ngene-core.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760
  1. /*
  2. * ngene.c: nGene PCIe bridge driver
  3. *
  4. * Copyright (C) 2005-2007 Micronas
  5. *
  6. * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
  7. * Modifications for new nGene firmware,
  8. * support for EEPROM-copying,
  9. * support for new dual DVB-S2 card prototype
  10. *
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 only, as published by the Free Software Foundation.
  15. *
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  26. * 02110-1301, USA
  27. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  28. */
  29. #include <linux/module.h>
  30. #include <linux/init.h>
  31. #include <linux/delay.h>
  32. #include <linux/slab.h>
  33. #include <linux/poll.h>
  34. #include <asm/io.h>
  35. #include <asm/div64.h>
  36. #include <linux/pci.h>
  37. #include <linux/pci_ids.h>
  38. #include <linux/smp_lock.h>
  39. #include <linux/timer.h>
  40. #include <linux/version.h>
  41. #include <linux/byteorder/generic.h>
  42. #include <linux/firmware.h>
  43. #include "ngene.h"
  44. #include "stv6110x.h"
  45. #include "stv090x.h"
  46. #include "lnbh24.h"
  47. #ifdef NGENE_COMMAND_API
  48. #include "ngene-ioctls.h"
  49. #endif
  50. static int copy_eeprom;
  51. module_param(copy_eeprom, int, 0444);
  52. MODULE_PARM_DESC(copy_eeprom, "Copy eeprom.");
  53. static int debug;
  54. module_param(debug, int, 0444);
  55. MODULE_PARM_DESC(debug, "Print debugging information.");
  56. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  57. #define dprintk if (debug) printk
  58. #define DEVICE_NAME "ngene"
  59. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  60. #define ngwritel(dat, adr) writel((dat), (char *)(dev->iomem + (adr)))
  61. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  62. #define ngreadl(adr) readl(dev->iomem + (adr))
  63. #define ngreadb(adr) readb(dev->iomem + (adr))
  64. #define ngcpyto(adr, src, count) memcpy_toio((char *) \
  65. (dev->iomem + (adr)), (src), (count))
  66. #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), (char *) \
  67. (dev->iomem + (adr)), (count))
  68. /****************************************************************************/
  69. /* nGene interrupt handler **************************************************/
  70. /****************************************************************************/
  71. static void event_tasklet(unsigned long data)
  72. {
  73. struct ngene *dev = (struct ngene *)data;
  74. while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
  75. struct EVENT_BUFFER Event =
  76. dev->EventQueue[dev->EventQueueReadIndex];
  77. dev->EventQueueReadIndex =
  78. (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
  79. if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
  80. dev->TxEventNotify(dev, Event.TimeStamp);
  81. if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
  82. dev->RxEventNotify(dev, Event.TimeStamp,
  83. Event.RXCharacter);
  84. }
  85. }
  86. static void demux_tasklet(unsigned long data)
  87. {
  88. struct ngene_channel *chan = (struct ngene_channel *)data;
  89. struct SBufferHeader *Cur = chan->nextBuffer;
  90. spin_lock_irq(&chan->state_lock);
  91. while (Cur->ngeneBuffer.SR.Flags & 0x80) {
  92. if (chan->mode & NGENE_IO_TSOUT) {
  93. u32 Flags = chan->DataFormatFlags;
  94. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  95. Flags |= BEF_OVERFLOW;
  96. if (chan->pBufferExchange) {
  97. if (!chan->pBufferExchange(chan,
  98. Cur->Buffer1,
  99. chan->Capture1Length,
  100. Cur->ngeneBuffer.SR.
  101. Clock, Flags)) {
  102. /*
  103. We didn't get data
  104. Clear in service flag to make sure we
  105. get called on next interrupt again.
  106. leave fill/empty (0x80) flag alone
  107. to avoid hardware running out of
  108. buffers during startup, we hold only
  109. in run state ( the source may be late
  110. delivering data )
  111. */
  112. if (chan->HWState == HWSTATE_RUN) {
  113. Cur->ngeneBuffer.SR.Flags &=
  114. ~0x40;
  115. break;
  116. /* Stop proccessing stream */
  117. }
  118. } else {
  119. /* We got a valid buffer,
  120. so switch to run state */
  121. chan->HWState = HWSTATE_RUN;
  122. }
  123. } else {
  124. printk(KERN_ERR DEVICE_NAME ": OOPS\n");
  125. if (chan->HWState == HWSTATE_RUN) {
  126. Cur->ngeneBuffer.SR.Flags &= ~0x40;
  127. break; /* Stop proccessing stream */
  128. }
  129. }
  130. if (chan->AudioDTOUpdated) {
  131. printk(KERN_INFO DEVICE_NAME
  132. ": Update AudioDTO = %d\n",
  133. chan->AudioDTOValue);
  134. Cur->ngeneBuffer.SR.DTOUpdate =
  135. chan->AudioDTOValue;
  136. chan->AudioDTOUpdated = 0;
  137. }
  138. } else {
  139. if (chan->HWState == HWSTATE_RUN) {
  140. u32 Flags = 0;
  141. if (Cur->ngeneBuffer.SR.Flags & 0x01)
  142. Flags |= BEF_EVEN_FIELD;
  143. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  144. Flags |= BEF_OVERFLOW;
  145. if (chan->pBufferExchange)
  146. chan->pBufferExchange(chan,
  147. Cur->Buffer1,
  148. chan->
  149. Capture1Length,
  150. Cur->ngeneBuffer.
  151. SR.Clock, Flags);
  152. if (chan->pBufferExchange2)
  153. chan->pBufferExchange2(chan,
  154. Cur->Buffer2,
  155. chan->
  156. Capture2Length,
  157. Cur->ngeneBuffer.
  158. SR.Clock, Flags);
  159. } else if (chan->HWState != HWSTATE_STOP)
  160. chan->HWState = HWSTATE_RUN;
  161. }
  162. Cur->ngeneBuffer.SR.Flags = 0x00;
  163. Cur = Cur->Next;
  164. }
  165. chan->nextBuffer = Cur;
  166. spin_unlock_irq(&chan->state_lock);
  167. }
  168. static irqreturn_t irq_handler(int irq, void *dev_id)
  169. {
  170. struct ngene *dev = (struct ngene *)dev_id;
  171. u32 icounts = 0;
  172. irqreturn_t rc = IRQ_NONE;
  173. u32 i = MAX_STREAM;
  174. u8 *tmpCmdDoneByte;
  175. if (dev->BootFirmware) {
  176. icounts = ngreadl(NGENE_INT_COUNTS);
  177. if (icounts != dev->icounts) {
  178. ngwritel(0, FORCE_NMI);
  179. dev->cmd_done = 1;
  180. wake_up(&dev->cmd_wq);
  181. dev->icounts = icounts;
  182. rc = IRQ_HANDLED;
  183. }
  184. return rc;
  185. }
  186. ngwritel(0, FORCE_NMI);
  187. spin_lock(&dev->cmd_lock);
  188. tmpCmdDoneByte = dev->CmdDoneByte;
  189. if (tmpCmdDoneByte &&
  190. (*tmpCmdDoneByte ||
  191. (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
  192. dev->CmdDoneByte = NULL;
  193. dev->cmd_done = 1;
  194. wake_up(&dev->cmd_wq);
  195. rc = IRQ_HANDLED;
  196. }
  197. spin_unlock(&dev->cmd_lock);
  198. if (dev->EventBuffer->EventStatus & 0x80) {
  199. u8 nextWriteIndex =
  200. (dev->EventQueueWriteIndex + 1) &
  201. (EVENT_QUEUE_SIZE - 1);
  202. if (nextWriteIndex != dev->EventQueueReadIndex) {
  203. dev->EventQueue[dev->EventQueueWriteIndex] =
  204. *(dev->EventBuffer);
  205. dev->EventQueueWriteIndex = nextWriteIndex;
  206. } else {
  207. printk(KERN_ERR DEVICE_NAME ": event overflow\n");
  208. dev->EventQueueOverflowCount += 1;
  209. dev->EventQueueOverflowFlag = 1;
  210. }
  211. dev->EventBuffer->EventStatus &= ~0x80;
  212. tasklet_schedule(&dev->event_tasklet);
  213. rc = IRQ_HANDLED;
  214. }
  215. while (i > 0) {
  216. i--;
  217. spin_lock(&dev->channel[i].state_lock);
  218. /* if (dev->channel[i].State>=KSSTATE_RUN) { */
  219. if (dev->channel[i].nextBuffer) {
  220. if ((dev->channel[i].nextBuffer->
  221. ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
  222. dev->channel[i].nextBuffer->
  223. ngeneBuffer.SR.Flags |= 0x40;
  224. tasklet_schedule(
  225. &dev->channel[i].demux_tasklet);
  226. rc = IRQ_HANDLED;
  227. }
  228. }
  229. spin_unlock(&dev->channel[i].state_lock);
  230. }
  231. return rc;
  232. }
  233. /****************************************************************************/
  234. /* nGene command interface **************************************************/
  235. /****************************************************************************/
  236. static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
  237. {
  238. int ret;
  239. u8 *tmpCmdDoneByte;
  240. dev->cmd_done = 0;
  241. if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
  242. dev->BootFirmware = 1;
  243. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  244. ngwritel(0, NGENE_COMMAND);
  245. ngwritel(0, NGENE_COMMAND_HI);
  246. ngwritel(0, NGENE_STATUS);
  247. ngwritel(0, NGENE_STATUS_HI);
  248. ngwritel(0, NGENE_EVENT);
  249. ngwritel(0, NGENE_EVENT_HI);
  250. } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
  251. u64 fwio = dev->PAFWInterfaceBuffer;
  252. ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
  253. ngwritel(fwio >> 32, NGENE_COMMAND_HI);
  254. ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
  255. ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
  256. ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
  257. ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
  258. }
  259. memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
  260. if (dev->BootFirmware)
  261. ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
  262. spin_lock_irq(&dev->cmd_lock);
  263. tmpCmdDoneByte = dev->ngenetohost + com->out_len;
  264. if (!com->out_len)
  265. tmpCmdDoneByte++;
  266. *tmpCmdDoneByte = 0;
  267. dev->ngenetohost[0] = 0;
  268. dev->ngenetohost[1] = 0;
  269. dev->CmdDoneByte = tmpCmdDoneByte;
  270. spin_unlock_irq(&dev->cmd_lock);
  271. /* Notify 8051. */
  272. ngwritel(1, FORCE_INT);
  273. ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
  274. if (!ret) {
  275. /*ngwritel(0, FORCE_NMI);*/
  276. printk(KERN_ERR DEVICE_NAME
  277. ": Command timeout cmd=%02x prev=%02x\n",
  278. com->cmd.hdr.Opcode, dev->prev_cmd);
  279. return -1;
  280. }
  281. if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
  282. dev->BootFirmware = 0;
  283. dev->prev_cmd = com->cmd.hdr.Opcode;
  284. if (!com->out_len)
  285. return 0;
  286. memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
  287. return 0;
  288. }
  289. static int ngene_command(struct ngene *dev, struct ngene_command *com)
  290. {
  291. int result;
  292. down(&dev->cmd_mutex);
  293. result = ngene_command_mutex(dev, com);
  294. up(&dev->cmd_mutex);
  295. return result;
  296. }
  297. int ngene_command_nop(struct ngene *dev)
  298. {
  299. struct ngene_command com;
  300. com.cmd.hdr.Opcode = CMD_NOP;
  301. com.cmd.hdr.Length = 0;
  302. com.in_len = 0;
  303. com.out_len = 0;
  304. return ngene_command(dev, &com);
  305. }
  306. int ngene_command_i2c_read(struct ngene *dev, u8 adr,
  307. u8 *out, u8 outlen, u8 *in, u8 inlen, int flag)
  308. {
  309. struct ngene_command com;
  310. com.cmd.hdr.Opcode = CMD_I2C_READ;
  311. com.cmd.hdr.Length = outlen + 3;
  312. com.cmd.I2CRead.Device = adr << 1;
  313. memcpy(com.cmd.I2CRead.Data, out, outlen);
  314. com.cmd.I2CRead.Data[outlen] = inlen;
  315. com.cmd.I2CRead.Data[outlen + 1] = 0;
  316. com.in_len = outlen + 3;
  317. com.out_len = inlen + 1;
  318. if (ngene_command(dev, &com) < 0)
  319. return -EIO;
  320. if ((com.cmd.raw8[0] >> 1) != adr)
  321. return -EIO;
  322. if (flag)
  323. memcpy(in, com.cmd.raw8, inlen + 1);
  324. else
  325. memcpy(in, com.cmd.raw8 + 1, inlen);
  326. return 0;
  327. }
  328. int ngene_command_i2c_write(struct ngene *dev, u8 adr, u8 *out, u8 outlen)
  329. {
  330. struct ngene_command com;
  331. com.cmd.hdr.Opcode = CMD_I2C_WRITE;
  332. com.cmd.hdr.Length = outlen + 1;
  333. com.cmd.I2CRead.Device = adr << 1;
  334. memcpy(com.cmd.I2CRead.Data, out, outlen);
  335. com.in_len = outlen + 1;
  336. com.out_len = 1;
  337. if (ngene_command(dev, &com) < 0)
  338. return -EIO;
  339. if (com.cmd.raw8[0] == 1)
  340. return -EIO;
  341. return 0;
  342. }
  343. static int ngene_command_load_firmware(struct ngene *dev,
  344. u8 *ngene_fw, u32 size)
  345. {
  346. #define FIRSTCHUNK (1024)
  347. u32 cleft;
  348. struct ngene_command com;
  349. com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
  350. com.cmd.hdr.Length = 0;
  351. com.in_len = 0;
  352. com.out_len = 0;
  353. ngene_command(dev, &com);
  354. cleft = (size + 3) & ~3;
  355. if (cleft > FIRSTCHUNK) {
  356. ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
  357. cleft - FIRSTCHUNK);
  358. cleft = FIRSTCHUNK;
  359. }
  360. ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
  361. memset(&com, 0, sizeof(struct ngene_command));
  362. com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
  363. com.cmd.hdr.Length = 4;
  364. com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
  365. com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
  366. com.in_len = 4;
  367. com.out_len = 0;
  368. return ngene_command(dev, &com);
  369. }
  370. int ngene_command_imem_read(struct ngene *dev, u8 adr, u8 *data, int type)
  371. {
  372. struct ngene_command com;
  373. com.cmd.hdr.Opcode = type ? CMD_SFR_READ : CMD_IRAM_READ;
  374. com.cmd.hdr.Length = 1;
  375. com.cmd.SfrIramRead.address = adr;
  376. com.in_len = 1;
  377. com.out_len = 2;
  378. if (ngene_command(dev, &com) < 0)
  379. return -EIO;
  380. *data = com.cmd.raw8[1];
  381. return 0;
  382. }
  383. int ngene_command_imem_write(struct ngene *dev, u8 adr, u8 data, int type)
  384. {
  385. struct ngene_command com;
  386. com.cmd.hdr.Opcode = type ? CMD_SFR_WRITE : CMD_IRAM_WRITE;
  387. com.cmd.hdr.Length = 2;
  388. com.cmd.SfrIramWrite.address = adr;
  389. com.cmd.SfrIramWrite.data = data;
  390. com.in_len = 2;
  391. com.out_len = 1;
  392. if (ngene_command(dev, &com) < 0)
  393. return -EIO;
  394. return 0;
  395. }
  396. static int ngene_command_config_uart(struct ngene *dev, u8 config,
  397. tx_cb_t *tx_cb, rx_cb_t *rx_cb)
  398. {
  399. struct ngene_command com;
  400. com.cmd.hdr.Opcode = CMD_CONFIGURE_UART;
  401. com.cmd.hdr.Length = sizeof(struct FW_CONFIGURE_UART) - 2;
  402. com.cmd.ConfigureUart.UartControl = config;
  403. com.in_len = sizeof(struct FW_CONFIGURE_UART);
  404. com.out_len = 0;
  405. if (ngene_command(dev, &com) < 0)
  406. return -EIO;
  407. dev->TxEventNotify = tx_cb;
  408. dev->RxEventNotify = rx_cb;
  409. dprintk(KERN_DEBUG DEVICE_NAME ": Set UART config %02x.\n", config);
  410. return 0;
  411. }
  412. static void tx_cb(struct ngene *dev, u32 ts)
  413. {
  414. dev->tx_busy = 0;
  415. wake_up_interruptible(&dev->tx_wq);
  416. }
  417. static void rx_cb(struct ngene *dev, u32 ts, u8 c)
  418. {
  419. int rp = dev->uart_rp;
  420. int nwp, wp = dev->uart_wp;
  421. /* dprintk(KERN_DEBUG DEVICE_NAME ": %c\n", c); */
  422. nwp = (wp + 1) % (UART_RBUF_LEN);
  423. if (nwp == rp)
  424. return;
  425. dev->uart_rbuf[wp] = c;
  426. dev->uart_wp = nwp;
  427. wake_up_interruptible(&dev->rx_wq);
  428. }
  429. static int ngene_command_config_buf(struct ngene *dev, u8 config)
  430. {
  431. struct ngene_command com;
  432. com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
  433. com.cmd.hdr.Length = 1;
  434. com.cmd.ConfigureBuffers.config = config;
  435. com.in_len = 1;
  436. com.out_len = 0;
  437. if (ngene_command(dev, &com) < 0)
  438. return -EIO;
  439. return 0;
  440. }
  441. static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
  442. {
  443. struct ngene_command com;
  444. com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
  445. com.cmd.hdr.Length = 6;
  446. memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
  447. com.in_len = 6;
  448. com.out_len = 0;
  449. if (ngene_command(dev, &com) < 0)
  450. return -EIO;
  451. return 0;
  452. }
  453. static int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
  454. {
  455. struct ngene_command com;
  456. com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
  457. com.cmd.hdr.Length = 1;
  458. com.cmd.SetGpioPin.select = select | (level << 7);
  459. com.in_len = 1;
  460. com.out_len = 0;
  461. return ngene_command(dev, &com);
  462. }
  463. /* The reset is only wired to GPIO4 on MicRacer Revision 1.10 !
  464. Also better set bootdelay to 1 in nvram or less. */
  465. static void ngene_reset_decypher(struct ngene *dev)
  466. {
  467. printk(KERN_INFO DEVICE_NAME ": Resetting Decypher.\n");
  468. ngene_command_gpio_set(dev, 4, 0);
  469. msleep(1);
  470. ngene_command_gpio_set(dev, 4, 1);
  471. msleep(2000);
  472. }
  473. /*
  474. 02000640 is sample on rising edge.
  475. 02000740 is sample on falling edge.
  476. 02000040 is ignore "valid" signal
  477. 0: FD_CTL1 Bit 7,6 must be 0,1
  478. 7 disable(fw controlled)
  479. 6 0-AUX,1-TS
  480. 5 0-par,1-ser
  481. 4 0-lsb/1-msb
  482. 3,2 reserved
  483. 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
  484. 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
  485. 2: FD_STA is read-only. 0-sync
  486. 3: FD_INSYNC is number of 47s to trigger "in sync".
  487. 4: FD_OUTSYNC is number of 47s to trigger "out of sync".
  488. 5: FD_MAXBYTE1 is low-order of bytes per packet.
  489. 6: FD_MAXBYTE2 is high-order of bytes per packet.
  490. 7: Top byte is unused.
  491. */
  492. /****************************************************************************/
  493. static u8 TSFeatureDecoderSetup[8 * 4] = {
  494. 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
  495. 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
  496. 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
  497. 0x72, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
  498. };
  499. /* Set NGENE I2S Config to 16 bit packed */
  500. static u8 I2SConfiguration[] = {
  501. 0x00, 0x10, 0x00, 0x00,
  502. 0x80, 0x10, 0x00, 0x00,
  503. };
  504. static u8 SPDIFConfiguration[10] = {
  505. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  506. };
  507. /* Set NGENE I2S Config to transport stream compatible mode */
  508. static u8 TS_I2SConfiguration[4] = { 0x3E, 0x1A, 0x00, 0x00 }; /*3e 18 00 00 ?*/
  509. static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x20, 0x00, 0x00 };
  510. static u8 ITUDecoderSetup[4][16] = {
  511. {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
  512. 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
  513. {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
  514. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  515. {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
  516. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  517. {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
  518. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  519. };
  520. /*
  521. * 50 48 60 gleich
  522. * 27p50 9f 00 22 80 42 69 18 ...
  523. * 27p60 93 00 22 80 82 69 1c ...
  524. */
  525. /* Maxbyte to 1144 (for raw data) */
  526. static u8 ITUFeatureDecoderSetup[8] = {
  527. 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
  528. };
  529. static void FillTSBuffer(void *Buffer, int Length, u32 Flags)
  530. {
  531. u32 *ptr = Buffer;
  532. memset(Buffer, Length, 0xff);
  533. while (Length > 0) {
  534. if (Flags & DF_SWAP32)
  535. *ptr = 0x471FFF10;
  536. else
  537. *ptr = 0x10FF1F47;
  538. ptr += (188 / 4);
  539. Length -= 188;
  540. }
  541. }
  542. static void flush_buffers(struct ngene_channel *chan)
  543. {
  544. u8 val;
  545. do {
  546. msleep(1);
  547. spin_lock_irq(&chan->state_lock);
  548. val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
  549. spin_unlock_irq(&chan->state_lock);
  550. } while (val);
  551. }
  552. static void clear_buffers(struct ngene_channel *chan)
  553. {
  554. struct SBufferHeader *Cur = chan->nextBuffer;
  555. do {
  556. memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
  557. if (chan->mode & NGENE_IO_TSOUT)
  558. FillTSBuffer(Cur->Buffer1,
  559. chan->Capture1Length,
  560. chan->DataFormatFlags);
  561. Cur = Cur->Next;
  562. } while (Cur != chan->nextBuffer);
  563. if (chan->mode & NGENE_IO_TSOUT) {
  564. chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
  565. chan->AudioDTOValue;
  566. chan->AudioDTOUpdated = 0;
  567. Cur = chan->TSIdleBuffer.Head;
  568. do {
  569. memset(&Cur->ngeneBuffer.SR, 0,
  570. sizeof(Cur->ngeneBuffer.SR));
  571. FillTSBuffer(Cur->Buffer1,
  572. chan->Capture1Length,
  573. chan->DataFormatFlags);
  574. Cur = Cur->Next;
  575. } while (Cur != chan->TSIdleBuffer.Head);
  576. }
  577. }
  578. int ngene_command_stream_control(struct ngene *dev, u8 stream, u8 control,
  579. u8 mode, u8 flags)
  580. {
  581. struct ngene_channel *chan = &dev->channel[stream];
  582. struct ngene_command com;
  583. u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
  584. u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
  585. u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
  586. u16 BsSDO = 0x9B00;
  587. /* down(&dev->stream_mutex); */
  588. while (down_trylock(&dev->stream_mutex)) {
  589. printk(KERN_INFO DEVICE_NAME ": SC locked\n");
  590. msleep(1);
  591. }
  592. memset(&com, 0, sizeof(com));
  593. com.cmd.hdr.Opcode = CMD_CONTROL;
  594. com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
  595. com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
  596. if (chan->mode & NGENE_IO_TSOUT)
  597. com.cmd.StreamControl.Stream |= 0x07;
  598. com.cmd.StreamControl.Control = control |
  599. (flags & SFLAG_ORDER_LUMA_CHROMA);
  600. com.cmd.StreamControl.Mode = mode;
  601. com.in_len = sizeof(struct FW_STREAM_CONTROL);
  602. com.out_len = 0;
  603. dprintk(KERN_INFO DEVICE_NAME
  604. ": Stream=%02x, Control=%02x, Mode=%02x\n",
  605. com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
  606. com.cmd.StreamControl.Mode);
  607. chan->Mode = mode;
  608. if (!(control & 0x80)) {
  609. spin_lock_irq(&chan->state_lock);
  610. if (chan->State == KSSTATE_RUN) {
  611. chan->State = KSSTATE_ACQUIRE;
  612. chan->HWState = HWSTATE_STOP;
  613. spin_unlock_irq(&chan->state_lock);
  614. if (ngene_command(dev, &com) < 0) {
  615. up(&dev->stream_mutex);
  616. return -1;
  617. }
  618. /* clear_buffers(chan); */
  619. flush_buffers(chan);
  620. up(&dev->stream_mutex);
  621. return 0;
  622. }
  623. spin_unlock_irq(&chan->state_lock);
  624. up(&dev->stream_mutex);
  625. return 0;
  626. }
  627. if (mode & SMODE_AUDIO_CAPTURE) {
  628. com.cmd.StreamControl.CaptureBlockCount =
  629. chan->Capture1Length / AUDIO_BLOCK_SIZE;
  630. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  631. } else if (mode & SMODE_TRANSPORT_STREAM) {
  632. com.cmd.StreamControl.CaptureBlockCount =
  633. chan->Capture1Length / TS_BLOCK_SIZE;
  634. com.cmd.StreamControl.MaxLinesPerField =
  635. chan->Capture1Length / TS_BLOCK_SIZE;
  636. com.cmd.StreamControl.Buffer_Address =
  637. chan->TSRingBuffer.PAHead;
  638. if (chan->mode & NGENE_IO_TSOUT) {
  639. com.cmd.StreamControl.BytesPerVBILine =
  640. chan->Capture1Length / TS_BLOCK_SIZE;
  641. com.cmd.StreamControl.Stream |= 0x07;
  642. }
  643. } else {
  644. com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
  645. com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
  646. com.cmd.StreamControl.MinLinesPerField = 100;
  647. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  648. if (mode & SMODE_VBI_CAPTURE) {
  649. com.cmd.StreamControl.MaxVBILinesPerField =
  650. chan->nVBILines;
  651. com.cmd.StreamControl.MinVBILinesPerField = 0;
  652. com.cmd.StreamControl.BytesPerVBILine =
  653. chan->nBytesPerVBILine;
  654. }
  655. if (flags & SFLAG_COLORBAR)
  656. com.cmd.StreamControl.Stream |= 0x04;
  657. }
  658. spin_lock_irq(&chan->state_lock);
  659. if (mode & SMODE_AUDIO_CAPTURE) {
  660. chan->nextBuffer = chan->RingBuffer.Head;
  661. if (mode & SMODE_AUDIO_SPDIF) {
  662. com.cmd.StreamControl.SetupDataLen =
  663. sizeof(SPDIFConfiguration);
  664. com.cmd.StreamControl.SetupDataAddr = BsSPI;
  665. memcpy(com.cmd.StreamControl.SetupData,
  666. SPDIFConfiguration, sizeof(SPDIFConfiguration));
  667. } else {
  668. com.cmd.StreamControl.SetupDataLen = 4;
  669. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  670. memcpy(com.cmd.StreamControl.SetupData,
  671. I2SConfiguration +
  672. 4 * dev->card_info->i2s[stream], 4);
  673. }
  674. } else if (mode & SMODE_TRANSPORT_STREAM) {
  675. chan->nextBuffer = chan->TSRingBuffer.Head;
  676. if (stream >= STREAM_AUDIOIN1) {
  677. if (chan->mode & NGENE_IO_TSOUT) {
  678. com.cmd.StreamControl.SetupDataLen =
  679. sizeof(TS_I2SOutConfiguration);
  680. com.cmd.StreamControl.SetupDataAddr = BsSDO;
  681. memcpy(com.cmd.StreamControl.SetupData,
  682. TS_I2SOutConfiguration,
  683. sizeof(TS_I2SOutConfiguration));
  684. } else {
  685. com.cmd.StreamControl.SetupDataLen =
  686. sizeof(TS_I2SConfiguration);
  687. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  688. memcpy(com.cmd.StreamControl.SetupData,
  689. TS_I2SConfiguration,
  690. sizeof(TS_I2SConfiguration));
  691. }
  692. } else {
  693. com.cmd.StreamControl.SetupDataLen = 8;
  694. com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
  695. memcpy(com.cmd.StreamControl.SetupData,
  696. TSFeatureDecoderSetup +
  697. 8 * dev->card_info->tsf[stream], 8);
  698. }
  699. } else {
  700. chan->nextBuffer = chan->RingBuffer.Head;
  701. com.cmd.StreamControl.SetupDataLen =
  702. 16 + sizeof(ITUFeatureDecoderSetup);
  703. com.cmd.StreamControl.SetupDataAddr = BsUVI;
  704. memcpy(com.cmd.StreamControl.SetupData,
  705. ITUDecoderSetup[chan->itumode], 16);
  706. memcpy(com.cmd.StreamControl.SetupData + 16,
  707. ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
  708. }
  709. clear_buffers(chan);
  710. chan->State = KSSTATE_RUN;
  711. if (mode & SMODE_TRANSPORT_STREAM)
  712. chan->HWState = HWSTATE_RUN;
  713. else
  714. chan->HWState = HWSTATE_STARTUP;
  715. spin_unlock_irq(&chan->state_lock);
  716. if (ngene_command(dev, &com) < 0) {
  717. up(&dev->stream_mutex);
  718. return -1;
  719. }
  720. up(&dev->stream_mutex);
  721. return 0;
  722. }
  723. int ngene_stream_control(struct ngene *dev, u8 stream, u8 control, u8 mode,
  724. u16 lines, u16 bpl, u16 vblines, u16 vbibpl)
  725. {
  726. if (!(mode & SMODE_TRANSPORT_STREAM))
  727. return -EINVAL;
  728. if (lines * bpl > MAX_VIDEO_BUFFER_SIZE)
  729. return -EINVAL;
  730. if ((mode & SMODE_TRANSPORT_STREAM) && (((bpl * lines) & 0xff) != 0))
  731. return -EINVAL;
  732. if ((mode & SMODE_VIDEO_CAPTURE) && (bpl & 7) != 0)
  733. return -EINVAL;
  734. return ngene_command_stream_control(dev, stream, control, mode, 0);
  735. }
  736. /****************************************************************************/
  737. /* I2C **********************************************************************/
  738. /****************************************************************************/
  739. static void ngene_i2c_set_bus(struct ngene *dev, int bus)
  740. {
  741. if (!(dev->card_info->i2c_access & 2))
  742. return;
  743. if (dev->i2c_current_bus == bus)
  744. return;
  745. switch (bus) {
  746. case 0:
  747. ngene_command_gpio_set(dev, 3, 0);
  748. ngene_command_gpio_set(dev, 2, 1);
  749. break;
  750. case 1:
  751. ngene_command_gpio_set(dev, 2, 0);
  752. ngene_command_gpio_set(dev, 3, 1);
  753. break;
  754. }
  755. dev->i2c_current_bus = bus;
  756. }
  757. static int ngene_i2c_master_xfer(struct i2c_adapter *adapter,
  758. struct i2c_msg msg[], int num)
  759. {
  760. struct ngene_channel *chan =
  761. (struct ngene_channel *)i2c_get_adapdata(adapter);
  762. struct ngene *dev = chan->dev;
  763. down(&dev->i2c_switch_mutex);
  764. ngene_i2c_set_bus(dev, chan->number);
  765. if (num == 2 && msg[1].flags & I2C_M_RD && !(msg[0].flags & I2C_M_RD))
  766. if (!ngene_command_i2c_read(dev, msg[0].addr,
  767. msg[0].buf, msg[0].len,
  768. msg[1].buf, msg[1].len, 0))
  769. goto done;
  770. if (num == 1 && !(msg[0].flags & I2C_M_RD))
  771. if (!ngene_command_i2c_write(dev, msg[0].addr,
  772. msg[0].buf, msg[0].len))
  773. goto done;
  774. if (num == 1 && (msg[0].flags & I2C_M_RD))
  775. if (!ngene_command_i2c_read(dev, msg[0].addr, 0, 0,
  776. msg[0].buf, msg[0].len, 0))
  777. goto done;
  778. up(&dev->i2c_switch_mutex);
  779. return -EIO;
  780. done:
  781. up(&dev->i2c_switch_mutex);
  782. return num;
  783. }
  784. static u32 ngene_i2c_functionality(struct i2c_adapter *adap)
  785. {
  786. return I2C_FUNC_SMBUS_EMUL;
  787. }
  788. struct i2c_algorithm ngene_i2c_algo = {
  789. .master_xfer = ngene_i2c_master_xfer,
  790. .functionality = ngene_i2c_functionality,
  791. };
  792. static int ngene_i2c_init(struct ngene *dev, int dev_nr)
  793. {
  794. struct i2c_adapter *adap = &(dev->channel[dev_nr].i2c_adapter);
  795. i2c_set_adapdata(adap, &(dev->channel[dev_nr]));
  796. #ifdef I2C_ADAP_CLASS_TV_DIGITAL
  797. adap->class = I2C_ADAP_CLASS_TV_DIGITAL | I2C_CLASS_TV_ANALOG;
  798. #else
  799. adap->class = I2C_CLASS_TV_ANALOG;
  800. #endif
  801. strcpy(adap->name, "nGene");
  802. adap->id = I2C_HW_SAA7146;
  803. adap->algo = &ngene_i2c_algo;
  804. adap->algo_data = (void *)&(dev->channel[dev_nr]);
  805. mutex_init(&adap->bus_lock);
  806. return i2c_add_adapter(adap);
  807. }
  808. int i2c_write(struct i2c_adapter *adapter, u8 adr, u8 data)
  809. {
  810. u8 m[1] = {data};
  811. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 1};
  812. if (i2c_transfer(adapter, &msg, 1) != 1) {
  813. printk(KERN_ERR DEVICE_NAME
  814. ": Failed to write to I2C adr %02x!\n", adr);
  815. return -1;
  816. }
  817. return 0;
  818. }
  819. static int i2c_write_read(struct i2c_adapter *adapter,
  820. u8 adr, u8 *w, u8 wlen, u8 *r, u8 rlen)
  821. {
  822. struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  823. .buf = w, .len = wlen},
  824. {.addr = adr, .flags = I2C_M_RD,
  825. .buf = r, .len = rlen} };
  826. if (i2c_transfer(adapter, msgs, 2) != 2) {
  827. printk(KERN_ERR DEVICE_NAME ": error in i2c_write_read\n");
  828. return -1;
  829. }
  830. return 0;
  831. }
  832. static int test_dec_i2c(struct i2c_adapter *adapter, int reg)
  833. {
  834. u8 data[256] = { reg, 0x00, 0x93, 0x78, 0x43, 0x45 };
  835. u8 data2[256];
  836. int i;
  837. memset(data2, 0, 256);
  838. i2c_write_read(adapter, 0x66, data, 2, data2, 4);
  839. for (i = 0; i < 4; i++)
  840. printk("%02x ", data2[i]);
  841. printk("\n");
  842. return 0;
  843. }
  844. /****************************************************************************/
  845. /* EEPROM TAGS **************************************************************/
  846. /****************************************************************************/
  847. #define MICNG_EE_START 0x0100
  848. #define MICNG_EE_END 0x0FF0
  849. #define MICNG_EETAG_END0 0x0000
  850. #define MICNG_EETAG_END1 0xFFFF
  851. /* 0x0001 - 0x000F reserved for housekeeping */
  852. /* 0xFFFF - 0xFFFE reserved for housekeeping */
  853. /* Micronas assigned tags
  854. EEProm tags for hardware support */
  855. #define MICNG_EETAG_DRXD1_OSCDEVIATION 0x1000 /* 2 Bytes data */
  856. #define MICNG_EETAG_DRXD2_OSCDEVIATION 0x1001 /* 2 Bytes data */
  857. #define MICNG_EETAG_MT2060_1_1STIF 0x1100 /* 2 Bytes data */
  858. #define MICNG_EETAG_MT2060_2_1STIF 0x1101 /* 2 Bytes data */
  859. /* Tag range for OEMs */
  860. #define MICNG_EETAG_OEM_FIRST 0xC000
  861. #define MICNG_EETAG_OEM_LAST 0xFFEF
  862. static int i2c_write_eeprom(struct i2c_adapter *adapter,
  863. u8 adr, u16 reg, u8 data)
  864. {
  865. u8 m[3] = {(reg >> 8), (reg & 0xff), data};
  866. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m,
  867. .len = sizeof(m)};
  868. if (i2c_transfer(adapter, &msg, 1) != 1) {
  869. dprintk(KERN_ERR DEVICE_NAME ": Error writing EEPROM!\n");
  870. return -EIO;
  871. }
  872. return 0;
  873. }
  874. static int i2c_read_eeprom(struct i2c_adapter *adapter,
  875. u8 adr, u16 reg, u8 *data, int len)
  876. {
  877. u8 msg[2] = {(reg >> 8), (reg & 0xff)};
  878. struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
  879. .buf = msg, .len = 2 },
  880. {.addr = adr, .flags = I2C_M_RD,
  881. .buf = data, .len = len} };
  882. if (i2c_transfer(adapter, msgs, 2) != 2) {
  883. dprintk(KERN_ERR DEVICE_NAME ": Error reading EEPROM\n");
  884. return -EIO;
  885. }
  886. return 0;
  887. }
  888. static int i2c_dump_eeprom(struct i2c_adapter *adapter, u8 adr)
  889. {
  890. u8 buf[64];
  891. int i;
  892. if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
  893. printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
  894. return -1;
  895. }
  896. for (i = 0; i < sizeof(buf); i++) {
  897. if (!(i & 15))
  898. printk("\n");
  899. printk("%02x ", buf[i]);
  900. }
  901. printk("\n");
  902. return 0;
  903. }
  904. static int i2c_copy_eeprom(struct i2c_adapter *adapter, u8 adr, u8 adr2)
  905. {
  906. u8 buf[64];
  907. int i;
  908. if (i2c_read_eeprom(adapter, adr, 0x0000, buf, sizeof(buf))) {
  909. printk(KERN_ERR DEVICE_NAME ": No EEPROM?\n");
  910. return -1;
  911. }
  912. buf[36] = 0xc3;
  913. buf[39] = 0xab;
  914. for (i = 0; i < sizeof(buf); i++) {
  915. i2c_write_eeprom(adapter, adr2, i, buf[i]);
  916. msleep(10);
  917. }
  918. return 0;
  919. }
  920. /****************************************************************************/
  921. /* COMMAND API interface ****************************************************/
  922. /****************************************************************************/
  923. #ifdef NGENE_COMMAND_API
  924. static int command_do_ioctl(struct inode *inode, struct file *file,
  925. unsigned int cmd, void *parg)
  926. {
  927. struct dvb_device *dvbdev = file->private_data;
  928. struct ngene_channel *chan = dvbdev->priv;
  929. struct ngene *dev = chan->dev;
  930. int err = 0;
  931. switch (cmd) {
  932. case IOCTL_MIC_NO_OP:
  933. err = ngene_command_nop(dev);
  934. break;
  935. case IOCTL_MIC_DOWNLOAD_FIRMWARE:
  936. break;
  937. case IOCTL_MIC_I2C_READ:
  938. {
  939. MIC_I2C_READ *msg = parg;
  940. err = ngene_command_i2c_read(dev, msg->I2CAddress >> 1,
  941. msg->OutData, msg->OutLength,
  942. msg->OutData, msg->InLength, 1);
  943. break;
  944. }
  945. case IOCTL_MIC_I2C_WRITE:
  946. {
  947. MIC_I2C_WRITE *msg = parg;
  948. err = ngene_command_i2c_write(dev, msg->I2CAddress >> 1,
  949. msg->Data, msg->Length);
  950. break;
  951. }
  952. case IOCTL_MIC_TEST_GETMEM:
  953. {
  954. MIC_MEM *m = parg;
  955. if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
  956. return -EINVAL;
  957. /* WARNING, only use this on x86,
  958. other archs may not swallow this */
  959. err = copy_to_user(m->Data, dev->iomem + m->Start, m->Length);
  960. break;
  961. }
  962. case IOCTL_MIC_TEST_SETMEM:
  963. {
  964. MIC_MEM *m = parg;
  965. if (m->Length > 64 * 1024 || m->Start + m->Length > 64 * 1024)
  966. return -EINVAL;
  967. err = copy_from_user(dev->iomem + m->Start, m->Data, m->Length);
  968. break;
  969. }
  970. case IOCTL_MIC_SFR_READ:
  971. {
  972. MIC_IMEM *m = parg;
  973. err = ngene_command_imem_read(dev, m->Address, &m->Data, 1);
  974. break;
  975. }
  976. case IOCTL_MIC_SFR_WRITE:
  977. {
  978. MIC_IMEM *m = parg;
  979. err = ngene_command_imem_write(dev, m->Address, m->Data, 1);
  980. break;
  981. }
  982. case IOCTL_MIC_IRAM_READ:
  983. {
  984. MIC_IMEM *m = parg;
  985. err = ngene_command_imem_read(dev, m->Address, &m->Data, 0);
  986. break;
  987. }
  988. case IOCTL_MIC_IRAM_WRITE:
  989. {
  990. MIC_IMEM *m = parg;
  991. err = ngene_command_imem_write(dev, m->Address, m->Data, 0);
  992. break;
  993. }
  994. case IOCTL_MIC_STREAM_CONTROL:
  995. {
  996. MIC_STREAM_CONTROL *m = parg;
  997. err = ngene_stream_control(dev, m->Stream, m->Control, m->Mode,
  998. m->nLines, m->nBytesPerLine,
  999. m->nVBILines, m->nBytesPerVBILine);
  1000. break;
  1001. }
  1002. default:
  1003. err = -EINVAL;
  1004. break;
  1005. }
  1006. return err;
  1007. }
  1008. static int command_ioctl(struct inode *inode, struct file *file,
  1009. unsigned int cmd, unsigned long arg)
  1010. {
  1011. void *parg = (void *)arg, *pbuf = NULL;
  1012. char buf[64];
  1013. int res = -EFAULT;
  1014. if (_IOC_DIR(cmd) & _IOC_WRITE) {
  1015. parg = buf;
  1016. if (_IOC_SIZE(cmd) > sizeof(buf)) {
  1017. pbuf = kmalloc(_IOC_SIZE(cmd), GFP_KERNEL);
  1018. if (!pbuf)
  1019. return -ENOMEM;
  1020. parg = pbuf;
  1021. }
  1022. if (copy_from_user(parg, (void __user *)arg, _IOC_SIZE(cmd)))
  1023. goto error;
  1024. }
  1025. res = command_do_ioctl(inode, file, cmd, parg);
  1026. if (res < 0)
  1027. goto error;
  1028. if (_IOC_DIR(cmd) & _IOC_READ)
  1029. if (copy_to_user((void __user *)arg, parg, _IOC_SIZE(cmd)))
  1030. res = -EFAULT;
  1031. error:
  1032. kfree(pbuf);
  1033. return res;
  1034. }
  1035. struct page *ngene_nopage(struct vm_area_struct *vma,
  1036. unsigned long address, int *type)
  1037. {
  1038. return 0;
  1039. }
  1040. static int ngene_mmap(struct file *file, struct vm_area_struct *vma)
  1041. {
  1042. struct dvb_device *dvbdev = file->private_data;
  1043. struct ngene_channel *chan = dvbdev->priv;
  1044. struct ngene *dev = chan->dev;
  1045. unsigned long size = vma->vm_end - vma->vm_start;
  1046. unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
  1047. unsigned long padr = pci_resource_start(dev->pci_dev, 0) + off;
  1048. unsigned long psize = pci_resource_len(dev->pci_dev, 0) - off;
  1049. if (size > psize)
  1050. return -EINVAL;
  1051. if (io_remap_pfn_range(vma, vma->vm_start, padr >> PAGE_SHIFT, size,
  1052. vma->vm_page_prot))
  1053. return -EAGAIN;
  1054. return 0;
  1055. }
  1056. static int write_uart(struct ngene *dev, u8 *data, int len)
  1057. {
  1058. struct ngene_command com;
  1059. com.cmd.hdr.Opcode = CMD_WRITE_UART;
  1060. com.cmd.hdr.Length = len;
  1061. memcpy(com.cmd.WriteUart.Data, data, len);
  1062. com.cmd.WriteUart.Data[len] = 0;
  1063. com.cmd.WriteUart.Data[len + 1] = 0;
  1064. com.in_len = len;
  1065. com.out_len = 0;
  1066. if (ngene_command(dev, &com) < 0)
  1067. return -EIO;
  1068. return 0;
  1069. }
  1070. static int send_cli(struct ngene *dev, char *cmd)
  1071. {
  1072. /* printk(KERN_INFO DEVICE_NAME ": %s", cmd); */
  1073. return write_uart(dev, cmd, strlen(cmd));
  1074. }
  1075. static int send_cli_val(struct ngene *dev, char *cmd, u32 val)
  1076. {
  1077. char s[32];
  1078. snprintf(s, 32, "%s %d\n", cmd, val);
  1079. /* printk(KERN_INFO DEVICE_NAME ": %s", s); */
  1080. return write_uart(dev, s, strlen(s));
  1081. }
  1082. static int ngene_command_write_uart_user(struct ngene *dev,
  1083. const u8 *data, int len)
  1084. {
  1085. struct ngene_command com;
  1086. dev->tx_busy = 1;
  1087. com.cmd.hdr.Opcode = CMD_WRITE_UART;
  1088. com.cmd.hdr.Length = len;
  1089. if (copy_from_user(com.cmd.WriteUart.Data, data, len))
  1090. return -EFAULT;
  1091. com.in_len = len;
  1092. com.out_len = 0;
  1093. if (ngene_command(dev, &com) < 0)
  1094. return -EIO;
  1095. return 0;
  1096. }
  1097. static ssize_t uart_write(struct file *file, const char *buf,
  1098. size_t count, loff_t *ppos)
  1099. {
  1100. struct dvb_device *dvbdev = file->private_data;
  1101. struct ngene_channel *chan = dvbdev->priv;
  1102. struct ngene *dev = chan->dev;
  1103. int len, ret = 0;
  1104. size_t left = count;
  1105. while (left) {
  1106. len = left;
  1107. if (len > 250)
  1108. len = 250;
  1109. ret = wait_event_interruptible(dev->tx_wq, dev->tx_busy == 0);
  1110. if (ret < 0)
  1111. return ret;
  1112. ngene_command_write_uart_user(dev, buf, len);
  1113. left -= len;
  1114. buf += len;
  1115. }
  1116. return count;
  1117. }
  1118. static ssize_t ts_write(struct file *file, const char *buf,
  1119. size_t count, loff_t *ppos)
  1120. {
  1121. struct dvb_device *dvbdev = file->private_data;
  1122. struct ngene_channel *chan = dvbdev->priv;
  1123. struct ngene *dev = chan->dev;
  1124. if (wait_event_interruptible(dev->tsout_rbuf.queue,
  1125. dvb_ringbuffer_free
  1126. (&dev->tsout_rbuf) >= count) < 0)
  1127. return 0;
  1128. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, count);
  1129. return count;
  1130. }
  1131. static ssize_t uart_read(struct file *file, char *buf,
  1132. size_t count, loff_t *ppos)
  1133. {
  1134. struct dvb_device *dvbdev = file->private_data;
  1135. struct ngene_channel *chan = dvbdev->priv;
  1136. struct ngene *dev = chan->dev;
  1137. int left;
  1138. int wp, rp, avail, len;
  1139. if (!dev->uart_rbuf)
  1140. return -EINVAL;
  1141. if (count > 128)
  1142. count = 128;
  1143. left = count;
  1144. while (left) {
  1145. if (wait_event_interruptible(dev->rx_wq,
  1146. dev->uart_wp != dev->uart_rp) < 0)
  1147. return -EAGAIN;
  1148. wp = dev->uart_wp;
  1149. rp = dev->uart_rp;
  1150. avail = (wp - rp);
  1151. if (avail < 0)
  1152. avail += UART_RBUF_LEN;
  1153. if (avail > left)
  1154. avail = left;
  1155. if (wp < rp) {
  1156. len = UART_RBUF_LEN - rp;
  1157. if (len > avail)
  1158. len = avail;
  1159. if (copy_to_user(buf, dev->uart_rbuf + rp, len))
  1160. return -EFAULT;
  1161. if (len < avail)
  1162. if (copy_to_user(buf + len, dev->uart_rbuf,
  1163. avail - len))
  1164. return -EFAULT;
  1165. } else {
  1166. if (copy_to_user(buf, dev->uart_rbuf + rp, avail))
  1167. return -EFAULT;
  1168. }
  1169. dev->uart_rp = (rp + avail) % UART_RBUF_LEN;
  1170. left -= avail;
  1171. buf += avail;
  1172. }
  1173. return count;
  1174. }
  1175. static const struct file_operations command_fops = {
  1176. .owner = THIS_MODULE,
  1177. .read = uart_read,
  1178. .write = ts_write,
  1179. .ioctl = command_ioctl,
  1180. .open = dvb_generic_open,
  1181. .release = dvb_generic_release,
  1182. .poll = 0,
  1183. .mmap = ngene_mmap,
  1184. };
  1185. static struct dvb_device dvbdev_command = {
  1186. .priv = 0,
  1187. .readers = -1,
  1188. .writers = -1,
  1189. .users = -1,
  1190. .fops = &command_fops,
  1191. };
  1192. #endif
  1193. /****************************************************************************/
  1194. /* DVB functions and API interface ******************************************/
  1195. /****************************************************************************/
  1196. static void swap_buffer(u32 *p, u32 len)
  1197. {
  1198. while (len) {
  1199. *p = swab32(*p);
  1200. p++;
  1201. len -= 4;
  1202. }
  1203. }
  1204. static void *tsin_exchange(void *priv, void *buf, u32 len, u32 clock, u32 flags)
  1205. {
  1206. struct ngene_channel *chan = priv;
  1207. dvb_dmx_swfilter(&chan->demux, buf, len);
  1208. return 0;
  1209. }
  1210. u8 fill_ts[188] = { 0x47, 0x1f, 0xff, 0x10 };
  1211. static void *tsout_exchange(void *priv, void *buf, u32 len,
  1212. u32 clock, u32 flags)
  1213. {
  1214. struct ngene_channel *chan = priv;
  1215. struct ngene *dev = chan->dev;
  1216. u32 alen;
  1217. alen = dvb_ringbuffer_avail(&dev->tsout_rbuf);
  1218. alen -= alen % 188;
  1219. if (alen < len)
  1220. FillTSBuffer(buf + alen, len - alen, flags);
  1221. else
  1222. alen = len;
  1223. dvb_ringbuffer_read(&dev->tsout_rbuf, buf, alen);
  1224. if (flags & DF_SWAP32)
  1225. swap_buffer((u32 *)buf, alen);
  1226. wake_up_interruptible(&dev->tsout_rbuf.queue);
  1227. return buf;
  1228. }
  1229. static void set_transfer(struct ngene_channel *chan, int state)
  1230. {
  1231. u8 control = 0, mode = 0, flags = 0;
  1232. struct ngene *dev = chan->dev;
  1233. int ret;
  1234. /*
  1235. if (chan->running)
  1236. return;
  1237. */
  1238. /*
  1239. printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
  1240. msleep(100);
  1241. */
  1242. if (state) {
  1243. if (chan->running) {
  1244. printk(KERN_INFO DEVICE_NAME ": already running\n");
  1245. return;
  1246. }
  1247. } else {
  1248. if (!chan->running) {
  1249. printk(KERN_INFO DEVICE_NAME ": already stopped\n");
  1250. return;
  1251. }
  1252. }
  1253. if (dev->card_info->switch_ctrl)
  1254. dev->card_info->switch_ctrl(chan, 1, state ^ 1);
  1255. if (state) {
  1256. spin_lock_irq(&chan->state_lock);
  1257. /* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  1258. ngreadl(0x9310)); */
  1259. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  1260. control = 0x80;
  1261. if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1262. chan->Capture1Length = 512 * 188;
  1263. mode = SMODE_TRANSPORT_STREAM;
  1264. }
  1265. if (chan->mode & NGENE_IO_TSOUT) {
  1266. chan->pBufferExchange = tsout_exchange;
  1267. /* 0x66666666 = 50MHz *2^33 /250MHz */
  1268. chan->AudioDTOValue = 0x66666666;
  1269. /* set_dto(chan, 38810700+1000); */
  1270. /* set_dto(chan, 19392658); */
  1271. }
  1272. if (chan->mode & NGENE_IO_TSIN)
  1273. chan->pBufferExchange = tsin_exchange;
  1274. /* ngwritel(0, 0x9310); */
  1275. spin_unlock_irq(&chan->state_lock);
  1276. } else
  1277. ;/* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  1278. ngreadl(0x9310)); */
  1279. ret = ngene_command_stream_control(dev, chan->number,
  1280. control, mode, flags);
  1281. if (!ret)
  1282. chan->running = state;
  1283. else
  1284. printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
  1285. state);
  1286. if (!state) {
  1287. spin_lock_irq(&chan->state_lock);
  1288. chan->pBufferExchange = 0;
  1289. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  1290. spin_unlock_irq(&chan->state_lock);
  1291. }
  1292. }
  1293. static int ngene_start_feed(struct dvb_demux_feed *dvbdmxfeed)
  1294. {
  1295. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  1296. struct ngene_channel *chan = dvbdmx->priv;
  1297. #ifdef NGENE_COMMAND_API
  1298. struct ngene *dev = chan->dev;
  1299. if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
  1300. switch (dvbdmxfeed->pes_type) {
  1301. case DMX_TS_PES_VIDEO:
  1302. send_cli_val(dev, "vpid", dvbdmxfeed->pid);
  1303. send_cli(dev, "res 1080i50\n");
  1304. /* send_cli(dev, "vdec mpeg2\n"); */
  1305. break;
  1306. case DMX_TS_PES_AUDIO:
  1307. send_cli_val(dev, "apid", dvbdmxfeed->pid);
  1308. send_cli(dev, "start\n");
  1309. break;
  1310. case DMX_TS_PES_PCR:
  1311. send_cli_val(dev, "pcrpid", dvbdmxfeed->pid);
  1312. break;
  1313. default:
  1314. break;
  1315. }
  1316. }
  1317. #endif
  1318. if (chan->users == 0) {
  1319. set_transfer(chan, 1);
  1320. /* msleep(10); */
  1321. }
  1322. return ++chan->users;
  1323. }
  1324. static int ngene_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
  1325. {
  1326. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  1327. struct ngene_channel *chan = dvbdmx->priv;
  1328. #ifdef NGENE_COMMAND_API
  1329. struct ngene *dev = chan->dev;
  1330. if (dev->card_info->io_type[chan->number] & NGENE_IO_TSOUT) {
  1331. switch (dvbdmxfeed->pes_type) {
  1332. case DMX_TS_PES_VIDEO:
  1333. send_cli(dev, "stop\n");
  1334. break;
  1335. case DMX_TS_PES_AUDIO:
  1336. break;
  1337. case DMX_TS_PES_PCR:
  1338. break;
  1339. default:
  1340. break;
  1341. }
  1342. }
  1343. #endif
  1344. if (--chan->users)
  1345. return chan->users;
  1346. set_transfer(chan, 0);
  1347. return 0;
  1348. }
  1349. static int write_to_decoder(struct dvb_demux_feed *feed,
  1350. const u8 *buf, size_t len)
  1351. {
  1352. struct dvb_demux *dvbdmx = feed->demux;
  1353. struct ngene_channel *chan = dvbdmx->priv;
  1354. struct ngene *dev = chan->dev;
  1355. if (wait_event_interruptible(dev->tsout_rbuf.queue,
  1356. dvb_ringbuffer_free
  1357. (&dev->tsout_rbuf) >= len) < 0)
  1358. return 0;
  1359. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
  1360. return len;
  1361. }
  1362. static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id,
  1363. int (*start_feed)(struct dvb_demux_feed *),
  1364. int (*stop_feed)(struct dvb_demux_feed *),
  1365. void *priv)
  1366. {
  1367. dvbdemux->priv = priv;
  1368. dvbdemux->filternum = 256;
  1369. dvbdemux->feednum = 256;
  1370. dvbdemux->start_feed = start_feed;
  1371. dvbdemux->stop_feed = stop_feed;
  1372. dvbdemux->write_to_decoder = 0;
  1373. dvbdemux->dmx.capabilities = (DMX_TS_FILTERING |
  1374. DMX_SECTION_FILTERING |
  1375. DMX_MEMORY_BASED_FILTERING);
  1376. return dvb_dmx_init(dvbdemux);
  1377. }
  1378. static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev,
  1379. struct dvb_demux *dvbdemux,
  1380. struct dmx_frontend *hw_frontend,
  1381. struct dmx_frontend *mem_frontend,
  1382. struct dvb_adapter *dvb_adapter)
  1383. {
  1384. int ret;
  1385. dmxdev->filternum = 256;
  1386. dmxdev->demux = &dvbdemux->dmx;
  1387. dmxdev->capabilities = 0;
  1388. ret = dvb_dmxdev_init(dmxdev, dvb_adapter);
  1389. if (ret < 0)
  1390. return ret;
  1391. hw_frontend->source = DMX_FRONTEND_0;
  1392. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend);
  1393. mem_frontend->source = DMX_MEMORY_FE;
  1394. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend);
  1395. return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend);
  1396. }
  1397. /****************************************************************************/
  1398. /* Decypher firmware loading ************************************************/
  1399. /****************************************************************************/
  1400. #define DECYPHER_FW "decypher.fw"
  1401. static int dec_ts_send(struct ngene *dev, u8 *buf, u32 len)
  1402. {
  1403. while (dvb_ringbuffer_free(&dev->tsout_rbuf) < len)
  1404. msleep(1);
  1405. dvb_ringbuffer_write(&dev->tsout_rbuf, buf, len);
  1406. return len;
  1407. }
  1408. u8 dec_fw_fill_ts[188] = { 0x47, 0x09, 0x0e, 0x10, 0xff, 0xff, 0x00, 0x00 };
  1409. int dec_fw_send(struct ngene *dev, u8 *fw, u32 size)
  1410. {
  1411. struct ngene_channel *chan = &dev->channel[4];
  1412. u32 len = 180, cc = 0;
  1413. u8 buf[8] = { 0x47, 0x09, 0x0e, 0x10, 0x00, 0x00, 0x00, 0x00 };
  1414. set_transfer(chan, 1);
  1415. msleep(100);
  1416. while (size) {
  1417. len = 180;
  1418. if (len > size)
  1419. len = size;
  1420. buf[3] = 0x10 | (cc & 0x0f);
  1421. buf[4] = (cc >> 8);
  1422. buf[5] = cc & 0xff;
  1423. buf[6] = len;
  1424. dec_ts_send(dev, buf, 8);
  1425. dec_ts_send(dev, fw, len);
  1426. if (len < 180)
  1427. dec_ts_send(dev, dec_fw_fill_ts + len + 8, 180 - len);
  1428. cc++;
  1429. size -= len;
  1430. fw += len;
  1431. }
  1432. for (len = 0; len < 512; len++)
  1433. dec_ts_send(dev, dec_fw_fill_ts, 188);
  1434. while (dvb_ringbuffer_avail(&dev->tsout_rbuf))
  1435. msleep(10);
  1436. msleep(100);
  1437. set_transfer(chan, 0);
  1438. return 0;
  1439. }
  1440. int dec_fw_boot(struct ngene *dev)
  1441. {
  1442. u32 size;
  1443. const struct firmware *fw = NULL;
  1444. u8 *dec_fw;
  1445. if (request_firmware(&fw, DECYPHER_FW, &dev->pci_dev->dev) < 0) {
  1446. printk(KERN_ERR DEVICE_NAME
  1447. ": %s not found. Check hotplug directory.\n",
  1448. DECYPHER_FW);
  1449. return -1;
  1450. }
  1451. printk(KERN_INFO DEVICE_NAME ": Booting decypher firmware file %s\n",
  1452. DECYPHER_FW);
  1453. size = fw->size;
  1454. dec_fw = (u8 *)fw->data;
  1455. dec_fw_send(dev, dec_fw, size);
  1456. release_firmware(fw);
  1457. return 0;
  1458. }
  1459. /****************************************************************************/
  1460. /* nGene hardware init and release functions ********************************/
  1461. /****************************************************************************/
  1462. void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
  1463. {
  1464. struct SBufferHeader *Cur = rb->Head;
  1465. u32 j;
  1466. if (!Cur)
  1467. return;
  1468. for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
  1469. if (Cur->Buffer1)
  1470. pci_free_consistent(dev->pci_dev,
  1471. rb->Buffer1Length,
  1472. Cur->Buffer1,
  1473. Cur->scList1->Address);
  1474. if (Cur->Buffer2)
  1475. pci_free_consistent(dev->pci_dev,
  1476. rb->Buffer2Length,
  1477. Cur->Buffer2,
  1478. Cur->scList2->Address);
  1479. }
  1480. if (rb->SCListMem)
  1481. pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
  1482. rb->SCListMem, rb->PASCListMem);
  1483. pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
  1484. }
  1485. void free_idlebuffer(struct ngene *dev,
  1486. struct SRingBufferDescriptor *rb,
  1487. struct SRingBufferDescriptor *tb)
  1488. {
  1489. int j;
  1490. struct SBufferHeader *Cur = tb->Head;
  1491. if (!rb->Head)
  1492. return;
  1493. free_ringbuffer(dev, rb);
  1494. for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
  1495. Cur->Buffer2 = 0;
  1496. Cur->scList2 = 0;
  1497. Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
  1498. Cur->ngeneBuffer.Number_of_entries_2 = 0;
  1499. }
  1500. }
  1501. void free_common_buffers(struct ngene *dev)
  1502. {
  1503. u32 i;
  1504. struct ngene_channel *chan;
  1505. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  1506. chan = &dev->channel[i];
  1507. free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
  1508. free_ringbuffer(dev, &chan->RingBuffer);
  1509. free_ringbuffer(dev, &chan->TSRingBuffer);
  1510. }
  1511. if (dev->OverflowBuffer)
  1512. pci_free_consistent(dev->pci_dev,
  1513. OVERFLOW_BUFFER_SIZE,
  1514. dev->OverflowBuffer, dev->PAOverflowBuffer);
  1515. if (dev->FWInterfaceBuffer)
  1516. pci_free_consistent(dev->pci_dev,
  1517. 4096,
  1518. dev->FWInterfaceBuffer,
  1519. dev->PAFWInterfaceBuffer);
  1520. }
  1521. /****************************************************************************/
  1522. /* Ring buffer handling *****************************************************/
  1523. /****************************************************************************/
  1524. int create_ring_buffer(struct pci_dev *pci_dev,
  1525. struct SRingBufferDescriptor *descr, u32 NumBuffers)
  1526. {
  1527. dma_addr_t tmp;
  1528. struct SBufferHeader *Head;
  1529. u32 i;
  1530. u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
  1531. u64 PARingBufferHead;
  1532. u64 PARingBufferCur;
  1533. u64 PARingBufferNext;
  1534. struct SBufferHeader *Cur, *Next;
  1535. descr->Head = 0;
  1536. descr->MemSize = 0;
  1537. descr->PAHead = 0;
  1538. descr->NumBuffers = 0;
  1539. if (MemSize < 4096)
  1540. MemSize = 4096;
  1541. Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
  1542. PARingBufferHead = tmp;
  1543. if (!Head)
  1544. return -ENOMEM;
  1545. memset(Head, 0, MemSize);
  1546. PARingBufferCur = PARingBufferHead;
  1547. Cur = Head;
  1548. for (i = 0; i < NumBuffers - 1; i++) {
  1549. Next = (struct SBufferHeader *)
  1550. (((u8 *) Cur) + SIZEOF_SBufferHeader);
  1551. PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
  1552. Cur->Next = Next;
  1553. Cur->ngeneBuffer.Next = PARingBufferNext;
  1554. Cur = Next;
  1555. PARingBufferCur = PARingBufferNext;
  1556. }
  1557. /* Last Buffer points back to first one */
  1558. Cur->Next = Head;
  1559. Cur->ngeneBuffer.Next = PARingBufferHead;
  1560. descr->Head = Head;
  1561. descr->MemSize = MemSize;
  1562. descr->PAHead = PARingBufferHead;
  1563. descr->NumBuffers = NumBuffers;
  1564. return 0;
  1565. }
  1566. static int AllocateRingBuffers(struct pci_dev *pci_dev,
  1567. dma_addr_t of,
  1568. struct SRingBufferDescriptor *pRingBuffer,
  1569. u32 Buffer1Length, u32 Buffer2Length)
  1570. {
  1571. dma_addr_t tmp;
  1572. u32 i, j;
  1573. int status = 0;
  1574. u32 SCListMemSize = pRingBuffer->NumBuffers
  1575. * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
  1576. NUM_SCATTER_GATHER_ENTRIES)
  1577. * sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1578. u64 PASCListMem;
  1579. PHW_SCATTER_GATHER_ELEMENT SCListEntry;
  1580. u64 PASCListEntry;
  1581. struct SBufferHeader *Cur;
  1582. void *SCListMem;
  1583. if (SCListMemSize < 4096)
  1584. SCListMemSize = 4096;
  1585. SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
  1586. PASCListMem = tmp;
  1587. if (SCListMem == NULL)
  1588. return -ENOMEM;
  1589. memset(SCListMem, 0, SCListMemSize);
  1590. pRingBuffer->SCListMem = SCListMem;
  1591. pRingBuffer->PASCListMem = PASCListMem;
  1592. pRingBuffer->SCListMemSize = SCListMemSize;
  1593. pRingBuffer->Buffer1Length = Buffer1Length;
  1594. pRingBuffer->Buffer2Length = Buffer2Length;
  1595. SCListEntry = (PHW_SCATTER_GATHER_ELEMENT) SCListMem;
  1596. PASCListEntry = PASCListMem;
  1597. Cur = pRingBuffer->Head;
  1598. for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
  1599. u64 PABuffer;
  1600. void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
  1601. &tmp);
  1602. PABuffer = tmp;
  1603. if (Buffer == NULL)
  1604. return -ENOMEM;
  1605. Cur->Buffer1 = Buffer;
  1606. SCListEntry->Address = PABuffer;
  1607. SCListEntry->Length = Buffer1Length;
  1608. Cur->scList1 = SCListEntry;
  1609. Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
  1610. Cur->ngeneBuffer.Number_of_entries_1 =
  1611. NUM_SCATTER_GATHER_ENTRIES;
  1612. SCListEntry += 1;
  1613. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1614. #if NUM_SCATTER_GATHER_ENTRIES > 1
  1615. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
  1616. SCListEntry->Address = of;
  1617. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  1618. SCListEntry += 1;
  1619. PASCListEntry +=
  1620. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1621. }
  1622. #endif
  1623. if (!Buffer2Length)
  1624. continue;
  1625. Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
  1626. PABuffer = tmp;
  1627. if (Buffer == NULL)
  1628. return -ENOMEM;
  1629. Cur->Buffer2 = Buffer;
  1630. SCListEntry->Address = PABuffer;
  1631. SCListEntry->Length = Buffer2Length;
  1632. Cur->scList2 = SCListEntry;
  1633. Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
  1634. Cur->ngeneBuffer.Number_of_entries_2 =
  1635. NUM_SCATTER_GATHER_ENTRIES;
  1636. SCListEntry += 1;
  1637. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1638. #if NUM_SCATTER_GATHER_ENTRIES > 1
  1639. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
  1640. SCListEntry->Address = of;
  1641. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  1642. SCListEntry += 1;
  1643. PASCListEntry +=
  1644. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  1645. }
  1646. #endif
  1647. }
  1648. return status;
  1649. }
  1650. static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
  1651. struct SRingBufferDescriptor *pRingBuffer)
  1652. {
  1653. int status = 0;
  1654. /* Copy pointer to scatter gather list in TSRingbuffer
  1655. structure for buffer 2
  1656. Load number of buffer
  1657. */
  1658. u32 n = pRingBuffer->NumBuffers;
  1659. /* Point to first buffer entry */
  1660. struct SBufferHeader *Cur = pRingBuffer->Head;
  1661. int i;
  1662. /* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
  1663. for (i = 0; i < n; i++) {
  1664. Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
  1665. Cur->scList2 = pIdleBuffer->Head->scList1;
  1666. Cur->ngeneBuffer.Address_of_first_entry_2 =
  1667. pIdleBuffer->Head->ngeneBuffer.
  1668. Address_of_first_entry_1;
  1669. Cur->ngeneBuffer.Number_of_entries_2 =
  1670. pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
  1671. Cur = Cur->Next;
  1672. }
  1673. return status;
  1674. }
  1675. static u32 RingBufferSizes[MAX_STREAM] = {
  1676. RING_SIZE_VIDEO,
  1677. RING_SIZE_VIDEO,
  1678. RING_SIZE_AUDIO,
  1679. RING_SIZE_AUDIO,
  1680. RING_SIZE_AUDIO,
  1681. };
  1682. static u32 Buffer1Sizes[MAX_STREAM] = {
  1683. MAX_VIDEO_BUFFER_SIZE,
  1684. MAX_VIDEO_BUFFER_SIZE,
  1685. MAX_AUDIO_BUFFER_SIZE,
  1686. MAX_AUDIO_BUFFER_SIZE,
  1687. MAX_AUDIO_BUFFER_SIZE
  1688. };
  1689. static u32 Buffer2Sizes[MAX_STREAM] = {
  1690. MAX_VBI_BUFFER_SIZE,
  1691. MAX_VBI_BUFFER_SIZE,
  1692. 0,
  1693. 0,
  1694. 0
  1695. };
  1696. static int AllocCommonBuffers(struct ngene *dev)
  1697. {
  1698. int status = 0, i;
  1699. dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
  1700. &dev->PAFWInterfaceBuffer);
  1701. if (!dev->FWInterfaceBuffer)
  1702. return -ENOMEM;
  1703. dev->hosttongene = dev->FWInterfaceBuffer;
  1704. dev->ngenetohost = dev->FWInterfaceBuffer + 256;
  1705. dev->EventBuffer = dev->FWInterfaceBuffer + 512;
  1706. dev->OverflowBuffer = pci_alloc_consistent(dev->pci_dev,
  1707. OVERFLOW_BUFFER_SIZE,
  1708. &dev->PAOverflowBuffer);
  1709. if (!dev->OverflowBuffer)
  1710. return -ENOMEM;
  1711. memset(dev->OverflowBuffer, 0, OVERFLOW_BUFFER_SIZE);
  1712. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  1713. int type = dev->card_info->io_type[i];
  1714. dev->channel[i].State = KSSTATE_STOP;
  1715. if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
  1716. status = create_ring_buffer(dev->pci_dev,
  1717. &dev->channel[i].RingBuffer,
  1718. RingBufferSizes[i]);
  1719. if (status < 0)
  1720. break;
  1721. if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
  1722. status = AllocateRingBuffers(dev->pci_dev,
  1723. dev->
  1724. PAOverflowBuffer,
  1725. &dev->channel[i].
  1726. RingBuffer,
  1727. Buffer1Sizes[i],
  1728. Buffer2Sizes[i]);
  1729. if (status < 0)
  1730. break;
  1731. } else if (type & NGENE_IO_HDTV) {
  1732. status = AllocateRingBuffers(dev->pci_dev,
  1733. dev->
  1734. PAOverflowBuffer,
  1735. &dev->channel[i].
  1736. RingBuffer,
  1737. MAX_HDTV_BUFFER_SIZE,
  1738. 0);
  1739. if (status < 0)
  1740. break;
  1741. }
  1742. }
  1743. if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1744. status = create_ring_buffer(dev->pci_dev,
  1745. &dev->channel[i].
  1746. TSRingBuffer, RING_SIZE_TS);
  1747. if (status < 0)
  1748. break;
  1749. status = AllocateRingBuffers(dev->pci_dev,
  1750. dev->PAOverflowBuffer,
  1751. &dev->channel[i].
  1752. TSRingBuffer,
  1753. MAX_TS_BUFFER_SIZE, 0);
  1754. if (status)
  1755. break;
  1756. }
  1757. if (type & NGENE_IO_TSOUT) {
  1758. status = create_ring_buffer(dev->pci_dev,
  1759. &dev->channel[i].
  1760. TSIdleBuffer, 1);
  1761. if (status < 0)
  1762. break;
  1763. status = AllocateRingBuffers(dev->pci_dev,
  1764. dev->PAOverflowBuffer,
  1765. &dev->channel[i].
  1766. TSIdleBuffer,
  1767. MAX_TS_BUFFER_SIZE, 0);
  1768. if (status)
  1769. break;
  1770. FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
  1771. &dev->channel[i].TSRingBuffer);
  1772. }
  1773. }
  1774. return status;
  1775. }
  1776. static void ngene_release_buffers(struct ngene *dev)
  1777. {
  1778. if (dev->iomem)
  1779. iounmap(dev->iomem);
  1780. free_common_buffers(dev);
  1781. vfree(dev->tsout_buf);
  1782. vfree(dev->ain_buf);
  1783. vfree(dev->vin_buf);
  1784. vfree(dev);
  1785. }
  1786. static int ngene_get_buffers(struct ngene *dev)
  1787. {
  1788. if (AllocCommonBuffers(dev))
  1789. return -ENOMEM;
  1790. if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
  1791. dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
  1792. if (!dev->tsout_buf)
  1793. return -ENOMEM;
  1794. dvb_ringbuffer_init(&dev->tsout_rbuf,
  1795. dev->tsout_buf, TSOUT_BUF_SIZE);
  1796. }
  1797. if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
  1798. dev->ain_buf = vmalloc(AIN_BUF_SIZE);
  1799. if (!dev->ain_buf)
  1800. return -ENOMEM;
  1801. dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
  1802. }
  1803. if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
  1804. dev->vin_buf = vmalloc(VIN_BUF_SIZE);
  1805. if (!dev->vin_buf)
  1806. return -ENOMEM;
  1807. dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
  1808. }
  1809. dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
  1810. pci_resource_len(dev->pci_dev, 0));
  1811. if (!dev->iomem)
  1812. return -ENOMEM;
  1813. return 0;
  1814. }
  1815. static void ngene_init(struct ngene *dev)
  1816. {
  1817. int i;
  1818. tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
  1819. memset_io(dev->iomem + 0xc000, 0x00, 0x220);
  1820. memset_io(dev->iomem + 0xc400, 0x00, 0x100);
  1821. for (i = 0; i < MAX_STREAM; i++) {
  1822. dev->channel[i].dev = dev;
  1823. dev->channel[i].number = i;
  1824. }
  1825. dev->fw_interface_version = 0;
  1826. ngwritel(0, NGENE_INT_ENABLE);
  1827. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  1828. dev->device_version = ngreadl(DEV_VER) & 0x0f;
  1829. printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
  1830. dev->device_version);
  1831. }
  1832. static int ngene_load_firm(struct ngene *dev)
  1833. {
  1834. u32 size;
  1835. const struct firmware *fw = NULL;
  1836. u8 *ngene_fw;
  1837. char *fw_name;
  1838. int err, version;
  1839. version = dev->card_info->fw_version;
  1840. switch (version) {
  1841. default:
  1842. case 15:
  1843. version = 15;
  1844. size = 23466;
  1845. fw_name = "ngene_15.fw";
  1846. break;
  1847. case 16:
  1848. size = 23498;
  1849. fw_name = "ngene_16.fw";
  1850. break;
  1851. case 17:
  1852. size = 24446;
  1853. fw_name = "ngene_17.fw";
  1854. break;
  1855. }
  1856. if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
  1857. printk(KERN_ERR DEVICE_NAME
  1858. ": Could not load firmware file %s.\n", fw_name);
  1859. printk(KERN_INFO DEVICE_NAME
  1860. ": Copy %s to your hotplug directory!\n", fw_name);
  1861. return -1;
  1862. }
  1863. if (size != fw->size) {
  1864. printk(KERN_ERR DEVICE_NAME
  1865. ": Firmware %s has invalid size!", fw_name);
  1866. err = -1;
  1867. } else {
  1868. printk(KERN_INFO DEVICE_NAME
  1869. ": Loading firmware file %s.\n", fw_name);
  1870. ngene_fw = (u8 *) fw->data;
  1871. err = ngene_command_load_firmware(dev, ngene_fw, size);
  1872. }
  1873. release_firmware(fw);
  1874. return err;
  1875. }
  1876. static void ngene_stop(struct ngene *dev)
  1877. {
  1878. down(&dev->cmd_mutex);
  1879. i2c_del_adapter(&(dev->channel[0].i2c_adapter));
  1880. i2c_del_adapter(&(dev->channel[1].i2c_adapter));
  1881. ngwritel(0, NGENE_INT_ENABLE);
  1882. ngwritel(0, NGENE_COMMAND);
  1883. ngwritel(0, NGENE_COMMAND_HI);
  1884. ngwritel(0, NGENE_STATUS);
  1885. ngwritel(0, NGENE_STATUS_HI);
  1886. ngwritel(0, NGENE_EVENT);
  1887. ngwritel(0, NGENE_EVENT_HI);
  1888. free_irq(dev->pci_dev->irq, dev);
  1889. }
  1890. static int ngene_start(struct ngene *dev)
  1891. {
  1892. int stat;
  1893. int i;
  1894. pci_set_master(dev->pci_dev);
  1895. ngene_init(dev);
  1896. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1897. IRQF_SHARED, "nGene",
  1898. (void *)dev);
  1899. if (stat < 0)
  1900. return stat;
  1901. init_waitqueue_head(&dev->cmd_wq);
  1902. init_waitqueue_head(&dev->tx_wq);
  1903. init_waitqueue_head(&dev->rx_wq);
  1904. sema_init(&dev->cmd_mutex, 1);
  1905. sema_init(&dev->stream_mutex, 1);
  1906. sema_init(&dev->pll_mutex, 1);
  1907. sema_init(&dev->i2c_switch_mutex, 1);
  1908. spin_lock_init(&dev->cmd_lock);
  1909. for (i = 0; i < MAX_STREAM; i++)
  1910. spin_lock_init(&dev->channel[i].state_lock);
  1911. ngwritel(1, TIMESTAMPS);
  1912. ngwritel(1, NGENE_INT_ENABLE);
  1913. stat = ngene_load_firm(dev);
  1914. if (stat < 0)
  1915. goto fail;
  1916. stat = ngene_i2c_init(dev, 0);
  1917. if (stat < 0)
  1918. goto fail;
  1919. stat = ngene_i2c_init(dev, 1);
  1920. if (stat < 0)
  1921. goto fail;
  1922. if (dev->card_info->fw_version == 17) {
  1923. u8 hdtv_config[6] =
  1924. {6144 / 64, 0, 0, 2048 / 64, 2048 / 64, 2048 / 64};
  1925. u8 tsin4_config[6] =
  1926. {3072 / 64, 3072 / 64, 0, 3072 / 64, 3072 / 64, 0};
  1927. u8 default_config[6] =
  1928. {4096 / 64, 4096 / 64, 0, 2048 / 64, 2048 / 64, 0};
  1929. u8 *bconf = default_config;
  1930. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1931. bconf = tsin4_config;
  1932. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1933. bconf = hdtv_config;
  1934. ngene_reset_decypher(dev);
  1935. }
  1936. dprintk(KERN_DEBUG DEVICE_NAME ": FW 17 buffer config\n");
  1937. stat = ngene_command_config_free_buf(dev, bconf);
  1938. } else {
  1939. int bconf = BUFFER_CONFIG_4422;
  1940. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1941. bconf = BUFFER_CONFIG_8022;
  1942. ngene_reset_decypher(dev);
  1943. }
  1944. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1945. bconf = BUFFER_CONFIG_3333;
  1946. stat = ngene_command_config_buf(dev, bconf);
  1947. }
  1948. if (dev->card_info->io_type[0] == NGENE_IO_HDTV) {
  1949. ngene_command_config_uart(dev, 0xc1, tx_cb, rx_cb);
  1950. test_dec_i2c(&dev->channel[0].i2c_adapter, 0);
  1951. test_dec_i2c(&dev->channel[0].i2c_adapter, 1);
  1952. }
  1953. return stat;
  1954. fail:
  1955. ngwritel(0, NGENE_INT_ENABLE);
  1956. free_irq(dev->pci_dev->irq, dev);
  1957. return stat;
  1958. }
  1959. /****************************************************************************/
  1960. /* Switch control (I2C gates, etc.) *****************************************/
  1961. /****************************************************************************/
  1962. /****************************************************************************/
  1963. /* Demod/tuner attachment ***************************************************/
  1964. /****************************************************************************/
  1965. static int tuner_attach_stv6110(struct ngene_channel *chan)
  1966. {
  1967. struct stv090x_config *feconf = (struct stv090x_config *)
  1968. chan->dev->card_info->fe_config[chan->number];
  1969. struct stv6110x_config *tunerconf = (struct stv6110x_config *)
  1970. chan->dev->card_info->tuner_config[chan->number];
  1971. struct stv6110x_devctl *ctl;
  1972. ctl = dvb_attach(stv6110x_attach, chan->fe, tunerconf,
  1973. &chan->i2c_adapter);
  1974. if (ctl == NULL) {
  1975. printk(KERN_ERR DEVICE_NAME ": No STV6110X found!\n");
  1976. return -ENODEV;
  1977. }
  1978. feconf->tuner_init = ctl->tuner_init;
  1979. feconf->tuner_set_mode = ctl->tuner_set_mode;
  1980. feconf->tuner_set_frequency = ctl->tuner_set_frequency;
  1981. feconf->tuner_get_frequency = ctl->tuner_get_frequency;
  1982. feconf->tuner_set_bandwidth = ctl->tuner_set_bandwidth;
  1983. feconf->tuner_get_bandwidth = ctl->tuner_get_bandwidth;
  1984. feconf->tuner_set_bbgain = ctl->tuner_set_bbgain;
  1985. feconf->tuner_get_bbgain = ctl->tuner_get_bbgain;
  1986. feconf->tuner_set_refclk = ctl->tuner_set_refclk;
  1987. feconf->tuner_get_status = ctl->tuner_get_status;
  1988. return 0;
  1989. }
  1990. static int demod_attach_stv0900(struct ngene_channel *chan)
  1991. {
  1992. struct stv090x_config *feconf = (struct stv090x_config *)
  1993. chan->dev->card_info->fe_config[chan->number];
  1994. chan->fe = dvb_attach(stv090x_attach,
  1995. feconf,
  1996. &chan->i2c_adapter,
  1997. chan->number == 0 ? STV090x_DEMODULATOR_0 :
  1998. STV090x_DEMODULATOR_1);
  1999. if (chan->fe == NULL) {
  2000. printk(KERN_ERR DEVICE_NAME ": No STV0900 found!\n");
  2001. return -ENODEV;
  2002. }
  2003. if (!dvb_attach(lnbh24_attach, chan->fe, &chan->i2c_adapter, 0,
  2004. 0, chan->dev->card_info->lnb[chan->number])) {
  2005. printk(KERN_ERR DEVICE_NAME ": No LNBH24 found!\n");
  2006. dvb_frontend_detach(chan->fe);
  2007. return -ENODEV;
  2008. }
  2009. return 0;
  2010. }
  2011. /****************************************************************************/
  2012. /****************************************************************************/
  2013. /****************************************************************************/
  2014. static void release_channel(struct ngene_channel *chan)
  2015. {
  2016. struct dvb_demux *dvbdemux = &chan->demux;
  2017. struct ngene *dev = chan->dev;
  2018. struct ngene_info *ni = dev->card_info;
  2019. int io = ni->io_type[chan->number];
  2020. tasklet_kill(&chan->demux_tasklet);
  2021. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  2022. #ifdef NGENE_COMMAND_API
  2023. if (chan->command_dev)
  2024. dvb_unregister_device(chan->command_dev);
  2025. #endif
  2026. if (chan->fe) {
  2027. dvb_unregister_frontend(chan->fe);
  2028. dvb_frontend_detach(chan->fe);
  2029. chan->fe = 0;
  2030. }
  2031. dvbdemux->dmx.close(&dvbdemux->dmx);
  2032. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  2033. &chan->hw_frontend);
  2034. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  2035. &chan->mem_frontend);
  2036. dvb_dmxdev_release(&chan->dmxdev);
  2037. dvb_dmx_release(&chan->demux);
  2038. #ifndef ONE_ADAPTER
  2039. dvb_unregister_adapter(&chan->dvb_adapter);
  2040. #endif
  2041. }
  2042. }
  2043. static int init_channel(struct ngene_channel *chan)
  2044. {
  2045. int ret = 0, nr = chan->number;
  2046. struct dvb_adapter *adapter = NULL;
  2047. struct dvb_demux *dvbdemux = &chan->demux;
  2048. struct ngene *dev = chan->dev;
  2049. struct ngene_info *ni = dev->card_info;
  2050. int io = ni->io_type[nr];
  2051. tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
  2052. chan->users = 0;
  2053. chan->type = io;
  2054. chan->mode = chan->type; /* for now only one mode */
  2055. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  2056. if (nr >= STREAM_AUDIOIN1)
  2057. chan->DataFormatFlags = DF_SWAP32;
  2058. if (io & NGENE_IO_TSOUT)
  2059. dec_fw_boot(dev);
  2060. #ifdef ONE_ADAPTER
  2061. adapter = &chan->dev->dvb_adapter;
  2062. #else
  2063. ret = dvb_register_adapter(&chan->dvb_adapter, "nGene",
  2064. THIS_MODULE,
  2065. &chan->dev->pci_dev->dev,
  2066. adapter_nr);
  2067. if (ret < 0)
  2068. return ret;
  2069. adapter = &chan->dvb_adapter;
  2070. #endif
  2071. ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
  2072. ngene_start_feed,
  2073. ngene_stop_feed, chan);
  2074. ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
  2075. &chan->hw_frontend,
  2076. &chan->mem_frontend, adapter);
  2077. if (io & NGENE_IO_TSOUT) {
  2078. dvbdemux->write_to_decoder = write_to_decoder;
  2079. }
  2080. #ifdef NGENE_COMMAND_API
  2081. dvb_register_device(adapter, &chan->command_dev,
  2082. &dvbdev_command, (void *)chan,
  2083. DVB_DEVICE_SEC);
  2084. #endif
  2085. }
  2086. if (io & NGENE_IO_TSIN) {
  2087. chan->fe = NULL;
  2088. if (ni->demod_attach[nr])
  2089. ni->demod_attach[nr](chan);
  2090. if (chan->fe) {
  2091. if (dvb_register_frontend(adapter, chan->fe) < 0) {
  2092. if (chan->fe->ops.release)
  2093. chan->fe->ops.release(chan->fe);
  2094. chan->fe = NULL;
  2095. }
  2096. }
  2097. if (chan->fe && ni->tuner_attach[nr])
  2098. if (ni->tuner_attach[nr] (chan) < 0) {
  2099. printk(KERN_ERR DEVICE_NAME
  2100. ": Tuner attach failed on channel %d!\n",
  2101. nr);
  2102. }
  2103. }
  2104. return ret;
  2105. }
  2106. static int init_channels(struct ngene *dev)
  2107. {
  2108. int i, j;
  2109. for (i = 0; i < MAX_STREAM; i++) {
  2110. if (init_channel(&dev->channel[i]) < 0) {
  2111. for (j = 0; j < i; j++)
  2112. release_channel(&dev->channel[j]);
  2113. return -1;
  2114. }
  2115. }
  2116. return 0;
  2117. }
  2118. /****************************************************************************/
  2119. /* device probe/remove calls ************************************************/
  2120. /****************************************************************************/
  2121. static void __devexit ngene_remove(struct pci_dev *pdev)
  2122. {
  2123. struct ngene *dev = (struct ngene *)pci_get_drvdata(pdev);
  2124. int i;
  2125. tasklet_kill(&dev->event_tasklet);
  2126. for (i = 0; i < MAX_STREAM; i++)
  2127. release_channel(&dev->channel[i]);
  2128. #ifdef ONE_ADAPTER
  2129. dvb_unregister_adapter(&dev->dvb_adapter);
  2130. #endif
  2131. ngene_stop(dev);
  2132. ngene_release_buffers(dev);
  2133. pci_set_drvdata(pdev, 0);
  2134. pci_disable_device(pdev);
  2135. }
  2136. static int __devinit ngene_probe(struct pci_dev *pci_dev,
  2137. const struct pci_device_id *id)
  2138. {
  2139. struct ngene *dev;
  2140. int stat = 0;
  2141. if (pci_enable_device(pci_dev) < 0)
  2142. return -ENODEV;
  2143. dev = vmalloc(sizeof(struct ngene));
  2144. if (dev == NULL) {
  2145. stat = -ENOMEM;
  2146. goto fail0;
  2147. }
  2148. memset(dev, 0, sizeof(struct ngene));
  2149. dev->pci_dev = pci_dev;
  2150. dev->card_info = (struct ngene_info *)id->driver_data;
  2151. printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
  2152. pci_set_drvdata(pci_dev, dev);
  2153. /* Alloc buffers and start nGene */
  2154. stat = ngene_get_buffers(dev);
  2155. if (stat < 0)
  2156. goto fail1;
  2157. stat = ngene_start(dev);
  2158. if (stat < 0)
  2159. goto fail1;
  2160. dev->i2c_current_bus = -1;
  2161. /* Disable analog TV decoder chips if present */
  2162. if (copy_eeprom) {
  2163. i2c_copy_eeprom(&dev->channel[0].i2c_adapter, 0x50, 0x52);
  2164. i2c_dump_eeprom(&dev->channel[0].i2c_adapter, 0x52);
  2165. }
  2166. /*i2c_check_eeprom(&dev->i2c_adapter);*/
  2167. /* Register DVB adapters and devices for both channels */
  2168. #ifdef ONE_ADAPTER
  2169. if (dvb_register_adapter(&dev->dvb_adapter, "nGene", THIS_MODULE,
  2170. &dev->pci_dev->dev, adapter_nr) < 0)
  2171. goto fail2;
  2172. #endif
  2173. if (init_channels(dev) < 0)
  2174. goto fail2;
  2175. return 0;
  2176. fail2:
  2177. ngene_stop(dev);
  2178. fail1:
  2179. ngene_release_buffers(dev);
  2180. fail0:
  2181. pci_disable_device(pci_dev);
  2182. pci_set_drvdata(pci_dev, 0);
  2183. return stat;
  2184. }
  2185. /****************************************************************************/
  2186. /* Card configs *************************************************************/
  2187. /****************************************************************************/
  2188. static struct stv090x_config fe_mps2 = {
  2189. .device = STV0900,
  2190. .demod_mode = STV090x_DUAL,
  2191. .clk_mode = STV090x_CLK_EXT,
  2192. .xtal = 27000000,
  2193. .address = 0x68,
  2194. // .ref_clk = 27000000,
  2195. .ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
  2196. .ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
  2197. .repeater_level = STV090x_RPTLEVEL_16,
  2198. .diseqc_envelope_mode = true,
  2199. .tuner_init = NULL,
  2200. .tuner_set_mode = NULL,
  2201. .tuner_set_frequency = NULL,
  2202. .tuner_get_frequency = NULL,
  2203. .tuner_set_bandwidth = NULL,
  2204. .tuner_get_bandwidth = NULL,
  2205. .tuner_set_bbgain = NULL,
  2206. .tuner_get_bbgain = NULL,
  2207. .tuner_set_refclk = NULL,
  2208. .tuner_get_status = NULL,
  2209. };
  2210. static struct stv6110x_config tuner_mps2_0 = {
  2211. .addr = 0x60,
  2212. .refclk = 27000000,
  2213. };
  2214. static struct stv6110x_config tuner_mps2_1 = {
  2215. .addr = 0x63,
  2216. .refclk = 27000000,
  2217. };
  2218. static struct ngene_info ngene_info_mps2 = {
  2219. .type = NGENE_SIDEWINDER,
  2220. .name = "Media-Pointer MP-S2/CineS2 DVB-S2 Twin Tuner",
  2221. .io_type = {NGENE_IO_TSIN, NGENE_IO_TSIN},
  2222. .demod_attach = {demod_attach_stv0900, demod_attach_stv0900},
  2223. .tuner_attach = {tuner_attach_stv6110, tuner_attach_stv6110},
  2224. .fe_config = {&fe_mps2, &fe_mps2},
  2225. .tuner_config = {&tuner_mps2_0, &tuner_mps2_1},
  2226. .lnb = {0x0b, 0x08},
  2227. .tsf = {3, 3},
  2228. .fw_version = 17,
  2229. };
  2230. /****************************************************************************/
  2231. /****************************************************************************/
  2232. /****************************************************************************/
  2233. /****************************************************************************/
  2234. #define NGENE_ID(_subvend, _subdev, _driverdata) { \
  2235. .vendor = NGENE_VID, .device = NGENE_PID, \
  2236. .subvendor = _subvend, .subdevice = _subdev, \
  2237. .driver_data = (unsigned long) &_driverdata }
  2238. /****************************************************************************/
  2239. static const struct pci_device_id ngene_id_tbl[] __devinitdata = {
  2240. NGENE_ID(0x18c3, 0xabc3, ngene_info_mps2),
  2241. NGENE_ID(0x18c3, 0xabc4, ngene_info_mps2),
  2242. NGENE_ID(0x18c3, 0xdb01, ngene_info_mps2),
  2243. {0}
  2244. };
  2245. MODULE_DEVICE_TABLE(pci, ngene_id_tbl);
  2246. /****************************************************************************/
  2247. /* Init/Exit ****************************************************************/
  2248. /****************************************************************************/
  2249. static pci_ers_result_t ngene_error_detected(struct pci_dev *dev,
  2250. enum pci_channel_state state)
  2251. {
  2252. printk(KERN_ERR DEVICE_NAME ": PCI error\n");
  2253. if (state == pci_channel_io_perm_failure)
  2254. return PCI_ERS_RESULT_DISCONNECT;
  2255. if (state == pci_channel_io_frozen)
  2256. return PCI_ERS_RESULT_NEED_RESET;
  2257. return PCI_ERS_RESULT_CAN_RECOVER;
  2258. }
  2259. static pci_ers_result_t ngene_link_reset(struct pci_dev *dev)
  2260. {
  2261. printk(KERN_INFO DEVICE_NAME ": link reset\n");
  2262. return 0;
  2263. }
  2264. static pci_ers_result_t ngene_slot_reset(struct pci_dev *dev)
  2265. {
  2266. printk(KERN_INFO DEVICE_NAME ": slot reset\n");
  2267. return 0;
  2268. }
  2269. static void ngene_resume(struct pci_dev *dev)
  2270. {
  2271. printk(KERN_INFO DEVICE_NAME ": resume\n");
  2272. }
  2273. static struct pci_error_handlers ngene_errors = {
  2274. .error_detected = ngene_error_detected,
  2275. .link_reset = ngene_link_reset,
  2276. .slot_reset = ngene_slot_reset,
  2277. .resume = ngene_resume,
  2278. };
  2279. static struct pci_driver ngene_pci_driver = {
  2280. .name = "ngene",
  2281. .id_table = ngene_id_tbl,
  2282. .probe = ngene_probe,
  2283. .remove = __devexit_p(ngene_remove),
  2284. .err_handler = &ngene_errors,
  2285. };
  2286. static __init int module_init_ngene(void)
  2287. {
  2288. printk(KERN_INFO
  2289. "nGene PCIE bridge driver, Copyright (C) 2005-2007 Micronas\n");
  2290. return pci_register_driver(&ngene_pci_driver);
  2291. }
  2292. static __exit void module_exit_ngene(void)
  2293. {
  2294. pci_unregister_driver(&ngene_pci_driver);
  2295. }
  2296. module_init(module_init_ngene);
  2297. module_exit(module_exit_ngene);
  2298. MODULE_DESCRIPTION("nGene");
  2299. MODULE_AUTHOR("Micronas, Ralph Metzler, Manfred Voelkel");
  2300. MODULE_LICENSE("GPL");