i2c-eg20t.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/errno.h>
  22. #include <linux/i2c.h>
  23. #include <linux/fs.h>
  24. #include <linux/io.h>
  25. #include <linux/types.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/jiffies.h>
  28. #include <linux/pci.h>
  29. #include <linux/mutex.h>
  30. #include <linux/ktime.h>
  31. #include <linux/slab.h>
  32. #define PCH_EVENT_SET 0 /* I2C Interrupt Event Set Status */
  33. #define PCH_EVENT_NONE 1 /* I2C Interrupt Event Clear Status */
  34. #define PCH_MAX_CLK 100000 /* Maximum Clock speed in MHz */
  35. #define PCH_BUFFER_MODE_ENABLE 0x0002 /* flag for Buffer mode enable */
  36. #define PCH_EEPROM_SW_RST_MODE_ENABLE 0x0008 /* EEPROM SW RST enable flag */
  37. #define PCH_I2CSADR 0x00 /* I2C slave address register */
  38. #define PCH_I2CCTL 0x04 /* I2C control register */
  39. #define PCH_I2CSR 0x08 /* I2C status register */
  40. #define PCH_I2CDR 0x0C /* I2C data register */
  41. #define PCH_I2CMON 0x10 /* I2C bus monitor register */
  42. #define PCH_I2CBC 0x14 /* I2C bus transfer rate setup counter */
  43. #define PCH_I2CMOD 0x18 /* I2C mode register */
  44. #define PCH_I2CBUFSLV 0x1C /* I2C buffer mode slave address register */
  45. #define PCH_I2CBUFSUB 0x20 /* I2C buffer mode subaddress register */
  46. #define PCH_I2CBUFFOR 0x24 /* I2C buffer mode format register */
  47. #define PCH_I2CBUFCTL 0x28 /* I2C buffer mode control register */
  48. #define PCH_I2CBUFMSK 0x2C /* I2C buffer mode interrupt mask register */
  49. #define PCH_I2CBUFSTA 0x30 /* I2C buffer mode status register */
  50. #define PCH_I2CBUFLEV 0x34 /* I2C buffer mode level register */
  51. #define PCH_I2CESRFOR 0x38 /* EEPROM software reset mode format register */
  52. #define PCH_I2CESRCTL 0x3C /* EEPROM software reset mode ctrl register */
  53. #define PCH_I2CESRMSK 0x40 /* EEPROM software reset mode */
  54. #define PCH_I2CESRSTA 0x44 /* EEPROM software reset mode status register */
  55. #define PCH_I2CTMR 0x48 /* I2C timer register */
  56. #define PCH_I2CSRST 0xFC /* I2C reset register */
  57. #define PCH_I2CNF 0xF8 /* I2C noise filter register */
  58. #define BUS_IDLE_TIMEOUT 20
  59. #define PCH_I2CCTL_I2CMEN 0x0080
  60. #define TEN_BIT_ADDR_DEFAULT 0xF000
  61. #define TEN_BIT_ADDR_MASK 0xF0
  62. #define PCH_START 0x0020
  63. #define PCH_RESTART 0x0004
  64. #define PCH_ESR_START 0x0001
  65. #define PCH_BUFF_START 0x1
  66. #define PCH_REPSTART 0x0004
  67. #define PCH_ACK 0x0008
  68. #define PCH_GETACK 0x0001
  69. #define CLR_REG 0x0
  70. #define I2C_RD 0x1
  71. #define I2CMCF_BIT 0x0080
  72. #define I2CMIF_BIT 0x0002
  73. #define I2CMAL_BIT 0x0010
  74. #define I2CBMFI_BIT 0x0001
  75. #define I2CBMAL_BIT 0x0002
  76. #define I2CBMNA_BIT 0x0004
  77. #define I2CBMTO_BIT 0x0008
  78. #define I2CBMIS_BIT 0x0010
  79. #define I2CESRFI_BIT 0X0001
  80. #define I2CESRTO_BIT 0x0002
  81. #define I2CESRFIIE_BIT 0x1
  82. #define I2CESRTOIE_BIT 0x2
  83. #define I2CBMDZ_BIT 0x0040
  84. #define I2CBMAG_BIT 0x0020
  85. #define I2CMBB_BIT 0x0020
  86. #define BUFFER_MODE_MASK (I2CBMFI_BIT | I2CBMAL_BIT | I2CBMNA_BIT | \
  87. I2CBMTO_BIT | I2CBMIS_BIT)
  88. #define I2C_ADDR_MSK 0xFF
  89. #define I2C_MSB_2B_MSK 0x300
  90. #define FAST_MODE_CLK 400
  91. #define FAST_MODE_EN 0x0001
  92. #define SUB_ADDR_LEN_MAX 4
  93. #define BUF_LEN_MAX 32
  94. #define PCH_BUFFER_MODE 0x1
  95. #define EEPROM_SW_RST_MODE 0x0002
  96. #define NORMAL_INTR_ENBL 0x0300
  97. #define EEPROM_RST_INTR_ENBL (I2CESRFIIE_BIT | I2CESRTOIE_BIT)
  98. #define EEPROM_RST_INTR_DISBL 0x0
  99. #define BUFFER_MODE_INTR_ENBL 0x001F
  100. #define BUFFER_MODE_INTR_DISBL 0x0
  101. #define NORMAL_MODE 0x0
  102. #define BUFFER_MODE 0x1
  103. #define EEPROM_SR_MODE 0x2
  104. #define I2C_TX_MODE 0x0010
  105. #define PCH_BUF_TX 0xFFF7
  106. #define PCH_BUF_RD 0x0008
  107. #define I2C_ERROR_MASK (I2CESRTO_EVENT | I2CBMIS_EVENT | I2CBMTO_EVENT | \
  108. I2CBMNA_EVENT | I2CBMAL_EVENT | I2CMAL_EVENT)
  109. #define I2CMAL_EVENT 0x0001
  110. #define I2CMCF_EVENT 0x0002
  111. #define I2CBMFI_EVENT 0x0004
  112. #define I2CBMAL_EVENT 0x0008
  113. #define I2CBMNA_EVENT 0x0010
  114. #define I2CBMTO_EVENT 0x0020
  115. #define I2CBMIS_EVENT 0x0040
  116. #define I2CESRFI_EVENT 0x0080
  117. #define I2CESRTO_EVENT 0x0100
  118. #define PCI_DEVICE_ID_PCH_I2C 0x8817
  119. #define pch_dbg(adap, fmt, arg...) \
  120. dev_dbg(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  121. #define pch_err(adap, fmt, arg...) \
  122. dev_err(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  123. #define pch_pci_err(pdev, fmt, arg...) \
  124. dev_err(&pdev->dev, "%s :" fmt, __func__, ##arg)
  125. #define pch_pci_dbg(pdev, fmt, arg...) \
  126. dev_dbg(&pdev->dev, "%s :" fmt, __func__, ##arg)
  127. /*
  128. Set the number of I2C instance max
  129. Intel EG20T PCH : 1ch
  130. OKI SEMICONDUCTOR ML7213 IOH : 2ch
  131. */
  132. #define PCH_I2C_MAX_DEV 2
  133. /**
  134. * struct i2c_algo_pch_data - for I2C driver functionalities
  135. * @pch_adapter: stores the reference to i2c_adapter structure
  136. * @p_adapter_info: stores the reference to adapter_info structure
  137. * @pch_base_address: specifies the remapped base address
  138. * @pch_buff_mode_en: specifies if buffer mode is enabled
  139. * @pch_event_flag: specifies occurrence of interrupt events
  140. * @pch_i2c_xfer_in_progress: specifies whether the transfer is completed
  141. */
  142. struct i2c_algo_pch_data {
  143. struct i2c_adapter pch_adapter;
  144. struct adapter_info *p_adapter_info;
  145. void __iomem *pch_base_address;
  146. int pch_buff_mode_en;
  147. u32 pch_event_flag;
  148. bool pch_i2c_xfer_in_progress;
  149. };
  150. /**
  151. * struct adapter_info - This structure holds the adapter information for the
  152. PCH i2c controller
  153. * @pch_data: stores a list of i2c_algo_pch_data
  154. * @pch_i2c_suspended: specifies whether the system is suspended or not
  155. * perhaps with more lines and words.
  156. * @ch_num: specifies the number of i2c instance
  157. *
  158. * pch_data has as many elements as maximum I2C channels
  159. */
  160. struct adapter_info {
  161. struct i2c_algo_pch_data pch_data[PCH_I2C_MAX_DEV];
  162. bool pch_i2c_suspended;
  163. int ch_num;
  164. };
  165. static int pch_i2c_speed = 100; /* I2C bus speed in Kbps */
  166. static int pch_clk = 50000; /* specifies I2C clock speed in KHz */
  167. static wait_queue_head_t pch_event;
  168. static DEFINE_MUTEX(pch_mutex);
  169. /* Definition for ML7213 by OKI SEMICONDUCTOR */
  170. #define PCI_VENDOR_ID_ROHM 0x10DB
  171. #define PCI_DEVICE_ID_ML7213_I2C 0x802D
  172. #define PCI_DEVICE_ID_ML7223_I2C 0x8010
  173. static struct pci_device_id __devinitdata pch_pcidev_id[] = {
  174. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_I2C), 1, },
  175. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_I2C), 2, },
  176. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_I2C), 1, },
  177. {0,}
  178. };
  179. static irqreturn_t pch_i2c_handler(int irq, void *pData);
  180. static inline void pch_setbit(void __iomem *addr, u32 offset, u32 bitmask)
  181. {
  182. u32 val;
  183. val = ioread32(addr + offset);
  184. val |= bitmask;
  185. iowrite32(val, addr + offset);
  186. }
  187. static inline void pch_clrbit(void __iomem *addr, u32 offset, u32 bitmask)
  188. {
  189. u32 val;
  190. val = ioread32(addr + offset);
  191. val &= (~bitmask);
  192. iowrite32(val, addr + offset);
  193. }
  194. /**
  195. * pch_i2c_init() - hardware initialization of I2C module
  196. * @adap: Pointer to struct i2c_algo_pch_data.
  197. */
  198. static void pch_i2c_init(struct i2c_algo_pch_data *adap)
  199. {
  200. void __iomem *p = adap->pch_base_address;
  201. u32 pch_i2cbc;
  202. u32 pch_i2ctmr;
  203. u32 reg_value;
  204. /* reset I2C controller */
  205. iowrite32(0x01, p + PCH_I2CSRST);
  206. msleep(20);
  207. iowrite32(0x0, p + PCH_I2CSRST);
  208. /* Initialize I2C registers */
  209. iowrite32(0x21, p + PCH_I2CNF);
  210. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_I2CCTL_I2CMEN);
  211. if (pch_i2c_speed != 400)
  212. pch_i2c_speed = 100;
  213. reg_value = PCH_I2CCTL_I2CMEN;
  214. if (pch_i2c_speed == FAST_MODE_CLK) {
  215. reg_value |= FAST_MODE_EN;
  216. pch_dbg(adap, "Fast mode enabled\n");
  217. }
  218. if (pch_clk > PCH_MAX_CLK)
  219. pch_clk = 62500;
  220. pch_i2cbc = (pch_clk + (pch_i2c_speed * 4)) / pch_i2c_speed * 8;
  221. /* Set transfer speed in I2CBC */
  222. iowrite32(pch_i2cbc, p + PCH_I2CBC);
  223. pch_i2ctmr = (pch_clk) / 8;
  224. iowrite32(pch_i2ctmr, p + PCH_I2CTMR);
  225. reg_value |= NORMAL_INTR_ENBL; /* Enable interrupts in normal mode */
  226. iowrite32(reg_value, p + PCH_I2CCTL);
  227. pch_dbg(adap,
  228. "I2CCTL=%x pch_i2cbc=%x pch_i2ctmr=%x Enable interrupts\n",
  229. ioread32(p + PCH_I2CCTL), pch_i2cbc, pch_i2ctmr);
  230. init_waitqueue_head(&pch_event);
  231. }
  232. static inline bool ktime_lt(const ktime_t cmp1, const ktime_t cmp2)
  233. {
  234. return cmp1.tv64 < cmp2.tv64;
  235. }
  236. /**
  237. * pch_i2c_wait_for_bus_idle() - check the status of bus.
  238. * @adap: Pointer to struct i2c_algo_pch_data.
  239. * @timeout: waiting time counter (us).
  240. */
  241. static s32 pch_i2c_wait_for_bus_idle(struct i2c_algo_pch_data *adap,
  242. s32 timeout)
  243. {
  244. void __iomem *p = adap->pch_base_address;
  245. ktime_t ns_val;
  246. if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0)
  247. return 0;
  248. /* MAX timeout value is timeout*1000*1000nsec */
  249. ns_val = ktime_add_ns(ktime_get(), timeout*1000*1000);
  250. do {
  251. msleep(20);
  252. if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0)
  253. return 0;
  254. } while (ktime_lt(ktime_get(), ns_val));
  255. pch_dbg(adap, "I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  256. pch_err(adap, "%s: Timeout Error.return%d\n", __func__, -ETIME);
  257. return -ETIME;
  258. }
  259. /**
  260. * pch_i2c_start() - Generate I2C start condition in normal mode.
  261. * @adap: Pointer to struct i2c_algo_pch_data.
  262. *
  263. * Generate I2C start condition in normal mode by setting I2CCTL.I2CMSTA to 1.
  264. */
  265. static void pch_i2c_start(struct i2c_algo_pch_data *adap)
  266. {
  267. void __iomem *p = adap->pch_base_address;
  268. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  269. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  270. }
  271. /**
  272. * pch_i2c_wait_for_xfer_complete() - initiates a wait for the tx complete event
  273. * @adap: Pointer to struct i2c_algo_pch_data.
  274. */
  275. static s32 pch_i2c_wait_for_xfer_complete(struct i2c_algo_pch_data *adap)
  276. {
  277. long ret;
  278. ret = wait_event_timeout(pch_event,
  279. (adap->pch_event_flag != 0), msecs_to_jiffies(50));
  280. if (ret == 0) {
  281. pch_err(adap, "timeout: %x\n", adap->pch_event_flag);
  282. return -ETIMEDOUT;
  283. }
  284. if (adap->pch_event_flag & I2C_ERROR_MASK) {
  285. pch_err(adap, "error bits set: %x\n", adap->pch_event_flag);
  286. return -EIO;
  287. }
  288. adap->pch_event_flag = 0;
  289. return 0;
  290. }
  291. /**
  292. * pch_i2c_getack() - to confirm ACK/NACK
  293. * @adap: Pointer to struct i2c_algo_pch_data.
  294. */
  295. static s32 pch_i2c_getack(struct i2c_algo_pch_data *adap)
  296. {
  297. u32 reg_val;
  298. void __iomem *p = adap->pch_base_address;
  299. reg_val = ioread32(p + PCH_I2CSR) & PCH_GETACK;
  300. if (reg_val != 0) {
  301. pch_err(adap, "return%d\n", -EPROTO);
  302. return -EPROTO;
  303. }
  304. return 0;
  305. }
  306. /**
  307. * pch_i2c_stop() - generate stop condition in normal mode.
  308. * @adap: Pointer to struct i2c_algo_pch_data.
  309. */
  310. static void pch_i2c_stop(struct i2c_algo_pch_data *adap)
  311. {
  312. void __iomem *p = adap->pch_base_address;
  313. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  314. /* clear the start bit */
  315. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  316. }
  317. /**
  318. * pch_i2c_repstart() - generate repeated start condition in normal mode
  319. * @adap: Pointer to struct i2c_algo_pch_data.
  320. */
  321. static void pch_i2c_repstart(struct i2c_algo_pch_data *adap)
  322. {
  323. void __iomem *p = adap->pch_base_address;
  324. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  325. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_REPSTART);
  326. }
  327. /**
  328. * pch_i2c_writebytes() - write data to I2C bus in normal mode
  329. * @i2c_adap: Pointer to the struct i2c_adapter.
  330. * @last: specifies whether last message or not.
  331. * In the case of compound mode it will be 1 for last message,
  332. * otherwise 0.
  333. * @first: specifies whether first message or not.
  334. * 1 for first message otherwise 0.
  335. */
  336. static s32 pch_i2c_writebytes(struct i2c_adapter *i2c_adap,
  337. struct i2c_msg *msgs, u32 last, u32 first)
  338. {
  339. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  340. u8 *buf;
  341. u32 length;
  342. u32 addr;
  343. u32 addr_2_msb;
  344. u32 addr_8_lsb;
  345. s32 wrcount;
  346. s32 rtn;
  347. void __iomem *p = adap->pch_base_address;
  348. length = msgs->len;
  349. buf = msgs->buf;
  350. addr = msgs->addr;
  351. /* enable master tx */
  352. pch_setbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  353. pch_dbg(adap, "I2CCTL = %x msgs->len = %d\n", ioread32(p + PCH_I2CCTL),
  354. length);
  355. if (first) {
  356. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  357. return -ETIME;
  358. }
  359. if (msgs->flags & I2C_M_TEN) {
  360. addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7) & 0x06;
  361. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  362. if (first)
  363. pch_i2c_start(adap);
  364. rtn = pch_i2c_wait_for_xfer_complete(adap);
  365. if (rtn == 0) {
  366. if (pch_i2c_getack(adap)) {
  367. pch_dbg(adap, "Receive NACK for slave address"
  368. "setting\n");
  369. return -EIO;
  370. }
  371. addr_8_lsb = (addr & I2C_ADDR_MSK);
  372. iowrite32(addr_8_lsb, p + PCH_I2CDR);
  373. } else if (rtn == -EIO) { /* Arbitration Lost */
  374. pch_err(adap, "Lost Arbitration\n");
  375. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  376. I2CMAL_BIT);
  377. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  378. I2CMIF_BIT);
  379. pch_i2c_init(adap);
  380. return -EAGAIN;
  381. } else { /* wait-event timeout */
  382. pch_i2c_stop(adap);
  383. return -ETIME;
  384. }
  385. } else {
  386. /* set 7 bit slave address and R/W bit as 0 */
  387. iowrite32(addr << 1, p + PCH_I2CDR);
  388. if (first)
  389. pch_i2c_start(adap);
  390. }
  391. rtn = pch_i2c_wait_for_xfer_complete(adap);
  392. if (rtn == 0) {
  393. if (pch_i2c_getack(adap)) {
  394. pch_dbg(adap, "Receive NACK for slave address"
  395. "setting\n");
  396. return -EIO;
  397. }
  398. } else if (rtn == -EIO) { /* Arbitration Lost */
  399. pch_err(adap, "Lost Arbitration\n");
  400. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMAL_BIT);
  401. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMIF_BIT);
  402. return -EAGAIN;
  403. } else { /* wait-event timeout */
  404. return -ETIME;
  405. }
  406. for (wrcount = 0; wrcount < length; ++wrcount) {
  407. /* write buffer value to I2C data register */
  408. iowrite32(buf[wrcount], p + PCH_I2CDR);
  409. pch_dbg(adap, "writing %x to Data register\n", buf[wrcount]);
  410. rtn = pch_i2c_wait_for_xfer_complete(adap);
  411. if (rtn == 0) {
  412. if (pch_i2c_getack(adap)) {
  413. pch_dbg(adap, "Receive NACK for slave address"
  414. "setting\n");
  415. return -EIO;
  416. }
  417. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  418. I2CMCF_BIT);
  419. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  420. I2CMIF_BIT);
  421. } else { /* wait-event timeout */
  422. return -ETIME;
  423. }
  424. }
  425. /* check if this is the last message */
  426. if (last)
  427. pch_i2c_stop(adap);
  428. else
  429. pch_i2c_repstart(adap);
  430. pch_dbg(adap, "return=%d\n", wrcount);
  431. return wrcount;
  432. }
  433. /**
  434. * pch_i2c_sendack() - send ACK
  435. * @adap: Pointer to struct i2c_algo_pch_data.
  436. */
  437. static void pch_i2c_sendack(struct i2c_algo_pch_data *adap)
  438. {
  439. void __iomem *p = adap->pch_base_address;
  440. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  441. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  442. }
  443. /**
  444. * pch_i2c_sendnack() - send NACK
  445. * @adap: Pointer to struct i2c_algo_pch_data.
  446. */
  447. static void pch_i2c_sendnack(struct i2c_algo_pch_data *adap)
  448. {
  449. void __iomem *p = adap->pch_base_address;
  450. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  451. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  452. }
  453. /**
  454. * pch_i2c_restart() - Generate I2C restart condition in normal mode.
  455. * @adap: Pointer to struct i2c_algo_pch_data.
  456. *
  457. * Generate I2C restart condition in normal mode by setting I2CCTL.I2CRSTA.
  458. */
  459. static void pch_i2c_restart(struct i2c_algo_pch_data *adap)
  460. {
  461. void __iomem *p = adap->pch_base_address;
  462. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  463. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_RESTART);
  464. }
  465. /**
  466. * pch_i2c_readbytes() - read data from I2C bus in normal mode.
  467. * @i2c_adap: Pointer to the struct i2c_adapter.
  468. * @msgs: Pointer to i2c_msg structure.
  469. * @last: specifies whether last message or not.
  470. * @first: specifies whether first message or not.
  471. */
  472. static s32 pch_i2c_readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs,
  473. u32 last, u32 first)
  474. {
  475. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  476. u8 *buf;
  477. u32 count;
  478. u32 length;
  479. u32 addr;
  480. u32 addr_2_msb;
  481. u32 addr_8_lsb;
  482. void __iomem *p = adap->pch_base_address;
  483. s32 rtn;
  484. length = msgs->len;
  485. buf = msgs->buf;
  486. addr = msgs->addr;
  487. /* enable master reception */
  488. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  489. if (first) {
  490. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  491. return -ETIME;
  492. }
  493. if (msgs->flags & I2C_M_TEN) {
  494. addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7);
  495. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  496. if (first)
  497. pch_i2c_start(adap);
  498. rtn = pch_i2c_wait_for_xfer_complete(adap);
  499. if (rtn == 0) {
  500. if (pch_i2c_getack(adap)) {
  501. pch_dbg(adap, "Receive NACK for slave address"
  502. "setting\n");
  503. return -EIO;
  504. }
  505. addr_8_lsb = (addr & I2C_ADDR_MSK);
  506. iowrite32(addr_8_lsb, p + PCH_I2CDR);
  507. } else if (rtn == -EIO) { /* Arbitration Lost */
  508. pch_err(adap, "Lost Arbitration\n");
  509. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  510. I2CMAL_BIT);
  511. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  512. I2CMIF_BIT);
  513. pch_i2c_init(adap);
  514. return -EAGAIN;
  515. } else { /* wait-event timeout */
  516. pch_i2c_stop(adap);
  517. return -ETIME;
  518. }
  519. pch_i2c_restart(adap);
  520. rtn = pch_i2c_wait_for_xfer_complete(adap);
  521. if (rtn == 0) {
  522. if (pch_i2c_getack(adap)) {
  523. pch_dbg(adap, "Receive NACK for slave address"
  524. "setting\n");
  525. return -EIO;
  526. }
  527. addr_2_msb |= I2C_RD;
  528. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK,
  529. p + PCH_I2CDR);
  530. } else if (rtn == -EIO) { /* Arbitration Lost */
  531. pch_err(adap, "Lost Arbitration\n");
  532. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  533. I2CMAL_BIT);
  534. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  535. I2CMIF_BIT);
  536. pch_i2c_init(adap);
  537. return -EAGAIN;
  538. } else { /* wait-event timeout */
  539. pch_i2c_stop(adap);
  540. return -ETIME;
  541. }
  542. } else {
  543. /* 7 address bits + R/W bit */
  544. addr = (((addr) << 1) | (I2C_RD));
  545. iowrite32(addr, p + PCH_I2CDR);
  546. }
  547. /* check if it is the first message */
  548. if (first)
  549. pch_i2c_start(adap);
  550. rtn = pch_i2c_wait_for_xfer_complete(adap);
  551. if (rtn == 0) {
  552. if (pch_i2c_getack(adap)) {
  553. pch_dbg(adap, "Receive NACK for slave address"
  554. "setting\n");
  555. return -EIO;
  556. }
  557. } else if (rtn == -EIO) { /* Arbitration Lost */
  558. pch_err(adap, "Lost Arbitration\n");
  559. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMAL_BIT);
  560. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMIF_BIT);
  561. return -EAGAIN;
  562. } else { /* wait-event timeout */
  563. return -ETIME;
  564. }
  565. if (length == 0) {
  566. pch_i2c_stop(adap);
  567. ioread32(p + PCH_I2CDR); /* Dummy read needs */
  568. count = length;
  569. } else {
  570. int read_index;
  571. int loop;
  572. pch_i2c_sendack(adap);
  573. /* Dummy read */
  574. for (loop = 1, read_index = 0; loop < length; loop++) {
  575. buf[read_index] = ioread32(p + PCH_I2CDR);
  576. if (loop != 1)
  577. read_index++;
  578. rtn = pch_i2c_wait_for_xfer_complete(adap);
  579. if (rtn == 0) {
  580. if (pch_i2c_getack(adap)) {
  581. pch_dbg(adap, "Receive NACK for slave"
  582. "address setting\n");
  583. return -EIO;
  584. }
  585. } else { /* wait-event timeout */
  586. pch_i2c_stop(adap);
  587. return -ETIME;
  588. }
  589. } /* end for */
  590. pch_i2c_sendnack(adap);
  591. buf[read_index] = ioread32(p + PCH_I2CDR); /* Read final - 1 */
  592. if (length != 1)
  593. read_index++;
  594. rtn = pch_i2c_wait_for_xfer_complete(adap);
  595. if (rtn == 0) {
  596. if (pch_i2c_getack(adap)) {
  597. pch_dbg(adap, "Receive NACK for slave"
  598. "address setting\n");
  599. return -EIO;
  600. }
  601. } else { /* wait-event timeout */
  602. pch_i2c_stop(adap);
  603. return -ETIME;
  604. }
  605. if (last)
  606. pch_i2c_stop(adap);
  607. else
  608. pch_i2c_repstart(adap);
  609. buf[read_index++] = ioread32(p + PCH_I2CDR); /* Read Final */
  610. count = read_index;
  611. }
  612. return count;
  613. }
  614. /**
  615. * pch_i2c_cb() - Interrupt handler Call back function
  616. * @adap: Pointer to struct i2c_algo_pch_data.
  617. */
  618. static void pch_i2c_cb(struct i2c_algo_pch_data *adap)
  619. {
  620. u32 sts;
  621. void __iomem *p = adap->pch_base_address;
  622. sts = ioread32(p + PCH_I2CSR);
  623. sts &= (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT);
  624. if (sts & I2CMAL_BIT)
  625. adap->pch_event_flag |= I2CMAL_EVENT;
  626. if (sts & I2CMCF_BIT)
  627. adap->pch_event_flag |= I2CMCF_EVENT;
  628. /* clear the applicable bits */
  629. pch_clrbit(adap->pch_base_address, PCH_I2CSR, sts);
  630. pch_dbg(adap, "PCH_I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  631. wake_up(&pch_event);
  632. }
  633. /**
  634. * pch_i2c_handler() - interrupt handler for the PCH I2C controller
  635. * @irq: irq number.
  636. * @pData: cookie passed back to the handler function.
  637. */
  638. static irqreturn_t pch_i2c_handler(int irq, void *pData)
  639. {
  640. u32 reg_val;
  641. int flag;
  642. int i;
  643. struct adapter_info *adap_info = pData;
  644. void __iomem *p;
  645. u32 mode;
  646. for (i = 0, flag = 0; i < adap_info->ch_num; i++) {
  647. p = adap_info->pch_data[i].pch_base_address;
  648. mode = ioread32(p + PCH_I2CMOD);
  649. mode &= BUFFER_MODE | EEPROM_SR_MODE;
  650. if (mode != NORMAL_MODE) {
  651. pch_err(adap_info->pch_data,
  652. "I2C-%d mode(%d) is not supported\n", mode, i);
  653. continue;
  654. }
  655. reg_val = ioread32(p + PCH_I2CSR);
  656. if (reg_val & (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT)) {
  657. pch_i2c_cb(&adap_info->pch_data[i]);
  658. flag = 1;
  659. }
  660. }
  661. return flag ? IRQ_HANDLED : IRQ_NONE;
  662. }
  663. /**
  664. * pch_i2c_xfer() - Reading adnd writing data through I2C bus
  665. * @i2c_adap: Pointer to the struct i2c_adapter.
  666. * @msgs: Pointer to i2c_msg structure.
  667. * @num: number of messages.
  668. */
  669. static s32 pch_i2c_xfer(struct i2c_adapter *i2c_adap,
  670. struct i2c_msg *msgs, s32 num)
  671. {
  672. struct i2c_msg *pmsg;
  673. u32 i = 0;
  674. u32 status;
  675. u32 msglen;
  676. u32 subaddrlen;
  677. s32 ret;
  678. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  679. ret = mutex_lock_interruptible(&pch_mutex);
  680. if (ret)
  681. return -ERESTARTSYS;
  682. if (adap->p_adapter_info->pch_i2c_suspended) {
  683. mutex_unlock(&pch_mutex);
  684. return -EBUSY;
  685. }
  686. pch_dbg(adap, "adap->p_adapter_info->pch_i2c_suspended is %d\n",
  687. adap->p_adapter_info->pch_i2c_suspended);
  688. /* transfer not completed */
  689. adap->pch_i2c_xfer_in_progress = true;
  690. for (i = 0; i < num && ret >= 0; i++) {
  691. pmsg = &msgs[i];
  692. pmsg->flags |= adap->pch_buff_mode_en;
  693. status = pmsg->flags;
  694. pch_dbg(adap,
  695. "After invoking I2C_MODE_SEL :flag= 0x%x\n", status);
  696. /* calculate sub address length and message length */
  697. /* these are applicable only for buffer mode */
  698. subaddrlen = pmsg->buf[0];
  699. /* calculate actual message length excluding
  700. * the sub address fields */
  701. msglen = (pmsg->len) - (subaddrlen + 1);
  702. if ((status & (I2C_M_RD)) != false) {
  703. ret = pch_i2c_readbytes(i2c_adap, pmsg, (i + 1 == num),
  704. (i == 0));
  705. } else {
  706. ret = pch_i2c_writebytes(i2c_adap, pmsg, (i + 1 == num),
  707. (i == 0));
  708. }
  709. }
  710. adap->pch_i2c_xfer_in_progress = false; /* transfer completed */
  711. mutex_unlock(&pch_mutex);
  712. return (ret < 0) ? ret : num;
  713. }
  714. /**
  715. * pch_i2c_func() - return the functionality of the I2C driver
  716. * @adap: Pointer to struct i2c_algo_pch_data.
  717. */
  718. static u32 pch_i2c_func(struct i2c_adapter *adap)
  719. {
  720. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
  721. }
  722. static struct i2c_algorithm pch_algorithm = {
  723. .master_xfer = pch_i2c_xfer,
  724. .functionality = pch_i2c_func
  725. };
  726. /**
  727. * pch_i2c_disbl_int() - Disable PCH I2C interrupts
  728. * @adap: Pointer to struct i2c_algo_pch_data.
  729. */
  730. static void pch_i2c_disbl_int(struct i2c_algo_pch_data *adap)
  731. {
  732. void __iomem *p = adap->pch_base_address;
  733. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, NORMAL_INTR_ENBL);
  734. iowrite32(EEPROM_RST_INTR_DISBL, p + PCH_I2CESRMSK);
  735. iowrite32(BUFFER_MODE_INTR_DISBL, p + PCH_I2CBUFMSK);
  736. }
  737. static int __devinit pch_i2c_probe(struct pci_dev *pdev,
  738. const struct pci_device_id *id)
  739. {
  740. void __iomem *base_addr;
  741. int ret;
  742. int i, j;
  743. struct adapter_info *adap_info;
  744. struct i2c_adapter *pch_adap;
  745. pch_pci_dbg(pdev, "Entered.\n");
  746. adap_info = kzalloc((sizeof(struct adapter_info)), GFP_KERNEL);
  747. if (adap_info == NULL) {
  748. pch_pci_err(pdev, "Memory allocation FAILED\n");
  749. return -ENOMEM;
  750. }
  751. ret = pci_enable_device(pdev);
  752. if (ret) {
  753. pch_pci_err(pdev, "pci_enable_device FAILED\n");
  754. goto err_pci_enable;
  755. }
  756. ret = pci_request_regions(pdev, KBUILD_MODNAME);
  757. if (ret) {
  758. pch_pci_err(pdev, "pci_request_regions FAILED\n");
  759. goto err_pci_req;
  760. }
  761. base_addr = pci_iomap(pdev, 1, 0);
  762. if (base_addr == NULL) {
  763. pch_pci_err(pdev, "pci_iomap FAILED\n");
  764. ret = -ENOMEM;
  765. goto err_pci_iomap;
  766. }
  767. /* Set the number of I2C channel instance */
  768. adap_info->ch_num = id->driver_data;
  769. for (i = 0; i < adap_info->ch_num; i++) {
  770. pch_adap = &adap_info->pch_data[i].pch_adapter;
  771. adap_info->pch_i2c_suspended = false;
  772. adap_info->pch_data[i].p_adapter_info = adap_info;
  773. pch_adap->owner = THIS_MODULE;
  774. pch_adap->class = I2C_CLASS_HWMON;
  775. strcpy(pch_adap->name, KBUILD_MODNAME);
  776. pch_adap->algo = &pch_algorithm;
  777. pch_adap->algo_data = &adap_info->pch_data[i];
  778. /* base_addr + offset; */
  779. adap_info->pch_data[i].pch_base_address = base_addr + 0x100 * i;
  780. pch_adap->dev.parent = &pdev->dev;
  781. ret = i2c_add_adapter(pch_adap);
  782. if (ret) {
  783. pch_pci_err(pdev, "i2c_add_adapter[ch:%d] FAILED\n", i);
  784. goto err_i2c_add_adapter;
  785. }
  786. pch_i2c_init(&adap_info->pch_data[i]);
  787. }
  788. ret = request_irq(pdev->irq, pch_i2c_handler, IRQF_SHARED,
  789. KBUILD_MODNAME, adap_info);
  790. if (ret) {
  791. pch_pci_err(pdev, "request_irq FAILED\n");
  792. goto err_i2c_add_adapter;
  793. }
  794. pci_set_drvdata(pdev, adap_info);
  795. pch_pci_dbg(pdev, "returns %d.\n", ret);
  796. return 0;
  797. err_i2c_add_adapter:
  798. for (j = 0; j < i; j++)
  799. i2c_del_adapter(&adap_info->pch_data[j].pch_adapter);
  800. pci_iounmap(pdev, base_addr);
  801. err_pci_iomap:
  802. pci_release_regions(pdev);
  803. err_pci_req:
  804. pci_disable_device(pdev);
  805. err_pci_enable:
  806. kfree(adap_info);
  807. return ret;
  808. }
  809. static void __devexit pch_i2c_remove(struct pci_dev *pdev)
  810. {
  811. int i;
  812. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  813. free_irq(pdev->irq, adap_info);
  814. for (i = 0; i < adap_info->ch_num; i++) {
  815. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  816. i2c_del_adapter(&adap_info->pch_data[i].pch_adapter);
  817. }
  818. if (adap_info->pch_data[0].pch_base_address)
  819. pci_iounmap(pdev, adap_info->pch_data[0].pch_base_address);
  820. for (i = 0; i < adap_info->ch_num; i++)
  821. adap_info->pch_data[i].pch_base_address = 0;
  822. pci_set_drvdata(pdev, NULL);
  823. pci_release_regions(pdev);
  824. pci_disable_device(pdev);
  825. kfree(adap_info);
  826. }
  827. #ifdef CONFIG_PM
  828. static int pch_i2c_suspend(struct pci_dev *pdev, pm_message_t state)
  829. {
  830. int ret;
  831. int i;
  832. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  833. void __iomem *p = adap_info->pch_data[0].pch_base_address;
  834. adap_info->pch_i2c_suspended = true;
  835. for (i = 0; i < adap_info->ch_num; i++) {
  836. while ((adap_info->pch_data[i].pch_i2c_xfer_in_progress)) {
  837. /* Wait until all channel transfers are completed */
  838. msleep(20);
  839. }
  840. }
  841. /* Disable the i2c interrupts */
  842. for (i = 0; i < adap_info->ch_num; i++)
  843. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  844. pch_pci_dbg(pdev, "I2CSR = %x I2CBUFSTA = %x I2CESRSTA = %x "
  845. "invoked function pch_i2c_disbl_int successfully\n",
  846. ioread32(p + PCH_I2CSR), ioread32(p + PCH_I2CBUFSTA),
  847. ioread32(p + PCH_I2CESRSTA));
  848. ret = pci_save_state(pdev);
  849. if (ret) {
  850. pch_pci_err(pdev, "pci_save_state\n");
  851. return ret;
  852. }
  853. pci_enable_wake(pdev, PCI_D3hot, 0);
  854. pci_disable_device(pdev);
  855. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  856. return 0;
  857. }
  858. static int pch_i2c_resume(struct pci_dev *pdev)
  859. {
  860. int i;
  861. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  862. pci_set_power_state(pdev, PCI_D0);
  863. pci_restore_state(pdev);
  864. if (pci_enable_device(pdev) < 0) {
  865. pch_pci_err(pdev, "pch_i2c_resume:pci_enable_device FAILED\n");
  866. return -EIO;
  867. }
  868. pci_enable_wake(pdev, PCI_D3hot, 0);
  869. for (i = 0; i < adap_info->ch_num; i++)
  870. pch_i2c_init(&adap_info->pch_data[i]);
  871. adap_info->pch_i2c_suspended = false;
  872. return 0;
  873. }
  874. #else
  875. #define pch_i2c_suspend NULL
  876. #define pch_i2c_resume NULL
  877. #endif
  878. static struct pci_driver pch_pcidriver = {
  879. .name = KBUILD_MODNAME,
  880. .id_table = pch_pcidev_id,
  881. .probe = pch_i2c_probe,
  882. .remove = __devexit_p(pch_i2c_remove),
  883. .suspend = pch_i2c_suspend,
  884. .resume = pch_i2c_resume
  885. };
  886. static int __init pch_pci_init(void)
  887. {
  888. return pci_register_driver(&pch_pcidriver);
  889. }
  890. module_init(pch_pci_init);
  891. static void __exit pch_pci_exit(void)
  892. {
  893. pci_unregister_driver(&pch_pcidriver);
  894. }
  895. module_exit(pch_pci_exit);
  896. MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7213 IOH I2C Driver");
  897. MODULE_LICENSE("GPL");
  898. MODULE_AUTHOR("Tomoya MORINAGA. <tomoya-linux@dsn.okisemi.com>");
  899. module_param(pch_i2c_speed, int, (S_IRUSR | S_IWUSR));
  900. module_param(pch_clk, int, (S_IRUSR | S_IWUSR));