vmalloc.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <asm/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. pte = pte_offset_kernel(pmd, addr);
  37. do {
  38. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  39. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  40. } while (pte++, addr += PAGE_SIZE, addr != end);
  41. }
  42. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  43. {
  44. pmd_t *pmd;
  45. unsigned long next;
  46. pmd = pmd_offset(pud, addr);
  47. do {
  48. next = pmd_addr_end(addr, end);
  49. if (pmd_none_or_clear_bad(pmd))
  50. continue;
  51. vunmap_pte_range(pmd, addr, next);
  52. } while (pmd++, addr = next, addr != end);
  53. }
  54. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  55. {
  56. pud_t *pud;
  57. unsigned long next;
  58. pud = pud_offset(pgd, addr);
  59. do {
  60. next = pud_addr_end(addr, end);
  61. if (pud_none_or_clear_bad(pud))
  62. continue;
  63. vunmap_pmd_range(pud, addr, next);
  64. } while (pud++, addr = next, addr != end);
  65. }
  66. static void vunmap_page_range(unsigned long addr, unsigned long end)
  67. {
  68. pgd_t *pgd;
  69. unsigned long next;
  70. BUG_ON(addr >= end);
  71. pgd = pgd_offset_k(addr);
  72. do {
  73. next = pgd_addr_end(addr, end);
  74. if (pgd_none_or_clear_bad(pgd))
  75. continue;
  76. vunmap_pud_range(pgd, addr, next);
  77. } while (pgd++, addr = next, addr != end);
  78. }
  79. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  80. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  81. {
  82. pte_t *pte;
  83. /*
  84. * nr is a running index into the array which helps higher level
  85. * callers keep track of where we're up to.
  86. */
  87. pte = pte_alloc_kernel(pmd, addr);
  88. if (!pte)
  89. return -ENOMEM;
  90. do {
  91. struct page *page = pages[*nr];
  92. if (WARN_ON(!pte_none(*pte)))
  93. return -EBUSY;
  94. if (WARN_ON(!page))
  95. return -ENOMEM;
  96. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  97. (*nr)++;
  98. } while (pte++, addr += PAGE_SIZE, addr != end);
  99. return 0;
  100. }
  101. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  102. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  103. {
  104. pmd_t *pmd;
  105. unsigned long next;
  106. pmd = pmd_alloc(&init_mm, pud, addr);
  107. if (!pmd)
  108. return -ENOMEM;
  109. do {
  110. next = pmd_addr_end(addr, end);
  111. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  112. return -ENOMEM;
  113. } while (pmd++, addr = next, addr != end);
  114. return 0;
  115. }
  116. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  117. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  118. {
  119. pud_t *pud;
  120. unsigned long next;
  121. pud = pud_alloc(&init_mm, pgd, addr);
  122. if (!pud)
  123. return -ENOMEM;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  127. return -ENOMEM;
  128. } while (pud++, addr = next, addr != end);
  129. return 0;
  130. }
  131. /*
  132. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  133. * will have pfns corresponding to the "pages" array.
  134. *
  135. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  136. */
  137. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  138. pgprot_t prot, struct page **pages)
  139. {
  140. pgd_t *pgd;
  141. unsigned long next;
  142. unsigned long addr = start;
  143. int err = 0;
  144. int nr = 0;
  145. BUG_ON(addr >= end);
  146. pgd = pgd_offset_k(addr);
  147. do {
  148. next = pgd_addr_end(addr, end);
  149. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  150. if (err)
  151. return err;
  152. } while (pgd++, addr = next, addr != end);
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static LIST_HEAD(vmap_area_list);
  231. static struct rb_root vmap_area_root = RB_ROOT;
  232. /* The vmap cache globals are protected by vmap_area_lock */
  233. static struct rb_node *free_vmap_cache;
  234. static unsigned long cached_hole_size;
  235. static unsigned long cached_vstart;
  236. static unsigned long cached_align;
  237. static unsigned long vmap_area_pcpu_hole;
  238. static struct vmap_area *__find_vmap_area(unsigned long addr)
  239. {
  240. struct rb_node *n = vmap_area_root.rb_node;
  241. while (n) {
  242. struct vmap_area *va;
  243. va = rb_entry(n, struct vmap_area, rb_node);
  244. if (addr < va->va_start)
  245. n = n->rb_left;
  246. else if (addr > va->va_start)
  247. n = n->rb_right;
  248. else
  249. return va;
  250. }
  251. return NULL;
  252. }
  253. static void __insert_vmap_area(struct vmap_area *va)
  254. {
  255. struct rb_node **p = &vmap_area_root.rb_node;
  256. struct rb_node *parent = NULL;
  257. struct rb_node *tmp;
  258. while (*p) {
  259. struct vmap_area *tmp_va;
  260. parent = *p;
  261. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  262. if (va->va_start < tmp_va->va_end)
  263. p = &(*p)->rb_left;
  264. else if (va->va_end > tmp_va->va_start)
  265. p = &(*p)->rb_right;
  266. else
  267. BUG();
  268. }
  269. rb_link_node(&va->rb_node, parent, p);
  270. rb_insert_color(&va->rb_node, &vmap_area_root);
  271. /* address-sort this list so it is usable like the vmlist */
  272. tmp = rb_prev(&va->rb_node);
  273. if (tmp) {
  274. struct vmap_area *prev;
  275. prev = rb_entry(tmp, struct vmap_area, rb_node);
  276. list_add_rcu(&va->list, &prev->list);
  277. } else
  278. list_add_rcu(&va->list, &vmap_area_list);
  279. }
  280. static void purge_vmap_area_lazy(void);
  281. /*
  282. * Allocate a region of KVA of the specified size and alignment, within the
  283. * vstart and vend.
  284. */
  285. static struct vmap_area *alloc_vmap_area(unsigned long size,
  286. unsigned long align,
  287. unsigned long vstart, unsigned long vend,
  288. int node, gfp_t gfp_mask)
  289. {
  290. struct vmap_area *va;
  291. struct rb_node *n;
  292. unsigned long addr;
  293. int purged = 0;
  294. struct vmap_area *first;
  295. BUG_ON(!size);
  296. BUG_ON(size & ~PAGE_MASK);
  297. BUG_ON(!is_power_of_2(align));
  298. va = kmalloc_node(sizeof(struct vmap_area),
  299. gfp_mask & GFP_RECLAIM_MASK, node);
  300. if (unlikely(!va))
  301. return ERR_PTR(-ENOMEM);
  302. retry:
  303. spin_lock(&vmap_area_lock);
  304. /*
  305. * Invalidate cache if we have more permissive parameters.
  306. * cached_hole_size notes the largest hole noticed _below_
  307. * the vmap_area cached in free_vmap_cache: if size fits
  308. * into that hole, we want to scan from vstart to reuse
  309. * the hole instead of allocating above free_vmap_cache.
  310. * Note that __free_vmap_area may update free_vmap_cache
  311. * without updating cached_hole_size or cached_align.
  312. */
  313. if (!free_vmap_cache ||
  314. size < cached_hole_size ||
  315. vstart < cached_vstart ||
  316. align < cached_align) {
  317. nocache:
  318. cached_hole_size = 0;
  319. free_vmap_cache = NULL;
  320. }
  321. /* record if we encounter less permissive parameters */
  322. cached_vstart = vstart;
  323. cached_align = align;
  324. /* find starting point for our search */
  325. if (free_vmap_cache) {
  326. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  327. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  328. if (addr < vstart)
  329. goto nocache;
  330. if (addr + size - 1 < addr)
  331. goto overflow;
  332. } else {
  333. addr = ALIGN(vstart, align);
  334. if (addr + size - 1 < addr)
  335. goto overflow;
  336. n = vmap_area_root.rb_node;
  337. first = NULL;
  338. while (n) {
  339. struct vmap_area *tmp;
  340. tmp = rb_entry(n, struct vmap_area, rb_node);
  341. if (tmp->va_end >= addr) {
  342. first = tmp;
  343. if (tmp->va_start <= addr)
  344. break;
  345. n = n->rb_left;
  346. } else
  347. n = n->rb_right;
  348. }
  349. if (!first)
  350. goto found;
  351. }
  352. /* from the starting point, walk areas until a suitable hole is found */
  353. while (addr + size >= first->va_start && addr + size <= vend) {
  354. if (addr + cached_hole_size < first->va_start)
  355. cached_hole_size = first->va_start - addr;
  356. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  357. if (addr + size - 1 < addr)
  358. goto overflow;
  359. n = rb_next(&first->rb_node);
  360. if (n)
  361. first = rb_entry(n, struct vmap_area, rb_node);
  362. else
  363. goto found;
  364. }
  365. found:
  366. if (addr + size > vend)
  367. goto overflow;
  368. va->va_start = addr;
  369. va->va_end = addr + size;
  370. va->flags = 0;
  371. __insert_vmap_area(va);
  372. free_vmap_cache = &va->rb_node;
  373. spin_unlock(&vmap_area_lock);
  374. BUG_ON(va->va_start & (align-1));
  375. BUG_ON(va->va_start < vstart);
  376. BUG_ON(va->va_end > vend);
  377. return va;
  378. overflow:
  379. spin_unlock(&vmap_area_lock);
  380. if (!purged) {
  381. purge_vmap_area_lazy();
  382. purged = 1;
  383. goto retry;
  384. }
  385. if (printk_ratelimit())
  386. printk(KERN_WARNING
  387. "vmap allocation for size %lu failed: "
  388. "use vmalloc=<size> to increase size.\n", size);
  389. kfree(va);
  390. return ERR_PTR(-EBUSY);
  391. }
  392. static void rcu_free_va(struct rcu_head *head)
  393. {
  394. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  395. kfree(va);
  396. }
  397. static void __free_vmap_area(struct vmap_area *va)
  398. {
  399. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  400. if (free_vmap_cache) {
  401. if (va->va_end < cached_vstart) {
  402. free_vmap_cache = NULL;
  403. } else {
  404. struct vmap_area *cache;
  405. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  406. if (va->va_start <= cache->va_start) {
  407. free_vmap_cache = rb_prev(&va->rb_node);
  408. /*
  409. * We don't try to update cached_hole_size or
  410. * cached_align, but it won't go very wrong.
  411. */
  412. }
  413. }
  414. }
  415. rb_erase(&va->rb_node, &vmap_area_root);
  416. RB_CLEAR_NODE(&va->rb_node);
  417. list_del_rcu(&va->list);
  418. /*
  419. * Track the highest possible candidate for pcpu area
  420. * allocation. Areas outside of vmalloc area can be returned
  421. * here too, consider only end addresses which fall inside
  422. * vmalloc area proper.
  423. */
  424. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  425. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  426. call_rcu(&va->rcu_head, rcu_free_va);
  427. }
  428. /*
  429. * Free a region of KVA allocated by alloc_vmap_area
  430. */
  431. static void free_vmap_area(struct vmap_area *va)
  432. {
  433. spin_lock(&vmap_area_lock);
  434. __free_vmap_area(va);
  435. spin_unlock(&vmap_area_lock);
  436. }
  437. /*
  438. * Clear the pagetable entries of a given vmap_area
  439. */
  440. static void unmap_vmap_area(struct vmap_area *va)
  441. {
  442. vunmap_page_range(va->va_start, va->va_end);
  443. }
  444. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  445. {
  446. /*
  447. * Unmap page tables and force a TLB flush immediately if
  448. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  449. * bugs similarly to those in linear kernel virtual address
  450. * space after a page has been freed.
  451. *
  452. * All the lazy freeing logic is still retained, in order to
  453. * minimise intrusiveness of this debugging feature.
  454. *
  455. * This is going to be *slow* (linear kernel virtual address
  456. * debugging doesn't do a broadcast TLB flush so it is a lot
  457. * faster).
  458. */
  459. #ifdef CONFIG_DEBUG_PAGEALLOC
  460. vunmap_page_range(start, end);
  461. flush_tlb_kernel_range(start, end);
  462. #endif
  463. }
  464. /*
  465. * lazy_max_pages is the maximum amount of virtual address space we gather up
  466. * before attempting to purge with a TLB flush.
  467. *
  468. * There is a tradeoff here: a larger number will cover more kernel page tables
  469. * and take slightly longer to purge, but it will linearly reduce the number of
  470. * global TLB flushes that must be performed. It would seem natural to scale
  471. * this number up linearly with the number of CPUs (because vmapping activity
  472. * could also scale linearly with the number of CPUs), however it is likely
  473. * that in practice, workloads might be constrained in other ways that mean
  474. * vmap activity will not scale linearly with CPUs. Also, I want to be
  475. * conservative and not introduce a big latency on huge systems, so go with
  476. * a less aggressive log scale. It will still be an improvement over the old
  477. * code, and it will be simple to change the scale factor if we find that it
  478. * becomes a problem on bigger systems.
  479. */
  480. static unsigned long lazy_max_pages(void)
  481. {
  482. unsigned int log;
  483. log = fls(num_online_cpus());
  484. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  485. }
  486. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  487. /* for per-CPU blocks */
  488. static void purge_fragmented_blocks_allcpus(void);
  489. /*
  490. * called before a call to iounmap() if the caller wants vm_area_struct's
  491. * immediately freed.
  492. */
  493. void set_iounmap_nonlazy(void)
  494. {
  495. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  496. }
  497. /*
  498. * Purges all lazily-freed vmap areas.
  499. *
  500. * If sync is 0 then don't purge if there is already a purge in progress.
  501. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  502. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  503. * their own TLB flushing).
  504. * Returns with *start = min(*start, lowest purged address)
  505. * *end = max(*end, highest purged address)
  506. */
  507. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  508. int sync, int force_flush)
  509. {
  510. static DEFINE_SPINLOCK(purge_lock);
  511. LIST_HEAD(valist);
  512. struct vmap_area *va;
  513. struct vmap_area *n_va;
  514. int nr = 0;
  515. /*
  516. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  517. * should not expect such behaviour. This just simplifies locking for
  518. * the case that isn't actually used at the moment anyway.
  519. */
  520. if (!sync && !force_flush) {
  521. if (!spin_trylock(&purge_lock))
  522. return;
  523. } else
  524. spin_lock(&purge_lock);
  525. if (sync)
  526. purge_fragmented_blocks_allcpus();
  527. rcu_read_lock();
  528. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  529. if (va->flags & VM_LAZY_FREE) {
  530. if (va->va_start < *start)
  531. *start = va->va_start;
  532. if (va->va_end > *end)
  533. *end = va->va_end;
  534. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  535. list_add_tail(&va->purge_list, &valist);
  536. va->flags |= VM_LAZY_FREEING;
  537. va->flags &= ~VM_LAZY_FREE;
  538. }
  539. }
  540. rcu_read_unlock();
  541. if (nr)
  542. atomic_sub(nr, &vmap_lazy_nr);
  543. if (nr || force_flush)
  544. flush_tlb_kernel_range(*start, *end);
  545. if (nr) {
  546. spin_lock(&vmap_area_lock);
  547. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  548. __free_vmap_area(va);
  549. spin_unlock(&vmap_area_lock);
  550. }
  551. spin_unlock(&purge_lock);
  552. }
  553. /*
  554. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  555. * is already purging.
  556. */
  557. static void try_purge_vmap_area_lazy(void)
  558. {
  559. unsigned long start = ULONG_MAX, end = 0;
  560. __purge_vmap_area_lazy(&start, &end, 0, 0);
  561. }
  562. /*
  563. * Kick off a purge of the outstanding lazy areas.
  564. */
  565. static void purge_vmap_area_lazy(void)
  566. {
  567. unsigned long start = ULONG_MAX, end = 0;
  568. __purge_vmap_area_lazy(&start, &end, 1, 0);
  569. }
  570. /*
  571. * Free a vmap area, caller ensuring that the area has been unmapped
  572. * and flush_cache_vunmap had been called for the correct range
  573. * previously.
  574. */
  575. static void free_vmap_area_noflush(struct vmap_area *va)
  576. {
  577. va->flags |= VM_LAZY_FREE;
  578. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  579. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  580. try_purge_vmap_area_lazy();
  581. }
  582. /*
  583. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  584. * called for the correct range previously.
  585. */
  586. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  587. {
  588. unmap_vmap_area(va);
  589. free_vmap_area_noflush(va);
  590. }
  591. /*
  592. * Free and unmap a vmap area
  593. */
  594. static void free_unmap_vmap_area(struct vmap_area *va)
  595. {
  596. flush_cache_vunmap(va->va_start, va->va_end);
  597. free_unmap_vmap_area_noflush(va);
  598. }
  599. static struct vmap_area *find_vmap_area(unsigned long addr)
  600. {
  601. struct vmap_area *va;
  602. spin_lock(&vmap_area_lock);
  603. va = __find_vmap_area(addr);
  604. spin_unlock(&vmap_area_lock);
  605. return va;
  606. }
  607. static void free_unmap_vmap_area_addr(unsigned long addr)
  608. {
  609. struct vmap_area *va;
  610. va = find_vmap_area(addr);
  611. BUG_ON(!va);
  612. free_unmap_vmap_area(va);
  613. }
  614. /*** Per cpu kva allocator ***/
  615. /*
  616. * vmap space is limited especially on 32 bit architectures. Ensure there is
  617. * room for at least 16 percpu vmap blocks per CPU.
  618. */
  619. /*
  620. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  621. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  622. * instead (we just need a rough idea)
  623. */
  624. #if BITS_PER_LONG == 32
  625. #define VMALLOC_SPACE (128UL*1024*1024)
  626. #else
  627. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  628. #endif
  629. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  630. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  631. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  632. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  633. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  634. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  635. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  636. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  637. VMALLOC_PAGES / NR_CPUS / 16))
  638. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  639. static bool vmap_initialized __read_mostly = false;
  640. struct vmap_block_queue {
  641. spinlock_t lock;
  642. struct list_head free;
  643. };
  644. struct vmap_block {
  645. spinlock_t lock;
  646. struct vmap_area *va;
  647. struct vmap_block_queue *vbq;
  648. unsigned long free, dirty;
  649. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  650. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  651. struct list_head free_list;
  652. struct rcu_head rcu_head;
  653. struct list_head purge;
  654. };
  655. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  656. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  657. /*
  658. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  659. * in the free path. Could get rid of this if we change the API to return a
  660. * "cookie" from alloc, to be passed to free. But no big deal yet.
  661. */
  662. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  663. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  664. /*
  665. * We should probably have a fallback mechanism to allocate virtual memory
  666. * out of partially filled vmap blocks. However vmap block sizing should be
  667. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  668. * big problem.
  669. */
  670. static unsigned long addr_to_vb_idx(unsigned long addr)
  671. {
  672. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  673. addr /= VMAP_BLOCK_SIZE;
  674. return addr;
  675. }
  676. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  677. {
  678. struct vmap_block_queue *vbq;
  679. struct vmap_block *vb;
  680. struct vmap_area *va;
  681. unsigned long vb_idx;
  682. int node, err;
  683. node = numa_node_id();
  684. vb = kmalloc_node(sizeof(struct vmap_block),
  685. gfp_mask & GFP_RECLAIM_MASK, node);
  686. if (unlikely(!vb))
  687. return ERR_PTR(-ENOMEM);
  688. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  689. VMALLOC_START, VMALLOC_END,
  690. node, gfp_mask);
  691. if (IS_ERR(va)) {
  692. kfree(vb);
  693. return ERR_CAST(va);
  694. }
  695. err = radix_tree_preload(gfp_mask);
  696. if (unlikely(err)) {
  697. kfree(vb);
  698. free_vmap_area(va);
  699. return ERR_PTR(err);
  700. }
  701. spin_lock_init(&vb->lock);
  702. vb->va = va;
  703. vb->free = VMAP_BBMAP_BITS;
  704. vb->dirty = 0;
  705. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  706. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  707. INIT_LIST_HEAD(&vb->free_list);
  708. vb_idx = addr_to_vb_idx(va->va_start);
  709. spin_lock(&vmap_block_tree_lock);
  710. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  711. spin_unlock(&vmap_block_tree_lock);
  712. BUG_ON(err);
  713. radix_tree_preload_end();
  714. vbq = &get_cpu_var(vmap_block_queue);
  715. vb->vbq = vbq;
  716. spin_lock(&vbq->lock);
  717. list_add_rcu(&vb->free_list, &vbq->free);
  718. spin_unlock(&vbq->lock);
  719. put_cpu_var(vmap_block_queue);
  720. return vb;
  721. }
  722. static void rcu_free_vb(struct rcu_head *head)
  723. {
  724. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  725. kfree(vb);
  726. }
  727. static void free_vmap_block(struct vmap_block *vb)
  728. {
  729. struct vmap_block *tmp;
  730. unsigned long vb_idx;
  731. vb_idx = addr_to_vb_idx(vb->va->va_start);
  732. spin_lock(&vmap_block_tree_lock);
  733. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  734. spin_unlock(&vmap_block_tree_lock);
  735. BUG_ON(tmp != vb);
  736. free_vmap_area_noflush(vb->va);
  737. call_rcu(&vb->rcu_head, rcu_free_vb);
  738. }
  739. static void purge_fragmented_blocks(int cpu)
  740. {
  741. LIST_HEAD(purge);
  742. struct vmap_block *vb;
  743. struct vmap_block *n_vb;
  744. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  745. rcu_read_lock();
  746. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  747. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  748. continue;
  749. spin_lock(&vb->lock);
  750. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  751. vb->free = 0; /* prevent further allocs after releasing lock */
  752. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  753. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  754. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  755. spin_lock(&vbq->lock);
  756. list_del_rcu(&vb->free_list);
  757. spin_unlock(&vbq->lock);
  758. spin_unlock(&vb->lock);
  759. list_add_tail(&vb->purge, &purge);
  760. } else
  761. spin_unlock(&vb->lock);
  762. }
  763. rcu_read_unlock();
  764. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  765. list_del(&vb->purge);
  766. free_vmap_block(vb);
  767. }
  768. }
  769. static void purge_fragmented_blocks_thiscpu(void)
  770. {
  771. purge_fragmented_blocks(smp_processor_id());
  772. }
  773. static void purge_fragmented_blocks_allcpus(void)
  774. {
  775. int cpu;
  776. for_each_possible_cpu(cpu)
  777. purge_fragmented_blocks(cpu);
  778. }
  779. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  780. {
  781. struct vmap_block_queue *vbq;
  782. struct vmap_block *vb;
  783. unsigned long addr = 0;
  784. unsigned int order;
  785. int purge = 0;
  786. BUG_ON(size & ~PAGE_MASK);
  787. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  788. order = get_order(size);
  789. again:
  790. rcu_read_lock();
  791. vbq = &get_cpu_var(vmap_block_queue);
  792. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  793. int i;
  794. spin_lock(&vb->lock);
  795. if (vb->free < 1UL << order)
  796. goto next;
  797. i = bitmap_find_free_region(vb->alloc_map,
  798. VMAP_BBMAP_BITS, order);
  799. if (i < 0) {
  800. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  801. /* fragmented and no outstanding allocations */
  802. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  803. purge = 1;
  804. }
  805. goto next;
  806. }
  807. addr = vb->va->va_start + (i << PAGE_SHIFT);
  808. BUG_ON(addr_to_vb_idx(addr) !=
  809. addr_to_vb_idx(vb->va->va_start));
  810. vb->free -= 1UL << order;
  811. if (vb->free == 0) {
  812. spin_lock(&vbq->lock);
  813. list_del_rcu(&vb->free_list);
  814. spin_unlock(&vbq->lock);
  815. }
  816. spin_unlock(&vb->lock);
  817. break;
  818. next:
  819. spin_unlock(&vb->lock);
  820. }
  821. if (purge)
  822. purge_fragmented_blocks_thiscpu();
  823. put_cpu_var(vmap_block_queue);
  824. rcu_read_unlock();
  825. if (!addr) {
  826. vb = new_vmap_block(gfp_mask);
  827. if (IS_ERR(vb))
  828. return vb;
  829. goto again;
  830. }
  831. return (void *)addr;
  832. }
  833. static void vb_free(const void *addr, unsigned long size)
  834. {
  835. unsigned long offset;
  836. unsigned long vb_idx;
  837. unsigned int order;
  838. struct vmap_block *vb;
  839. BUG_ON(size & ~PAGE_MASK);
  840. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  841. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  842. order = get_order(size);
  843. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  844. vb_idx = addr_to_vb_idx((unsigned long)addr);
  845. rcu_read_lock();
  846. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  847. rcu_read_unlock();
  848. BUG_ON(!vb);
  849. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  850. spin_lock(&vb->lock);
  851. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  852. vb->dirty += 1UL << order;
  853. if (vb->dirty == VMAP_BBMAP_BITS) {
  854. BUG_ON(vb->free);
  855. spin_unlock(&vb->lock);
  856. free_vmap_block(vb);
  857. } else
  858. spin_unlock(&vb->lock);
  859. }
  860. /**
  861. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  862. *
  863. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  864. * to amortize TLB flushing overheads. What this means is that any page you
  865. * have now, may, in a former life, have been mapped into kernel virtual
  866. * address by the vmap layer and so there might be some CPUs with TLB entries
  867. * still referencing that page (additional to the regular 1:1 kernel mapping).
  868. *
  869. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  870. * be sure that none of the pages we have control over will have any aliases
  871. * from the vmap layer.
  872. */
  873. void vm_unmap_aliases(void)
  874. {
  875. unsigned long start = ULONG_MAX, end = 0;
  876. int cpu;
  877. int flush = 0;
  878. if (unlikely(!vmap_initialized))
  879. return;
  880. for_each_possible_cpu(cpu) {
  881. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  882. struct vmap_block *vb;
  883. rcu_read_lock();
  884. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  885. int i;
  886. spin_lock(&vb->lock);
  887. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  888. while (i < VMAP_BBMAP_BITS) {
  889. unsigned long s, e;
  890. int j;
  891. j = find_next_zero_bit(vb->dirty_map,
  892. VMAP_BBMAP_BITS, i);
  893. s = vb->va->va_start + (i << PAGE_SHIFT);
  894. e = vb->va->va_start + (j << PAGE_SHIFT);
  895. flush = 1;
  896. if (s < start)
  897. start = s;
  898. if (e > end)
  899. end = e;
  900. i = j;
  901. i = find_next_bit(vb->dirty_map,
  902. VMAP_BBMAP_BITS, i);
  903. }
  904. spin_unlock(&vb->lock);
  905. }
  906. rcu_read_unlock();
  907. }
  908. __purge_vmap_area_lazy(&start, &end, 1, flush);
  909. }
  910. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  911. /**
  912. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  913. * @mem: the pointer returned by vm_map_ram
  914. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  915. */
  916. void vm_unmap_ram(const void *mem, unsigned int count)
  917. {
  918. unsigned long size = count << PAGE_SHIFT;
  919. unsigned long addr = (unsigned long)mem;
  920. BUG_ON(!addr);
  921. BUG_ON(addr < VMALLOC_START);
  922. BUG_ON(addr > VMALLOC_END);
  923. BUG_ON(addr & (PAGE_SIZE-1));
  924. debug_check_no_locks_freed(mem, size);
  925. vmap_debug_free_range(addr, addr+size);
  926. if (likely(count <= VMAP_MAX_ALLOC))
  927. vb_free(mem, size);
  928. else
  929. free_unmap_vmap_area_addr(addr);
  930. }
  931. EXPORT_SYMBOL(vm_unmap_ram);
  932. /**
  933. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  934. * @pages: an array of pointers to the pages to be mapped
  935. * @count: number of pages
  936. * @node: prefer to allocate data structures on this node
  937. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  938. *
  939. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  940. */
  941. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  942. {
  943. unsigned long size = count << PAGE_SHIFT;
  944. unsigned long addr;
  945. void *mem;
  946. if (likely(count <= VMAP_MAX_ALLOC)) {
  947. mem = vb_alloc(size, GFP_KERNEL);
  948. if (IS_ERR(mem))
  949. return NULL;
  950. addr = (unsigned long)mem;
  951. } else {
  952. struct vmap_area *va;
  953. va = alloc_vmap_area(size, PAGE_SIZE,
  954. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  955. if (IS_ERR(va))
  956. return NULL;
  957. addr = va->va_start;
  958. mem = (void *)addr;
  959. }
  960. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  961. vm_unmap_ram(mem, count);
  962. return NULL;
  963. }
  964. return mem;
  965. }
  966. EXPORT_SYMBOL(vm_map_ram);
  967. /**
  968. * vm_area_register_early - register vmap area early during boot
  969. * @vm: vm_struct to register
  970. * @align: requested alignment
  971. *
  972. * This function is used to register kernel vm area before
  973. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  974. * proper values on entry and other fields should be zero. On return,
  975. * vm->addr contains the allocated address.
  976. *
  977. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  978. */
  979. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  980. {
  981. static size_t vm_init_off __initdata;
  982. unsigned long addr;
  983. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  984. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  985. vm->addr = (void *)addr;
  986. vm->next = vmlist;
  987. vmlist = vm;
  988. }
  989. void __init vmalloc_init(void)
  990. {
  991. struct vmap_area *va;
  992. struct vm_struct *tmp;
  993. int i;
  994. for_each_possible_cpu(i) {
  995. struct vmap_block_queue *vbq;
  996. vbq = &per_cpu(vmap_block_queue, i);
  997. spin_lock_init(&vbq->lock);
  998. INIT_LIST_HEAD(&vbq->free);
  999. }
  1000. /* Import existing vmlist entries. */
  1001. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1002. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1003. va->flags = tmp->flags | VM_VM_AREA;
  1004. va->va_start = (unsigned long)tmp->addr;
  1005. va->va_end = va->va_start + tmp->size;
  1006. __insert_vmap_area(va);
  1007. }
  1008. vmap_area_pcpu_hole = VMALLOC_END;
  1009. vmap_initialized = true;
  1010. }
  1011. /**
  1012. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1013. * @addr: start of the VM area to map
  1014. * @size: size of the VM area to map
  1015. * @prot: page protection flags to use
  1016. * @pages: pages to map
  1017. *
  1018. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1019. * specify should have been allocated using get_vm_area() and its
  1020. * friends.
  1021. *
  1022. * NOTE:
  1023. * This function does NOT do any cache flushing. The caller is
  1024. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1025. * before calling this function.
  1026. *
  1027. * RETURNS:
  1028. * The number of pages mapped on success, -errno on failure.
  1029. */
  1030. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1031. pgprot_t prot, struct page **pages)
  1032. {
  1033. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1034. }
  1035. /**
  1036. * unmap_kernel_range_noflush - unmap kernel VM area
  1037. * @addr: start of the VM area to unmap
  1038. * @size: size of the VM area to unmap
  1039. *
  1040. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1041. * specify should have been allocated using get_vm_area() and its
  1042. * friends.
  1043. *
  1044. * NOTE:
  1045. * This function does NOT do any cache flushing. The caller is
  1046. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1047. * before calling this function and flush_tlb_kernel_range() after.
  1048. */
  1049. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1050. {
  1051. vunmap_page_range(addr, addr + size);
  1052. }
  1053. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1054. /**
  1055. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1056. * @addr: start of the VM area to unmap
  1057. * @size: size of the VM area to unmap
  1058. *
  1059. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1060. * the unmapping and tlb after.
  1061. */
  1062. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1063. {
  1064. unsigned long end = addr + size;
  1065. flush_cache_vunmap(addr, end);
  1066. vunmap_page_range(addr, end);
  1067. flush_tlb_kernel_range(addr, end);
  1068. }
  1069. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1070. {
  1071. unsigned long addr = (unsigned long)area->addr;
  1072. unsigned long end = addr + area->size - PAGE_SIZE;
  1073. int err;
  1074. err = vmap_page_range(addr, end, prot, *pages);
  1075. if (err > 0) {
  1076. *pages += err;
  1077. err = 0;
  1078. }
  1079. return err;
  1080. }
  1081. EXPORT_SYMBOL_GPL(map_vm_area);
  1082. /*** Old vmalloc interfaces ***/
  1083. DEFINE_RWLOCK(vmlist_lock);
  1084. struct vm_struct *vmlist;
  1085. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1086. unsigned long flags, void *caller)
  1087. {
  1088. struct vm_struct *tmp, **p;
  1089. vm->flags = flags;
  1090. vm->addr = (void *)va->va_start;
  1091. vm->size = va->va_end - va->va_start;
  1092. vm->caller = caller;
  1093. va->private = vm;
  1094. va->flags |= VM_VM_AREA;
  1095. write_lock(&vmlist_lock);
  1096. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1097. if (tmp->addr >= vm->addr)
  1098. break;
  1099. }
  1100. vm->next = *p;
  1101. *p = vm;
  1102. write_unlock(&vmlist_lock);
  1103. }
  1104. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1105. unsigned long align, unsigned long flags, unsigned long start,
  1106. unsigned long end, int node, gfp_t gfp_mask, void *caller)
  1107. {
  1108. static struct vmap_area *va;
  1109. struct vm_struct *area;
  1110. BUG_ON(in_interrupt());
  1111. if (flags & VM_IOREMAP) {
  1112. int bit = fls(size);
  1113. if (bit > IOREMAP_MAX_ORDER)
  1114. bit = IOREMAP_MAX_ORDER;
  1115. else if (bit < PAGE_SHIFT)
  1116. bit = PAGE_SHIFT;
  1117. align = 1ul << bit;
  1118. }
  1119. size = PAGE_ALIGN(size);
  1120. if (unlikely(!size))
  1121. return NULL;
  1122. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1123. if (unlikely(!area))
  1124. return NULL;
  1125. /*
  1126. * We always allocate a guard page.
  1127. */
  1128. size += PAGE_SIZE;
  1129. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1130. if (IS_ERR(va)) {
  1131. kfree(area);
  1132. return NULL;
  1133. }
  1134. insert_vmalloc_vm(area, va, flags, caller);
  1135. return area;
  1136. }
  1137. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1138. unsigned long start, unsigned long end)
  1139. {
  1140. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1141. __builtin_return_address(0));
  1142. }
  1143. EXPORT_SYMBOL_GPL(__get_vm_area);
  1144. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1145. unsigned long start, unsigned long end,
  1146. void *caller)
  1147. {
  1148. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1149. caller);
  1150. }
  1151. /**
  1152. * get_vm_area - reserve a contiguous kernel virtual area
  1153. * @size: size of the area
  1154. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1155. *
  1156. * Search an area of @size in the kernel virtual mapping area,
  1157. * and reserved it for out purposes. Returns the area descriptor
  1158. * on success or %NULL on failure.
  1159. */
  1160. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1161. {
  1162. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1163. -1, GFP_KERNEL, __builtin_return_address(0));
  1164. }
  1165. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1166. void *caller)
  1167. {
  1168. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1169. -1, GFP_KERNEL, caller);
  1170. }
  1171. static struct vm_struct *find_vm_area(const void *addr)
  1172. {
  1173. struct vmap_area *va;
  1174. va = find_vmap_area((unsigned long)addr);
  1175. if (va && va->flags & VM_VM_AREA)
  1176. return va->private;
  1177. return NULL;
  1178. }
  1179. /**
  1180. * remove_vm_area - find and remove a continuous kernel virtual area
  1181. * @addr: base address
  1182. *
  1183. * Search for the kernel VM area starting at @addr, and remove it.
  1184. * This function returns the found VM area, but using it is NOT safe
  1185. * on SMP machines, except for its size or flags.
  1186. */
  1187. struct vm_struct *remove_vm_area(const void *addr)
  1188. {
  1189. struct vmap_area *va;
  1190. va = find_vmap_area((unsigned long)addr);
  1191. if (va && va->flags & VM_VM_AREA) {
  1192. struct vm_struct *vm = va->private;
  1193. struct vm_struct *tmp, **p;
  1194. /*
  1195. * remove from list and disallow access to this vm_struct
  1196. * before unmap. (address range confliction is maintained by
  1197. * vmap.)
  1198. */
  1199. write_lock(&vmlist_lock);
  1200. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1201. ;
  1202. *p = tmp->next;
  1203. write_unlock(&vmlist_lock);
  1204. vmap_debug_free_range(va->va_start, va->va_end);
  1205. free_unmap_vmap_area(va);
  1206. vm->size -= PAGE_SIZE;
  1207. return vm;
  1208. }
  1209. return NULL;
  1210. }
  1211. static void __vunmap(const void *addr, int deallocate_pages)
  1212. {
  1213. struct vm_struct *area;
  1214. if (!addr)
  1215. return;
  1216. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1217. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1218. return;
  1219. }
  1220. area = remove_vm_area(addr);
  1221. if (unlikely(!area)) {
  1222. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1223. addr);
  1224. return;
  1225. }
  1226. debug_check_no_locks_freed(addr, area->size);
  1227. debug_check_no_obj_freed(addr, area->size);
  1228. if (deallocate_pages) {
  1229. int i;
  1230. for (i = 0; i < area->nr_pages; i++) {
  1231. struct page *page = area->pages[i];
  1232. BUG_ON(!page);
  1233. __free_page(page);
  1234. }
  1235. if (area->flags & VM_VPAGES)
  1236. vfree(area->pages);
  1237. else
  1238. kfree(area->pages);
  1239. }
  1240. kfree(area);
  1241. return;
  1242. }
  1243. /**
  1244. * vfree - release memory allocated by vmalloc()
  1245. * @addr: memory base address
  1246. *
  1247. * Free the virtually continuous memory area starting at @addr, as
  1248. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1249. * NULL, no operation is performed.
  1250. *
  1251. * Must not be called in interrupt context.
  1252. */
  1253. void vfree(const void *addr)
  1254. {
  1255. BUG_ON(in_interrupt());
  1256. kmemleak_free(addr);
  1257. __vunmap(addr, 1);
  1258. }
  1259. EXPORT_SYMBOL(vfree);
  1260. /**
  1261. * vunmap - release virtual mapping obtained by vmap()
  1262. * @addr: memory base address
  1263. *
  1264. * Free the virtually contiguous memory area starting at @addr,
  1265. * which was created from the page array passed to vmap().
  1266. *
  1267. * Must not be called in interrupt context.
  1268. */
  1269. void vunmap(const void *addr)
  1270. {
  1271. BUG_ON(in_interrupt());
  1272. might_sleep();
  1273. __vunmap(addr, 0);
  1274. }
  1275. EXPORT_SYMBOL(vunmap);
  1276. /**
  1277. * vmap - map an array of pages into virtually contiguous space
  1278. * @pages: array of page pointers
  1279. * @count: number of pages to map
  1280. * @flags: vm_area->flags
  1281. * @prot: page protection for the mapping
  1282. *
  1283. * Maps @count pages from @pages into contiguous kernel virtual
  1284. * space.
  1285. */
  1286. void *vmap(struct page **pages, unsigned int count,
  1287. unsigned long flags, pgprot_t prot)
  1288. {
  1289. struct vm_struct *area;
  1290. might_sleep();
  1291. if (count > totalram_pages)
  1292. return NULL;
  1293. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1294. __builtin_return_address(0));
  1295. if (!area)
  1296. return NULL;
  1297. if (map_vm_area(area, prot, &pages)) {
  1298. vunmap(area->addr);
  1299. return NULL;
  1300. }
  1301. return area->addr;
  1302. }
  1303. EXPORT_SYMBOL(vmap);
  1304. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1305. gfp_t gfp_mask, pgprot_t prot,
  1306. int node, void *caller);
  1307. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1308. pgprot_t prot, int node, void *caller)
  1309. {
  1310. struct page **pages;
  1311. unsigned int nr_pages, array_size, i;
  1312. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1313. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1314. array_size = (nr_pages * sizeof(struct page *));
  1315. area->nr_pages = nr_pages;
  1316. /* Please note that the recursion is strictly bounded. */
  1317. if (array_size > PAGE_SIZE) {
  1318. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1319. PAGE_KERNEL, node, caller);
  1320. area->flags |= VM_VPAGES;
  1321. } else {
  1322. pages = kmalloc_node(array_size, nested_gfp, node);
  1323. }
  1324. area->pages = pages;
  1325. area->caller = caller;
  1326. if (!area->pages) {
  1327. remove_vm_area(area->addr);
  1328. kfree(area);
  1329. return NULL;
  1330. }
  1331. for (i = 0; i < area->nr_pages; i++) {
  1332. struct page *page;
  1333. if (node < 0)
  1334. page = alloc_page(gfp_mask);
  1335. else
  1336. page = alloc_pages_node(node, gfp_mask, 0);
  1337. if (unlikely(!page)) {
  1338. /* Successfully allocated i pages, free them in __vunmap() */
  1339. area->nr_pages = i;
  1340. goto fail;
  1341. }
  1342. area->pages[i] = page;
  1343. }
  1344. if (map_vm_area(area, prot, &pages))
  1345. goto fail;
  1346. return area->addr;
  1347. fail:
  1348. vfree(area->addr);
  1349. return NULL;
  1350. }
  1351. /**
  1352. * __vmalloc_node_range - allocate virtually contiguous memory
  1353. * @size: allocation size
  1354. * @align: desired alignment
  1355. * @start: vm area range start
  1356. * @end: vm area range end
  1357. * @gfp_mask: flags for the page level allocator
  1358. * @prot: protection mask for the allocated pages
  1359. * @node: node to use for allocation or -1
  1360. * @caller: caller's return address
  1361. *
  1362. * Allocate enough pages to cover @size from the page level
  1363. * allocator with @gfp_mask flags. Map them into contiguous
  1364. * kernel virtual space, using a pagetable protection of @prot.
  1365. */
  1366. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1367. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1368. pgprot_t prot, int node, void *caller)
  1369. {
  1370. struct vm_struct *area;
  1371. void *addr;
  1372. unsigned long real_size = size;
  1373. size = PAGE_ALIGN(size);
  1374. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1375. return NULL;
  1376. area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
  1377. gfp_mask, caller);
  1378. if (!area)
  1379. return NULL;
  1380. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1381. /*
  1382. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1383. * structures allocated in the __get_vm_area_node() function contain
  1384. * references to the virtual address of the vmalloc'ed block.
  1385. */
  1386. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1387. return addr;
  1388. }
  1389. /**
  1390. * __vmalloc_node - allocate virtually contiguous memory
  1391. * @size: allocation size
  1392. * @align: desired alignment
  1393. * @gfp_mask: flags for the page level allocator
  1394. * @prot: protection mask for the allocated pages
  1395. * @node: node to use for allocation or -1
  1396. * @caller: caller's return address
  1397. *
  1398. * Allocate enough pages to cover @size from the page level
  1399. * allocator with @gfp_mask flags. Map them into contiguous
  1400. * kernel virtual space, using a pagetable protection of @prot.
  1401. */
  1402. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1403. gfp_t gfp_mask, pgprot_t prot,
  1404. int node, void *caller)
  1405. {
  1406. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1407. gfp_mask, prot, node, caller);
  1408. }
  1409. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1410. {
  1411. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1412. __builtin_return_address(0));
  1413. }
  1414. EXPORT_SYMBOL(__vmalloc);
  1415. static inline void *__vmalloc_node_flags(unsigned long size,
  1416. int node, gfp_t flags)
  1417. {
  1418. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1419. node, __builtin_return_address(0));
  1420. }
  1421. /**
  1422. * vmalloc - allocate virtually contiguous memory
  1423. * @size: allocation size
  1424. * Allocate enough pages to cover @size from the page level
  1425. * allocator and map them into contiguous kernel virtual space.
  1426. *
  1427. * For tight control over page level allocator and protection flags
  1428. * use __vmalloc() instead.
  1429. */
  1430. void *vmalloc(unsigned long size)
  1431. {
  1432. return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
  1433. }
  1434. EXPORT_SYMBOL(vmalloc);
  1435. /**
  1436. * vzalloc - allocate virtually contiguous memory with zero fill
  1437. * @size: allocation size
  1438. * Allocate enough pages to cover @size from the page level
  1439. * allocator and map them into contiguous kernel virtual space.
  1440. * The memory allocated is set to zero.
  1441. *
  1442. * For tight control over page level allocator and protection flags
  1443. * use __vmalloc() instead.
  1444. */
  1445. void *vzalloc(unsigned long size)
  1446. {
  1447. return __vmalloc_node_flags(size, -1,
  1448. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1449. }
  1450. EXPORT_SYMBOL(vzalloc);
  1451. /**
  1452. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1453. * @size: allocation size
  1454. *
  1455. * The resulting memory area is zeroed so it can be mapped to userspace
  1456. * without leaking data.
  1457. */
  1458. void *vmalloc_user(unsigned long size)
  1459. {
  1460. struct vm_struct *area;
  1461. void *ret;
  1462. ret = __vmalloc_node(size, SHMLBA,
  1463. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1464. PAGE_KERNEL, -1, __builtin_return_address(0));
  1465. if (ret) {
  1466. area = find_vm_area(ret);
  1467. area->flags |= VM_USERMAP;
  1468. }
  1469. return ret;
  1470. }
  1471. EXPORT_SYMBOL(vmalloc_user);
  1472. /**
  1473. * vmalloc_node - allocate memory on a specific node
  1474. * @size: allocation size
  1475. * @node: numa node
  1476. *
  1477. * Allocate enough pages to cover @size from the page level
  1478. * allocator and map them into contiguous kernel virtual space.
  1479. *
  1480. * For tight control over page level allocator and protection flags
  1481. * use __vmalloc() instead.
  1482. */
  1483. void *vmalloc_node(unsigned long size, int node)
  1484. {
  1485. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1486. node, __builtin_return_address(0));
  1487. }
  1488. EXPORT_SYMBOL(vmalloc_node);
  1489. /**
  1490. * vzalloc_node - allocate memory on a specific node with zero fill
  1491. * @size: allocation size
  1492. * @node: numa node
  1493. *
  1494. * Allocate enough pages to cover @size from the page level
  1495. * allocator and map them into contiguous kernel virtual space.
  1496. * The memory allocated is set to zero.
  1497. *
  1498. * For tight control over page level allocator and protection flags
  1499. * use __vmalloc_node() instead.
  1500. */
  1501. void *vzalloc_node(unsigned long size, int node)
  1502. {
  1503. return __vmalloc_node_flags(size, node,
  1504. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1505. }
  1506. EXPORT_SYMBOL(vzalloc_node);
  1507. #ifndef PAGE_KERNEL_EXEC
  1508. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1509. #endif
  1510. /**
  1511. * vmalloc_exec - allocate virtually contiguous, executable memory
  1512. * @size: allocation size
  1513. *
  1514. * Kernel-internal function to allocate enough pages to cover @size
  1515. * the page level allocator and map them into contiguous and
  1516. * executable kernel virtual space.
  1517. *
  1518. * For tight control over page level allocator and protection flags
  1519. * use __vmalloc() instead.
  1520. */
  1521. void *vmalloc_exec(unsigned long size)
  1522. {
  1523. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1524. -1, __builtin_return_address(0));
  1525. }
  1526. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1527. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1528. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1529. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1530. #else
  1531. #define GFP_VMALLOC32 GFP_KERNEL
  1532. #endif
  1533. /**
  1534. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1535. * @size: allocation size
  1536. *
  1537. * Allocate enough 32bit PA addressable pages to cover @size from the
  1538. * page level allocator and map them into contiguous kernel virtual space.
  1539. */
  1540. void *vmalloc_32(unsigned long size)
  1541. {
  1542. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1543. -1, __builtin_return_address(0));
  1544. }
  1545. EXPORT_SYMBOL(vmalloc_32);
  1546. /**
  1547. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1548. * @size: allocation size
  1549. *
  1550. * The resulting memory area is 32bit addressable and zeroed so it can be
  1551. * mapped to userspace without leaking data.
  1552. */
  1553. void *vmalloc_32_user(unsigned long size)
  1554. {
  1555. struct vm_struct *area;
  1556. void *ret;
  1557. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1558. -1, __builtin_return_address(0));
  1559. if (ret) {
  1560. area = find_vm_area(ret);
  1561. area->flags |= VM_USERMAP;
  1562. }
  1563. return ret;
  1564. }
  1565. EXPORT_SYMBOL(vmalloc_32_user);
  1566. /*
  1567. * small helper routine , copy contents to buf from addr.
  1568. * If the page is not present, fill zero.
  1569. */
  1570. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1571. {
  1572. struct page *p;
  1573. int copied = 0;
  1574. while (count) {
  1575. unsigned long offset, length;
  1576. offset = (unsigned long)addr & ~PAGE_MASK;
  1577. length = PAGE_SIZE - offset;
  1578. if (length > count)
  1579. length = count;
  1580. p = vmalloc_to_page(addr);
  1581. /*
  1582. * To do safe access to this _mapped_ area, we need
  1583. * lock. But adding lock here means that we need to add
  1584. * overhead of vmalloc()/vfree() calles for this _debug_
  1585. * interface, rarely used. Instead of that, we'll use
  1586. * kmap() and get small overhead in this access function.
  1587. */
  1588. if (p) {
  1589. /*
  1590. * we can expect USER0 is not used (see vread/vwrite's
  1591. * function description)
  1592. */
  1593. void *map = kmap_atomic(p, KM_USER0);
  1594. memcpy(buf, map + offset, length);
  1595. kunmap_atomic(map, KM_USER0);
  1596. } else
  1597. memset(buf, 0, length);
  1598. addr += length;
  1599. buf += length;
  1600. copied += length;
  1601. count -= length;
  1602. }
  1603. return copied;
  1604. }
  1605. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1606. {
  1607. struct page *p;
  1608. int copied = 0;
  1609. while (count) {
  1610. unsigned long offset, length;
  1611. offset = (unsigned long)addr & ~PAGE_MASK;
  1612. length = PAGE_SIZE - offset;
  1613. if (length > count)
  1614. length = count;
  1615. p = vmalloc_to_page(addr);
  1616. /*
  1617. * To do safe access to this _mapped_ area, we need
  1618. * lock. But adding lock here means that we need to add
  1619. * overhead of vmalloc()/vfree() calles for this _debug_
  1620. * interface, rarely used. Instead of that, we'll use
  1621. * kmap() and get small overhead in this access function.
  1622. */
  1623. if (p) {
  1624. /*
  1625. * we can expect USER0 is not used (see vread/vwrite's
  1626. * function description)
  1627. */
  1628. void *map = kmap_atomic(p, KM_USER0);
  1629. memcpy(map + offset, buf, length);
  1630. kunmap_atomic(map, KM_USER0);
  1631. }
  1632. addr += length;
  1633. buf += length;
  1634. copied += length;
  1635. count -= length;
  1636. }
  1637. return copied;
  1638. }
  1639. /**
  1640. * vread() - read vmalloc area in a safe way.
  1641. * @buf: buffer for reading data
  1642. * @addr: vm address.
  1643. * @count: number of bytes to be read.
  1644. *
  1645. * Returns # of bytes which addr and buf should be increased.
  1646. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1647. * includes any intersect with alive vmalloc area.
  1648. *
  1649. * This function checks that addr is a valid vmalloc'ed area, and
  1650. * copy data from that area to a given buffer. If the given memory range
  1651. * of [addr...addr+count) includes some valid address, data is copied to
  1652. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1653. * IOREMAP area is treated as memory hole and no copy is done.
  1654. *
  1655. * If [addr...addr+count) doesn't includes any intersects with alive
  1656. * vm_struct area, returns 0.
  1657. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1658. * the caller should guarantee KM_USER0 is not used.
  1659. *
  1660. * Note: In usual ops, vread() is never necessary because the caller
  1661. * should know vmalloc() area is valid and can use memcpy().
  1662. * This is for routines which have to access vmalloc area without
  1663. * any informaion, as /dev/kmem.
  1664. *
  1665. */
  1666. long vread(char *buf, char *addr, unsigned long count)
  1667. {
  1668. struct vm_struct *tmp;
  1669. char *vaddr, *buf_start = buf;
  1670. unsigned long buflen = count;
  1671. unsigned long n;
  1672. /* Don't allow overflow */
  1673. if ((unsigned long) addr + count < count)
  1674. count = -(unsigned long) addr;
  1675. read_lock(&vmlist_lock);
  1676. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1677. vaddr = (char *) tmp->addr;
  1678. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1679. continue;
  1680. while (addr < vaddr) {
  1681. if (count == 0)
  1682. goto finished;
  1683. *buf = '\0';
  1684. buf++;
  1685. addr++;
  1686. count--;
  1687. }
  1688. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1689. if (n > count)
  1690. n = count;
  1691. if (!(tmp->flags & VM_IOREMAP))
  1692. aligned_vread(buf, addr, n);
  1693. else /* IOREMAP area is treated as memory hole */
  1694. memset(buf, 0, n);
  1695. buf += n;
  1696. addr += n;
  1697. count -= n;
  1698. }
  1699. finished:
  1700. read_unlock(&vmlist_lock);
  1701. if (buf == buf_start)
  1702. return 0;
  1703. /* zero-fill memory holes */
  1704. if (buf != buf_start + buflen)
  1705. memset(buf, 0, buflen - (buf - buf_start));
  1706. return buflen;
  1707. }
  1708. /**
  1709. * vwrite() - write vmalloc area in a safe way.
  1710. * @buf: buffer for source data
  1711. * @addr: vm address.
  1712. * @count: number of bytes to be read.
  1713. *
  1714. * Returns # of bytes which addr and buf should be incresed.
  1715. * (same number to @count).
  1716. * If [addr...addr+count) doesn't includes any intersect with valid
  1717. * vmalloc area, returns 0.
  1718. *
  1719. * This function checks that addr is a valid vmalloc'ed area, and
  1720. * copy data from a buffer to the given addr. If specified range of
  1721. * [addr...addr+count) includes some valid address, data is copied from
  1722. * proper area of @buf. If there are memory holes, no copy to hole.
  1723. * IOREMAP area is treated as memory hole and no copy is done.
  1724. *
  1725. * If [addr...addr+count) doesn't includes any intersects with alive
  1726. * vm_struct area, returns 0.
  1727. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1728. * the caller should guarantee KM_USER0 is not used.
  1729. *
  1730. * Note: In usual ops, vwrite() is never necessary because the caller
  1731. * should know vmalloc() area is valid and can use memcpy().
  1732. * This is for routines which have to access vmalloc area without
  1733. * any informaion, as /dev/kmem.
  1734. *
  1735. * The caller should guarantee KM_USER1 is not used.
  1736. */
  1737. long vwrite(char *buf, char *addr, unsigned long count)
  1738. {
  1739. struct vm_struct *tmp;
  1740. char *vaddr;
  1741. unsigned long n, buflen;
  1742. int copied = 0;
  1743. /* Don't allow overflow */
  1744. if ((unsigned long) addr + count < count)
  1745. count = -(unsigned long) addr;
  1746. buflen = count;
  1747. read_lock(&vmlist_lock);
  1748. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1749. vaddr = (char *) tmp->addr;
  1750. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1751. continue;
  1752. while (addr < vaddr) {
  1753. if (count == 0)
  1754. goto finished;
  1755. buf++;
  1756. addr++;
  1757. count--;
  1758. }
  1759. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1760. if (n > count)
  1761. n = count;
  1762. if (!(tmp->flags & VM_IOREMAP)) {
  1763. aligned_vwrite(buf, addr, n);
  1764. copied++;
  1765. }
  1766. buf += n;
  1767. addr += n;
  1768. count -= n;
  1769. }
  1770. finished:
  1771. read_unlock(&vmlist_lock);
  1772. if (!copied)
  1773. return 0;
  1774. return buflen;
  1775. }
  1776. /**
  1777. * remap_vmalloc_range - map vmalloc pages to userspace
  1778. * @vma: vma to cover (map full range of vma)
  1779. * @addr: vmalloc memory
  1780. * @pgoff: number of pages into addr before first page to map
  1781. *
  1782. * Returns: 0 for success, -Exxx on failure
  1783. *
  1784. * This function checks that addr is a valid vmalloc'ed area, and
  1785. * that it is big enough to cover the vma. Will return failure if
  1786. * that criteria isn't met.
  1787. *
  1788. * Similar to remap_pfn_range() (see mm/memory.c)
  1789. */
  1790. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1791. unsigned long pgoff)
  1792. {
  1793. struct vm_struct *area;
  1794. unsigned long uaddr = vma->vm_start;
  1795. unsigned long usize = vma->vm_end - vma->vm_start;
  1796. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1797. return -EINVAL;
  1798. area = find_vm_area(addr);
  1799. if (!area)
  1800. return -EINVAL;
  1801. if (!(area->flags & VM_USERMAP))
  1802. return -EINVAL;
  1803. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1804. return -EINVAL;
  1805. addr += pgoff << PAGE_SHIFT;
  1806. do {
  1807. struct page *page = vmalloc_to_page(addr);
  1808. int ret;
  1809. ret = vm_insert_page(vma, uaddr, page);
  1810. if (ret)
  1811. return ret;
  1812. uaddr += PAGE_SIZE;
  1813. addr += PAGE_SIZE;
  1814. usize -= PAGE_SIZE;
  1815. } while (usize > 0);
  1816. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1817. vma->vm_flags |= VM_RESERVED;
  1818. return 0;
  1819. }
  1820. EXPORT_SYMBOL(remap_vmalloc_range);
  1821. /*
  1822. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1823. * have one.
  1824. */
  1825. void __attribute__((weak)) vmalloc_sync_all(void)
  1826. {
  1827. }
  1828. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1829. {
  1830. /* apply_to_page_range() does all the hard work. */
  1831. return 0;
  1832. }
  1833. /**
  1834. * alloc_vm_area - allocate a range of kernel address space
  1835. * @size: size of the area
  1836. *
  1837. * Returns: NULL on failure, vm_struct on success
  1838. *
  1839. * This function reserves a range of kernel address space, and
  1840. * allocates pagetables to map that range. No actual mappings
  1841. * are created. If the kernel address space is not shared
  1842. * between processes, it syncs the pagetable across all
  1843. * processes.
  1844. */
  1845. struct vm_struct *alloc_vm_area(size_t size)
  1846. {
  1847. struct vm_struct *area;
  1848. area = get_vm_area_caller(size, VM_IOREMAP,
  1849. __builtin_return_address(0));
  1850. if (area == NULL)
  1851. return NULL;
  1852. /*
  1853. * This ensures that page tables are constructed for this region
  1854. * of kernel virtual address space and mapped into init_mm.
  1855. */
  1856. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1857. area->size, f, NULL)) {
  1858. free_vm_area(area);
  1859. return NULL;
  1860. }
  1861. /* Make sure the pagetables are constructed in process kernel
  1862. mappings */
  1863. vmalloc_sync_all();
  1864. return area;
  1865. }
  1866. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1867. void free_vm_area(struct vm_struct *area)
  1868. {
  1869. struct vm_struct *ret;
  1870. ret = remove_vm_area(area->addr);
  1871. BUG_ON(ret != area);
  1872. kfree(area);
  1873. }
  1874. EXPORT_SYMBOL_GPL(free_vm_area);
  1875. #ifdef CONFIG_SMP
  1876. static struct vmap_area *node_to_va(struct rb_node *n)
  1877. {
  1878. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1879. }
  1880. /**
  1881. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1882. * @end: target address
  1883. * @pnext: out arg for the next vmap_area
  1884. * @pprev: out arg for the previous vmap_area
  1885. *
  1886. * Returns: %true if either or both of next and prev are found,
  1887. * %false if no vmap_area exists
  1888. *
  1889. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1890. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1891. */
  1892. static bool pvm_find_next_prev(unsigned long end,
  1893. struct vmap_area **pnext,
  1894. struct vmap_area **pprev)
  1895. {
  1896. struct rb_node *n = vmap_area_root.rb_node;
  1897. struct vmap_area *va = NULL;
  1898. while (n) {
  1899. va = rb_entry(n, struct vmap_area, rb_node);
  1900. if (end < va->va_end)
  1901. n = n->rb_left;
  1902. else if (end > va->va_end)
  1903. n = n->rb_right;
  1904. else
  1905. break;
  1906. }
  1907. if (!va)
  1908. return false;
  1909. if (va->va_end > end) {
  1910. *pnext = va;
  1911. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1912. } else {
  1913. *pprev = va;
  1914. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1915. }
  1916. return true;
  1917. }
  1918. /**
  1919. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1920. * @pnext: in/out arg for the next vmap_area
  1921. * @pprev: in/out arg for the previous vmap_area
  1922. * @align: alignment
  1923. *
  1924. * Returns: determined end address
  1925. *
  1926. * Find the highest aligned address between *@pnext and *@pprev below
  1927. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1928. * down address is between the end addresses of the two vmap_areas.
  1929. *
  1930. * Please note that the address returned by this function may fall
  1931. * inside *@pnext vmap_area. The caller is responsible for checking
  1932. * that.
  1933. */
  1934. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1935. struct vmap_area **pprev,
  1936. unsigned long align)
  1937. {
  1938. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1939. unsigned long addr;
  1940. if (*pnext)
  1941. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1942. else
  1943. addr = vmalloc_end;
  1944. while (*pprev && (*pprev)->va_end > addr) {
  1945. *pnext = *pprev;
  1946. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1947. }
  1948. return addr;
  1949. }
  1950. /**
  1951. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  1952. * @offsets: array containing offset of each area
  1953. * @sizes: array containing size of each area
  1954. * @nr_vms: the number of areas to allocate
  1955. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  1956. *
  1957. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  1958. * vm_structs on success, %NULL on failure
  1959. *
  1960. * Percpu allocator wants to use congruent vm areas so that it can
  1961. * maintain the offsets among percpu areas. This function allocates
  1962. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  1963. * be scattered pretty far, distance between two areas easily going up
  1964. * to gigabytes. To avoid interacting with regular vmallocs, these
  1965. * areas are allocated from top.
  1966. *
  1967. * Despite its complicated look, this allocator is rather simple. It
  1968. * does everything top-down and scans areas from the end looking for
  1969. * matching slot. While scanning, if any of the areas overlaps with
  1970. * existing vmap_area, the base address is pulled down to fit the
  1971. * area. Scanning is repeated till all the areas fit and then all
  1972. * necessary data structres are inserted and the result is returned.
  1973. */
  1974. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  1975. const size_t *sizes, int nr_vms,
  1976. size_t align)
  1977. {
  1978. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  1979. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1980. struct vmap_area **vas, *prev, *next;
  1981. struct vm_struct **vms;
  1982. int area, area2, last_area, term_area;
  1983. unsigned long base, start, end, last_end;
  1984. bool purged = false;
  1985. /* verify parameters and allocate data structures */
  1986. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  1987. for (last_area = 0, area = 0; area < nr_vms; area++) {
  1988. start = offsets[area];
  1989. end = start + sizes[area];
  1990. /* is everything aligned properly? */
  1991. BUG_ON(!IS_ALIGNED(offsets[area], align));
  1992. BUG_ON(!IS_ALIGNED(sizes[area], align));
  1993. /* detect the area with the highest address */
  1994. if (start > offsets[last_area])
  1995. last_area = area;
  1996. for (area2 = 0; area2 < nr_vms; area2++) {
  1997. unsigned long start2 = offsets[area2];
  1998. unsigned long end2 = start2 + sizes[area2];
  1999. if (area2 == area)
  2000. continue;
  2001. BUG_ON(start2 >= start && start2 < end);
  2002. BUG_ON(end2 <= end && end2 > start);
  2003. }
  2004. }
  2005. last_end = offsets[last_area] + sizes[last_area];
  2006. if (vmalloc_end - vmalloc_start < last_end) {
  2007. WARN_ON(true);
  2008. return NULL;
  2009. }
  2010. vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
  2011. vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
  2012. if (!vas || !vms)
  2013. goto err_free;
  2014. for (area = 0; area < nr_vms; area++) {
  2015. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2016. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2017. if (!vas[area] || !vms[area])
  2018. goto err_free;
  2019. }
  2020. retry:
  2021. spin_lock(&vmap_area_lock);
  2022. /* start scanning - we scan from the top, begin with the last area */
  2023. area = term_area = last_area;
  2024. start = offsets[area];
  2025. end = start + sizes[area];
  2026. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2027. base = vmalloc_end - last_end;
  2028. goto found;
  2029. }
  2030. base = pvm_determine_end(&next, &prev, align) - end;
  2031. while (true) {
  2032. BUG_ON(next && next->va_end <= base + end);
  2033. BUG_ON(prev && prev->va_end > base + end);
  2034. /*
  2035. * base might have underflowed, add last_end before
  2036. * comparing.
  2037. */
  2038. if (base + last_end < vmalloc_start + last_end) {
  2039. spin_unlock(&vmap_area_lock);
  2040. if (!purged) {
  2041. purge_vmap_area_lazy();
  2042. purged = true;
  2043. goto retry;
  2044. }
  2045. goto err_free;
  2046. }
  2047. /*
  2048. * If next overlaps, move base downwards so that it's
  2049. * right below next and then recheck.
  2050. */
  2051. if (next && next->va_start < base + end) {
  2052. base = pvm_determine_end(&next, &prev, align) - end;
  2053. term_area = area;
  2054. continue;
  2055. }
  2056. /*
  2057. * If prev overlaps, shift down next and prev and move
  2058. * base so that it's right below new next and then
  2059. * recheck.
  2060. */
  2061. if (prev && prev->va_end > base + start) {
  2062. next = prev;
  2063. prev = node_to_va(rb_prev(&next->rb_node));
  2064. base = pvm_determine_end(&next, &prev, align) - end;
  2065. term_area = area;
  2066. continue;
  2067. }
  2068. /*
  2069. * This area fits, move on to the previous one. If
  2070. * the previous one is the terminal one, we're done.
  2071. */
  2072. area = (area + nr_vms - 1) % nr_vms;
  2073. if (area == term_area)
  2074. break;
  2075. start = offsets[area];
  2076. end = start + sizes[area];
  2077. pvm_find_next_prev(base + end, &next, &prev);
  2078. }
  2079. found:
  2080. /* we've found a fitting base, insert all va's */
  2081. for (area = 0; area < nr_vms; area++) {
  2082. struct vmap_area *va = vas[area];
  2083. va->va_start = base + offsets[area];
  2084. va->va_end = va->va_start + sizes[area];
  2085. __insert_vmap_area(va);
  2086. }
  2087. vmap_area_pcpu_hole = base + offsets[last_area];
  2088. spin_unlock(&vmap_area_lock);
  2089. /* insert all vm's */
  2090. for (area = 0; area < nr_vms; area++)
  2091. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2092. pcpu_get_vm_areas);
  2093. kfree(vas);
  2094. return vms;
  2095. err_free:
  2096. for (area = 0; area < nr_vms; area++) {
  2097. if (vas)
  2098. kfree(vas[area]);
  2099. if (vms)
  2100. kfree(vms[area]);
  2101. }
  2102. kfree(vas);
  2103. kfree(vms);
  2104. return NULL;
  2105. }
  2106. /**
  2107. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2108. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2109. * @nr_vms: the number of allocated areas
  2110. *
  2111. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2112. */
  2113. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2114. {
  2115. int i;
  2116. for (i = 0; i < nr_vms; i++)
  2117. free_vm_area(vms[i]);
  2118. kfree(vms);
  2119. }
  2120. #endif /* CONFIG_SMP */
  2121. #ifdef CONFIG_PROC_FS
  2122. static void *s_start(struct seq_file *m, loff_t *pos)
  2123. __acquires(&vmlist_lock)
  2124. {
  2125. loff_t n = *pos;
  2126. struct vm_struct *v;
  2127. read_lock(&vmlist_lock);
  2128. v = vmlist;
  2129. while (n > 0 && v) {
  2130. n--;
  2131. v = v->next;
  2132. }
  2133. if (!n)
  2134. return v;
  2135. return NULL;
  2136. }
  2137. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2138. {
  2139. struct vm_struct *v = p;
  2140. ++*pos;
  2141. return v->next;
  2142. }
  2143. static void s_stop(struct seq_file *m, void *p)
  2144. __releases(&vmlist_lock)
  2145. {
  2146. read_unlock(&vmlist_lock);
  2147. }
  2148. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2149. {
  2150. if (NUMA_BUILD) {
  2151. unsigned int nr, *counters = m->private;
  2152. if (!counters)
  2153. return;
  2154. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2155. for (nr = 0; nr < v->nr_pages; nr++)
  2156. counters[page_to_nid(v->pages[nr])]++;
  2157. for_each_node_state(nr, N_HIGH_MEMORY)
  2158. if (counters[nr])
  2159. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2160. }
  2161. }
  2162. static int s_show(struct seq_file *m, void *p)
  2163. {
  2164. struct vm_struct *v = p;
  2165. seq_printf(m, "0x%p-0x%p %7ld",
  2166. v->addr, v->addr + v->size, v->size);
  2167. if (v->caller)
  2168. seq_printf(m, " %pS", v->caller);
  2169. if (v->nr_pages)
  2170. seq_printf(m, " pages=%d", v->nr_pages);
  2171. if (v->phys_addr)
  2172. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2173. if (v->flags & VM_IOREMAP)
  2174. seq_printf(m, " ioremap");
  2175. if (v->flags & VM_ALLOC)
  2176. seq_printf(m, " vmalloc");
  2177. if (v->flags & VM_MAP)
  2178. seq_printf(m, " vmap");
  2179. if (v->flags & VM_USERMAP)
  2180. seq_printf(m, " user");
  2181. if (v->flags & VM_VPAGES)
  2182. seq_printf(m, " vpages");
  2183. show_numa_info(m, v);
  2184. seq_putc(m, '\n');
  2185. return 0;
  2186. }
  2187. static const struct seq_operations vmalloc_op = {
  2188. .start = s_start,
  2189. .next = s_next,
  2190. .stop = s_stop,
  2191. .show = s_show,
  2192. };
  2193. static int vmalloc_open(struct inode *inode, struct file *file)
  2194. {
  2195. unsigned int *ptr = NULL;
  2196. int ret;
  2197. if (NUMA_BUILD) {
  2198. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2199. if (ptr == NULL)
  2200. return -ENOMEM;
  2201. }
  2202. ret = seq_open(file, &vmalloc_op);
  2203. if (!ret) {
  2204. struct seq_file *m = file->private_data;
  2205. m->private = ptr;
  2206. } else
  2207. kfree(ptr);
  2208. return ret;
  2209. }
  2210. static const struct file_operations proc_vmalloc_operations = {
  2211. .open = vmalloc_open,
  2212. .read = seq_read,
  2213. .llseek = seq_lseek,
  2214. .release = seq_release_private,
  2215. };
  2216. static int __init proc_vmalloc_init(void)
  2217. {
  2218. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2219. return 0;
  2220. }
  2221. module_init(proc_vmalloc_init);
  2222. #endif