file.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/falloc.h>
  27. #include <linux/swap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/statfs.h>
  30. #include <linux/compat.h>
  31. #include <linux/slab.h>
  32. #include "ctree.h"
  33. #include "disk-io.h"
  34. #include "transaction.h"
  35. #include "btrfs_inode.h"
  36. #include "ioctl.h"
  37. #include "print-tree.h"
  38. #include "tree-log.h"
  39. #include "locking.h"
  40. #include "compat.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static int __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. return -EEXIST;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return 0;
  120. }
  121. static inline int __need_auto_defrag(struct btrfs_root *root)
  122. {
  123. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  124. return 0;
  125. if (btrfs_fs_closing(root->fs_info))
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * insert a defrag record for this inode if auto defrag is
  131. * enabled
  132. */
  133. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  134. struct inode *inode)
  135. {
  136. struct btrfs_root *root = BTRFS_I(inode)->root;
  137. struct inode_defrag *defrag;
  138. u64 transid;
  139. int ret;
  140. if (!__need_auto_defrag(root))
  141. return 0;
  142. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  143. return 0;
  144. if (trans)
  145. transid = trans->transid;
  146. else
  147. transid = BTRFS_I(inode)->root->last_trans;
  148. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  149. if (!defrag)
  150. return -ENOMEM;
  151. defrag->ino = btrfs_ino(inode);
  152. defrag->transid = transid;
  153. defrag->root = root->root_key.objectid;
  154. spin_lock(&root->fs_info->defrag_inodes_lock);
  155. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  156. /*
  157. * If we set IN_DEFRAG flag and evict the inode from memory,
  158. * and then re-read this inode, this new inode doesn't have
  159. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  160. */
  161. ret = __btrfs_add_inode_defrag(inode, defrag);
  162. if (ret)
  163. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  164. } else {
  165. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  166. }
  167. spin_unlock(&root->fs_info->defrag_inodes_lock);
  168. return 0;
  169. }
  170. /*
  171. * Requeue the defrag object. If there is a defrag object that points to
  172. * the same inode in the tree, we will merge them together (by
  173. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  174. */
  175. void btrfs_requeue_inode_defrag(struct inode *inode,
  176. struct inode_defrag *defrag)
  177. {
  178. struct btrfs_root *root = BTRFS_I(inode)->root;
  179. int ret;
  180. if (!__need_auto_defrag(root))
  181. goto out;
  182. /*
  183. * Here we don't check the IN_DEFRAG flag, because we need merge
  184. * them together.
  185. */
  186. spin_lock(&root->fs_info->defrag_inodes_lock);
  187. ret = __btrfs_add_inode_defrag(inode, defrag);
  188. spin_unlock(&root->fs_info->defrag_inodes_lock);
  189. if (ret)
  190. goto out;
  191. return;
  192. out:
  193. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  194. }
  195. /*
  196. * pick the defragable inode that we want, if it doesn't exist, we will get
  197. * the next one.
  198. */
  199. static struct inode_defrag *
  200. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  201. {
  202. struct inode_defrag *entry = NULL;
  203. struct inode_defrag tmp;
  204. struct rb_node *p;
  205. struct rb_node *parent = NULL;
  206. int ret;
  207. tmp.ino = ino;
  208. tmp.root = root;
  209. spin_lock(&fs_info->defrag_inodes_lock);
  210. p = fs_info->defrag_inodes.rb_node;
  211. while (p) {
  212. parent = p;
  213. entry = rb_entry(parent, struct inode_defrag, rb_node);
  214. ret = __compare_inode_defrag(&tmp, entry);
  215. if (ret < 0)
  216. p = parent->rb_left;
  217. else if (ret > 0)
  218. p = parent->rb_right;
  219. else
  220. goto out;
  221. }
  222. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  223. parent = rb_next(parent);
  224. if (parent)
  225. entry = rb_entry(parent, struct inode_defrag, rb_node);
  226. else
  227. entry = NULL;
  228. }
  229. out:
  230. if (entry)
  231. rb_erase(parent, &fs_info->defrag_inodes);
  232. spin_unlock(&fs_info->defrag_inodes_lock);
  233. return entry;
  234. }
  235. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  236. {
  237. struct inode_defrag *defrag;
  238. struct rb_node *node;
  239. spin_lock(&fs_info->defrag_inodes_lock);
  240. node = rb_first(&fs_info->defrag_inodes);
  241. while (node) {
  242. rb_erase(node, &fs_info->defrag_inodes);
  243. defrag = rb_entry(node, struct inode_defrag, rb_node);
  244. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  245. if (need_resched()) {
  246. spin_unlock(&fs_info->defrag_inodes_lock);
  247. cond_resched();
  248. spin_lock(&fs_info->defrag_inodes_lock);
  249. }
  250. node = rb_first(&fs_info->defrag_inodes);
  251. }
  252. spin_unlock(&fs_info->defrag_inodes_lock);
  253. }
  254. #define BTRFS_DEFRAG_BATCH 1024
  255. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  256. struct inode_defrag *defrag)
  257. {
  258. struct btrfs_root *inode_root;
  259. struct inode *inode;
  260. struct btrfs_key key;
  261. struct btrfs_ioctl_defrag_range_args range;
  262. int num_defrag;
  263. /* get the inode */
  264. key.objectid = defrag->root;
  265. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  266. key.offset = (u64)-1;
  267. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  268. if (IS_ERR(inode_root)) {
  269. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  270. return PTR_ERR(inode_root);
  271. }
  272. key.objectid = defrag->ino;
  273. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  274. key.offset = 0;
  275. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  276. if (IS_ERR(inode)) {
  277. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  278. return PTR_ERR(inode);
  279. }
  280. /* do a chunk of defrag */
  281. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  282. memset(&range, 0, sizeof(range));
  283. range.len = (u64)-1;
  284. range.start = defrag->last_offset;
  285. sb_start_write(fs_info->sb);
  286. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  287. BTRFS_DEFRAG_BATCH);
  288. sb_end_write(fs_info->sb);
  289. /*
  290. * if we filled the whole defrag batch, there
  291. * must be more work to do. Queue this defrag
  292. * again
  293. */
  294. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  295. defrag->last_offset = range.start;
  296. btrfs_requeue_inode_defrag(inode, defrag);
  297. } else if (defrag->last_offset && !defrag->cycled) {
  298. /*
  299. * we didn't fill our defrag batch, but
  300. * we didn't start at zero. Make sure we loop
  301. * around to the start of the file.
  302. */
  303. defrag->last_offset = 0;
  304. defrag->cycled = 1;
  305. btrfs_requeue_inode_defrag(inode, defrag);
  306. } else {
  307. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  308. }
  309. iput(inode);
  310. return 0;
  311. }
  312. /*
  313. * run through the list of inodes in the FS that need
  314. * defragging
  315. */
  316. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  317. {
  318. struct inode_defrag *defrag;
  319. u64 first_ino = 0;
  320. u64 root_objectid = 0;
  321. atomic_inc(&fs_info->defrag_running);
  322. while(1) {
  323. if (!__need_auto_defrag(fs_info->tree_root))
  324. break;
  325. /* find an inode to defrag */
  326. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  327. first_ino);
  328. if (!defrag) {
  329. if (root_objectid || first_ino) {
  330. root_objectid = 0;
  331. first_ino = 0;
  332. continue;
  333. } else {
  334. break;
  335. }
  336. }
  337. first_ino = defrag->ino + 1;
  338. root_objectid = defrag->root;
  339. __btrfs_run_defrag_inode(fs_info, defrag);
  340. }
  341. atomic_dec(&fs_info->defrag_running);
  342. /*
  343. * during unmount, we use the transaction_wait queue to
  344. * wait for the defragger to stop
  345. */
  346. wake_up(&fs_info->transaction_wait);
  347. return 0;
  348. }
  349. /* simple helper to fault in pages and copy. This should go away
  350. * and be replaced with calls into generic code.
  351. */
  352. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  353. size_t write_bytes,
  354. struct page **prepared_pages,
  355. struct iov_iter *i)
  356. {
  357. size_t copied = 0;
  358. size_t total_copied = 0;
  359. int pg = 0;
  360. int offset = pos & (PAGE_CACHE_SIZE - 1);
  361. while (write_bytes > 0) {
  362. size_t count = min_t(size_t,
  363. PAGE_CACHE_SIZE - offset, write_bytes);
  364. struct page *page = prepared_pages[pg];
  365. /*
  366. * Copy data from userspace to the current page
  367. *
  368. * Disable pagefault to avoid recursive lock since
  369. * the pages are already locked
  370. */
  371. pagefault_disable();
  372. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  373. pagefault_enable();
  374. /* Flush processor's dcache for this page */
  375. flush_dcache_page(page);
  376. /*
  377. * if we get a partial write, we can end up with
  378. * partially up to date pages. These add
  379. * a lot of complexity, so make sure they don't
  380. * happen by forcing this copy to be retried.
  381. *
  382. * The rest of the btrfs_file_write code will fall
  383. * back to page at a time copies after we return 0.
  384. */
  385. if (!PageUptodate(page) && copied < count)
  386. copied = 0;
  387. iov_iter_advance(i, copied);
  388. write_bytes -= copied;
  389. total_copied += copied;
  390. /* Return to btrfs_file_aio_write to fault page */
  391. if (unlikely(copied == 0))
  392. break;
  393. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  394. offset += copied;
  395. } else {
  396. pg++;
  397. offset = 0;
  398. }
  399. }
  400. return total_copied;
  401. }
  402. /*
  403. * unlocks pages after btrfs_file_write is done with them
  404. */
  405. void btrfs_drop_pages(struct page **pages, size_t num_pages)
  406. {
  407. size_t i;
  408. for (i = 0; i < num_pages; i++) {
  409. /* page checked is some magic around finding pages that
  410. * have been modified without going through btrfs_set_page_dirty
  411. * clear it here
  412. */
  413. ClearPageChecked(pages[i]);
  414. unlock_page(pages[i]);
  415. mark_page_accessed(pages[i]);
  416. page_cache_release(pages[i]);
  417. }
  418. }
  419. /*
  420. * after copy_from_user, pages need to be dirtied and we need to make
  421. * sure holes are created between the current EOF and the start of
  422. * any next extents (if required).
  423. *
  424. * this also makes the decision about creating an inline extent vs
  425. * doing real data extents, marking pages dirty and delalloc as required.
  426. */
  427. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  428. struct page **pages, size_t num_pages,
  429. loff_t pos, size_t write_bytes,
  430. struct extent_state **cached)
  431. {
  432. int err = 0;
  433. int i;
  434. u64 num_bytes;
  435. u64 start_pos;
  436. u64 end_of_last_block;
  437. u64 end_pos = pos + write_bytes;
  438. loff_t isize = i_size_read(inode);
  439. start_pos = pos & ~((u64)root->sectorsize - 1);
  440. num_bytes = (write_bytes + pos - start_pos +
  441. root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  442. end_of_last_block = start_pos + num_bytes - 1;
  443. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  444. cached);
  445. if (err)
  446. return err;
  447. for (i = 0; i < num_pages; i++) {
  448. struct page *p = pages[i];
  449. SetPageUptodate(p);
  450. ClearPageChecked(p);
  451. set_page_dirty(p);
  452. }
  453. /*
  454. * we've only changed i_size in ram, and we haven't updated
  455. * the disk i_size. There is no need to log the inode
  456. * at this time.
  457. */
  458. if (end_pos > isize)
  459. i_size_write(inode, end_pos);
  460. return 0;
  461. }
  462. /*
  463. * this drops all the extents in the cache that intersect the range
  464. * [start, end]. Existing extents are split as required.
  465. */
  466. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  467. int skip_pinned)
  468. {
  469. struct extent_map *em;
  470. struct extent_map *split = NULL;
  471. struct extent_map *split2 = NULL;
  472. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  473. u64 len = end - start + 1;
  474. u64 gen;
  475. int ret;
  476. int testend = 1;
  477. unsigned long flags;
  478. int compressed = 0;
  479. WARN_ON(end < start);
  480. if (end == (u64)-1) {
  481. len = (u64)-1;
  482. testend = 0;
  483. }
  484. while (1) {
  485. int no_splits = 0;
  486. if (!split)
  487. split = alloc_extent_map();
  488. if (!split2)
  489. split2 = alloc_extent_map();
  490. if (!split || !split2)
  491. no_splits = 1;
  492. write_lock(&em_tree->lock);
  493. em = lookup_extent_mapping(em_tree, start, len);
  494. if (!em) {
  495. write_unlock(&em_tree->lock);
  496. break;
  497. }
  498. flags = em->flags;
  499. gen = em->generation;
  500. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  501. if (testend && em->start + em->len >= start + len) {
  502. free_extent_map(em);
  503. write_unlock(&em_tree->lock);
  504. break;
  505. }
  506. start = em->start + em->len;
  507. if (testend)
  508. len = start + len - (em->start + em->len);
  509. free_extent_map(em);
  510. write_unlock(&em_tree->lock);
  511. continue;
  512. }
  513. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  514. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  515. remove_extent_mapping(em_tree, em);
  516. if (no_splits)
  517. goto next;
  518. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  519. em->start < start) {
  520. split->start = em->start;
  521. split->len = start - em->start;
  522. split->orig_start = em->orig_start;
  523. split->block_start = em->block_start;
  524. if (compressed)
  525. split->block_len = em->block_len;
  526. else
  527. split->block_len = split->len;
  528. split->orig_block_len = max(split->block_len,
  529. em->orig_block_len);
  530. split->generation = gen;
  531. split->bdev = em->bdev;
  532. split->flags = flags;
  533. split->compress_type = em->compress_type;
  534. ret = add_extent_mapping(em_tree, split);
  535. BUG_ON(ret); /* Logic error */
  536. list_move(&split->list, &em_tree->modified_extents);
  537. free_extent_map(split);
  538. split = split2;
  539. split2 = NULL;
  540. }
  541. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  542. testend && em->start + em->len > start + len) {
  543. u64 diff = start + len - em->start;
  544. split->start = start + len;
  545. split->len = em->start + em->len - (start + len);
  546. split->bdev = em->bdev;
  547. split->flags = flags;
  548. split->compress_type = em->compress_type;
  549. split->generation = gen;
  550. split->orig_block_len = max(em->block_len,
  551. em->orig_block_len);
  552. if (compressed) {
  553. split->block_len = em->block_len;
  554. split->block_start = em->block_start;
  555. split->orig_start = em->orig_start;
  556. } else {
  557. split->block_len = split->len;
  558. split->block_start = em->block_start + diff;
  559. split->orig_start = em->orig_start;
  560. }
  561. ret = add_extent_mapping(em_tree, split);
  562. BUG_ON(ret); /* Logic error */
  563. list_move(&split->list, &em_tree->modified_extents);
  564. free_extent_map(split);
  565. split = NULL;
  566. }
  567. next:
  568. write_unlock(&em_tree->lock);
  569. /* once for us */
  570. free_extent_map(em);
  571. /* once for the tree*/
  572. free_extent_map(em);
  573. }
  574. if (split)
  575. free_extent_map(split);
  576. if (split2)
  577. free_extent_map(split2);
  578. }
  579. /*
  580. * this is very complex, but the basic idea is to drop all extents
  581. * in the range start - end. hint_block is filled in with a block number
  582. * that would be a good hint to the block allocator for this file.
  583. *
  584. * If an extent intersects the range but is not entirely inside the range
  585. * it is either truncated or split. Anything entirely inside the range
  586. * is deleted from the tree.
  587. */
  588. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  589. struct btrfs_root *root, struct inode *inode,
  590. struct btrfs_path *path, u64 start, u64 end,
  591. u64 *drop_end, int drop_cache)
  592. {
  593. struct extent_buffer *leaf;
  594. struct btrfs_file_extent_item *fi;
  595. struct btrfs_key key;
  596. struct btrfs_key new_key;
  597. u64 ino = btrfs_ino(inode);
  598. u64 search_start = start;
  599. u64 disk_bytenr = 0;
  600. u64 num_bytes = 0;
  601. u64 extent_offset = 0;
  602. u64 extent_end = 0;
  603. int del_nr = 0;
  604. int del_slot = 0;
  605. int extent_type;
  606. int recow;
  607. int ret;
  608. int modify_tree = -1;
  609. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  610. int found = 0;
  611. if (drop_cache)
  612. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  613. if (start >= BTRFS_I(inode)->disk_i_size)
  614. modify_tree = 0;
  615. while (1) {
  616. recow = 0;
  617. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  618. search_start, modify_tree);
  619. if (ret < 0)
  620. break;
  621. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  622. leaf = path->nodes[0];
  623. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  624. if (key.objectid == ino &&
  625. key.type == BTRFS_EXTENT_DATA_KEY)
  626. path->slots[0]--;
  627. }
  628. ret = 0;
  629. next_slot:
  630. leaf = path->nodes[0];
  631. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  632. BUG_ON(del_nr > 0);
  633. ret = btrfs_next_leaf(root, path);
  634. if (ret < 0)
  635. break;
  636. if (ret > 0) {
  637. ret = 0;
  638. break;
  639. }
  640. leaf = path->nodes[0];
  641. recow = 1;
  642. }
  643. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  644. if (key.objectid > ino ||
  645. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  646. break;
  647. fi = btrfs_item_ptr(leaf, path->slots[0],
  648. struct btrfs_file_extent_item);
  649. extent_type = btrfs_file_extent_type(leaf, fi);
  650. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  651. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  652. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  653. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  654. extent_offset = btrfs_file_extent_offset(leaf, fi);
  655. extent_end = key.offset +
  656. btrfs_file_extent_num_bytes(leaf, fi);
  657. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  658. extent_end = key.offset +
  659. btrfs_file_extent_inline_len(leaf, fi);
  660. } else {
  661. WARN_ON(1);
  662. extent_end = search_start;
  663. }
  664. if (extent_end <= search_start) {
  665. path->slots[0]++;
  666. goto next_slot;
  667. }
  668. found = 1;
  669. search_start = max(key.offset, start);
  670. if (recow || !modify_tree) {
  671. modify_tree = -1;
  672. btrfs_release_path(path);
  673. continue;
  674. }
  675. /*
  676. * | - range to drop - |
  677. * | -------- extent -------- |
  678. */
  679. if (start > key.offset && end < extent_end) {
  680. BUG_ON(del_nr > 0);
  681. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  682. memcpy(&new_key, &key, sizeof(new_key));
  683. new_key.offset = start;
  684. ret = btrfs_duplicate_item(trans, root, path,
  685. &new_key);
  686. if (ret == -EAGAIN) {
  687. btrfs_release_path(path);
  688. continue;
  689. }
  690. if (ret < 0)
  691. break;
  692. leaf = path->nodes[0];
  693. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  694. struct btrfs_file_extent_item);
  695. btrfs_set_file_extent_num_bytes(leaf, fi,
  696. start - key.offset);
  697. fi = btrfs_item_ptr(leaf, path->slots[0],
  698. struct btrfs_file_extent_item);
  699. extent_offset += start - key.offset;
  700. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  701. btrfs_set_file_extent_num_bytes(leaf, fi,
  702. extent_end - start);
  703. btrfs_mark_buffer_dirty(leaf);
  704. if (update_refs && disk_bytenr > 0) {
  705. ret = btrfs_inc_extent_ref(trans, root,
  706. disk_bytenr, num_bytes, 0,
  707. root->root_key.objectid,
  708. new_key.objectid,
  709. start - extent_offset, 0);
  710. BUG_ON(ret); /* -ENOMEM */
  711. }
  712. key.offset = start;
  713. }
  714. /*
  715. * | ---- range to drop ----- |
  716. * | -------- extent -------- |
  717. */
  718. if (start <= key.offset && end < extent_end) {
  719. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  720. memcpy(&new_key, &key, sizeof(new_key));
  721. new_key.offset = end;
  722. btrfs_set_item_key_safe(trans, root, path, &new_key);
  723. extent_offset += end - key.offset;
  724. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  725. btrfs_set_file_extent_num_bytes(leaf, fi,
  726. extent_end - end);
  727. btrfs_mark_buffer_dirty(leaf);
  728. if (update_refs && disk_bytenr > 0)
  729. inode_sub_bytes(inode, end - key.offset);
  730. break;
  731. }
  732. search_start = extent_end;
  733. /*
  734. * | ---- range to drop ----- |
  735. * | -------- extent -------- |
  736. */
  737. if (start > key.offset && end >= extent_end) {
  738. BUG_ON(del_nr > 0);
  739. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  740. btrfs_set_file_extent_num_bytes(leaf, fi,
  741. start - key.offset);
  742. btrfs_mark_buffer_dirty(leaf);
  743. if (update_refs && disk_bytenr > 0)
  744. inode_sub_bytes(inode, extent_end - start);
  745. if (end == extent_end)
  746. break;
  747. path->slots[0]++;
  748. goto next_slot;
  749. }
  750. /*
  751. * | ---- range to drop ----- |
  752. * | ------ extent ------ |
  753. */
  754. if (start <= key.offset && end >= extent_end) {
  755. if (del_nr == 0) {
  756. del_slot = path->slots[0];
  757. del_nr = 1;
  758. } else {
  759. BUG_ON(del_slot + del_nr != path->slots[0]);
  760. del_nr++;
  761. }
  762. if (update_refs &&
  763. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  764. inode_sub_bytes(inode,
  765. extent_end - key.offset);
  766. extent_end = ALIGN(extent_end,
  767. root->sectorsize);
  768. } else if (update_refs && disk_bytenr > 0) {
  769. ret = btrfs_free_extent(trans, root,
  770. disk_bytenr, num_bytes, 0,
  771. root->root_key.objectid,
  772. key.objectid, key.offset -
  773. extent_offset, 0);
  774. BUG_ON(ret); /* -ENOMEM */
  775. inode_sub_bytes(inode,
  776. extent_end - key.offset);
  777. }
  778. if (end == extent_end)
  779. break;
  780. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  781. path->slots[0]++;
  782. goto next_slot;
  783. }
  784. ret = btrfs_del_items(trans, root, path, del_slot,
  785. del_nr);
  786. if (ret) {
  787. btrfs_abort_transaction(trans, root, ret);
  788. break;
  789. }
  790. del_nr = 0;
  791. del_slot = 0;
  792. btrfs_release_path(path);
  793. continue;
  794. }
  795. BUG_ON(1);
  796. }
  797. if (!ret && del_nr > 0) {
  798. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  799. if (ret)
  800. btrfs_abort_transaction(trans, root, ret);
  801. }
  802. if (drop_end)
  803. *drop_end = found ? min(end, extent_end) : end;
  804. btrfs_release_path(path);
  805. return ret;
  806. }
  807. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  808. struct btrfs_root *root, struct inode *inode, u64 start,
  809. u64 end, int drop_cache)
  810. {
  811. struct btrfs_path *path;
  812. int ret;
  813. path = btrfs_alloc_path();
  814. if (!path)
  815. return -ENOMEM;
  816. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  817. drop_cache);
  818. btrfs_free_path(path);
  819. return ret;
  820. }
  821. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  822. u64 objectid, u64 bytenr, u64 orig_offset,
  823. u64 *start, u64 *end)
  824. {
  825. struct btrfs_file_extent_item *fi;
  826. struct btrfs_key key;
  827. u64 extent_end;
  828. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  829. return 0;
  830. btrfs_item_key_to_cpu(leaf, &key, slot);
  831. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  832. return 0;
  833. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  834. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  835. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  836. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  837. btrfs_file_extent_compression(leaf, fi) ||
  838. btrfs_file_extent_encryption(leaf, fi) ||
  839. btrfs_file_extent_other_encoding(leaf, fi))
  840. return 0;
  841. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  842. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  843. return 0;
  844. *start = key.offset;
  845. *end = extent_end;
  846. return 1;
  847. }
  848. /*
  849. * Mark extent in the range start - end as written.
  850. *
  851. * This changes extent type from 'pre-allocated' to 'regular'. If only
  852. * part of extent is marked as written, the extent will be split into
  853. * two or three.
  854. */
  855. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  856. struct inode *inode, u64 start, u64 end)
  857. {
  858. struct btrfs_root *root = BTRFS_I(inode)->root;
  859. struct extent_buffer *leaf;
  860. struct btrfs_path *path;
  861. struct btrfs_file_extent_item *fi;
  862. struct btrfs_key key;
  863. struct btrfs_key new_key;
  864. u64 bytenr;
  865. u64 num_bytes;
  866. u64 extent_end;
  867. u64 orig_offset;
  868. u64 other_start;
  869. u64 other_end;
  870. u64 split;
  871. int del_nr = 0;
  872. int del_slot = 0;
  873. int recow;
  874. int ret;
  875. u64 ino = btrfs_ino(inode);
  876. path = btrfs_alloc_path();
  877. if (!path)
  878. return -ENOMEM;
  879. again:
  880. recow = 0;
  881. split = start;
  882. key.objectid = ino;
  883. key.type = BTRFS_EXTENT_DATA_KEY;
  884. key.offset = split;
  885. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  886. if (ret < 0)
  887. goto out;
  888. if (ret > 0 && path->slots[0] > 0)
  889. path->slots[0]--;
  890. leaf = path->nodes[0];
  891. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  892. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  893. fi = btrfs_item_ptr(leaf, path->slots[0],
  894. struct btrfs_file_extent_item);
  895. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  896. BTRFS_FILE_EXTENT_PREALLOC);
  897. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  898. BUG_ON(key.offset > start || extent_end < end);
  899. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  900. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  901. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  902. memcpy(&new_key, &key, sizeof(new_key));
  903. if (start == key.offset && end < extent_end) {
  904. other_start = 0;
  905. other_end = start;
  906. if (extent_mergeable(leaf, path->slots[0] - 1,
  907. ino, bytenr, orig_offset,
  908. &other_start, &other_end)) {
  909. new_key.offset = end;
  910. btrfs_set_item_key_safe(trans, root, path, &new_key);
  911. fi = btrfs_item_ptr(leaf, path->slots[0],
  912. struct btrfs_file_extent_item);
  913. btrfs_set_file_extent_generation(leaf, fi,
  914. trans->transid);
  915. btrfs_set_file_extent_num_bytes(leaf, fi,
  916. extent_end - end);
  917. btrfs_set_file_extent_offset(leaf, fi,
  918. end - orig_offset);
  919. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  920. struct btrfs_file_extent_item);
  921. btrfs_set_file_extent_generation(leaf, fi,
  922. trans->transid);
  923. btrfs_set_file_extent_num_bytes(leaf, fi,
  924. end - other_start);
  925. btrfs_mark_buffer_dirty(leaf);
  926. goto out;
  927. }
  928. }
  929. if (start > key.offset && end == extent_end) {
  930. other_start = end;
  931. other_end = 0;
  932. if (extent_mergeable(leaf, path->slots[0] + 1,
  933. ino, bytenr, orig_offset,
  934. &other_start, &other_end)) {
  935. fi = btrfs_item_ptr(leaf, path->slots[0],
  936. struct btrfs_file_extent_item);
  937. btrfs_set_file_extent_num_bytes(leaf, fi,
  938. start - key.offset);
  939. btrfs_set_file_extent_generation(leaf, fi,
  940. trans->transid);
  941. path->slots[0]++;
  942. new_key.offset = start;
  943. btrfs_set_item_key_safe(trans, root, path, &new_key);
  944. fi = btrfs_item_ptr(leaf, path->slots[0],
  945. struct btrfs_file_extent_item);
  946. btrfs_set_file_extent_generation(leaf, fi,
  947. trans->transid);
  948. btrfs_set_file_extent_num_bytes(leaf, fi,
  949. other_end - start);
  950. btrfs_set_file_extent_offset(leaf, fi,
  951. start - orig_offset);
  952. btrfs_mark_buffer_dirty(leaf);
  953. goto out;
  954. }
  955. }
  956. while (start > key.offset || end < extent_end) {
  957. if (key.offset == start)
  958. split = end;
  959. new_key.offset = split;
  960. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  961. if (ret == -EAGAIN) {
  962. btrfs_release_path(path);
  963. goto again;
  964. }
  965. if (ret < 0) {
  966. btrfs_abort_transaction(trans, root, ret);
  967. goto out;
  968. }
  969. leaf = path->nodes[0];
  970. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  971. struct btrfs_file_extent_item);
  972. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  973. btrfs_set_file_extent_num_bytes(leaf, fi,
  974. split - key.offset);
  975. fi = btrfs_item_ptr(leaf, path->slots[0],
  976. struct btrfs_file_extent_item);
  977. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  978. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  979. btrfs_set_file_extent_num_bytes(leaf, fi,
  980. extent_end - split);
  981. btrfs_mark_buffer_dirty(leaf);
  982. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  983. root->root_key.objectid,
  984. ino, orig_offset, 0);
  985. BUG_ON(ret); /* -ENOMEM */
  986. if (split == start) {
  987. key.offset = start;
  988. } else {
  989. BUG_ON(start != key.offset);
  990. path->slots[0]--;
  991. extent_end = end;
  992. }
  993. recow = 1;
  994. }
  995. other_start = end;
  996. other_end = 0;
  997. if (extent_mergeable(leaf, path->slots[0] + 1,
  998. ino, bytenr, orig_offset,
  999. &other_start, &other_end)) {
  1000. if (recow) {
  1001. btrfs_release_path(path);
  1002. goto again;
  1003. }
  1004. extent_end = other_end;
  1005. del_slot = path->slots[0] + 1;
  1006. del_nr++;
  1007. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1008. 0, root->root_key.objectid,
  1009. ino, orig_offset, 0);
  1010. BUG_ON(ret); /* -ENOMEM */
  1011. }
  1012. other_start = 0;
  1013. other_end = start;
  1014. if (extent_mergeable(leaf, path->slots[0] - 1,
  1015. ino, bytenr, orig_offset,
  1016. &other_start, &other_end)) {
  1017. if (recow) {
  1018. btrfs_release_path(path);
  1019. goto again;
  1020. }
  1021. key.offset = other_start;
  1022. del_slot = path->slots[0];
  1023. del_nr++;
  1024. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1025. 0, root->root_key.objectid,
  1026. ino, orig_offset, 0);
  1027. BUG_ON(ret); /* -ENOMEM */
  1028. }
  1029. if (del_nr == 0) {
  1030. fi = btrfs_item_ptr(leaf, path->slots[0],
  1031. struct btrfs_file_extent_item);
  1032. btrfs_set_file_extent_type(leaf, fi,
  1033. BTRFS_FILE_EXTENT_REG);
  1034. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1035. btrfs_mark_buffer_dirty(leaf);
  1036. } else {
  1037. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1038. struct btrfs_file_extent_item);
  1039. btrfs_set_file_extent_type(leaf, fi,
  1040. BTRFS_FILE_EXTENT_REG);
  1041. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1042. btrfs_set_file_extent_num_bytes(leaf, fi,
  1043. extent_end - key.offset);
  1044. btrfs_mark_buffer_dirty(leaf);
  1045. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1046. if (ret < 0) {
  1047. btrfs_abort_transaction(trans, root, ret);
  1048. goto out;
  1049. }
  1050. }
  1051. out:
  1052. btrfs_free_path(path);
  1053. return 0;
  1054. }
  1055. /*
  1056. * on error we return an unlocked page and the error value
  1057. * on success we return a locked page and 0
  1058. */
  1059. static int prepare_uptodate_page(struct page *page, u64 pos,
  1060. bool force_uptodate)
  1061. {
  1062. int ret = 0;
  1063. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1064. !PageUptodate(page)) {
  1065. ret = btrfs_readpage(NULL, page);
  1066. if (ret)
  1067. return ret;
  1068. lock_page(page);
  1069. if (!PageUptodate(page)) {
  1070. unlock_page(page);
  1071. return -EIO;
  1072. }
  1073. }
  1074. return 0;
  1075. }
  1076. /*
  1077. * this gets pages into the page cache and locks them down, it also properly
  1078. * waits for data=ordered extents to finish before allowing the pages to be
  1079. * modified.
  1080. */
  1081. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1082. struct page **pages, size_t num_pages,
  1083. loff_t pos, unsigned long first_index,
  1084. size_t write_bytes, bool force_uptodate)
  1085. {
  1086. struct extent_state *cached_state = NULL;
  1087. int i;
  1088. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1089. struct inode *inode = fdentry(file)->d_inode;
  1090. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1091. int err = 0;
  1092. int faili = 0;
  1093. u64 start_pos;
  1094. u64 last_pos;
  1095. start_pos = pos & ~((u64)root->sectorsize - 1);
  1096. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1097. again:
  1098. for (i = 0; i < num_pages; i++) {
  1099. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1100. mask | __GFP_WRITE);
  1101. if (!pages[i]) {
  1102. faili = i - 1;
  1103. err = -ENOMEM;
  1104. goto fail;
  1105. }
  1106. if (i == 0)
  1107. err = prepare_uptodate_page(pages[i], pos,
  1108. force_uptodate);
  1109. if (i == num_pages - 1)
  1110. err = prepare_uptodate_page(pages[i],
  1111. pos + write_bytes, false);
  1112. if (err) {
  1113. page_cache_release(pages[i]);
  1114. faili = i - 1;
  1115. goto fail;
  1116. }
  1117. wait_on_page_writeback(pages[i]);
  1118. }
  1119. err = 0;
  1120. if (start_pos < inode->i_size) {
  1121. struct btrfs_ordered_extent *ordered;
  1122. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1123. start_pos, last_pos - 1, 0, &cached_state);
  1124. ordered = btrfs_lookup_first_ordered_extent(inode,
  1125. last_pos - 1);
  1126. if (ordered &&
  1127. ordered->file_offset + ordered->len > start_pos &&
  1128. ordered->file_offset < last_pos) {
  1129. btrfs_put_ordered_extent(ordered);
  1130. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1131. start_pos, last_pos - 1,
  1132. &cached_state, GFP_NOFS);
  1133. for (i = 0; i < num_pages; i++) {
  1134. unlock_page(pages[i]);
  1135. page_cache_release(pages[i]);
  1136. }
  1137. btrfs_wait_ordered_range(inode, start_pos,
  1138. last_pos - start_pos);
  1139. goto again;
  1140. }
  1141. if (ordered)
  1142. btrfs_put_ordered_extent(ordered);
  1143. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1144. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1145. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1146. 0, 0, &cached_state, GFP_NOFS);
  1147. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1148. start_pos, last_pos - 1, &cached_state,
  1149. GFP_NOFS);
  1150. }
  1151. for (i = 0; i < num_pages; i++) {
  1152. if (clear_page_dirty_for_io(pages[i]))
  1153. account_page_redirty(pages[i]);
  1154. set_page_extent_mapped(pages[i]);
  1155. WARN_ON(!PageLocked(pages[i]));
  1156. }
  1157. return 0;
  1158. fail:
  1159. while (faili >= 0) {
  1160. unlock_page(pages[faili]);
  1161. page_cache_release(pages[faili]);
  1162. faili--;
  1163. }
  1164. return err;
  1165. }
  1166. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1167. struct iov_iter *i,
  1168. loff_t pos)
  1169. {
  1170. struct inode *inode = fdentry(file)->d_inode;
  1171. struct btrfs_root *root = BTRFS_I(inode)->root;
  1172. struct page **pages = NULL;
  1173. unsigned long first_index;
  1174. size_t num_written = 0;
  1175. int nrptrs;
  1176. int ret = 0;
  1177. bool force_page_uptodate = false;
  1178. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1179. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1180. (sizeof(struct page *)));
  1181. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1182. nrptrs = max(nrptrs, 8);
  1183. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1184. if (!pages)
  1185. return -ENOMEM;
  1186. first_index = pos >> PAGE_CACHE_SHIFT;
  1187. while (iov_iter_count(i) > 0) {
  1188. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1189. size_t write_bytes = min(iov_iter_count(i),
  1190. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1191. offset);
  1192. size_t num_pages = (write_bytes + offset +
  1193. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1194. size_t dirty_pages;
  1195. size_t copied;
  1196. WARN_ON(num_pages > nrptrs);
  1197. /*
  1198. * Fault pages before locking them in prepare_pages
  1199. * to avoid recursive lock
  1200. */
  1201. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1202. ret = -EFAULT;
  1203. break;
  1204. }
  1205. ret = btrfs_delalloc_reserve_space(inode,
  1206. num_pages << PAGE_CACHE_SHIFT);
  1207. if (ret)
  1208. break;
  1209. /*
  1210. * This is going to setup the pages array with the number of
  1211. * pages we want, so we don't really need to worry about the
  1212. * contents of pages from loop to loop
  1213. */
  1214. ret = prepare_pages(root, file, pages, num_pages,
  1215. pos, first_index, write_bytes,
  1216. force_page_uptodate);
  1217. if (ret) {
  1218. btrfs_delalloc_release_space(inode,
  1219. num_pages << PAGE_CACHE_SHIFT);
  1220. break;
  1221. }
  1222. copied = btrfs_copy_from_user(pos, num_pages,
  1223. write_bytes, pages, i);
  1224. /*
  1225. * if we have trouble faulting in the pages, fall
  1226. * back to one page at a time
  1227. */
  1228. if (copied < write_bytes)
  1229. nrptrs = 1;
  1230. if (copied == 0) {
  1231. force_page_uptodate = true;
  1232. dirty_pages = 0;
  1233. } else {
  1234. force_page_uptodate = false;
  1235. dirty_pages = (copied + offset +
  1236. PAGE_CACHE_SIZE - 1) >>
  1237. PAGE_CACHE_SHIFT;
  1238. }
  1239. /*
  1240. * If we had a short copy we need to release the excess delaloc
  1241. * bytes we reserved. We need to increment outstanding_extents
  1242. * because btrfs_delalloc_release_space will decrement it, but
  1243. * we still have an outstanding extent for the chunk we actually
  1244. * managed to copy.
  1245. */
  1246. if (num_pages > dirty_pages) {
  1247. if (copied > 0) {
  1248. spin_lock(&BTRFS_I(inode)->lock);
  1249. BTRFS_I(inode)->outstanding_extents++;
  1250. spin_unlock(&BTRFS_I(inode)->lock);
  1251. }
  1252. btrfs_delalloc_release_space(inode,
  1253. (num_pages - dirty_pages) <<
  1254. PAGE_CACHE_SHIFT);
  1255. }
  1256. if (copied > 0) {
  1257. ret = btrfs_dirty_pages(root, inode, pages,
  1258. dirty_pages, pos, copied,
  1259. NULL);
  1260. if (ret) {
  1261. btrfs_delalloc_release_space(inode,
  1262. dirty_pages << PAGE_CACHE_SHIFT);
  1263. btrfs_drop_pages(pages, num_pages);
  1264. break;
  1265. }
  1266. }
  1267. btrfs_drop_pages(pages, num_pages);
  1268. cond_resched();
  1269. balance_dirty_pages_ratelimited_nr(inode->i_mapping,
  1270. dirty_pages);
  1271. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1272. btrfs_btree_balance_dirty(root);
  1273. pos += copied;
  1274. num_written += copied;
  1275. }
  1276. kfree(pages);
  1277. return num_written ? num_written : ret;
  1278. }
  1279. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1280. const struct iovec *iov,
  1281. unsigned long nr_segs, loff_t pos,
  1282. loff_t *ppos, size_t count, size_t ocount)
  1283. {
  1284. struct file *file = iocb->ki_filp;
  1285. struct iov_iter i;
  1286. ssize_t written;
  1287. ssize_t written_buffered;
  1288. loff_t endbyte;
  1289. int err;
  1290. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1291. count, ocount);
  1292. if (written < 0 || written == count)
  1293. return written;
  1294. pos += written;
  1295. count -= written;
  1296. iov_iter_init(&i, iov, nr_segs, count, written);
  1297. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1298. if (written_buffered < 0) {
  1299. err = written_buffered;
  1300. goto out;
  1301. }
  1302. endbyte = pos + written_buffered - 1;
  1303. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1304. if (err)
  1305. goto out;
  1306. written += written_buffered;
  1307. *ppos = pos + written_buffered;
  1308. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1309. endbyte >> PAGE_CACHE_SHIFT);
  1310. out:
  1311. return written ? written : err;
  1312. }
  1313. static void update_time_for_write(struct inode *inode)
  1314. {
  1315. struct timespec now;
  1316. if (IS_NOCMTIME(inode))
  1317. return;
  1318. now = current_fs_time(inode->i_sb);
  1319. if (!timespec_equal(&inode->i_mtime, &now))
  1320. inode->i_mtime = now;
  1321. if (!timespec_equal(&inode->i_ctime, &now))
  1322. inode->i_ctime = now;
  1323. if (IS_I_VERSION(inode))
  1324. inode_inc_iversion(inode);
  1325. }
  1326. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1327. const struct iovec *iov,
  1328. unsigned long nr_segs, loff_t pos)
  1329. {
  1330. struct file *file = iocb->ki_filp;
  1331. struct inode *inode = fdentry(file)->d_inode;
  1332. struct btrfs_root *root = BTRFS_I(inode)->root;
  1333. loff_t *ppos = &iocb->ki_pos;
  1334. u64 start_pos;
  1335. ssize_t num_written = 0;
  1336. ssize_t err = 0;
  1337. size_t count, ocount;
  1338. bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
  1339. sb_start_write(inode->i_sb);
  1340. mutex_lock(&inode->i_mutex);
  1341. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1342. if (err) {
  1343. mutex_unlock(&inode->i_mutex);
  1344. goto out;
  1345. }
  1346. count = ocount;
  1347. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1348. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1349. if (err) {
  1350. mutex_unlock(&inode->i_mutex);
  1351. goto out;
  1352. }
  1353. if (count == 0) {
  1354. mutex_unlock(&inode->i_mutex);
  1355. goto out;
  1356. }
  1357. err = file_remove_suid(file);
  1358. if (err) {
  1359. mutex_unlock(&inode->i_mutex);
  1360. goto out;
  1361. }
  1362. /*
  1363. * If BTRFS flips readonly due to some impossible error
  1364. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1365. * although we have opened a file as writable, we have
  1366. * to stop this write operation to ensure FS consistency.
  1367. */
  1368. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  1369. mutex_unlock(&inode->i_mutex);
  1370. err = -EROFS;
  1371. goto out;
  1372. }
  1373. /*
  1374. * We reserve space for updating the inode when we reserve space for the
  1375. * extent we are going to write, so we will enospc out there. We don't
  1376. * need to start yet another transaction to update the inode as we will
  1377. * update the inode when we finish writing whatever data we write.
  1378. */
  1379. update_time_for_write(inode);
  1380. start_pos = round_down(pos, root->sectorsize);
  1381. if (start_pos > i_size_read(inode)) {
  1382. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1383. if (err) {
  1384. mutex_unlock(&inode->i_mutex);
  1385. goto out;
  1386. }
  1387. }
  1388. if (sync)
  1389. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1390. if (unlikely(file->f_flags & O_DIRECT)) {
  1391. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1392. pos, ppos, count, ocount);
  1393. } else {
  1394. struct iov_iter i;
  1395. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1396. num_written = __btrfs_buffered_write(file, &i, pos);
  1397. if (num_written > 0)
  1398. *ppos = pos + num_written;
  1399. }
  1400. mutex_unlock(&inode->i_mutex);
  1401. /*
  1402. * we want to make sure fsync finds this change
  1403. * but we haven't joined a transaction running right now.
  1404. *
  1405. * Later on, someone is sure to update the inode and get the
  1406. * real transid recorded.
  1407. *
  1408. * We set last_trans now to the fs_info generation + 1,
  1409. * this will either be one more than the running transaction
  1410. * or the generation used for the next transaction if there isn't
  1411. * one running right now.
  1412. *
  1413. * We also have to set last_sub_trans to the current log transid,
  1414. * otherwise subsequent syncs to a file that's been synced in this
  1415. * transaction will appear to have already occured.
  1416. */
  1417. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1418. BTRFS_I(inode)->last_sub_trans = root->log_transid;
  1419. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1420. err = generic_write_sync(file, pos, num_written);
  1421. if (err < 0 && num_written > 0)
  1422. num_written = err;
  1423. }
  1424. out:
  1425. if (sync)
  1426. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1427. sb_end_write(inode->i_sb);
  1428. current->backing_dev_info = NULL;
  1429. return num_written ? num_written : err;
  1430. }
  1431. int btrfs_release_file(struct inode *inode, struct file *filp)
  1432. {
  1433. /*
  1434. * ordered_data_close is set by settattr when we are about to truncate
  1435. * a file from a non-zero size to a zero size. This tries to
  1436. * flush down new bytes that may have been written if the
  1437. * application were using truncate to replace a file in place.
  1438. */
  1439. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1440. &BTRFS_I(inode)->runtime_flags)) {
  1441. btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
  1442. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1443. filemap_flush(inode->i_mapping);
  1444. }
  1445. if (filp->private_data)
  1446. btrfs_ioctl_trans_end(filp);
  1447. return 0;
  1448. }
  1449. /*
  1450. * fsync call for both files and directories. This logs the inode into
  1451. * the tree log instead of forcing full commits whenever possible.
  1452. *
  1453. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1454. * in the metadata btree are up to date for copying to the log.
  1455. *
  1456. * It drops the inode mutex before doing the tree log commit. This is an
  1457. * important optimization for directories because holding the mutex prevents
  1458. * new operations on the dir while we write to disk.
  1459. */
  1460. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1461. {
  1462. struct dentry *dentry = file->f_path.dentry;
  1463. struct inode *inode = dentry->d_inode;
  1464. struct btrfs_root *root = BTRFS_I(inode)->root;
  1465. int ret = 0;
  1466. struct btrfs_trans_handle *trans;
  1467. trace_btrfs_sync_file(file, datasync);
  1468. /*
  1469. * We write the dirty pages in the range and wait until they complete
  1470. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1471. * multi-task, and make the performance up.
  1472. */
  1473. atomic_inc(&BTRFS_I(inode)->sync_writers);
  1474. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  1475. atomic_dec(&BTRFS_I(inode)->sync_writers);
  1476. if (ret)
  1477. return ret;
  1478. mutex_lock(&inode->i_mutex);
  1479. /*
  1480. * We flush the dirty pages again to avoid some dirty pages in the
  1481. * range being left.
  1482. */
  1483. atomic_inc(&root->log_batch);
  1484. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1485. atomic_inc(&root->log_batch);
  1486. /*
  1487. * check the transaction that last modified this inode
  1488. * and see if its already been committed
  1489. */
  1490. if (!BTRFS_I(inode)->last_trans) {
  1491. mutex_unlock(&inode->i_mutex);
  1492. goto out;
  1493. }
  1494. /*
  1495. * if the last transaction that changed this file was before
  1496. * the current transaction, we can bail out now without any
  1497. * syncing
  1498. */
  1499. smp_mb();
  1500. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1501. BTRFS_I(inode)->last_trans <=
  1502. root->fs_info->last_trans_committed) {
  1503. BTRFS_I(inode)->last_trans = 0;
  1504. /*
  1505. * We'v had everything committed since the last time we were
  1506. * modified so clear this flag in case it was set for whatever
  1507. * reason, it's no longer relevant.
  1508. */
  1509. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1510. &BTRFS_I(inode)->runtime_flags);
  1511. mutex_unlock(&inode->i_mutex);
  1512. goto out;
  1513. }
  1514. /*
  1515. * ok we haven't committed the transaction yet, lets do a commit
  1516. */
  1517. if (file->private_data)
  1518. btrfs_ioctl_trans_end(file);
  1519. trans = btrfs_start_transaction(root, 0);
  1520. if (IS_ERR(trans)) {
  1521. ret = PTR_ERR(trans);
  1522. mutex_unlock(&inode->i_mutex);
  1523. goto out;
  1524. }
  1525. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1526. if (ret < 0) {
  1527. mutex_unlock(&inode->i_mutex);
  1528. goto out;
  1529. }
  1530. /* we've logged all the items and now have a consistent
  1531. * version of the file in the log. It is possible that
  1532. * someone will come in and modify the file, but that's
  1533. * fine because the log is consistent on disk, and we
  1534. * have references to all of the file's extents
  1535. *
  1536. * It is possible that someone will come in and log the
  1537. * file again, but that will end up using the synchronization
  1538. * inside btrfs_sync_log to keep things safe.
  1539. */
  1540. mutex_unlock(&inode->i_mutex);
  1541. if (ret != BTRFS_NO_LOG_SYNC) {
  1542. if (ret > 0) {
  1543. ret = btrfs_commit_transaction(trans, root);
  1544. } else {
  1545. ret = btrfs_sync_log(trans, root);
  1546. if (ret == 0)
  1547. ret = btrfs_end_transaction(trans, root);
  1548. else
  1549. ret = btrfs_commit_transaction(trans, root);
  1550. }
  1551. } else {
  1552. ret = btrfs_end_transaction(trans, root);
  1553. }
  1554. out:
  1555. return ret > 0 ? -EIO : ret;
  1556. }
  1557. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1558. .fault = filemap_fault,
  1559. .page_mkwrite = btrfs_page_mkwrite,
  1560. .remap_pages = generic_file_remap_pages,
  1561. };
  1562. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1563. {
  1564. struct address_space *mapping = filp->f_mapping;
  1565. if (!mapping->a_ops->readpage)
  1566. return -ENOEXEC;
  1567. file_accessed(filp);
  1568. vma->vm_ops = &btrfs_file_vm_ops;
  1569. return 0;
  1570. }
  1571. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1572. int slot, u64 start, u64 end)
  1573. {
  1574. struct btrfs_file_extent_item *fi;
  1575. struct btrfs_key key;
  1576. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1577. return 0;
  1578. btrfs_item_key_to_cpu(leaf, &key, slot);
  1579. if (key.objectid != btrfs_ino(inode) ||
  1580. key.type != BTRFS_EXTENT_DATA_KEY)
  1581. return 0;
  1582. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1583. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1584. return 0;
  1585. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1586. return 0;
  1587. if (key.offset == end)
  1588. return 1;
  1589. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1590. return 1;
  1591. return 0;
  1592. }
  1593. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1594. struct btrfs_path *path, u64 offset, u64 end)
  1595. {
  1596. struct btrfs_root *root = BTRFS_I(inode)->root;
  1597. struct extent_buffer *leaf;
  1598. struct btrfs_file_extent_item *fi;
  1599. struct extent_map *hole_em;
  1600. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1601. struct btrfs_key key;
  1602. int ret;
  1603. key.objectid = btrfs_ino(inode);
  1604. key.type = BTRFS_EXTENT_DATA_KEY;
  1605. key.offset = offset;
  1606. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1607. if (ret < 0)
  1608. return ret;
  1609. BUG_ON(!ret);
  1610. leaf = path->nodes[0];
  1611. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1612. u64 num_bytes;
  1613. path->slots[0]--;
  1614. fi = btrfs_item_ptr(leaf, path->slots[0],
  1615. struct btrfs_file_extent_item);
  1616. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1617. end - offset;
  1618. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1619. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1620. btrfs_set_file_extent_offset(leaf, fi, 0);
  1621. btrfs_mark_buffer_dirty(leaf);
  1622. goto out;
  1623. }
  1624. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1625. u64 num_bytes;
  1626. path->slots[0]++;
  1627. key.offset = offset;
  1628. btrfs_set_item_key_safe(trans, root, path, &key);
  1629. fi = btrfs_item_ptr(leaf, path->slots[0],
  1630. struct btrfs_file_extent_item);
  1631. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1632. offset;
  1633. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1634. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1635. btrfs_set_file_extent_offset(leaf, fi, 0);
  1636. btrfs_mark_buffer_dirty(leaf);
  1637. goto out;
  1638. }
  1639. btrfs_release_path(path);
  1640. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1641. 0, 0, end - offset, 0, end - offset,
  1642. 0, 0, 0);
  1643. if (ret)
  1644. return ret;
  1645. out:
  1646. btrfs_release_path(path);
  1647. hole_em = alloc_extent_map();
  1648. if (!hole_em) {
  1649. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1650. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1651. &BTRFS_I(inode)->runtime_flags);
  1652. } else {
  1653. hole_em->start = offset;
  1654. hole_em->len = end - offset;
  1655. hole_em->orig_start = offset;
  1656. hole_em->block_start = EXTENT_MAP_HOLE;
  1657. hole_em->block_len = 0;
  1658. hole_em->orig_block_len = 0;
  1659. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1660. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1661. hole_em->generation = trans->transid;
  1662. do {
  1663. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1664. write_lock(&em_tree->lock);
  1665. ret = add_extent_mapping(em_tree, hole_em);
  1666. if (!ret)
  1667. list_move(&hole_em->list,
  1668. &em_tree->modified_extents);
  1669. write_unlock(&em_tree->lock);
  1670. } while (ret == -EEXIST);
  1671. free_extent_map(hole_em);
  1672. if (ret)
  1673. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1674. &BTRFS_I(inode)->runtime_flags);
  1675. }
  1676. return 0;
  1677. }
  1678. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1679. {
  1680. struct btrfs_root *root = BTRFS_I(inode)->root;
  1681. struct extent_state *cached_state = NULL;
  1682. struct btrfs_path *path;
  1683. struct btrfs_block_rsv *rsv;
  1684. struct btrfs_trans_handle *trans;
  1685. u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
  1686. u64 lockend = round_down(offset + len,
  1687. BTRFS_I(inode)->root->sectorsize) - 1;
  1688. u64 cur_offset = lockstart;
  1689. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1690. u64 drop_end;
  1691. int ret = 0;
  1692. int err = 0;
  1693. bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
  1694. ((offset + len - 1) >> PAGE_CACHE_SHIFT));
  1695. btrfs_wait_ordered_range(inode, offset, len);
  1696. mutex_lock(&inode->i_mutex);
  1697. /*
  1698. * We needn't truncate any page which is beyond the end of the file
  1699. * because we are sure there is no data there.
  1700. */
  1701. /*
  1702. * Only do this if we are in the same page and we aren't doing the
  1703. * entire page.
  1704. */
  1705. if (same_page && len < PAGE_CACHE_SIZE) {
  1706. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE))
  1707. ret = btrfs_truncate_page(inode, offset, len, 0);
  1708. mutex_unlock(&inode->i_mutex);
  1709. return ret;
  1710. }
  1711. /* zero back part of the first page */
  1712. if (offset < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1713. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1714. if (ret) {
  1715. mutex_unlock(&inode->i_mutex);
  1716. return ret;
  1717. }
  1718. }
  1719. /* zero the front end of the last page */
  1720. if (offset + len < round_up(inode->i_size, PAGE_CACHE_SIZE)) {
  1721. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1722. if (ret) {
  1723. mutex_unlock(&inode->i_mutex);
  1724. return ret;
  1725. }
  1726. }
  1727. if (lockend < lockstart) {
  1728. mutex_unlock(&inode->i_mutex);
  1729. return 0;
  1730. }
  1731. while (1) {
  1732. struct btrfs_ordered_extent *ordered;
  1733. truncate_pagecache_range(inode, lockstart, lockend);
  1734. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1735. 0, &cached_state);
  1736. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1737. /*
  1738. * We need to make sure we have no ordered extents in this range
  1739. * and nobody raced in and read a page in this range, if we did
  1740. * we need to try again.
  1741. */
  1742. if ((!ordered ||
  1743. (ordered->file_offset + ordered->len < lockstart ||
  1744. ordered->file_offset > lockend)) &&
  1745. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1746. lockend, EXTENT_UPTODATE, 0,
  1747. cached_state)) {
  1748. if (ordered)
  1749. btrfs_put_ordered_extent(ordered);
  1750. break;
  1751. }
  1752. if (ordered)
  1753. btrfs_put_ordered_extent(ordered);
  1754. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1755. lockend, &cached_state, GFP_NOFS);
  1756. btrfs_wait_ordered_range(inode, lockstart,
  1757. lockend - lockstart + 1);
  1758. }
  1759. path = btrfs_alloc_path();
  1760. if (!path) {
  1761. ret = -ENOMEM;
  1762. goto out;
  1763. }
  1764. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1765. if (!rsv) {
  1766. ret = -ENOMEM;
  1767. goto out_free;
  1768. }
  1769. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1770. rsv->failfast = 1;
  1771. /*
  1772. * 1 - update the inode
  1773. * 1 - removing the extents in the range
  1774. * 1 - adding the hole extent
  1775. */
  1776. trans = btrfs_start_transaction(root, 3);
  1777. if (IS_ERR(trans)) {
  1778. err = PTR_ERR(trans);
  1779. goto out_free;
  1780. }
  1781. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1782. min_size);
  1783. BUG_ON(ret);
  1784. trans->block_rsv = rsv;
  1785. while (cur_offset < lockend) {
  1786. ret = __btrfs_drop_extents(trans, root, inode, path,
  1787. cur_offset, lockend + 1,
  1788. &drop_end, 1);
  1789. if (ret != -ENOSPC)
  1790. break;
  1791. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1792. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1793. if (ret) {
  1794. err = ret;
  1795. break;
  1796. }
  1797. cur_offset = drop_end;
  1798. ret = btrfs_update_inode(trans, root, inode);
  1799. if (ret) {
  1800. err = ret;
  1801. break;
  1802. }
  1803. btrfs_end_transaction(trans, root);
  1804. btrfs_btree_balance_dirty(root);
  1805. trans = btrfs_start_transaction(root, 3);
  1806. if (IS_ERR(trans)) {
  1807. ret = PTR_ERR(trans);
  1808. trans = NULL;
  1809. break;
  1810. }
  1811. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1812. rsv, min_size);
  1813. BUG_ON(ret); /* shouldn't happen */
  1814. trans->block_rsv = rsv;
  1815. }
  1816. if (ret) {
  1817. err = ret;
  1818. goto out_trans;
  1819. }
  1820. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1821. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1822. if (ret) {
  1823. err = ret;
  1824. goto out_trans;
  1825. }
  1826. out_trans:
  1827. if (!trans)
  1828. goto out_free;
  1829. inode_inc_iversion(inode);
  1830. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1831. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1832. ret = btrfs_update_inode(trans, root, inode);
  1833. btrfs_end_transaction(trans, root);
  1834. btrfs_btree_balance_dirty(root);
  1835. out_free:
  1836. btrfs_free_path(path);
  1837. btrfs_free_block_rsv(root, rsv);
  1838. out:
  1839. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1840. &cached_state, GFP_NOFS);
  1841. mutex_unlock(&inode->i_mutex);
  1842. if (ret && !err)
  1843. err = ret;
  1844. return err;
  1845. }
  1846. static long btrfs_fallocate(struct file *file, int mode,
  1847. loff_t offset, loff_t len)
  1848. {
  1849. struct inode *inode = file->f_path.dentry->d_inode;
  1850. struct extent_state *cached_state = NULL;
  1851. u64 cur_offset;
  1852. u64 last_byte;
  1853. u64 alloc_start;
  1854. u64 alloc_end;
  1855. u64 alloc_hint = 0;
  1856. u64 locked_end;
  1857. struct extent_map *em;
  1858. int blocksize = BTRFS_I(inode)->root->sectorsize;
  1859. int ret;
  1860. alloc_start = round_down(offset, blocksize);
  1861. alloc_end = round_up(offset + len, blocksize);
  1862. /* Make sure we aren't being give some crap mode */
  1863. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  1864. return -EOPNOTSUPP;
  1865. if (mode & FALLOC_FL_PUNCH_HOLE)
  1866. return btrfs_punch_hole(inode, offset, len);
  1867. /*
  1868. * Make sure we have enough space before we do the
  1869. * allocation.
  1870. */
  1871. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
  1872. if (ret)
  1873. return ret;
  1874. /*
  1875. * wait for ordered IO before we have any locks. We'll loop again
  1876. * below with the locks held.
  1877. */
  1878. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  1879. mutex_lock(&inode->i_mutex);
  1880. ret = inode_newsize_ok(inode, alloc_end);
  1881. if (ret)
  1882. goto out;
  1883. if (alloc_start > inode->i_size) {
  1884. ret = btrfs_cont_expand(inode, i_size_read(inode),
  1885. alloc_start);
  1886. if (ret)
  1887. goto out;
  1888. }
  1889. locked_end = alloc_end - 1;
  1890. while (1) {
  1891. struct btrfs_ordered_extent *ordered;
  1892. /* the extent lock is ordered inside the running
  1893. * transaction
  1894. */
  1895. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  1896. locked_end, 0, &cached_state);
  1897. ordered = btrfs_lookup_first_ordered_extent(inode,
  1898. alloc_end - 1);
  1899. if (ordered &&
  1900. ordered->file_offset + ordered->len > alloc_start &&
  1901. ordered->file_offset < alloc_end) {
  1902. btrfs_put_ordered_extent(ordered);
  1903. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1904. alloc_start, locked_end,
  1905. &cached_state, GFP_NOFS);
  1906. /*
  1907. * we can't wait on the range with the transaction
  1908. * running or with the extent lock held
  1909. */
  1910. btrfs_wait_ordered_range(inode, alloc_start,
  1911. alloc_end - alloc_start);
  1912. } else {
  1913. if (ordered)
  1914. btrfs_put_ordered_extent(ordered);
  1915. break;
  1916. }
  1917. }
  1918. cur_offset = alloc_start;
  1919. while (1) {
  1920. u64 actual_end;
  1921. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  1922. alloc_end - cur_offset, 0);
  1923. if (IS_ERR_OR_NULL(em)) {
  1924. if (!em)
  1925. ret = -ENOMEM;
  1926. else
  1927. ret = PTR_ERR(em);
  1928. break;
  1929. }
  1930. last_byte = min(extent_map_end(em), alloc_end);
  1931. actual_end = min_t(u64, extent_map_end(em), offset + len);
  1932. last_byte = ALIGN(last_byte, blocksize);
  1933. if (em->block_start == EXTENT_MAP_HOLE ||
  1934. (cur_offset >= inode->i_size &&
  1935. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  1936. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  1937. last_byte - cur_offset,
  1938. 1 << inode->i_blkbits,
  1939. offset + len,
  1940. &alloc_hint);
  1941. if (ret < 0) {
  1942. free_extent_map(em);
  1943. break;
  1944. }
  1945. } else if (actual_end > inode->i_size &&
  1946. !(mode & FALLOC_FL_KEEP_SIZE)) {
  1947. /*
  1948. * We didn't need to allocate any more space, but we
  1949. * still extended the size of the file so we need to
  1950. * update i_size.
  1951. */
  1952. inode->i_ctime = CURRENT_TIME;
  1953. i_size_write(inode, actual_end);
  1954. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  1955. }
  1956. free_extent_map(em);
  1957. cur_offset = last_byte;
  1958. if (cur_offset >= alloc_end) {
  1959. ret = 0;
  1960. break;
  1961. }
  1962. }
  1963. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  1964. &cached_state, GFP_NOFS);
  1965. out:
  1966. mutex_unlock(&inode->i_mutex);
  1967. /* Let go of our reservation. */
  1968. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
  1969. return ret;
  1970. }
  1971. static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
  1972. {
  1973. struct btrfs_root *root = BTRFS_I(inode)->root;
  1974. struct extent_map *em;
  1975. struct extent_state *cached_state = NULL;
  1976. u64 lockstart = *offset;
  1977. u64 lockend = i_size_read(inode);
  1978. u64 start = *offset;
  1979. u64 orig_start = *offset;
  1980. u64 len = i_size_read(inode);
  1981. u64 last_end = 0;
  1982. int ret = 0;
  1983. lockend = max_t(u64, root->sectorsize, lockend);
  1984. if (lockend <= lockstart)
  1985. lockend = lockstart + root->sectorsize;
  1986. lockend--;
  1987. len = lockend - lockstart + 1;
  1988. len = max_t(u64, len, root->sectorsize);
  1989. if (inode->i_size == 0)
  1990. return -ENXIO;
  1991. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  1992. &cached_state);
  1993. /*
  1994. * Delalloc is such a pain. If we have a hole and we have pending
  1995. * delalloc for a portion of the hole we will get back a hole that
  1996. * exists for the entire range since it hasn't been actually written
  1997. * yet. So to take care of this case we need to look for an extent just
  1998. * before the position we want in case there is outstanding delalloc
  1999. * going on here.
  2000. */
  2001. if (origin == SEEK_HOLE && start != 0) {
  2002. if (start <= root->sectorsize)
  2003. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  2004. root->sectorsize, 0);
  2005. else
  2006. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  2007. start - root->sectorsize,
  2008. root->sectorsize, 0);
  2009. if (IS_ERR(em)) {
  2010. ret = PTR_ERR(em);
  2011. goto out;
  2012. }
  2013. last_end = em->start + em->len;
  2014. if (em->block_start == EXTENT_MAP_DELALLOC)
  2015. last_end = min_t(u64, last_end, inode->i_size);
  2016. free_extent_map(em);
  2017. }
  2018. while (1) {
  2019. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  2020. if (IS_ERR(em)) {
  2021. ret = PTR_ERR(em);
  2022. break;
  2023. }
  2024. if (em->block_start == EXTENT_MAP_HOLE) {
  2025. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2026. if (last_end <= orig_start) {
  2027. free_extent_map(em);
  2028. ret = -ENXIO;
  2029. break;
  2030. }
  2031. }
  2032. if (origin == SEEK_HOLE) {
  2033. *offset = start;
  2034. free_extent_map(em);
  2035. break;
  2036. }
  2037. } else {
  2038. if (origin == SEEK_DATA) {
  2039. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2040. if (start >= inode->i_size) {
  2041. free_extent_map(em);
  2042. ret = -ENXIO;
  2043. break;
  2044. }
  2045. }
  2046. *offset = start;
  2047. free_extent_map(em);
  2048. break;
  2049. }
  2050. }
  2051. start = em->start + em->len;
  2052. last_end = em->start + em->len;
  2053. if (em->block_start == EXTENT_MAP_DELALLOC)
  2054. last_end = min_t(u64, last_end, inode->i_size);
  2055. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2056. free_extent_map(em);
  2057. ret = -ENXIO;
  2058. break;
  2059. }
  2060. free_extent_map(em);
  2061. cond_resched();
  2062. }
  2063. if (!ret)
  2064. *offset = min(*offset, inode->i_size);
  2065. out:
  2066. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2067. &cached_state, GFP_NOFS);
  2068. return ret;
  2069. }
  2070. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
  2071. {
  2072. struct inode *inode = file->f_mapping->host;
  2073. int ret;
  2074. mutex_lock(&inode->i_mutex);
  2075. switch (origin) {
  2076. case SEEK_END:
  2077. case SEEK_CUR:
  2078. offset = generic_file_llseek(file, offset, origin);
  2079. goto out;
  2080. case SEEK_DATA:
  2081. case SEEK_HOLE:
  2082. if (offset >= i_size_read(inode)) {
  2083. mutex_unlock(&inode->i_mutex);
  2084. return -ENXIO;
  2085. }
  2086. ret = find_desired_extent(inode, &offset, origin);
  2087. if (ret) {
  2088. mutex_unlock(&inode->i_mutex);
  2089. return ret;
  2090. }
  2091. }
  2092. if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
  2093. offset = -EINVAL;
  2094. goto out;
  2095. }
  2096. if (offset > inode->i_sb->s_maxbytes) {
  2097. offset = -EINVAL;
  2098. goto out;
  2099. }
  2100. /* Special lock needed here? */
  2101. if (offset != file->f_pos) {
  2102. file->f_pos = offset;
  2103. file->f_version = 0;
  2104. }
  2105. out:
  2106. mutex_unlock(&inode->i_mutex);
  2107. return offset;
  2108. }
  2109. const struct file_operations btrfs_file_operations = {
  2110. .llseek = btrfs_file_llseek,
  2111. .read = do_sync_read,
  2112. .write = do_sync_write,
  2113. .aio_read = generic_file_aio_read,
  2114. .splice_read = generic_file_splice_read,
  2115. .aio_write = btrfs_file_aio_write,
  2116. .mmap = btrfs_file_mmap,
  2117. .open = generic_file_open,
  2118. .release = btrfs_release_file,
  2119. .fsync = btrfs_sync_file,
  2120. .fallocate = btrfs_fallocate,
  2121. .unlocked_ioctl = btrfs_ioctl,
  2122. #ifdef CONFIG_COMPAT
  2123. .compat_ioctl = btrfs_ioctl,
  2124. #endif
  2125. };
  2126. void btrfs_auto_defrag_exit(void)
  2127. {
  2128. if (btrfs_inode_defrag_cachep)
  2129. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2130. }
  2131. int btrfs_auto_defrag_init(void)
  2132. {
  2133. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2134. sizeof(struct inode_defrag), 0,
  2135. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2136. NULL);
  2137. if (!btrfs_inode_defrag_cachep)
  2138. return -ENOMEM;
  2139. return 0;
  2140. }