xfs_inode.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_trans_priv.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_attr_sf.h"
  33. #include "xfs_dinode.h"
  34. #include "xfs_inode.h"
  35. #include "xfs_buf_item.h"
  36. #include "xfs_inode_item.h"
  37. #include "xfs_btree.h"
  38. #include "xfs_alloc.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_error.h"
  42. #include "xfs_utils.h"
  43. #include "xfs_quota.h"
  44. #include "xfs_filestream.h"
  45. #include "xfs_vnodeops.h"
  46. #include "xfs_trace.h"
  47. kmem_zone_t *xfs_ifork_zone;
  48. kmem_zone_t *xfs_inode_zone;
  49. /*
  50. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  51. * freed from a file in a single transaction.
  52. */
  53. #define XFS_ITRUNC_MAX_EXTENTS 2
  54. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  55. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  56. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  57. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  58. /*
  59. * helper function to extract extent size hint from inode
  60. */
  61. xfs_extlen_t
  62. xfs_get_extsz_hint(
  63. struct xfs_inode *ip)
  64. {
  65. if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  66. return ip->i_d.di_extsize;
  67. if (XFS_IS_REALTIME_INODE(ip))
  68. return ip->i_mount->m_sb.sb_rextsize;
  69. return 0;
  70. }
  71. #ifdef DEBUG
  72. /*
  73. * Make sure that the extents in the given memory buffer
  74. * are valid.
  75. */
  76. STATIC void
  77. xfs_validate_extents(
  78. xfs_ifork_t *ifp,
  79. int nrecs,
  80. xfs_exntfmt_t fmt)
  81. {
  82. xfs_bmbt_irec_t irec;
  83. xfs_bmbt_rec_host_t rec;
  84. int i;
  85. for (i = 0; i < nrecs; i++) {
  86. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  87. rec.l0 = get_unaligned(&ep->l0);
  88. rec.l1 = get_unaligned(&ep->l1);
  89. xfs_bmbt_get_all(&rec, &irec);
  90. if (fmt == XFS_EXTFMT_NOSTATE)
  91. ASSERT(irec.br_state == XFS_EXT_NORM);
  92. }
  93. }
  94. #else /* DEBUG */
  95. #define xfs_validate_extents(ifp, nrecs, fmt)
  96. #endif /* DEBUG */
  97. /*
  98. * Check that none of the inode's in the buffer have a next
  99. * unlinked field of 0.
  100. */
  101. #if defined(DEBUG)
  102. void
  103. xfs_inobp_check(
  104. xfs_mount_t *mp,
  105. xfs_buf_t *bp)
  106. {
  107. int i;
  108. int j;
  109. xfs_dinode_t *dip;
  110. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  111. for (i = 0; i < j; i++) {
  112. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  113. i * mp->m_sb.sb_inodesize);
  114. if (!dip->di_next_unlinked) {
  115. xfs_alert(mp,
  116. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  117. bp);
  118. ASSERT(dip->di_next_unlinked);
  119. }
  120. }
  121. }
  122. #endif
  123. /*
  124. * This routine is called to map an inode to the buffer containing the on-disk
  125. * version of the inode. It returns a pointer to the buffer containing the
  126. * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
  127. * pointer to the on-disk inode within that buffer.
  128. *
  129. * If a non-zero error is returned, then the contents of bpp and dipp are
  130. * undefined.
  131. */
  132. int
  133. xfs_imap_to_bp(
  134. struct xfs_mount *mp,
  135. struct xfs_trans *tp,
  136. struct xfs_imap *imap,
  137. struct xfs_dinode **dipp,
  138. struct xfs_buf **bpp,
  139. uint buf_flags,
  140. uint iget_flags)
  141. {
  142. struct xfs_buf *bp;
  143. int error;
  144. int i;
  145. int ni;
  146. buf_flags |= XBF_UNMAPPED;
  147. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  148. (int)imap->im_len, buf_flags, &bp);
  149. if (error) {
  150. if (error != EAGAIN) {
  151. xfs_warn(mp,
  152. "%s: xfs_trans_read_buf() returned error %d.",
  153. __func__, error);
  154. } else {
  155. ASSERT(buf_flags & XBF_TRYLOCK);
  156. }
  157. return error;
  158. }
  159. /*
  160. * Validate the magic number and version of every inode in the buffer
  161. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  162. */
  163. #ifdef DEBUG
  164. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  165. #else /* usual case */
  166. ni = 1;
  167. #endif
  168. for (i = 0; i < ni; i++) {
  169. int di_ok;
  170. xfs_dinode_t *dip;
  171. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  172. (i << mp->m_sb.sb_inodelog));
  173. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  174. XFS_DINODE_GOOD_VERSION(dip->di_version);
  175. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  176. XFS_ERRTAG_ITOBP_INOTOBP,
  177. XFS_RANDOM_ITOBP_INOTOBP))) {
  178. if (iget_flags & XFS_IGET_UNTRUSTED) {
  179. xfs_trans_brelse(tp, bp);
  180. return XFS_ERROR(EINVAL);
  181. }
  182. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
  183. mp, dip);
  184. #ifdef DEBUG
  185. xfs_emerg(mp,
  186. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  187. (unsigned long long)imap->im_blkno, i,
  188. be16_to_cpu(dip->di_magic));
  189. ASSERT(0);
  190. #endif
  191. xfs_trans_brelse(tp, bp);
  192. return XFS_ERROR(EFSCORRUPTED);
  193. }
  194. }
  195. xfs_inobp_check(mp, bp);
  196. *bpp = bp;
  197. *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
  198. return 0;
  199. }
  200. /*
  201. * Move inode type and inode format specific information from the
  202. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  203. * this means set if_rdev to the proper value. For files, directories,
  204. * and symlinks this means to bring in the in-line data or extent
  205. * pointers. For a file in B-tree format, only the root is immediately
  206. * brought in-core. The rest will be in-lined in if_extents when it
  207. * is first referenced (see xfs_iread_extents()).
  208. */
  209. STATIC int
  210. xfs_iformat(
  211. xfs_inode_t *ip,
  212. xfs_dinode_t *dip)
  213. {
  214. xfs_attr_shortform_t *atp;
  215. int size;
  216. int error = 0;
  217. xfs_fsize_t di_size;
  218. if (unlikely(be32_to_cpu(dip->di_nextents) +
  219. be16_to_cpu(dip->di_anextents) >
  220. be64_to_cpu(dip->di_nblocks))) {
  221. xfs_warn(ip->i_mount,
  222. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  223. (unsigned long long)ip->i_ino,
  224. (int)(be32_to_cpu(dip->di_nextents) +
  225. be16_to_cpu(dip->di_anextents)),
  226. (unsigned long long)
  227. be64_to_cpu(dip->di_nblocks));
  228. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  229. ip->i_mount, dip);
  230. return XFS_ERROR(EFSCORRUPTED);
  231. }
  232. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  233. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  234. (unsigned long long)ip->i_ino,
  235. dip->di_forkoff);
  236. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  237. ip->i_mount, dip);
  238. return XFS_ERROR(EFSCORRUPTED);
  239. }
  240. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  241. !ip->i_mount->m_rtdev_targp)) {
  242. xfs_warn(ip->i_mount,
  243. "corrupt dinode %Lu, has realtime flag set.",
  244. ip->i_ino);
  245. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  246. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  247. return XFS_ERROR(EFSCORRUPTED);
  248. }
  249. switch (ip->i_d.di_mode & S_IFMT) {
  250. case S_IFIFO:
  251. case S_IFCHR:
  252. case S_IFBLK:
  253. case S_IFSOCK:
  254. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  255. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  256. ip->i_mount, dip);
  257. return XFS_ERROR(EFSCORRUPTED);
  258. }
  259. ip->i_d.di_size = 0;
  260. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  261. break;
  262. case S_IFREG:
  263. case S_IFLNK:
  264. case S_IFDIR:
  265. switch (dip->di_format) {
  266. case XFS_DINODE_FMT_LOCAL:
  267. /*
  268. * no local regular files yet
  269. */
  270. if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
  271. xfs_warn(ip->i_mount,
  272. "corrupt inode %Lu (local format for regular file).",
  273. (unsigned long long) ip->i_ino);
  274. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  275. XFS_ERRLEVEL_LOW,
  276. ip->i_mount, dip);
  277. return XFS_ERROR(EFSCORRUPTED);
  278. }
  279. di_size = be64_to_cpu(dip->di_size);
  280. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  281. xfs_warn(ip->i_mount,
  282. "corrupt inode %Lu (bad size %Ld for local inode).",
  283. (unsigned long long) ip->i_ino,
  284. (long long) di_size);
  285. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  286. XFS_ERRLEVEL_LOW,
  287. ip->i_mount, dip);
  288. return XFS_ERROR(EFSCORRUPTED);
  289. }
  290. size = (int)di_size;
  291. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  292. break;
  293. case XFS_DINODE_FMT_EXTENTS:
  294. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  295. break;
  296. case XFS_DINODE_FMT_BTREE:
  297. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  298. break;
  299. default:
  300. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  301. ip->i_mount);
  302. return XFS_ERROR(EFSCORRUPTED);
  303. }
  304. break;
  305. default:
  306. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  307. return XFS_ERROR(EFSCORRUPTED);
  308. }
  309. if (error) {
  310. return error;
  311. }
  312. if (!XFS_DFORK_Q(dip))
  313. return 0;
  314. ASSERT(ip->i_afp == NULL);
  315. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  316. switch (dip->di_aformat) {
  317. case XFS_DINODE_FMT_LOCAL:
  318. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  319. size = be16_to_cpu(atp->hdr.totsize);
  320. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  321. xfs_warn(ip->i_mount,
  322. "corrupt inode %Lu (bad attr fork size %Ld).",
  323. (unsigned long long) ip->i_ino,
  324. (long long) size);
  325. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  326. XFS_ERRLEVEL_LOW,
  327. ip->i_mount, dip);
  328. return XFS_ERROR(EFSCORRUPTED);
  329. }
  330. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  331. break;
  332. case XFS_DINODE_FMT_EXTENTS:
  333. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  334. break;
  335. case XFS_DINODE_FMT_BTREE:
  336. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  337. break;
  338. default:
  339. error = XFS_ERROR(EFSCORRUPTED);
  340. break;
  341. }
  342. if (error) {
  343. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  344. ip->i_afp = NULL;
  345. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  346. }
  347. return error;
  348. }
  349. /*
  350. * The file is in-lined in the on-disk inode.
  351. * If it fits into if_inline_data, then copy
  352. * it there, otherwise allocate a buffer for it
  353. * and copy the data there. Either way, set
  354. * if_data to point at the data.
  355. * If we allocate a buffer for the data, make
  356. * sure that its size is a multiple of 4 and
  357. * record the real size in i_real_bytes.
  358. */
  359. STATIC int
  360. xfs_iformat_local(
  361. xfs_inode_t *ip,
  362. xfs_dinode_t *dip,
  363. int whichfork,
  364. int size)
  365. {
  366. xfs_ifork_t *ifp;
  367. int real_size;
  368. /*
  369. * If the size is unreasonable, then something
  370. * is wrong and we just bail out rather than crash in
  371. * kmem_alloc() or memcpy() below.
  372. */
  373. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  374. xfs_warn(ip->i_mount,
  375. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  376. (unsigned long long) ip->i_ino, size,
  377. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  378. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  379. ip->i_mount, dip);
  380. return XFS_ERROR(EFSCORRUPTED);
  381. }
  382. ifp = XFS_IFORK_PTR(ip, whichfork);
  383. real_size = 0;
  384. if (size == 0)
  385. ifp->if_u1.if_data = NULL;
  386. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  387. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  388. else {
  389. real_size = roundup(size, 4);
  390. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  391. }
  392. ifp->if_bytes = size;
  393. ifp->if_real_bytes = real_size;
  394. if (size)
  395. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  396. ifp->if_flags &= ~XFS_IFEXTENTS;
  397. ifp->if_flags |= XFS_IFINLINE;
  398. return 0;
  399. }
  400. /*
  401. * The file consists of a set of extents all
  402. * of which fit into the on-disk inode.
  403. * If there are few enough extents to fit into
  404. * the if_inline_ext, then copy them there.
  405. * Otherwise allocate a buffer for them and copy
  406. * them into it. Either way, set if_extents
  407. * to point at the extents.
  408. */
  409. STATIC int
  410. xfs_iformat_extents(
  411. xfs_inode_t *ip,
  412. xfs_dinode_t *dip,
  413. int whichfork)
  414. {
  415. xfs_bmbt_rec_t *dp;
  416. xfs_ifork_t *ifp;
  417. int nex;
  418. int size;
  419. int i;
  420. ifp = XFS_IFORK_PTR(ip, whichfork);
  421. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  422. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  423. /*
  424. * If the number of extents is unreasonable, then something
  425. * is wrong and we just bail out rather than crash in
  426. * kmem_alloc() or memcpy() below.
  427. */
  428. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  429. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  430. (unsigned long long) ip->i_ino, nex);
  431. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  432. ip->i_mount, dip);
  433. return XFS_ERROR(EFSCORRUPTED);
  434. }
  435. ifp->if_real_bytes = 0;
  436. if (nex == 0)
  437. ifp->if_u1.if_extents = NULL;
  438. else if (nex <= XFS_INLINE_EXTS)
  439. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  440. else
  441. xfs_iext_add(ifp, 0, nex);
  442. ifp->if_bytes = size;
  443. if (size) {
  444. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  445. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  446. for (i = 0; i < nex; i++, dp++) {
  447. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  448. ep->l0 = get_unaligned_be64(&dp->l0);
  449. ep->l1 = get_unaligned_be64(&dp->l1);
  450. }
  451. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  452. if (whichfork != XFS_DATA_FORK ||
  453. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  454. if (unlikely(xfs_check_nostate_extents(
  455. ifp, 0, nex))) {
  456. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  457. XFS_ERRLEVEL_LOW,
  458. ip->i_mount);
  459. return XFS_ERROR(EFSCORRUPTED);
  460. }
  461. }
  462. ifp->if_flags |= XFS_IFEXTENTS;
  463. return 0;
  464. }
  465. /*
  466. * The file has too many extents to fit into
  467. * the inode, so they are in B-tree format.
  468. * Allocate a buffer for the root of the B-tree
  469. * and copy the root into it. The i_extents
  470. * field will remain NULL until all of the
  471. * extents are read in (when they are needed).
  472. */
  473. STATIC int
  474. xfs_iformat_btree(
  475. xfs_inode_t *ip,
  476. xfs_dinode_t *dip,
  477. int whichfork)
  478. {
  479. xfs_bmdr_block_t *dfp;
  480. xfs_ifork_t *ifp;
  481. /* REFERENCED */
  482. int nrecs;
  483. int size;
  484. ifp = XFS_IFORK_PTR(ip, whichfork);
  485. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  486. size = XFS_BMAP_BROOT_SPACE(dfp);
  487. nrecs = be16_to_cpu(dfp->bb_numrecs);
  488. /*
  489. * blow out if -- fork has less extents than can fit in
  490. * fork (fork shouldn't be a btree format), root btree
  491. * block has more records than can fit into the fork,
  492. * or the number of extents is greater than the number of
  493. * blocks.
  494. */
  495. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
  496. XFS_IFORK_MAXEXT(ip, whichfork) ||
  497. XFS_BMDR_SPACE_CALC(nrecs) >
  498. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
  499. XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  500. xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
  501. (unsigned long long) ip->i_ino);
  502. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  503. ip->i_mount, dip);
  504. return XFS_ERROR(EFSCORRUPTED);
  505. }
  506. ifp->if_broot_bytes = size;
  507. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  508. ASSERT(ifp->if_broot != NULL);
  509. /*
  510. * Copy and convert from the on-disk structure
  511. * to the in-memory structure.
  512. */
  513. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  514. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  515. ifp->if_broot, size);
  516. ifp->if_flags &= ~XFS_IFEXTENTS;
  517. ifp->if_flags |= XFS_IFBROOT;
  518. return 0;
  519. }
  520. STATIC void
  521. xfs_dinode_from_disk(
  522. xfs_icdinode_t *to,
  523. xfs_dinode_t *from)
  524. {
  525. to->di_magic = be16_to_cpu(from->di_magic);
  526. to->di_mode = be16_to_cpu(from->di_mode);
  527. to->di_version = from ->di_version;
  528. to->di_format = from->di_format;
  529. to->di_onlink = be16_to_cpu(from->di_onlink);
  530. to->di_uid = be32_to_cpu(from->di_uid);
  531. to->di_gid = be32_to_cpu(from->di_gid);
  532. to->di_nlink = be32_to_cpu(from->di_nlink);
  533. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  534. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  535. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  536. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  537. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  538. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  539. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  540. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  541. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  542. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  543. to->di_size = be64_to_cpu(from->di_size);
  544. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  545. to->di_extsize = be32_to_cpu(from->di_extsize);
  546. to->di_nextents = be32_to_cpu(from->di_nextents);
  547. to->di_anextents = be16_to_cpu(from->di_anextents);
  548. to->di_forkoff = from->di_forkoff;
  549. to->di_aformat = from->di_aformat;
  550. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  551. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  552. to->di_flags = be16_to_cpu(from->di_flags);
  553. to->di_gen = be32_to_cpu(from->di_gen);
  554. }
  555. void
  556. xfs_dinode_to_disk(
  557. xfs_dinode_t *to,
  558. xfs_icdinode_t *from)
  559. {
  560. to->di_magic = cpu_to_be16(from->di_magic);
  561. to->di_mode = cpu_to_be16(from->di_mode);
  562. to->di_version = from ->di_version;
  563. to->di_format = from->di_format;
  564. to->di_onlink = cpu_to_be16(from->di_onlink);
  565. to->di_uid = cpu_to_be32(from->di_uid);
  566. to->di_gid = cpu_to_be32(from->di_gid);
  567. to->di_nlink = cpu_to_be32(from->di_nlink);
  568. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  569. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  570. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  571. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  572. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  573. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  574. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  575. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  576. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  577. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  578. to->di_size = cpu_to_be64(from->di_size);
  579. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  580. to->di_extsize = cpu_to_be32(from->di_extsize);
  581. to->di_nextents = cpu_to_be32(from->di_nextents);
  582. to->di_anextents = cpu_to_be16(from->di_anextents);
  583. to->di_forkoff = from->di_forkoff;
  584. to->di_aformat = from->di_aformat;
  585. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  586. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  587. to->di_flags = cpu_to_be16(from->di_flags);
  588. to->di_gen = cpu_to_be32(from->di_gen);
  589. }
  590. STATIC uint
  591. _xfs_dic2xflags(
  592. __uint16_t di_flags)
  593. {
  594. uint flags = 0;
  595. if (di_flags & XFS_DIFLAG_ANY) {
  596. if (di_flags & XFS_DIFLAG_REALTIME)
  597. flags |= XFS_XFLAG_REALTIME;
  598. if (di_flags & XFS_DIFLAG_PREALLOC)
  599. flags |= XFS_XFLAG_PREALLOC;
  600. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  601. flags |= XFS_XFLAG_IMMUTABLE;
  602. if (di_flags & XFS_DIFLAG_APPEND)
  603. flags |= XFS_XFLAG_APPEND;
  604. if (di_flags & XFS_DIFLAG_SYNC)
  605. flags |= XFS_XFLAG_SYNC;
  606. if (di_flags & XFS_DIFLAG_NOATIME)
  607. flags |= XFS_XFLAG_NOATIME;
  608. if (di_flags & XFS_DIFLAG_NODUMP)
  609. flags |= XFS_XFLAG_NODUMP;
  610. if (di_flags & XFS_DIFLAG_RTINHERIT)
  611. flags |= XFS_XFLAG_RTINHERIT;
  612. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  613. flags |= XFS_XFLAG_PROJINHERIT;
  614. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  615. flags |= XFS_XFLAG_NOSYMLINKS;
  616. if (di_flags & XFS_DIFLAG_EXTSIZE)
  617. flags |= XFS_XFLAG_EXTSIZE;
  618. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  619. flags |= XFS_XFLAG_EXTSZINHERIT;
  620. if (di_flags & XFS_DIFLAG_NODEFRAG)
  621. flags |= XFS_XFLAG_NODEFRAG;
  622. if (di_flags & XFS_DIFLAG_FILESTREAM)
  623. flags |= XFS_XFLAG_FILESTREAM;
  624. }
  625. return flags;
  626. }
  627. uint
  628. xfs_ip2xflags(
  629. xfs_inode_t *ip)
  630. {
  631. xfs_icdinode_t *dic = &ip->i_d;
  632. return _xfs_dic2xflags(dic->di_flags) |
  633. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  634. }
  635. uint
  636. xfs_dic2xflags(
  637. xfs_dinode_t *dip)
  638. {
  639. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  640. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  641. }
  642. /*
  643. * Read the disk inode attributes into the in-core inode structure.
  644. */
  645. int
  646. xfs_iread(
  647. xfs_mount_t *mp,
  648. xfs_trans_t *tp,
  649. xfs_inode_t *ip,
  650. uint iget_flags)
  651. {
  652. xfs_buf_t *bp;
  653. xfs_dinode_t *dip;
  654. int error;
  655. /*
  656. * Fill in the location information in the in-core inode.
  657. */
  658. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  659. if (error)
  660. return error;
  661. /*
  662. * Get pointers to the on-disk inode and the buffer containing it.
  663. */
  664. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
  665. if (error)
  666. return error;
  667. /*
  668. * If we got something that isn't an inode it means someone
  669. * (nfs or dmi) has a stale handle.
  670. */
  671. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
  672. #ifdef DEBUG
  673. xfs_alert(mp,
  674. "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
  675. __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
  676. #endif /* DEBUG */
  677. error = XFS_ERROR(EINVAL);
  678. goto out_brelse;
  679. }
  680. /*
  681. * If the on-disk inode is already linked to a directory
  682. * entry, copy all of the inode into the in-core inode.
  683. * xfs_iformat() handles copying in the inode format
  684. * specific information.
  685. * Otherwise, just get the truly permanent information.
  686. */
  687. if (dip->di_mode) {
  688. xfs_dinode_from_disk(&ip->i_d, dip);
  689. error = xfs_iformat(ip, dip);
  690. if (error) {
  691. #ifdef DEBUG
  692. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  693. __func__, error);
  694. #endif /* DEBUG */
  695. goto out_brelse;
  696. }
  697. } else {
  698. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  699. ip->i_d.di_version = dip->di_version;
  700. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  701. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  702. /*
  703. * Make sure to pull in the mode here as well in
  704. * case the inode is released without being used.
  705. * This ensures that xfs_inactive() will see that
  706. * the inode is already free and not try to mess
  707. * with the uninitialized part of it.
  708. */
  709. ip->i_d.di_mode = 0;
  710. }
  711. /*
  712. * The inode format changed when we moved the link count and
  713. * made it 32 bits long. If this is an old format inode,
  714. * convert it in memory to look like a new one. If it gets
  715. * flushed to disk we will convert back before flushing or
  716. * logging it. We zero out the new projid field and the old link
  717. * count field. We'll handle clearing the pad field (the remains
  718. * of the old uuid field) when we actually convert the inode to
  719. * the new format. We don't change the version number so that we
  720. * can distinguish this from a real new format inode.
  721. */
  722. if (ip->i_d.di_version == 1) {
  723. ip->i_d.di_nlink = ip->i_d.di_onlink;
  724. ip->i_d.di_onlink = 0;
  725. xfs_set_projid(ip, 0);
  726. }
  727. ip->i_delayed_blks = 0;
  728. /*
  729. * Mark the buffer containing the inode as something to keep
  730. * around for a while. This helps to keep recently accessed
  731. * meta-data in-core longer.
  732. */
  733. xfs_buf_set_ref(bp, XFS_INO_REF);
  734. /*
  735. * Use xfs_trans_brelse() to release the buffer containing the
  736. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  737. * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
  738. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  739. * will only release the buffer if it is not dirty within the
  740. * transaction. It will be OK to release the buffer in this case,
  741. * because inodes on disk are never destroyed and we will be
  742. * locking the new in-core inode before putting it in the hash
  743. * table where other processes can find it. Thus we don't have
  744. * to worry about the inode being changed just because we released
  745. * the buffer.
  746. */
  747. out_brelse:
  748. xfs_trans_brelse(tp, bp);
  749. return error;
  750. }
  751. /*
  752. * Read in extents from a btree-format inode.
  753. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  754. */
  755. int
  756. xfs_iread_extents(
  757. xfs_trans_t *tp,
  758. xfs_inode_t *ip,
  759. int whichfork)
  760. {
  761. int error;
  762. xfs_ifork_t *ifp;
  763. xfs_extnum_t nextents;
  764. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  765. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  766. ip->i_mount);
  767. return XFS_ERROR(EFSCORRUPTED);
  768. }
  769. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  770. ifp = XFS_IFORK_PTR(ip, whichfork);
  771. /*
  772. * We know that the size is valid (it's checked in iformat_btree)
  773. */
  774. ifp->if_bytes = ifp->if_real_bytes = 0;
  775. ifp->if_flags |= XFS_IFEXTENTS;
  776. xfs_iext_add(ifp, 0, nextents);
  777. error = xfs_bmap_read_extents(tp, ip, whichfork);
  778. if (error) {
  779. xfs_iext_destroy(ifp);
  780. ifp->if_flags &= ~XFS_IFEXTENTS;
  781. return error;
  782. }
  783. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  784. return 0;
  785. }
  786. /*
  787. * Allocate an inode on disk and return a copy of its in-core version.
  788. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  789. * appropriately within the inode. The uid and gid for the inode are
  790. * set according to the contents of the given cred structure.
  791. *
  792. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  793. * has a free inode available, call xfs_iget()
  794. * to obtain the in-core version of the allocated inode. Finally,
  795. * fill in the inode and log its initial contents. In this case,
  796. * ialloc_context would be set to NULL and call_again set to false.
  797. *
  798. * If xfs_dialloc() does not have an available inode,
  799. * it will replenish its supply by doing an allocation. Since we can
  800. * only do one allocation within a transaction without deadlocks, we
  801. * must commit the current transaction before returning the inode itself.
  802. * In this case, therefore, we will set call_again to true and return.
  803. * The caller should then commit the current transaction, start a new
  804. * transaction, and call xfs_ialloc() again to actually get the inode.
  805. *
  806. * To ensure that some other process does not grab the inode that
  807. * was allocated during the first call to xfs_ialloc(), this routine
  808. * also returns the [locked] bp pointing to the head of the freelist
  809. * as ialloc_context. The caller should hold this buffer across
  810. * the commit and pass it back into this routine on the second call.
  811. *
  812. * If we are allocating quota inodes, we do not have a parent inode
  813. * to attach to or associate with (i.e. pip == NULL) because they
  814. * are not linked into the directory structure - they are attached
  815. * directly to the superblock - and so have no parent.
  816. */
  817. int
  818. xfs_ialloc(
  819. xfs_trans_t *tp,
  820. xfs_inode_t *pip,
  821. umode_t mode,
  822. xfs_nlink_t nlink,
  823. xfs_dev_t rdev,
  824. prid_t prid,
  825. int okalloc,
  826. xfs_buf_t **ialloc_context,
  827. boolean_t *call_again,
  828. xfs_inode_t **ipp)
  829. {
  830. xfs_ino_t ino;
  831. xfs_inode_t *ip;
  832. uint flags;
  833. int error;
  834. timespec_t tv;
  835. int filestreams = 0;
  836. /*
  837. * Call the space management code to pick
  838. * the on-disk inode to be allocated.
  839. */
  840. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  841. ialloc_context, call_again, &ino);
  842. if (error)
  843. return error;
  844. if (*call_again || ino == NULLFSINO) {
  845. *ipp = NULL;
  846. return 0;
  847. }
  848. ASSERT(*ialloc_context == NULL);
  849. /*
  850. * Get the in-core inode with the lock held exclusively.
  851. * This is because we're setting fields here we need
  852. * to prevent others from looking at until we're done.
  853. */
  854. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  855. XFS_ILOCK_EXCL, &ip);
  856. if (error)
  857. return error;
  858. ASSERT(ip != NULL);
  859. ip->i_d.di_mode = mode;
  860. ip->i_d.di_onlink = 0;
  861. ip->i_d.di_nlink = nlink;
  862. ASSERT(ip->i_d.di_nlink == nlink);
  863. ip->i_d.di_uid = current_fsuid();
  864. ip->i_d.di_gid = current_fsgid();
  865. xfs_set_projid(ip, prid);
  866. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  867. /*
  868. * If the superblock version is up to where we support new format
  869. * inodes and this is currently an old format inode, then change
  870. * the inode version number now. This way we only do the conversion
  871. * here rather than here and in the flush/logging code.
  872. */
  873. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  874. ip->i_d.di_version == 1) {
  875. ip->i_d.di_version = 2;
  876. /*
  877. * We've already zeroed the old link count, the projid field,
  878. * and the pad field.
  879. */
  880. }
  881. /*
  882. * Project ids won't be stored on disk if we are using a version 1 inode.
  883. */
  884. if ((prid != 0) && (ip->i_d.di_version == 1))
  885. xfs_bump_ino_vers2(tp, ip);
  886. if (pip && XFS_INHERIT_GID(pip)) {
  887. ip->i_d.di_gid = pip->i_d.di_gid;
  888. if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
  889. ip->i_d.di_mode |= S_ISGID;
  890. }
  891. }
  892. /*
  893. * If the group ID of the new file does not match the effective group
  894. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  895. * (and only if the irix_sgid_inherit compatibility variable is set).
  896. */
  897. if ((irix_sgid_inherit) &&
  898. (ip->i_d.di_mode & S_ISGID) &&
  899. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  900. ip->i_d.di_mode &= ~S_ISGID;
  901. }
  902. ip->i_d.di_size = 0;
  903. ip->i_d.di_nextents = 0;
  904. ASSERT(ip->i_d.di_nblocks == 0);
  905. nanotime(&tv);
  906. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  907. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  908. ip->i_d.di_atime = ip->i_d.di_mtime;
  909. ip->i_d.di_ctime = ip->i_d.di_mtime;
  910. /*
  911. * di_gen will have been taken care of in xfs_iread.
  912. */
  913. ip->i_d.di_extsize = 0;
  914. ip->i_d.di_dmevmask = 0;
  915. ip->i_d.di_dmstate = 0;
  916. ip->i_d.di_flags = 0;
  917. flags = XFS_ILOG_CORE;
  918. switch (mode & S_IFMT) {
  919. case S_IFIFO:
  920. case S_IFCHR:
  921. case S_IFBLK:
  922. case S_IFSOCK:
  923. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  924. ip->i_df.if_u2.if_rdev = rdev;
  925. ip->i_df.if_flags = 0;
  926. flags |= XFS_ILOG_DEV;
  927. break;
  928. case S_IFREG:
  929. /*
  930. * we can't set up filestreams until after the VFS inode
  931. * is set up properly.
  932. */
  933. if (pip && xfs_inode_is_filestream(pip))
  934. filestreams = 1;
  935. /* fall through */
  936. case S_IFDIR:
  937. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  938. uint di_flags = 0;
  939. if (S_ISDIR(mode)) {
  940. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  941. di_flags |= XFS_DIFLAG_RTINHERIT;
  942. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  943. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  944. ip->i_d.di_extsize = pip->i_d.di_extsize;
  945. }
  946. } else if (S_ISREG(mode)) {
  947. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  948. di_flags |= XFS_DIFLAG_REALTIME;
  949. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  950. di_flags |= XFS_DIFLAG_EXTSIZE;
  951. ip->i_d.di_extsize = pip->i_d.di_extsize;
  952. }
  953. }
  954. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  955. xfs_inherit_noatime)
  956. di_flags |= XFS_DIFLAG_NOATIME;
  957. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  958. xfs_inherit_nodump)
  959. di_flags |= XFS_DIFLAG_NODUMP;
  960. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  961. xfs_inherit_sync)
  962. di_flags |= XFS_DIFLAG_SYNC;
  963. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  964. xfs_inherit_nosymlinks)
  965. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  966. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  967. di_flags |= XFS_DIFLAG_PROJINHERIT;
  968. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  969. xfs_inherit_nodefrag)
  970. di_flags |= XFS_DIFLAG_NODEFRAG;
  971. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  972. di_flags |= XFS_DIFLAG_FILESTREAM;
  973. ip->i_d.di_flags |= di_flags;
  974. }
  975. /* FALLTHROUGH */
  976. case S_IFLNK:
  977. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  978. ip->i_df.if_flags = XFS_IFEXTENTS;
  979. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  980. ip->i_df.if_u1.if_extents = NULL;
  981. break;
  982. default:
  983. ASSERT(0);
  984. }
  985. /*
  986. * Attribute fork settings for new inode.
  987. */
  988. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  989. ip->i_d.di_anextents = 0;
  990. /*
  991. * Log the new values stuffed into the inode.
  992. */
  993. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  994. xfs_trans_log_inode(tp, ip, flags);
  995. /* now that we have an i_mode we can setup inode ops and unlock */
  996. xfs_setup_inode(ip);
  997. /* now we have set up the vfs inode we can associate the filestream */
  998. if (filestreams) {
  999. error = xfs_filestream_associate(pip, ip);
  1000. if (error < 0)
  1001. return -error;
  1002. if (!error)
  1003. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1004. }
  1005. *ipp = ip;
  1006. return 0;
  1007. }
  1008. /*
  1009. * Free up the underlying blocks past new_size. The new size must be smaller
  1010. * than the current size. This routine can be used both for the attribute and
  1011. * data fork, and does not modify the inode size, which is left to the caller.
  1012. *
  1013. * The transaction passed to this routine must have made a permanent log
  1014. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1015. * given transaction and start new ones, so make sure everything involved in
  1016. * the transaction is tidy before calling here. Some transaction will be
  1017. * returned to the caller to be committed. The incoming transaction must
  1018. * already include the inode, and both inode locks must be held exclusively.
  1019. * The inode must also be "held" within the transaction. On return the inode
  1020. * will be "held" within the returned transaction. This routine does NOT
  1021. * require any disk space to be reserved for it within the transaction.
  1022. *
  1023. * If we get an error, we must return with the inode locked and linked into the
  1024. * current transaction. This keeps things simple for the higher level code,
  1025. * because it always knows that the inode is locked and held in the transaction
  1026. * that returns to it whether errors occur or not. We don't mark the inode
  1027. * dirty on error so that transactions can be easily aborted if possible.
  1028. */
  1029. int
  1030. xfs_itruncate_extents(
  1031. struct xfs_trans **tpp,
  1032. struct xfs_inode *ip,
  1033. int whichfork,
  1034. xfs_fsize_t new_size)
  1035. {
  1036. struct xfs_mount *mp = ip->i_mount;
  1037. struct xfs_trans *tp = *tpp;
  1038. struct xfs_trans *ntp;
  1039. xfs_bmap_free_t free_list;
  1040. xfs_fsblock_t first_block;
  1041. xfs_fileoff_t first_unmap_block;
  1042. xfs_fileoff_t last_block;
  1043. xfs_filblks_t unmap_len;
  1044. int committed;
  1045. int error = 0;
  1046. int done = 0;
  1047. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1048. ASSERT(new_size <= XFS_ISIZE(ip));
  1049. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1050. ASSERT(ip->i_itemp != NULL);
  1051. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1052. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1053. trace_xfs_itruncate_extents_start(ip, new_size);
  1054. /*
  1055. * Since it is possible for space to become allocated beyond
  1056. * the end of the file (in a crash where the space is allocated
  1057. * but the inode size is not yet updated), simply remove any
  1058. * blocks which show up between the new EOF and the maximum
  1059. * possible file size. If the first block to be removed is
  1060. * beyond the maximum file size (ie it is the same as last_block),
  1061. * then there is nothing to do.
  1062. */
  1063. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1064. last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
  1065. if (first_unmap_block == last_block)
  1066. return 0;
  1067. ASSERT(first_unmap_block < last_block);
  1068. unmap_len = last_block - first_unmap_block + 1;
  1069. while (!done) {
  1070. xfs_bmap_init(&free_list, &first_block);
  1071. error = xfs_bunmapi(tp, ip,
  1072. first_unmap_block, unmap_len,
  1073. xfs_bmapi_aflag(whichfork),
  1074. XFS_ITRUNC_MAX_EXTENTS,
  1075. &first_block, &free_list,
  1076. &done);
  1077. if (error)
  1078. goto out_bmap_cancel;
  1079. /*
  1080. * Duplicate the transaction that has the permanent
  1081. * reservation and commit the old transaction.
  1082. */
  1083. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1084. if (committed)
  1085. xfs_trans_ijoin(tp, ip, 0);
  1086. if (error)
  1087. goto out_bmap_cancel;
  1088. if (committed) {
  1089. /*
  1090. * Mark the inode dirty so it will be logged and
  1091. * moved forward in the log as part of every commit.
  1092. */
  1093. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1094. }
  1095. ntp = xfs_trans_dup(tp);
  1096. error = xfs_trans_commit(tp, 0);
  1097. tp = ntp;
  1098. xfs_trans_ijoin(tp, ip, 0);
  1099. if (error)
  1100. goto out;
  1101. /*
  1102. * Transaction commit worked ok so we can drop the extra ticket
  1103. * reference that we gained in xfs_trans_dup()
  1104. */
  1105. xfs_log_ticket_put(tp->t_ticket);
  1106. error = xfs_trans_reserve(tp, 0,
  1107. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1108. XFS_TRANS_PERM_LOG_RES,
  1109. XFS_ITRUNCATE_LOG_COUNT);
  1110. if (error)
  1111. goto out;
  1112. }
  1113. /*
  1114. * Always re-log the inode so that our permanent transaction can keep
  1115. * on rolling it forward in the log.
  1116. */
  1117. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1118. trace_xfs_itruncate_extents_end(ip, new_size);
  1119. out:
  1120. *tpp = tp;
  1121. return error;
  1122. out_bmap_cancel:
  1123. /*
  1124. * If the bunmapi call encounters an error, return to the caller where
  1125. * the transaction can be properly aborted. We just need to make sure
  1126. * we're not holding any resources that we were not when we came in.
  1127. */
  1128. xfs_bmap_cancel(&free_list);
  1129. goto out;
  1130. }
  1131. /*
  1132. * This is called when the inode's link count goes to 0.
  1133. * We place the on-disk inode on a list in the AGI. It
  1134. * will be pulled from this list when the inode is freed.
  1135. */
  1136. int
  1137. xfs_iunlink(
  1138. xfs_trans_t *tp,
  1139. xfs_inode_t *ip)
  1140. {
  1141. xfs_mount_t *mp;
  1142. xfs_agi_t *agi;
  1143. xfs_dinode_t *dip;
  1144. xfs_buf_t *agibp;
  1145. xfs_buf_t *ibp;
  1146. xfs_agino_t agino;
  1147. short bucket_index;
  1148. int offset;
  1149. int error;
  1150. ASSERT(ip->i_d.di_nlink == 0);
  1151. ASSERT(ip->i_d.di_mode != 0);
  1152. mp = tp->t_mountp;
  1153. /*
  1154. * Get the agi buffer first. It ensures lock ordering
  1155. * on the list.
  1156. */
  1157. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1158. if (error)
  1159. return error;
  1160. agi = XFS_BUF_TO_AGI(agibp);
  1161. /*
  1162. * Get the index into the agi hash table for the
  1163. * list this inode will go on.
  1164. */
  1165. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1166. ASSERT(agino != 0);
  1167. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1168. ASSERT(agi->agi_unlinked[bucket_index]);
  1169. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1170. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1171. /*
  1172. * There is already another inode in the bucket we need
  1173. * to add ourselves to. Add us at the front of the list.
  1174. * Here we put the head pointer into our next pointer,
  1175. * and then we fall through to point the head at us.
  1176. */
  1177. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1178. 0, 0);
  1179. if (error)
  1180. return error;
  1181. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1182. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1183. offset = ip->i_imap.im_boffset +
  1184. offsetof(xfs_dinode_t, di_next_unlinked);
  1185. xfs_trans_inode_buf(tp, ibp);
  1186. xfs_trans_log_buf(tp, ibp, offset,
  1187. (offset + sizeof(xfs_agino_t) - 1));
  1188. xfs_inobp_check(mp, ibp);
  1189. }
  1190. /*
  1191. * Point the bucket head pointer at the inode being inserted.
  1192. */
  1193. ASSERT(agino != 0);
  1194. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1195. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1196. (sizeof(xfs_agino_t) * bucket_index);
  1197. xfs_trans_log_buf(tp, agibp, offset,
  1198. (offset + sizeof(xfs_agino_t) - 1));
  1199. return 0;
  1200. }
  1201. /*
  1202. * Pull the on-disk inode from the AGI unlinked list.
  1203. */
  1204. STATIC int
  1205. xfs_iunlink_remove(
  1206. xfs_trans_t *tp,
  1207. xfs_inode_t *ip)
  1208. {
  1209. xfs_ino_t next_ino;
  1210. xfs_mount_t *mp;
  1211. xfs_agi_t *agi;
  1212. xfs_dinode_t *dip;
  1213. xfs_buf_t *agibp;
  1214. xfs_buf_t *ibp;
  1215. xfs_agnumber_t agno;
  1216. xfs_agino_t agino;
  1217. xfs_agino_t next_agino;
  1218. xfs_buf_t *last_ibp;
  1219. xfs_dinode_t *last_dip = NULL;
  1220. short bucket_index;
  1221. int offset, last_offset = 0;
  1222. int error;
  1223. mp = tp->t_mountp;
  1224. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1225. /*
  1226. * Get the agi buffer first. It ensures lock ordering
  1227. * on the list.
  1228. */
  1229. error = xfs_read_agi(mp, tp, agno, &agibp);
  1230. if (error)
  1231. return error;
  1232. agi = XFS_BUF_TO_AGI(agibp);
  1233. /*
  1234. * Get the index into the agi hash table for the
  1235. * list this inode will go on.
  1236. */
  1237. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1238. ASSERT(agino != 0);
  1239. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1240. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1241. ASSERT(agi->agi_unlinked[bucket_index]);
  1242. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1243. /*
  1244. * We're at the head of the list. Get the inode's on-disk
  1245. * buffer to see if there is anyone after us on the list.
  1246. * Only modify our next pointer if it is not already NULLAGINO.
  1247. * This saves us the overhead of dealing with the buffer when
  1248. * there is no need to change it.
  1249. */
  1250. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1251. 0, 0);
  1252. if (error) {
  1253. xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
  1254. __func__, error);
  1255. return error;
  1256. }
  1257. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1258. ASSERT(next_agino != 0);
  1259. if (next_agino != NULLAGINO) {
  1260. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1261. offset = ip->i_imap.im_boffset +
  1262. offsetof(xfs_dinode_t, di_next_unlinked);
  1263. xfs_trans_inode_buf(tp, ibp);
  1264. xfs_trans_log_buf(tp, ibp, offset,
  1265. (offset + sizeof(xfs_agino_t) - 1));
  1266. xfs_inobp_check(mp, ibp);
  1267. } else {
  1268. xfs_trans_brelse(tp, ibp);
  1269. }
  1270. /*
  1271. * Point the bucket head pointer at the next inode.
  1272. */
  1273. ASSERT(next_agino != 0);
  1274. ASSERT(next_agino != agino);
  1275. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1276. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1277. (sizeof(xfs_agino_t) * bucket_index);
  1278. xfs_trans_log_buf(tp, agibp, offset,
  1279. (offset + sizeof(xfs_agino_t) - 1));
  1280. } else {
  1281. /*
  1282. * We need to search the list for the inode being freed.
  1283. */
  1284. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1285. last_ibp = NULL;
  1286. while (next_agino != agino) {
  1287. struct xfs_imap imap;
  1288. if (last_ibp)
  1289. xfs_trans_brelse(tp, last_ibp);
  1290. imap.im_blkno = 0;
  1291. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1292. error = xfs_imap(mp, tp, next_ino, &imap, 0);
  1293. if (error) {
  1294. xfs_warn(mp,
  1295. "%s: xfs_imap returned error %d.",
  1296. __func__, error);
  1297. return error;
  1298. }
  1299. error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
  1300. &last_ibp, 0, 0);
  1301. if (error) {
  1302. xfs_warn(mp,
  1303. "%s: xfs_imap_to_bp returned error %d.",
  1304. __func__, error);
  1305. return error;
  1306. }
  1307. last_offset = imap.im_boffset;
  1308. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1309. ASSERT(next_agino != NULLAGINO);
  1310. ASSERT(next_agino != 0);
  1311. }
  1312. /*
  1313. * Now last_ibp points to the buffer previous to us on the
  1314. * unlinked list. Pull us from the list.
  1315. */
  1316. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1317. 0, 0);
  1318. if (error) {
  1319. xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
  1320. __func__, error);
  1321. return error;
  1322. }
  1323. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1324. ASSERT(next_agino != 0);
  1325. ASSERT(next_agino != agino);
  1326. if (next_agino != NULLAGINO) {
  1327. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1328. offset = ip->i_imap.im_boffset +
  1329. offsetof(xfs_dinode_t, di_next_unlinked);
  1330. xfs_trans_inode_buf(tp, ibp);
  1331. xfs_trans_log_buf(tp, ibp, offset,
  1332. (offset + sizeof(xfs_agino_t) - 1));
  1333. xfs_inobp_check(mp, ibp);
  1334. } else {
  1335. xfs_trans_brelse(tp, ibp);
  1336. }
  1337. /*
  1338. * Point the previous inode on the list to the next inode.
  1339. */
  1340. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1341. ASSERT(next_agino != 0);
  1342. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1343. xfs_trans_inode_buf(tp, last_ibp);
  1344. xfs_trans_log_buf(tp, last_ibp, offset,
  1345. (offset + sizeof(xfs_agino_t) - 1));
  1346. xfs_inobp_check(mp, last_ibp);
  1347. }
  1348. return 0;
  1349. }
  1350. /*
  1351. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1352. * inodes that are in memory - they all must be marked stale and attached to
  1353. * the cluster buffer.
  1354. */
  1355. STATIC int
  1356. xfs_ifree_cluster(
  1357. xfs_inode_t *free_ip,
  1358. xfs_trans_t *tp,
  1359. xfs_ino_t inum)
  1360. {
  1361. xfs_mount_t *mp = free_ip->i_mount;
  1362. int blks_per_cluster;
  1363. int nbufs;
  1364. int ninodes;
  1365. int i, j;
  1366. xfs_daddr_t blkno;
  1367. xfs_buf_t *bp;
  1368. xfs_inode_t *ip;
  1369. xfs_inode_log_item_t *iip;
  1370. xfs_log_item_t *lip;
  1371. struct xfs_perag *pag;
  1372. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1373. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1374. blks_per_cluster = 1;
  1375. ninodes = mp->m_sb.sb_inopblock;
  1376. nbufs = XFS_IALLOC_BLOCKS(mp);
  1377. } else {
  1378. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1379. mp->m_sb.sb_blocksize;
  1380. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1381. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1382. }
  1383. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1384. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1385. XFS_INO_TO_AGBNO(mp, inum));
  1386. /*
  1387. * We obtain and lock the backing buffer first in the process
  1388. * here, as we have to ensure that any dirty inode that we
  1389. * can't get the flush lock on is attached to the buffer.
  1390. * If we scan the in-memory inodes first, then buffer IO can
  1391. * complete before we get a lock on it, and hence we may fail
  1392. * to mark all the active inodes on the buffer stale.
  1393. */
  1394. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1395. mp->m_bsize * blks_per_cluster, 0);
  1396. if (!bp)
  1397. return ENOMEM;
  1398. /*
  1399. * Walk the inodes already attached to the buffer and mark them
  1400. * stale. These will all have the flush locks held, so an
  1401. * in-memory inode walk can't lock them. By marking them all
  1402. * stale first, we will not attempt to lock them in the loop
  1403. * below as the XFS_ISTALE flag will be set.
  1404. */
  1405. lip = bp->b_fspriv;
  1406. while (lip) {
  1407. if (lip->li_type == XFS_LI_INODE) {
  1408. iip = (xfs_inode_log_item_t *)lip;
  1409. ASSERT(iip->ili_logged == 1);
  1410. lip->li_cb = xfs_istale_done;
  1411. xfs_trans_ail_copy_lsn(mp->m_ail,
  1412. &iip->ili_flush_lsn,
  1413. &iip->ili_item.li_lsn);
  1414. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1415. }
  1416. lip = lip->li_bio_list;
  1417. }
  1418. /*
  1419. * For each inode in memory attempt to add it to the inode
  1420. * buffer and set it up for being staled on buffer IO
  1421. * completion. This is safe as we've locked out tail pushing
  1422. * and flushing by locking the buffer.
  1423. *
  1424. * We have already marked every inode that was part of a
  1425. * transaction stale above, which means there is no point in
  1426. * even trying to lock them.
  1427. */
  1428. for (i = 0; i < ninodes; i++) {
  1429. retry:
  1430. rcu_read_lock();
  1431. ip = radix_tree_lookup(&pag->pag_ici_root,
  1432. XFS_INO_TO_AGINO(mp, (inum + i)));
  1433. /* Inode not in memory, nothing to do */
  1434. if (!ip) {
  1435. rcu_read_unlock();
  1436. continue;
  1437. }
  1438. /*
  1439. * because this is an RCU protected lookup, we could
  1440. * find a recently freed or even reallocated inode
  1441. * during the lookup. We need to check under the
  1442. * i_flags_lock for a valid inode here. Skip it if it
  1443. * is not valid, the wrong inode or stale.
  1444. */
  1445. spin_lock(&ip->i_flags_lock);
  1446. if (ip->i_ino != inum + i ||
  1447. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1448. spin_unlock(&ip->i_flags_lock);
  1449. rcu_read_unlock();
  1450. continue;
  1451. }
  1452. spin_unlock(&ip->i_flags_lock);
  1453. /*
  1454. * Don't try to lock/unlock the current inode, but we
  1455. * _cannot_ skip the other inodes that we did not find
  1456. * in the list attached to the buffer and are not
  1457. * already marked stale. If we can't lock it, back off
  1458. * and retry.
  1459. */
  1460. if (ip != free_ip &&
  1461. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1462. rcu_read_unlock();
  1463. delay(1);
  1464. goto retry;
  1465. }
  1466. rcu_read_unlock();
  1467. xfs_iflock(ip);
  1468. xfs_iflags_set(ip, XFS_ISTALE);
  1469. /*
  1470. * we don't need to attach clean inodes or those only
  1471. * with unlogged changes (which we throw away, anyway).
  1472. */
  1473. iip = ip->i_itemp;
  1474. if (!iip || xfs_inode_clean(ip)) {
  1475. ASSERT(ip != free_ip);
  1476. xfs_ifunlock(ip);
  1477. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1478. continue;
  1479. }
  1480. iip->ili_last_fields = iip->ili_fields;
  1481. iip->ili_fields = 0;
  1482. iip->ili_logged = 1;
  1483. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1484. &iip->ili_item.li_lsn);
  1485. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1486. &iip->ili_item);
  1487. if (ip != free_ip)
  1488. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1489. }
  1490. xfs_trans_stale_inode_buf(tp, bp);
  1491. xfs_trans_binval(tp, bp);
  1492. }
  1493. xfs_perag_put(pag);
  1494. return 0;
  1495. }
  1496. /*
  1497. * This is called to return an inode to the inode free list.
  1498. * The inode should already be truncated to 0 length and have
  1499. * no pages associated with it. This routine also assumes that
  1500. * the inode is already a part of the transaction.
  1501. *
  1502. * The on-disk copy of the inode will have been added to the list
  1503. * of unlinked inodes in the AGI. We need to remove the inode from
  1504. * that list atomically with respect to freeing it here.
  1505. */
  1506. int
  1507. xfs_ifree(
  1508. xfs_trans_t *tp,
  1509. xfs_inode_t *ip,
  1510. xfs_bmap_free_t *flist)
  1511. {
  1512. int error;
  1513. int delete;
  1514. xfs_ino_t first_ino;
  1515. xfs_dinode_t *dip;
  1516. xfs_buf_t *ibp;
  1517. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1518. ASSERT(ip->i_d.di_nlink == 0);
  1519. ASSERT(ip->i_d.di_nextents == 0);
  1520. ASSERT(ip->i_d.di_anextents == 0);
  1521. ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
  1522. ASSERT(ip->i_d.di_nblocks == 0);
  1523. /*
  1524. * Pull the on-disk inode from the AGI unlinked list.
  1525. */
  1526. error = xfs_iunlink_remove(tp, ip);
  1527. if (error != 0) {
  1528. return error;
  1529. }
  1530. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1531. if (error != 0) {
  1532. return error;
  1533. }
  1534. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1535. ip->i_d.di_flags = 0;
  1536. ip->i_d.di_dmevmask = 0;
  1537. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1538. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1539. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1540. /*
  1541. * Bump the generation count so no one will be confused
  1542. * by reincarnations of this inode.
  1543. */
  1544. ip->i_d.di_gen++;
  1545. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1546. error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
  1547. 0, 0);
  1548. if (error)
  1549. return error;
  1550. /*
  1551. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1552. * from picking up this inode when it is reclaimed (its incore state
  1553. * initialzed but not flushed to disk yet). The in-core di_mode is
  1554. * already cleared and a corresponding transaction logged.
  1555. * The hack here just synchronizes the in-core to on-disk
  1556. * di_mode value in advance before the actual inode sync to disk.
  1557. * This is OK because the inode is already unlinked and would never
  1558. * change its di_mode again for this inode generation.
  1559. * This is a temporary hack that would require a proper fix
  1560. * in the future.
  1561. */
  1562. dip->di_mode = 0;
  1563. if (delete) {
  1564. error = xfs_ifree_cluster(ip, tp, first_ino);
  1565. }
  1566. return error;
  1567. }
  1568. /*
  1569. * Reallocate the space for if_broot based on the number of records
  1570. * being added or deleted as indicated in rec_diff. Move the records
  1571. * and pointers in if_broot to fit the new size. When shrinking this
  1572. * will eliminate holes between the records and pointers created by
  1573. * the caller. When growing this will create holes to be filled in
  1574. * by the caller.
  1575. *
  1576. * The caller must not request to add more records than would fit in
  1577. * the on-disk inode root. If the if_broot is currently NULL, then
  1578. * if we adding records one will be allocated. The caller must also
  1579. * not request that the number of records go below zero, although
  1580. * it can go to zero.
  1581. *
  1582. * ip -- the inode whose if_broot area is changing
  1583. * ext_diff -- the change in the number of records, positive or negative,
  1584. * requested for the if_broot array.
  1585. */
  1586. void
  1587. xfs_iroot_realloc(
  1588. xfs_inode_t *ip,
  1589. int rec_diff,
  1590. int whichfork)
  1591. {
  1592. struct xfs_mount *mp = ip->i_mount;
  1593. int cur_max;
  1594. xfs_ifork_t *ifp;
  1595. struct xfs_btree_block *new_broot;
  1596. int new_max;
  1597. size_t new_size;
  1598. char *np;
  1599. char *op;
  1600. /*
  1601. * Handle the degenerate case quietly.
  1602. */
  1603. if (rec_diff == 0) {
  1604. return;
  1605. }
  1606. ifp = XFS_IFORK_PTR(ip, whichfork);
  1607. if (rec_diff > 0) {
  1608. /*
  1609. * If there wasn't any memory allocated before, just
  1610. * allocate it now and get out.
  1611. */
  1612. if (ifp->if_broot_bytes == 0) {
  1613. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  1614. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1615. ifp->if_broot_bytes = (int)new_size;
  1616. return;
  1617. }
  1618. /*
  1619. * If there is already an existing if_broot, then we need
  1620. * to realloc() it and shift the pointers to their new
  1621. * location. The records don't change location because
  1622. * they are kept butted up against the btree block header.
  1623. */
  1624. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1625. new_max = cur_max + rec_diff;
  1626. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1627. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1628. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  1629. KM_SLEEP | KM_NOFS);
  1630. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1631. ifp->if_broot_bytes);
  1632. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1633. (int)new_size);
  1634. ifp->if_broot_bytes = (int)new_size;
  1635. ASSERT(ifp->if_broot_bytes <=
  1636. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1637. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1638. return;
  1639. }
  1640. /*
  1641. * rec_diff is less than 0. In this case, we are shrinking the
  1642. * if_broot buffer. It must already exist. If we go to zero
  1643. * records, just get rid of the root and clear the status bit.
  1644. */
  1645. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1646. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1647. new_max = cur_max + rec_diff;
  1648. ASSERT(new_max >= 0);
  1649. if (new_max > 0)
  1650. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1651. else
  1652. new_size = 0;
  1653. if (new_size > 0) {
  1654. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1655. /*
  1656. * First copy over the btree block header.
  1657. */
  1658. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  1659. } else {
  1660. new_broot = NULL;
  1661. ifp->if_flags &= ~XFS_IFBROOT;
  1662. }
  1663. /*
  1664. * Only copy the records and pointers if there are any.
  1665. */
  1666. if (new_max > 0) {
  1667. /*
  1668. * First copy the records.
  1669. */
  1670. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  1671. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  1672. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  1673. /*
  1674. * Then copy the pointers.
  1675. */
  1676. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1677. ifp->if_broot_bytes);
  1678. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  1679. (int)new_size);
  1680. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  1681. }
  1682. kmem_free(ifp->if_broot);
  1683. ifp->if_broot = new_broot;
  1684. ifp->if_broot_bytes = (int)new_size;
  1685. ASSERT(ifp->if_broot_bytes <=
  1686. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1687. return;
  1688. }
  1689. /*
  1690. * This is called when the amount of space needed for if_data
  1691. * is increased or decreased. The change in size is indicated by
  1692. * the number of bytes that need to be added or deleted in the
  1693. * byte_diff parameter.
  1694. *
  1695. * If the amount of space needed has decreased below the size of the
  1696. * inline buffer, then switch to using the inline buffer. Otherwise,
  1697. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  1698. * to what is needed.
  1699. *
  1700. * ip -- the inode whose if_data area is changing
  1701. * byte_diff -- the change in the number of bytes, positive or negative,
  1702. * requested for the if_data array.
  1703. */
  1704. void
  1705. xfs_idata_realloc(
  1706. xfs_inode_t *ip,
  1707. int byte_diff,
  1708. int whichfork)
  1709. {
  1710. xfs_ifork_t *ifp;
  1711. int new_size;
  1712. int real_size;
  1713. if (byte_diff == 0) {
  1714. return;
  1715. }
  1716. ifp = XFS_IFORK_PTR(ip, whichfork);
  1717. new_size = (int)ifp->if_bytes + byte_diff;
  1718. ASSERT(new_size >= 0);
  1719. if (new_size == 0) {
  1720. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1721. kmem_free(ifp->if_u1.if_data);
  1722. }
  1723. ifp->if_u1.if_data = NULL;
  1724. real_size = 0;
  1725. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  1726. /*
  1727. * If the valid extents/data can fit in if_inline_ext/data,
  1728. * copy them from the malloc'd vector and free it.
  1729. */
  1730. if (ifp->if_u1.if_data == NULL) {
  1731. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1732. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1733. ASSERT(ifp->if_real_bytes != 0);
  1734. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  1735. new_size);
  1736. kmem_free(ifp->if_u1.if_data);
  1737. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1738. }
  1739. real_size = 0;
  1740. } else {
  1741. /*
  1742. * Stuck with malloc/realloc.
  1743. * For inline data, the underlying buffer must be
  1744. * a multiple of 4 bytes in size so that it can be
  1745. * logged and stay on word boundaries. We enforce
  1746. * that here.
  1747. */
  1748. real_size = roundup(new_size, 4);
  1749. if (ifp->if_u1.if_data == NULL) {
  1750. ASSERT(ifp->if_real_bytes == 0);
  1751. ifp->if_u1.if_data = kmem_alloc(real_size,
  1752. KM_SLEEP | KM_NOFS);
  1753. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1754. /*
  1755. * Only do the realloc if the underlying size
  1756. * is really changing.
  1757. */
  1758. if (ifp->if_real_bytes != real_size) {
  1759. ifp->if_u1.if_data =
  1760. kmem_realloc(ifp->if_u1.if_data,
  1761. real_size,
  1762. ifp->if_real_bytes,
  1763. KM_SLEEP | KM_NOFS);
  1764. }
  1765. } else {
  1766. ASSERT(ifp->if_real_bytes == 0);
  1767. ifp->if_u1.if_data = kmem_alloc(real_size,
  1768. KM_SLEEP | KM_NOFS);
  1769. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  1770. ifp->if_bytes);
  1771. }
  1772. }
  1773. ifp->if_real_bytes = real_size;
  1774. ifp->if_bytes = new_size;
  1775. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  1776. }
  1777. void
  1778. xfs_idestroy_fork(
  1779. xfs_inode_t *ip,
  1780. int whichfork)
  1781. {
  1782. xfs_ifork_t *ifp;
  1783. ifp = XFS_IFORK_PTR(ip, whichfork);
  1784. if (ifp->if_broot != NULL) {
  1785. kmem_free(ifp->if_broot);
  1786. ifp->if_broot = NULL;
  1787. }
  1788. /*
  1789. * If the format is local, then we can't have an extents
  1790. * array so just look for an inline data array. If we're
  1791. * not local then we may or may not have an extents list,
  1792. * so check and free it up if we do.
  1793. */
  1794. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  1795. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  1796. (ifp->if_u1.if_data != NULL)) {
  1797. ASSERT(ifp->if_real_bytes != 0);
  1798. kmem_free(ifp->if_u1.if_data);
  1799. ifp->if_u1.if_data = NULL;
  1800. ifp->if_real_bytes = 0;
  1801. }
  1802. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  1803. ((ifp->if_flags & XFS_IFEXTIREC) ||
  1804. ((ifp->if_u1.if_extents != NULL) &&
  1805. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  1806. ASSERT(ifp->if_real_bytes != 0);
  1807. xfs_iext_destroy(ifp);
  1808. }
  1809. ASSERT(ifp->if_u1.if_extents == NULL ||
  1810. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  1811. ASSERT(ifp->if_real_bytes == 0);
  1812. if (whichfork == XFS_ATTR_FORK) {
  1813. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  1814. ip->i_afp = NULL;
  1815. }
  1816. }
  1817. /*
  1818. * This is called to unpin an inode. The caller must have the inode locked
  1819. * in at least shared mode so that the buffer cannot be subsequently pinned
  1820. * once someone is waiting for it to be unpinned.
  1821. */
  1822. static void
  1823. xfs_iunpin(
  1824. struct xfs_inode *ip)
  1825. {
  1826. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1827. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  1828. /* Give the log a push to start the unpinning I/O */
  1829. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  1830. }
  1831. static void
  1832. __xfs_iunpin_wait(
  1833. struct xfs_inode *ip)
  1834. {
  1835. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
  1836. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
  1837. xfs_iunpin(ip);
  1838. do {
  1839. prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
  1840. if (xfs_ipincount(ip))
  1841. io_schedule();
  1842. } while (xfs_ipincount(ip));
  1843. finish_wait(wq, &wait.wait);
  1844. }
  1845. void
  1846. xfs_iunpin_wait(
  1847. struct xfs_inode *ip)
  1848. {
  1849. if (xfs_ipincount(ip))
  1850. __xfs_iunpin_wait(ip);
  1851. }
  1852. /*
  1853. * xfs_iextents_copy()
  1854. *
  1855. * This is called to copy the REAL extents (as opposed to the delayed
  1856. * allocation extents) from the inode into the given buffer. It
  1857. * returns the number of bytes copied into the buffer.
  1858. *
  1859. * If there are no delayed allocation extents, then we can just
  1860. * memcpy() the extents into the buffer. Otherwise, we need to
  1861. * examine each extent in turn and skip those which are delayed.
  1862. */
  1863. int
  1864. xfs_iextents_copy(
  1865. xfs_inode_t *ip,
  1866. xfs_bmbt_rec_t *dp,
  1867. int whichfork)
  1868. {
  1869. int copied;
  1870. int i;
  1871. xfs_ifork_t *ifp;
  1872. int nrecs;
  1873. xfs_fsblock_t start_block;
  1874. ifp = XFS_IFORK_PTR(ip, whichfork);
  1875. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1876. ASSERT(ifp->if_bytes > 0);
  1877. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  1878. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  1879. ASSERT(nrecs > 0);
  1880. /*
  1881. * There are some delayed allocation extents in the
  1882. * inode, so copy the extents one at a time and skip
  1883. * the delayed ones. There must be at least one
  1884. * non-delayed extent.
  1885. */
  1886. copied = 0;
  1887. for (i = 0; i < nrecs; i++) {
  1888. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  1889. start_block = xfs_bmbt_get_startblock(ep);
  1890. if (isnullstartblock(start_block)) {
  1891. /*
  1892. * It's a delayed allocation extent, so skip it.
  1893. */
  1894. continue;
  1895. }
  1896. /* Translate to on disk format */
  1897. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  1898. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  1899. dp++;
  1900. copied++;
  1901. }
  1902. ASSERT(copied != 0);
  1903. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  1904. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  1905. }
  1906. /*
  1907. * Each of the following cases stores data into the same region
  1908. * of the on-disk inode, so only one of them can be valid at
  1909. * any given time. While it is possible to have conflicting formats
  1910. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  1911. * in EXTENTS format, this can only happen when the fork has
  1912. * changed formats after being modified but before being flushed.
  1913. * In these cases, the format always takes precedence, because the
  1914. * format indicates the current state of the fork.
  1915. */
  1916. /*ARGSUSED*/
  1917. STATIC void
  1918. xfs_iflush_fork(
  1919. xfs_inode_t *ip,
  1920. xfs_dinode_t *dip,
  1921. xfs_inode_log_item_t *iip,
  1922. int whichfork,
  1923. xfs_buf_t *bp)
  1924. {
  1925. char *cp;
  1926. xfs_ifork_t *ifp;
  1927. xfs_mount_t *mp;
  1928. #ifdef XFS_TRANS_DEBUG
  1929. int first;
  1930. #endif
  1931. static const short brootflag[2] =
  1932. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  1933. static const short dataflag[2] =
  1934. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  1935. static const short extflag[2] =
  1936. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  1937. if (!iip)
  1938. return;
  1939. ifp = XFS_IFORK_PTR(ip, whichfork);
  1940. /*
  1941. * This can happen if we gave up in iformat in an error path,
  1942. * for the attribute fork.
  1943. */
  1944. if (!ifp) {
  1945. ASSERT(whichfork == XFS_ATTR_FORK);
  1946. return;
  1947. }
  1948. cp = XFS_DFORK_PTR(dip, whichfork);
  1949. mp = ip->i_mount;
  1950. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  1951. case XFS_DINODE_FMT_LOCAL:
  1952. if ((iip->ili_fields & dataflag[whichfork]) &&
  1953. (ifp->if_bytes > 0)) {
  1954. ASSERT(ifp->if_u1.if_data != NULL);
  1955. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  1956. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  1957. }
  1958. break;
  1959. case XFS_DINODE_FMT_EXTENTS:
  1960. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  1961. !(iip->ili_fields & extflag[whichfork]));
  1962. if ((iip->ili_fields & extflag[whichfork]) &&
  1963. (ifp->if_bytes > 0)) {
  1964. ASSERT(xfs_iext_get_ext(ifp, 0));
  1965. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  1966. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  1967. whichfork);
  1968. }
  1969. break;
  1970. case XFS_DINODE_FMT_BTREE:
  1971. if ((iip->ili_fields & brootflag[whichfork]) &&
  1972. (ifp->if_broot_bytes > 0)) {
  1973. ASSERT(ifp->if_broot != NULL);
  1974. ASSERT(ifp->if_broot_bytes <=
  1975. (XFS_IFORK_SIZE(ip, whichfork) +
  1976. XFS_BROOT_SIZE_ADJ));
  1977. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  1978. (xfs_bmdr_block_t *)cp,
  1979. XFS_DFORK_SIZE(dip, mp, whichfork));
  1980. }
  1981. break;
  1982. case XFS_DINODE_FMT_DEV:
  1983. if (iip->ili_fields & XFS_ILOG_DEV) {
  1984. ASSERT(whichfork == XFS_DATA_FORK);
  1985. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  1986. }
  1987. break;
  1988. case XFS_DINODE_FMT_UUID:
  1989. if (iip->ili_fields & XFS_ILOG_UUID) {
  1990. ASSERT(whichfork == XFS_DATA_FORK);
  1991. memcpy(XFS_DFORK_DPTR(dip),
  1992. &ip->i_df.if_u2.if_uuid,
  1993. sizeof(uuid_t));
  1994. }
  1995. break;
  1996. default:
  1997. ASSERT(0);
  1998. break;
  1999. }
  2000. }
  2001. STATIC int
  2002. xfs_iflush_cluster(
  2003. xfs_inode_t *ip,
  2004. xfs_buf_t *bp)
  2005. {
  2006. xfs_mount_t *mp = ip->i_mount;
  2007. struct xfs_perag *pag;
  2008. unsigned long first_index, mask;
  2009. unsigned long inodes_per_cluster;
  2010. int ilist_size;
  2011. xfs_inode_t **ilist;
  2012. xfs_inode_t *iq;
  2013. int nr_found;
  2014. int clcount = 0;
  2015. int bufwasdelwri;
  2016. int i;
  2017. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2018. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2019. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2020. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2021. if (!ilist)
  2022. goto out_put;
  2023. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2024. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2025. rcu_read_lock();
  2026. /* really need a gang lookup range call here */
  2027. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2028. first_index, inodes_per_cluster);
  2029. if (nr_found == 0)
  2030. goto out_free;
  2031. for (i = 0; i < nr_found; i++) {
  2032. iq = ilist[i];
  2033. if (iq == ip)
  2034. continue;
  2035. /*
  2036. * because this is an RCU protected lookup, we could find a
  2037. * recently freed or even reallocated inode during the lookup.
  2038. * We need to check under the i_flags_lock for a valid inode
  2039. * here. Skip it if it is not valid or the wrong inode.
  2040. */
  2041. spin_lock(&ip->i_flags_lock);
  2042. if (!ip->i_ino ||
  2043. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2044. spin_unlock(&ip->i_flags_lock);
  2045. continue;
  2046. }
  2047. spin_unlock(&ip->i_flags_lock);
  2048. /*
  2049. * Do an un-protected check to see if the inode is dirty and
  2050. * is a candidate for flushing. These checks will be repeated
  2051. * later after the appropriate locks are acquired.
  2052. */
  2053. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2054. continue;
  2055. /*
  2056. * Try to get locks. If any are unavailable or it is pinned,
  2057. * then this inode cannot be flushed and is skipped.
  2058. */
  2059. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2060. continue;
  2061. if (!xfs_iflock_nowait(iq)) {
  2062. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2063. continue;
  2064. }
  2065. if (xfs_ipincount(iq)) {
  2066. xfs_ifunlock(iq);
  2067. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2068. continue;
  2069. }
  2070. /*
  2071. * arriving here means that this inode can be flushed. First
  2072. * re-check that it's dirty before flushing.
  2073. */
  2074. if (!xfs_inode_clean(iq)) {
  2075. int error;
  2076. error = xfs_iflush_int(iq, bp);
  2077. if (error) {
  2078. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2079. goto cluster_corrupt_out;
  2080. }
  2081. clcount++;
  2082. } else {
  2083. xfs_ifunlock(iq);
  2084. }
  2085. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2086. }
  2087. if (clcount) {
  2088. XFS_STATS_INC(xs_icluster_flushcnt);
  2089. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2090. }
  2091. out_free:
  2092. rcu_read_unlock();
  2093. kmem_free(ilist);
  2094. out_put:
  2095. xfs_perag_put(pag);
  2096. return 0;
  2097. cluster_corrupt_out:
  2098. /*
  2099. * Corruption detected in the clustering loop. Invalidate the
  2100. * inode buffer and shut down the filesystem.
  2101. */
  2102. rcu_read_unlock();
  2103. /*
  2104. * Clean up the buffer. If it was delwri, just release it --
  2105. * brelse can handle it with no problems. If not, shut down the
  2106. * filesystem before releasing the buffer.
  2107. */
  2108. bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
  2109. if (bufwasdelwri)
  2110. xfs_buf_relse(bp);
  2111. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2112. if (!bufwasdelwri) {
  2113. /*
  2114. * Just like incore_relse: if we have b_iodone functions,
  2115. * mark the buffer as an error and call them. Otherwise
  2116. * mark it as stale and brelse.
  2117. */
  2118. if (bp->b_iodone) {
  2119. XFS_BUF_UNDONE(bp);
  2120. xfs_buf_stale(bp);
  2121. xfs_buf_ioerror(bp, EIO);
  2122. xfs_buf_ioend(bp, 0);
  2123. } else {
  2124. xfs_buf_stale(bp);
  2125. xfs_buf_relse(bp);
  2126. }
  2127. }
  2128. /*
  2129. * Unlocks the flush lock
  2130. */
  2131. xfs_iflush_abort(iq, false);
  2132. kmem_free(ilist);
  2133. xfs_perag_put(pag);
  2134. return XFS_ERROR(EFSCORRUPTED);
  2135. }
  2136. /*
  2137. * Flush dirty inode metadata into the backing buffer.
  2138. *
  2139. * The caller must have the inode lock and the inode flush lock held. The
  2140. * inode lock will still be held upon return to the caller, and the inode
  2141. * flush lock will be released after the inode has reached the disk.
  2142. *
  2143. * The caller must write out the buffer returned in *bpp and release it.
  2144. */
  2145. int
  2146. xfs_iflush(
  2147. struct xfs_inode *ip,
  2148. struct xfs_buf **bpp)
  2149. {
  2150. struct xfs_mount *mp = ip->i_mount;
  2151. struct xfs_buf *bp;
  2152. struct xfs_dinode *dip;
  2153. int error;
  2154. XFS_STATS_INC(xs_iflush_count);
  2155. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2156. ASSERT(xfs_isiflocked(ip));
  2157. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2158. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2159. *bpp = NULL;
  2160. xfs_iunpin_wait(ip);
  2161. /*
  2162. * For stale inodes we cannot rely on the backing buffer remaining
  2163. * stale in cache for the remaining life of the stale inode and so
  2164. * xfs_imap_to_bp() below may give us a buffer that no longer contains
  2165. * inodes below. We have to check this after ensuring the inode is
  2166. * unpinned so that it is safe to reclaim the stale inode after the
  2167. * flush call.
  2168. */
  2169. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2170. xfs_ifunlock(ip);
  2171. return 0;
  2172. }
  2173. /*
  2174. * This may have been unpinned because the filesystem is shutting
  2175. * down forcibly. If that's the case we must not write this inode
  2176. * to disk, because the log record didn't make it to disk.
  2177. *
  2178. * We also have to remove the log item from the AIL in this case,
  2179. * as we wait for an empty AIL as part of the unmount process.
  2180. */
  2181. if (XFS_FORCED_SHUTDOWN(mp)) {
  2182. error = XFS_ERROR(EIO);
  2183. goto abort_out;
  2184. }
  2185. /*
  2186. * Get the buffer containing the on-disk inode.
  2187. */
  2188. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
  2189. 0);
  2190. if (error || !bp) {
  2191. xfs_ifunlock(ip);
  2192. return error;
  2193. }
  2194. /*
  2195. * First flush out the inode that xfs_iflush was called with.
  2196. */
  2197. error = xfs_iflush_int(ip, bp);
  2198. if (error)
  2199. goto corrupt_out;
  2200. /*
  2201. * If the buffer is pinned then push on the log now so we won't
  2202. * get stuck waiting in the write for too long.
  2203. */
  2204. if (xfs_buf_ispinned(bp))
  2205. xfs_log_force(mp, 0);
  2206. /*
  2207. * inode clustering:
  2208. * see if other inodes can be gathered into this write
  2209. */
  2210. error = xfs_iflush_cluster(ip, bp);
  2211. if (error)
  2212. goto cluster_corrupt_out;
  2213. *bpp = bp;
  2214. return 0;
  2215. corrupt_out:
  2216. xfs_buf_relse(bp);
  2217. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2218. cluster_corrupt_out:
  2219. error = XFS_ERROR(EFSCORRUPTED);
  2220. abort_out:
  2221. /*
  2222. * Unlocks the flush lock
  2223. */
  2224. xfs_iflush_abort(ip, false);
  2225. return error;
  2226. }
  2227. STATIC int
  2228. xfs_iflush_int(
  2229. xfs_inode_t *ip,
  2230. xfs_buf_t *bp)
  2231. {
  2232. xfs_inode_log_item_t *iip;
  2233. xfs_dinode_t *dip;
  2234. xfs_mount_t *mp;
  2235. #ifdef XFS_TRANS_DEBUG
  2236. int first;
  2237. #endif
  2238. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2239. ASSERT(xfs_isiflocked(ip));
  2240. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2241. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2242. iip = ip->i_itemp;
  2243. mp = ip->i_mount;
  2244. /* set *dip = inode's place in the buffer */
  2245. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2246. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2247. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2248. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2249. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2250. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2251. goto corrupt_out;
  2252. }
  2253. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2254. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2255. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2256. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2257. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2258. goto corrupt_out;
  2259. }
  2260. if (S_ISREG(ip->i_d.di_mode)) {
  2261. if (XFS_TEST_ERROR(
  2262. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2263. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2264. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2265. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2266. "%s: Bad regular inode %Lu, ptr 0x%p",
  2267. __func__, ip->i_ino, ip);
  2268. goto corrupt_out;
  2269. }
  2270. } else if (S_ISDIR(ip->i_d.di_mode)) {
  2271. if (XFS_TEST_ERROR(
  2272. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2273. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2274. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2275. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2276. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2277. "%s: Bad directory inode %Lu, ptr 0x%p",
  2278. __func__, ip->i_ino, ip);
  2279. goto corrupt_out;
  2280. }
  2281. }
  2282. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2283. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2284. XFS_RANDOM_IFLUSH_5)) {
  2285. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2286. "%s: detected corrupt incore inode %Lu, "
  2287. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2288. __func__, ip->i_ino,
  2289. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2290. ip->i_d.di_nblocks, ip);
  2291. goto corrupt_out;
  2292. }
  2293. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2294. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2295. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2296. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2297. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2298. goto corrupt_out;
  2299. }
  2300. /*
  2301. * bump the flush iteration count, used to detect flushes which
  2302. * postdate a log record during recovery.
  2303. */
  2304. ip->i_d.di_flushiter++;
  2305. /*
  2306. * Copy the dirty parts of the inode into the on-disk
  2307. * inode. We always copy out the core of the inode,
  2308. * because if the inode is dirty at all the core must
  2309. * be.
  2310. */
  2311. xfs_dinode_to_disk(dip, &ip->i_d);
  2312. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2313. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2314. ip->i_d.di_flushiter = 0;
  2315. /*
  2316. * If this is really an old format inode and the superblock version
  2317. * has not been updated to support only new format inodes, then
  2318. * convert back to the old inode format. If the superblock version
  2319. * has been updated, then make the conversion permanent.
  2320. */
  2321. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2322. if (ip->i_d.di_version == 1) {
  2323. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2324. /*
  2325. * Convert it back.
  2326. */
  2327. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2328. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2329. } else {
  2330. /*
  2331. * The superblock version has already been bumped,
  2332. * so just make the conversion to the new inode
  2333. * format permanent.
  2334. */
  2335. ip->i_d.di_version = 2;
  2336. dip->di_version = 2;
  2337. ip->i_d.di_onlink = 0;
  2338. dip->di_onlink = 0;
  2339. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2340. memset(&(dip->di_pad[0]), 0,
  2341. sizeof(dip->di_pad));
  2342. ASSERT(xfs_get_projid(ip) == 0);
  2343. }
  2344. }
  2345. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2346. if (XFS_IFORK_Q(ip))
  2347. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2348. xfs_inobp_check(mp, bp);
  2349. /*
  2350. * We've recorded everything logged in the inode, so we'd like to clear
  2351. * the ili_fields bits so we don't log and flush things unnecessarily.
  2352. * However, we can't stop logging all this information until the data
  2353. * we've copied into the disk buffer is written to disk. If we did we
  2354. * might overwrite the copy of the inode in the log with all the data
  2355. * after re-logging only part of it, and in the face of a crash we
  2356. * wouldn't have all the data we need to recover.
  2357. *
  2358. * What we do is move the bits to the ili_last_fields field. When
  2359. * logging the inode, these bits are moved back to the ili_fields field.
  2360. * In the xfs_iflush_done() routine we clear ili_last_fields, since we
  2361. * know that the information those bits represent is permanently on
  2362. * disk. As long as the flush completes before the inode is logged
  2363. * again, then both ili_fields and ili_last_fields will be cleared.
  2364. *
  2365. * We can play with the ili_fields bits here, because the inode lock
  2366. * must be held exclusively in order to set bits there and the flush
  2367. * lock protects the ili_last_fields bits. Set ili_logged so the flush
  2368. * done routine can tell whether or not to look in the AIL. Also, store
  2369. * the current LSN of the inode so that we can tell whether the item has
  2370. * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
  2371. * need the AIL lock, because it is a 64 bit value that cannot be read
  2372. * atomically.
  2373. */
  2374. if (iip != NULL && iip->ili_fields != 0) {
  2375. iip->ili_last_fields = iip->ili_fields;
  2376. iip->ili_fields = 0;
  2377. iip->ili_logged = 1;
  2378. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2379. &iip->ili_item.li_lsn);
  2380. /*
  2381. * Attach the function xfs_iflush_done to the inode's
  2382. * buffer. This will remove the inode from the AIL
  2383. * and unlock the inode's flush lock when the inode is
  2384. * completely written to disk.
  2385. */
  2386. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2387. ASSERT(bp->b_fspriv != NULL);
  2388. ASSERT(bp->b_iodone != NULL);
  2389. } else {
  2390. /*
  2391. * We're flushing an inode which is not in the AIL and has
  2392. * not been logged. For this case we can immediately drop
  2393. * the inode flush lock because we can avoid the whole
  2394. * AIL state thing. It's OK to drop the flush lock now,
  2395. * because we've already locked the buffer and to do anything
  2396. * you really need both.
  2397. */
  2398. if (iip != NULL) {
  2399. ASSERT(iip->ili_logged == 0);
  2400. ASSERT(iip->ili_last_fields == 0);
  2401. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2402. }
  2403. xfs_ifunlock(ip);
  2404. }
  2405. return 0;
  2406. corrupt_out:
  2407. return XFS_ERROR(EFSCORRUPTED);
  2408. }
  2409. /*
  2410. * Return a pointer to the extent record at file index idx.
  2411. */
  2412. xfs_bmbt_rec_host_t *
  2413. xfs_iext_get_ext(
  2414. xfs_ifork_t *ifp, /* inode fork pointer */
  2415. xfs_extnum_t idx) /* index of target extent */
  2416. {
  2417. ASSERT(idx >= 0);
  2418. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2419. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2420. return ifp->if_u1.if_ext_irec->er_extbuf;
  2421. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2422. xfs_ext_irec_t *erp; /* irec pointer */
  2423. int erp_idx = 0; /* irec index */
  2424. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2425. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2426. return &erp->er_extbuf[page_idx];
  2427. } else if (ifp->if_bytes) {
  2428. return &ifp->if_u1.if_extents[idx];
  2429. } else {
  2430. return NULL;
  2431. }
  2432. }
  2433. /*
  2434. * Insert new item(s) into the extent records for incore inode
  2435. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2436. */
  2437. void
  2438. xfs_iext_insert(
  2439. xfs_inode_t *ip, /* incore inode pointer */
  2440. xfs_extnum_t idx, /* starting index of new items */
  2441. xfs_extnum_t count, /* number of inserted items */
  2442. xfs_bmbt_irec_t *new, /* items to insert */
  2443. int state) /* type of extent conversion */
  2444. {
  2445. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2446. xfs_extnum_t i; /* extent record index */
  2447. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2448. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2449. xfs_iext_add(ifp, idx, count);
  2450. for (i = idx; i < idx + count; i++, new++)
  2451. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2452. }
  2453. /*
  2454. * This is called when the amount of space required for incore file
  2455. * extents needs to be increased. The ext_diff parameter stores the
  2456. * number of new extents being added and the idx parameter contains
  2457. * the extent index where the new extents will be added. If the new
  2458. * extents are being appended, then we just need to (re)allocate and
  2459. * initialize the space. Otherwise, if the new extents are being
  2460. * inserted into the middle of the existing entries, a bit more work
  2461. * is required to make room for the new extents to be inserted. The
  2462. * caller is responsible for filling in the new extent entries upon
  2463. * return.
  2464. */
  2465. void
  2466. xfs_iext_add(
  2467. xfs_ifork_t *ifp, /* inode fork pointer */
  2468. xfs_extnum_t idx, /* index to begin adding exts */
  2469. int ext_diff) /* number of extents to add */
  2470. {
  2471. int byte_diff; /* new bytes being added */
  2472. int new_size; /* size of extents after adding */
  2473. xfs_extnum_t nextents; /* number of extents in file */
  2474. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2475. ASSERT((idx >= 0) && (idx <= nextents));
  2476. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2477. new_size = ifp->if_bytes + byte_diff;
  2478. /*
  2479. * If the new number of extents (nextents + ext_diff)
  2480. * fits inside the inode, then continue to use the inline
  2481. * extent buffer.
  2482. */
  2483. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2484. if (idx < nextents) {
  2485. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2486. &ifp->if_u2.if_inline_ext[idx],
  2487. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2488. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2489. }
  2490. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2491. ifp->if_real_bytes = 0;
  2492. }
  2493. /*
  2494. * Otherwise use a linear (direct) extent list.
  2495. * If the extents are currently inside the inode,
  2496. * xfs_iext_realloc_direct will switch us from
  2497. * inline to direct extent allocation mode.
  2498. */
  2499. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2500. xfs_iext_realloc_direct(ifp, new_size);
  2501. if (idx < nextents) {
  2502. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2503. &ifp->if_u1.if_extents[idx],
  2504. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2505. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2506. }
  2507. }
  2508. /* Indirection array */
  2509. else {
  2510. xfs_ext_irec_t *erp;
  2511. int erp_idx = 0;
  2512. int page_idx = idx;
  2513. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2514. if (ifp->if_flags & XFS_IFEXTIREC) {
  2515. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2516. } else {
  2517. xfs_iext_irec_init(ifp);
  2518. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2519. erp = ifp->if_u1.if_ext_irec;
  2520. }
  2521. /* Extents fit in target extent page */
  2522. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2523. if (page_idx < erp->er_extcount) {
  2524. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2525. &erp->er_extbuf[page_idx],
  2526. (erp->er_extcount - page_idx) *
  2527. sizeof(xfs_bmbt_rec_t));
  2528. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2529. }
  2530. erp->er_extcount += ext_diff;
  2531. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2532. }
  2533. /* Insert a new extent page */
  2534. else if (erp) {
  2535. xfs_iext_add_indirect_multi(ifp,
  2536. erp_idx, page_idx, ext_diff);
  2537. }
  2538. /*
  2539. * If extent(s) are being appended to the last page in
  2540. * the indirection array and the new extent(s) don't fit
  2541. * in the page, then erp is NULL and erp_idx is set to
  2542. * the next index needed in the indirection array.
  2543. */
  2544. else {
  2545. int count = ext_diff;
  2546. while (count) {
  2547. erp = xfs_iext_irec_new(ifp, erp_idx);
  2548. erp->er_extcount = count;
  2549. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2550. if (count) {
  2551. erp_idx++;
  2552. }
  2553. }
  2554. }
  2555. }
  2556. ifp->if_bytes = new_size;
  2557. }
  2558. /*
  2559. * This is called when incore extents are being added to the indirection
  2560. * array and the new extents do not fit in the target extent list. The
  2561. * erp_idx parameter contains the irec index for the target extent list
  2562. * in the indirection array, and the idx parameter contains the extent
  2563. * index within the list. The number of extents being added is stored
  2564. * in the count parameter.
  2565. *
  2566. * |-------| |-------|
  2567. * | | | | idx - number of extents before idx
  2568. * | idx | | count |
  2569. * | | | | count - number of extents being inserted at idx
  2570. * |-------| |-------|
  2571. * | count | | nex2 | nex2 - number of extents after idx + count
  2572. * |-------| |-------|
  2573. */
  2574. void
  2575. xfs_iext_add_indirect_multi(
  2576. xfs_ifork_t *ifp, /* inode fork pointer */
  2577. int erp_idx, /* target extent irec index */
  2578. xfs_extnum_t idx, /* index within target list */
  2579. int count) /* new extents being added */
  2580. {
  2581. int byte_diff; /* new bytes being added */
  2582. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2583. xfs_extnum_t ext_diff; /* number of extents to add */
  2584. xfs_extnum_t ext_cnt; /* new extents still needed */
  2585. xfs_extnum_t nex2; /* extents after idx + count */
  2586. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2587. int nlists; /* number of irec's (lists) */
  2588. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2589. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2590. nex2 = erp->er_extcount - idx;
  2591. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2592. /*
  2593. * Save second part of target extent list
  2594. * (all extents past */
  2595. if (nex2) {
  2596. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2597. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2598. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2599. erp->er_extcount -= nex2;
  2600. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2601. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2602. }
  2603. /*
  2604. * Add the new extents to the end of the target
  2605. * list, then allocate new irec record(s) and
  2606. * extent buffer(s) as needed to store the rest
  2607. * of the new extents.
  2608. */
  2609. ext_cnt = count;
  2610. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2611. if (ext_diff) {
  2612. erp->er_extcount += ext_diff;
  2613. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2614. ext_cnt -= ext_diff;
  2615. }
  2616. while (ext_cnt) {
  2617. erp_idx++;
  2618. erp = xfs_iext_irec_new(ifp, erp_idx);
  2619. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2620. erp->er_extcount = ext_diff;
  2621. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2622. ext_cnt -= ext_diff;
  2623. }
  2624. /* Add nex2 extents back to indirection array */
  2625. if (nex2) {
  2626. xfs_extnum_t ext_avail;
  2627. int i;
  2628. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2629. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2630. i = 0;
  2631. /*
  2632. * If nex2 extents fit in the current page, append
  2633. * nex2_ep after the new extents.
  2634. */
  2635. if (nex2 <= ext_avail) {
  2636. i = erp->er_extcount;
  2637. }
  2638. /*
  2639. * Otherwise, check if space is available in the
  2640. * next page.
  2641. */
  2642. else if ((erp_idx < nlists - 1) &&
  2643. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2644. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2645. erp_idx++;
  2646. erp++;
  2647. /* Create a hole for nex2 extents */
  2648. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2649. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2650. }
  2651. /*
  2652. * Final choice, create a new extent page for
  2653. * nex2 extents.
  2654. */
  2655. else {
  2656. erp_idx++;
  2657. erp = xfs_iext_irec_new(ifp, erp_idx);
  2658. }
  2659. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2660. kmem_free(nex2_ep);
  2661. erp->er_extcount += nex2;
  2662. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2663. }
  2664. }
  2665. /*
  2666. * This is called when the amount of space required for incore file
  2667. * extents needs to be decreased. The ext_diff parameter stores the
  2668. * number of extents to be removed and the idx parameter contains
  2669. * the extent index where the extents will be removed from.
  2670. *
  2671. * If the amount of space needed has decreased below the linear
  2672. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2673. * extent array. Otherwise, use kmem_realloc() to adjust the
  2674. * size to what is needed.
  2675. */
  2676. void
  2677. xfs_iext_remove(
  2678. xfs_inode_t *ip, /* incore inode pointer */
  2679. xfs_extnum_t idx, /* index to begin removing exts */
  2680. int ext_diff, /* number of extents to remove */
  2681. int state) /* type of extent conversion */
  2682. {
  2683. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2684. xfs_extnum_t nextents; /* number of extents in file */
  2685. int new_size; /* size of extents after removal */
  2686. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  2687. ASSERT(ext_diff > 0);
  2688. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2689. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  2690. if (new_size == 0) {
  2691. xfs_iext_destroy(ifp);
  2692. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2693. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  2694. } else if (ifp->if_real_bytes) {
  2695. xfs_iext_remove_direct(ifp, idx, ext_diff);
  2696. } else {
  2697. xfs_iext_remove_inline(ifp, idx, ext_diff);
  2698. }
  2699. ifp->if_bytes = new_size;
  2700. }
  2701. /*
  2702. * This removes ext_diff extents from the inline buffer, beginning
  2703. * at extent index idx.
  2704. */
  2705. void
  2706. xfs_iext_remove_inline(
  2707. xfs_ifork_t *ifp, /* inode fork pointer */
  2708. xfs_extnum_t idx, /* index to begin removing exts */
  2709. int ext_diff) /* number of extents to remove */
  2710. {
  2711. int nextents; /* number of extents in file */
  2712. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2713. ASSERT(idx < XFS_INLINE_EXTS);
  2714. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2715. ASSERT(((nextents - ext_diff) > 0) &&
  2716. (nextents - ext_diff) < XFS_INLINE_EXTS);
  2717. if (idx + ext_diff < nextents) {
  2718. memmove(&ifp->if_u2.if_inline_ext[idx],
  2719. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  2720. (nextents - (idx + ext_diff)) *
  2721. sizeof(xfs_bmbt_rec_t));
  2722. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  2723. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2724. } else {
  2725. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  2726. ext_diff * sizeof(xfs_bmbt_rec_t));
  2727. }
  2728. }
  2729. /*
  2730. * This removes ext_diff extents from a linear (direct) extent list,
  2731. * beginning at extent index idx. If the extents are being removed
  2732. * from the end of the list (ie. truncate) then we just need to re-
  2733. * allocate the list to remove the extra space. Otherwise, if the
  2734. * extents are being removed from the middle of the existing extent
  2735. * entries, then we first need to move the extent records beginning
  2736. * at idx + ext_diff up in the list to overwrite the records being
  2737. * removed, then remove the extra space via kmem_realloc.
  2738. */
  2739. void
  2740. xfs_iext_remove_direct(
  2741. xfs_ifork_t *ifp, /* inode fork pointer */
  2742. xfs_extnum_t idx, /* index to begin removing exts */
  2743. int ext_diff) /* number of extents to remove */
  2744. {
  2745. xfs_extnum_t nextents; /* number of extents in file */
  2746. int new_size; /* size of extents after removal */
  2747. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2748. new_size = ifp->if_bytes -
  2749. (ext_diff * sizeof(xfs_bmbt_rec_t));
  2750. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2751. if (new_size == 0) {
  2752. xfs_iext_destroy(ifp);
  2753. return;
  2754. }
  2755. /* Move extents up in the list (if needed) */
  2756. if (idx + ext_diff < nextents) {
  2757. memmove(&ifp->if_u1.if_extents[idx],
  2758. &ifp->if_u1.if_extents[idx + ext_diff],
  2759. (nextents - (idx + ext_diff)) *
  2760. sizeof(xfs_bmbt_rec_t));
  2761. }
  2762. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  2763. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2764. /*
  2765. * Reallocate the direct extent list. If the extents
  2766. * will fit inside the inode then xfs_iext_realloc_direct
  2767. * will switch from direct to inline extent allocation
  2768. * mode for us.
  2769. */
  2770. xfs_iext_realloc_direct(ifp, new_size);
  2771. ifp->if_bytes = new_size;
  2772. }
  2773. /*
  2774. * This is called when incore extents are being removed from the
  2775. * indirection array and the extents being removed span multiple extent
  2776. * buffers. The idx parameter contains the file extent index where we
  2777. * want to begin removing extents, and the count parameter contains
  2778. * how many extents need to be removed.
  2779. *
  2780. * |-------| |-------|
  2781. * | nex1 | | | nex1 - number of extents before idx
  2782. * |-------| | count |
  2783. * | | | | count - number of extents being removed at idx
  2784. * | count | |-------|
  2785. * | | | nex2 | nex2 - number of extents after idx + count
  2786. * |-------| |-------|
  2787. */
  2788. void
  2789. xfs_iext_remove_indirect(
  2790. xfs_ifork_t *ifp, /* inode fork pointer */
  2791. xfs_extnum_t idx, /* index to begin removing extents */
  2792. int count) /* number of extents to remove */
  2793. {
  2794. xfs_ext_irec_t *erp; /* indirection array pointer */
  2795. int erp_idx = 0; /* indirection array index */
  2796. xfs_extnum_t ext_cnt; /* extents left to remove */
  2797. xfs_extnum_t ext_diff; /* extents to remove in current list */
  2798. xfs_extnum_t nex1; /* number of extents before idx */
  2799. xfs_extnum_t nex2; /* extents after idx + count */
  2800. int page_idx = idx; /* index in target extent list */
  2801. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2802. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2803. ASSERT(erp != NULL);
  2804. nex1 = page_idx;
  2805. ext_cnt = count;
  2806. while (ext_cnt) {
  2807. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  2808. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  2809. /*
  2810. * Check for deletion of entire list;
  2811. * xfs_iext_irec_remove() updates extent offsets.
  2812. */
  2813. if (ext_diff == erp->er_extcount) {
  2814. xfs_iext_irec_remove(ifp, erp_idx);
  2815. ext_cnt -= ext_diff;
  2816. nex1 = 0;
  2817. if (ext_cnt) {
  2818. ASSERT(erp_idx < ifp->if_real_bytes /
  2819. XFS_IEXT_BUFSZ);
  2820. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2821. nex1 = 0;
  2822. continue;
  2823. } else {
  2824. break;
  2825. }
  2826. }
  2827. /* Move extents up (if needed) */
  2828. if (nex2) {
  2829. memmove(&erp->er_extbuf[nex1],
  2830. &erp->er_extbuf[nex1 + ext_diff],
  2831. nex2 * sizeof(xfs_bmbt_rec_t));
  2832. }
  2833. /* Zero out rest of page */
  2834. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  2835. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  2836. /* Update remaining counters */
  2837. erp->er_extcount -= ext_diff;
  2838. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  2839. ext_cnt -= ext_diff;
  2840. nex1 = 0;
  2841. erp_idx++;
  2842. erp++;
  2843. }
  2844. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  2845. xfs_iext_irec_compact(ifp);
  2846. }
  2847. /*
  2848. * Create, destroy, or resize a linear (direct) block of extents.
  2849. */
  2850. void
  2851. xfs_iext_realloc_direct(
  2852. xfs_ifork_t *ifp, /* inode fork pointer */
  2853. int new_size) /* new size of extents */
  2854. {
  2855. int rnew_size; /* real new size of extents */
  2856. rnew_size = new_size;
  2857. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  2858. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  2859. (new_size != ifp->if_real_bytes)));
  2860. /* Free extent records */
  2861. if (new_size == 0) {
  2862. xfs_iext_destroy(ifp);
  2863. }
  2864. /* Resize direct extent list and zero any new bytes */
  2865. else if (ifp->if_real_bytes) {
  2866. /* Check if extents will fit inside the inode */
  2867. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  2868. xfs_iext_direct_to_inline(ifp, new_size /
  2869. (uint)sizeof(xfs_bmbt_rec_t));
  2870. ifp->if_bytes = new_size;
  2871. return;
  2872. }
  2873. if (!is_power_of_2(new_size)){
  2874. rnew_size = roundup_pow_of_two(new_size);
  2875. }
  2876. if (rnew_size != ifp->if_real_bytes) {
  2877. ifp->if_u1.if_extents =
  2878. kmem_realloc(ifp->if_u1.if_extents,
  2879. rnew_size,
  2880. ifp->if_real_bytes, KM_NOFS);
  2881. }
  2882. if (rnew_size > ifp->if_real_bytes) {
  2883. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  2884. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  2885. rnew_size - ifp->if_real_bytes);
  2886. }
  2887. }
  2888. /*
  2889. * Switch from the inline extent buffer to a direct
  2890. * extent list. Be sure to include the inline extent
  2891. * bytes in new_size.
  2892. */
  2893. else {
  2894. new_size += ifp->if_bytes;
  2895. if (!is_power_of_2(new_size)) {
  2896. rnew_size = roundup_pow_of_two(new_size);
  2897. }
  2898. xfs_iext_inline_to_direct(ifp, rnew_size);
  2899. }
  2900. ifp->if_real_bytes = rnew_size;
  2901. ifp->if_bytes = new_size;
  2902. }
  2903. /*
  2904. * Switch from linear (direct) extent records to inline buffer.
  2905. */
  2906. void
  2907. xfs_iext_direct_to_inline(
  2908. xfs_ifork_t *ifp, /* inode fork pointer */
  2909. xfs_extnum_t nextents) /* number of extents in file */
  2910. {
  2911. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2912. ASSERT(nextents <= XFS_INLINE_EXTS);
  2913. /*
  2914. * The inline buffer was zeroed when we switched
  2915. * from inline to direct extent allocation mode,
  2916. * so we don't need to clear it here.
  2917. */
  2918. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  2919. nextents * sizeof(xfs_bmbt_rec_t));
  2920. kmem_free(ifp->if_u1.if_extents);
  2921. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2922. ifp->if_real_bytes = 0;
  2923. }
  2924. /*
  2925. * Switch from inline buffer to linear (direct) extent records.
  2926. * new_size should already be rounded up to the next power of 2
  2927. * by the caller (when appropriate), so use new_size as it is.
  2928. * However, since new_size may be rounded up, we can't update
  2929. * if_bytes here. It is the caller's responsibility to update
  2930. * if_bytes upon return.
  2931. */
  2932. void
  2933. xfs_iext_inline_to_direct(
  2934. xfs_ifork_t *ifp, /* inode fork pointer */
  2935. int new_size) /* number of extents in file */
  2936. {
  2937. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  2938. memset(ifp->if_u1.if_extents, 0, new_size);
  2939. if (ifp->if_bytes) {
  2940. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  2941. ifp->if_bytes);
  2942. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  2943. sizeof(xfs_bmbt_rec_t));
  2944. }
  2945. ifp->if_real_bytes = new_size;
  2946. }
  2947. /*
  2948. * Resize an extent indirection array to new_size bytes.
  2949. */
  2950. STATIC void
  2951. xfs_iext_realloc_indirect(
  2952. xfs_ifork_t *ifp, /* inode fork pointer */
  2953. int new_size) /* new indirection array size */
  2954. {
  2955. int nlists; /* number of irec's (ex lists) */
  2956. int size; /* current indirection array size */
  2957. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2958. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2959. size = nlists * sizeof(xfs_ext_irec_t);
  2960. ASSERT(ifp->if_real_bytes);
  2961. ASSERT((new_size >= 0) && (new_size != size));
  2962. if (new_size == 0) {
  2963. xfs_iext_destroy(ifp);
  2964. } else {
  2965. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  2966. kmem_realloc(ifp->if_u1.if_ext_irec,
  2967. new_size, size, KM_NOFS);
  2968. }
  2969. }
  2970. /*
  2971. * Switch from indirection array to linear (direct) extent allocations.
  2972. */
  2973. STATIC void
  2974. xfs_iext_indirect_to_direct(
  2975. xfs_ifork_t *ifp) /* inode fork pointer */
  2976. {
  2977. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  2978. xfs_extnum_t nextents; /* number of extents in file */
  2979. int size; /* size of file extents */
  2980. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2981. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2982. ASSERT(nextents <= XFS_LINEAR_EXTS);
  2983. size = nextents * sizeof(xfs_bmbt_rec_t);
  2984. xfs_iext_irec_compact_pages(ifp);
  2985. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  2986. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  2987. kmem_free(ifp->if_u1.if_ext_irec);
  2988. ifp->if_flags &= ~XFS_IFEXTIREC;
  2989. ifp->if_u1.if_extents = ep;
  2990. ifp->if_bytes = size;
  2991. if (nextents < XFS_LINEAR_EXTS) {
  2992. xfs_iext_realloc_direct(ifp, size);
  2993. }
  2994. }
  2995. /*
  2996. * Free incore file extents.
  2997. */
  2998. void
  2999. xfs_iext_destroy(
  3000. xfs_ifork_t *ifp) /* inode fork pointer */
  3001. {
  3002. if (ifp->if_flags & XFS_IFEXTIREC) {
  3003. int erp_idx;
  3004. int nlists;
  3005. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3006. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3007. xfs_iext_irec_remove(ifp, erp_idx);
  3008. }
  3009. ifp->if_flags &= ~XFS_IFEXTIREC;
  3010. } else if (ifp->if_real_bytes) {
  3011. kmem_free(ifp->if_u1.if_extents);
  3012. } else if (ifp->if_bytes) {
  3013. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3014. sizeof(xfs_bmbt_rec_t));
  3015. }
  3016. ifp->if_u1.if_extents = NULL;
  3017. ifp->if_real_bytes = 0;
  3018. ifp->if_bytes = 0;
  3019. }
  3020. /*
  3021. * Return a pointer to the extent record for file system block bno.
  3022. */
  3023. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3024. xfs_iext_bno_to_ext(
  3025. xfs_ifork_t *ifp, /* inode fork pointer */
  3026. xfs_fileoff_t bno, /* block number to search for */
  3027. xfs_extnum_t *idxp) /* index of target extent */
  3028. {
  3029. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3030. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3031. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3032. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3033. int high; /* upper boundary in search */
  3034. xfs_extnum_t idx = 0; /* index of target extent */
  3035. int low; /* lower boundary in search */
  3036. xfs_extnum_t nextents; /* number of file extents */
  3037. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3038. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3039. if (nextents == 0) {
  3040. *idxp = 0;
  3041. return NULL;
  3042. }
  3043. low = 0;
  3044. if (ifp->if_flags & XFS_IFEXTIREC) {
  3045. /* Find target extent list */
  3046. int erp_idx = 0;
  3047. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3048. base = erp->er_extbuf;
  3049. high = erp->er_extcount - 1;
  3050. } else {
  3051. base = ifp->if_u1.if_extents;
  3052. high = nextents - 1;
  3053. }
  3054. /* Binary search extent records */
  3055. while (low <= high) {
  3056. idx = (low + high) >> 1;
  3057. ep = base + idx;
  3058. startoff = xfs_bmbt_get_startoff(ep);
  3059. blockcount = xfs_bmbt_get_blockcount(ep);
  3060. if (bno < startoff) {
  3061. high = idx - 1;
  3062. } else if (bno >= startoff + blockcount) {
  3063. low = idx + 1;
  3064. } else {
  3065. /* Convert back to file-based extent index */
  3066. if (ifp->if_flags & XFS_IFEXTIREC) {
  3067. idx += erp->er_extoff;
  3068. }
  3069. *idxp = idx;
  3070. return ep;
  3071. }
  3072. }
  3073. /* Convert back to file-based extent index */
  3074. if (ifp->if_flags & XFS_IFEXTIREC) {
  3075. idx += erp->er_extoff;
  3076. }
  3077. if (bno >= startoff + blockcount) {
  3078. if (++idx == nextents) {
  3079. ep = NULL;
  3080. } else {
  3081. ep = xfs_iext_get_ext(ifp, idx);
  3082. }
  3083. }
  3084. *idxp = idx;
  3085. return ep;
  3086. }
  3087. /*
  3088. * Return a pointer to the indirection array entry containing the
  3089. * extent record for filesystem block bno. Store the index of the
  3090. * target irec in *erp_idxp.
  3091. */
  3092. xfs_ext_irec_t * /* pointer to found extent record */
  3093. xfs_iext_bno_to_irec(
  3094. xfs_ifork_t *ifp, /* inode fork pointer */
  3095. xfs_fileoff_t bno, /* block number to search for */
  3096. int *erp_idxp) /* irec index of target ext list */
  3097. {
  3098. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3099. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3100. int erp_idx; /* indirection array index */
  3101. int nlists; /* number of extent irec's (lists) */
  3102. int high; /* binary search upper limit */
  3103. int low; /* binary search lower limit */
  3104. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3105. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3106. erp_idx = 0;
  3107. low = 0;
  3108. high = nlists - 1;
  3109. while (low <= high) {
  3110. erp_idx = (low + high) >> 1;
  3111. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3112. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3113. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3114. high = erp_idx - 1;
  3115. } else if (erp_next && bno >=
  3116. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3117. low = erp_idx + 1;
  3118. } else {
  3119. break;
  3120. }
  3121. }
  3122. *erp_idxp = erp_idx;
  3123. return erp;
  3124. }
  3125. /*
  3126. * Return a pointer to the indirection array entry containing the
  3127. * extent record at file extent index *idxp. Store the index of the
  3128. * target irec in *erp_idxp and store the page index of the target
  3129. * extent record in *idxp.
  3130. */
  3131. xfs_ext_irec_t *
  3132. xfs_iext_idx_to_irec(
  3133. xfs_ifork_t *ifp, /* inode fork pointer */
  3134. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3135. int *erp_idxp, /* pointer to target irec */
  3136. int realloc) /* new bytes were just added */
  3137. {
  3138. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3139. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3140. int erp_idx; /* indirection array index */
  3141. int nlists; /* number of irec's (ex lists) */
  3142. int high; /* binary search upper limit */
  3143. int low; /* binary search lower limit */
  3144. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3145. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3146. ASSERT(page_idx >= 0);
  3147. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3148. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3149. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3150. erp_idx = 0;
  3151. low = 0;
  3152. high = nlists - 1;
  3153. /* Binary search extent irec's */
  3154. while (low <= high) {
  3155. erp_idx = (low + high) >> 1;
  3156. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3157. prev = erp_idx > 0 ? erp - 1 : NULL;
  3158. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3159. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3160. high = erp_idx - 1;
  3161. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3162. (page_idx == erp->er_extoff + erp->er_extcount &&
  3163. !realloc)) {
  3164. low = erp_idx + 1;
  3165. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3166. erp->er_extcount == XFS_LINEAR_EXTS) {
  3167. ASSERT(realloc);
  3168. page_idx = 0;
  3169. erp_idx++;
  3170. erp = erp_idx < nlists ? erp + 1 : NULL;
  3171. break;
  3172. } else {
  3173. page_idx -= erp->er_extoff;
  3174. break;
  3175. }
  3176. }
  3177. *idxp = page_idx;
  3178. *erp_idxp = erp_idx;
  3179. return(erp);
  3180. }
  3181. /*
  3182. * Allocate and initialize an indirection array once the space needed
  3183. * for incore extents increases above XFS_IEXT_BUFSZ.
  3184. */
  3185. void
  3186. xfs_iext_irec_init(
  3187. xfs_ifork_t *ifp) /* inode fork pointer */
  3188. {
  3189. xfs_ext_irec_t *erp; /* indirection array pointer */
  3190. xfs_extnum_t nextents; /* number of extents in file */
  3191. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3192. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3193. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3194. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3195. if (nextents == 0) {
  3196. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3197. } else if (!ifp->if_real_bytes) {
  3198. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3199. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3200. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3201. }
  3202. erp->er_extbuf = ifp->if_u1.if_extents;
  3203. erp->er_extcount = nextents;
  3204. erp->er_extoff = 0;
  3205. ifp->if_flags |= XFS_IFEXTIREC;
  3206. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3207. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3208. ifp->if_u1.if_ext_irec = erp;
  3209. return;
  3210. }
  3211. /*
  3212. * Allocate and initialize a new entry in the indirection array.
  3213. */
  3214. xfs_ext_irec_t *
  3215. xfs_iext_irec_new(
  3216. xfs_ifork_t *ifp, /* inode fork pointer */
  3217. int erp_idx) /* index for new irec */
  3218. {
  3219. xfs_ext_irec_t *erp; /* indirection array pointer */
  3220. int i; /* loop counter */
  3221. int nlists; /* number of irec's (ex lists) */
  3222. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3223. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3224. /* Resize indirection array */
  3225. xfs_iext_realloc_indirect(ifp, ++nlists *
  3226. sizeof(xfs_ext_irec_t));
  3227. /*
  3228. * Move records down in the array so the
  3229. * new page can use erp_idx.
  3230. */
  3231. erp = ifp->if_u1.if_ext_irec;
  3232. for (i = nlists - 1; i > erp_idx; i--) {
  3233. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3234. }
  3235. ASSERT(i == erp_idx);
  3236. /* Initialize new extent record */
  3237. erp = ifp->if_u1.if_ext_irec;
  3238. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3239. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3240. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3241. erp[erp_idx].er_extcount = 0;
  3242. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3243. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3244. return (&erp[erp_idx]);
  3245. }
  3246. /*
  3247. * Remove a record from the indirection array.
  3248. */
  3249. void
  3250. xfs_iext_irec_remove(
  3251. xfs_ifork_t *ifp, /* inode fork pointer */
  3252. int erp_idx) /* irec index to remove */
  3253. {
  3254. xfs_ext_irec_t *erp; /* indirection array pointer */
  3255. int i; /* loop counter */
  3256. int nlists; /* number of irec's (ex lists) */
  3257. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3258. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3259. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3260. if (erp->er_extbuf) {
  3261. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3262. -erp->er_extcount);
  3263. kmem_free(erp->er_extbuf);
  3264. }
  3265. /* Compact extent records */
  3266. erp = ifp->if_u1.if_ext_irec;
  3267. for (i = erp_idx; i < nlists - 1; i++) {
  3268. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3269. }
  3270. /*
  3271. * Manually free the last extent record from the indirection
  3272. * array. A call to xfs_iext_realloc_indirect() with a size
  3273. * of zero would result in a call to xfs_iext_destroy() which
  3274. * would in turn call this function again, creating a nasty
  3275. * infinite loop.
  3276. */
  3277. if (--nlists) {
  3278. xfs_iext_realloc_indirect(ifp,
  3279. nlists * sizeof(xfs_ext_irec_t));
  3280. } else {
  3281. kmem_free(ifp->if_u1.if_ext_irec);
  3282. }
  3283. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3284. }
  3285. /*
  3286. * This is called to clean up large amounts of unused memory allocated
  3287. * by the indirection array. Before compacting anything though, verify
  3288. * that the indirection array is still needed and switch back to the
  3289. * linear extent list (or even the inline buffer) if possible. The
  3290. * compaction policy is as follows:
  3291. *
  3292. * Full Compaction: Extents fit into a single page (or inline buffer)
  3293. * Partial Compaction: Extents occupy less than 50% of allocated space
  3294. * No Compaction: Extents occupy at least 50% of allocated space
  3295. */
  3296. void
  3297. xfs_iext_irec_compact(
  3298. xfs_ifork_t *ifp) /* inode fork pointer */
  3299. {
  3300. xfs_extnum_t nextents; /* number of extents in file */
  3301. int nlists; /* number of irec's (ex lists) */
  3302. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3303. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3304. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3305. if (nextents == 0) {
  3306. xfs_iext_destroy(ifp);
  3307. } else if (nextents <= XFS_INLINE_EXTS) {
  3308. xfs_iext_indirect_to_direct(ifp);
  3309. xfs_iext_direct_to_inline(ifp, nextents);
  3310. } else if (nextents <= XFS_LINEAR_EXTS) {
  3311. xfs_iext_indirect_to_direct(ifp);
  3312. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3313. xfs_iext_irec_compact_pages(ifp);
  3314. }
  3315. }
  3316. /*
  3317. * Combine extents from neighboring extent pages.
  3318. */
  3319. void
  3320. xfs_iext_irec_compact_pages(
  3321. xfs_ifork_t *ifp) /* inode fork pointer */
  3322. {
  3323. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3324. int erp_idx = 0; /* indirection array index */
  3325. int nlists; /* number of irec's (ex lists) */
  3326. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3327. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3328. while (erp_idx < nlists - 1) {
  3329. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3330. erp_next = erp + 1;
  3331. if (erp_next->er_extcount <=
  3332. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3333. memcpy(&erp->er_extbuf[erp->er_extcount],
  3334. erp_next->er_extbuf, erp_next->er_extcount *
  3335. sizeof(xfs_bmbt_rec_t));
  3336. erp->er_extcount += erp_next->er_extcount;
  3337. /*
  3338. * Free page before removing extent record
  3339. * so er_extoffs don't get modified in
  3340. * xfs_iext_irec_remove.
  3341. */
  3342. kmem_free(erp_next->er_extbuf);
  3343. erp_next->er_extbuf = NULL;
  3344. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3345. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3346. } else {
  3347. erp_idx++;
  3348. }
  3349. }
  3350. }
  3351. /*
  3352. * This is called to update the er_extoff field in the indirection
  3353. * array when extents have been added or removed from one of the
  3354. * extent lists. erp_idx contains the irec index to begin updating
  3355. * at and ext_diff contains the number of extents that were added
  3356. * or removed.
  3357. */
  3358. void
  3359. xfs_iext_irec_update_extoffs(
  3360. xfs_ifork_t *ifp, /* inode fork pointer */
  3361. int erp_idx, /* irec index to update */
  3362. int ext_diff) /* number of new extents */
  3363. {
  3364. int i; /* loop counter */
  3365. int nlists; /* number of irec's (ex lists */
  3366. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3367. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3368. for (i = erp_idx; i < nlists; i++) {
  3369. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3370. }
  3371. }