time.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/export.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <asm/trace.h>
  57. #include <asm/io.h>
  58. #include <asm/processor.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/machdep.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/time.h>
  64. #include <asm/prom.h>
  65. #include <asm/irq.h>
  66. #include <asm/div64.h>
  67. #include <asm/smp.h>
  68. #include <asm/vdso_datapage.h>
  69. #include <asm/firmware.h>
  70. #include <asm/cputime.h>
  71. #ifdef CONFIG_PPC_ISERIES
  72. #include <asm/iseries/it_lp_queue.h>
  73. #include <asm/iseries/hv_call_xm.h>
  74. #endif
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/clocksource.h>
  78. static cycle_t rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .read = rtc_read,
  85. };
  86. static cycle_t timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_MAX 0x7fffffff
  95. static int decrementer_set_next_event(unsigned long evt,
  96. struct clock_event_device *dev);
  97. static void decrementer_set_mode(enum clock_event_mode mode,
  98. struct clock_event_device *dev);
  99. static struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .irq = 0,
  103. .set_next_event = decrementer_set_next_event,
  104. .set_mode = decrementer_set_mode,
  105. .features = CLOCK_EVT_FEAT_ONESHOT,
  106. };
  107. struct decrementer_clock {
  108. struct clock_event_device event;
  109. u64 next_tb;
  110. };
  111. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  112. #ifdef CONFIG_PPC_ISERIES
  113. static unsigned long __initdata iSeries_recal_titan;
  114. static signed long __initdata iSeries_recal_tb;
  115. /* Forward declaration is only needed for iSereis compiles */
  116. static void __init clocksource_init(void);
  117. #endif
  118. #define XSEC_PER_SEC (1024*1024)
  119. #ifdef CONFIG_PPC64
  120. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  121. #else
  122. /* compute ((xsec << 12) * max) >> 32 */
  123. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  124. #endif
  125. unsigned long tb_ticks_per_jiffy;
  126. unsigned long tb_ticks_per_usec = 100; /* sane default */
  127. EXPORT_SYMBOL(tb_ticks_per_usec);
  128. unsigned long tb_ticks_per_sec;
  129. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  130. DEFINE_SPINLOCK(rtc_lock);
  131. EXPORT_SYMBOL_GPL(rtc_lock);
  132. static u64 tb_to_ns_scale __read_mostly;
  133. static unsigned tb_to_ns_shift __read_mostly;
  134. static u64 boot_tb __read_mostly;
  135. extern struct timezone sys_tz;
  136. static long timezone_offset;
  137. unsigned long ppc_proc_freq;
  138. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  139. unsigned long ppc_tb_freq;
  140. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  141. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  142. /*
  143. * Factors for converting from cputime_t (timebase ticks) to
  144. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  145. * These are all stored as 0.64 fixed-point binary fractions.
  146. */
  147. u64 __cputime_jiffies_factor;
  148. EXPORT_SYMBOL(__cputime_jiffies_factor);
  149. u64 __cputime_msec_factor;
  150. EXPORT_SYMBOL(__cputime_msec_factor);
  151. u64 __cputime_sec_factor;
  152. EXPORT_SYMBOL(__cputime_sec_factor);
  153. u64 __cputime_clockt_factor;
  154. EXPORT_SYMBOL(__cputime_clockt_factor);
  155. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  156. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  157. cputime_t cputime_one_jiffy;
  158. void (*dtl_consumer)(struct dtl_entry *, u64);
  159. static void calc_cputime_factors(void)
  160. {
  161. struct div_result res;
  162. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  163. __cputime_jiffies_factor = res.result_low;
  164. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  165. __cputime_msec_factor = res.result_low;
  166. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  167. __cputime_sec_factor = res.result_low;
  168. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  169. __cputime_clockt_factor = res.result_low;
  170. }
  171. /*
  172. * Read the SPURR on systems that have it, otherwise the PURR,
  173. * or if that doesn't exist return the timebase value passed in.
  174. */
  175. static u64 read_spurr(u64 tb)
  176. {
  177. if (cpu_has_feature(CPU_FTR_SPURR))
  178. return mfspr(SPRN_SPURR);
  179. if (cpu_has_feature(CPU_FTR_PURR))
  180. return mfspr(SPRN_PURR);
  181. return tb;
  182. }
  183. #ifdef CONFIG_PPC_SPLPAR
  184. /*
  185. * Scan the dispatch trace log and count up the stolen time.
  186. * Should be called with interrupts disabled.
  187. */
  188. static u64 scan_dispatch_log(u64 stop_tb)
  189. {
  190. u64 i = local_paca->dtl_ridx;
  191. struct dtl_entry *dtl = local_paca->dtl_curr;
  192. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  193. struct lppaca *vpa = local_paca->lppaca_ptr;
  194. u64 tb_delta;
  195. u64 stolen = 0;
  196. u64 dtb;
  197. if (!dtl)
  198. return 0;
  199. if (i == vpa->dtl_idx)
  200. return 0;
  201. while (i < vpa->dtl_idx) {
  202. if (dtl_consumer)
  203. dtl_consumer(dtl, i);
  204. dtb = dtl->timebase;
  205. tb_delta = dtl->enqueue_to_dispatch_time +
  206. dtl->ready_to_enqueue_time;
  207. barrier();
  208. if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
  209. /* buffer has overflowed */
  210. i = vpa->dtl_idx - N_DISPATCH_LOG;
  211. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  212. continue;
  213. }
  214. if (dtb > stop_tb)
  215. break;
  216. stolen += tb_delta;
  217. ++i;
  218. ++dtl;
  219. if (dtl == dtl_end)
  220. dtl = local_paca->dispatch_log;
  221. }
  222. local_paca->dtl_ridx = i;
  223. local_paca->dtl_curr = dtl;
  224. return stolen;
  225. }
  226. /*
  227. * Accumulate stolen time by scanning the dispatch trace log.
  228. * Called on entry from user mode.
  229. */
  230. void accumulate_stolen_time(void)
  231. {
  232. u64 sst, ust;
  233. u8 save_soft_enabled = local_paca->soft_enabled;
  234. u8 save_hard_enabled = local_paca->hard_enabled;
  235. /* We are called early in the exception entry, before
  236. * soft/hard_enabled are sync'ed to the expected state
  237. * for the exception. We are hard disabled but the PACA
  238. * needs to reflect that so various debug stuff doesn't
  239. * complain
  240. */
  241. local_paca->soft_enabled = 0;
  242. local_paca->hard_enabled = 0;
  243. sst = scan_dispatch_log(local_paca->starttime_user);
  244. ust = scan_dispatch_log(local_paca->starttime);
  245. local_paca->system_time -= sst;
  246. local_paca->user_time -= ust;
  247. local_paca->stolen_time += ust + sst;
  248. local_paca->soft_enabled = save_soft_enabled;
  249. local_paca->hard_enabled = save_hard_enabled;
  250. }
  251. static inline u64 calculate_stolen_time(u64 stop_tb)
  252. {
  253. u64 stolen = 0;
  254. if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
  255. stolen = scan_dispatch_log(stop_tb);
  256. get_paca()->system_time -= stolen;
  257. }
  258. stolen += get_paca()->stolen_time;
  259. get_paca()->stolen_time = 0;
  260. return stolen;
  261. }
  262. #else /* CONFIG_PPC_SPLPAR */
  263. static inline u64 calculate_stolen_time(u64 stop_tb)
  264. {
  265. return 0;
  266. }
  267. #endif /* CONFIG_PPC_SPLPAR */
  268. /*
  269. * Account time for a transition between system, hard irq
  270. * or soft irq state.
  271. */
  272. void account_system_vtime(struct task_struct *tsk)
  273. {
  274. u64 now, nowscaled, delta, deltascaled;
  275. unsigned long flags;
  276. u64 stolen, udelta, sys_scaled, user_scaled;
  277. local_irq_save(flags);
  278. now = mftb();
  279. nowscaled = read_spurr(now);
  280. get_paca()->system_time += now - get_paca()->starttime;
  281. get_paca()->starttime = now;
  282. deltascaled = nowscaled - get_paca()->startspurr;
  283. get_paca()->startspurr = nowscaled;
  284. stolen = calculate_stolen_time(now);
  285. delta = get_paca()->system_time;
  286. get_paca()->system_time = 0;
  287. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  288. get_paca()->utime_sspurr = get_paca()->user_time;
  289. /*
  290. * Because we don't read the SPURR on every kernel entry/exit,
  291. * deltascaled includes both user and system SPURR ticks.
  292. * Apportion these ticks to system SPURR ticks and user
  293. * SPURR ticks in the same ratio as the system time (delta)
  294. * and user time (udelta) values obtained from the timebase
  295. * over the same interval. The system ticks get accounted here;
  296. * the user ticks get saved up in paca->user_time_scaled to be
  297. * used by account_process_tick.
  298. */
  299. sys_scaled = delta;
  300. user_scaled = udelta;
  301. if (deltascaled != delta + udelta) {
  302. if (udelta) {
  303. sys_scaled = deltascaled * delta / (delta + udelta);
  304. user_scaled = deltascaled - sys_scaled;
  305. } else {
  306. sys_scaled = deltascaled;
  307. }
  308. }
  309. get_paca()->user_time_scaled += user_scaled;
  310. if (in_interrupt() || idle_task(smp_processor_id()) != tsk) {
  311. account_system_time(tsk, 0, delta, sys_scaled);
  312. if (stolen)
  313. account_steal_time(stolen);
  314. } else {
  315. account_idle_time(delta + stolen);
  316. }
  317. local_irq_restore(flags);
  318. }
  319. EXPORT_SYMBOL_GPL(account_system_vtime);
  320. /*
  321. * Transfer the user and system times accumulated in the paca
  322. * by the exception entry and exit code to the generic process
  323. * user and system time records.
  324. * Must be called with interrupts disabled.
  325. * Assumes that account_system_vtime() has been called recently
  326. * (i.e. since the last entry from usermode) so that
  327. * get_paca()->user_time_scaled is up to date.
  328. */
  329. void account_process_tick(struct task_struct *tsk, int user_tick)
  330. {
  331. cputime_t utime, utimescaled;
  332. utime = get_paca()->user_time;
  333. utimescaled = get_paca()->user_time_scaled;
  334. get_paca()->user_time = 0;
  335. get_paca()->user_time_scaled = 0;
  336. get_paca()->utime_sspurr = 0;
  337. account_user_time(tsk, utime, utimescaled);
  338. }
  339. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  340. #define calc_cputime_factors()
  341. #endif
  342. void __delay(unsigned long loops)
  343. {
  344. unsigned long start;
  345. int diff;
  346. if (__USE_RTC()) {
  347. start = get_rtcl();
  348. do {
  349. /* the RTCL register wraps at 1000000000 */
  350. diff = get_rtcl() - start;
  351. if (diff < 0)
  352. diff += 1000000000;
  353. } while (diff < loops);
  354. } else {
  355. start = get_tbl();
  356. while (get_tbl() - start < loops)
  357. HMT_low();
  358. HMT_medium();
  359. }
  360. }
  361. EXPORT_SYMBOL(__delay);
  362. void udelay(unsigned long usecs)
  363. {
  364. __delay(tb_ticks_per_usec * usecs);
  365. }
  366. EXPORT_SYMBOL(udelay);
  367. #ifdef CONFIG_SMP
  368. unsigned long profile_pc(struct pt_regs *regs)
  369. {
  370. unsigned long pc = instruction_pointer(regs);
  371. if (in_lock_functions(pc))
  372. return regs->link;
  373. return pc;
  374. }
  375. EXPORT_SYMBOL(profile_pc);
  376. #endif
  377. #ifdef CONFIG_PPC_ISERIES
  378. /*
  379. * This function recalibrates the timebase based on the 49-bit time-of-day
  380. * value in the Titan chip. The Titan is much more accurate than the value
  381. * returned by the service processor for the timebase frequency.
  382. */
  383. static int __init iSeries_tb_recal(void)
  384. {
  385. unsigned long titan, tb;
  386. /* Make sure we only run on iSeries */
  387. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  388. return -ENODEV;
  389. tb = get_tb();
  390. titan = HvCallXm_loadTod();
  391. if ( iSeries_recal_titan ) {
  392. unsigned long tb_ticks = tb - iSeries_recal_tb;
  393. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  394. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  395. unsigned long new_tb_ticks_per_jiffy =
  396. DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
  397. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  398. char sign = '+';
  399. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  400. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  401. if ( tick_diff < 0 ) {
  402. tick_diff = -tick_diff;
  403. sign = '-';
  404. }
  405. if ( tick_diff ) {
  406. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  407. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  408. new_tb_ticks_per_jiffy, sign, tick_diff );
  409. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  410. tb_ticks_per_sec = new_tb_ticks_per_sec;
  411. calc_cputime_factors();
  412. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  413. setup_cputime_one_jiffy();
  414. }
  415. else {
  416. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  417. " new tb_ticks_per_jiffy = %lu\n"
  418. " old tb_ticks_per_jiffy = %lu\n",
  419. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  420. }
  421. }
  422. }
  423. iSeries_recal_titan = titan;
  424. iSeries_recal_tb = tb;
  425. /* Called here as now we know accurate values for the timebase */
  426. clocksource_init();
  427. return 0;
  428. }
  429. late_initcall(iSeries_tb_recal);
  430. /* Called from platform early init */
  431. void __init iSeries_time_init_early(void)
  432. {
  433. iSeries_recal_tb = get_tb();
  434. iSeries_recal_titan = HvCallXm_loadTod();
  435. }
  436. #endif /* CONFIG_PPC_ISERIES */
  437. #ifdef CONFIG_IRQ_WORK
  438. /*
  439. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  440. */
  441. #ifdef CONFIG_PPC64
  442. static inline unsigned long test_irq_work_pending(void)
  443. {
  444. unsigned long x;
  445. asm volatile("lbz %0,%1(13)"
  446. : "=r" (x)
  447. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  448. return x;
  449. }
  450. static inline void set_irq_work_pending_flag(void)
  451. {
  452. asm volatile("stb %0,%1(13)" : :
  453. "r" (1),
  454. "i" (offsetof(struct paca_struct, irq_work_pending)));
  455. }
  456. static inline void clear_irq_work_pending(void)
  457. {
  458. asm volatile("stb %0,%1(13)" : :
  459. "r" (0),
  460. "i" (offsetof(struct paca_struct, irq_work_pending)));
  461. }
  462. #else /* 32-bit */
  463. DEFINE_PER_CPU(u8, irq_work_pending);
  464. #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
  465. #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
  466. #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
  467. #endif /* 32 vs 64 bit */
  468. void arch_irq_work_raise(void)
  469. {
  470. preempt_disable();
  471. set_irq_work_pending_flag();
  472. set_dec(1);
  473. preempt_enable();
  474. }
  475. #else /* CONFIG_IRQ_WORK */
  476. #define test_irq_work_pending() 0
  477. #define clear_irq_work_pending()
  478. #endif /* CONFIG_IRQ_WORK */
  479. /*
  480. * For iSeries shared processors, we have to let the hypervisor
  481. * set the hardware decrementer. We set a virtual decrementer
  482. * in the lppaca and call the hypervisor if the virtual
  483. * decrementer is less than the current value in the hardware
  484. * decrementer. (almost always the new decrementer value will
  485. * be greater than the current hardware decementer so the hypervisor
  486. * call will not be needed)
  487. */
  488. /*
  489. * timer_interrupt - gets called when the decrementer overflows,
  490. * with interrupts disabled.
  491. */
  492. void timer_interrupt(struct pt_regs * regs)
  493. {
  494. struct pt_regs *old_regs;
  495. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  496. struct clock_event_device *evt = &decrementer->event;
  497. u64 now;
  498. /* Ensure a positive value is written to the decrementer, or else
  499. * some CPUs will continue to take decrementer exceptions.
  500. */
  501. set_dec(DECREMENTER_MAX);
  502. /* Some implementations of hotplug will get timer interrupts while
  503. * offline, just ignore these
  504. */
  505. if (!cpu_online(smp_processor_id()))
  506. return;
  507. trace_timer_interrupt_entry(regs);
  508. __get_cpu_var(irq_stat).timer_irqs++;
  509. #if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
  510. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  511. do_IRQ(regs);
  512. #endif
  513. old_regs = set_irq_regs(regs);
  514. irq_enter();
  515. if (test_irq_work_pending()) {
  516. clear_irq_work_pending();
  517. irq_work_run();
  518. }
  519. #ifdef CONFIG_PPC_ISERIES
  520. if (firmware_has_feature(FW_FEATURE_ISERIES))
  521. get_lppaca()->int_dword.fields.decr_int = 0;
  522. #endif
  523. now = get_tb_or_rtc();
  524. if (now >= decrementer->next_tb) {
  525. decrementer->next_tb = ~(u64)0;
  526. if (evt->event_handler)
  527. evt->event_handler(evt);
  528. } else {
  529. now = decrementer->next_tb - now;
  530. if (now <= DECREMENTER_MAX)
  531. set_dec((int)now);
  532. }
  533. #ifdef CONFIG_PPC_ISERIES
  534. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  535. process_hvlpevents();
  536. #endif
  537. #ifdef CONFIG_PPC64
  538. /* collect purr register values often, for accurate calculations */
  539. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  540. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  541. cu->current_tb = mfspr(SPRN_PURR);
  542. }
  543. #endif
  544. irq_exit();
  545. set_irq_regs(old_regs);
  546. trace_timer_interrupt_exit(regs);
  547. }
  548. #ifdef CONFIG_SUSPEND
  549. static void generic_suspend_disable_irqs(void)
  550. {
  551. /* Disable the decrementer, so that it doesn't interfere
  552. * with suspending.
  553. */
  554. set_dec(0x7fffffff);
  555. local_irq_disable();
  556. set_dec(0x7fffffff);
  557. }
  558. static void generic_suspend_enable_irqs(void)
  559. {
  560. local_irq_enable();
  561. }
  562. /* Overrides the weak version in kernel/power/main.c */
  563. void arch_suspend_disable_irqs(void)
  564. {
  565. if (ppc_md.suspend_disable_irqs)
  566. ppc_md.suspend_disable_irqs();
  567. generic_suspend_disable_irqs();
  568. }
  569. /* Overrides the weak version in kernel/power/main.c */
  570. void arch_suspend_enable_irqs(void)
  571. {
  572. generic_suspend_enable_irqs();
  573. if (ppc_md.suspend_enable_irqs)
  574. ppc_md.suspend_enable_irqs();
  575. }
  576. #endif
  577. /*
  578. * Scheduler clock - returns current time in nanosec units.
  579. *
  580. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  581. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  582. * are 64-bit unsigned numbers.
  583. */
  584. unsigned long long sched_clock(void)
  585. {
  586. if (__USE_RTC())
  587. return get_rtc();
  588. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  589. }
  590. static int __init get_freq(char *name, int cells, unsigned long *val)
  591. {
  592. struct device_node *cpu;
  593. const unsigned int *fp;
  594. int found = 0;
  595. /* The cpu node should have timebase and clock frequency properties */
  596. cpu = of_find_node_by_type(NULL, "cpu");
  597. if (cpu) {
  598. fp = of_get_property(cpu, name, NULL);
  599. if (fp) {
  600. found = 1;
  601. *val = of_read_ulong(fp, cells);
  602. }
  603. of_node_put(cpu);
  604. }
  605. return found;
  606. }
  607. /* should become __cpuinit when secondary_cpu_time_init also is */
  608. void start_cpu_decrementer(void)
  609. {
  610. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  611. /* Clear any pending timer interrupts */
  612. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  613. /* Enable decrementer interrupt */
  614. mtspr(SPRN_TCR, TCR_DIE);
  615. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  616. }
  617. void __init generic_calibrate_decr(void)
  618. {
  619. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  620. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  621. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  622. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  623. "(not found)\n");
  624. }
  625. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  626. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  627. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  628. printk(KERN_ERR "WARNING: Estimating processor frequency "
  629. "(not found)\n");
  630. }
  631. }
  632. int update_persistent_clock(struct timespec now)
  633. {
  634. struct rtc_time tm;
  635. if (!ppc_md.set_rtc_time)
  636. return 0;
  637. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  638. tm.tm_year -= 1900;
  639. tm.tm_mon -= 1;
  640. return ppc_md.set_rtc_time(&tm);
  641. }
  642. static void __read_persistent_clock(struct timespec *ts)
  643. {
  644. struct rtc_time tm;
  645. static int first = 1;
  646. ts->tv_nsec = 0;
  647. /* XXX this is a litle fragile but will work okay in the short term */
  648. if (first) {
  649. first = 0;
  650. if (ppc_md.time_init)
  651. timezone_offset = ppc_md.time_init();
  652. /* get_boot_time() isn't guaranteed to be safe to call late */
  653. if (ppc_md.get_boot_time) {
  654. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  655. return;
  656. }
  657. }
  658. if (!ppc_md.get_rtc_time) {
  659. ts->tv_sec = 0;
  660. return;
  661. }
  662. ppc_md.get_rtc_time(&tm);
  663. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  664. tm.tm_hour, tm.tm_min, tm.tm_sec);
  665. }
  666. void read_persistent_clock(struct timespec *ts)
  667. {
  668. __read_persistent_clock(ts);
  669. /* Sanitize it in case real time clock is set below EPOCH */
  670. if (ts->tv_sec < 0) {
  671. ts->tv_sec = 0;
  672. ts->tv_nsec = 0;
  673. }
  674. }
  675. /* clocksource code */
  676. static cycle_t rtc_read(struct clocksource *cs)
  677. {
  678. return (cycle_t)get_rtc();
  679. }
  680. static cycle_t timebase_read(struct clocksource *cs)
  681. {
  682. return (cycle_t)get_tb();
  683. }
  684. void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
  685. struct clocksource *clock, u32 mult)
  686. {
  687. u64 new_tb_to_xs, new_stamp_xsec;
  688. u32 frac_sec;
  689. if (clock != &clocksource_timebase)
  690. return;
  691. /* Make userspace gettimeofday spin until we're done. */
  692. ++vdso_data->tb_update_count;
  693. smp_mb();
  694. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  695. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  696. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  697. do_div(new_stamp_xsec, 1000000000);
  698. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  699. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  700. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  701. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  702. /*
  703. * tb_update_count is used to allow the userspace gettimeofday code
  704. * to assure itself that it sees a consistent view of the tb_to_xs and
  705. * stamp_xsec variables. It reads the tb_update_count, then reads
  706. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  707. * the two values of tb_update_count match and are even then the
  708. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  709. * loops back and reads them again until this criteria is met.
  710. * We expect the caller to have done the first increment of
  711. * vdso_data->tb_update_count already.
  712. */
  713. vdso_data->tb_orig_stamp = clock->cycle_last;
  714. vdso_data->stamp_xsec = new_stamp_xsec;
  715. vdso_data->tb_to_xs = new_tb_to_xs;
  716. vdso_data->wtom_clock_sec = wtm->tv_sec;
  717. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  718. vdso_data->stamp_xtime = *wall_time;
  719. vdso_data->stamp_sec_fraction = frac_sec;
  720. smp_wmb();
  721. ++(vdso_data->tb_update_count);
  722. }
  723. void update_vsyscall_tz(void)
  724. {
  725. /* Make userspace gettimeofday spin until we're done. */
  726. ++vdso_data->tb_update_count;
  727. smp_mb();
  728. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  729. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  730. smp_mb();
  731. ++vdso_data->tb_update_count;
  732. }
  733. static void __init clocksource_init(void)
  734. {
  735. struct clocksource *clock;
  736. if (__USE_RTC())
  737. clock = &clocksource_rtc;
  738. else
  739. clock = &clocksource_timebase;
  740. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  741. printk(KERN_ERR "clocksource: %s is already registered\n",
  742. clock->name);
  743. return;
  744. }
  745. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  746. clock->name, clock->mult, clock->shift);
  747. }
  748. void decrementer_check_overflow(void)
  749. {
  750. u64 now = get_tb_or_rtc();
  751. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  752. if (now >= decrementer->next_tb)
  753. set_dec(1);
  754. }
  755. static int decrementer_set_next_event(unsigned long evt,
  756. struct clock_event_device *dev)
  757. {
  758. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  759. set_dec(evt);
  760. return 0;
  761. }
  762. static void decrementer_set_mode(enum clock_event_mode mode,
  763. struct clock_event_device *dev)
  764. {
  765. if (mode != CLOCK_EVT_MODE_ONESHOT)
  766. decrementer_set_next_event(DECREMENTER_MAX, dev);
  767. }
  768. static void register_decrementer_clockevent(int cpu)
  769. {
  770. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  771. *dec = decrementer_clockevent;
  772. dec->cpumask = cpumask_of(cpu);
  773. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  774. dec->name, dec->mult, dec->shift, cpu);
  775. clockevents_register_device(dec);
  776. }
  777. static void __init init_decrementer_clockevent(void)
  778. {
  779. int cpu = smp_processor_id();
  780. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  781. decrementer_clockevent.max_delta_ns =
  782. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  783. decrementer_clockevent.min_delta_ns =
  784. clockevent_delta2ns(2, &decrementer_clockevent);
  785. register_decrementer_clockevent(cpu);
  786. }
  787. void secondary_cpu_time_init(void)
  788. {
  789. /* Start the decrementer on CPUs that have manual control
  790. * such as BookE
  791. */
  792. start_cpu_decrementer();
  793. /* FIME: Should make unrelatred change to move snapshot_timebase
  794. * call here ! */
  795. register_decrementer_clockevent(smp_processor_id());
  796. }
  797. /* This function is only called on the boot processor */
  798. void __init time_init(void)
  799. {
  800. struct div_result res;
  801. u64 scale;
  802. unsigned shift;
  803. if (__USE_RTC()) {
  804. /* 601 processor: dec counts down by 128 every 128ns */
  805. ppc_tb_freq = 1000000000;
  806. } else {
  807. /* Normal PowerPC with timebase register */
  808. ppc_md.calibrate_decr();
  809. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  810. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  811. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  812. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  813. }
  814. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  815. tb_ticks_per_sec = ppc_tb_freq;
  816. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  817. calc_cputime_factors();
  818. setup_cputime_one_jiffy();
  819. /*
  820. * Compute scale factor for sched_clock.
  821. * The calibrate_decr() function has set tb_ticks_per_sec,
  822. * which is the timebase frequency.
  823. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  824. * the 128-bit result as a 64.64 fixed-point number.
  825. * We then shift that number right until it is less than 1.0,
  826. * giving us the scale factor and shift count to use in
  827. * sched_clock().
  828. */
  829. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  830. scale = res.result_low;
  831. for (shift = 0; res.result_high != 0; ++shift) {
  832. scale = (scale >> 1) | (res.result_high << 63);
  833. res.result_high >>= 1;
  834. }
  835. tb_to_ns_scale = scale;
  836. tb_to_ns_shift = shift;
  837. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  838. boot_tb = get_tb_or_rtc();
  839. /* If platform provided a timezone (pmac), we correct the time */
  840. if (timezone_offset) {
  841. sys_tz.tz_minuteswest = -timezone_offset / 60;
  842. sys_tz.tz_dsttime = 0;
  843. }
  844. vdso_data->tb_update_count = 0;
  845. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  846. /* Start the decrementer on CPUs that have manual control
  847. * such as BookE
  848. */
  849. start_cpu_decrementer();
  850. /* Register the clocksource, if we're not running on iSeries */
  851. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  852. clocksource_init();
  853. init_decrementer_clockevent();
  854. }
  855. #define FEBRUARY 2
  856. #define STARTOFTIME 1970
  857. #define SECDAY 86400L
  858. #define SECYR (SECDAY * 365)
  859. #define leapyear(year) ((year) % 4 == 0 && \
  860. ((year) % 100 != 0 || (year) % 400 == 0))
  861. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  862. #define days_in_month(a) (month_days[(a) - 1])
  863. static int month_days[12] = {
  864. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  865. };
  866. /*
  867. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  868. */
  869. void GregorianDay(struct rtc_time * tm)
  870. {
  871. int leapsToDate;
  872. int lastYear;
  873. int day;
  874. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  875. lastYear = tm->tm_year - 1;
  876. /*
  877. * Number of leap corrections to apply up to end of last year
  878. */
  879. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  880. /*
  881. * This year is a leap year if it is divisible by 4 except when it is
  882. * divisible by 100 unless it is divisible by 400
  883. *
  884. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  885. */
  886. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  887. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  888. tm->tm_mday;
  889. tm->tm_wday = day % 7;
  890. }
  891. void to_tm(int tim, struct rtc_time * tm)
  892. {
  893. register int i;
  894. register long hms, day;
  895. day = tim / SECDAY;
  896. hms = tim % SECDAY;
  897. /* Hours, minutes, seconds are easy */
  898. tm->tm_hour = hms / 3600;
  899. tm->tm_min = (hms % 3600) / 60;
  900. tm->tm_sec = (hms % 3600) % 60;
  901. /* Number of years in days */
  902. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  903. day -= days_in_year(i);
  904. tm->tm_year = i;
  905. /* Number of months in days left */
  906. if (leapyear(tm->tm_year))
  907. days_in_month(FEBRUARY) = 29;
  908. for (i = 1; day >= days_in_month(i); i++)
  909. day -= days_in_month(i);
  910. days_in_month(FEBRUARY) = 28;
  911. tm->tm_mon = i;
  912. /* Days are what is left over (+1) from all that. */
  913. tm->tm_mday = day + 1;
  914. /*
  915. * Determine the day of week
  916. */
  917. GregorianDay(tm);
  918. }
  919. /*
  920. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  921. * result.
  922. */
  923. void div128_by_32(u64 dividend_high, u64 dividend_low,
  924. unsigned divisor, struct div_result *dr)
  925. {
  926. unsigned long a, b, c, d;
  927. unsigned long w, x, y, z;
  928. u64 ra, rb, rc;
  929. a = dividend_high >> 32;
  930. b = dividend_high & 0xffffffff;
  931. c = dividend_low >> 32;
  932. d = dividend_low & 0xffffffff;
  933. w = a / divisor;
  934. ra = ((u64)(a - (w * divisor)) << 32) + b;
  935. rb = ((u64) do_div(ra, divisor) << 32) + c;
  936. x = ra;
  937. rc = ((u64) do_div(rb, divisor) << 32) + d;
  938. y = rb;
  939. do_div(rc, divisor);
  940. z = rc;
  941. dr->result_high = ((u64)w << 32) + x;
  942. dr->result_low = ((u64)y << 32) + z;
  943. }
  944. /* We don't need to calibrate delay, we use the CPU timebase for that */
  945. void calibrate_delay(void)
  946. {
  947. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  948. * as the number of __delay(1) in a jiffy, so make it so
  949. */
  950. loops_per_jiffy = tb_ticks_per_jiffy;
  951. }
  952. static int __init rtc_init(void)
  953. {
  954. struct platform_device *pdev;
  955. if (!ppc_md.get_rtc_time)
  956. return -ENODEV;
  957. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  958. if (IS_ERR(pdev))
  959. return PTR_ERR(pdev);
  960. return 0;
  961. }
  962. module_init(rtc_init);