af_key.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. struct sk_buff *skb;
  54. } dump;
  55. };
  56. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  57. {
  58. return (struct pfkey_sock *)sk;
  59. }
  60. static int pfkey_can_dump(struct sock *sk)
  61. {
  62. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  63. return 1;
  64. return 0;
  65. }
  66. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  67. {
  68. if (pfk->dump.dump) {
  69. if (pfk->dump.skb) {
  70. kfree_skb(pfk->dump.skb);
  71. pfk->dump.skb = NULL;
  72. }
  73. pfk->dump.done(pfk);
  74. pfk->dump.dump = NULL;
  75. pfk->dump.done = NULL;
  76. }
  77. }
  78. static void pfkey_sock_destruct(struct sock *sk)
  79. {
  80. pfkey_terminate_dump(pfkey_sk(sk));
  81. skb_queue_purge(&sk->sk_receive_queue);
  82. if (!sock_flag(sk, SOCK_DEAD)) {
  83. printk("Attempt to release alive pfkey socket: %p\n", sk);
  84. return;
  85. }
  86. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  87. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  88. atomic_dec(&pfkey_socks_nr);
  89. }
  90. static void pfkey_table_grab(void)
  91. {
  92. write_lock_bh(&pfkey_table_lock);
  93. if (atomic_read(&pfkey_table_users)) {
  94. DECLARE_WAITQUEUE(wait, current);
  95. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  96. for(;;) {
  97. set_current_state(TASK_UNINTERRUPTIBLE);
  98. if (atomic_read(&pfkey_table_users) == 0)
  99. break;
  100. write_unlock_bh(&pfkey_table_lock);
  101. schedule();
  102. write_lock_bh(&pfkey_table_lock);
  103. }
  104. __set_current_state(TASK_RUNNING);
  105. remove_wait_queue(&pfkey_table_wait, &wait);
  106. }
  107. }
  108. static __inline__ void pfkey_table_ungrab(void)
  109. {
  110. write_unlock_bh(&pfkey_table_lock);
  111. wake_up(&pfkey_table_wait);
  112. }
  113. static __inline__ void pfkey_lock_table(void)
  114. {
  115. /* read_lock() synchronizes us to pfkey_table_grab */
  116. read_lock(&pfkey_table_lock);
  117. atomic_inc(&pfkey_table_users);
  118. read_unlock(&pfkey_table_lock);
  119. }
  120. static __inline__ void pfkey_unlock_table(void)
  121. {
  122. if (atomic_dec_and_test(&pfkey_table_users))
  123. wake_up(&pfkey_table_wait);
  124. }
  125. static const struct proto_ops pfkey_ops;
  126. static void pfkey_insert(struct sock *sk)
  127. {
  128. pfkey_table_grab();
  129. sk_add_node(sk, &pfkey_table);
  130. pfkey_table_ungrab();
  131. }
  132. static void pfkey_remove(struct sock *sk)
  133. {
  134. pfkey_table_grab();
  135. sk_del_node_init(sk);
  136. pfkey_table_ungrab();
  137. }
  138. static struct proto key_proto = {
  139. .name = "KEY",
  140. .owner = THIS_MODULE,
  141. .obj_size = sizeof(struct pfkey_sock),
  142. };
  143. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  144. {
  145. struct sock *sk;
  146. int err;
  147. if (net != &init_net)
  148. return -EAFNOSUPPORT;
  149. if (!capable(CAP_NET_ADMIN))
  150. return -EPERM;
  151. if (sock->type != SOCK_RAW)
  152. return -ESOCKTNOSUPPORT;
  153. if (protocol != PF_KEY_V2)
  154. return -EPROTONOSUPPORT;
  155. err = -ENOMEM;
  156. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  157. if (sk == NULL)
  158. goto out;
  159. sock->ops = &pfkey_ops;
  160. sock_init_data(sock, sk);
  161. sk->sk_family = PF_KEY;
  162. sk->sk_destruct = pfkey_sock_destruct;
  163. atomic_inc(&pfkey_socks_nr);
  164. pfkey_insert(sk);
  165. return 0;
  166. out:
  167. return err;
  168. }
  169. static int pfkey_release(struct socket *sock)
  170. {
  171. struct sock *sk = sock->sk;
  172. if (!sk)
  173. return 0;
  174. pfkey_remove(sk);
  175. sock_orphan(sk);
  176. sock->sk = NULL;
  177. skb_queue_purge(&sk->sk_write_queue);
  178. sock_put(sk);
  179. return 0;
  180. }
  181. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  182. gfp_t allocation, struct sock *sk)
  183. {
  184. int err = -ENOBUFS;
  185. sock_hold(sk);
  186. if (*skb2 == NULL) {
  187. if (atomic_read(&skb->users) != 1) {
  188. *skb2 = skb_clone(skb, allocation);
  189. } else {
  190. *skb2 = skb;
  191. atomic_inc(&skb->users);
  192. }
  193. }
  194. if (*skb2 != NULL) {
  195. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  196. skb_orphan(*skb2);
  197. skb_set_owner_r(*skb2, sk);
  198. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  199. sk->sk_data_ready(sk, (*skb2)->len);
  200. *skb2 = NULL;
  201. err = 0;
  202. }
  203. }
  204. sock_put(sk);
  205. return err;
  206. }
  207. /* Send SKB to all pfkey sockets matching selected criteria. */
  208. #define BROADCAST_ALL 0
  209. #define BROADCAST_ONE 1
  210. #define BROADCAST_REGISTERED 2
  211. #define BROADCAST_PROMISC_ONLY 4
  212. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  213. int broadcast_flags, struct sock *one_sk)
  214. {
  215. struct sock *sk;
  216. struct hlist_node *node;
  217. struct sk_buff *skb2 = NULL;
  218. int err = -ESRCH;
  219. /* XXX Do we need something like netlink_overrun? I think
  220. * XXX PF_KEY socket apps will not mind current behavior.
  221. */
  222. if (!skb)
  223. return -ENOMEM;
  224. pfkey_lock_table();
  225. sk_for_each(sk, node, &pfkey_table) {
  226. struct pfkey_sock *pfk = pfkey_sk(sk);
  227. int err2;
  228. /* Yes, it means that if you are meant to receive this
  229. * pfkey message you receive it twice as promiscuous
  230. * socket.
  231. */
  232. if (pfk->promisc)
  233. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  234. /* the exact target will be processed later */
  235. if (sk == one_sk)
  236. continue;
  237. if (broadcast_flags != BROADCAST_ALL) {
  238. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  239. continue;
  240. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  241. !pfk->registered)
  242. continue;
  243. if (broadcast_flags & BROADCAST_ONE)
  244. continue;
  245. }
  246. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  247. /* Error is cleare after succecful sending to at least one
  248. * registered KM */
  249. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  250. err = err2;
  251. }
  252. pfkey_unlock_table();
  253. if (one_sk != NULL)
  254. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  255. if (skb2)
  256. kfree_skb(skb2);
  257. kfree_skb(skb);
  258. return err;
  259. }
  260. static int pfkey_do_dump(struct pfkey_sock *pfk)
  261. {
  262. struct sadb_msg *hdr;
  263. int rc;
  264. rc = pfk->dump.dump(pfk);
  265. if (rc == -ENOBUFS)
  266. return 0;
  267. if (pfk->dump.skb) {
  268. if (!pfkey_can_dump(&pfk->sk))
  269. return 0;
  270. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  271. hdr->sadb_msg_seq = 0;
  272. hdr->sadb_msg_errno = rc;
  273. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  274. &pfk->sk);
  275. pfk->dump.skb = NULL;
  276. }
  277. pfkey_terminate_dump(pfk);
  278. return rc;
  279. }
  280. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  281. {
  282. *new = *orig;
  283. }
  284. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  285. {
  286. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  287. struct sadb_msg *hdr;
  288. if (!skb)
  289. return -ENOBUFS;
  290. /* Woe be to the platform trying to support PFKEY yet
  291. * having normal errnos outside the 1-255 range, inclusive.
  292. */
  293. err = -err;
  294. if (err == ERESTARTSYS ||
  295. err == ERESTARTNOHAND ||
  296. err == ERESTARTNOINTR)
  297. err = EINTR;
  298. if (err >= 512)
  299. err = EINVAL;
  300. BUG_ON(err <= 0 || err >= 256);
  301. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  302. pfkey_hdr_dup(hdr, orig);
  303. hdr->sadb_msg_errno = (uint8_t) err;
  304. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  305. sizeof(uint64_t));
  306. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  307. return 0;
  308. }
  309. static u8 sadb_ext_min_len[] = {
  310. [SADB_EXT_RESERVED] = (u8) 0,
  311. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  312. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  313. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  314. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  315. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  316. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  317. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  318. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  319. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  320. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  321. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  322. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  323. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  324. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  325. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  326. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  327. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  328. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  329. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  330. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  331. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  332. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  333. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  334. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  335. };
  336. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  337. static int verify_address_len(void *p)
  338. {
  339. struct sadb_address *sp = p;
  340. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  341. struct sockaddr_in *sin;
  342. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  343. struct sockaddr_in6 *sin6;
  344. #endif
  345. int len;
  346. switch (addr->sa_family) {
  347. case AF_INET:
  348. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  349. if (sp->sadb_address_len != len ||
  350. sp->sadb_address_prefixlen > 32)
  351. return -EINVAL;
  352. break;
  353. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  354. case AF_INET6:
  355. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  356. if (sp->sadb_address_len != len ||
  357. sp->sadb_address_prefixlen > 128)
  358. return -EINVAL;
  359. break;
  360. #endif
  361. default:
  362. /* It is user using kernel to keep track of security
  363. * associations for another protocol, such as
  364. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  365. * lengths.
  366. *
  367. * XXX Actually, association/policy database is not yet
  368. * XXX able to cope with arbitrary sockaddr families.
  369. * XXX When it can, remove this -EINVAL. -DaveM
  370. */
  371. return -EINVAL;
  372. break;
  373. }
  374. return 0;
  375. }
  376. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  377. {
  378. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  379. sec_ctx->sadb_x_ctx_len,
  380. sizeof(uint64_t));
  381. }
  382. static inline int verify_sec_ctx_len(void *p)
  383. {
  384. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  385. int len = sec_ctx->sadb_x_ctx_len;
  386. if (len > PAGE_SIZE)
  387. return -EINVAL;
  388. len = pfkey_sec_ctx_len(sec_ctx);
  389. if (sec_ctx->sadb_x_sec_len != len)
  390. return -EINVAL;
  391. return 0;
  392. }
  393. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  394. {
  395. struct xfrm_user_sec_ctx *uctx = NULL;
  396. int ctx_size = sec_ctx->sadb_x_ctx_len;
  397. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  398. if (!uctx)
  399. return NULL;
  400. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  401. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  402. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  403. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  404. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  405. memcpy(uctx + 1, sec_ctx + 1,
  406. uctx->ctx_len);
  407. return uctx;
  408. }
  409. static int present_and_same_family(struct sadb_address *src,
  410. struct sadb_address *dst)
  411. {
  412. struct sockaddr *s_addr, *d_addr;
  413. if (!src || !dst)
  414. return 0;
  415. s_addr = (struct sockaddr *)(src + 1);
  416. d_addr = (struct sockaddr *)(dst + 1);
  417. if (s_addr->sa_family != d_addr->sa_family)
  418. return 0;
  419. if (s_addr->sa_family != AF_INET
  420. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  421. && s_addr->sa_family != AF_INET6
  422. #endif
  423. )
  424. return 0;
  425. return 1;
  426. }
  427. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  428. {
  429. char *p = (char *) hdr;
  430. int len = skb->len;
  431. len -= sizeof(*hdr);
  432. p += sizeof(*hdr);
  433. while (len > 0) {
  434. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  435. uint16_t ext_type;
  436. int ext_len;
  437. ext_len = ehdr->sadb_ext_len;
  438. ext_len *= sizeof(uint64_t);
  439. ext_type = ehdr->sadb_ext_type;
  440. if (ext_len < sizeof(uint64_t) ||
  441. ext_len > len ||
  442. ext_type == SADB_EXT_RESERVED)
  443. return -EINVAL;
  444. if (ext_type <= SADB_EXT_MAX) {
  445. int min = (int) sadb_ext_min_len[ext_type];
  446. if (ext_len < min)
  447. return -EINVAL;
  448. if (ext_hdrs[ext_type-1] != NULL)
  449. return -EINVAL;
  450. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  451. ext_type == SADB_EXT_ADDRESS_DST ||
  452. ext_type == SADB_EXT_ADDRESS_PROXY ||
  453. ext_type == SADB_X_EXT_NAT_T_OA) {
  454. if (verify_address_len(p))
  455. return -EINVAL;
  456. }
  457. if (ext_type == SADB_X_EXT_SEC_CTX) {
  458. if (verify_sec_ctx_len(p))
  459. return -EINVAL;
  460. }
  461. ext_hdrs[ext_type-1] = p;
  462. }
  463. p += ext_len;
  464. len -= ext_len;
  465. }
  466. return 0;
  467. }
  468. static uint16_t
  469. pfkey_satype2proto(uint8_t satype)
  470. {
  471. switch (satype) {
  472. case SADB_SATYPE_UNSPEC:
  473. return IPSEC_PROTO_ANY;
  474. case SADB_SATYPE_AH:
  475. return IPPROTO_AH;
  476. case SADB_SATYPE_ESP:
  477. return IPPROTO_ESP;
  478. case SADB_X_SATYPE_IPCOMP:
  479. return IPPROTO_COMP;
  480. break;
  481. default:
  482. return 0;
  483. }
  484. /* NOTREACHED */
  485. }
  486. static uint8_t
  487. pfkey_proto2satype(uint16_t proto)
  488. {
  489. switch (proto) {
  490. case IPPROTO_AH:
  491. return SADB_SATYPE_AH;
  492. case IPPROTO_ESP:
  493. return SADB_SATYPE_ESP;
  494. case IPPROTO_COMP:
  495. return SADB_X_SATYPE_IPCOMP;
  496. break;
  497. default:
  498. return 0;
  499. }
  500. /* NOTREACHED */
  501. }
  502. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  503. * say specifically 'just raw sockets' as we encode them as 255.
  504. */
  505. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  506. {
  507. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  508. }
  509. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  510. {
  511. return (proto ? proto : IPSEC_PROTO_ANY);
  512. }
  513. static inline int pfkey_sockaddr_len(sa_family_t family)
  514. {
  515. switch (family) {
  516. case AF_INET:
  517. return sizeof(struct sockaddr_in);
  518. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  519. case AF_INET6:
  520. return sizeof(struct sockaddr_in6);
  521. #endif
  522. }
  523. return 0;
  524. }
  525. static
  526. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  527. {
  528. switch (sa->sa_family) {
  529. case AF_INET:
  530. xaddr->a4 =
  531. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  532. return AF_INET;
  533. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  534. case AF_INET6:
  535. memcpy(xaddr->a6,
  536. &((struct sockaddr_in6 *)sa)->sin6_addr,
  537. sizeof(struct in6_addr));
  538. return AF_INET6;
  539. #endif
  540. }
  541. return 0;
  542. }
  543. static
  544. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  545. {
  546. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  547. xaddr);
  548. }
  549. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  550. {
  551. struct sadb_sa *sa;
  552. struct sadb_address *addr;
  553. uint16_t proto;
  554. unsigned short family;
  555. xfrm_address_t *xaddr;
  556. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  557. if (sa == NULL)
  558. return NULL;
  559. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  560. if (proto == 0)
  561. return NULL;
  562. /* sadb_address_len should be checked by caller */
  563. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  564. if (addr == NULL)
  565. return NULL;
  566. family = ((struct sockaddr *)(addr + 1))->sa_family;
  567. switch (family) {
  568. case AF_INET:
  569. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  570. break;
  571. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  572. case AF_INET6:
  573. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  574. break;
  575. #endif
  576. default:
  577. xaddr = NULL;
  578. }
  579. if (!xaddr)
  580. return NULL;
  581. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  582. }
  583. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  584. static int
  585. pfkey_sockaddr_size(sa_family_t family)
  586. {
  587. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  588. }
  589. static inline int pfkey_mode_from_xfrm(int mode)
  590. {
  591. switch(mode) {
  592. case XFRM_MODE_TRANSPORT:
  593. return IPSEC_MODE_TRANSPORT;
  594. case XFRM_MODE_TUNNEL:
  595. return IPSEC_MODE_TUNNEL;
  596. case XFRM_MODE_BEET:
  597. return IPSEC_MODE_BEET;
  598. default:
  599. return -1;
  600. }
  601. }
  602. static inline int pfkey_mode_to_xfrm(int mode)
  603. {
  604. switch(mode) {
  605. case IPSEC_MODE_ANY: /*XXX*/
  606. case IPSEC_MODE_TRANSPORT:
  607. return XFRM_MODE_TRANSPORT;
  608. case IPSEC_MODE_TUNNEL:
  609. return XFRM_MODE_TUNNEL;
  610. case IPSEC_MODE_BEET:
  611. return XFRM_MODE_BEET;
  612. default:
  613. return -1;
  614. }
  615. }
  616. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  617. struct sockaddr *sa,
  618. unsigned short family)
  619. {
  620. switch (family) {
  621. case AF_INET:
  622. {
  623. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  624. sin->sin_family = AF_INET;
  625. sin->sin_port = port;
  626. sin->sin_addr.s_addr = xaddr->a4;
  627. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  628. return 32;
  629. }
  630. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  631. case AF_INET6:
  632. {
  633. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  634. sin6->sin6_family = AF_INET6;
  635. sin6->sin6_port = port;
  636. sin6->sin6_flowinfo = 0;
  637. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  638. sin6->sin6_scope_id = 0;
  639. return 128;
  640. }
  641. #endif
  642. }
  643. return 0;
  644. }
  645. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  646. int add_keys, int hsc)
  647. {
  648. struct sk_buff *skb;
  649. struct sadb_msg *hdr;
  650. struct sadb_sa *sa;
  651. struct sadb_lifetime *lifetime;
  652. struct sadb_address *addr;
  653. struct sadb_key *key;
  654. struct sadb_x_sa2 *sa2;
  655. struct sadb_x_sec_ctx *sec_ctx;
  656. struct xfrm_sec_ctx *xfrm_ctx;
  657. int ctx_size = 0;
  658. int size;
  659. int auth_key_size = 0;
  660. int encrypt_key_size = 0;
  661. int sockaddr_size;
  662. struct xfrm_encap_tmpl *natt = NULL;
  663. int mode;
  664. /* address family check */
  665. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  666. if (!sockaddr_size)
  667. return ERR_PTR(-EINVAL);
  668. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  669. key(AE), (identity(SD),) (sensitivity)> */
  670. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  671. sizeof(struct sadb_lifetime) +
  672. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  673. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  674. sizeof(struct sadb_address)*2 +
  675. sockaddr_size*2 +
  676. sizeof(struct sadb_x_sa2);
  677. if ((xfrm_ctx = x->security)) {
  678. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  679. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  680. }
  681. /* identity & sensitivity */
  682. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  683. size += sizeof(struct sadb_address) + sockaddr_size;
  684. if (add_keys) {
  685. if (x->aalg && x->aalg->alg_key_len) {
  686. auth_key_size =
  687. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  688. size += sizeof(struct sadb_key) + auth_key_size;
  689. }
  690. if (x->ealg && x->ealg->alg_key_len) {
  691. encrypt_key_size =
  692. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  693. size += sizeof(struct sadb_key) + encrypt_key_size;
  694. }
  695. }
  696. if (x->encap)
  697. natt = x->encap;
  698. if (natt && natt->encap_type) {
  699. size += sizeof(struct sadb_x_nat_t_type);
  700. size += sizeof(struct sadb_x_nat_t_port);
  701. size += sizeof(struct sadb_x_nat_t_port);
  702. }
  703. skb = alloc_skb(size + 16, GFP_ATOMIC);
  704. if (skb == NULL)
  705. return ERR_PTR(-ENOBUFS);
  706. /* call should fill header later */
  707. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  708. memset(hdr, 0, size); /* XXX do we need this ? */
  709. hdr->sadb_msg_len = size / sizeof(uint64_t);
  710. /* sa */
  711. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  712. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  713. sa->sadb_sa_exttype = SADB_EXT_SA;
  714. sa->sadb_sa_spi = x->id.spi;
  715. sa->sadb_sa_replay = x->props.replay_window;
  716. switch (x->km.state) {
  717. case XFRM_STATE_VALID:
  718. sa->sadb_sa_state = x->km.dying ?
  719. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  720. break;
  721. case XFRM_STATE_ACQ:
  722. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  723. break;
  724. default:
  725. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  726. break;
  727. }
  728. sa->sadb_sa_auth = 0;
  729. if (x->aalg) {
  730. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  731. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  732. }
  733. sa->sadb_sa_encrypt = 0;
  734. BUG_ON(x->ealg && x->calg);
  735. if (x->ealg) {
  736. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  737. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  738. }
  739. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  740. if (x->calg) {
  741. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  742. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  743. }
  744. sa->sadb_sa_flags = 0;
  745. if (x->props.flags & XFRM_STATE_NOECN)
  746. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  747. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  748. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  749. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  750. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  751. /* hard time */
  752. if (hsc & 2) {
  753. lifetime = (struct sadb_lifetime *) skb_put(skb,
  754. sizeof(struct sadb_lifetime));
  755. lifetime->sadb_lifetime_len =
  756. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  757. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  758. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  759. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  760. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  761. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  762. }
  763. /* soft time */
  764. if (hsc & 1) {
  765. lifetime = (struct sadb_lifetime *) skb_put(skb,
  766. sizeof(struct sadb_lifetime));
  767. lifetime->sadb_lifetime_len =
  768. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  769. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  770. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  771. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  772. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  773. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  774. }
  775. /* current time */
  776. lifetime = (struct sadb_lifetime *) skb_put(skb,
  777. sizeof(struct sadb_lifetime));
  778. lifetime->sadb_lifetime_len =
  779. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  780. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  781. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  782. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  783. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  784. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  785. /* src address */
  786. addr = (struct sadb_address*) skb_put(skb,
  787. sizeof(struct sadb_address)+sockaddr_size);
  788. addr->sadb_address_len =
  789. (sizeof(struct sadb_address)+sockaddr_size)/
  790. sizeof(uint64_t);
  791. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  792. /* "if the ports are non-zero, then the sadb_address_proto field,
  793. normally zero, MUST be filled in with the transport
  794. protocol's number." - RFC2367 */
  795. addr->sadb_address_proto = 0;
  796. addr->sadb_address_reserved = 0;
  797. addr->sadb_address_prefixlen =
  798. pfkey_sockaddr_fill(&x->props.saddr, 0,
  799. (struct sockaddr *) (addr + 1),
  800. x->props.family);
  801. if (!addr->sadb_address_prefixlen)
  802. BUG();
  803. /* dst address */
  804. addr = (struct sadb_address*) skb_put(skb,
  805. sizeof(struct sadb_address)+sockaddr_size);
  806. addr->sadb_address_len =
  807. (sizeof(struct sadb_address)+sockaddr_size)/
  808. sizeof(uint64_t);
  809. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  810. addr->sadb_address_proto = 0;
  811. addr->sadb_address_reserved = 0;
  812. addr->sadb_address_prefixlen =
  813. pfkey_sockaddr_fill(&x->id.daddr, 0,
  814. (struct sockaddr *) (addr + 1),
  815. x->props.family);
  816. if (!addr->sadb_address_prefixlen)
  817. BUG();
  818. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  819. x->props.family)) {
  820. addr = (struct sadb_address*) skb_put(skb,
  821. sizeof(struct sadb_address)+sockaddr_size);
  822. addr->sadb_address_len =
  823. (sizeof(struct sadb_address)+sockaddr_size)/
  824. sizeof(uint64_t);
  825. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  826. addr->sadb_address_proto =
  827. pfkey_proto_from_xfrm(x->sel.proto);
  828. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  829. addr->sadb_address_reserved = 0;
  830. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  831. (struct sockaddr *) (addr + 1),
  832. x->props.family);
  833. }
  834. /* auth key */
  835. if (add_keys && auth_key_size) {
  836. key = (struct sadb_key *) skb_put(skb,
  837. sizeof(struct sadb_key)+auth_key_size);
  838. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  839. sizeof(uint64_t);
  840. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  841. key->sadb_key_bits = x->aalg->alg_key_len;
  842. key->sadb_key_reserved = 0;
  843. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  844. }
  845. /* encrypt key */
  846. if (add_keys && encrypt_key_size) {
  847. key = (struct sadb_key *) skb_put(skb,
  848. sizeof(struct sadb_key)+encrypt_key_size);
  849. key->sadb_key_len = (sizeof(struct sadb_key) +
  850. encrypt_key_size) / sizeof(uint64_t);
  851. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  852. key->sadb_key_bits = x->ealg->alg_key_len;
  853. key->sadb_key_reserved = 0;
  854. memcpy(key + 1, x->ealg->alg_key,
  855. (x->ealg->alg_key_len+7)/8);
  856. }
  857. /* sa */
  858. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  859. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  860. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  861. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  862. kfree_skb(skb);
  863. return ERR_PTR(-EINVAL);
  864. }
  865. sa2->sadb_x_sa2_mode = mode;
  866. sa2->sadb_x_sa2_reserved1 = 0;
  867. sa2->sadb_x_sa2_reserved2 = 0;
  868. sa2->sadb_x_sa2_sequence = 0;
  869. sa2->sadb_x_sa2_reqid = x->props.reqid;
  870. if (natt && natt->encap_type) {
  871. struct sadb_x_nat_t_type *n_type;
  872. struct sadb_x_nat_t_port *n_port;
  873. /* type */
  874. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  875. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  876. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  877. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  878. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  879. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  880. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  881. /* source port */
  882. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  883. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  884. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  885. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  886. n_port->sadb_x_nat_t_port_reserved = 0;
  887. /* dest port */
  888. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  889. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  890. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  891. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  892. n_port->sadb_x_nat_t_port_reserved = 0;
  893. }
  894. /* security context */
  895. if (xfrm_ctx) {
  896. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  897. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  898. sec_ctx->sadb_x_sec_len =
  899. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  900. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  901. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  902. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  903. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  904. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  905. xfrm_ctx->ctx_len);
  906. }
  907. return skb;
  908. }
  909. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  910. {
  911. struct sk_buff *skb;
  912. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  913. return skb;
  914. }
  915. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  916. int hsc)
  917. {
  918. return __pfkey_xfrm_state2msg(x, 0, hsc);
  919. }
  920. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  921. void **ext_hdrs)
  922. {
  923. struct xfrm_state *x;
  924. struct sadb_lifetime *lifetime;
  925. struct sadb_sa *sa;
  926. struct sadb_key *key;
  927. struct sadb_x_sec_ctx *sec_ctx;
  928. uint16_t proto;
  929. int err;
  930. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  931. if (!sa ||
  932. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  933. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  934. return ERR_PTR(-EINVAL);
  935. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  936. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  937. return ERR_PTR(-EINVAL);
  938. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  939. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  940. return ERR_PTR(-EINVAL);
  941. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  942. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  943. return ERR_PTR(-EINVAL);
  944. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  945. if (proto == 0)
  946. return ERR_PTR(-EINVAL);
  947. /* default error is no buffer space */
  948. err = -ENOBUFS;
  949. /* RFC2367:
  950. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  951. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  952. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  953. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  954. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  955. not true.
  956. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  957. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  958. */
  959. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  960. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  961. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  962. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  963. return ERR_PTR(-EINVAL);
  964. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  965. if (key != NULL &&
  966. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  967. ((key->sadb_key_bits+7) / 8 == 0 ||
  968. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  969. return ERR_PTR(-EINVAL);
  970. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  971. if (key != NULL &&
  972. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  973. ((key->sadb_key_bits+7) / 8 == 0 ||
  974. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  975. return ERR_PTR(-EINVAL);
  976. x = xfrm_state_alloc();
  977. if (x == NULL)
  978. return ERR_PTR(-ENOBUFS);
  979. x->id.proto = proto;
  980. x->id.spi = sa->sadb_sa_spi;
  981. x->props.replay_window = sa->sadb_sa_replay;
  982. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  983. x->props.flags |= XFRM_STATE_NOECN;
  984. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  985. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  986. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  987. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  988. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  989. if (lifetime != NULL) {
  990. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  991. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  992. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  993. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  994. }
  995. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  996. if (lifetime != NULL) {
  997. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  998. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  999. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1000. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1001. }
  1002. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1003. if (sec_ctx != NULL) {
  1004. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1005. if (!uctx)
  1006. goto out;
  1007. err = security_xfrm_state_alloc(x, uctx);
  1008. kfree(uctx);
  1009. if (err)
  1010. goto out;
  1011. }
  1012. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1013. if (sa->sadb_sa_auth) {
  1014. int keysize = 0;
  1015. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1016. if (!a) {
  1017. err = -ENOSYS;
  1018. goto out;
  1019. }
  1020. if (key)
  1021. keysize = (key->sadb_key_bits + 7) / 8;
  1022. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1023. if (!x->aalg)
  1024. goto out;
  1025. strcpy(x->aalg->alg_name, a->name);
  1026. x->aalg->alg_key_len = 0;
  1027. if (key) {
  1028. x->aalg->alg_key_len = key->sadb_key_bits;
  1029. memcpy(x->aalg->alg_key, key+1, keysize);
  1030. }
  1031. x->props.aalgo = sa->sadb_sa_auth;
  1032. /* x->algo.flags = sa->sadb_sa_flags; */
  1033. }
  1034. if (sa->sadb_sa_encrypt) {
  1035. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1036. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1037. if (!a) {
  1038. err = -ENOSYS;
  1039. goto out;
  1040. }
  1041. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1042. if (!x->calg)
  1043. goto out;
  1044. strcpy(x->calg->alg_name, a->name);
  1045. x->props.calgo = sa->sadb_sa_encrypt;
  1046. } else {
  1047. int keysize = 0;
  1048. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1049. if (!a) {
  1050. err = -ENOSYS;
  1051. goto out;
  1052. }
  1053. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1054. if (key)
  1055. keysize = (key->sadb_key_bits + 7) / 8;
  1056. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1057. if (!x->ealg)
  1058. goto out;
  1059. strcpy(x->ealg->alg_name, a->name);
  1060. x->ealg->alg_key_len = 0;
  1061. if (key) {
  1062. x->ealg->alg_key_len = key->sadb_key_bits;
  1063. memcpy(x->ealg->alg_key, key+1, keysize);
  1064. }
  1065. x->props.ealgo = sa->sadb_sa_encrypt;
  1066. }
  1067. }
  1068. /* x->algo.flags = sa->sadb_sa_flags; */
  1069. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1070. &x->props.saddr);
  1071. if (!x->props.family) {
  1072. err = -EAFNOSUPPORT;
  1073. goto out;
  1074. }
  1075. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1076. &x->id.daddr);
  1077. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1078. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1079. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1080. if (mode < 0) {
  1081. err = -EINVAL;
  1082. goto out;
  1083. }
  1084. x->props.mode = mode;
  1085. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1086. }
  1087. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1088. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1089. /* Nobody uses this, but we try. */
  1090. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1091. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1092. }
  1093. if (!x->sel.family)
  1094. x->sel.family = x->props.family;
  1095. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1096. struct sadb_x_nat_t_type* n_type;
  1097. struct xfrm_encap_tmpl *natt;
  1098. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1099. if (!x->encap)
  1100. goto out;
  1101. natt = x->encap;
  1102. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1103. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1104. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1105. struct sadb_x_nat_t_port* n_port =
  1106. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1107. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1108. }
  1109. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1110. struct sadb_x_nat_t_port* n_port =
  1111. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1112. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1113. }
  1114. }
  1115. err = xfrm_init_state(x);
  1116. if (err)
  1117. goto out;
  1118. x->km.seq = hdr->sadb_msg_seq;
  1119. return x;
  1120. out:
  1121. x->km.state = XFRM_STATE_DEAD;
  1122. xfrm_state_put(x);
  1123. return ERR_PTR(err);
  1124. }
  1125. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1126. {
  1127. return -EOPNOTSUPP;
  1128. }
  1129. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1130. {
  1131. struct sk_buff *resp_skb;
  1132. struct sadb_x_sa2 *sa2;
  1133. struct sadb_address *saddr, *daddr;
  1134. struct sadb_msg *out_hdr;
  1135. struct sadb_spirange *range;
  1136. struct xfrm_state *x = NULL;
  1137. int mode;
  1138. int err;
  1139. u32 min_spi, max_spi;
  1140. u32 reqid;
  1141. u8 proto;
  1142. unsigned short family;
  1143. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1144. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1145. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1146. return -EINVAL;
  1147. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1148. if (proto == 0)
  1149. return -EINVAL;
  1150. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1151. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1152. if (mode < 0)
  1153. return -EINVAL;
  1154. reqid = sa2->sadb_x_sa2_reqid;
  1155. } else {
  1156. mode = 0;
  1157. reqid = 0;
  1158. }
  1159. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1160. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1161. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1162. switch (family) {
  1163. case AF_INET:
  1164. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1165. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1166. break;
  1167. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1168. case AF_INET6:
  1169. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1170. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1171. break;
  1172. #endif
  1173. }
  1174. if (hdr->sadb_msg_seq) {
  1175. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1176. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1177. xfrm_state_put(x);
  1178. x = NULL;
  1179. }
  1180. }
  1181. if (!x)
  1182. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1183. if (x == NULL)
  1184. return -ENOENT;
  1185. min_spi = 0x100;
  1186. max_spi = 0x0fffffff;
  1187. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1188. if (range) {
  1189. min_spi = range->sadb_spirange_min;
  1190. max_spi = range->sadb_spirange_max;
  1191. }
  1192. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1193. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1194. if (IS_ERR(resp_skb)) {
  1195. xfrm_state_put(x);
  1196. return PTR_ERR(resp_skb);
  1197. }
  1198. out_hdr = (struct sadb_msg *) resp_skb->data;
  1199. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1200. out_hdr->sadb_msg_type = SADB_GETSPI;
  1201. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1202. out_hdr->sadb_msg_errno = 0;
  1203. out_hdr->sadb_msg_reserved = 0;
  1204. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1205. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1206. xfrm_state_put(x);
  1207. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1208. return 0;
  1209. }
  1210. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1211. {
  1212. struct xfrm_state *x;
  1213. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1214. return -EOPNOTSUPP;
  1215. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1216. return 0;
  1217. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1218. if (x == NULL)
  1219. return 0;
  1220. spin_lock_bh(&x->lock);
  1221. if (x->km.state == XFRM_STATE_ACQ) {
  1222. x->km.state = XFRM_STATE_ERROR;
  1223. wake_up(&km_waitq);
  1224. }
  1225. spin_unlock_bh(&x->lock);
  1226. xfrm_state_put(x);
  1227. return 0;
  1228. }
  1229. static inline int event2poltype(int event)
  1230. {
  1231. switch (event) {
  1232. case XFRM_MSG_DELPOLICY:
  1233. return SADB_X_SPDDELETE;
  1234. case XFRM_MSG_NEWPOLICY:
  1235. return SADB_X_SPDADD;
  1236. case XFRM_MSG_UPDPOLICY:
  1237. return SADB_X_SPDUPDATE;
  1238. case XFRM_MSG_POLEXPIRE:
  1239. // return SADB_X_SPDEXPIRE;
  1240. default:
  1241. printk("pfkey: Unknown policy event %d\n", event);
  1242. break;
  1243. }
  1244. return 0;
  1245. }
  1246. static inline int event2keytype(int event)
  1247. {
  1248. switch (event) {
  1249. case XFRM_MSG_DELSA:
  1250. return SADB_DELETE;
  1251. case XFRM_MSG_NEWSA:
  1252. return SADB_ADD;
  1253. case XFRM_MSG_UPDSA:
  1254. return SADB_UPDATE;
  1255. case XFRM_MSG_EXPIRE:
  1256. return SADB_EXPIRE;
  1257. default:
  1258. printk("pfkey: Unknown SA event %d\n", event);
  1259. break;
  1260. }
  1261. return 0;
  1262. }
  1263. /* ADD/UPD/DEL */
  1264. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1265. {
  1266. struct sk_buff *skb;
  1267. struct sadb_msg *hdr;
  1268. skb = pfkey_xfrm_state2msg(x);
  1269. if (IS_ERR(skb))
  1270. return PTR_ERR(skb);
  1271. hdr = (struct sadb_msg *) skb->data;
  1272. hdr->sadb_msg_version = PF_KEY_V2;
  1273. hdr->sadb_msg_type = event2keytype(c->event);
  1274. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1275. hdr->sadb_msg_errno = 0;
  1276. hdr->sadb_msg_reserved = 0;
  1277. hdr->sadb_msg_seq = c->seq;
  1278. hdr->sadb_msg_pid = c->pid;
  1279. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1280. return 0;
  1281. }
  1282. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1283. {
  1284. struct xfrm_state *x;
  1285. int err;
  1286. struct km_event c;
  1287. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1288. if (IS_ERR(x))
  1289. return PTR_ERR(x);
  1290. xfrm_state_hold(x);
  1291. if (hdr->sadb_msg_type == SADB_ADD)
  1292. err = xfrm_state_add(x);
  1293. else
  1294. err = xfrm_state_update(x);
  1295. xfrm_audit_state_add(x, err ? 0 : 1,
  1296. audit_get_loginuid(current),
  1297. audit_get_sessionid(current), 0);
  1298. if (err < 0) {
  1299. x->km.state = XFRM_STATE_DEAD;
  1300. __xfrm_state_put(x);
  1301. goto out;
  1302. }
  1303. if (hdr->sadb_msg_type == SADB_ADD)
  1304. c.event = XFRM_MSG_NEWSA;
  1305. else
  1306. c.event = XFRM_MSG_UPDSA;
  1307. c.seq = hdr->sadb_msg_seq;
  1308. c.pid = hdr->sadb_msg_pid;
  1309. km_state_notify(x, &c);
  1310. out:
  1311. xfrm_state_put(x);
  1312. return err;
  1313. }
  1314. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1315. {
  1316. struct xfrm_state *x;
  1317. struct km_event c;
  1318. int err;
  1319. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1320. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1321. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1322. return -EINVAL;
  1323. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1324. if (x == NULL)
  1325. return -ESRCH;
  1326. if ((err = security_xfrm_state_delete(x)))
  1327. goto out;
  1328. if (xfrm_state_kern(x)) {
  1329. err = -EPERM;
  1330. goto out;
  1331. }
  1332. err = xfrm_state_delete(x);
  1333. if (err < 0)
  1334. goto out;
  1335. c.seq = hdr->sadb_msg_seq;
  1336. c.pid = hdr->sadb_msg_pid;
  1337. c.event = XFRM_MSG_DELSA;
  1338. km_state_notify(x, &c);
  1339. out:
  1340. xfrm_audit_state_delete(x, err ? 0 : 1,
  1341. audit_get_loginuid(current),
  1342. audit_get_sessionid(current), 0);
  1343. xfrm_state_put(x);
  1344. return err;
  1345. }
  1346. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1347. {
  1348. __u8 proto;
  1349. struct sk_buff *out_skb;
  1350. struct sadb_msg *out_hdr;
  1351. struct xfrm_state *x;
  1352. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1353. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1354. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1355. return -EINVAL;
  1356. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1357. if (x == NULL)
  1358. return -ESRCH;
  1359. out_skb = pfkey_xfrm_state2msg(x);
  1360. proto = x->id.proto;
  1361. xfrm_state_put(x);
  1362. if (IS_ERR(out_skb))
  1363. return PTR_ERR(out_skb);
  1364. out_hdr = (struct sadb_msg *) out_skb->data;
  1365. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1366. out_hdr->sadb_msg_type = SADB_GET;
  1367. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1368. out_hdr->sadb_msg_errno = 0;
  1369. out_hdr->sadb_msg_reserved = 0;
  1370. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1371. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1372. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1373. return 0;
  1374. }
  1375. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1376. gfp_t allocation)
  1377. {
  1378. struct sk_buff *skb;
  1379. struct sadb_msg *hdr;
  1380. int len, auth_len, enc_len, i;
  1381. auth_len = xfrm_count_auth_supported();
  1382. if (auth_len) {
  1383. auth_len *= sizeof(struct sadb_alg);
  1384. auth_len += sizeof(struct sadb_supported);
  1385. }
  1386. enc_len = xfrm_count_enc_supported();
  1387. if (enc_len) {
  1388. enc_len *= sizeof(struct sadb_alg);
  1389. enc_len += sizeof(struct sadb_supported);
  1390. }
  1391. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1392. skb = alloc_skb(len + 16, allocation);
  1393. if (!skb)
  1394. goto out_put_algs;
  1395. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1396. pfkey_hdr_dup(hdr, orig);
  1397. hdr->sadb_msg_errno = 0;
  1398. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1399. if (auth_len) {
  1400. struct sadb_supported *sp;
  1401. struct sadb_alg *ap;
  1402. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1403. ap = (struct sadb_alg *) (sp + 1);
  1404. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1405. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1406. for (i = 0; ; i++) {
  1407. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1408. if (!aalg)
  1409. break;
  1410. if (aalg->available)
  1411. *ap++ = aalg->desc;
  1412. }
  1413. }
  1414. if (enc_len) {
  1415. struct sadb_supported *sp;
  1416. struct sadb_alg *ap;
  1417. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1418. ap = (struct sadb_alg *) (sp + 1);
  1419. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1420. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1421. for (i = 0; ; i++) {
  1422. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1423. if (!ealg)
  1424. break;
  1425. if (ealg->available)
  1426. *ap++ = ealg->desc;
  1427. }
  1428. }
  1429. out_put_algs:
  1430. return skb;
  1431. }
  1432. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1433. {
  1434. struct pfkey_sock *pfk = pfkey_sk(sk);
  1435. struct sk_buff *supp_skb;
  1436. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1437. return -EINVAL;
  1438. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1439. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1440. return -EEXIST;
  1441. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1442. }
  1443. xfrm_probe_algs();
  1444. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1445. if (!supp_skb) {
  1446. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1447. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1448. return -ENOBUFS;
  1449. }
  1450. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1451. return 0;
  1452. }
  1453. static int key_notify_sa_flush(struct km_event *c)
  1454. {
  1455. struct sk_buff *skb;
  1456. struct sadb_msg *hdr;
  1457. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1458. if (!skb)
  1459. return -ENOBUFS;
  1460. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1461. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1462. hdr->sadb_msg_type = SADB_FLUSH;
  1463. hdr->sadb_msg_seq = c->seq;
  1464. hdr->sadb_msg_pid = c->pid;
  1465. hdr->sadb_msg_version = PF_KEY_V2;
  1466. hdr->sadb_msg_errno = (uint8_t) 0;
  1467. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1468. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1469. return 0;
  1470. }
  1471. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1472. {
  1473. unsigned proto;
  1474. struct km_event c;
  1475. struct xfrm_audit audit_info;
  1476. int err;
  1477. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1478. if (proto == 0)
  1479. return -EINVAL;
  1480. audit_info.loginuid = audit_get_loginuid(current);
  1481. audit_info.sessionid = audit_get_sessionid(current);
  1482. audit_info.secid = 0;
  1483. err = xfrm_state_flush(proto, &audit_info);
  1484. if (err)
  1485. return err;
  1486. c.data.proto = proto;
  1487. c.seq = hdr->sadb_msg_seq;
  1488. c.pid = hdr->sadb_msg_pid;
  1489. c.event = XFRM_MSG_FLUSHSA;
  1490. km_state_notify(NULL, &c);
  1491. return 0;
  1492. }
  1493. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1494. {
  1495. struct pfkey_sock *pfk = ptr;
  1496. struct sk_buff *out_skb;
  1497. struct sadb_msg *out_hdr;
  1498. if (!pfkey_can_dump(&pfk->sk))
  1499. return -ENOBUFS;
  1500. out_skb = pfkey_xfrm_state2msg(x);
  1501. if (IS_ERR(out_skb))
  1502. return PTR_ERR(out_skb);
  1503. out_hdr = (struct sadb_msg *) out_skb->data;
  1504. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1505. out_hdr->sadb_msg_type = SADB_DUMP;
  1506. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1507. out_hdr->sadb_msg_errno = 0;
  1508. out_hdr->sadb_msg_reserved = 0;
  1509. out_hdr->sadb_msg_seq = count + 1;
  1510. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1511. if (pfk->dump.skb)
  1512. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1513. &pfk->sk);
  1514. pfk->dump.skb = out_skb;
  1515. return 0;
  1516. }
  1517. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1518. {
  1519. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1520. }
  1521. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1522. {
  1523. xfrm_state_walk_done(&pfk->dump.u.state);
  1524. }
  1525. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1526. {
  1527. u8 proto;
  1528. struct pfkey_sock *pfk = pfkey_sk(sk);
  1529. if (pfk->dump.dump != NULL)
  1530. return -EBUSY;
  1531. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1532. if (proto == 0)
  1533. return -EINVAL;
  1534. pfk->dump.msg_version = hdr->sadb_msg_version;
  1535. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1536. pfk->dump.dump = pfkey_dump_sa;
  1537. pfk->dump.done = pfkey_dump_sa_done;
  1538. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1539. return pfkey_do_dump(pfk);
  1540. }
  1541. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1542. {
  1543. struct pfkey_sock *pfk = pfkey_sk(sk);
  1544. int satype = hdr->sadb_msg_satype;
  1545. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1546. /* XXX we mangle packet... */
  1547. hdr->sadb_msg_errno = 0;
  1548. if (satype != 0 && satype != 1)
  1549. return -EINVAL;
  1550. pfk->promisc = satype;
  1551. }
  1552. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1553. return 0;
  1554. }
  1555. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1556. {
  1557. int i;
  1558. u32 reqid = *(u32*)ptr;
  1559. for (i=0; i<xp->xfrm_nr; i++) {
  1560. if (xp->xfrm_vec[i].reqid == reqid)
  1561. return -EEXIST;
  1562. }
  1563. return 0;
  1564. }
  1565. static u32 gen_reqid(void)
  1566. {
  1567. struct xfrm_policy_walk walk;
  1568. u32 start;
  1569. int rc;
  1570. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1571. start = reqid;
  1572. do {
  1573. ++reqid;
  1574. if (reqid == 0)
  1575. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1576. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1577. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1578. xfrm_policy_walk_done(&walk);
  1579. if (rc != -EEXIST)
  1580. return reqid;
  1581. } while (reqid != start);
  1582. return 0;
  1583. }
  1584. static int
  1585. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1586. {
  1587. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1588. int mode;
  1589. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1590. return -ELOOP;
  1591. if (rq->sadb_x_ipsecrequest_mode == 0)
  1592. return -EINVAL;
  1593. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1594. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1595. return -EINVAL;
  1596. t->mode = mode;
  1597. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1598. t->optional = 1;
  1599. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1600. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1601. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1602. t->reqid = 0;
  1603. if (!t->reqid && !(t->reqid = gen_reqid()))
  1604. return -ENOBUFS;
  1605. }
  1606. /* addresses present only in tunnel mode */
  1607. if (t->mode == XFRM_MODE_TUNNEL) {
  1608. u8 *sa = (u8 *) (rq + 1);
  1609. int family, socklen;
  1610. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1611. &t->saddr);
  1612. if (!family)
  1613. return -EINVAL;
  1614. socklen = pfkey_sockaddr_len(family);
  1615. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1616. &t->id.daddr) != family)
  1617. return -EINVAL;
  1618. t->encap_family = family;
  1619. } else
  1620. t->encap_family = xp->family;
  1621. /* No way to set this via kame pfkey */
  1622. t->allalgs = 1;
  1623. xp->xfrm_nr++;
  1624. return 0;
  1625. }
  1626. static int
  1627. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1628. {
  1629. int err;
  1630. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1631. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1632. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1633. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1634. return err;
  1635. len -= rq->sadb_x_ipsecrequest_len;
  1636. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1637. }
  1638. return 0;
  1639. }
  1640. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1641. {
  1642. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1643. if (xfrm_ctx) {
  1644. int len = sizeof(struct sadb_x_sec_ctx);
  1645. len += xfrm_ctx->ctx_len;
  1646. return PFKEY_ALIGN8(len);
  1647. }
  1648. return 0;
  1649. }
  1650. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1651. {
  1652. struct xfrm_tmpl *t;
  1653. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1654. int socklen = 0;
  1655. int i;
  1656. for (i=0; i<xp->xfrm_nr; i++) {
  1657. t = xp->xfrm_vec + i;
  1658. socklen += pfkey_sockaddr_len(t->encap_family);
  1659. }
  1660. return sizeof(struct sadb_msg) +
  1661. (sizeof(struct sadb_lifetime) * 3) +
  1662. (sizeof(struct sadb_address) * 2) +
  1663. (sockaddr_size * 2) +
  1664. sizeof(struct sadb_x_policy) +
  1665. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1666. (socklen * 2) +
  1667. pfkey_xfrm_policy2sec_ctx_size(xp);
  1668. }
  1669. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1670. {
  1671. struct sk_buff *skb;
  1672. int size;
  1673. size = pfkey_xfrm_policy2msg_size(xp);
  1674. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1675. if (skb == NULL)
  1676. return ERR_PTR(-ENOBUFS);
  1677. return skb;
  1678. }
  1679. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1680. {
  1681. struct sadb_msg *hdr;
  1682. struct sadb_address *addr;
  1683. struct sadb_lifetime *lifetime;
  1684. struct sadb_x_policy *pol;
  1685. struct sadb_x_sec_ctx *sec_ctx;
  1686. struct xfrm_sec_ctx *xfrm_ctx;
  1687. int i;
  1688. int size;
  1689. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1690. int socklen = pfkey_sockaddr_len(xp->family);
  1691. size = pfkey_xfrm_policy2msg_size(xp);
  1692. /* call should fill header later */
  1693. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1694. memset(hdr, 0, size); /* XXX do we need this ? */
  1695. /* src address */
  1696. addr = (struct sadb_address*) skb_put(skb,
  1697. sizeof(struct sadb_address)+sockaddr_size);
  1698. addr->sadb_address_len =
  1699. (sizeof(struct sadb_address)+sockaddr_size)/
  1700. sizeof(uint64_t);
  1701. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1702. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1703. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1704. addr->sadb_address_reserved = 0;
  1705. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1706. xp->selector.sport,
  1707. (struct sockaddr *) (addr + 1),
  1708. xp->family))
  1709. BUG();
  1710. /* dst address */
  1711. addr = (struct sadb_address*) skb_put(skb,
  1712. sizeof(struct sadb_address)+sockaddr_size);
  1713. addr->sadb_address_len =
  1714. (sizeof(struct sadb_address)+sockaddr_size)/
  1715. sizeof(uint64_t);
  1716. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1717. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1718. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1719. addr->sadb_address_reserved = 0;
  1720. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1721. (struct sockaddr *) (addr + 1),
  1722. xp->family);
  1723. /* hard time */
  1724. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1725. sizeof(struct sadb_lifetime));
  1726. lifetime->sadb_lifetime_len =
  1727. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1728. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1729. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1730. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1731. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1732. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1733. /* soft time */
  1734. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1735. sizeof(struct sadb_lifetime));
  1736. lifetime->sadb_lifetime_len =
  1737. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1738. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1739. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1740. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1741. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1742. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1743. /* current time */
  1744. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1745. sizeof(struct sadb_lifetime));
  1746. lifetime->sadb_lifetime_len =
  1747. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1748. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1749. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1750. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1751. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1752. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1753. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1754. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1755. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1756. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1757. if (xp->action == XFRM_POLICY_ALLOW) {
  1758. if (xp->xfrm_nr)
  1759. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1760. else
  1761. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1762. }
  1763. pol->sadb_x_policy_dir = dir+1;
  1764. pol->sadb_x_policy_id = xp->index;
  1765. pol->sadb_x_policy_priority = xp->priority;
  1766. for (i=0; i<xp->xfrm_nr; i++) {
  1767. struct sadb_x_ipsecrequest *rq;
  1768. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1769. int req_size;
  1770. int mode;
  1771. req_size = sizeof(struct sadb_x_ipsecrequest);
  1772. if (t->mode == XFRM_MODE_TUNNEL) {
  1773. socklen = pfkey_sockaddr_len(t->encap_family);
  1774. req_size += socklen * 2;
  1775. } else {
  1776. size -= 2*socklen;
  1777. socklen = 0;
  1778. }
  1779. rq = (void*)skb_put(skb, req_size);
  1780. pol->sadb_x_policy_len += req_size/8;
  1781. memset(rq, 0, sizeof(*rq));
  1782. rq->sadb_x_ipsecrequest_len = req_size;
  1783. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1784. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1785. return -EINVAL;
  1786. rq->sadb_x_ipsecrequest_mode = mode;
  1787. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1788. if (t->reqid)
  1789. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1790. if (t->optional)
  1791. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1792. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1793. if (t->mode == XFRM_MODE_TUNNEL) {
  1794. u8 *sa = (void *)(rq + 1);
  1795. pfkey_sockaddr_fill(&t->saddr, 0,
  1796. (struct sockaddr *)sa,
  1797. t->encap_family);
  1798. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1799. (struct sockaddr *) (sa + socklen),
  1800. t->encap_family);
  1801. }
  1802. }
  1803. /* security context */
  1804. if ((xfrm_ctx = xp->security)) {
  1805. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1806. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1807. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1808. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1809. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1810. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1811. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1812. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1813. xfrm_ctx->ctx_len);
  1814. }
  1815. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1816. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1817. return 0;
  1818. }
  1819. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1820. {
  1821. struct sk_buff *out_skb;
  1822. struct sadb_msg *out_hdr;
  1823. int err;
  1824. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1825. if (IS_ERR(out_skb)) {
  1826. err = PTR_ERR(out_skb);
  1827. goto out;
  1828. }
  1829. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1830. if (err < 0)
  1831. return err;
  1832. out_hdr = (struct sadb_msg *) out_skb->data;
  1833. out_hdr->sadb_msg_version = PF_KEY_V2;
  1834. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1835. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1836. else
  1837. out_hdr->sadb_msg_type = event2poltype(c->event);
  1838. out_hdr->sadb_msg_errno = 0;
  1839. out_hdr->sadb_msg_seq = c->seq;
  1840. out_hdr->sadb_msg_pid = c->pid;
  1841. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1842. out:
  1843. return 0;
  1844. }
  1845. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1846. {
  1847. int err = 0;
  1848. struct sadb_lifetime *lifetime;
  1849. struct sadb_address *sa;
  1850. struct sadb_x_policy *pol;
  1851. struct xfrm_policy *xp;
  1852. struct km_event c;
  1853. struct sadb_x_sec_ctx *sec_ctx;
  1854. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1855. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1856. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1857. return -EINVAL;
  1858. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1859. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1860. return -EINVAL;
  1861. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1862. return -EINVAL;
  1863. xp = xfrm_policy_alloc(GFP_KERNEL);
  1864. if (xp == NULL)
  1865. return -ENOBUFS;
  1866. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1867. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1868. xp->priority = pol->sadb_x_policy_priority;
  1869. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1870. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1871. if (!xp->family) {
  1872. err = -EINVAL;
  1873. goto out;
  1874. }
  1875. xp->selector.family = xp->family;
  1876. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1877. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1878. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1879. if (xp->selector.sport)
  1880. xp->selector.sport_mask = htons(0xffff);
  1881. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1882. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1883. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1884. /* Amusing, we set this twice. KAME apps appear to set same value
  1885. * in both addresses.
  1886. */
  1887. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1888. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1889. if (xp->selector.dport)
  1890. xp->selector.dport_mask = htons(0xffff);
  1891. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1892. if (sec_ctx != NULL) {
  1893. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1894. if (!uctx) {
  1895. err = -ENOBUFS;
  1896. goto out;
  1897. }
  1898. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1899. kfree(uctx);
  1900. if (err)
  1901. goto out;
  1902. }
  1903. xp->lft.soft_byte_limit = XFRM_INF;
  1904. xp->lft.hard_byte_limit = XFRM_INF;
  1905. xp->lft.soft_packet_limit = XFRM_INF;
  1906. xp->lft.hard_packet_limit = XFRM_INF;
  1907. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1908. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1909. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1910. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1911. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1912. }
  1913. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1914. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1915. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1916. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1917. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1918. }
  1919. xp->xfrm_nr = 0;
  1920. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1921. (err = parse_ipsecrequests(xp, pol)) < 0)
  1922. goto out;
  1923. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1924. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1925. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1926. audit_get_loginuid(current),
  1927. audit_get_sessionid(current), 0);
  1928. if (err)
  1929. goto out;
  1930. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1931. c.event = XFRM_MSG_UPDPOLICY;
  1932. else
  1933. c.event = XFRM_MSG_NEWPOLICY;
  1934. c.seq = hdr->sadb_msg_seq;
  1935. c.pid = hdr->sadb_msg_pid;
  1936. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1937. xfrm_pol_put(xp);
  1938. return 0;
  1939. out:
  1940. xp->walk.dead = 1;
  1941. xfrm_policy_destroy(xp);
  1942. return err;
  1943. }
  1944. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1945. {
  1946. int err;
  1947. struct sadb_address *sa;
  1948. struct sadb_x_policy *pol;
  1949. struct xfrm_policy *xp;
  1950. struct xfrm_selector sel;
  1951. struct km_event c;
  1952. struct sadb_x_sec_ctx *sec_ctx;
  1953. struct xfrm_sec_ctx *pol_ctx = NULL;
  1954. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1955. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1956. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1957. return -EINVAL;
  1958. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1959. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1960. return -EINVAL;
  1961. memset(&sel, 0, sizeof(sel));
  1962. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1963. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1964. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1965. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1966. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1967. if (sel.sport)
  1968. sel.sport_mask = htons(0xffff);
  1969. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1970. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1971. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1972. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1973. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1974. if (sel.dport)
  1975. sel.dport_mask = htons(0xffff);
  1976. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1977. if (sec_ctx != NULL) {
  1978. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1979. if (!uctx)
  1980. return -ENOMEM;
  1981. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1982. kfree(uctx);
  1983. if (err)
  1984. return err;
  1985. }
  1986. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
  1987. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1988. 1, &err);
  1989. security_xfrm_policy_free(pol_ctx);
  1990. if (xp == NULL)
  1991. return -ENOENT;
  1992. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1993. audit_get_loginuid(current),
  1994. audit_get_sessionid(current), 0);
  1995. if (err)
  1996. goto out;
  1997. c.seq = hdr->sadb_msg_seq;
  1998. c.pid = hdr->sadb_msg_pid;
  1999. c.event = XFRM_MSG_DELPOLICY;
  2000. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2001. out:
  2002. xfrm_pol_put(xp);
  2003. return err;
  2004. }
  2005. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2006. {
  2007. int err;
  2008. struct sk_buff *out_skb;
  2009. struct sadb_msg *out_hdr;
  2010. err = 0;
  2011. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2012. if (IS_ERR(out_skb)) {
  2013. err = PTR_ERR(out_skb);
  2014. goto out;
  2015. }
  2016. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2017. if (err < 0)
  2018. goto out;
  2019. out_hdr = (struct sadb_msg *) out_skb->data;
  2020. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2021. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2022. out_hdr->sadb_msg_satype = 0;
  2023. out_hdr->sadb_msg_errno = 0;
  2024. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2025. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2026. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2027. err = 0;
  2028. out:
  2029. return err;
  2030. }
  2031. #ifdef CONFIG_NET_KEY_MIGRATE
  2032. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2033. {
  2034. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2035. }
  2036. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2037. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2038. u16 *family)
  2039. {
  2040. u8 *sa = (u8 *) (rq + 1);
  2041. int af, socklen;
  2042. if (rq->sadb_x_ipsecrequest_len <
  2043. pfkey_sockaddr_pair_size(((struct sockaddr *)sa)->sa_family))
  2044. return -EINVAL;
  2045. af = pfkey_sockaddr_extract((struct sockaddr *) sa,
  2046. saddr);
  2047. if (!af)
  2048. return -EINVAL;
  2049. socklen = pfkey_sockaddr_len(af);
  2050. if (pfkey_sockaddr_extract((struct sockaddr *) (sa + socklen),
  2051. daddr) != af)
  2052. return -EINVAL;
  2053. *family = af;
  2054. return 0;
  2055. }
  2056. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2057. struct xfrm_migrate *m)
  2058. {
  2059. int err;
  2060. struct sadb_x_ipsecrequest *rq2;
  2061. int mode;
  2062. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2063. len < rq1->sadb_x_ipsecrequest_len)
  2064. return -EINVAL;
  2065. /* old endoints */
  2066. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2067. &m->old_family);
  2068. if (err)
  2069. return err;
  2070. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2071. len -= rq1->sadb_x_ipsecrequest_len;
  2072. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2073. len < rq2->sadb_x_ipsecrequest_len)
  2074. return -EINVAL;
  2075. /* new endpoints */
  2076. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2077. &m->new_family);
  2078. if (err)
  2079. return err;
  2080. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2081. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2082. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2083. return -EINVAL;
  2084. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2085. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2086. return -EINVAL;
  2087. m->mode = mode;
  2088. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2089. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2090. rq2->sadb_x_ipsecrequest_len));
  2091. }
  2092. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2093. struct sadb_msg *hdr, void **ext_hdrs)
  2094. {
  2095. int i, len, ret, err = -EINVAL;
  2096. u8 dir;
  2097. struct sadb_address *sa;
  2098. struct sadb_x_policy *pol;
  2099. struct sadb_x_ipsecrequest *rq;
  2100. struct xfrm_selector sel;
  2101. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2102. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2103. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2104. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2105. err = -EINVAL;
  2106. goto out;
  2107. }
  2108. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2109. if (!pol) {
  2110. err = -EINVAL;
  2111. goto out;
  2112. }
  2113. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2114. err = -EINVAL;
  2115. goto out;
  2116. }
  2117. dir = pol->sadb_x_policy_dir - 1;
  2118. memset(&sel, 0, sizeof(sel));
  2119. /* set source address info of selector */
  2120. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2121. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2122. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2123. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2124. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2125. if (sel.sport)
  2126. sel.sport_mask = htons(0xffff);
  2127. /* set destination address info of selector */
  2128. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2129. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2130. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2131. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2132. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2133. if (sel.dport)
  2134. sel.dport_mask = htons(0xffff);
  2135. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2136. /* extract ipsecrequests */
  2137. i = 0;
  2138. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2139. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2140. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2141. if (ret < 0) {
  2142. err = ret;
  2143. goto out;
  2144. } else {
  2145. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2146. len -= ret;
  2147. i++;
  2148. }
  2149. }
  2150. if (!i || len > 0) {
  2151. err = -EINVAL;
  2152. goto out;
  2153. }
  2154. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2155. out:
  2156. return err;
  2157. }
  2158. #else
  2159. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2160. struct sadb_msg *hdr, void **ext_hdrs)
  2161. {
  2162. return -ENOPROTOOPT;
  2163. }
  2164. #endif
  2165. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2166. {
  2167. unsigned int dir;
  2168. int err = 0, delete;
  2169. struct sadb_x_policy *pol;
  2170. struct xfrm_policy *xp;
  2171. struct km_event c;
  2172. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2173. return -EINVAL;
  2174. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2175. if (dir >= XFRM_POLICY_MAX)
  2176. return -EINVAL;
  2177. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2178. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2179. delete, &err);
  2180. if (xp == NULL)
  2181. return -ENOENT;
  2182. if (delete) {
  2183. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2184. audit_get_loginuid(current),
  2185. audit_get_sessionid(current), 0);
  2186. if (err)
  2187. goto out;
  2188. c.seq = hdr->sadb_msg_seq;
  2189. c.pid = hdr->sadb_msg_pid;
  2190. c.data.byid = 1;
  2191. c.event = XFRM_MSG_DELPOLICY;
  2192. km_policy_notify(xp, dir, &c);
  2193. } else {
  2194. err = key_pol_get_resp(sk, xp, hdr, dir);
  2195. }
  2196. out:
  2197. xfrm_pol_put(xp);
  2198. return err;
  2199. }
  2200. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2201. {
  2202. struct pfkey_sock *pfk = ptr;
  2203. struct sk_buff *out_skb;
  2204. struct sadb_msg *out_hdr;
  2205. int err;
  2206. if (!pfkey_can_dump(&pfk->sk))
  2207. return -ENOBUFS;
  2208. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2209. if (IS_ERR(out_skb))
  2210. return PTR_ERR(out_skb);
  2211. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2212. if (err < 0)
  2213. return err;
  2214. out_hdr = (struct sadb_msg *) out_skb->data;
  2215. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2216. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2217. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2218. out_hdr->sadb_msg_errno = 0;
  2219. out_hdr->sadb_msg_seq = count + 1;
  2220. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2221. if (pfk->dump.skb)
  2222. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2223. &pfk->sk);
  2224. pfk->dump.skb = out_skb;
  2225. return 0;
  2226. }
  2227. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2228. {
  2229. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2230. }
  2231. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2232. {
  2233. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2234. }
  2235. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2236. {
  2237. struct pfkey_sock *pfk = pfkey_sk(sk);
  2238. if (pfk->dump.dump != NULL)
  2239. return -EBUSY;
  2240. pfk->dump.msg_version = hdr->sadb_msg_version;
  2241. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2242. pfk->dump.dump = pfkey_dump_sp;
  2243. pfk->dump.done = pfkey_dump_sp_done;
  2244. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2245. return pfkey_do_dump(pfk);
  2246. }
  2247. static int key_notify_policy_flush(struct km_event *c)
  2248. {
  2249. struct sk_buff *skb_out;
  2250. struct sadb_msg *hdr;
  2251. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2252. if (!skb_out)
  2253. return -ENOBUFS;
  2254. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2255. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2256. hdr->sadb_msg_seq = c->seq;
  2257. hdr->sadb_msg_pid = c->pid;
  2258. hdr->sadb_msg_version = PF_KEY_V2;
  2259. hdr->sadb_msg_errno = (uint8_t) 0;
  2260. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2261. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2262. return 0;
  2263. }
  2264. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2265. {
  2266. struct km_event c;
  2267. struct xfrm_audit audit_info;
  2268. int err;
  2269. audit_info.loginuid = audit_get_loginuid(current);
  2270. audit_info.sessionid = audit_get_sessionid(current);
  2271. audit_info.secid = 0;
  2272. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2273. if (err)
  2274. return err;
  2275. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2276. c.event = XFRM_MSG_FLUSHPOLICY;
  2277. c.pid = hdr->sadb_msg_pid;
  2278. c.seq = hdr->sadb_msg_seq;
  2279. km_policy_notify(NULL, 0, &c);
  2280. return 0;
  2281. }
  2282. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2283. struct sadb_msg *hdr, void **ext_hdrs);
  2284. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2285. [SADB_RESERVED] = pfkey_reserved,
  2286. [SADB_GETSPI] = pfkey_getspi,
  2287. [SADB_UPDATE] = pfkey_add,
  2288. [SADB_ADD] = pfkey_add,
  2289. [SADB_DELETE] = pfkey_delete,
  2290. [SADB_GET] = pfkey_get,
  2291. [SADB_ACQUIRE] = pfkey_acquire,
  2292. [SADB_REGISTER] = pfkey_register,
  2293. [SADB_EXPIRE] = NULL,
  2294. [SADB_FLUSH] = pfkey_flush,
  2295. [SADB_DUMP] = pfkey_dump,
  2296. [SADB_X_PROMISC] = pfkey_promisc,
  2297. [SADB_X_PCHANGE] = NULL,
  2298. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2299. [SADB_X_SPDADD] = pfkey_spdadd,
  2300. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2301. [SADB_X_SPDGET] = pfkey_spdget,
  2302. [SADB_X_SPDACQUIRE] = NULL,
  2303. [SADB_X_SPDDUMP] = pfkey_spddump,
  2304. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2305. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2306. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2307. [SADB_X_MIGRATE] = pfkey_migrate,
  2308. };
  2309. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2310. {
  2311. void *ext_hdrs[SADB_EXT_MAX];
  2312. int err;
  2313. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2314. BROADCAST_PROMISC_ONLY, NULL);
  2315. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2316. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2317. if (!err) {
  2318. err = -EOPNOTSUPP;
  2319. if (pfkey_funcs[hdr->sadb_msg_type])
  2320. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2321. }
  2322. return err;
  2323. }
  2324. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2325. {
  2326. struct sadb_msg *hdr = NULL;
  2327. if (skb->len < sizeof(*hdr)) {
  2328. *errp = -EMSGSIZE;
  2329. } else {
  2330. hdr = (struct sadb_msg *) skb->data;
  2331. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2332. hdr->sadb_msg_reserved != 0 ||
  2333. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2334. hdr->sadb_msg_type > SADB_MAX)) {
  2335. hdr = NULL;
  2336. *errp = -EINVAL;
  2337. } else if (hdr->sadb_msg_len != (skb->len /
  2338. sizeof(uint64_t)) ||
  2339. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2340. sizeof(uint64_t))) {
  2341. hdr = NULL;
  2342. *errp = -EMSGSIZE;
  2343. } else {
  2344. *errp = 0;
  2345. }
  2346. }
  2347. return hdr;
  2348. }
  2349. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2350. {
  2351. unsigned int id = d->desc.sadb_alg_id;
  2352. if (id >= sizeof(t->aalgos) * 8)
  2353. return 0;
  2354. return (t->aalgos >> id) & 1;
  2355. }
  2356. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2357. {
  2358. unsigned int id = d->desc.sadb_alg_id;
  2359. if (id >= sizeof(t->ealgos) * 8)
  2360. return 0;
  2361. return (t->ealgos >> id) & 1;
  2362. }
  2363. static int count_ah_combs(struct xfrm_tmpl *t)
  2364. {
  2365. int i, sz = 0;
  2366. for (i = 0; ; i++) {
  2367. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2368. if (!aalg)
  2369. break;
  2370. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2371. sz += sizeof(struct sadb_comb);
  2372. }
  2373. return sz + sizeof(struct sadb_prop);
  2374. }
  2375. static int count_esp_combs(struct xfrm_tmpl *t)
  2376. {
  2377. int i, k, sz = 0;
  2378. for (i = 0; ; i++) {
  2379. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2380. if (!ealg)
  2381. break;
  2382. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2383. continue;
  2384. for (k = 1; ; k++) {
  2385. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2386. if (!aalg)
  2387. break;
  2388. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2389. sz += sizeof(struct sadb_comb);
  2390. }
  2391. }
  2392. return sz + sizeof(struct sadb_prop);
  2393. }
  2394. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2395. {
  2396. struct sadb_prop *p;
  2397. int i;
  2398. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2399. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2400. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2401. p->sadb_prop_replay = 32;
  2402. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2403. for (i = 0; ; i++) {
  2404. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2405. if (!aalg)
  2406. break;
  2407. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2408. struct sadb_comb *c;
  2409. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2410. memset(c, 0, sizeof(*c));
  2411. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2412. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2413. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2414. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2415. c->sadb_comb_hard_addtime = 24*60*60;
  2416. c->sadb_comb_soft_addtime = 20*60*60;
  2417. c->sadb_comb_hard_usetime = 8*60*60;
  2418. c->sadb_comb_soft_usetime = 7*60*60;
  2419. }
  2420. }
  2421. }
  2422. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2423. {
  2424. struct sadb_prop *p;
  2425. int i, k;
  2426. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2427. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2428. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2429. p->sadb_prop_replay = 32;
  2430. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2431. for (i=0; ; i++) {
  2432. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2433. if (!ealg)
  2434. break;
  2435. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2436. continue;
  2437. for (k = 1; ; k++) {
  2438. struct sadb_comb *c;
  2439. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2440. if (!aalg)
  2441. break;
  2442. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2443. continue;
  2444. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2445. memset(c, 0, sizeof(*c));
  2446. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2447. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2448. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2449. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2450. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2451. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2452. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2453. c->sadb_comb_hard_addtime = 24*60*60;
  2454. c->sadb_comb_soft_addtime = 20*60*60;
  2455. c->sadb_comb_hard_usetime = 8*60*60;
  2456. c->sadb_comb_soft_usetime = 7*60*60;
  2457. }
  2458. }
  2459. }
  2460. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2461. {
  2462. return 0;
  2463. }
  2464. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2465. {
  2466. struct sk_buff *out_skb;
  2467. struct sadb_msg *out_hdr;
  2468. int hard;
  2469. int hsc;
  2470. hard = c->data.hard;
  2471. if (hard)
  2472. hsc = 2;
  2473. else
  2474. hsc = 1;
  2475. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2476. if (IS_ERR(out_skb))
  2477. return PTR_ERR(out_skb);
  2478. out_hdr = (struct sadb_msg *) out_skb->data;
  2479. out_hdr->sadb_msg_version = PF_KEY_V2;
  2480. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2481. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2482. out_hdr->sadb_msg_errno = 0;
  2483. out_hdr->sadb_msg_reserved = 0;
  2484. out_hdr->sadb_msg_seq = 0;
  2485. out_hdr->sadb_msg_pid = 0;
  2486. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2487. return 0;
  2488. }
  2489. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2490. {
  2491. if (atomic_read(&pfkey_socks_nr) == 0)
  2492. return 0;
  2493. switch (c->event) {
  2494. case XFRM_MSG_EXPIRE:
  2495. return key_notify_sa_expire(x, c);
  2496. case XFRM_MSG_DELSA:
  2497. case XFRM_MSG_NEWSA:
  2498. case XFRM_MSG_UPDSA:
  2499. return key_notify_sa(x, c);
  2500. case XFRM_MSG_FLUSHSA:
  2501. return key_notify_sa_flush(c);
  2502. case XFRM_MSG_NEWAE: /* not yet supported */
  2503. break;
  2504. default:
  2505. printk("pfkey: Unknown SA event %d\n", c->event);
  2506. break;
  2507. }
  2508. return 0;
  2509. }
  2510. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2511. {
  2512. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2513. return 0;
  2514. switch (c->event) {
  2515. case XFRM_MSG_POLEXPIRE:
  2516. return key_notify_policy_expire(xp, c);
  2517. case XFRM_MSG_DELPOLICY:
  2518. case XFRM_MSG_NEWPOLICY:
  2519. case XFRM_MSG_UPDPOLICY:
  2520. return key_notify_policy(xp, dir, c);
  2521. case XFRM_MSG_FLUSHPOLICY:
  2522. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2523. break;
  2524. return key_notify_policy_flush(c);
  2525. default:
  2526. printk("pfkey: Unknown policy event %d\n", c->event);
  2527. break;
  2528. }
  2529. return 0;
  2530. }
  2531. static u32 get_acqseq(void)
  2532. {
  2533. u32 res;
  2534. static u32 acqseq;
  2535. static DEFINE_SPINLOCK(acqseq_lock);
  2536. spin_lock_bh(&acqseq_lock);
  2537. res = (++acqseq ? : ++acqseq);
  2538. spin_unlock_bh(&acqseq_lock);
  2539. return res;
  2540. }
  2541. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2542. {
  2543. struct sk_buff *skb;
  2544. struct sadb_msg *hdr;
  2545. struct sadb_address *addr;
  2546. struct sadb_x_policy *pol;
  2547. int sockaddr_size;
  2548. int size;
  2549. struct sadb_x_sec_ctx *sec_ctx;
  2550. struct xfrm_sec_ctx *xfrm_ctx;
  2551. int ctx_size = 0;
  2552. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2553. if (!sockaddr_size)
  2554. return -EINVAL;
  2555. size = sizeof(struct sadb_msg) +
  2556. (sizeof(struct sadb_address) * 2) +
  2557. (sockaddr_size * 2) +
  2558. sizeof(struct sadb_x_policy);
  2559. if (x->id.proto == IPPROTO_AH)
  2560. size += count_ah_combs(t);
  2561. else if (x->id.proto == IPPROTO_ESP)
  2562. size += count_esp_combs(t);
  2563. if ((xfrm_ctx = x->security)) {
  2564. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2565. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2566. }
  2567. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2568. if (skb == NULL)
  2569. return -ENOMEM;
  2570. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2571. hdr->sadb_msg_version = PF_KEY_V2;
  2572. hdr->sadb_msg_type = SADB_ACQUIRE;
  2573. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2574. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2575. hdr->sadb_msg_errno = 0;
  2576. hdr->sadb_msg_reserved = 0;
  2577. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2578. hdr->sadb_msg_pid = 0;
  2579. /* src address */
  2580. addr = (struct sadb_address*) skb_put(skb,
  2581. sizeof(struct sadb_address)+sockaddr_size);
  2582. addr->sadb_address_len =
  2583. (sizeof(struct sadb_address)+sockaddr_size)/
  2584. sizeof(uint64_t);
  2585. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2586. addr->sadb_address_proto = 0;
  2587. addr->sadb_address_reserved = 0;
  2588. addr->sadb_address_prefixlen =
  2589. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2590. (struct sockaddr *) (addr + 1),
  2591. x->props.family);
  2592. if (!addr->sadb_address_prefixlen)
  2593. BUG();
  2594. /* dst address */
  2595. addr = (struct sadb_address*) skb_put(skb,
  2596. sizeof(struct sadb_address)+sockaddr_size);
  2597. addr->sadb_address_len =
  2598. (sizeof(struct sadb_address)+sockaddr_size)/
  2599. sizeof(uint64_t);
  2600. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2601. addr->sadb_address_proto = 0;
  2602. addr->sadb_address_reserved = 0;
  2603. addr->sadb_address_prefixlen =
  2604. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2605. (struct sockaddr *) (addr + 1),
  2606. x->props.family);
  2607. if (!addr->sadb_address_prefixlen)
  2608. BUG();
  2609. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2610. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2611. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2612. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2613. pol->sadb_x_policy_dir = dir+1;
  2614. pol->sadb_x_policy_id = xp->index;
  2615. /* Set sadb_comb's. */
  2616. if (x->id.proto == IPPROTO_AH)
  2617. dump_ah_combs(skb, t);
  2618. else if (x->id.proto == IPPROTO_ESP)
  2619. dump_esp_combs(skb, t);
  2620. /* security context */
  2621. if (xfrm_ctx) {
  2622. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2623. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2624. sec_ctx->sadb_x_sec_len =
  2625. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2626. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2627. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2628. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2629. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2630. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2631. xfrm_ctx->ctx_len);
  2632. }
  2633. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2634. }
  2635. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2636. u8 *data, int len, int *dir)
  2637. {
  2638. struct xfrm_policy *xp;
  2639. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2640. struct sadb_x_sec_ctx *sec_ctx;
  2641. switch (sk->sk_family) {
  2642. case AF_INET:
  2643. if (opt != IP_IPSEC_POLICY) {
  2644. *dir = -EOPNOTSUPP;
  2645. return NULL;
  2646. }
  2647. break;
  2648. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2649. case AF_INET6:
  2650. if (opt != IPV6_IPSEC_POLICY) {
  2651. *dir = -EOPNOTSUPP;
  2652. return NULL;
  2653. }
  2654. break;
  2655. #endif
  2656. default:
  2657. *dir = -EINVAL;
  2658. return NULL;
  2659. }
  2660. *dir = -EINVAL;
  2661. if (len < sizeof(struct sadb_x_policy) ||
  2662. pol->sadb_x_policy_len*8 > len ||
  2663. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2664. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2665. return NULL;
  2666. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2667. if (xp == NULL) {
  2668. *dir = -ENOBUFS;
  2669. return NULL;
  2670. }
  2671. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2672. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2673. xp->lft.soft_byte_limit = XFRM_INF;
  2674. xp->lft.hard_byte_limit = XFRM_INF;
  2675. xp->lft.soft_packet_limit = XFRM_INF;
  2676. xp->lft.hard_packet_limit = XFRM_INF;
  2677. xp->family = sk->sk_family;
  2678. xp->xfrm_nr = 0;
  2679. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2680. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2681. goto out;
  2682. /* security context too */
  2683. if (len >= (pol->sadb_x_policy_len*8 +
  2684. sizeof(struct sadb_x_sec_ctx))) {
  2685. char *p = (char *)pol;
  2686. struct xfrm_user_sec_ctx *uctx;
  2687. p += pol->sadb_x_policy_len*8;
  2688. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2689. if (len < pol->sadb_x_policy_len*8 +
  2690. sec_ctx->sadb_x_sec_len) {
  2691. *dir = -EINVAL;
  2692. goto out;
  2693. }
  2694. if ((*dir = verify_sec_ctx_len(p)))
  2695. goto out;
  2696. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2697. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2698. kfree(uctx);
  2699. if (*dir)
  2700. goto out;
  2701. }
  2702. *dir = pol->sadb_x_policy_dir-1;
  2703. return xp;
  2704. out:
  2705. xfrm_policy_destroy(xp);
  2706. return NULL;
  2707. }
  2708. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2709. {
  2710. struct sk_buff *skb;
  2711. struct sadb_msg *hdr;
  2712. struct sadb_sa *sa;
  2713. struct sadb_address *addr;
  2714. struct sadb_x_nat_t_port *n_port;
  2715. int sockaddr_size;
  2716. int size;
  2717. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2718. struct xfrm_encap_tmpl *natt = NULL;
  2719. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2720. if (!sockaddr_size)
  2721. return -EINVAL;
  2722. if (!satype)
  2723. return -EINVAL;
  2724. if (!x->encap)
  2725. return -EINVAL;
  2726. natt = x->encap;
  2727. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2728. *
  2729. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2730. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2731. */
  2732. size = sizeof(struct sadb_msg) +
  2733. sizeof(struct sadb_sa) +
  2734. (sizeof(struct sadb_address) * 2) +
  2735. (sockaddr_size * 2) +
  2736. (sizeof(struct sadb_x_nat_t_port) * 2);
  2737. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2738. if (skb == NULL)
  2739. return -ENOMEM;
  2740. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2741. hdr->sadb_msg_version = PF_KEY_V2;
  2742. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2743. hdr->sadb_msg_satype = satype;
  2744. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2745. hdr->sadb_msg_errno = 0;
  2746. hdr->sadb_msg_reserved = 0;
  2747. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2748. hdr->sadb_msg_pid = 0;
  2749. /* SA */
  2750. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2751. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2752. sa->sadb_sa_exttype = SADB_EXT_SA;
  2753. sa->sadb_sa_spi = x->id.spi;
  2754. sa->sadb_sa_replay = 0;
  2755. sa->sadb_sa_state = 0;
  2756. sa->sadb_sa_auth = 0;
  2757. sa->sadb_sa_encrypt = 0;
  2758. sa->sadb_sa_flags = 0;
  2759. /* ADDRESS_SRC (old addr) */
  2760. addr = (struct sadb_address*)
  2761. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2762. addr->sadb_address_len =
  2763. (sizeof(struct sadb_address)+sockaddr_size)/
  2764. sizeof(uint64_t);
  2765. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2766. addr->sadb_address_proto = 0;
  2767. addr->sadb_address_reserved = 0;
  2768. addr->sadb_address_prefixlen =
  2769. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2770. (struct sockaddr *) (addr + 1),
  2771. x->props.family);
  2772. if (!addr->sadb_address_prefixlen)
  2773. BUG();
  2774. /* NAT_T_SPORT (old port) */
  2775. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2776. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2777. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2778. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2779. n_port->sadb_x_nat_t_port_reserved = 0;
  2780. /* ADDRESS_DST (new addr) */
  2781. addr = (struct sadb_address*)
  2782. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2783. addr->sadb_address_len =
  2784. (sizeof(struct sadb_address)+sockaddr_size)/
  2785. sizeof(uint64_t);
  2786. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2787. addr->sadb_address_proto = 0;
  2788. addr->sadb_address_reserved = 0;
  2789. addr->sadb_address_prefixlen =
  2790. pfkey_sockaddr_fill(ipaddr, 0,
  2791. (struct sockaddr *) (addr + 1),
  2792. x->props.family);
  2793. if (!addr->sadb_address_prefixlen)
  2794. BUG();
  2795. /* NAT_T_DPORT (new port) */
  2796. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2797. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2798. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2799. n_port->sadb_x_nat_t_port_port = sport;
  2800. n_port->sadb_x_nat_t_port_reserved = 0;
  2801. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2802. }
  2803. #ifdef CONFIG_NET_KEY_MIGRATE
  2804. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2805. struct xfrm_selector *sel)
  2806. {
  2807. struct sadb_address *addr;
  2808. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2809. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2810. addr->sadb_address_exttype = type;
  2811. addr->sadb_address_proto = sel->proto;
  2812. addr->sadb_address_reserved = 0;
  2813. switch (type) {
  2814. case SADB_EXT_ADDRESS_SRC:
  2815. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2816. pfkey_sockaddr_fill(&sel->saddr, 0,
  2817. (struct sockaddr *)(addr + 1),
  2818. sel->family);
  2819. break;
  2820. case SADB_EXT_ADDRESS_DST:
  2821. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2822. pfkey_sockaddr_fill(&sel->daddr, 0,
  2823. (struct sockaddr *)(addr + 1),
  2824. sel->family);
  2825. break;
  2826. default:
  2827. return -EINVAL;
  2828. }
  2829. return 0;
  2830. }
  2831. static int set_ipsecrequest(struct sk_buff *skb,
  2832. uint8_t proto, uint8_t mode, int level,
  2833. uint32_t reqid, uint8_t family,
  2834. xfrm_address_t *src, xfrm_address_t *dst)
  2835. {
  2836. struct sadb_x_ipsecrequest *rq;
  2837. u8 *sa;
  2838. int socklen = pfkey_sockaddr_len(family);
  2839. int size_req;
  2840. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2841. pfkey_sockaddr_pair_size(family);
  2842. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2843. memset(rq, 0, size_req);
  2844. rq->sadb_x_ipsecrequest_len = size_req;
  2845. rq->sadb_x_ipsecrequest_proto = proto;
  2846. rq->sadb_x_ipsecrequest_mode = mode;
  2847. rq->sadb_x_ipsecrequest_level = level;
  2848. rq->sadb_x_ipsecrequest_reqid = reqid;
  2849. sa = (u8 *) (rq + 1);
  2850. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2851. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2852. return -EINVAL;
  2853. return 0;
  2854. }
  2855. #endif
  2856. #ifdef CONFIG_NET_KEY_MIGRATE
  2857. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2858. struct xfrm_migrate *m, int num_bundles)
  2859. {
  2860. int i;
  2861. int sasize_sel;
  2862. int size = 0;
  2863. int size_pol = 0;
  2864. struct sk_buff *skb;
  2865. struct sadb_msg *hdr;
  2866. struct sadb_x_policy *pol;
  2867. struct xfrm_migrate *mp;
  2868. if (type != XFRM_POLICY_TYPE_MAIN)
  2869. return 0;
  2870. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2871. return -EINVAL;
  2872. /* selector */
  2873. sasize_sel = pfkey_sockaddr_size(sel->family);
  2874. if (!sasize_sel)
  2875. return -EINVAL;
  2876. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2877. /* policy info */
  2878. size_pol += sizeof(struct sadb_x_policy);
  2879. /* ipsecrequests */
  2880. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2881. /* old locator pair */
  2882. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2883. pfkey_sockaddr_pair_size(mp->old_family);
  2884. /* new locator pair */
  2885. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2886. pfkey_sockaddr_pair_size(mp->new_family);
  2887. }
  2888. size += sizeof(struct sadb_msg) + size_pol;
  2889. /* alloc buffer */
  2890. skb = alloc_skb(size, GFP_ATOMIC);
  2891. if (skb == NULL)
  2892. return -ENOMEM;
  2893. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2894. hdr->sadb_msg_version = PF_KEY_V2;
  2895. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2896. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2897. hdr->sadb_msg_len = size / 8;
  2898. hdr->sadb_msg_errno = 0;
  2899. hdr->sadb_msg_reserved = 0;
  2900. hdr->sadb_msg_seq = 0;
  2901. hdr->sadb_msg_pid = 0;
  2902. /* selector src */
  2903. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2904. /* selector dst */
  2905. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2906. /* policy information */
  2907. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2908. pol->sadb_x_policy_len = size_pol / 8;
  2909. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2910. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2911. pol->sadb_x_policy_dir = dir + 1;
  2912. pol->sadb_x_policy_id = 0;
  2913. pol->sadb_x_policy_priority = 0;
  2914. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2915. /* old ipsecrequest */
  2916. int mode = pfkey_mode_from_xfrm(mp->mode);
  2917. if (mode < 0)
  2918. goto err;
  2919. if (set_ipsecrequest(skb, mp->proto, mode,
  2920. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2921. mp->reqid, mp->old_family,
  2922. &mp->old_saddr, &mp->old_daddr) < 0)
  2923. goto err;
  2924. /* new ipsecrequest */
  2925. if (set_ipsecrequest(skb, mp->proto, mode,
  2926. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2927. mp->reqid, mp->new_family,
  2928. &mp->new_saddr, &mp->new_daddr) < 0)
  2929. goto err;
  2930. }
  2931. /* broadcast migrate message to sockets */
  2932. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2933. return 0;
  2934. err:
  2935. kfree_skb(skb);
  2936. return -EINVAL;
  2937. }
  2938. #else
  2939. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2940. struct xfrm_migrate *m, int num_bundles)
  2941. {
  2942. return -ENOPROTOOPT;
  2943. }
  2944. #endif
  2945. static int pfkey_sendmsg(struct kiocb *kiocb,
  2946. struct socket *sock, struct msghdr *msg, size_t len)
  2947. {
  2948. struct sock *sk = sock->sk;
  2949. struct sk_buff *skb = NULL;
  2950. struct sadb_msg *hdr = NULL;
  2951. int err;
  2952. err = -EOPNOTSUPP;
  2953. if (msg->msg_flags & MSG_OOB)
  2954. goto out;
  2955. err = -EMSGSIZE;
  2956. if ((unsigned)len > sk->sk_sndbuf - 32)
  2957. goto out;
  2958. err = -ENOBUFS;
  2959. skb = alloc_skb(len, GFP_KERNEL);
  2960. if (skb == NULL)
  2961. goto out;
  2962. err = -EFAULT;
  2963. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2964. goto out;
  2965. hdr = pfkey_get_base_msg(skb, &err);
  2966. if (!hdr)
  2967. goto out;
  2968. mutex_lock(&xfrm_cfg_mutex);
  2969. err = pfkey_process(sk, skb, hdr);
  2970. mutex_unlock(&xfrm_cfg_mutex);
  2971. out:
  2972. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2973. err = 0;
  2974. if (skb)
  2975. kfree_skb(skb);
  2976. return err ? : len;
  2977. }
  2978. static int pfkey_recvmsg(struct kiocb *kiocb,
  2979. struct socket *sock, struct msghdr *msg, size_t len,
  2980. int flags)
  2981. {
  2982. struct sock *sk = sock->sk;
  2983. struct pfkey_sock *pfk = pfkey_sk(sk);
  2984. struct sk_buff *skb;
  2985. int copied, err;
  2986. err = -EINVAL;
  2987. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2988. goto out;
  2989. msg->msg_namelen = 0;
  2990. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2991. if (skb == NULL)
  2992. goto out;
  2993. copied = skb->len;
  2994. if (copied > len) {
  2995. msg->msg_flags |= MSG_TRUNC;
  2996. copied = len;
  2997. }
  2998. skb_reset_transport_header(skb);
  2999. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3000. if (err)
  3001. goto out_free;
  3002. sock_recv_timestamp(msg, sk, skb);
  3003. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3004. if (pfk->dump.dump != NULL &&
  3005. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3006. pfkey_do_dump(pfk);
  3007. out_free:
  3008. skb_free_datagram(sk, skb);
  3009. out:
  3010. return err;
  3011. }
  3012. static const struct proto_ops pfkey_ops = {
  3013. .family = PF_KEY,
  3014. .owner = THIS_MODULE,
  3015. /* Operations that make no sense on pfkey sockets. */
  3016. .bind = sock_no_bind,
  3017. .connect = sock_no_connect,
  3018. .socketpair = sock_no_socketpair,
  3019. .accept = sock_no_accept,
  3020. .getname = sock_no_getname,
  3021. .ioctl = sock_no_ioctl,
  3022. .listen = sock_no_listen,
  3023. .shutdown = sock_no_shutdown,
  3024. .setsockopt = sock_no_setsockopt,
  3025. .getsockopt = sock_no_getsockopt,
  3026. .mmap = sock_no_mmap,
  3027. .sendpage = sock_no_sendpage,
  3028. /* Now the operations that really occur. */
  3029. .release = pfkey_release,
  3030. .poll = datagram_poll,
  3031. .sendmsg = pfkey_sendmsg,
  3032. .recvmsg = pfkey_recvmsg,
  3033. };
  3034. static struct net_proto_family pfkey_family_ops = {
  3035. .family = PF_KEY,
  3036. .create = pfkey_create,
  3037. .owner = THIS_MODULE,
  3038. };
  3039. #ifdef CONFIG_PROC_FS
  3040. static int pfkey_seq_show(struct seq_file *f, void *v)
  3041. {
  3042. struct sock *s;
  3043. s = (struct sock *)v;
  3044. if (v == SEQ_START_TOKEN)
  3045. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3046. else
  3047. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3048. s,
  3049. atomic_read(&s->sk_refcnt),
  3050. atomic_read(&s->sk_rmem_alloc),
  3051. atomic_read(&s->sk_wmem_alloc),
  3052. sock_i_uid(s),
  3053. sock_i_ino(s)
  3054. );
  3055. return 0;
  3056. }
  3057. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3058. {
  3059. struct sock *s;
  3060. struct hlist_node *node;
  3061. loff_t pos = *ppos;
  3062. read_lock(&pfkey_table_lock);
  3063. if (pos == 0)
  3064. return SEQ_START_TOKEN;
  3065. sk_for_each(s, node, &pfkey_table)
  3066. if (pos-- == 1)
  3067. return s;
  3068. return NULL;
  3069. }
  3070. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3071. {
  3072. ++*ppos;
  3073. return (v == SEQ_START_TOKEN) ?
  3074. sk_head(&pfkey_table) :
  3075. sk_next((struct sock *)v);
  3076. }
  3077. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3078. {
  3079. read_unlock(&pfkey_table_lock);
  3080. }
  3081. static struct seq_operations pfkey_seq_ops = {
  3082. .start = pfkey_seq_start,
  3083. .next = pfkey_seq_next,
  3084. .stop = pfkey_seq_stop,
  3085. .show = pfkey_seq_show,
  3086. };
  3087. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3088. {
  3089. return seq_open(file, &pfkey_seq_ops);
  3090. }
  3091. static struct file_operations pfkey_proc_ops = {
  3092. .open = pfkey_seq_open,
  3093. .read = seq_read,
  3094. .llseek = seq_lseek,
  3095. .release = seq_release,
  3096. };
  3097. static int pfkey_init_proc(void)
  3098. {
  3099. struct proc_dir_entry *e;
  3100. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3101. if (e == NULL)
  3102. return -ENOMEM;
  3103. return 0;
  3104. }
  3105. static void pfkey_exit_proc(void)
  3106. {
  3107. proc_net_remove(&init_net, "pfkey");
  3108. }
  3109. #else
  3110. static inline int pfkey_init_proc(void)
  3111. {
  3112. return 0;
  3113. }
  3114. static inline void pfkey_exit_proc(void)
  3115. {
  3116. }
  3117. #endif
  3118. static struct xfrm_mgr pfkeyv2_mgr =
  3119. {
  3120. .id = "pfkeyv2",
  3121. .notify = pfkey_send_notify,
  3122. .acquire = pfkey_send_acquire,
  3123. .compile_policy = pfkey_compile_policy,
  3124. .new_mapping = pfkey_send_new_mapping,
  3125. .notify_policy = pfkey_send_policy_notify,
  3126. .migrate = pfkey_send_migrate,
  3127. };
  3128. static void __exit ipsec_pfkey_exit(void)
  3129. {
  3130. xfrm_unregister_km(&pfkeyv2_mgr);
  3131. pfkey_exit_proc();
  3132. sock_unregister(PF_KEY);
  3133. proto_unregister(&key_proto);
  3134. }
  3135. static int __init ipsec_pfkey_init(void)
  3136. {
  3137. int err = proto_register(&key_proto, 0);
  3138. if (err != 0)
  3139. goto out;
  3140. err = sock_register(&pfkey_family_ops);
  3141. if (err != 0)
  3142. goto out_unregister_key_proto;
  3143. err = pfkey_init_proc();
  3144. if (err != 0)
  3145. goto out_sock_unregister;
  3146. err = xfrm_register_km(&pfkeyv2_mgr);
  3147. if (err != 0)
  3148. goto out_remove_proc_entry;
  3149. out:
  3150. return err;
  3151. out_remove_proc_entry:
  3152. pfkey_exit_proc();
  3153. out_sock_unregister:
  3154. sock_unregister(PF_KEY);
  3155. out_unregister_key_proto:
  3156. proto_unregister(&key_proto);
  3157. goto out;
  3158. }
  3159. module_init(ipsec_pfkey_init);
  3160. module_exit(ipsec_pfkey_exit);
  3161. MODULE_LICENSE("GPL");
  3162. MODULE_ALIAS_NETPROTO(PF_KEY);