rmap.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <linux/hugetlb.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. /*
  69. * Initialise the anon_vma root to point to itself. If called
  70. * from fork, the root will be reset to the parents anon_vma.
  71. */
  72. anon_vma->root = anon_vma;
  73. }
  74. return anon_vma;
  75. }
  76. static inline void anon_vma_free(struct anon_vma *anon_vma)
  77. {
  78. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  79. kmem_cache_free(anon_vma_cachep, anon_vma);
  80. }
  81. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  82. {
  83. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  84. }
  85. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  86. {
  87. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  88. }
  89. /**
  90. * anon_vma_prepare - attach an anon_vma to a memory region
  91. * @vma: the memory region in question
  92. *
  93. * This makes sure the memory mapping described by 'vma' has
  94. * an 'anon_vma' attached to it, so that we can associate the
  95. * anonymous pages mapped into it with that anon_vma.
  96. *
  97. * The common case will be that we already have one, but if
  98. * not we either need to find an adjacent mapping that we
  99. * can re-use the anon_vma from (very common when the only
  100. * reason for splitting a vma has been mprotect()), or we
  101. * allocate a new one.
  102. *
  103. * Anon-vma allocations are very subtle, because we may have
  104. * optimistically looked up an anon_vma in page_lock_anon_vma()
  105. * and that may actually touch the spinlock even in the newly
  106. * allocated vma (it depends on RCU to make sure that the
  107. * anon_vma isn't actually destroyed).
  108. *
  109. * As a result, we need to do proper anon_vma locking even
  110. * for the new allocation. At the same time, we do not want
  111. * to do any locking for the common case of already having
  112. * an anon_vma.
  113. *
  114. * This must be called with the mmap_sem held for reading.
  115. */
  116. int anon_vma_prepare(struct vm_area_struct *vma)
  117. {
  118. struct anon_vma *anon_vma = vma->anon_vma;
  119. struct anon_vma_chain *avc;
  120. might_sleep();
  121. if (unlikely(!anon_vma)) {
  122. struct mm_struct *mm = vma->vm_mm;
  123. struct anon_vma *allocated;
  124. avc = anon_vma_chain_alloc();
  125. if (!avc)
  126. goto out_enomem;
  127. anon_vma = find_mergeable_anon_vma(vma);
  128. allocated = NULL;
  129. if (!anon_vma) {
  130. anon_vma = anon_vma_alloc();
  131. if (unlikely(!anon_vma))
  132. goto out_enomem_free_avc;
  133. allocated = anon_vma;
  134. }
  135. anon_vma_lock(anon_vma);
  136. /* page_table_lock to protect against threads */
  137. spin_lock(&mm->page_table_lock);
  138. if (likely(!vma->anon_vma)) {
  139. vma->anon_vma = anon_vma;
  140. avc->anon_vma = anon_vma;
  141. avc->vma = vma;
  142. list_add(&avc->same_vma, &vma->anon_vma_chain);
  143. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  144. allocated = NULL;
  145. avc = NULL;
  146. }
  147. spin_unlock(&mm->page_table_lock);
  148. anon_vma_unlock(anon_vma);
  149. if (unlikely(allocated))
  150. put_anon_vma(allocated);
  151. if (unlikely(avc))
  152. anon_vma_chain_free(avc);
  153. }
  154. return 0;
  155. out_enomem_free_avc:
  156. anon_vma_chain_free(avc);
  157. out_enomem:
  158. return -ENOMEM;
  159. }
  160. static void anon_vma_chain_link(struct vm_area_struct *vma,
  161. struct anon_vma_chain *avc,
  162. struct anon_vma *anon_vma)
  163. {
  164. avc->vma = vma;
  165. avc->anon_vma = anon_vma;
  166. list_add(&avc->same_vma, &vma->anon_vma_chain);
  167. anon_vma_lock(anon_vma);
  168. /*
  169. * It's critical to add new vmas to the tail of the anon_vma,
  170. * see comment in huge_memory.c:__split_huge_page().
  171. */
  172. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  173. anon_vma_unlock(anon_vma);
  174. }
  175. /*
  176. * Attach the anon_vmas from src to dst.
  177. * Returns 0 on success, -ENOMEM on failure.
  178. */
  179. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  180. {
  181. struct anon_vma_chain *avc, *pavc;
  182. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  183. avc = anon_vma_chain_alloc();
  184. if (!avc)
  185. goto enomem_failure;
  186. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  187. }
  188. return 0;
  189. enomem_failure:
  190. unlink_anon_vmas(dst);
  191. return -ENOMEM;
  192. }
  193. /*
  194. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  195. * the corresponding VMA in the parent process is attached to.
  196. * Returns 0 on success, non-zero on failure.
  197. */
  198. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  199. {
  200. struct anon_vma_chain *avc;
  201. struct anon_vma *anon_vma;
  202. /* Don't bother if the parent process has no anon_vma here. */
  203. if (!pvma->anon_vma)
  204. return 0;
  205. /*
  206. * First, attach the new VMA to the parent VMA's anon_vmas,
  207. * so rmap can find non-COWed pages in child processes.
  208. */
  209. if (anon_vma_clone(vma, pvma))
  210. return -ENOMEM;
  211. /* Then add our own anon_vma. */
  212. anon_vma = anon_vma_alloc();
  213. if (!anon_vma)
  214. goto out_error;
  215. avc = anon_vma_chain_alloc();
  216. if (!avc)
  217. goto out_error_free_anon_vma;
  218. /*
  219. * The root anon_vma's spinlock is the lock actually used when we
  220. * lock any of the anon_vmas in this anon_vma tree.
  221. */
  222. anon_vma->root = pvma->anon_vma->root;
  223. /*
  224. * With refcounts, an anon_vma can stay around longer than the
  225. * process it belongs to. The root anon_vma needs to be pinned until
  226. * this anon_vma is freed, because the lock lives in the root.
  227. */
  228. get_anon_vma(anon_vma->root);
  229. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  230. vma->anon_vma = anon_vma;
  231. anon_vma_chain_link(vma, avc, anon_vma);
  232. return 0;
  233. out_error_free_anon_vma:
  234. put_anon_vma(anon_vma);
  235. out_error:
  236. unlink_anon_vmas(vma);
  237. return -ENOMEM;
  238. }
  239. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  240. {
  241. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  242. int empty;
  243. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  244. if (!anon_vma)
  245. return;
  246. anon_vma_lock(anon_vma);
  247. list_del(&anon_vma_chain->same_anon_vma);
  248. /* We must garbage collect the anon_vma if it's empty */
  249. empty = list_empty(&anon_vma->head);
  250. anon_vma_unlock(anon_vma);
  251. if (empty)
  252. put_anon_vma(anon_vma);
  253. }
  254. void unlink_anon_vmas(struct vm_area_struct *vma)
  255. {
  256. struct anon_vma_chain *avc, *next;
  257. /*
  258. * Unlink each anon_vma chained to the VMA. This list is ordered
  259. * from newest to oldest, ensuring the root anon_vma gets freed last.
  260. */
  261. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  262. anon_vma_unlink(avc);
  263. list_del(&avc->same_vma);
  264. anon_vma_chain_free(avc);
  265. }
  266. }
  267. static void anon_vma_ctor(void *data)
  268. {
  269. struct anon_vma *anon_vma = data;
  270. spin_lock_init(&anon_vma->lock);
  271. atomic_set(&anon_vma->refcount, 0);
  272. INIT_LIST_HEAD(&anon_vma->head);
  273. }
  274. void __init anon_vma_init(void)
  275. {
  276. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  277. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  278. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  279. }
  280. /*
  281. * Getting a lock on a stable anon_vma from a page off the LRU is
  282. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  283. */
  284. struct anon_vma *__page_lock_anon_vma(struct page *page)
  285. {
  286. struct anon_vma *anon_vma, *root_anon_vma;
  287. unsigned long anon_mapping;
  288. rcu_read_lock();
  289. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  290. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  291. goto out;
  292. if (!page_mapped(page))
  293. goto out;
  294. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  295. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  296. spin_lock(&root_anon_vma->lock);
  297. /*
  298. * If this page is still mapped, then its anon_vma cannot have been
  299. * freed. But if it has been unmapped, we have no security against
  300. * the anon_vma structure being freed and reused (for another anon_vma:
  301. * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
  302. * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
  303. * anon_vma->root before page_unlock_anon_vma() is called to unlock.
  304. */
  305. if (page_mapped(page))
  306. return anon_vma;
  307. spin_unlock(&root_anon_vma->lock);
  308. out:
  309. rcu_read_unlock();
  310. return NULL;
  311. }
  312. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  313. __releases(&anon_vma->root->lock)
  314. __releases(RCU)
  315. {
  316. anon_vma_unlock(anon_vma);
  317. rcu_read_unlock();
  318. }
  319. /*
  320. * At what user virtual address is page expected in @vma?
  321. * Returns virtual address or -EFAULT if page's index/offset is not
  322. * within the range mapped the @vma.
  323. */
  324. inline unsigned long
  325. vma_address(struct page *page, struct vm_area_struct *vma)
  326. {
  327. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  328. unsigned long address;
  329. if (unlikely(is_vm_hugetlb_page(vma)))
  330. pgoff = page->index << huge_page_order(page_hstate(page));
  331. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  332. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  333. /* page should be within @vma mapping range */
  334. return -EFAULT;
  335. }
  336. return address;
  337. }
  338. /*
  339. * At what user virtual address is page expected in vma?
  340. * Caller should check the page is actually part of the vma.
  341. */
  342. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  343. {
  344. if (PageAnon(page)) {
  345. struct anon_vma *page__anon_vma = page_anon_vma(page);
  346. /*
  347. * Note: swapoff's unuse_vma() is more efficient with this
  348. * check, and needs it to match anon_vma when KSM is active.
  349. */
  350. if (!vma->anon_vma || !page__anon_vma ||
  351. vma->anon_vma->root != page__anon_vma->root)
  352. return -EFAULT;
  353. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  354. if (!vma->vm_file ||
  355. vma->vm_file->f_mapping != page->mapping)
  356. return -EFAULT;
  357. } else
  358. return -EFAULT;
  359. return vma_address(page, vma);
  360. }
  361. /*
  362. * Check that @page is mapped at @address into @mm.
  363. *
  364. * If @sync is false, page_check_address may perform a racy check to avoid
  365. * the page table lock when the pte is not present (helpful when reclaiming
  366. * highly shared pages).
  367. *
  368. * On success returns with pte mapped and locked.
  369. */
  370. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  371. unsigned long address, spinlock_t **ptlp, int sync)
  372. {
  373. pgd_t *pgd;
  374. pud_t *pud;
  375. pmd_t *pmd;
  376. pte_t *pte;
  377. spinlock_t *ptl;
  378. if (unlikely(PageHuge(page))) {
  379. pte = huge_pte_offset(mm, address);
  380. ptl = &mm->page_table_lock;
  381. goto check;
  382. }
  383. pgd = pgd_offset(mm, address);
  384. if (!pgd_present(*pgd))
  385. return NULL;
  386. pud = pud_offset(pgd, address);
  387. if (!pud_present(*pud))
  388. return NULL;
  389. pmd = pmd_offset(pud, address);
  390. if (!pmd_present(*pmd))
  391. return NULL;
  392. if (pmd_trans_huge(*pmd))
  393. return NULL;
  394. pte = pte_offset_map(pmd, address);
  395. /* Make a quick check before getting the lock */
  396. if (!sync && !pte_present(*pte)) {
  397. pte_unmap(pte);
  398. return NULL;
  399. }
  400. ptl = pte_lockptr(mm, pmd);
  401. check:
  402. spin_lock(ptl);
  403. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  404. *ptlp = ptl;
  405. return pte;
  406. }
  407. pte_unmap_unlock(pte, ptl);
  408. return NULL;
  409. }
  410. /**
  411. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  412. * @page: the page to test
  413. * @vma: the VMA to test
  414. *
  415. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  416. * if the page is not mapped into the page tables of this VMA. Only
  417. * valid for normal file or anonymous VMAs.
  418. */
  419. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  420. {
  421. unsigned long address;
  422. pte_t *pte;
  423. spinlock_t *ptl;
  424. address = vma_address(page, vma);
  425. if (address == -EFAULT) /* out of vma range */
  426. return 0;
  427. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  428. if (!pte) /* the page is not in this mm */
  429. return 0;
  430. pte_unmap_unlock(pte, ptl);
  431. return 1;
  432. }
  433. /*
  434. * Subfunctions of page_referenced: page_referenced_one called
  435. * repeatedly from either page_referenced_anon or page_referenced_file.
  436. */
  437. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  438. unsigned long address, unsigned int *mapcount,
  439. unsigned long *vm_flags)
  440. {
  441. struct mm_struct *mm = vma->vm_mm;
  442. int referenced = 0;
  443. if (unlikely(PageTransHuge(page))) {
  444. pmd_t *pmd;
  445. spin_lock(&mm->page_table_lock);
  446. /*
  447. * rmap might return false positives; we must filter
  448. * these out using page_check_address_pmd().
  449. */
  450. pmd = page_check_address_pmd(page, mm, address,
  451. PAGE_CHECK_ADDRESS_PMD_FLAG);
  452. if (!pmd) {
  453. spin_unlock(&mm->page_table_lock);
  454. goto out;
  455. }
  456. if (vma->vm_flags & VM_LOCKED) {
  457. spin_unlock(&mm->page_table_lock);
  458. *mapcount = 0; /* break early from loop */
  459. *vm_flags |= VM_LOCKED;
  460. goto out;
  461. }
  462. /* go ahead even if the pmd is pmd_trans_splitting() */
  463. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  464. referenced++;
  465. spin_unlock(&mm->page_table_lock);
  466. } else {
  467. pte_t *pte;
  468. spinlock_t *ptl;
  469. /*
  470. * rmap might return false positives; we must filter
  471. * these out using page_check_address().
  472. */
  473. pte = page_check_address(page, mm, address, &ptl, 0);
  474. if (!pte)
  475. goto out;
  476. if (vma->vm_flags & VM_LOCKED) {
  477. pte_unmap_unlock(pte, ptl);
  478. *mapcount = 0; /* break early from loop */
  479. *vm_flags |= VM_LOCKED;
  480. goto out;
  481. }
  482. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  483. /*
  484. * Don't treat a reference through a sequentially read
  485. * mapping as such. If the page has been used in
  486. * another mapping, we will catch it; if this other
  487. * mapping is already gone, the unmap path will have
  488. * set PG_referenced or activated the page.
  489. */
  490. if (likely(!VM_SequentialReadHint(vma)))
  491. referenced++;
  492. }
  493. pte_unmap_unlock(pte, ptl);
  494. }
  495. /* Pretend the page is referenced if the task has the
  496. swap token and is in the middle of a page fault. */
  497. if (mm != current->mm && has_swap_token(mm) &&
  498. rwsem_is_locked(&mm->mmap_sem))
  499. referenced++;
  500. (*mapcount)--;
  501. if (referenced)
  502. *vm_flags |= vma->vm_flags;
  503. out:
  504. return referenced;
  505. }
  506. static int page_referenced_anon(struct page *page,
  507. struct mem_cgroup *mem_cont,
  508. unsigned long *vm_flags)
  509. {
  510. unsigned int mapcount;
  511. struct anon_vma *anon_vma;
  512. struct anon_vma_chain *avc;
  513. int referenced = 0;
  514. anon_vma = page_lock_anon_vma(page);
  515. if (!anon_vma)
  516. return referenced;
  517. mapcount = page_mapcount(page);
  518. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  519. struct vm_area_struct *vma = avc->vma;
  520. unsigned long address = vma_address(page, vma);
  521. if (address == -EFAULT)
  522. continue;
  523. /*
  524. * If we are reclaiming on behalf of a cgroup, skip
  525. * counting on behalf of references from different
  526. * cgroups
  527. */
  528. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  529. continue;
  530. referenced += page_referenced_one(page, vma, address,
  531. &mapcount, vm_flags);
  532. if (!mapcount)
  533. break;
  534. }
  535. page_unlock_anon_vma(anon_vma);
  536. return referenced;
  537. }
  538. /**
  539. * page_referenced_file - referenced check for object-based rmap
  540. * @page: the page we're checking references on.
  541. * @mem_cont: target memory controller
  542. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  543. *
  544. * For an object-based mapped page, find all the places it is mapped and
  545. * check/clear the referenced flag. This is done by following the page->mapping
  546. * pointer, then walking the chain of vmas it holds. It returns the number
  547. * of references it found.
  548. *
  549. * This function is only called from page_referenced for object-based pages.
  550. */
  551. static int page_referenced_file(struct page *page,
  552. struct mem_cgroup *mem_cont,
  553. unsigned long *vm_flags)
  554. {
  555. unsigned int mapcount;
  556. struct address_space *mapping = page->mapping;
  557. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  558. struct vm_area_struct *vma;
  559. struct prio_tree_iter iter;
  560. int referenced = 0;
  561. /*
  562. * The caller's checks on page->mapping and !PageAnon have made
  563. * sure that this is a file page: the check for page->mapping
  564. * excludes the case just before it gets set on an anon page.
  565. */
  566. BUG_ON(PageAnon(page));
  567. /*
  568. * The page lock not only makes sure that page->mapping cannot
  569. * suddenly be NULLified by truncation, it makes sure that the
  570. * structure at mapping cannot be freed and reused yet,
  571. * so we can safely take mapping->i_mmap_lock.
  572. */
  573. BUG_ON(!PageLocked(page));
  574. spin_lock(&mapping->i_mmap_lock);
  575. /*
  576. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  577. * is more likely to be accurate if we note it after spinning.
  578. */
  579. mapcount = page_mapcount(page);
  580. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  581. unsigned long address = vma_address(page, vma);
  582. if (address == -EFAULT)
  583. continue;
  584. /*
  585. * If we are reclaiming on behalf of a cgroup, skip
  586. * counting on behalf of references from different
  587. * cgroups
  588. */
  589. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  590. continue;
  591. referenced += page_referenced_one(page, vma, address,
  592. &mapcount, vm_flags);
  593. if (!mapcount)
  594. break;
  595. }
  596. spin_unlock(&mapping->i_mmap_lock);
  597. return referenced;
  598. }
  599. /**
  600. * page_referenced - test if the page was referenced
  601. * @page: the page to test
  602. * @is_locked: caller holds lock on the page
  603. * @mem_cont: target memory controller
  604. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  605. *
  606. * Quick test_and_clear_referenced for all mappings to a page,
  607. * returns the number of ptes which referenced the page.
  608. */
  609. int page_referenced(struct page *page,
  610. int is_locked,
  611. struct mem_cgroup *mem_cont,
  612. unsigned long *vm_flags)
  613. {
  614. int referenced = 0;
  615. int we_locked = 0;
  616. *vm_flags = 0;
  617. if (page_mapped(page) && page_rmapping(page)) {
  618. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  619. we_locked = trylock_page(page);
  620. if (!we_locked) {
  621. referenced++;
  622. goto out;
  623. }
  624. }
  625. if (unlikely(PageKsm(page)))
  626. referenced += page_referenced_ksm(page, mem_cont,
  627. vm_flags);
  628. else if (PageAnon(page))
  629. referenced += page_referenced_anon(page, mem_cont,
  630. vm_flags);
  631. else if (page->mapping)
  632. referenced += page_referenced_file(page, mem_cont,
  633. vm_flags);
  634. if (we_locked)
  635. unlock_page(page);
  636. }
  637. out:
  638. if (page_test_and_clear_young(page))
  639. referenced++;
  640. return referenced;
  641. }
  642. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  643. unsigned long address)
  644. {
  645. struct mm_struct *mm = vma->vm_mm;
  646. pte_t *pte;
  647. spinlock_t *ptl;
  648. int ret = 0;
  649. pte = page_check_address(page, mm, address, &ptl, 1);
  650. if (!pte)
  651. goto out;
  652. if (pte_dirty(*pte) || pte_write(*pte)) {
  653. pte_t entry;
  654. flush_cache_page(vma, address, pte_pfn(*pte));
  655. entry = ptep_clear_flush_notify(vma, address, pte);
  656. entry = pte_wrprotect(entry);
  657. entry = pte_mkclean(entry);
  658. set_pte_at(mm, address, pte, entry);
  659. ret = 1;
  660. }
  661. pte_unmap_unlock(pte, ptl);
  662. out:
  663. return ret;
  664. }
  665. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  666. {
  667. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  668. struct vm_area_struct *vma;
  669. struct prio_tree_iter iter;
  670. int ret = 0;
  671. BUG_ON(PageAnon(page));
  672. spin_lock(&mapping->i_mmap_lock);
  673. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  674. if (vma->vm_flags & VM_SHARED) {
  675. unsigned long address = vma_address(page, vma);
  676. if (address == -EFAULT)
  677. continue;
  678. ret += page_mkclean_one(page, vma, address);
  679. }
  680. }
  681. spin_unlock(&mapping->i_mmap_lock);
  682. return ret;
  683. }
  684. int page_mkclean(struct page *page)
  685. {
  686. int ret = 0;
  687. BUG_ON(!PageLocked(page));
  688. if (page_mapped(page)) {
  689. struct address_space *mapping = page_mapping(page);
  690. if (mapping) {
  691. ret = page_mkclean_file(mapping, page);
  692. if (page_test_dirty(page)) {
  693. page_clear_dirty(page, 1);
  694. ret = 1;
  695. }
  696. }
  697. }
  698. return ret;
  699. }
  700. EXPORT_SYMBOL_GPL(page_mkclean);
  701. /**
  702. * page_move_anon_rmap - move a page to our anon_vma
  703. * @page: the page to move to our anon_vma
  704. * @vma: the vma the page belongs to
  705. * @address: the user virtual address mapped
  706. *
  707. * When a page belongs exclusively to one process after a COW event,
  708. * that page can be moved into the anon_vma that belongs to just that
  709. * process, so the rmap code will not search the parent or sibling
  710. * processes.
  711. */
  712. void page_move_anon_rmap(struct page *page,
  713. struct vm_area_struct *vma, unsigned long address)
  714. {
  715. struct anon_vma *anon_vma = vma->anon_vma;
  716. VM_BUG_ON(!PageLocked(page));
  717. VM_BUG_ON(!anon_vma);
  718. VM_BUG_ON(page->index != linear_page_index(vma, address));
  719. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  720. page->mapping = (struct address_space *) anon_vma;
  721. }
  722. /**
  723. * __page_set_anon_rmap - set up new anonymous rmap
  724. * @page: Page to add to rmap
  725. * @vma: VM area to add page to.
  726. * @address: User virtual address of the mapping
  727. * @exclusive: the page is exclusively owned by the current process
  728. */
  729. static void __page_set_anon_rmap(struct page *page,
  730. struct vm_area_struct *vma, unsigned long address, int exclusive)
  731. {
  732. struct anon_vma *anon_vma = vma->anon_vma;
  733. BUG_ON(!anon_vma);
  734. if (PageAnon(page))
  735. return;
  736. /*
  737. * If the page isn't exclusively mapped into this vma,
  738. * we must use the _oldest_ possible anon_vma for the
  739. * page mapping!
  740. */
  741. if (!exclusive)
  742. anon_vma = anon_vma->root;
  743. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  744. page->mapping = (struct address_space *) anon_vma;
  745. page->index = linear_page_index(vma, address);
  746. }
  747. /**
  748. * __page_check_anon_rmap - sanity check anonymous rmap addition
  749. * @page: the page to add the mapping to
  750. * @vma: the vm area in which the mapping is added
  751. * @address: the user virtual address mapped
  752. */
  753. static void __page_check_anon_rmap(struct page *page,
  754. struct vm_area_struct *vma, unsigned long address)
  755. {
  756. #ifdef CONFIG_DEBUG_VM
  757. /*
  758. * The page's anon-rmap details (mapping and index) are guaranteed to
  759. * be set up correctly at this point.
  760. *
  761. * We have exclusion against page_add_anon_rmap because the caller
  762. * always holds the page locked, except if called from page_dup_rmap,
  763. * in which case the page is already known to be setup.
  764. *
  765. * We have exclusion against page_add_new_anon_rmap because those pages
  766. * are initially only visible via the pagetables, and the pte is locked
  767. * over the call to page_add_new_anon_rmap.
  768. */
  769. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  770. BUG_ON(page->index != linear_page_index(vma, address));
  771. #endif
  772. }
  773. /**
  774. * page_add_anon_rmap - add pte mapping to an anonymous page
  775. * @page: the page to add the mapping to
  776. * @vma: the vm area in which the mapping is added
  777. * @address: the user virtual address mapped
  778. *
  779. * The caller needs to hold the pte lock, and the page must be locked in
  780. * the anon_vma case: to serialize mapping,index checking after setting,
  781. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  782. * (but PageKsm is never downgraded to PageAnon).
  783. */
  784. void page_add_anon_rmap(struct page *page,
  785. struct vm_area_struct *vma, unsigned long address)
  786. {
  787. do_page_add_anon_rmap(page, vma, address, 0);
  788. }
  789. /*
  790. * Special version of the above for do_swap_page, which often runs
  791. * into pages that are exclusively owned by the current process.
  792. * Everybody else should continue to use page_add_anon_rmap above.
  793. */
  794. void do_page_add_anon_rmap(struct page *page,
  795. struct vm_area_struct *vma, unsigned long address, int exclusive)
  796. {
  797. int first = atomic_inc_and_test(&page->_mapcount);
  798. if (first) {
  799. if (!PageTransHuge(page))
  800. __inc_zone_page_state(page, NR_ANON_PAGES);
  801. else
  802. __inc_zone_page_state(page,
  803. NR_ANON_TRANSPARENT_HUGEPAGES);
  804. }
  805. if (unlikely(PageKsm(page)))
  806. return;
  807. VM_BUG_ON(!PageLocked(page));
  808. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  809. if (first)
  810. __page_set_anon_rmap(page, vma, address, exclusive);
  811. else
  812. __page_check_anon_rmap(page, vma, address);
  813. }
  814. /**
  815. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  816. * @page: the page to add the mapping to
  817. * @vma: the vm area in which the mapping is added
  818. * @address: the user virtual address mapped
  819. *
  820. * Same as page_add_anon_rmap but must only be called on *new* pages.
  821. * This means the inc-and-test can be bypassed.
  822. * Page does not have to be locked.
  823. */
  824. void page_add_new_anon_rmap(struct page *page,
  825. struct vm_area_struct *vma, unsigned long address)
  826. {
  827. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  828. SetPageSwapBacked(page);
  829. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  830. if (!PageTransHuge(page))
  831. __inc_zone_page_state(page, NR_ANON_PAGES);
  832. else
  833. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  834. __page_set_anon_rmap(page, vma, address, 1);
  835. if (page_evictable(page, vma))
  836. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  837. else
  838. add_page_to_unevictable_list(page);
  839. }
  840. /**
  841. * page_add_file_rmap - add pte mapping to a file page
  842. * @page: the page to add the mapping to
  843. *
  844. * The caller needs to hold the pte lock.
  845. */
  846. void page_add_file_rmap(struct page *page)
  847. {
  848. if (atomic_inc_and_test(&page->_mapcount)) {
  849. __inc_zone_page_state(page, NR_FILE_MAPPED);
  850. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  851. }
  852. }
  853. /**
  854. * page_remove_rmap - take down pte mapping from a page
  855. * @page: page to remove mapping from
  856. *
  857. * The caller needs to hold the pte lock.
  858. */
  859. void page_remove_rmap(struct page *page)
  860. {
  861. /* page still mapped by someone else? */
  862. if (!atomic_add_negative(-1, &page->_mapcount))
  863. return;
  864. /*
  865. * Now that the last pte has gone, s390 must transfer dirty
  866. * flag from storage key to struct page. We can usually skip
  867. * this if the page is anon, so about to be freed; but perhaps
  868. * not if it's in swapcache - there might be another pte slot
  869. * containing the swap entry, but page not yet written to swap.
  870. */
  871. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  872. page_clear_dirty(page, 1);
  873. set_page_dirty(page);
  874. }
  875. /*
  876. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  877. * and not charged by memcg for now.
  878. */
  879. if (unlikely(PageHuge(page)))
  880. return;
  881. if (PageAnon(page)) {
  882. mem_cgroup_uncharge_page(page);
  883. if (!PageTransHuge(page))
  884. __dec_zone_page_state(page, NR_ANON_PAGES);
  885. else
  886. __dec_zone_page_state(page,
  887. NR_ANON_TRANSPARENT_HUGEPAGES);
  888. } else {
  889. __dec_zone_page_state(page, NR_FILE_MAPPED);
  890. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  891. }
  892. /*
  893. * It would be tidy to reset the PageAnon mapping here,
  894. * but that might overwrite a racing page_add_anon_rmap
  895. * which increments mapcount after us but sets mapping
  896. * before us: so leave the reset to free_hot_cold_page,
  897. * and remember that it's only reliable while mapped.
  898. * Leaving it set also helps swapoff to reinstate ptes
  899. * faster for those pages still in swapcache.
  900. */
  901. }
  902. /*
  903. * Subfunctions of try_to_unmap: try_to_unmap_one called
  904. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  905. */
  906. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  907. unsigned long address, enum ttu_flags flags)
  908. {
  909. struct mm_struct *mm = vma->vm_mm;
  910. pte_t *pte;
  911. pte_t pteval;
  912. spinlock_t *ptl;
  913. int ret = SWAP_AGAIN;
  914. pte = page_check_address(page, mm, address, &ptl, 0);
  915. if (!pte)
  916. goto out;
  917. /*
  918. * If the page is mlock()d, we cannot swap it out.
  919. * If it's recently referenced (perhaps page_referenced
  920. * skipped over this mm) then we should reactivate it.
  921. */
  922. if (!(flags & TTU_IGNORE_MLOCK)) {
  923. if (vma->vm_flags & VM_LOCKED)
  924. goto out_mlock;
  925. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  926. goto out_unmap;
  927. }
  928. if (!(flags & TTU_IGNORE_ACCESS)) {
  929. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  930. ret = SWAP_FAIL;
  931. goto out_unmap;
  932. }
  933. }
  934. /* Nuke the page table entry. */
  935. flush_cache_page(vma, address, page_to_pfn(page));
  936. pteval = ptep_clear_flush_notify(vma, address, pte);
  937. /* Move the dirty bit to the physical page now the pte is gone. */
  938. if (pte_dirty(pteval))
  939. set_page_dirty(page);
  940. /* Update high watermark before we lower rss */
  941. update_hiwater_rss(mm);
  942. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  943. if (PageAnon(page))
  944. dec_mm_counter(mm, MM_ANONPAGES);
  945. else
  946. dec_mm_counter(mm, MM_FILEPAGES);
  947. set_pte_at(mm, address, pte,
  948. swp_entry_to_pte(make_hwpoison_entry(page)));
  949. } else if (PageAnon(page)) {
  950. swp_entry_t entry = { .val = page_private(page) };
  951. if (PageSwapCache(page)) {
  952. /*
  953. * Store the swap location in the pte.
  954. * See handle_pte_fault() ...
  955. */
  956. if (swap_duplicate(entry) < 0) {
  957. set_pte_at(mm, address, pte, pteval);
  958. ret = SWAP_FAIL;
  959. goto out_unmap;
  960. }
  961. if (list_empty(&mm->mmlist)) {
  962. spin_lock(&mmlist_lock);
  963. if (list_empty(&mm->mmlist))
  964. list_add(&mm->mmlist, &init_mm.mmlist);
  965. spin_unlock(&mmlist_lock);
  966. }
  967. dec_mm_counter(mm, MM_ANONPAGES);
  968. inc_mm_counter(mm, MM_SWAPENTS);
  969. } else if (PAGE_MIGRATION) {
  970. /*
  971. * Store the pfn of the page in a special migration
  972. * pte. do_swap_page() will wait until the migration
  973. * pte is removed and then restart fault handling.
  974. */
  975. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  976. entry = make_migration_entry(page, pte_write(pteval));
  977. }
  978. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  979. BUG_ON(pte_file(*pte));
  980. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  981. /* Establish migration entry for a file page */
  982. swp_entry_t entry;
  983. entry = make_migration_entry(page, pte_write(pteval));
  984. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  985. } else
  986. dec_mm_counter(mm, MM_FILEPAGES);
  987. page_remove_rmap(page);
  988. page_cache_release(page);
  989. out_unmap:
  990. pte_unmap_unlock(pte, ptl);
  991. out:
  992. return ret;
  993. out_mlock:
  994. pte_unmap_unlock(pte, ptl);
  995. /*
  996. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  997. * unstable result and race. Plus, We can't wait here because
  998. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  999. * if trylock failed, the page remain in evictable lru and later
  1000. * vmscan could retry to move the page to unevictable lru if the
  1001. * page is actually mlocked.
  1002. */
  1003. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1004. if (vma->vm_flags & VM_LOCKED) {
  1005. mlock_vma_page(page);
  1006. ret = SWAP_MLOCK;
  1007. }
  1008. up_read(&vma->vm_mm->mmap_sem);
  1009. }
  1010. return ret;
  1011. }
  1012. /*
  1013. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1014. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1015. * Consequently, given a particular page and its ->index, we cannot locate the
  1016. * ptes which are mapping that page without an exhaustive linear search.
  1017. *
  1018. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1019. * maps the file to which the target page belongs. The ->vm_private_data field
  1020. * holds the current cursor into that scan. Successive searches will circulate
  1021. * around the vma's virtual address space.
  1022. *
  1023. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1024. * more scanning pressure is placed against them as well. Eventually pages
  1025. * will become fully unmapped and are eligible for eviction.
  1026. *
  1027. * For very sparsely populated VMAs this is a little inefficient - chances are
  1028. * there there won't be many ptes located within the scan cluster. In this case
  1029. * maybe we could scan further - to the end of the pte page, perhaps.
  1030. *
  1031. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1032. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1033. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1034. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1035. */
  1036. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1037. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1038. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1039. struct vm_area_struct *vma, struct page *check_page)
  1040. {
  1041. struct mm_struct *mm = vma->vm_mm;
  1042. pgd_t *pgd;
  1043. pud_t *pud;
  1044. pmd_t *pmd;
  1045. pte_t *pte;
  1046. pte_t pteval;
  1047. spinlock_t *ptl;
  1048. struct page *page;
  1049. unsigned long address;
  1050. unsigned long end;
  1051. int ret = SWAP_AGAIN;
  1052. int locked_vma = 0;
  1053. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1054. end = address + CLUSTER_SIZE;
  1055. if (address < vma->vm_start)
  1056. address = vma->vm_start;
  1057. if (end > vma->vm_end)
  1058. end = vma->vm_end;
  1059. pgd = pgd_offset(mm, address);
  1060. if (!pgd_present(*pgd))
  1061. return ret;
  1062. pud = pud_offset(pgd, address);
  1063. if (!pud_present(*pud))
  1064. return ret;
  1065. pmd = pmd_offset(pud, address);
  1066. if (!pmd_present(*pmd))
  1067. return ret;
  1068. /*
  1069. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1070. * keep the sem while scanning the cluster for mlocking pages.
  1071. */
  1072. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1073. locked_vma = (vma->vm_flags & VM_LOCKED);
  1074. if (!locked_vma)
  1075. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1076. }
  1077. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1078. /* Update high watermark before we lower rss */
  1079. update_hiwater_rss(mm);
  1080. for (; address < end; pte++, address += PAGE_SIZE) {
  1081. if (!pte_present(*pte))
  1082. continue;
  1083. page = vm_normal_page(vma, address, *pte);
  1084. BUG_ON(!page || PageAnon(page));
  1085. if (locked_vma) {
  1086. mlock_vma_page(page); /* no-op if already mlocked */
  1087. if (page == check_page)
  1088. ret = SWAP_MLOCK;
  1089. continue; /* don't unmap */
  1090. }
  1091. if (ptep_clear_flush_young_notify(vma, address, pte))
  1092. continue;
  1093. /* Nuke the page table entry. */
  1094. flush_cache_page(vma, address, pte_pfn(*pte));
  1095. pteval = ptep_clear_flush_notify(vma, address, pte);
  1096. /* If nonlinear, store the file page offset in the pte. */
  1097. if (page->index != linear_page_index(vma, address))
  1098. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1099. /* Move the dirty bit to the physical page now the pte is gone. */
  1100. if (pte_dirty(pteval))
  1101. set_page_dirty(page);
  1102. page_remove_rmap(page);
  1103. page_cache_release(page);
  1104. dec_mm_counter(mm, MM_FILEPAGES);
  1105. (*mapcount)--;
  1106. }
  1107. pte_unmap_unlock(pte - 1, ptl);
  1108. if (locked_vma)
  1109. up_read(&vma->vm_mm->mmap_sem);
  1110. return ret;
  1111. }
  1112. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1113. {
  1114. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1115. if (!maybe_stack)
  1116. return false;
  1117. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1118. VM_STACK_INCOMPLETE_SETUP)
  1119. return true;
  1120. return false;
  1121. }
  1122. /**
  1123. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1124. * rmap method
  1125. * @page: the page to unmap/unlock
  1126. * @flags: action and flags
  1127. *
  1128. * Find all the mappings of a page using the mapping pointer and the vma chains
  1129. * contained in the anon_vma struct it points to.
  1130. *
  1131. * This function is only called from try_to_unmap/try_to_munlock for
  1132. * anonymous pages.
  1133. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1134. * where the page was found will be held for write. So, we won't recheck
  1135. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1136. * 'LOCKED.
  1137. */
  1138. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1139. {
  1140. struct anon_vma *anon_vma;
  1141. struct anon_vma_chain *avc;
  1142. int ret = SWAP_AGAIN;
  1143. anon_vma = page_lock_anon_vma(page);
  1144. if (!anon_vma)
  1145. return ret;
  1146. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1147. struct vm_area_struct *vma = avc->vma;
  1148. unsigned long address;
  1149. /*
  1150. * During exec, a temporary VMA is setup and later moved.
  1151. * The VMA is moved under the anon_vma lock but not the
  1152. * page tables leading to a race where migration cannot
  1153. * find the migration ptes. Rather than increasing the
  1154. * locking requirements of exec(), migration skips
  1155. * temporary VMAs until after exec() completes.
  1156. */
  1157. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1158. is_vma_temporary_stack(vma))
  1159. continue;
  1160. address = vma_address(page, vma);
  1161. if (address == -EFAULT)
  1162. continue;
  1163. ret = try_to_unmap_one(page, vma, address, flags);
  1164. if (ret != SWAP_AGAIN || !page_mapped(page))
  1165. break;
  1166. }
  1167. page_unlock_anon_vma(anon_vma);
  1168. return ret;
  1169. }
  1170. /**
  1171. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1172. * @page: the page to unmap/unlock
  1173. * @flags: action and flags
  1174. *
  1175. * Find all the mappings of a page using the mapping pointer and the vma chains
  1176. * contained in the address_space struct it points to.
  1177. *
  1178. * This function is only called from try_to_unmap/try_to_munlock for
  1179. * object-based pages.
  1180. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1181. * where the page was found will be held for write. So, we won't recheck
  1182. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1183. * 'LOCKED.
  1184. */
  1185. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1186. {
  1187. struct address_space *mapping = page->mapping;
  1188. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1189. struct vm_area_struct *vma;
  1190. struct prio_tree_iter iter;
  1191. int ret = SWAP_AGAIN;
  1192. unsigned long cursor;
  1193. unsigned long max_nl_cursor = 0;
  1194. unsigned long max_nl_size = 0;
  1195. unsigned int mapcount;
  1196. spin_lock(&mapping->i_mmap_lock);
  1197. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1198. unsigned long address = vma_address(page, vma);
  1199. if (address == -EFAULT)
  1200. continue;
  1201. ret = try_to_unmap_one(page, vma, address, flags);
  1202. if (ret != SWAP_AGAIN || !page_mapped(page))
  1203. goto out;
  1204. }
  1205. if (list_empty(&mapping->i_mmap_nonlinear))
  1206. goto out;
  1207. /*
  1208. * We don't bother to try to find the munlocked page in nonlinears.
  1209. * It's costly. Instead, later, page reclaim logic may call
  1210. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1211. */
  1212. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1213. goto out;
  1214. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1215. shared.vm_set.list) {
  1216. cursor = (unsigned long) vma->vm_private_data;
  1217. if (cursor > max_nl_cursor)
  1218. max_nl_cursor = cursor;
  1219. cursor = vma->vm_end - vma->vm_start;
  1220. if (cursor > max_nl_size)
  1221. max_nl_size = cursor;
  1222. }
  1223. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1224. ret = SWAP_FAIL;
  1225. goto out;
  1226. }
  1227. /*
  1228. * We don't try to search for this page in the nonlinear vmas,
  1229. * and page_referenced wouldn't have found it anyway. Instead
  1230. * just walk the nonlinear vmas trying to age and unmap some.
  1231. * The mapcount of the page we came in with is irrelevant,
  1232. * but even so use it as a guide to how hard we should try?
  1233. */
  1234. mapcount = page_mapcount(page);
  1235. if (!mapcount)
  1236. goto out;
  1237. cond_resched_lock(&mapping->i_mmap_lock);
  1238. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1239. if (max_nl_cursor == 0)
  1240. max_nl_cursor = CLUSTER_SIZE;
  1241. do {
  1242. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1243. shared.vm_set.list) {
  1244. cursor = (unsigned long) vma->vm_private_data;
  1245. while ( cursor < max_nl_cursor &&
  1246. cursor < vma->vm_end - vma->vm_start) {
  1247. if (try_to_unmap_cluster(cursor, &mapcount,
  1248. vma, page) == SWAP_MLOCK)
  1249. ret = SWAP_MLOCK;
  1250. cursor += CLUSTER_SIZE;
  1251. vma->vm_private_data = (void *) cursor;
  1252. if ((int)mapcount <= 0)
  1253. goto out;
  1254. }
  1255. vma->vm_private_data = (void *) max_nl_cursor;
  1256. }
  1257. cond_resched_lock(&mapping->i_mmap_lock);
  1258. max_nl_cursor += CLUSTER_SIZE;
  1259. } while (max_nl_cursor <= max_nl_size);
  1260. /*
  1261. * Don't loop forever (perhaps all the remaining pages are
  1262. * in locked vmas). Reset cursor on all unreserved nonlinear
  1263. * vmas, now forgetting on which ones it had fallen behind.
  1264. */
  1265. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1266. vma->vm_private_data = NULL;
  1267. out:
  1268. spin_unlock(&mapping->i_mmap_lock);
  1269. return ret;
  1270. }
  1271. /**
  1272. * try_to_unmap - try to remove all page table mappings to a page
  1273. * @page: the page to get unmapped
  1274. * @flags: action and flags
  1275. *
  1276. * Tries to remove all the page table entries which are mapping this
  1277. * page, used in the pageout path. Caller must hold the page lock.
  1278. * Return values are:
  1279. *
  1280. * SWAP_SUCCESS - we succeeded in removing all mappings
  1281. * SWAP_AGAIN - we missed a mapping, try again later
  1282. * SWAP_FAIL - the page is unswappable
  1283. * SWAP_MLOCK - page is mlocked.
  1284. */
  1285. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1286. {
  1287. int ret;
  1288. BUG_ON(!PageLocked(page));
  1289. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1290. if (unlikely(PageKsm(page)))
  1291. ret = try_to_unmap_ksm(page, flags);
  1292. else if (PageAnon(page))
  1293. ret = try_to_unmap_anon(page, flags);
  1294. else
  1295. ret = try_to_unmap_file(page, flags);
  1296. if (ret != SWAP_MLOCK && !page_mapped(page))
  1297. ret = SWAP_SUCCESS;
  1298. return ret;
  1299. }
  1300. /**
  1301. * try_to_munlock - try to munlock a page
  1302. * @page: the page to be munlocked
  1303. *
  1304. * Called from munlock code. Checks all of the VMAs mapping the page
  1305. * to make sure nobody else has this page mlocked. The page will be
  1306. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1307. *
  1308. * Return values are:
  1309. *
  1310. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1311. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1312. * SWAP_FAIL - page cannot be located at present
  1313. * SWAP_MLOCK - page is now mlocked.
  1314. */
  1315. int try_to_munlock(struct page *page)
  1316. {
  1317. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1318. if (unlikely(PageKsm(page)))
  1319. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1320. else if (PageAnon(page))
  1321. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1322. else
  1323. return try_to_unmap_file(page, TTU_MUNLOCK);
  1324. }
  1325. void __put_anon_vma(struct anon_vma *anon_vma)
  1326. {
  1327. struct anon_vma *root = anon_vma->root;
  1328. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1329. anon_vma_free(root);
  1330. anon_vma_free(anon_vma);
  1331. }
  1332. #ifdef CONFIG_MIGRATION
  1333. /*
  1334. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1335. * Called by migrate.c to remove migration ptes, but might be used more later.
  1336. */
  1337. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1338. struct vm_area_struct *, unsigned long, void *), void *arg)
  1339. {
  1340. struct anon_vma *anon_vma;
  1341. struct anon_vma_chain *avc;
  1342. int ret = SWAP_AGAIN;
  1343. /*
  1344. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1345. * because that depends on page_mapped(); but not all its usages
  1346. * are holding mmap_sem. Users without mmap_sem are required to
  1347. * take a reference count to prevent the anon_vma disappearing
  1348. */
  1349. anon_vma = page_anon_vma(page);
  1350. if (!anon_vma)
  1351. return ret;
  1352. anon_vma_lock(anon_vma);
  1353. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1354. struct vm_area_struct *vma = avc->vma;
  1355. unsigned long address = vma_address(page, vma);
  1356. if (address == -EFAULT)
  1357. continue;
  1358. ret = rmap_one(page, vma, address, arg);
  1359. if (ret != SWAP_AGAIN)
  1360. break;
  1361. }
  1362. anon_vma_unlock(anon_vma);
  1363. return ret;
  1364. }
  1365. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1366. struct vm_area_struct *, unsigned long, void *), void *arg)
  1367. {
  1368. struct address_space *mapping = page->mapping;
  1369. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1370. struct vm_area_struct *vma;
  1371. struct prio_tree_iter iter;
  1372. int ret = SWAP_AGAIN;
  1373. if (!mapping)
  1374. return ret;
  1375. spin_lock(&mapping->i_mmap_lock);
  1376. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1377. unsigned long address = vma_address(page, vma);
  1378. if (address == -EFAULT)
  1379. continue;
  1380. ret = rmap_one(page, vma, address, arg);
  1381. if (ret != SWAP_AGAIN)
  1382. break;
  1383. }
  1384. /*
  1385. * No nonlinear handling: being always shared, nonlinear vmas
  1386. * never contain migration ptes. Decide what to do about this
  1387. * limitation to linear when we need rmap_walk() on nonlinear.
  1388. */
  1389. spin_unlock(&mapping->i_mmap_lock);
  1390. return ret;
  1391. }
  1392. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1393. struct vm_area_struct *, unsigned long, void *), void *arg)
  1394. {
  1395. VM_BUG_ON(!PageLocked(page));
  1396. if (unlikely(PageKsm(page)))
  1397. return rmap_walk_ksm(page, rmap_one, arg);
  1398. else if (PageAnon(page))
  1399. return rmap_walk_anon(page, rmap_one, arg);
  1400. else
  1401. return rmap_walk_file(page, rmap_one, arg);
  1402. }
  1403. #endif /* CONFIG_MIGRATION */
  1404. #ifdef CONFIG_HUGETLB_PAGE
  1405. /*
  1406. * The following three functions are for anonymous (private mapped) hugepages.
  1407. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1408. * and no lru code, because we handle hugepages differently from common pages.
  1409. */
  1410. static void __hugepage_set_anon_rmap(struct page *page,
  1411. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1412. {
  1413. struct anon_vma *anon_vma = vma->anon_vma;
  1414. BUG_ON(!anon_vma);
  1415. if (PageAnon(page))
  1416. return;
  1417. if (!exclusive)
  1418. anon_vma = anon_vma->root;
  1419. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1420. page->mapping = (struct address_space *) anon_vma;
  1421. page->index = linear_page_index(vma, address);
  1422. }
  1423. void hugepage_add_anon_rmap(struct page *page,
  1424. struct vm_area_struct *vma, unsigned long address)
  1425. {
  1426. struct anon_vma *anon_vma = vma->anon_vma;
  1427. int first;
  1428. BUG_ON(!PageLocked(page));
  1429. BUG_ON(!anon_vma);
  1430. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1431. first = atomic_inc_and_test(&page->_mapcount);
  1432. if (first)
  1433. __hugepage_set_anon_rmap(page, vma, address, 0);
  1434. }
  1435. void hugepage_add_new_anon_rmap(struct page *page,
  1436. struct vm_area_struct *vma, unsigned long address)
  1437. {
  1438. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1439. atomic_set(&page->_mapcount, 0);
  1440. __hugepage_set_anon_rmap(page, vma, address, 1);
  1441. }
  1442. #endif /* CONFIG_HUGETLB_PAGE */