spi_bfin5xx.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/io.h>
  15. #include <linux/ioport.h>
  16. #include <linux/irq.h>
  17. #include <linux/errno.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/spi/spi.h>
  22. #include <linux/workqueue.h>
  23. #include <asm/dma.h>
  24. #include <asm/portmux.h>
  25. #include <asm/bfin5xx_spi.h>
  26. #include <asm/cacheflush.h>
  27. #define DRV_NAME "bfin-spi"
  28. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  29. #define DRV_DESC "Blackfin BF5xx on-chip SPI Controller Driver"
  30. #define DRV_VERSION "1.0"
  31. MODULE_AUTHOR(DRV_AUTHOR);
  32. MODULE_DESCRIPTION(DRV_DESC);
  33. MODULE_LICENSE("GPL");
  34. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07) == 0)
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. #define QUEUE_RUNNING 0
  40. #define QUEUE_STOPPED 1
  41. struct driver_data {
  42. /* Driver model hookup */
  43. struct platform_device *pdev;
  44. /* SPI framework hookup */
  45. struct spi_master *master;
  46. /* Regs base of SPI controller */
  47. void __iomem *regs_base;
  48. /* Pin request list */
  49. u16 *pin_req;
  50. /* BFIN hookup */
  51. struct bfin5xx_spi_master *master_info;
  52. /* Driver message queue */
  53. struct workqueue_struct *workqueue;
  54. struct work_struct pump_messages;
  55. spinlock_t lock;
  56. struct list_head queue;
  57. int busy;
  58. int run;
  59. /* Message Transfer pump */
  60. struct tasklet_struct pump_transfers;
  61. /* Current message transfer state info */
  62. struct spi_message *cur_msg;
  63. struct spi_transfer *cur_transfer;
  64. struct chip_data *cur_chip;
  65. size_t len_in_bytes;
  66. size_t len;
  67. void *tx;
  68. void *tx_end;
  69. void *rx;
  70. void *rx_end;
  71. /* DMA stuffs */
  72. int dma_channel;
  73. int dma_mapped;
  74. int dma_requested;
  75. dma_addr_t rx_dma;
  76. dma_addr_t tx_dma;
  77. size_t rx_map_len;
  78. size_t tx_map_len;
  79. u8 n_bytes;
  80. int cs_change;
  81. void (*write) (struct driver_data *);
  82. void (*read) (struct driver_data *);
  83. void (*duplex) (struct driver_data *);
  84. };
  85. struct chip_data {
  86. u16 ctl_reg;
  87. u16 baud;
  88. u16 flag;
  89. u8 chip_select_num;
  90. u8 n_bytes;
  91. u8 width; /* 0 or 1 */
  92. u8 enable_dma;
  93. u8 bits_per_word; /* 8 or 16 */
  94. u8 cs_change_per_word;
  95. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  96. void (*write) (struct driver_data *);
  97. void (*read) (struct driver_data *);
  98. void (*duplex) (struct driver_data *);
  99. };
  100. #define DEFINE_SPI_REG(reg, off) \
  101. static inline u16 read_##reg(struct driver_data *drv_data) \
  102. { return bfin_read16(drv_data->regs_base + off); } \
  103. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  104. { bfin_write16(drv_data->regs_base + off, v); }
  105. DEFINE_SPI_REG(CTRL, 0x00)
  106. DEFINE_SPI_REG(FLAG, 0x04)
  107. DEFINE_SPI_REG(STAT, 0x08)
  108. DEFINE_SPI_REG(TDBR, 0x0C)
  109. DEFINE_SPI_REG(RDBR, 0x10)
  110. DEFINE_SPI_REG(BAUD, 0x14)
  111. DEFINE_SPI_REG(SHAW, 0x18)
  112. static void bfin_spi_enable(struct driver_data *drv_data)
  113. {
  114. u16 cr;
  115. cr = read_CTRL(drv_data);
  116. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  117. }
  118. static void bfin_spi_disable(struct driver_data *drv_data)
  119. {
  120. u16 cr;
  121. cr = read_CTRL(drv_data);
  122. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  123. }
  124. /* Caculate the SPI_BAUD register value based on input HZ */
  125. static u16 hz_to_spi_baud(u32 speed_hz)
  126. {
  127. u_long sclk = get_sclk();
  128. u16 spi_baud = (sclk / (2 * speed_hz));
  129. if ((sclk % (2 * speed_hz)) > 0)
  130. spi_baud++;
  131. if (spi_baud < MIN_SPI_BAUD_VAL)
  132. spi_baud = MIN_SPI_BAUD_VAL;
  133. return spi_baud;
  134. }
  135. static int flush(struct driver_data *drv_data)
  136. {
  137. unsigned long limit = loops_per_jiffy << 1;
  138. /* wait for stop and clear stat */
  139. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && limit--)
  140. cpu_relax();
  141. write_STAT(drv_data, BIT_STAT_CLR);
  142. return limit;
  143. }
  144. /* Chip select operation functions for cs_change flag */
  145. static void cs_active(struct driver_data *drv_data, struct chip_data *chip)
  146. {
  147. u16 flag = read_FLAG(drv_data);
  148. flag |= chip->flag;
  149. flag &= ~(chip->flag << 8);
  150. write_FLAG(drv_data, flag);
  151. }
  152. static void cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  153. {
  154. u16 flag = read_FLAG(drv_data);
  155. flag |= (chip->flag << 8);
  156. write_FLAG(drv_data, flag);
  157. /* Move delay here for consistency */
  158. if (chip->cs_chg_udelay)
  159. udelay(chip->cs_chg_udelay);
  160. }
  161. /* stop controller and re-config current chip*/
  162. static void restore_state(struct driver_data *drv_data)
  163. {
  164. struct chip_data *chip = drv_data->cur_chip;
  165. /* Clear status and disable clock */
  166. write_STAT(drv_data, BIT_STAT_CLR);
  167. bfin_spi_disable(drv_data);
  168. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  169. /* Load the registers */
  170. write_CTRL(drv_data, chip->ctl_reg);
  171. write_BAUD(drv_data, chip->baud);
  172. bfin_spi_enable(drv_data);
  173. cs_active(drv_data, chip);
  174. }
  175. /* used to kick off transfer in rx mode */
  176. static unsigned short dummy_read(struct driver_data *drv_data)
  177. {
  178. unsigned short tmp;
  179. tmp = read_RDBR(drv_data);
  180. return tmp;
  181. }
  182. static void null_writer(struct driver_data *drv_data)
  183. {
  184. u8 n_bytes = drv_data->n_bytes;
  185. while (drv_data->tx < drv_data->tx_end) {
  186. write_TDBR(drv_data, 0);
  187. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  188. cpu_relax();
  189. drv_data->tx += n_bytes;
  190. }
  191. }
  192. static void null_reader(struct driver_data *drv_data)
  193. {
  194. u8 n_bytes = drv_data->n_bytes;
  195. dummy_read(drv_data);
  196. while (drv_data->rx < drv_data->rx_end) {
  197. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  198. cpu_relax();
  199. dummy_read(drv_data);
  200. drv_data->rx += n_bytes;
  201. }
  202. }
  203. static void u8_writer(struct driver_data *drv_data)
  204. {
  205. dev_dbg(&drv_data->pdev->dev,
  206. "cr8-s is 0x%x\n", read_STAT(drv_data));
  207. while (drv_data->tx < drv_data->tx_end) {
  208. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  209. while (read_STAT(drv_data) & BIT_STAT_TXS)
  210. cpu_relax();
  211. ++drv_data->tx;
  212. }
  213. /* poll for SPI completion before return */
  214. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  215. cpu_relax();
  216. }
  217. static void u8_cs_chg_writer(struct driver_data *drv_data)
  218. {
  219. struct chip_data *chip = drv_data->cur_chip;
  220. while (drv_data->tx < drv_data->tx_end) {
  221. cs_active(drv_data, chip);
  222. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  223. while (read_STAT(drv_data) & BIT_STAT_TXS)
  224. cpu_relax();
  225. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  226. cpu_relax();
  227. cs_deactive(drv_data, chip);
  228. ++drv_data->tx;
  229. }
  230. }
  231. static void u8_reader(struct driver_data *drv_data)
  232. {
  233. dev_dbg(&drv_data->pdev->dev,
  234. "cr-8 is 0x%x\n", read_STAT(drv_data));
  235. /* poll for SPI completion before start */
  236. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  237. cpu_relax();
  238. /* clear TDBR buffer before read(else it will be shifted out) */
  239. write_TDBR(drv_data, 0xFFFF);
  240. dummy_read(drv_data);
  241. while (drv_data->rx < drv_data->rx_end - 1) {
  242. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  243. cpu_relax();
  244. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  245. ++drv_data->rx;
  246. }
  247. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  248. cpu_relax();
  249. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  250. ++drv_data->rx;
  251. }
  252. static void u8_cs_chg_reader(struct driver_data *drv_data)
  253. {
  254. struct chip_data *chip = drv_data->cur_chip;
  255. while (drv_data->rx < drv_data->rx_end) {
  256. cs_active(drv_data, chip);
  257. read_RDBR(drv_data); /* kick off */
  258. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  259. cpu_relax();
  260. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  261. cpu_relax();
  262. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  263. cs_deactive(drv_data, chip);
  264. ++drv_data->rx;
  265. }
  266. }
  267. static void u8_duplex(struct driver_data *drv_data)
  268. {
  269. /* in duplex mode, clk is triggered by writing of TDBR */
  270. while (drv_data->rx < drv_data->rx_end) {
  271. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  272. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  273. cpu_relax();
  274. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  275. cpu_relax();
  276. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  277. ++drv_data->rx;
  278. ++drv_data->tx;
  279. }
  280. }
  281. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  282. {
  283. struct chip_data *chip = drv_data->cur_chip;
  284. while (drv_data->rx < drv_data->rx_end) {
  285. cs_active(drv_data, chip);
  286. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  287. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  288. cpu_relax();
  289. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  290. cpu_relax();
  291. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  292. cs_deactive(drv_data, chip);
  293. ++drv_data->rx;
  294. ++drv_data->tx;
  295. }
  296. }
  297. static void u16_writer(struct driver_data *drv_data)
  298. {
  299. dev_dbg(&drv_data->pdev->dev,
  300. "cr16 is 0x%x\n", read_STAT(drv_data));
  301. while (drv_data->tx < drv_data->tx_end) {
  302. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  303. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  304. cpu_relax();
  305. drv_data->tx += 2;
  306. }
  307. /* poll for SPI completion before return */
  308. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  309. cpu_relax();
  310. }
  311. static void u16_cs_chg_writer(struct driver_data *drv_data)
  312. {
  313. struct chip_data *chip = drv_data->cur_chip;
  314. while (drv_data->tx < drv_data->tx_end) {
  315. cs_active(drv_data, chip);
  316. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  317. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  318. cpu_relax();
  319. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  320. cpu_relax();
  321. cs_deactive(drv_data, chip);
  322. drv_data->tx += 2;
  323. }
  324. }
  325. static void u16_reader(struct driver_data *drv_data)
  326. {
  327. dev_dbg(&drv_data->pdev->dev,
  328. "cr-16 is 0x%x\n", read_STAT(drv_data));
  329. /* poll for SPI completion before start */
  330. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  331. cpu_relax();
  332. /* clear TDBR buffer before read(else it will be shifted out) */
  333. write_TDBR(drv_data, 0xFFFF);
  334. dummy_read(drv_data);
  335. while (drv_data->rx < (drv_data->rx_end - 2)) {
  336. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  337. cpu_relax();
  338. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  339. drv_data->rx += 2;
  340. }
  341. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  342. cpu_relax();
  343. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  344. drv_data->rx += 2;
  345. }
  346. static void u16_cs_chg_reader(struct driver_data *drv_data)
  347. {
  348. struct chip_data *chip = drv_data->cur_chip;
  349. /* poll for SPI completion before start */
  350. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  351. cpu_relax();
  352. /* clear TDBR buffer before read(else it will be shifted out) */
  353. write_TDBR(drv_data, 0xFFFF);
  354. cs_active(drv_data, chip);
  355. dummy_read(drv_data);
  356. while (drv_data->rx < drv_data->rx_end - 2) {
  357. cs_deactive(drv_data, chip);
  358. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  359. cpu_relax();
  360. cs_active(drv_data, chip);
  361. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  362. drv_data->rx += 2;
  363. }
  364. cs_deactive(drv_data, chip);
  365. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  366. cpu_relax();
  367. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  368. drv_data->rx += 2;
  369. }
  370. static void u16_duplex(struct driver_data *drv_data)
  371. {
  372. /* in duplex mode, clk is triggered by writing of TDBR */
  373. while (drv_data->tx < drv_data->tx_end) {
  374. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  375. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  376. cpu_relax();
  377. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  378. cpu_relax();
  379. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  380. drv_data->rx += 2;
  381. drv_data->tx += 2;
  382. }
  383. }
  384. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  385. {
  386. struct chip_data *chip = drv_data->cur_chip;
  387. while (drv_data->tx < drv_data->tx_end) {
  388. cs_active(drv_data, chip);
  389. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  390. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  391. cpu_relax();
  392. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  393. cpu_relax();
  394. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  395. cs_deactive(drv_data, chip);
  396. drv_data->rx += 2;
  397. drv_data->tx += 2;
  398. }
  399. }
  400. /* test if ther is more transfer to be done */
  401. static void *next_transfer(struct driver_data *drv_data)
  402. {
  403. struct spi_message *msg = drv_data->cur_msg;
  404. struct spi_transfer *trans = drv_data->cur_transfer;
  405. /* Move to next transfer */
  406. if (trans->transfer_list.next != &msg->transfers) {
  407. drv_data->cur_transfer =
  408. list_entry(trans->transfer_list.next,
  409. struct spi_transfer, transfer_list);
  410. return RUNNING_STATE;
  411. } else
  412. return DONE_STATE;
  413. }
  414. /*
  415. * caller already set message->status;
  416. * dma and pio irqs are blocked give finished message back
  417. */
  418. static void giveback(struct driver_data *drv_data)
  419. {
  420. struct chip_data *chip = drv_data->cur_chip;
  421. struct spi_transfer *last_transfer;
  422. unsigned long flags;
  423. struct spi_message *msg;
  424. spin_lock_irqsave(&drv_data->lock, flags);
  425. msg = drv_data->cur_msg;
  426. drv_data->cur_msg = NULL;
  427. drv_data->cur_transfer = NULL;
  428. drv_data->cur_chip = NULL;
  429. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  430. spin_unlock_irqrestore(&drv_data->lock, flags);
  431. last_transfer = list_entry(msg->transfers.prev,
  432. struct spi_transfer, transfer_list);
  433. msg->state = NULL;
  434. /* disable chip select signal. And not stop spi in autobuffer mode */
  435. if (drv_data->tx_dma != 0xFFFF) {
  436. cs_deactive(drv_data, chip);
  437. bfin_spi_disable(drv_data);
  438. }
  439. if (!drv_data->cs_change)
  440. cs_deactive(drv_data, chip);
  441. if (msg->complete)
  442. msg->complete(msg->context);
  443. }
  444. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  445. {
  446. struct driver_data *drv_data = dev_id;
  447. struct chip_data *chip = drv_data->cur_chip;
  448. struct spi_message *msg = drv_data->cur_msg;
  449. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  450. u16 spistat = read_STAT(drv_data);
  451. dev_dbg(&drv_data->pdev->dev,
  452. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  453. dmastat, spistat);
  454. clear_dma_irqstat(drv_data->dma_channel);
  455. /* Wait for DMA to complete */
  456. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  457. cpu_relax();
  458. /*
  459. * wait for the last transaction shifted out. HRM states:
  460. * at this point there may still be data in the SPI DMA FIFO waiting
  461. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  462. * register until it goes low for 2 successive reads
  463. */
  464. if (drv_data->tx != NULL) {
  465. while ((read_STAT(drv_data) & TXS) ||
  466. (read_STAT(drv_data) & TXS))
  467. cpu_relax();
  468. }
  469. while (!(read_STAT(drv_data) & SPIF))
  470. cpu_relax();
  471. if ((dmastat & DMA_ERR) && (spistat & RBSY)) {
  472. msg->state = ERROR_STATE;
  473. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  474. } else {
  475. msg->actual_length += drv_data->len_in_bytes;
  476. if (drv_data->cs_change)
  477. cs_deactive(drv_data, chip);
  478. /* Move to next transfer */
  479. msg->state = next_transfer(drv_data);
  480. }
  481. /* Schedule transfer tasklet */
  482. tasklet_schedule(&drv_data->pump_transfers);
  483. /* free the irq handler before next transfer */
  484. dev_dbg(&drv_data->pdev->dev,
  485. "disable dma channel irq%d\n",
  486. drv_data->dma_channel);
  487. dma_disable_irq(drv_data->dma_channel);
  488. return IRQ_HANDLED;
  489. }
  490. static void pump_transfers(unsigned long data)
  491. {
  492. struct driver_data *drv_data = (struct driver_data *)data;
  493. struct spi_message *message = NULL;
  494. struct spi_transfer *transfer = NULL;
  495. struct spi_transfer *previous = NULL;
  496. struct chip_data *chip = NULL;
  497. u8 width;
  498. u16 cr, dma_width, dma_config;
  499. u32 tranf_success = 1;
  500. u8 full_duplex = 0;
  501. /* Get current state information */
  502. message = drv_data->cur_msg;
  503. transfer = drv_data->cur_transfer;
  504. chip = drv_data->cur_chip;
  505. /*
  506. * if msg is error or done, report it back using complete() callback
  507. */
  508. /* Handle for abort */
  509. if (message->state == ERROR_STATE) {
  510. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  511. message->status = -EIO;
  512. giveback(drv_data);
  513. return;
  514. }
  515. /* Handle end of message */
  516. if (message->state == DONE_STATE) {
  517. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  518. message->status = 0;
  519. giveback(drv_data);
  520. return;
  521. }
  522. /* Delay if requested at end of transfer */
  523. if (message->state == RUNNING_STATE) {
  524. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  525. previous = list_entry(transfer->transfer_list.prev,
  526. struct spi_transfer, transfer_list);
  527. if (previous->delay_usecs)
  528. udelay(previous->delay_usecs);
  529. }
  530. /* Setup the transfer state based on the type of transfer */
  531. if (flush(drv_data) == 0) {
  532. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  533. message->status = -EIO;
  534. giveback(drv_data);
  535. return;
  536. }
  537. if (transfer->tx_buf != NULL) {
  538. drv_data->tx = (void *)transfer->tx_buf;
  539. drv_data->tx_end = drv_data->tx + transfer->len;
  540. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  541. transfer->tx_buf, drv_data->tx_end);
  542. } else {
  543. drv_data->tx = NULL;
  544. }
  545. if (transfer->rx_buf != NULL) {
  546. full_duplex = transfer->tx_buf != NULL;
  547. drv_data->rx = transfer->rx_buf;
  548. drv_data->rx_end = drv_data->rx + transfer->len;
  549. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  550. transfer->rx_buf, drv_data->rx_end);
  551. } else {
  552. drv_data->rx = NULL;
  553. }
  554. drv_data->rx_dma = transfer->rx_dma;
  555. drv_data->tx_dma = transfer->tx_dma;
  556. drv_data->len_in_bytes = transfer->len;
  557. drv_data->cs_change = transfer->cs_change;
  558. /* Bits per word setup */
  559. switch (transfer->bits_per_word) {
  560. case 8:
  561. drv_data->n_bytes = 1;
  562. width = CFG_SPI_WORDSIZE8;
  563. drv_data->read = chip->cs_change_per_word ?
  564. u8_cs_chg_reader : u8_reader;
  565. drv_data->write = chip->cs_change_per_word ?
  566. u8_cs_chg_writer : u8_writer;
  567. drv_data->duplex = chip->cs_change_per_word ?
  568. u8_cs_chg_duplex : u8_duplex;
  569. break;
  570. case 16:
  571. drv_data->n_bytes = 2;
  572. width = CFG_SPI_WORDSIZE16;
  573. drv_data->read = chip->cs_change_per_word ?
  574. u16_cs_chg_reader : u16_reader;
  575. drv_data->write = chip->cs_change_per_word ?
  576. u16_cs_chg_writer : u16_writer;
  577. drv_data->duplex = chip->cs_change_per_word ?
  578. u16_cs_chg_duplex : u16_duplex;
  579. break;
  580. default:
  581. /* No change, the same as default setting */
  582. drv_data->n_bytes = chip->n_bytes;
  583. width = chip->width;
  584. drv_data->write = drv_data->tx ? chip->write : null_writer;
  585. drv_data->read = drv_data->rx ? chip->read : null_reader;
  586. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  587. break;
  588. }
  589. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  590. cr |= (width << 8);
  591. write_CTRL(drv_data, cr);
  592. if (width == CFG_SPI_WORDSIZE16) {
  593. drv_data->len = (transfer->len) >> 1;
  594. } else {
  595. drv_data->len = transfer->len;
  596. }
  597. dev_dbg(&drv_data->pdev->dev,
  598. "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  599. drv_data->write, chip->write, null_writer);
  600. /* speed and width has been set on per message */
  601. message->state = RUNNING_STATE;
  602. dma_config = 0;
  603. /* Speed setup (surely valid because already checked) */
  604. if (transfer->speed_hz)
  605. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  606. else
  607. write_BAUD(drv_data, chip->baud);
  608. write_STAT(drv_data, BIT_STAT_CLR);
  609. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  610. cs_active(drv_data, chip);
  611. dev_dbg(&drv_data->pdev->dev,
  612. "now pumping a transfer: width is %d, len is %d\n",
  613. width, transfer->len);
  614. /*
  615. * Try to map dma buffer and do a dma transfer. If successful use,
  616. * different way to r/w according to the enable_dma settings and if
  617. * we are not doing a full duplex transfer (since the hardware does
  618. * not support full duplex DMA transfers).
  619. */
  620. if (!full_duplex && drv_data->cur_chip->enable_dma
  621. && drv_data->len > 6) {
  622. unsigned long dma_start_addr, flags;
  623. disable_dma(drv_data->dma_channel);
  624. clear_dma_irqstat(drv_data->dma_channel);
  625. /* config dma channel */
  626. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  627. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  628. if (width == CFG_SPI_WORDSIZE16) {
  629. set_dma_x_modify(drv_data->dma_channel, 2);
  630. dma_width = WDSIZE_16;
  631. } else {
  632. set_dma_x_modify(drv_data->dma_channel, 1);
  633. dma_width = WDSIZE_8;
  634. }
  635. /* poll for SPI completion before start */
  636. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  637. cpu_relax();
  638. /* dirty hack for autobuffer DMA mode */
  639. if (drv_data->tx_dma == 0xFFFF) {
  640. dev_dbg(&drv_data->pdev->dev,
  641. "doing autobuffer DMA out.\n");
  642. /* no irq in autobuffer mode */
  643. dma_config =
  644. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  645. set_dma_config(drv_data->dma_channel, dma_config);
  646. set_dma_start_addr(drv_data->dma_channel,
  647. (unsigned long)drv_data->tx);
  648. enable_dma(drv_data->dma_channel);
  649. /* start SPI transfer */
  650. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  651. /* just return here, there can only be one transfer
  652. * in this mode
  653. */
  654. message->status = 0;
  655. giveback(drv_data);
  656. return;
  657. }
  658. /* In dma mode, rx or tx must be NULL in one transfer */
  659. dma_config = (RESTART | dma_width | DI_EN);
  660. if (drv_data->rx != NULL) {
  661. /* set transfer mode, and enable SPI */
  662. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  663. drv_data->rx, drv_data->len_in_bytes);
  664. /* invalidate caches, if needed */
  665. if (bfin_addr_dcachable((unsigned long) drv_data->rx))
  666. invalidate_dcache_range((unsigned long) drv_data->rx,
  667. (unsigned long) (drv_data->rx +
  668. drv_data->len_in_bytes));
  669. /* clear tx reg soformer data is not shifted out */
  670. write_TDBR(drv_data, 0xFFFF);
  671. dma_config |= WNR;
  672. dma_start_addr = (unsigned long)drv_data->rx;
  673. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  674. } else if (drv_data->tx != NULL) {
  675. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  676. /* flush caches, if needed */
  677. if (bfin_addr_dcachable((unsigned long) drv_data->tx))
  678. flush_dcache_range((unsigned long) drv_data->tx,
  679. (unsigned long) (drv_data->tx +
  680. drv_data->len_in_bytes));
  681. dma_start_addr = (unsigned long)drv_data->tx;
  682. cr |= BIT_CTL_TIMOD_DMA_TX;
  683. } else
  684. BUG();
  685. /* oh man, here there be monsters ... and i dont mean the
  686. * fluffy cute ones from pixar, i mean the kind that'll eat
  687. * your data, kick your dog, and love it all. do *not* try
  688. * and change these lines unless you (1) heavily test DMA
  689. * with SPI flashes on a loaded system (e.g. ping floods),
  690. * (2) know just how broken the DMA engine interaction with
  691. * the SPI peripheral is, and (3) have someone else to blame
  692. * when you screw it all up anyways.
  693. */
  694. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  695. set_dma_config(drv_data->dma_channel, dma_config);
  696. local_irq_save(flags);
  697. enable_dma(drv_data->dma_channel);
  698. write_CTRL(drv_data, cr);
  699. dma_enable_irq(drv_data->dma_channel);
  700. local_irq_restore(flags);
  701. } else {
  702. /* IO mode write then read */
  703. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  704. if (full_duplex) {
  705. /* full duplex mode */
  706. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  707. (drv_data->rx_end - drv_data->rx));
  708. dev_dbg(&drv_data->pdev->dev,
  709. "IO duplex: cr is 0x%x\n", cr);
  710. /* set SPI transfer mode */
  711. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  712. drv_data->duplex(drv_data);
  713. if (drv_data->tx != drv_data->tx_end)
  714. tranf_success = 0;
  715. } else if (drv_data->tx != NULL) {
  716. /* write only half duplex */
  717. dev_dbg(&drv_data->pdev->dev,
  718. "IO write: cr is 0x%x\n", cr);
  719. /* set SPI transfer mode */
  720. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  721. drv_data->write(drv_data);
  722. if (drv_data->tx != drv_data->tx_end)
  723. tranf_success = 0;
  724. } else if (drv_data->rx != NULL) {
  725. /* read only half duplex */
  726. dev_dbg(&drv_data->pdev->dev,
  727. "IO read: cr is 0x%x\n", cr);
  728. /* set SPI transfer mode */
  729. write_CTRL(drv_data, (cr | CFG_SPI_READ));
  730. drv_data->read(drv_data);
  731. if (drv_data->rx != drv_data->rx_end)
  732. tranf_success = 0;
  733. }
  734. if (!tranf_success) {
  735. dev_dbg(&drv_data->pdev->dev,
  736. "IO write error!\n");
  737. message->state = ERROR_STATE;
  738. } else {
  739. /* Update total byte transfered */
  740. message->actual_length += drv_data->len_in_bytes;
  741. /* Move to next transfer of this msg */
  742. message->state = next_transfer(drv_data);
  743. }
  744. /* Schedule next transfer tasklet */
  745. tasklet_schedule(&drv_data->pump_transfers);
  746. }
  747. }
  748. /* pop a msg from queue and kick off real transfer */
  749. static void pump_messages(struct work_struct *work)
  750. {
  751. struct driver_data *drv_data;
  752. unsigned long flags;
  753. drv_data = container_of(work, struct driver_data, pump_messages);
  754. /* Lock queue and check for queue work */
  755. spin_lock_irqsave(&drv_data->lock, flags);
  756. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  757. /* pumper kicked off but no work to do */
  758. drv_data->busy = 0;
  759. spin_unlock_irqrestore(&drv_data->lock, flags);
  760. return;
  761. }
  762. /* Make sure we are not already running a message */
  763. if (drv_data->cur_msg) {
  764. spin_unlock_irqrestore(&drv_data->lock, flags);
  765. return;
  766. }
  767. /* Extract head of queue */
  768. drv_data->cur_msg = list_entry(drv_data->queue.next,
  769. struct spi_message, queue);
  770. /* Setup the SSP using the per chip configuration */
  771. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  772. restore_state(drv_data);
  773. list_del_init(&drv_data->cur_msg->queue);
  774. /* Initial message state */
  775. drv_data->cur_msg->state = START_STATE;
  776. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  777. struct spi_transfer, transfer_list);
  778. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  779. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  780. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  781. drv_data->cur_chip->ctl_reg);
  782. dev_dbg(&drv_data->pdev->dev,
  783. "the first transfer len is %d\n",
  784. drv_data->cur_transfer->len);
  785. /* Mark as busy and launch transfers */
  786. tasklet_schedule(&drv_data->pump_transfers);
  787. drv_data->busy = 1;
  788. spin_unlock_irqrestore(&drv_data->lock, flags);
  789. }
  790. /*
  791. * got a msg to transfer, queue it in drv_data->queue.
  792. * And kick off message pumper
  793. */
  794. static int transfer(struct spi_device *spi, struct spi_message *msg)
  795. {
  796. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  797. unsigned long flags;
  798. spin_lock_irqsave(&drv_data->lock, flags);
  799. if (drv_data->run == QUEUE_STOPPED) {
  800. spin_unlock_irqrestore(&drv_data->lock, flags);
  801. return -ESHUTDOWN;
  802. }
  803. msg->actual_length = 0;
  804. msg->status = -EINPROGRESS;
  805. msg->state = START_STATE;
  806. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  807. list_add_tail(&msg->queue, &drv_data->queue);
  808. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  809. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  810. spin_unlock_irqrestore(&drv_data->lock, flags);
  811. return 0;
  812. }
  813. #define MAX_SPI_SSEL 7
  814. static u16 ssel[][MAX_SPI_SSEL] = {
  815. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  816. P_SPI0_SSEL4, P_SPI0_SSEL5,
  817. P_SPI0_SSEL6, P_SPI0_SSEL7},
  818. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  819. P_SPI1_SSEL4, P_SPI1_SSEL5,
  820. P_SPI1_SSEL6, P_SPI1_SSEL7},
  821. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  822. P_SPI2_SSEL4, P_SPI2_SSEL5,
  823. P_SPI2_SSEL6, P_SPI2_SSEL7},
  824. };
  825. /* first setup for new devices */
  826. static int setup(struct spi_device *spi)
  827. {
  828. struct bfin5xx_spi_chip *chip_info = NULL;
  829. struct chip_data *chip;
  830. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  831. u8 spi_flg;
  832. /* Abort device setup if requested features are not supported */
  833. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  834. dev_err(&spi->dev, "requested mode not fully supported\n");
  835. return -EINVAL;
  836. }
  837. /* Zero (the default) here means 8 bits */
  838. if (!spi->bits_per_word)
  839. spi->bits_per_word = 8;
  840. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  841. return -EINVAL;
  842. /* Only alloc (or use chip_info) on first setup */
  843. chip = spi_get_ctldata(spi);
  844. if (chip == NULL) {
  845. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  846. if (!chip)
  847. return -ENOMEM;
  848. chip->enable_dma = 0;
  849. chip_info = spi->controller_data;
  850. }
  851. /* chip_info isn't always needed */
  852. if (chip_info) {
  853. /* Make sure people stop trying to set fields via ctl_reg
  854. * when they should actually be using common SPI framework.
  855. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  856. * Not sure if a user actually needs/uses any of these,
  857. * but let's assume (for now) they do.
  858. */
  859. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  860. dev_err(&spi->dev, "do not set bits in ctl_reg "
  861. "that the SPI framework manages\n");
  862. return -EINVAL;
  863. }
  864. chip->enable_dma = chip_info->enable_dma != 0
  865. && drv_data->master_info->enable_dma;
  866. chip->ctl_reg = chip_info->ctl_reg;
  867. chip->bits_per_word = chip_info->bits_per_word;
  868. chip->cs_change_per_word = chip_info->cs_change_per_word;
  869. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  870. }
  871. /* translate common spi framework into our register */
  872. if (spi->mode & SPI_CPOL)
  873. chip->ctl_reg |= CPOL;
  874. if (spi->mode & SPI_CPHA)
  875. chip->ctl_reg |= CPHA;
  876. if (spi->mode & SPI_LSB_FIRST)
  877. chip->ctl_reg |= LSBF;
  878. /* we dont support running in slave mode (yet?) */
  879. chip->ctl_reg |= MSTR;
  880. /*
  881. * if any one SPI chip is registered and wants DMA, request the
  882. * DMA channel for it
  883. */
  884. if (chip->enable_dma && !drv_data->dma_requested) {
  885. /* register dma irq handler */
  886. if (request_dma(drv_data->dma_channel, "BFIN_SPI_DMA") < 0) {
  887. dev_dbg(&spi->dev,
  888. "Unable to request BlackFin SPI DMA channel\n");
  889. return -ENODEV;
  890. }
  891. if (set_dma_callback(drv_data->dma_channel,
  892. dma_irq_handler, drv_data) < 0) {
  893. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  894. return -EPERM;
  895. }
  896. dma_disable_irq(drv_data->dma_channel);
  897. drv_data->dma_requested = 1;
  898. }
  899. /*
  900. * Notice: for blackfin, the speed_hz is the value of register
  901. * SPI_BAUD, not the real baudrate
  902. */
  903. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  904. spi_flg = ~(1 << (spi->chip_select));
  905. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  906. chip->chip_select_num = spi->chip_select;
  907. switch (chip->bits_per_word) {
  908. case 8:
  909. chip->n_bytes = 1;
  910. chip->width = CFG_SPI_WORDSIZE8;
  911. chip->read = chip->cs_change_per_word ?
  912. u8_cs_chg_reader : u8_reader;
  913. chip->write = chip->cs_change_per_word ?
  914. u8_cs_chg_writer : u8_writer;
  915. chip->duplex = chip->cs_change_per_word ?
  916. u8_cs_chg_duplex : u8_duplex;
  917. break;
  918. case 16:
  919. chip->n_bytes = 2;
  920. chip->width = CFG_SPI_WORDSIZE16;
  921. chip->read = chip->cs_change_per_word ?
  922. u16_cs_chg_reader : u16_reader;
  923. chip->write = chip->cs_change_per_word ?
  924. u16_cs_chg_writer : u16_writer;
  925. chip->duplex = chip->cs_change_per_word ?
  926. u16_cs_chg_duplex : u16_duplex;
  927. break;
  928. default:
  929. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  930. chip->bits_per_word);
  931. kfree(chip);
  932. return -ENODEV;
  933. }
  934. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  935. spi->modalias, chip->width, chip->enable_dma);
  936. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  937. chip->ctl_reg, chip->flag);
  938. spi_set_ctldata(spi, chip);
  939. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  940. if ((chip->chip_select_num > 0)
  941. && (chip->chip_select_num <= spi->master->num_chipselect))
  942. peripheral_request(ssel[spi->master->bus_num]
  943. [chip->chip_select_num-1], spi->modalias);
  944. cs_deactive(drv_data, chip);
  945. return 0;
  946. }
  947. /*
  948. * callback for spi framework.
  949. * clean driver specific data
  950. */
  951. static void cleanup(struct spi_device *spi)
  952. {
  953. struct chip_data *chip = spi_get_ctldata(spi);
  954. if ((chip->chip_select_num > 0)
  955. && (chip->chip_select_num <= spi->master->num_chipselect))
  956. peripheral_free(ssel[spi->master->bus_num]
  957. [chip->chip_select_num-1]);
  958. kfree(chip);
  959. }
  960. static inline int init_queue(struct driver_data *drv_data)
  961. {
  962. INIT_LIST_HEAD(&drv_data->queue);
  963. spin_lock_init(&drv_data->lock);
  964. drv_data->run = QUEUE_STOPPED;
  965. drv_data->busy = 0;
  966. /* init transfer tasklet */
  967. tasklet_init(&drv_data->pump_transfers,
  968. pump_transfers, (unsigned long)drv_data);
  969. /* init messages workqueue */
  970. INIT_WORK(&drv_data->pump_messages, pump_messages);
  971. drv_data->workqueue = create_singlethread_workqueue(
  972. dev_name(drv_data->master->dev.parent));
  973. if (drv_data->workqueue == NULL)
  974. return -EBUSY;
  975. return 0;
  976. }
  977. static inline int start_queue(struct driver_data *drv_data)
  978. {
  979. unsigned long flags;
  980. spin_lock_irqsave(&drv_data->lock, flags);
  981. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  982. spin_unlock_irqrestore(&drv_data->lock, flags);
  983. return -EBUSY;
  984. }
  985. drv_data->run = QUEUE_RUNNING;
  986. drv_data->cur_msg = NULL;
  987. drv_data->cur_transfer = NULL;
  988. drv_data->cur_chip = NULL;
  989. spin_unlock_irqrestore(&drv_data->lock, flags);
  990. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  991. return 0;
  992. }
  993. static inline int stop_queue(struct driver_data *drv_data)
  994. {
  995. unsigned long flags;
  996. unsigned limit = 500;
  997. int status = 0;
  998. spin_lock_irqsave(&drv_data->lock, flags);
  999. /*
  1000. * This is a bit lame, but is optimized for the common execution path.
  1001. * A wait_queue on the drv_data->busy could be used, but then the common
  1002. * execution path (pump_messages) would be required to call wake_up or
  1003. * friends on every SPI message. Do this instead
  1004. */
  1005. drv_data->run = QUEUE_STOPPED;
  1006. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1007. spin_unlock_irqrestore(&drv_data->lock, flags);
  1008. msleep(10);
  1009. spin_lock_irqsave(&drv_data->lock, flags);
  1010. }
  1011. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1012. status = -EBUSY;
  1013. spin_unlock_irqrestore(&drv_data->lock, flags);
  1014. return status;
  1015. }
  1016. static inline int destroy_queue(struct driver_data *drv_data)
  1017. {
  1018. int status;
  1019. status = stop_queue(drv_data);
  1020. if (status != 0)
  1021. return status;
  1022. destroy_workqueue(drv_data->workqueue);
  1023. return 0;
  1024. }
  1025. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  1026. {
  1027. struct device *dev = &pdev->dev;
  1028. struct bfin5xx_spi_master *platform_info;
  1029. struct spi_master *master;
  1030. struct driver_data *drv_data = 0;
  1031. struct resource *res;
  1032. int status = 0;
  1033. platform_info = dev->platform_data;
  1034. /* Allocate master with space for drv_data */
  1035. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1036. if (!master) {
  1037. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1038. return -ENOMEM;
  1039. }
  1040. drv_data = spi_master_get_devdata(master);
  1041. drv_data->master = master;
  1042. drv_data->master_info = platform_info;
  1043. drv_data->pdev = pdev;
  1044. drv_data->pin_req = platform_info->pin_req;
  1045. master->bus_num = pdev->id;
  1046. master->num_chipselect = platform_info->num_chipselect;
  1047. master->cleanup = cleanup;
  1048. master->setup = setup;
  1049. master->transfer = transfer;
  1050. /* Find and map our resources */
  1051. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1052. if (res == NULL) {
  1053. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1054. status = -ENOENT;
  1055. goto out_error_get_res;
  1056. }
  1057. drv_data->regs_base = ioremap(res->start, (res->end - res->start + 1));
  1058. if (drv_data->regs_base == NULL) {
  1059. dev_err(dev, "Cannot map IO\n");
  1060. status = -ENXIO;
  1061. goto out_error_ioremap;
  1062. }
  1063. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1064. if (drv_data->dma_channel < 0) {
  1065. dev_err(dev, "No DMA channel specified\n");
  1066. status = -ENOENT;
  1067. goto out_error_no_dma_ch;
  1068. }
  1069. /* Initial and start queue */
  1070. status = init_queue(drv_data);
  1071. if (status != 0) {
  1072. dev_err(dev, "problem initializing queue\n");
  1073. goto out_error_queue_alloc;
  1074. }
  1075. status = start_queue(drv_data);
  1076. if (status != 0) {
  1077. dev_err(dev, "problem starting queue\n");
  1078. goto out_error_queue_alloc;
  1079. }
  1080. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1081. if (status != 0) {
  1082. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1083. goto out_error_queue_alloc;
  1084. }
  1085. /* Register with the SPI framework */
  1086. platform_set_drvdata(pdev, drv_data);
  1087. status = spi_register_master(master);
  1088. if (status != 0) {
  1089. dev_err(dev, "problem registering spi master\n");
  1090. goto out_error_queue_alloc;
  1091. }
  1092. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1093. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1094. drv_data->dma_channel);
  1095. return status;
  1096. out_error_queue_alloc:
  1097. destroy_queue(drv_data);
  1098. out_error_no_dma_ch:
  1099. iounmap((void *) drv_data->regs_base);
  1100. out_error_ioremap:
  1101. out_error_get_res:
  1102. spi_master_put(master);
  1103. return status;
  1104. }
  1105. /* stop hardware and remove the driver */
  1106. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1107. {
  1108. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1109. int status = 0;
  1110. if (!drv_data)
  1111. return 0;
  1112. /* Remove the queue */
  1113. status = destroy_queue(drv_data);
  1114. if (status != 0)
  1115. return status;
  1116. /* Disable the SSP at the peripheral and SOC level */
  1117. bfin_spi_disable(drv_data);
  1118. /* Release DMA */
  1119. if (drv_data->master_info->enable_dma) {
  1120. if (dma_channel_active(drv_data->dma_channel))
  1121. free_dma(drv_data->dma_channel);
  1122. }
  1123. /* Disconnect from the SPI framework */
  1124. spi_unregister_master(drv_data->master);
  1125. peripheral_free_list(drv_data->pin_req);
  1126. /* Prevent double remove */
  1127. platform_set_drvdata(pdev, NULL);
  1128. return 0;
  1129. }
  1130. #ifdef CONFIG_PM
  1131. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1132. {
  1133. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1134. int status = 0;
  1135. status = stop_queue(drv_data);
  1136. if (status != 0)
  1137. return status;
  1138. /* stop hardware */
  1139. bfin_spi_disable(drv_data);
  1140. return 0;
  1141. }
  1142. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1143. {
  1144. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1145. int status = 0;
  1146. /* Enable the SPI interface */
  1147. bfin_spi_enable(drv_data);
  1148. /* Start the queue running */
  1149. status = start_queue(drv_data);
  1150. if (status != 0) {
  1151. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1152. return status;
  1153. }
  1154. return 0;
  1155. }
  1156. #else
  1157. #define bfin5xx_spi_suspend NULL
  1158. #define bfin5xx_spi_resume NULL
  1159. #endif /* CONFIG_PM */
  1160. MODULE_ALIAS("platform:bfin-spi");
  1161. static struct platform_driver bfin5xx_spi_driver = {
  1162. .driver = {
  1163. .name = DRV_NAME,
  1164. .owner = THIS_MODULE,
  1165. },
  1166. .suspend = bfin5xx_spi_suspend,
  1167. .resume = bfin5xx_spi_resume,
  1168. .remove = __devexit_p(bfin5xx_spi_remove),
  1169. };
  1170. static int __init bfin5xx_spi_init(void)
  1171. {
  1172. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1173. }
  1174. module_init(bfin5xx_spi_init);
  1175. static void __exit bfin5xx_spi_exit(void)
  1176. {
  1177. platform_driver_unregister(&bfin5xx_spi_driver);
  1178. }
  1179. module_exit(bfin5xx_spi_exit);