intel_dp.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. struct intel_dp {
  41. struct intel_encoder base;
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int force_audio;
  47. uint32_t color_range;
  48. int dpms_mode;
  49. uint8_t link_bw;
  50. uint8_t lane_count;
  51. uint8_t dpcd[8];
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. uint8_t train_set[4];
  56. uint8_t link_status[DP_LINK_STATUS_SIZE];
  57. };
  58. /**
  59. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  60. * @intel_dp: DP struct
  61. *
  62. * If a CPU or PCH DP output is attached to an eDP panel, this function
  63. * will return true, and false otherwise.
  64. */
  65. static bool is_edp(struct intel_dp *intel_dp)
  66. {
  67. return intel_dp->base.type == INTEL_OUTPUT_EDP;
  68. }
  69. /**
  70. * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  71. * @intel_dp: DP struct
  72. *
  73. * Returns true if the given DP struct corresponds to a PCH DP port attached
  74. * to an eDP panel, false otherwise. Helpful for determining whether we
  75. * may need FDI resources for a given DP output or not.
  76. */
  77. static bool is_pch_edp(struct intel_dp *intel_dp)
  78. {
  79. return intel_dp->is_pch_edp;
  80. }
  81. static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  82. {
  83. return container_of(encoder, struct intel_dp, base.base);
  84. }
  85. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  86. {
  87. return container_of(intel_attached_encoder(connector),
  88. struct intel_dp, base);
  89. }
  90. /**
  91. * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
  92. * @encoder: DRM encoder
  93. *
  94. * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
  95. * by intel_display.c.
  96. */
  97. bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
  98. {
  99. struct intel_dp *intel_dp;
  100. if (!encoder)
  101. return false;
  102. intel_dp = enc_to_intel_dp(encoder);
  103. return is_pch_edp(intel_dp);
  104. }
  105. static void intel_dp_start_link_train(struct intel_dp *intel_dp);
  106. static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
  107. static void intel_dp_link_down(struct intel_dp *intel_dp);
  108. void
  109. intel_edp_link_config (struct intel_encoder *intel_encoder,
  110. int *lane_num, int *link_bw)
  111. {
  112. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  113. *lane_num = intel_dp->lane_count;
  114. if (intel_dp->link_bw == DP_LINK_BW_1_62)
  115. *link_bw = 162000;
  116. else if (intel_dp->link_bw == DP_LINK_BW_2_7)
  117. *link_bw = 270000;
  118. }
  119. static int
  120. intel_dp_max_lane_count(struct intel_dp *intel_dp)
  121. {
  122. int max_lane_count = 4;
  123. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  124. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  125. switch (max_lane_count) {
  126. case 1: case 2: case 4:
  127. break;
  128. default:
  129. max_lane_count = 4;
  130. }
  131. }
  132. return max_lane_count;
  133. }
  134. static int
  135. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  136. {
  137. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  138. switch (max_link_bw) {
  139. case DP_LINK_BW_1_62:
  140. case DP_LINK_BW_2_7:
  141. break;
  142. default:
  143. max_link_bw = DP_LINK_BW_1_62;
  144. break;
  145. }
  146. return max_link_bw;
  147. }
  148. static int
  149. intel_dp_link_clock(uint8_t link_bw)
  150. {
  151. if (link_bw == DP_LINK_BW_2_7)
  152. return 270000;
  153. else
  154. return 162000;
  155. }
  156. /* I think this is a fiction */
  157. static int
  158. intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
  159. {
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. if (is_edp(intel_dp))
  162. return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
  163. else
  164. return pixel_clock * 3;
  165. }
  166. static int
  167. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  168. {
  169. return (max_link_clock * max_lanes * 8) / 10;
  170. }
  171. static int
  172. intel_dp_mode_valid(struct drm_connector *connector,
  173. struct drm_display_mode *mode)
  174. {
  175. struct intel_dp *intel_dp = intel_attached_dp(connector);
  176. struct drm_device *dev = connector->dev;
  177. struct drm_i915_private *dev_priv = dev->dev_private;
  178. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
  179. int max_lanes = intel_dp_max_lane_count(intel_dp);
  180. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  181. if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
  182. return MODE_PANEL;
  183. if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
  184. return MODE_PANEL;
  185. }
  186. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  187. which are outside spec tolerances but somehow work by magic */
  188. if (!is_edp(intel_dp) &&
  189. (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
  190. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  191. return MODE_CLOCK_HIGH;
  192. if (mode->clock < 10000)
  193. return MODE_CLOCK_LOW;
  194. return MODE_OK;
  195. }
  196. static uint32_t
  197. pack_aux(uint8_t *src, int src_bytes)
  198. {
  199. int i;
  200. uint32_t v = 0;
  201. if (src_bytes > 4)
  202. src_bytes = 4;
  203. for (i = 0; i < src_bytes; i++)
  204. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  205. return v;
  206. }
  207. static void
  208. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  209. {
  210. int i;
  211. if (dst_bytes > 4)
  212. dst_bytes = 4;
  213. for (i = 0; i < dst_bytes; i++)
  214. dst[i] = src >> ((3-i) * 8);
  215. }
  216. /* hrawclock is 1/4 the FSB frequency */
  217. static int
  218. intel_hrawclk(struct drm_device *dev)
  219. {
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. uint32_t clkcfg;
  222. clkcfg = I915_READ(CLKCFG);
  223. switch (clkcfg & CLKCFG_FSB_MASK) {
  224. case CLKCFG_FSB_400:
  225. return 100;
  226. case CLKCFG_FSB_533:
  227. return 133;
  228. case CLKCFG_FSB_667:
  229. return 166;
  230. case CLKCFG_FSB_800:
  231. return 200;
  232. case CLKCFG_FSB_1067:
  233. return 266;
  234. case CLKCFG_FSB_1333:
  235. return 333;
  236. /* these two are just a guess; one of them might be right */
  237. case CLKCFG_FSB_1600:
  238. case CLKCFG_FSB_1600_ALT:
  239. return 400;
  240. default:
  241. return 133;
  242. }
  243. }
  244. static int
  245. intel_dp_aux_ch(struct intel_dp *intel_dp,
  246. uint8_t *send, int send_bytes,
  247. uint8_t *recv, int recv_size)
  248. {
  249. uint32_t output_reg = intel_dp->output_reg;
  250. struct drm_device *dev = intel_dp->base.base.dev;
  251. struct drm_i915_private *dev_priv = dev->dev_private;
  252. uint32_t ch_ctl = output_reg + 0x10;
  253. uint32_t ch_data = ch_ctl + 4;
  254. int i;
  255. int recv_bytes;
  256. uint32_t status;
  257. uint32_t aux_clock_divider;
  258. int try, precharge;
  259. /* The clock divider is based off the hrawclk,
  260. * and would like to run at 2MHz. So, take the
  261. * hrawclk value and divide by 2 and use that
  262. *
  263. * Note that PCH attached eDP panels should use a 125MHz input
  264. * clock divider.
  265. */
  266. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  267. if (IS_GEN6(dev))
  268. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  269. else
  270. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  271. } else if (HAS_PCH_SPLIT(dev))
  272. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  273. else
  274. aux_clock_divider = intel_hrawclk(dev) / 2;
  275. if (IS_GEN6(dev))
  276. precharge = 3;
  277. else
  278. precharge = 5;
  279. /* Try to wait for any previous AUX channel activity */
  280. for (try = 0; try < 3; try++) {
  281. status = I915_READ(ch_ctl);
  282. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  283. break;
  284. msleep(1);
  285. }
  286. if (try == 3) {
  287. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  288. I915_READ(ch_ctl));
  289. return -EBUSY;
  290. }
  291. /* Must try at least 3 times according to DP spec */
  292. for (try = 0; try < 5; try++) {
  293. /* Load the send data into the aux channel data registers */
  294. for (i = 0; i < send_bytes; i += 4)
  295. I915_WRITE(ch_data + i,
  296. pack_aux(send + i, send_bytes - i));
  297. /* Send the command and wait for it to complete */
  298. I915_WRITE(ch_ctl,
  299. DP_AUX_CH_CTL_SEND_BUSY |
  300. DP_AUX_CH_CTL_TIME_OUT_400us |
  301. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  302. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  303. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  304. DP_AUX_CH_CTL_DONE |
  305. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  306. DP_AUX_CH_CTL_RECEIVE_ERROR);
  307. for (;;) {
  308. status = I915_READ(ch_ctl);
  309. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  310. break;
  311. udelay(100);
  312. }
  313. /* Clear done status and any errors */
  314. I915_WRITE(ch_ctl,
  315. status |
  316. DP_AUX_CH_CTL_DONE |
  317. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  318. DP_AUX_CH_CTL_RECEIVE_ERROR);
  319. if (status & DP_AUX_CH_CTL_DONE)
  320. break;
  321. }
  322. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  323. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  324. return -EBUSY;
  325. }
  326. /* Check for timeout or receive error.
  327. * Timeouts occur when the sink is not connected
  328. */
  329. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  330. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  331. return -EIO;
  332. }
  333. /* Timeouts occur when the device isn't connected, so they're
  334. * "normal" -- don't fill the kernel log with these */
  335. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  336. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  337. return -ETIMEDOUT;
  338. }
  339. /* Unload any bytes sent back from the other side */
  340. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  341. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  342. if (recv_bytes > recv_size)
  343. recv_bytes = recv_size;
  344. for (i = 0; i < recv_bytes; i += 4)
  345. unpack_aux(I915_READ(ch_data + i),
  346. recv + i, recv_bytes - i);
  347. return recv_bytes;
  348. }
  349. /* Write data to the aux channel in native mode */
  350. static int
  351. intel_dp_aux_native_write(struct intel_dp *intel_dp,
  352. uint16_t address, uint8_t *send, int send_bytes)
  353. {
  354. int ret;
  355. uint8_t msg[20];
  356. int msg_bytes;
  357. uint8_t ack;
  358. if (send_bytes > 16)
  359. return -1;
  360. msg[0] = AUX_NATIVE_WRITE << 4;
  361. msg[1] = address >> 8;
  362. msg[2] = address & 0xff;
  363. msg[3] = send_bytes - 1;
  364. memcpy(&msg[4], send, send_bytes);
  365. msg_bytes = send_bytes + 4;
  366. for (;;) {
  367. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
  368. if (ret < 0)
  369. return ret;
  370. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  371. break;
  372. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  373. udelay(100);
  374. else
  375. return -EIO;
  376. }
  377. return send_bytes;
  378. }
  379. /* Write a single byte to the aux channel in native mode */
  380. static int
  381. intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
  382. uint16_t address, uint8_t byte)
  383. {
  384. return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
  385. }
  386. /* read bytes from a native aux channel */
  387. static int
  388. intel_dp_aux_native_read(struct intel_dp *intel_dp,
  389. uint16_t address, uint8_t *recv, int recv_bytes)
  390. {
  391. uint8_t msg[4];
  392. int msg_bytes;
  393. uint8_t reply[20];
  394. int reply_bytes;
  395. uint8_t ack;
  396. int ret;
  397. msg[0] = AUX_NATIVE_READ << 4;
  398. msg[1] = address >> 8;
  399. msg[2] = address & 0xff;
  400. msg[3] = recv_bytes - 1;
  401. msg_bytes = 4;
  402. reply_bytes = recv_bytes + 1;
  403. for (;;) {
  404. ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
  405. reply, reply_bytes);
  406. if (ret == 0)
  407. return -EPROTO;
  408. if (ret < 0)
  409. return ret;
  410. ack = reply[0];
  411. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  412. memcpy(recv, reply + 1, ret - 1);
  413. return ret - 1;
  414. }
  415. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  416. udelay(100);
  417. else
  418. return -EIO;
  419. }
  420. }
  421. static int
  422. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  423. uint8_t write_byte, uint8_t *read_byte)
  424. {
  425. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  426. struct intel_dp *intel_dp = container_of(adapter,
  427. struct intel_dp,
  428. adapter);
  429. uint16_t address = algo_data->address;
  430. uint8_t msg[5];
  431. uint8_t reply[2];
  432. unsigned retry;
  433. int msg_bytes;
  434. int reply_bytes;
  435. int ret;
  436. /* Set up the command byte */
  437. if (mode & MODE_I2C_READ)
  438. msg[0] = AUX_I2C_READ << 4;
  439. else
  440. msg[0] = AUX_I2C_WRITE << 4;
  441. if (!(mode & MODE_I2C_STOP))
  442. msg[0] |= AUX_I2C_MOT << 4;
  443. msg[1] = address >> 8;
  444. msg[2] = address;
  445. switch (mode) {
  446. case MODE_I2C_WRITE:
  447. msg[3] = 0;
  448. msg[4] = write_byte;
  449. msg_bytes = 5;
  450. reply_bytes = 1;
  451. break;
  452. case MODE_I2C_READ:
  453. msg[3] = 0;
  454. msg_bytes = 4;
  455. reply_bytes = 2;
  456. break;
  457. default:
  458. msg_bytes = 3;
  459. reply_bytes = 1;
  460. break;
  461. }
  462. for (retry = 0; retry < 5; retry++) {
  463. ret = intel_dp_aux_ch(intel_dp,
  464. msg, msg_bytes,
  465. reply, reply_bytes);
  466. if (ret < 0) {
  467. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  468. return ret;
  469. }
  470. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  471. case AUX_NATIVE_REPLY_ACK:
  472. /* I2C-over-AUX Reply field is only valid
  473. * when paired with AUX ACK.
  474. */
  475. break;
  476. case AUX_NATIVE_REPLY_NACK:
  477. DRM_DEBUG_KMS("aux_ch native nack\n");
  478. return -EREMOTEIO;
  479. case AUX_NATIVE_REPLY_DEFER:
  480. udelay(100);
  481. continue;
  482. default:
  483. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  484. reply[0]);
  485. return -EREMOTEIO;
  486. }
  487. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  488. case AUX_I2C_REPLY_ACK:
  489. if (mode == MODE_I2C_READ) {
  490. *read_byte = reply[1];
  491. }
  492. return reply_bytes - 1;
  493. case AUX_I2C_REPLY_NACK:
  494. DRM_DEBUG_KMS("aux_i2c nack\n");
  495. return -EREMOTEIO;
  496. case AUX_I2C_REPLY_DEFER:
  497. DRM_DEBUG_KMS("aux_i2c defer\n");
  498. udelay(100);
  499. break;
  500. default:
  501. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  502. return -EREMOTEIO;
  503. }
  504. }
  505. DRM_ERROR("too many retries, giving up\n");
  506. return -EREMOTEIO;
  507. }
  508. static int
  509. intel_dp_i2c_init(struct intel_dp *intel_dp,
  510. struct intel_connector *intel_connector, const char *name)
  511. {
  512. DRM_DEBUG_KMS("i2c_init %s\n", name);
  513. intel_dp->algo.running = false;
  514. intel_dp->algo.address = 0;
  515. intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
  516. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  517. intel_dp->adapter.owner = THIS_MODULE;
  518. intel_dp->adapter.class = I2C_CLASS_DDC;
  519. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  520. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  521. intel_dp->adapter.algo_data = &intel_dp->algo;
  522. intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
  523. return i2c_dp_aux_add_bus(&intel_dp->adapter);
  524. }
  525. static bool
  526. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  527. struct drm_display_mode *adjusted_mode)
  528. {
  529. struct drm_device *dev = encoder->dev;
  530. struct drm_i915_private *dev_priv = dev->dev_private;
  531. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  532. int lane_count, clock;
  533. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  534. int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
  535. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  536. if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
  537. intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
  538. intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
  539. mode, adjusted_mode);
  540. /*
  541. * the mode->clock is used to calculate the Data&Link M/N
  542. * of the pipe. For the eDP the fixed clock should be used.
  543. */
  544. mode->clock = dev_priv->panel_fixed_mode->clock;
  545. }
  546. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  547. for (clock = 0; clock <= max_clock; clock++) {
  548. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  549. if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
  550. <= link_avail) {
  551. intel_dp->link_bw = bws[clock];
  552. intel_dp->lane_count = lane_count;
  553. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  554. DRM_DEBUG_KMS("Display port link bw %02x lane "
  555. "count %d clock %d\n",
  556. intel_dp->link_bw, intel_dp->lane_count,
  557. adjusted_mode->clock);
  558. return true;
  559. }
  560. }
  561. }
  562. if (is_edp(intel_dp)) {
  563. /* okay we failed just pick the highest */
  564. intel_dp->lane_count = max_lane_count;
  565. intel_dp->link_bw = bws[max_clock];
  566. adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
  567. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  568. "count %d clock %d\n",
  569. intel_dp->link_bw, intel_dp->lane_count,
  570. adjusted_mode->clock);
  571. return true;
  572. }
  573. return false;
  574. }
  575. struct intel_dp_m_n {
  576. uint32_t tu;
  577. uint32_t gmch_m;
  578. uint32_t gmch_n;
  579. uint32_t link_m;
  580. uint32_t link_n;
  581. };
  582. static void
  583. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  584. {
  585. while (*num > 0xffffff || *den > 0xffffff) {
  586. *num >>= 1;
  587. *den >>= 1;
  588. }
  589. }
  590. static void
  591. intel_dp_compute_m_n(int bpp,
  592. int nlanes,
  593. int pixel_clock,
  594. int link_clock,
  595. struct intel_dp_m_n *m_n)
  596. {
  597. m_n->tu = 64;
  598. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  599. m_n->gmch_n = link_clock * nlanes;
  600. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  601. m_n->link_m = pixel_clock;
  602. m_n->link_n = link_clock;
  603. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  604. }
  605. void
  606. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  607. struct drm_display_mode *adjusted_mode)
  608. {
  609. struct drm_device *dev = crtc->dev;
  610. struct drm_mode_config *mode_config = &dev->mode_config;
  611. struct drm_encoder *encoder;
  612. struct drm_i915_private *dev_priv = dev->dev_private;
  613. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  614. int lane_count = 4, bpp = 24;
  615. struct intel_dp_m_n m_n;
  616. int pipe = intel_crtc->pipe;
  617. /*
  618. * Find the lane count in the intel_encoder private
  619. */
  620. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  621. struct intel_dp *intel_dp;
  622. if (encoder->crtc != crtc)
  623. continue;
  624. intel_dp = enc_to_intel_dp(encoder);
  625. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
  626. lane_count = intel_dp->lane_count;
  627. break;
  628. } else if (is_edp(intel_dp)) {
  629. lane_count = dev_priv->edp.lanes;
  630. bpp = dev_priv->edp.bpp;
  631. break;
  632. }
  633. }
  634. /*
  635. * Compute the GMCH and Link ratios. The '3' here is
  636. * the number of bytes_per_pixel post-LUT, which we always
  637. * set up for 8-bits of R/G/B, or 3 bytes total.
  638. */
  639. intel_dp_compute_m_n(bpp, lane_count,
  640. mode->clock, adjusted_mode->clock, &m_n);
  641. if (HAS_PCH_SPLIT(dev)) {
  642. I915_WRITE(TRANSDATA_M1(pipe),
  643. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  644. m_n.gmch_m);
  645. I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
  646. I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
  647. I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
  648. } else {
  649. I915_WRITE(PIPE_GMCH_DATA_M(pipe),
  650. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  651. m_n.gmch_m);
  652. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  653. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  654. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  655. }
  656. }
  657. static void
  658. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  659. struct drm_display_mode *adjusted_mode)
  660. {
  661. struct drm_device *dev = encoder->dev;
  662. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  663. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  664. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  665. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  666. intel_dp->DP |= intel_dp->color_range;
  667. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  668. intel_dp->DP |= DP_SYNC_HS_HIGH;
  669. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  670. intel_dp->DP |= DP_SYNC_VS_HIGH;
  671. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  672. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  673. else
  674. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  675. switch (intel_dp->lane_count) {
  676. case 1:
  677. intel_dp->DP |= DP_PORT_WIDTH_1;
  678. break;
  679. case 2:
  680. intel_dp->DP |= DP_PORT_WIDTH_2;
  681. break;
  682. case 4:
  683. intel_dp->DP |= DP_PORT_WIDTH_4;
  684. break;
  685. }
  686. if (intel_dp->has_audio)
  687. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  688. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  689. intel_dp->link_configuration[0] = intel_dp->link_bw;
  690. intel_dp->link_configuration[1] = intel_dp->lane_count;
  691. intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
  692. /*
  693. * Check for DPCD version > 1.1 and enhanced framing support
  694. */
  695. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  696. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  697. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  698. intel_dp->DP |= DP_ENHANCED_FRAMING;
  699. }
  700. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  701. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  702. intel_dp->DP |= DP_PIPEB_SELECT;
  703. if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
  704. /* don't miss out required setting for eDP */
  705. intel_dp->DP |= DP_PLL_ENABLE;
  706. if (adjusted_mode->clock < 200000)
  707. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  708. else
  709. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  710. }
  711. }
  712. static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
  713. {
  714. struct drm_device *dev = intel_dp->base.base.dev;
  715. struct drm_i915_private *dev_priv = dev->dev_private;
  716. u32 pp;
  717. /*
  718. * If the panel wasn't on, make sure there's not a currently
  719. * active PP sequence before enabling AUX VDD.
  720. */
  721. if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
  722. msleep(dev_priv->panel_t3);
  723. pp = I915_READ(PCH_PP_CONTROL);
  724. pp |= EDP_FORCE_VDD;
  725. I915_WRITE(PCH_PP_CONTROL, pp);
  726. POSTING_READ(PCH_PP_CONTROL);
  727. }
  728. static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
  729. {
  730. struct drm_device *dev = intel_dp->base.base.dev;
  731. struct drm_i915_private *dev_priv = dev->dev_private;
  732. u32 pp;
  733. pp = I915_READ(PCH_PP_CONTROL);
  734. pp &= ~EDP_FORCE_VDD;
  735. I915_WRITE(PCH_PP_CONTROL, pp);
  736. POSTING_READ(PCH_PP_CONTROL);
  737. /* Make sure sequencer is idle before allowing subsequent activity */
  738. msleep(dev_priv->panel_t12);
  739. }
  740. /* Returns true if the panel was already on when called */
  741. static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
  742. {
  743. struct drm_device *dev = intel_dp->base.base.dev;
  744. struct drm_i915_private *dev_priv = dev->dev_private;
  745. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
  746. if (I915_READ(PCH_PP_STATUS) & PP_ON)
  747. return true;
  748. pp = I915_READ(PCH_PP_CONTROL);
  749. /* ILK workaround: disable reset around power sequence */
  750. pp &= ~PANEL_POWER_RESET;
  751. I915_WRITE(PCH_PP_CONTROL, pp);
  752. POSTING_READ(PCH_PP_CONTROL);
  753. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  754. I915_WRITE(PCH_PP_CONTROL, pp);
  755. POSTING_READ(PCH_PP_CONTROL);
  756. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
  757. 5000))
  758. DRM_ERROR("panel on wait timed out: 0x%08x\n",
  759. I915_READ(PCH_PP_STATUS));
  760. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  761. I915_WRITE(PCH_PP_CONTROL, pp);
  762. POSTING_READ(PCH_PP_CONTROL);
  763. return false;
  764. }
  765. static void ironlake_edp_panel_off (struct drm_device *dev)
  766. {
  767. struct drm_i915_private *dev_priv = dev->dev_private;
  768. u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
  769. PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
  770. pp = I915_READ(PCH_PP_CONTROL);
  771. /* ILK workaround: disable reset around power sequence */
  772. pp &= ~PANEL_POWER_RESET;
  773. I915_WRITE(PCH_PP_CONTROL, pp);
  774. POSTING_READ(PCH_PP_CONTROL);
  775. pp &= ~POWER_TARGET_ON;
  776. I915_WRITE(PCH_PP_CONTROL, pp);
  777. POSTING_READ(PCH_PP_CONTROL);
  778. if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
  779. DRM_ERROR("panel off wait timed out: 0x%08x\n",
  780. I915_READ(PCH_PP_STATUS));
  781. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  782. I915_WRITE(PCH_PP_CONTROL, pp);
  783. POSTING_READ(PCH_PP_CONTROL);
  784. }
  785. static void ironlake_edp_backlight_on (struct drm_device *dev)
  786. {
  787. struct drm_i915_private *dev_priv = dev->dev_private;
  788. u32 pp;
  789. DRM_DEBUG_KMS("\n");
  790. /*
  791. * If we enable the backlight right away following a panel power
  792. * on, we may see slight flicker as the panel syncs with the eDP
  793. * link. So delay a bit to make sure the image is solid before
  794. * allowing it to appear.
  795. */
  796. msleep(300);
  797. pp = I915_READ(PCH_PP_CONTROL);
  798. pp |= EDP_BLC_ENABLE;
  799. I915_WRITE(PCH_PP_CONTROL, pp);
  800. }
  801. static void ironlake_edp_backlight_off (struct drm_device *dev)
  802. {
  803. struct drm_i915_private *dev_priv = dev->dev_private;
  804. u32 pp;
  805. DRM_DEBUG_KMS("\n");
  806. pp = I915_READ(PCH_PP_CONTROL);
  807. pp &= ~EDP_BLC_ENABLE;
  808. I915_WRITE(PCH_PP_CONTROL, pp);
  809. }
  810. static void ironlake_edp_pll_on(struct drm_encoder *encoder)
  811. {
  812. struct drm_device *dev = encoder->dev;
  813. struct drm_i915_private *dev_priv = dev->dev_private;
  814. u32 dpa_ctl;
  815. DRM_DEBUG_KMS("\n");
  816. dpa_ctl = I915_READ(DP_A);
  817. dpa_ctl |= DP_PLL_ENABLE;
  818. I915_WRITE(DP_A, dpa_ctl);
  819. POSTING_READ(DP_A);
  820. udelay(200);
  821. }
  822. static void ironlake_edp_pll_off(struct drm_encoder *encoder)
  823. {
  824. struct drm_device *dev = encoder->dev;
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. u32 dpa_ctl;
  827. dpa_ctl = I915_READ(DP_A);
  828. dpa_ctl &= ~DP_PLL_ENABLE;
  829. I915_WRITE(DP_A, dpa_ctl);
  830. POSTING_READ(DP_A);
  831. udelay(200);
  832. }
  833. /* If the sink supports it, try to set the power state appropriately */
  834. static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  835. {
  836. int ret, i;
  837. /* Should have a valid DPCD by this point */
  838. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  839. return;
  840. if (mode != DRM_MODE_DPMS_ON) {
  841. ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
  842. DP_SET_POWER_D3);
  843. if (ret != 1)
  844. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  845. } else {
  846. /*
  847. * When turning on, we need to retry for 1ms to give the sink
  848. * time to wake up.
  849. */
  850. for (i = 0; i < 3; i++) {
  851. ret = intel_dp_aux_native_write_1(intel_dp,
  852. DP_SET_POWER,
  853. DP_SET_POWER_D0);
  854. if (ret == 1)
  855. break;
  856. msleep(1);
  857. }
  858. }
  859. }
  860. static void intel_dp_prepare(struct drm_encoder *encoder)
  861. {
  862. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  863. struct drm_device *dev = encoder->dev;
  864. /* Wake up the sink first */
  865. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  866. if (is_edp(intel_dp)) {
  867. ironlake_edp_backlight_off(dev);
  868. ironlake_edp_panel_off(dev);
  869. if (!is_pch_edp(intel_dp))
  870. ironlake_edp_pll_on(encoder);
  871. else
  872. ironlake_edp_pll_off(encoder);
  873. }
  874. intel_dp_link_down(intel_dp);
  875. }
  876. static void intel_dp_commit(struct drm_encoder *encoder)
  877. {
  878. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  879. struct drm_device *dev = encoder->dev;
  880. if (is_edp(intel_dp))
  881. ironlake_edp_panel_vdd_on(intel_dp);
  882. intel_dp_start_link_train(intel_dp);
  883. if (is_edp(intel_dp)) {
  884. ironlake_edp_panel_on(intel_dp);
  885. ironlake_edp_panel_vdd_off(intel_dp);
  886. }
  887. intel_dp_complete_link_train(intel_dp);
  888. if (is_edp(intel_dp))
  889. ironlake_edp_backlight_on(dev);
  890. intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
  891. }
  892. static void
  893. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  894. {
  895. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  896. struct drm_device *dev = encoder->dev;
  897. struct drm_i915_private *dev_priv = dev->dev_private;
  898. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  899. if (mode != DRM_MODE_DPMS_ON) {
  900. if (is_edp(intel_dp))
  901. ironlake_edp_backlight_off(dev);
  902. intel_dp_sink_dpms(intel_dp, mode);
  903. intel_dp_link_down(intel_dp);
  904. if (is_edp(intel_dp))
  905. ironlake_edp_panel_off(dev);
  906. if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
  907. ironlake_edp_pll_off(encoder);
  908. } else {
  909. if (is_edp(intel_dp))
  910. ironlake_edp_panel_vdd_on(intel_dp);
  911. intel_dp_sink_dpms(intel_dp, mode);
  912. if (!(dp_reg & DP_PORT_EN)) {
  913. intel_dp_start_link_train(intel_dp);
  914. if (is_edp(intel_dp)) {
  915. ironlake_edp_panel_on(intel_dp);
  916. ironlake_edp_panel_vdd_off(intel_dp);
  917. }
  918. intel_dp_complete_link_train(intel_dp);
  919. }
  920. if (is_edp(intel_dp))
  921. ironlake_edp_backlight_on(dev);
  922. }
  923. intel_dp->dpms_mode = mode;
  924. }
  925. /*
  926. * Native read with retry for link status and receiver capability reads for
  927. * cases where the sink may still be asleep.
  928. */
  929. static bool
  930. intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
  931. uint8_t *recv, int recv_bytes)
  932. {
  933. int ret, i;
  934. /*
  935. * Sinks are *supposed* to come up within 1ms from an off state,
  936. * but we're also supposed to retry 3 times per the spec.
  937. */
  938. for (i = 0; i < 3; i++) {
  939. ret = intel_dp_aux_native_read(intel_dp, address, recv,
  940. recv_bytes);
  941. if (ret == recv_bytes)
  942. return true;
  943. msleep(1);
  944. }
  945. return false;
  946. }
  947. /*
  948. * Fetch AUX CH registers 0x202 - 0x207 which contain
  949. * link status information
  950. */
  951. static bool
  952. intel_dp_get_link_status(struct intel_dp *intel_dp)
  953. {
  954. return intel_dp_aux_native_read_retry(intel_dp,
  955. DP_LANE0_1_STATUS,
  956. intel_dp->link_status,
  957. DP_LINK_STATUS_SIZE);
  958. }
  959. static uint8_t
  960. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  961. int r)
  962. {
  963. return link_status[r - DP_LANE0_1_STATUS];
  964. }
  965. static uint8_t
  966. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  967. int lane)
  968. {
  969. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  970. int s = ((lane & 1) ?
  971. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  972. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  973. uint8_t l = intel_dp_link_status(link_status, i);
  974. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  975. }
  976. static uint8_t
  977. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  978. int lane)
  979. {
  980. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  981. int s = ((lane & 1) ?
  982. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  983. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  984. uint8_t l = intel_dp_link_status(link_status, i);
  985. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  986. }
  987. #if 0
  988. static char *voltage_names[] = {
  989. "0.4V", "0.6V", "0.8V", "1.2V"
  990. };
  991. static char *pre_emph_names[] = {
  992. "0dB", "3.5dB", "6dB", "9.5dB"
  993. };
  994. static char *link_train_names[] = {
  995. "pattern 1", "pattern 2", "idle", "off"
  996. };
  997. #endif
  998. /*
  999. * These are source-specific values; current Intel hardware supports
  1000. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1001. */
  1002. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  1003. static uint8_t
  1004. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  1005. {
  1006. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1007. case DP_TRAIN_VOLTAGE_SWING_400:
  1008. return DP_TRAIN_PRE_EMPHASIS_6;
  1009. case DP_TRAIN_VOLTAGE_SWING_600:
  1010. return DP_TRAIN_PRE_EMPHASIS_6;
  1011. case DP_TRAIN_VOLTAGE_SWING_800:
  1012. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1013. case DP_TRAIN_VOLTAGE_SWING_1200:
  1014. default:
  1015. return DP_TRAIN_PRE_EMPHASIS_0;
  1016. }
  1017. }
  1018. static void
  1019. intel_get_adjust_train(struct intel_dp *intel_dp)
  1020. {
  1021. uint8_t v = 0;
  1022. uint8_t p = 0;
  1023. int lane;
  1024. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1025. uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  1026. uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  1027. if (this_v > v)
  1028. v = this_v;
  1029. if (this_p > p)
  1030. p = this_p;
  1031. }
  1032. if (v >= I830_DP_VOLTAGE_MAX)
  1033. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  1034. if (p >= intel_dp_pre_emphasis_max(v))
  1035. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1036. for (lane = 0; lane < 4; lane++)
  1037. intel_dp->train_set[lane] = v | p;
  1038. }
  1039. static uint32_t
  1040. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  1041. {
  1042. uint32_t signal_levels = 0;
  1043. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1044. case DP_TRAIN_VOLTAGE_SWING_400:
  1045. default:
  1046. signal_levels |= DP_VOLTAGE_0_4;
  1047. break;
  1048. case DP_TRAIN_VOLTAGE_SWING_600:
  1049. signal_levels |= DP_VOLTAGE_0_6;
  1050. break;
  1051. case DP_TRAIN_VOLTAGE_SWING_800:
  1052. signal_levels |= DP_VOLTAGE_0_8;
  1053. break;
  1054. case DP_TRAIN_VOLTAGE_SWING_1200:
  1055. signal_levels |= DP_VOLTAGE_1_2;
  1056. break;
  1057. }
  1058. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1059. case DP_TRAIN_PRE_EMPHASIS_0:
  1060. default:
  1061. signal_levels |= DP_PRE_EMPHASIS_0;
  1062. break;
  1063. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1064. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1065. break;
  1066. case DP_TRAIN_PRE_EMPHASIS_6:
  1067. signal_levels |= DP_PRE_EMPHASIS_6;
  1068. break;
  1069. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1070. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1071. break;
  1072. }
  1073. return signal_levels;
  1074. }
  1075. /* Gen6's DP voltage swing and pre-emphasis control */
  1076. static uint32_t
  1077. intel_gen6_edp_signal_levels(uint8_t train_set)
  1078. {
  1079. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1080. DP_TRAIN_PRE_EMPHASIS_MASK);
  1081. switch (signal_levels) {
  1082. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1083. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1084. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1085. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1086. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1087. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1088. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1089. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1090. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1091. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1092. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1093. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1094. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1095. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1096. default:
  1097. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1098. "0x%x\n", signal_levels);
  1099. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1100. }
  1101. }
  1102. static uint8_t
  1103. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  1104. int lane)
  1105. {
  1106. int i = DP_LANE0_1_STATUS + (lane >> 1);
  1107. int s = (lane & 1) * 4;
  1108. uint8_t l = intel_dp_link_status(link_status, i);
  1109. return (l >> s) & 0xf;
  1110. }
  1111. /* Check for clock recovery is done on all channels */
  1112. static bool
  1113. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  1114. {
  1115. int lane;
  1116. uint8_t lane_status;
  1117. for (lane = 0; lane < lane_count; lane++) {
  1118. lane_status = intel_get_lane_status(link_status, lane);
  1119. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1120. return false;
  1121. }
  1122. return true;
  1123. }
  1124. /* Check to see if channel eq is done on all channels */
  1125. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1126. DP_LANE_CHANNEL_EQ_DONE|\
  1127. DP_LANE_SYMBOL_LOCKED)
  1128. static bool
  1129. intel_channel_eq_ok(struct intel_dp *intel_dp)
  1130. {
  1131. uint8_t lane_align;
  1132. uint8_t lane_status;
  1133. int lane;
  1134. lane_align = intel_dp_link_status(intel_dp->link_status,
  1135. DP_LANE_ALIGN_STATUS_UPDATED);
  1136. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1137. return false;
  1138. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1139. lane_status = intel_get_lane_status(intel_dp->link_status, lane);
  1140. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1141. return false;
  1142. }
  1143. return true;
  1144. }
  1145. static bool
  1146. intel_dp_set_link_train(struct intel_dp *intel_dp,
  1147. uint32_t dp_reg_value,
  1148. uint8_t dp_train_pat)
  1149. {
  1150. struct drm_device *dev = intel_dp->base.base.dev;
  1151. struct drm_i915_private *dev_priv = dev->dev_private;
  1152. int ret;
  1153. I915_WRITE(intel_dp->output_reg, dp_reg_value);
  1154. POSTING_READ(intel_dp->output_reg);
  1155. intel_dp_aux_native_write_1(intel_dp,
  1156. DP_TRAINING_PATTERN_SET,
  1157. dp_train_pat);
  1158. ret = intel_dp_aux_native_write(intel_dp,
  1159. DP_TRAINING_LANE0_SET,
  1160. intel_dp->train_set, 4);
  1161. if (ret != 4)
  1162. return false;
  1163. return true;
  1164. }
  1165. /* Enable corresponding port and start training pattern 1 */
  1166. static void
  1167. intel_dp_start_link_train(struct intel_dp *intel_dp)
  1168. {
  1169. struct drm_device *dev = intel_dp->base.base.dev;
  1170. struct drm_i915_private *dev_priv = dev->dev_private;
  1171. struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
  1172. int i;
  1173. uint8_t voltage;
  1174. bool clock_recovery = false;
  1175. int tries;
  1176. u32 reg;
  1177. uint32_t DP = intel_dp->DP;
  1178. /*
  1179. * On CPT we have to enable the port in training pattern 1, which
  1180. * will happen below in intel_dp_set_link_train. Otherwise, enable
  1181. * the port and wait for it to become active.
  1182. */
  1183. if (!HAS_PCH_CPT(dev)) {
  1184. I915_WRITE(intel_dp->output_reg, intel_dp->DP);
  1185. POSTING_READ(intel_dp->output_reg);
  1186. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1187. }
  1188. /* Write the link configuration data */
  1189. intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
  1190. intel_dp->link_configuration,
  1191. DP_LINK_CONFIGURATION_SIZE);
  1192. DP |= DP_PORT_EN;
  1193. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1194. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1195. else
  1196. DP &= ~DP_LINK_TRAIN_MASK;
  1197. memset(intel_dp->train_set, 0, 4);
  1198. voltage = 0xff;
  1199. tries = 0;
  1200. clock_recovery = false;
  1201. for (;;) {
  1202. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1203. uint32_t signal_levels;
  1204. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1205. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1206. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1207. } else {
  1208. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1209. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1210. }
  1211. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1212. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  1213. else
  1214. reg = DP | DP_LINK_TRAIN_PAT_1;
  1215. if (!intel_dp_set_link_train(intel_dp, reg,
  1216. DP_TRAINING_PATTERN_1 |
  1217. DP_LINK_SCRAMBLING_DISABLE))
  1218. break;
  1219. /* Set training pattern 1 */
  1220. udelay(100);
  1221. if (!intel_dp_get_link_status(intel_dp))
  1222. break;
  1223. if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1224. clock_recovery = true;
  1225. break;
  1226. }
  1227. /* Check to see if we've tried the max voltage */
  1228. for (i = 0; i < intel_dp->lane_count; i++)
  1229. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1230. break;
  1231. if (i == intel_dp->lane_count)
  1232. break;
  1233. /* Check to see if we've tried the same voltage 5 times */
  1234. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1235. ++tries;
  1236. if (tries == 5)
  1237. break;
  1238. } else
  1239. tries = 0;
  1240. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1241. /* Compute new intel_dp->train_set as requested by target */
  1242. intel_get_adjust_train(intel_dp);
  1243. }
  1244. intel_dp->DP = DP;
  1245. }
  1246. static void
  1247. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  1248. {
  1249. struct drm_device *dev = intel_dp->base.base.dev;
  1250. struct drm_i915_private *dev_priv = dev->dev_private;
  1251. bool channel_eq = false;
  1252. int tries, cr_tries;
  1253. u32 reg;
  1254. uint32_t DP = intel_dp->DP;
  1255. /* channel equalization */
  1256. tries = 0;
  1257. cr_tries = 0;
  1258. channel_eq = false;
  1259. for (;;) {
  1260. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1261. uint32_t signal_levels;
  1262. if (cr_tries > 5) {
  1263. DRM_ERROR("failed to train DP, aborting\n");
  1264. intel_dp_link_down(intel_dp);
  1265. break;
  1266. }
  1267. if (IS_GEN6(dev) && is_edp(intel_dp)) {
  1268. signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
  1269. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1270. } else {
  1271. signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
  1272. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1273. }
  1274. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1275. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1276. else
  1277. reg = DP | DP_LINK_TRAIN_PAT_2;
  1278. /* channel eq pattern */
  1279. if (!intel_dp_set_link_train(intel_dp, reg,
  1280. DP_TRAINING_PATTERN_2 |
  1281. DP_LINK_SCRAMBLING_DISABLE))
  1282. break;
  1283. udelay(400);
  1284. if (!intel_dp_get_link_status(intel_dp))
  1285. break;
  1286. /* Make sure clock is still ok */
  1287. if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1288. intel_dp_start_link_train(intel_dp);
  1289. cr_tries++;
  1290. continue;
  1291. }
  1292. if (intel_channel_eq_ok(intel_dp)) {
  1293. channel_eq = true;
  1294. break;
  1295. }
  1296. /* Try 5 times, then try clock recovery if that fails */
  1297. if (tries > 5) {
  1298. intel_dp_link_down(intel_dp);
  1299. intel_dp_start_link_train(intel_dp);
  1300. tries = 0;
  1301. cr_tries++;
  1302. continue;
  1303. }
  1304. /* Compute new intel_dp->train_set as requested by target */
  1305. intel_get_adjust_train(intel_dp);
  1306. ++tries;
  1307. }
  1308. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
  1309. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1310. else
  1311. reg = DP | DP_LINK_TRAIN_OFF;
  1312. I915_WRITE(intel_dp->output_reg, reg);
  1313. POSTING_READ(intel_dp->output_reg);
  1314. intel_dp_aux_native_write_1(intel_dp,
  1315. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1316. }
  1317. static void
  1318. intel_dp_link_down(struct intel_dp *intel_dp)
  1319. {
  1320. struct drm_device *dev = intel_dp->base.base.dev;
  1321. struct drm_i915_private *dev_priv = dev->dev_private;
  1322. uint32_t DP = intel_dp->DP;
  1323. if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1324. return;
  1325. DRM_DEBUG_KMS("\n");
  1326. if (is_edp(intel_dp)) {
  1327. DP &= ~DP_PLL_ENABLE;
  1328. I915_WRITE(intel_dp->output_reg, DP);
  1329. POSTING_READ(intel_dp->output_reg);
  1330. udelay(100);
  1331. }
  1332. if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
  1333. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1334. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1335. } else {
  1336. DP &= ~DP_LINK_TRAIN_MASK;
  1337. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1338. }
  1339. POSTING_READ(intel_dp->output_reg);
  1340. msleep(17);
  1341. if (is_edp(intel_dp))
  1342. DP |= DP_LINK_TRAIN_OFF;
  1343. if (!HAS_PCH_CPT(dev) &&
  1344. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  1345. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1346. /* Hardware workaround: leaving our transcoder select
  1347. * set to transcoder B while it's off will prevent the
  1348. * corresponding HDMI output on transcoder A.
  1349. *
  1350. * Combine this with another hardware workaround:
  1351. * transcoder select bit can only be cleared while the
  1352. * port is enabled.
  1353. */
  1354. DP &= ~DP_PIPEB_SELECT;
  1355. I915_WRITE(intel_dp->output_reg, DP);
  1356. /* Changes to enable or select take place the vblank
  1357. * after being written.
  1358. */
  1359. if (crtc == NULL) {
  1360. /* We can arrive here never having been attached
  1361. * to a CRTC, for instance, due to inheriting
  1362. * random state from the BIOS.
  1363. *
  1364. * If the pipe is not running, play safe and
  1365. * wait for the clocks to stabilise before
  1366. * continuing.
  1367. */
  1368. POSTING_READ(intel_dp->output_reg);
  1369. msleep(50);
  1370. } else
  1371. intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
  1372. }
  1373. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1374. POSTING_READ(intel_dp->output_reg);
  1375. }
  1376. static bool
  1377. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  1378. {
  1379. if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
  1380. sizeof (intel_dp->dpcd)) &&
  1381. (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
  1382. return true;
  1383. }
  1384. return false;
  1385. }
  1386. /*
  1387. * According to DP spec
  1388. * 5.1.2:
  1389. * 1. Read DPCD
  1390. * 2. Configure link according to Receiver Capabilities
  1391. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1392. * 4. Check link status on receipt of hot-plug interrupt
  1393. */
  1394. static void
  1395. intel_dp_check_link_status(struct intel_dp *intel_dp)
  1396. {
  1397. if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
  1398. return;
  1399. if (!intel_dp->base.base.crtc)
  1400. return;
  1401. /* Try to read receiver status if the link appears to be up */
  1402. if (!intel_dp_get_link_status(intel_dp)) {
  1403. intel_dp_link_down(intel_dp);
  1404. return;
  1405. }
  1406. /* Now read the DPCD to see if it's actually running */
  1407. if (!intel_dp_get_dpcd(intel_dp)) {
  1408. intel_dp_link_down(intel_dp);
  1409. return;
  1410. }
  1411. if (!intel_channel_eq_ok(intel_dp)) {
  1412. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  1413. drm_get_encoder_name(&intel_dp->base.base));
  1414. intel_dp_start_link_train(intel_dp);
  1415. intel_dp_complete_link_train(intel_dp);
  1416. }
  1417. }
  1418. static enum drm_connector_status
  1419. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  1420. {
  1421. if (intel_dp_get_dpcd(intel_dp))
  1422. return connector_status_connected;
  1423. return connector_status_disconnected;
  1424. }
  1425. static enum drm_connector_status
  1426. ironlake_dp_detect(struct intel_dp *intel_dp)
  1427. {
  1428. enum drm_connector_status status;
  1429. /* Can't disconnect eDP, but you can close the lid... */
  1430. if (is_edp(intel_dp)) {
  1431. status = intel_panel_detect(intel_dp->base.base.dev);
  1432. if (status == connector_status_unknown)
  1433. status = connector_status_connected;
  1434. return status;
  1435. }
  1436. return intel_dp_detect_dpcd(intel_dp);
  1437. }
  1438. static enum drm_connector_status
  1439. g4x_dp_detect(struct intel_dp *intel_dp)
  1440. {
  1441. struct drm_device *dev = intel_dp->base.base.dev;
  1442. struct drm_i915_private *dev_priv = dev->dev_private;
  1443. uint32_t temp, bit;
  1444. switch (intel_dp->output_reg) {
  1445. case DP_B:
  1446. bit = DPB_HOTPLUG_INT_STATUS;
  1447. break;
  1448. case DP_C:
  1449. bit = DPC_HOTPLUG_INT_STATUS;
  1450. break;
  1451. case DP_D:
  1452. bit = DPD_HOTPLUG_INT_STATUS;
  1453. break;
  1454. default:
  1455. return connector_status_unknown;
  1456. }
  1457. temp = I915_READ(PORT_HOTPLUG_STAT);
  1458. if ((temp & bit) == 0)
  1459. return connector_status_disconnected;
  1460. return intel_dp_detect_dpcd(intel_dp);
  1461. }
  1462. /**
  1463. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1464. *
  1465. * \return true if DP port is connected.
  1466. * \return false if DP port is disconnected.
  1467. */
  1468. static enum drm_connector_status
  1469. intel_dp_detect(struct drm_connector *connector, bool force)
  1470. {
  1471. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1472. struct drm_device *dev = intel_dp->base.base.dev;
  1473. enum drm_connector_status status;
  1474. struct edid *edid = NULL;
  1475. intel_dp->has_audio = false;
  1476. memset(intel_dp->dpcd, 0, sizeof(intel_dp->dpcd));
  1477. if (HAS_PCH_SPLIT(dev))
  1478. status = ironlake_dp_detect(intel_dp);
  1479. else
  1480. status = g4x_dp_detect(intel_dp);
  1481. DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
  1482. intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
  1483. intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
  1484. intel_dp->dpcd[6], intel_dp->dpcd[7]);
  1485. if (status != connector_status_connected)
  1486. return status;
  1487. if (intel_dp->force_audio) {
  1488. intel_dp->has_audio = intel_dp->force_audio > 0;
  1489. } else {
  1490. edid = drm_get_edid(connector, &intel_dp->adapter);
  1491. if (edid) {
  1492. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1493. connector->display_info.raw_edid = NULL;
  1494. kfree(edid);
  1495. }
  1496. }
  1497. return connector_status_connected;
  1498. }
  1499. static int intel_dp_get_modes(struct drm_connector *connector)
  1500. {
  1501. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1502. struct drm_device *dev = intel_dp->base.base.dev;
  1503. struct drm_i915_private *dev_priv = dev->dev_private;
  1504. int ret;
  1505. /* We should parse the EDID data and find out if it has an audio sink
  1506. */
  1507. ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
  1508. if (ret) {
  1509. if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
  1510. struct drm_display_mode *newmode;
  1511. list_for_each_entry(newmode, &connector->probed_modes,
  1512. head) {
  1513. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1514. dev_priv->panel_fixed_mode =
  1515. drm_mode_duplicate(dev, newmode);
  1516. break;
  1517. }
  1518. }
  1519. }
  1520. return ret;
  1521. }
  1522. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1523. if (is_edp(intel_dp)) {
  1524. if (dev_priv->panel_fixed_mode != NULL) {
  1525. struct drm_display_mode *mode;
  1526. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1527. drm_mode_probed_add(connector, mode);
  1528. return 1;
  1529. }
  1530. }
  1531. return 0;
  1532. }
  1533. static bool
  1534. intel_dp_detect_audio(struct drm_connector *connector)
  1535. {
  1536. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1537. struct edid *edid;
  1538. bool has_audio = false;
  1539. edid = drm_get_edid(connector, &intel_dp->adapter);
  1540. if (edid) {
  1541. has_audio = drm_detect_monitor_audio(edid);
  1542. connector->display_info.raw_edid = NULL;
  1543. kfree(edid);
  1544. }
  1545. return has_audio;
  1546. }
  1547. static int
  1548. intel_dp_set_property(struct drm_connector *connector,
  1549. struct drm_property *property,
  1550. uint64_t val)
  1551. {
  1552. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  1553. struct intel_dp *intel_dp = intel_attached_dp(connector);
  1554. int ret;
  1555. ret = drm_connector_property_set_value(connector, property, val);
  1556. if (ret)
  1557. return ret;
  1558. if (property == dev_priv->force_audio_property) {
  1559. int i = val;
  1560. bool has_audio;
  1561. if (i == intel_dp->force_audio)
  1562. return 0;
  1563. intel_dp->force_audio = i;
  1564. if (i == 0)
  1565. has_audio = intel_dp_detect_audio(connector);
  1566. else
  1567. has_audio = i > 0;
  1568. if (has_audio == intel_dp->has_audio)
  1569. return 0;
  1570. intel_dp->has_audio = has_audio;
  1571. goto done;
  1572. }
  1573. if (property == dev_priv->broadcast_rgb_property) {
  1574. if (val == !!intel_dp->color_range)
  1575. return 0;
  1576. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1577. goto done;
  1578. }
  1579. return -EINVAL;
  1580. done:
  1581. if (intel_dp->base.base.crtc) {
  1582. struct drm_crtc *crtc = intel_dp->base.base.crtc;
  1583. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1584. crtc->x, crtc->y,
  1585. crtc->fb);
  1586. }
  1587. return 0;
  1588. }
  1589. static void
  1590. intel_dp_destroy (struct drm_connector *connector)
  1591. {
  1592. drm_sysfs_connector_remove(connector);
  1593. drm_connector_cleanup(connector);
  1594. kfree(connector);
  1595. }
  1596. static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1597. {
  1598. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1599. i2c_del_adapter(&intel_dp->adapter);
  1600. drm_encoder_cleanup(encoder);
  1601. kfree(intel_dp);
  1602. }
  1603. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1604. .dpms = intel_dp_dpms,
  1605. .mode_fixup = intel_dp_mode_fixup,
  1606. .prepare = intel_dp_prepare,
  1607. .mode_set = intel_dp_mode_set,
  1608. .commit = intel_dp_commit,
  1609. };
  1610. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1611. .dpms = drm_helper_connector_dpms,
  1612. .detect = intel_dp_detect,
  1613. .fill_modes = drm_helper_probe_single_connector_modes,
  1614. .set_property = intel_dp_set_property,
  1615. .destroy = intel_dp_destroy,
  1616. };
  1617. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1618. .get_modes = intel_dp_get_modes,
  1619. .mode_valid = intel_dp_mode_valid,
  1620. .best_encoder = intel_best_encoder,
  1621. };
  1622. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1623. .destroy = intel_dp_encoder_destroy,
  1624. };
  1625. static void
  1626. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1627. {
  1628. struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
  1629. intel_dp_check_link_status(intel_dp);
  1630. }
  1631. /* Return which DP Port should be selected for Transcoder DP control */
  1632. int
  1633. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1634. {
  1635. struct drm_device *dev = crtc->dev;
  1636. struct drm_mode_config *mode_config = &dev->mode_config;
  1637. struct drm_encoder *encoder;
  1638. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1639. struct intel_dp *intel_dp;
  1640. if (encoder->crtc != crtc)
  1641. continue;
  1642. intel_dp = enc_to_intel_dp(encoder);
  1643. if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
  1644. return intel_dp->output_reg;
  1645. }
  1646. return -1;
  1647. }
  1648. /* check the VBT to see whether the eDP is on DP-D port */
  1649. bool intel_dpd_is_edp(struct drm_device *dev)
  1650. {
  1651. struct drm_i915_private *dev_priv = dev->dev_private;
  1652. struct child_device_config *p_child;
  1653. int i;
  1654. if (!dev_priv->child_dev_num)
  1655. return false;
  1656. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1657. p_child = dev_priv->child_dev + i;
  1658. if (p_child->dvo_port == PORT_IDPD &&
  1659. p_child->device_type == DEVICE_TYPE_eDP)
  1660. return true;
  1661. }
  1662. return false;
  1663. }
  1664. static void
  1665. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  1666. {
  1667. intel_attach_force_audio_property(connector);
  1668. intel_attach_broadcast_rgb_property(connector);
  1669. }
  1670. void
  1671. intel_dp_init(struct drm_device *dev, int output_reg)
  1672. {
  1673. struct drm_i915_private *dev_priv = dev->dev_private;
  1674. struct drm_connector *connector;
  1675. struct intel_dp *intel_dp;
  1676. struct intel_encoder *intel_encoder;
  1677. struct intel_connector *intel_connector;
  1678. const char *name = NULL;
  1679. int type;
  1680. intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
  1681. if (!intel_dp)
  1682. return;
  1683. intel_dp->output_reg = output_reg;
  1684. intel_dp->dpms_mode = -1;
  1685. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1686. if (!intel_connector) {
  1687. kfree(intel_dp);
  1688. return;
  1689. }
  1690. intel_encoder = &intel_dp->base;
  1691. if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
  1692. if (intel_dpd_is_edp(dev))
  1693. intel_dp->is_pch_edp = true;
  1694. if (output_reg == DP_A || is_pch_edp(intel_dp)) {
  1695. type = DRM_MODE_CONNECTOR_eDP;
  1696. intel_encoder->type = INTEL_OUTPUT_EDP;
  1697. } else {
  1698. type = DRM_MODE_CONNECTOR_DisplayPort;
  1699. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1700. }
  1701. connector = &intel_connector->base;
  1702. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1703. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1704. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1705. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1706. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1707. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1708. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1709. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1710. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1711. if (is_edp(intel_dp))
  1712. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1713. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1714. connector->interlace_allowed = true;
  1715. connector->doublescan_allowed = 0;
  1716. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  1717. DRM_MODE_ENCODER_TMDS);
  1718. drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
  1719. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1720. drm_sysfs_connector_add(connector);
  1721. /* Set up the DDC bus. */
  1722. switch (output_reg) {
  1723. case DP_A:
  1724. name = "DPDDC-A";
  1725. break;
  1726. case DP_B:
  1727. case PCH_DP_B:
  1728. dev_priv->hotplug_supported_mask |=
  1729. HDMIB_HOTPLUG_INT_STATUS;
  1730. name = "DPDDC-B";
  1731. break;
  1732. case DP_C:
  1733. case PCH_DP_C:
  1734. dev_priv->hotplug_supported_mask |=
  1735. HDMIC_HOTPLUG_INT_STATUS;
  1736. name = "DPDDC-C";
  1737. break;
  1738. case DP_D:
  1739. case PCH_DP_D:
  1740. dev_priv->hotplug_supported_mask |=
  1741. HDMID_HOTPLUG_INT_STATUS;
  1742. name = "DPDDC-D";
  1743. break;
  1744. }
  1745. intel_dp_i2c_init(intel_dp, intel_connector, name);
  1746. /* Cache some DPCD data in the eDP case */
  1747. if (is_edp(intel_dp)) {
  1748. bool ret;
  1749. u32 pp_on, pp_div;
  1750. pp_on = I915_READ(PCH_PP_ON_DELAYS);
  1751. pp_div = I915_READ(PCH_PP_DIVISOR);
  1752. /* Get T3 & T12 values (note: VESA not bspec terminology) */
  1753. dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
  1754. dev_priv->panel_t3 /= 10; /* t3 in 100us units */
  1755. dev_priv->panel_t12 = pp_div & 0xf;
  1756. dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
  1757. ironlake_edp_panel_vdd_on(intel_dp);
  1758. ret = intel_dp_get_dpcd(intel_dp);
  1759. ironlake_edp_panel_vdd_off(intel_dp);
  1760. if (ret) {
  1761. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  1762. dev_priv->no_aux_handshake =
  1763. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  1764. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  1765. } else {
  1766. /* if this fails, presume the device is a ghost */
  1767. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1768. intel_dp_encoder_destroy(&intel_dp->base.base);
  1769. intel_dp_destroy(&intel_connector->base);
  1770. return;
  1771. }
  1772. }
  1773. intel_encoder->hot_plug = intel_dp_hot_plug;
  1774. if (is_edp(intel_dp)) {
  1775. /* initialize panel mode from VBT if available for eDP */
  1776. if (dev_priv->lfp_lvds_vbt_mode) {
  1777. dev_priv->panel_fixed_mode =
  1778. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1779. if (dev_priv->panel_fixed_mode) {
  1780. dev_priv->panel_fixed_mode->type |=
  1781. DRM_MODE_TYPE_PREFERRED;
  1782. }
  1783. }
  1784. }
  1785. intel_dp_add_properties(intel_dp, connector);
  1786. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1787. * 0xd. Failure to do so will result in spurious interrupts being
  1788. * generated on the port when a cable is not attached.
  1789. */
  1790. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1791. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1792. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1793. }
  1794. }