv_data->tx;
  234. }
  235. /* poll for SPI completion before returning */
  236. while (!(read_STAT() & BIT_STAT_SPIF))
  237. continue;
  238. }
  239. static void u8_cs_chg_writer(struct driver_data *drv_data)
  240. {
  241. struct chip_data *chip = drv_data->cur_chip;
  242. while (drv_data->tx < drv_data->tx_end) {
  243. cs_active(chip);
  244. write_TDBR(*(u8 *) (drv_data->tx));
  245. while (read_STAT() & BIT_STAT_TXS)
  246. continue;
  247. while (!(read_STAT() & BIT_STAT_SPIF))
  248. continue;
  249. cs_deactive(chip);
  250. if (chip->cs_chg_udelay)
  251. udelay(chip->cs_chg_udelay);
  252. ++drv_data->tx;
  253. }
  254. cs_deactive(chip);
  255. }
  256. static void u8_reader(struct driver_data *drv_data)
  257. {
  258. dev_dbg(&drv_data->pdev->dev,
  259. "cr-8 is 0x%x\n", read_STAT());
  260. /* clear TDBR buffer before read(else it will be shifted out) */
  261. write_TDBR(0xFFFF);
  262. dummy_read();
  263. while (drv_data->rx < drv_data->rx_end - 1) {
  264. while (!(read_STAT() & BIT_STAT_RXS))
  265. continue;
  266. *(u8 *) (drv_data->rx) = read_RDBR();
  267. ++drv_data->rx;
  268. }
  269. while (!(read_STAT() & BIT_STAT_RXS))
  270. continue;
  271. *(u8 *) (drv_data->rx) = read_SHAW();
  272. ++drv_data->rx;
  273. }
  274. static void u8_cs_chg_reader(struct driver_data *drv_data)
  275. {
  276. struct chip_data *chip = drv_data->cur_chip;
  277. while (drv_data->rx < drv_data->rx_end) {
  278. cs_active(chip);
  279. read_RDBR(); /* kick off */
  280. while (!(read_STAT() & BIT_STAT_RXS))
  281. continue;
  282. while (!(read_STAT() & BIT_STAT_SPIF))
  283. continue;
  284. *(u8 *) (drv_data->rx) = read_SHAW();
  285. cs_deactive(chip);
  286. if (chip->cs_chg_udelay)
  287. udelay(chip->cs_chg_udelay);
  288. ++drv_data->rx;
  289. }
  290. cs_deactive(chip);
  291. }
  292. static void u8_duplex(struct driver_data *drv_data)
  293. {
  294. /* in duplex mode, clk is triggered by writing of TDBR */
  295. while (drv_data->rx < drv_data->rx_end) {
  296. write_TDBR(*(u8 *) (drv_data->tx));
  297. while (!(read_STAT() & BIT_STAT_SPIF))
  298. continue;
  299. while (!(read_STAT() & BIT_STAT_RXS))
  300. continue;
  301. *(u8 *) (drv_data->rx) = read_RDBR();
  302. ++drv_data->rx;
  303. ++drv_data->tx;
  304. }
  305. }
  306. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  307. {
  308. struct chip_data *chip = drv_data->cur_chip;
  309. while (drv_data->rx < drv_data->rx_end) {
  310. cs_active(chip);
  311. write_TDBR(*(u8 *) (drv_data->tx));
  312. while (!(read_STAT() & BIT_STAT_SPIF))
  313. continue;
  314. while (!(read_STAT() & BIT_STAT_RXS))
  315. continue;
  316. *(u8 *) (drv_data->rx) = read_RDBR();
  317. cs_deactive(chip);
  318. if (chip->cs_chg_udelay)
  319. udelay(chip->cs_chg_udelay);
  320. ++drv_data->rx;
  321. ++drv_data->tx;
  322. }
  323. cs_deactive(chip);
  324. }
  325. static void u16_writer(struct driver_data *drv_data)
  326. {
  327. dev_dbg(&drv_data->pdev->dev,
  328. "cr16 is 0x%x\n", read_STAT());
  329. while (drv_data->tx < drv_data->tx_end) {
  330. write_TDBR(*(u16 *) (drv_data->tx));
  331. while ((read_STAT() & BIT_STAT_TXS))
  332. continue;
  333. drv_data->tx += 2;
  334. }
  335. /* poll for SPI completion before returning */
  336. while (!(read_STAT() & BIT_STAT_SPIF))
  337. continue;
  338. }
  339. static void u16_cs_chg_writer(struct driver_data *drv_data)
  340. {
  341. struct chip_data *chip = drv_data->cur_chip;
  342. while (drv_data->tx < drv_data->tx_end) {
  343. cs_active(chip);
  344. write_TDBR(*(u16 *) (drv_data->tx));
  345. while ((read_STAT() & BIT_STAT_TXS))
  346. continue;
  347. while (!(read_STAT() & BIT_STAT_SPIF))
  348. continue;
  349. cs_deactive(chip);
  350. if (chip->cs_chg_udelay)
  351. udelay(chip->cs_chg_udelay);
  352. drv_data->tx += 2;
  353. }
  354. cs_deactive(chip);
  355. }
  356. static void u16_reader(struct driver_data *drv_data)
  357. {
  358. dev_dbg(&drv_data->pdev->dev,
  359. "cr-16 is 0x%x\n", read_STAT());
  360. dummy_read();
  361. while (drv_data->rx < (drv_data->rx_end - 2)) {
  362. while (!(read_STAT() & BIT_STAT_RXS))
  363. continue;
  364. *(u16 *) (drv_data->rx) = read_RDBR();
  365. drv_data->rx += 2;
  366. }
  367. while (!(read_STAT() & BIT_STAT_RXS))
  368. continue;
  369. *(u16 *) (drv_data->rx) = read_SHAW();
  370. drv_data->rx += 2;
  371. }
  372. static void u16_cs_chg_reader(struct driver_data *drv_data)
  373. {
  374. struct chip_data *chip = drv_data->cur_chip;
  375. while (drv_data->rx < drv_data->rx_end) {
  376. cs_active(chip);
  377. read_RDBR(); /* kick off */
  378. while (!(read_STAT() & BIT_STAT_RXS))
  379. continue;
  380. while (!(read_STAT() & BIT_STAT_SPIF))
  381. continue;
  382. *(u16 *) (drv_data->rx) = read_SHAW();
  383. cs_deactive(chip);
  384. if (chip->cs_chg_udelay)
  385. udelay(chip->cs_chg_udelay);
  386. drv_data->rx += 2;
  387. }
  388. cs_deactive(chip);
  389. }
  390. static void u16_duplex(struct driver_data *drv_data)
  391. {
  392. /* in duplex mode, clk is triggered by writing of TDBR */
  393. while (drv_data->tx < drv_data->tx_end) {
  394. write_TDBR(*(u16 *) (drv_data->tx));
  395. while (!(read_STAT() & BIT_STAT_SPIF))
  396. continue;
  397. while (!(read_STAT() & BIT_STAT_RXS))
  398. continue;
  399. *(u16 *) (drv_data->rx) = read_RDBR();
  400. drv_data->rx += 2;
  401. drv_data->tx += 2;
  402. }
  403. }
  404. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  405. {
  406. struct chip_data *chip = drv_data->cur_chip;
  407. while (drv_data->tx < drv_data->tx_end) {
  408. cs_active(chip);
  409. write_TDBR(*(u16 *) (drv_data->tx));
  410. while (!(read_STAT() & BIT_STAT_SPIF))
  411. continue;
  412. while (!(read_STAT() & BIT_STAT_RXS))
  413. continue;
  414. *(u16 *) (drv_data->rx) = read_RDBR();
  415. cs_deactive(chip);
  416. if (chip->cs_chg_udelay)
  417. udelay(chip->cs_chg_udelay);
  418. drv_data->rx += 2;
  419. drv_data->tx += 2;
  420. }
  421. cs_deactive(chip);
  422. }
  423. /* test if ther is more transfer to be done */
  424. static void *next_transfer(struct driver_data *drv_data)
  425. {
  426. struct spi_message *msg = drv_data->cur_msg;
  427. struct spi_transfer *trans = drv_data->cur_transfer;
  428. /* Move to next transfer */
  429. if (trans->transfer_list.next != &msg->transfers) {
  430. drv_data->cur_transfer =
  431. list_entry(trans->transfer_list.next,
  432. struct spi_transfer, transfer_list);
  433. return RUNNING_STATE;
  434. } else
  435. return DONE_STATE;
  436. }
  437. /*
  438. * caller already set message->status;
  439. * dma and pio irqs are blocked give finished message back
  440. */
  441. static void giveback(struct driver_data *drv_data)
  442. {
  443. struct chip_data *chip = drv_data->cur_chip;
  444. struct spi_transfer *last_transfer;
  445. unsigned long flags;
  446. struct spi_message *msg;
  447. spin_lock_irqsave(&drv_data->lock, flags);
  448. msg = drv_data->cur_msg;
  449. drv_data->cur_msg = NULL;
  450. drv_data->cur_transfer = NULL;
  451. drv_data->cur_chip = NULL;
  452. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  453. spin_unlock_irqrestore(&drv_data->lock, flags);
  454. last_transfer = list_entry(msg->transfers.prev,
  455. struct spi_transfer, transfer_list);
  456. msg->state = NULL;
  457. /* disable chip select signal. And not stop spi in autobuffer mode */
  458. if (drv_data->tx_dma != 0xFFFF) {
  459. cs_deactive(chip);
  460. bfin_spi_disable(drv_data);
  461. }
  462. if (!drv_data->cs_change)
  463. cs_deactive(chip);
  464. if (msg->complete)
  465. msg->complete(msg->context);
  466. }
  467. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  468. {
  469. struct driver_data *drv_data = (struct driver_data *)dev_id;
  470. struct spi_message *msg = drv_data->cur_msg;
  471. struct chip_data *chip = drv_data->cur_chip;
  472. dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
  473. clear_dma_irqstat(spi_dma_ch);
  474. /* Wait for DMA to complete */
  475. while (get_dma_curr_irqstat(spi_dma_ch) & DMA_RUN)
  476. continue;
  477. /*
  478. * wait for the last transaction shifted out. HRM states:
  479. * at this point there may still be data in the SPI DMA FIFO waiting
  480. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  481. * register until it goes low for 2 successive reads
  482. */
  483. if (drv_data->tx != NULL) {
  484. while ((read_STAT() & TXS) ||
  485. (read_STAT() & TXS))
  486. continue;
  487. }
  488. while (!(read_STAT() & SPIF))
  489. continue;
  490. bfin_spi_disable(drv_data);
  491. msg->actual_length += drv_data->len_in_bytes;
  492. if (drv_data->cs_change)
  493. cs_deactive(chip);
  494. /* Move to next transfer */
  495. msg->state = next_transfer(drv_data);
  496. /* Schedule transfer tasklet */
  497. tasklet_schedule(&drv_data->pump_transfers);
  498. /* free the irq handler before next transfer */
  499. dev_dbg(&drv_data->pdev->dev,
  500. "disable dma channel irq%d\n",
  501. spi_dma_ch);
  502. dma_disable_irq(spi_dma_ch);
  503. return IRQ_HANDLED;
  504. }
  505. static void pump_transfers(unsigned long data)
  506. {
  507. struct driver_data *drv_data = (struct driver_data *)data;
  508. struct spi_message *message = NULL;
  509. struct spi_transfer *transfer = NULL;
  510. struct spi_transfer *previous = NULL;
  511. struct chip_data *chip = NULL;
  512. u8 width;
  513. u16 cr, dma_width, dma_config;
  514. u32 tranf_success = 1;
  515. /* Get current state information */
  516. message = drv_data->cur_msg;
  517. transfer = drv_data->cur_transfer;
  518. chip = drv_data->cur_chip;
  519. /*
  520. * if msg is error or done, report it back using complete() callback
  521. */
  522. /* Handle for abort */
  523. if (message->state == ERROR_STATE) {
  524. message->status = -EIO;
  525. giveback(drv_data);
  526. return;
  527. }
  528. /* Handle end of message */
  529. if (message->state == DONE_STATE) {
  530. message->status = 0;
  531. giveback(drv_data);
  532. return;
  533. }
  534. /* Delay if requested at end of transfer */
  535. if (message->state == RUNNING_STATE) {
  536. previous = list_entry(transfer->transfer_list.prev,
  537. struct spi_transfer, transfer_list);
  538. if (previous->delay_usecs)
  539. udelay(previous->delay_usecs);
  540. }
  541. /* Setup the transfer state based on the type of transfer */
  542. if (flush(drv_data) == 0) {
  543. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  544. message->status = -EIO;
  545. giveback(drv_data);
  546. return;
  547. }
  548. if (transfer->tx_buf != NULL) {
  549. drv_data->tx = (void *)transfer->tx_buf;
  550. drv_data->tx_end = drv_data->tx + transfer->len;
  551. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  552. transfer->tx_buf, drv_data->tx_end);
  553. } else {
  554. drv_data->tx = NULL;
  555. }
  556. if (transfer->rx_buf != NULL) {
  557. drv_data->rx = transfer->rx_buf;
  558. drv_data->rx_end = drv_data->rx + transfer->len;
  559. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  560. transfer->rx_buf, drv_data->rx_end);
  561. } else {
  562. drv_data->rx = NULL;
  563. }
  564. drv_data->rx_dma = transfer->rx_dma;
  565. drv_data->tx_dma = transfer->tx_dma;
  566. drv_data->len_in_bytes = transfer->len;
  567. drv_data->cs_change = transfer->cs_change;
  568. width = chip->width;
  569. if (width == CFG_SPI_WORDSIZE16) {
  570. drv_data->len = (transfer->len) >> 1;
  571. } else {
  572. drv_data->len = transfer->len;
  573. }
  574. drv_data->write = drv_data->tx ? chip->write : null_writer;
  575. drv_data->read = drv_data->rx ? chip->read : null_reader;
  576. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  577. dev_dbg(&drv_data->pdev->dev, "transfer: ",
  578. "drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  579. drv_data->write, chip->write, null_writer);
  580. /* speed and width has been set on per message */
  581. message->state = RUNNING_STATE;
  582. dma_config = 0;
  583. /* restore spi status for each spi transfer */
  584. if (transfer->speed_hz) {
  585. write_BAUD(hz_to_spi_baud(transfer->speed_hz));
  586. } else {
  587. write_BAUD(chip->baud);
  588. }
  589. cs_active(chip);
  590. dev_dbg(&drv_data->pdev->dev,
  591. "now pumping a transfer: width is %d, len is %d\n",
  592. width, transfer->len);
  593. /*
  594. * Try to map dma buffer and do a dma transfer if
  595. * successful use different way to r/w according to
  596. * drv_data->cur_chip->enable_dma
  597. */
  598. if (drv_data->cur_chip->enable_dma && drv_data->len > 6) {
  599. write_STAT(BIT_STAT_CLR);
  600. disable_dma(spi_dma_ch);
  601. clear_dma_irqstat(spi_dma_ch);
  602. bfin_spi_disable(drv_data);
  603. /* config dma channel */
  604. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  605. if (width == CFG_SPI_WORDSIZE16) {
  606. set_dma_x_count(spi_dma_ch, drv_data->len);
  607. set_dma_x_modify(spi_dma_ch, 2);
  608. dma_width = WDSIZE_16;
  609. } else {
  610. set_dma_x_count(spi_dma_ch, drv_data->len);
  611. set_dma_x_modify(spi_dma_ch, 1);
  612. dma_width = WDSIZE_8;
  613. }
  614. /* set transfer width,direction. And enable spi */
  615. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  616. /* dirty hack for autobuffer DMA mode */
  617. if (drv_data->tx_dma == 0xFFFF) {
  618. dev_dbg(&drv_data->pdev->dev,
  619. "doing autobuffer DMA out.\n");
  620. /* no irq in autobuffer mode */
  621. dma_config =
  622. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  623. set_dma_config(spi_dma_ch, dma_config);
  624. set_dma_start_addr(spi_dma_ch,
  625. (unsigned long)drv_data->tx);
  626. enable_dma(spi_dma_ch);
  627. write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
  628. (CFG_SPI_ENABLE << 14));
  629. /* just return here, there can only be one transfer in this mode */
  630. message->status = 0;
  631. giveback(drv_data);
  632. return;
  633. }
  634. /* In dma mode, rx or tx must be NULL in one transfer */
  635. if (drv_data->rx != NULL) {
  636. /* set transfer mode, and enable SPI */
  637. dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
  638. /* disable SPI before write to TDBR */
  639. write_CTRL(cr & ~BIT_CTL_ENABLE);
  640. /* clear tx reg soformer data is not shifted out */
  641. write_TDBR(0xFF);
  642. set_dma_x_count(spi_dma_ch, drv_data->len);
  643. /* start dma */
  644. dma_enable_irq(spi_dma_ch);
  645. dma_config = (WNR | RESTART | dma_width | DI_EN);
  646. set_dma_config(spi_dma_ch, dma_config);
  647. set_dma_start_addr(spi_dma_ch,
  648. (unsigned long)drv_data->rx);
  649. enable_dma(spi_dma_ch);
  650. cr |=
  651. CFG_SPI_DMAREAD | (width << 8) | (CFG_SPI_ENABLE <<
  652. 14);
  653. /* set transfer mode, and enable SPI */
  654. write_CTRL(cr);
  655. } else if (drv_data->tx != NULL) {
  656. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  657. /* start dma */
  658. dma_enable_irq(spi_dma_ch);
  659. dma_config = (RESTART | dma_width | DI_EN);
  660. set_dma_config(spi_dma_ch, dma_config);
  661. set_dma_start_addr(spi_dma_ch,
  662. (unsigned long)drv_data->tx);
  663. enable_dma(spi_dma_ch);
  664. write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
  665. (CFG_SPI_ENABLE << 14));
  666. }
  667. } else {
  668. /* IO mode write then read */
  669. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  670. write_STAT(BIT_STAT_CLR);
  671. if (drv_data->tx != NULL && drv_data->rx != NULL) {
  672. /* full duplex mode */
  673. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  674. (drv_data->rx_end - drv_data->rx));
  675. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  676. cr |= CFG_SPI_WRITE | (width << 8) |
  677. (CFG_SPI_ENABLE << 14);
  678. dev_dbg(&drv_data->pdev->dev,
  679. "IO duplex: cr is 0x%x\n", cr);
  680. write_CTRL(cr);
  681. drv_data->duplex(drv_data);
  682. if (drv_data->tx != drv_data->tx_end)
  683. tranf_success = 0;
  684. } else if (drv_data->tx != NULL) {
  685. /* write only half duplex */
  686. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  687. cr |= CFG_SPI_WRITE | (width << 8) |
  688. (CFG_SPI_ENABLE << 14);
  689. dev_dbg(&drv_data->pdev->dev,
  690. "IO write: cr is 0x%x\n", cr);
  691. write_CTRL(cr);
  692. drv_data->write(drv_data);
  693. if (drv_data->tx != drv_data->tx_end)
  694. tranf_success = 0;
  695. } else if (drv_data->rx != NULL) {
  696. /* read only half duplex */
  697. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  698. cr |= CFG_SPI_READ | (width << 8) |
  699. (CFG_SPI_ENABLE << 14);
  700. dev_dbg(&drv_data->pdev->dev,
  701. "IO read: cr is 0x%x\n", cr);
  702. write_CTRL(cr);
  703. drv_data->read(drv_data);
  704. if (drv_data->rx != drv_data->rx_end)
  705. tranf_success = 0;
  706. }
  707. if (!tranf_success) {
  708. dev_dbg(&drv_data->pdev->dev,
  709. "IO write error!\n");
  710. message->state = ERROR_STATE;
  711. } else {
  712. /* Update total byte transfered */
  713. message->actual_length += drv_data->len;
  714. if (drv_data->cs_change)
  715. cs_deactive(chip);
  716. /* Move to next transfer of this msg */
  717. message->state = next_transfer(drv_data);
  718. }
  719. /* Schedule next transfer tasklet */
  720. tasklet_schedule(&drv_data->pump_transfers);
  721. }
  722. }
  723. /* pop a msg from queue and kick off real transfer */
  724. static void pump_messages(struct work_struct *work)
  725. {
  726. struct driver_data *drv_data;
  727. unsigned long flags;
  728. drv_data = container_of(work, struct driver_data, pump_messages);
  729. /* Lock queue and check for queue work */
  730. spin_lock_irqsave(&drv_data->lock, flags);
  731. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  732. /* pumper kicked off but no work to do */
  733. drv_data->busy = 0;
  734. spin_unlock_irqrestore(&drv_data->lock, flags);
  735. return;
  736. }
  737. /* Make sure we are not already running a message */
  738. if (drv_data->cur_msg) {
  739. spin_unlock_irqrestore(&drv_data->lock, flags);
  740. return;
  741. }
  742. /* Extract head of queue */
  743. drv_data->cur_msg = list_entry(drv_data->queue.next,
  744. struct spi_message, queue);
  745. /* Setup the SSP using the per chip configuration */
  746. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  747. if (restore_state(drv_data)) {
  748. spin_unlock_irqrestore(&drv_data->lock, flags);
  749. return;
  750. };
  751. list_del_init(&drv_data->cur_msg->queue);
  752. /* Initial message state */
  753. drv_data->cur_msg->state = START_STATE;
  754. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  755. struct spi_transfer, transfer_list);
  756. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  757. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  758. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  759. drv_data->cur_chip->ctl_reg);
  760. dev_dbg(&drv_data->pdev->dev,
  761. "the first transfer len is %d\n",
  762. drv_data->cur_transfer->len);
  763. /* Mark as busy and launch transfers */
  764. tasklet_schedule(&drv_data->pump_transfers);
  765. drv_data->busy = 1;
  766. spin_unlock_irqrestore(&drv_data->lock, flags);
  767. }
  768. /*
  769. * got a msg to transfer, queue it in drv_data->queue.
  770. * And kick off message pumper
  771. */
  772. static int transfer(struct spi_device *spi, struct spi_message *msg)
  773. {
  774. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  775. unsigned long flags;
  776. spin_lock_irqsave(&drv_data->lock, flags);
  777. if (drv_data->run == QUEUE_STOPPED) {
  778. spin_unlock_irqrestore(&drv_data->lock, flags);
  779. return -ESHUTDOWN;
  780. }
  781. msg->actual_length = 0;
  782. msg->status = -EINPROGRESS;
  783. msg->state = START_STATE;
  784. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  785. list_add_tail(&msg->queue, &drv_data->queue);
  786. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  787. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  788. spin_unlock_irqrestore(&drv_data->lock, flags);
  789. return 0;
  790. }
  791. #define MAX_SPI_SSEL 7
  792. static u16 ssel[3][MAX_SPI_SSEL] = {
  793. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  794. P_SPI0_SSEL4, P_SPI0_SSEL5,
  795. P_SPI0_SSEL6, P_SPI0_SSEL7},
  796. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  797. P_SPI1_SSEL4, P_SPI1_SSEL5,
  798. P_SPI1_SSEL6, P_SPI1_SSEL7},
  799. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  800. P_SPI2_SSEL4, P_SPI2_SSEL5,
  801. P_SPI2_SSEL6, P_SPI2_SSEL7},
  802. };
  803. /* first setup for new devices */
  804. static int setup(struct spi_device *spi)
  805. {
  806. struct bfin5xx_spi_chip *chip_info = NULL;
  807. struct chip_data *chip;
  808. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  809. u8 spi_flg;
  810. /* Abort device setup if requested features are not supported */
  811. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  812. dev_err(&spi->dev, "requested mode not fully supported\n");
  813. return -EINVAL;
  814. }
  815. /* Zero (the default) here means 8 bits */
  816. if (!spi->bits_per_word)
  817. spi->bits_per_word = 8;
  818. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  819. return -EINVAL;
  820. /* Only alloc (or use chip_info) on first setup */
  821. chip = spi_get_ctldata(spi);
  822. if (chip == NULL) {
  823. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  824. if (!chip)
  825. return -ENOMEM;
  826. chip->enable_dma = 0;
  827. chip_info = spi->controller_data;
  828. }
  829. /* chip_info isn't always needed */
  830. if (chip_info) {
  831. /* Make sure people stop trying to set fields via ctl_reg
  832. * when they should actually be using common SPI framework.
  833. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  834. * Not sure if a user actually needs/uses any of these,
  835. * but let's assume (for now) they do.
  836. */
  837. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  838. dev_err(&spi->dev, "do not set bits in ctl_reg "
  839. "that the SPI framework manages\n");
  840. return -EINVAL;
  841. }
  842. chip->enable_dma = chip_info->enable_dma != 0
  843. && drv_data->master_info->enable_dma;
  844. chip->ctl_reg = chip_info->ctl_reg;
  845. chip->bits_per_word = chip_info->bits_per_word;
  846. chip->cs_change_per_word = chip_info->cs_change_per_word;
  847. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  848. }
  849. /* translate common spi framework into our register */
  850. if (spi->mode & SPI_CPOL)
  851. chip->ctl_reg |= CPOL;
  852. if (spi->mode & SPI_CPHA)
  853. chip->ctl_reg |= CPHA;
  854. if (spi->mode & SPI_LSB_FIRST)
  855. chip->ctl_reg |= LSBF;
  856. /* we dont support running in slave mode (yet?) */
  857. chip->ctl_reg |= MSTR;
  858. /*
  859. * if any one SPI chip is registered and wants DMA, request the
  860. * DMA channel for it
  861. */
  862. if (chip->enable_dma && !dma_requested) {
  863. /* register dma irq handler */
  864. if (request_dma(spi_dma_ch, "BF53x_SPI_DMA") < 0) {
  865. dev_dbg(&spi->dev,
  866. "Unable to request BlackFin SPI DMA channel\n");
  867. return -ENODEV;
  868. }
  869. if (set_dma_callback(spi_dma_ch, (void *)dma_irq_handler,
  870. drv_data) < 0) {
  871. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  872. return -EPERM;
  873. }
  874. dma_disable_irq(spi_dma_ch);
  875. dma_requested = 1;
  876. }
  877. /*
  878. * Notice: for blackfin, the speed_hz is the value of register
  879. * SPI_BAUD, not the real baudrate
  880. */
  881. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  882. spi_flg = ~(1 << (spi->chip_select));
  883. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  884. chip->chip_select_num = spi->chip_select;
  885. switch (chip->bits_per_word) {
  886. case 8:
  887. chip->n_bytes = 1;
  888. chip->width = CFG_SPI_WORDSIZE8;
  889. chip->read = chip->cs_change_per_word ?
  890. u8_cs_chg_reader : u8_reader;
  891. chip->write = chip->cs_change_per_word ?
  892. u8_cs_chg_writer : u8_writer;
  893. chip->duplex = chip->cs_change_per_word ?
  894. u8_cs_chg_duplex : u8_duplex;
  895. break;
  896. case 16:
  897. chip->n_bytes = 2;
  898. chip->width = CFG_SPI_WORDSIZE16;
  899. chip->read = chip->cs_change_per_word ?
  900. u16_cs_chg_reader : u16_reader;
  901. chip->write = chip->cs_change_per_word ?
  902. u16_cs_chg_writer : u16_writer;
  903. chip->duplex = chip->cs_change_per_word ?
  904. u16_cs_chg_duplex : u16_duplex;
  905. break;
  906. default:
  907. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  908. chip->bits_per_word);
  909. kfree(chip);
  910. return -ENODEV;
  911. }
  912. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  913. spi->modalias, chip->width, chip->enable_dma);
  914. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  915. chip->ctl_reg, chip->flag);
  916. spi_set_ctldata(spi, chip);
  917. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  918. if ((chip->chip_select_num > 0)
  919. && (chip->chip_select_num <= spi->master->num_chipselect))
  920. peripheral_request(ssel[spi->master->bus_num]
  921. [chip->chip_select_num-1], DRV_NAME);
  922. return 0;
  923. }
  924. /*
  925. * callback for spi framework.
  926. * clean driver specific data
  927. */
  928. static void cleanup(struct spi_device *spi)
  929. {
  930. struct chip_data *chip = spi_get_ctldata(spi);
  931. if ((chip->chip_select_num > 0)
  932. && (chip->chip_select_num <= spi->master->num_chipselect))
  933. peripheral_free(ssel[spi->master->bus_num]
  934. [chip->chip_select_num-1]);
  935. kfree(chip);
  936. }
  937. static inline int init_queue(struct driver_data *drv_data)
  938. {
  939. INIT_LIST_HEAD(&drv_data->queue);
  940. spin_lock_init(&drv_data->lock);
  941. drv_data->run = QUEUE_STOPPED;
  942. drv_data->busy = 0;
  943. /* init transfer tasklet */
  944. tasklet_init(&drv_data->pump_transfers,
  945. pump_transfers, (unsigned long)drv_data);
  946. /* init messages workqueue */
  947. INIT_WORK(&drv_data->pump_messages, pump_messages);
  948. drv_data->workqueue =
  949. create_singlethread_workqueue(drv_data->master->dev.parent->bus_id);
  950. if (drv_data->workqueue == NULL)
  951. return -EBUSY;
  952. return 0;
  953. }
  954. static inline int start_queue(struct driver_data *drv_data)
  955. {
  956. unsigned long flags;
  957. spin_lock_irqsave(&drv_data->lock, flags);
  958. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  959. spin_unlock_irqrestore(&drv_data->lock, flags);
  960. return -EBUSY;
  961. }
  962. drv_data->run = QUEUE_RUNNING;
  963. drv_data->cur_msg = NULL;
  964. drv_data->cur_transfer = NULL;
  965. drv_data->cur_chip = NULL;
  966. spin_unlock_irqrestore(&drv_data->lock, flags);
  967. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  968. return 0;
  969. }
  970. static inline int stop_queue(struct driver_data *drv_data)
  971. {
  972. unsigned long flags;
  973. unsigned limit = 500;
  974. int status = 0;
  975. spin_lock_irqsave(&drv_data->lock, flags);
  976. /*
  977. * This is a bit lame, but is optimized for the common execution path.
  978. * A wait_queue on the drv_data->busy could be used, but then the common
  979. * execution path (pump_messages) would be required to call wake_up or
  980. * friends on every SPI message. Do this instead
  981. */
  982. drv_data->run = QUEUE_STOPPED;
  983. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  984. spin_unlock_irqrestore(&drv_data->lock, flags);
  985. msleep(10);
  986. spin_lock_irqsave(&drv_data->lock, flags);
  987. }
  988. if (!list_empty(&drv_data->queue) || drv_data->busy)
  989. status = -EBUSY;
  990. spin_unlock_irqrestore(&drv_data->lock, flags);
  991. return status;
  992. }
  993. static inline int destroy_queue(struct driver_data *drv_data)
  994. {
  995. int status;
  996. status = stop_queue(drv_data);
  997. if (status != 0)
  998. return status;
  999. destroy_workqueue(drv_data->workqueue);
  1000. return 0;
  1001. }
  1002. static int setup_pin_mux(int action, int bus_num)
  1003. {
  1004. u16 pin_req[3][4] = {
  1005. {P_SPI0_SCK, P_SPI0_MISO, P_SPI0_MOSI, 0},
  1006. {P_SPI1_SCK, P_SPI1_MISO, P_SPI1_MOSI, 0},
  1007. {P_SPI2_SCK, P_SPI2_MISO, P_SPI2_MOSI, 0},
  1008. };
  1009. if (action) {
  1010. if (peripheral_request_list(pin_req[bus_num], DRV_NAME))
  1011. return -EFAULT;
  1012. } else {
  1013. peripheral_free_list(pin_req[bus_num]);
  1014. }
  1015. return 0;
  1016. }
  1017. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  1018. {
  1019. struct device *dev = &pdev->dev;
  1020. struct bfin5xx_spi_master *platform_info;
  1021. struct spi_master *master;
  1022. struct driver_data *drv_data = 0;
  1023. struct resource *res;
  1024. int status = 0;
  1025. platform_info = dev->platform_data;
  1026. /* Allocate master with space for drv_data */
  1027. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1028. if (!master) {
  1029. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1030. return -ENOMEM;
  1031. }
  1032. drv_data = spi_master_get_devdata(master);
  1033. drv_data->master = master;
  1034. drv_data->master_info = platform_info;
  1035. drv_data->pdev = pdev;
  1036. master->bus_num = pdev->id;
  1037. master->num_chipselect = platform_info->num_chipselect;
  1038. master->cleanup = cleanup;
  1039. master->setup = setup;
  1040. master->transfer = transfer;
  1041. /* Find and map our resources */
  1042. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1043. if (res == NULL) {
  1044. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1045. status = -ENOENT;
  1046. goto out_error_get_res;
  1047. }
  1048. spi_regs_base = (u32) ioremap(res->start, (res->end - res->start)+1);
  1049. if (!spi_regs_base) {
  1050. dev_err(dev, "Cannot map IO\n");
  1051. status = -ENXIO;
  1052. goto out_error_ioremap;
  1053. }
  1054. spi_dma_ch = platform_get_irq(pdev, 0);
  1055. if (spi_dma_ch < 0) {
  1056. dev_err(dev, "No DMA channel specified\n");
  1057. status = -ENOENT;
  1058. goto out_error_no_dma_ch;
  1059. }
  1060. /* Initial and start queue */
  1061. status = init_queue(drv_data);
  1062. if (status != 0) {
  1063. dev_err(dev, "problem initializing queue\n");
  1064. goto out_error_queue_alloc;
  1065. }
  1066. status = start_queue(drv_data);
  1067. if (status != 0) {
  1068. dev_err(dev, "problem starting queue\n");
  1069. goto out_error_queue_alloc;
  1070. }
  1071. /* Register with the SPI framework */
  1072. platform_set_drvdata(pdev, drv_data);
  1073. status = spi_register_master(master);
  1074. if (status != 0) {
  1075. dev_err(dev, "problem registering spi master\n");
  1076. goto out_error_queue_alloc;
  1077. }
  1078. if (setup_pin_mux(1, master->bus_num)) {
  1079. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1080. goto out_error;
  1081. }
  1082. dev_info(dev, "%s, Version %s, regs_base @ 0x%08x\n",
  1083. DRV_DESC, DRV_VERSION, spi_regs_base);
  1084. return status;
  1085. out_error_queue_alloc:
  1086. destroy_queue(drv_data);
  1087. out_error_no_dma_ch:
  1088. iounmap((void *) spi_regs_base);
  1089. out_error_ioremap:
  1090. out_error_get_res:
  1091. out_error:
  1092. spi_master_put(master);
  1093. return status;
  1094. }
  1095. /* stop hardware and remove the driver */
  1096. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1097. {
  1098. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1099. int status = 0;
  1100. if (!drv_data)
  1101. return 0;
  1102. /* Remove the queue */
  1103. status = destroy_queue(drv_data);
  1104. if (status != 0)
  1105. return status;
  1106. /* Disable the SSP at the peripheral and SOC level */
  1107. bfin_spi_disable(drv_data);
  1108. /* Release DMA */
  1109. if (drv_data->master_info->enable_dma) {
  1110. if (dma_channel_active(spi_dma_ch))
  1111. free_dma(spi_dma_ch);
  1112. }
  1113. /* Disconnect from the SPI framework */
  1114. spi_unregister_master(drv_data->master);
  1115. setup_pin_mux(0, drv_data->master->bus_num);
  1116. /* Prevent double remove */
  1117. platform_set_drvdata(pdev, NULL);
  1118. return 0;
  1119. }
  1120. #ifdef CONFIG_PM
  1121. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1122. {
  1123. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1124. int status = 0;
  1125. status = stop_queue(drv_data);
  1126. if (status != 0)
  1127. return status;
  1128. /* stop hardware */
  1129. bfin_spi_disable(drv_data);
  1130. return 0;
  1131. }
  1132. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1133. {
  1134. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1135. int status = 0;
  1136. /* Enable the SPI interface */
  1137. bfin_spi_enable(drv_data);
  1138. /* Start the queue running */
  1139. status = start_queue(drv_data);
  1140. if (status != 0) {
  1141. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1142. return status;
  1143. }
  1144. return 0;
  1145. }
  1146. #else
  1147. #define bfin5xx_spi_suspend NULL
  1148. #define bfin5xx_spi_resume NULL
  1149. #endif /* CONFIG_PM */
  1150. MODULE_ALIAS("bfin-spi-master"); /* for platform bus hotplug */
  1151. static struct platform_driver bfin5xx_spi_driver = {
  1152. .driver = {
  1153. .name = DRV_NAME,
  1154. .owner = THIS_MODULE,
  1155. },
  1156. .suspend = bfin5xx_spi_suspend,
  1157. .resume = bfin5xx_spi_resume,
  1158. .remove = __devexit_p(bfin5xx_spi_remove),
  1159. };
  1160. static int __init bfin5xx_spi_init(void)
  1161. {
  1162. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1163. }
  1164. module_init(bfin5xx_spi_init);
  1165. static void __exit bfin5xx_spi_exit(void)
  1166. {
  1167. platform_driver_unregister(&bfin5xx_spi_driver);
  1168. }
  1169. module_exit(bfin5xx_spi_exit);