amd_iommu.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/bitmap.h>
  21. #include <linux/slab.h>
  22. #include <linux/debugfs.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/iommu-helper.h>
  26. #include <linux/iommu.h>
  27. #include <asm/proto.h>
  28. #include <asm/iommu.h>
  29. #include <asm/gart.h>
  30. #include <asm/amd_iommu_proto.h>
  31. #include <asm/amd_iommu_types.h>
  32. #include <asm/amd_iommu.h>
  33. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  34. #define EXIT_LOOP_COUNT 10000000
  35. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  36. /* A list of preallocated protection domains */
  37. static LIST_HEAD(iommu_pd_list);
  38. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  39. /*
  40. * Domain for untranslated devices - only allocated
  41. * if iommu=pt passed on kernel cmd line.
  42. */
  43. static struct protection_domain *pt_domain;
  44. static struct iommu_ops amd_iommu_ops;
  45. /*
  46. * general struct to manage commands send to an IOMMU
  47. */
  48. struct iommu_cmd {
  49. u32 data[4];
  50. };
  51. static void reset_iommu_command_buffer(struct amd_iommu *iommu);
  52. static void update_domain(struct protection_domain *domain);
  53. /****************************************************************************
  54. *
  55. * Helper functions
  56. *
  57. ****************************************************************************/
  58. static inline u16 get_device_id(struct device *dev)
  59. {
  60. struct pci_dev *pdev = to_pci_dev(dev);
  61. return calc_devid(pdev->bus->number, pdev->devfn);
  62. }
  63. static struct iommu_dev_data *get_dev_data(struct device *dev)
  64. {
  65. return dev->archdata.iommu;
  66. }
  67. /*
  68. * In this function the list of preallocated protection domains is traversed to
  69. * find the domain for a specific device
  70. */
  71. static struct dma_ops_domain *find_protection_domain(u16 devid)
  72. {
  73. struct dma_ops_domain *entry, *ret = NULL;
  74. unsigned long flags;
  75. u16 alias = amd_iommu_alias_table[devid];
  76. if (list_empty(&iommu_pd_list))
  77. return NULL;
  78. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  79. list_for_each_entry(entry, &iommu_pd_list, list) {
  80. if (entry->target_dev == devid ||
  81. entry->target_dev == alias) {
  82. ret = entry;
  83. break;
  84. }
  85. }
  86. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  87. return ret;
  88. }
  89. /*
  90. * This function checks if the driver got a valid device from the caller to
  91. * avoid dereferencing invalid pointers.
  92. */
  93. static bool check_device(struct device *dev)
  94. {
  95. u16 devid;
  96. if (!dev || !dev->dma_mask)
  97. return false;
  98. /* No device or no PCI device */
  99. if (dev->bus != &pci_bus_type)
  100. return false;
  101. devid = get_device_id(dev);
  102. /* Out of our scope? */
  103. if (devid > amd_iommu_last_bdf)
  104. return false;
  105. if (amd_iommu_rlookup_table[devid] == NULL)
  106. return false;
  107. return true;
  108. }
  109. static int iommu_init_device(struct device *dev)
  110. {
  111. struct iommu_dev_data *dev_data;
  112. struct pci_dev *pdev;
  113. u16 devid, alias;
  114. if (dev->archdata.iommu)
  115. return 0;
  116. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  117. if (!dev_data)
  118. return -ENOMEM;
  119. dev_data->dev = dev;
  120. devid = get_device_id(dev);
  121. alias = amd_iommu_alias_table[devid];
  122. pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
  123. if (pdev)
  124. dev_data->alias = &pdev->dev;
  125. atomic_set(&dev_data->bind, 0);
  126. dev->archdata.iommu = dev_data;
  127. return 0;
  128. }
  129. static void iommu_uninit_device(struct device *dev)
  130. {
  131. kfree(dev->archdata.iommu);
  132. }
  133. void __init amd_iommu_uninit_devices(void)
  134. {
  135. struct pci_dev *pdev = NULL;
  136. for_each_pci_dev(pdev) {
  137. if (!check_device(&pdev->dev))
  138. continue;
  139. iommu_uninit_device(&pdev->dev);
  140. }
  141. }
  142. int __init amd_iommu_init_devices(void)
  143. {
  144. struct pci_dev *pdev = NULL;
  145. int ret = 0;
  146. for_each_pci_dev(pdev) {
  147. if (!check_device(&pdev->dev))
  148. continue;
  149. ret = iommu_init_device(&pdev->dev);
  150. if (ret)
  151. goto out_free;
  152. }
  153. return 0;
  154. out_free:
  155. amd_iommu_uninit_devices();
  156. return ret;
  157. }
  158. #ifdef CONFIG_AMD_IOMMU_STATS
  159. /*
  160. * Initialization code for statistics collection
  161. */
  162. DECLARE_STATS_COUNTER(compl_wait);
  163. DECLARE_STATS_COUNTER(cnt_map_single);
  164. DECLARE_STATS_COUNTER(cnt_unmap_single);
  165. DECLARE_STATS_COUNTER(cnt_map_sg);
  166. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  167. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  168. DECLARE_STATS_COUNTER(cnt_free_coherent);
  169. DECLARE_STATS_COUNTER(cross_page);
  170. DECLARE_STATS_COUNTER(domain_flush_single);
  171. DECLARE_STATS_COUNTER(domain_flush_all);
  172. DECLARE_STATS_COUNTER(alloced_io_mem);
  173. DECLARE_STATS_COUNTER(total_map_requests);
  174. static struct dentry *stats_dir;
  175. static struct dentry *de_fflush;
  176. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  177. {
  178. if (stats_dir == NULL)
  179. return;
  180. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  181. &cnt->value);
  182. }
  183. static void amd_iommu_stats_init(void)
  184. {
  185. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  186. if (stats_dir == NULL)
  187. return;
  188. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  189. (u32 *)&amd_iommu_unmap_flush);
  190. amd_iommu_stats_add(&compl_wait);
  191. amd_iommu_stats_add(&cnt_map_single);
  192. amd_iommu_stats_add(&cnt_unmap_single);
  193. amd_iommu_stats_add(&cnt_map_sg);
  194. amd_iommu_stats_add(&cnt_unmap_sg);
  195. amd_iommu_stats_add(&cnt_alloc_coherent);
  196. amd_iommu_stats_add(&cnt_free_coherent);
  197. amd_iommu_stats_add(&cross_page);
  198. amd_iommu_stats_add(&domain_flush_single);
  199. amd_iommu_stats_add(&domain_flush_all);
  200. amd_iommu_stats_add(&alloced_io_mem);
  201. amd_iommu_stats_add(&total_map_requests);
  202. }
  203. #endif
  204. /****************************************************************************
  205. *
  206. * Interrupt handling functions
  207. *
  208. ****************************************************************************/
  209. static void dump_dte_entry(u16 devid)
  210. {
  211. int i;
  212. for (i = 0; i < 8; ++i)
  213. pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
  214. amd_iommu_dev_table[devid].data[i]);
  215. }
  216. static void dump_command(unsigned long phys_addr)
  217. {
  218. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  219. int i;
  220. for (i = 0; i < 4; ++i)
  221. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  222. }
  223. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  224. {
  225. u32 *event = __evt;
  226. int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  227. int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  228. int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  229. int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  230. u64 address = (u64)(((u64)event[3]) << 32) | event[2];
  231. printk(KERN_ERR "AMD-Vi: Event logged [");
  232. switch (type) {
  233. case EVENT_TYPE_ILL_DEV:
  234. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  235. "address=0x%016llx flags=0x%04x]\n",
  236. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  237. address, flags);
  238. dump_dte_entry(devid);
  239. break;
  240. case EVENT_TYPE_IO_FAULT:
  241. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  242. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  243. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  244. domid, address, flags);
  245. break;
  246. case EVENT_TYPE_DEV_TAB_ERR:
  247. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  248. "address=0x%016llx flags=0x%04x]\n",
  249. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  250. address, flags);
  251. break;
  252. case EVENT_TYPE_PAGE_TAB_ERR:
  253. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  254. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  255. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  256. domid, address, flags);
  257. break;
  258. case EVENT_TYPE_ILL_CMD:
  259. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  260. iommu->reset_in_progress = true;
  261. reset_iommu_command_buffer(iommu);
  262. dump_command(address);
  263. break;
  264. case EVENT_TYPE_CMD_HARD_ERR:
  265. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  266. "flags=0x%04x]\n", address, flags);
  267. break;
  268. case EVENT_TYPE_IOTLB_INV_TO:
  269. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  270. "address=0x%016llx]\n",
  271. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  272. address);
  273. break;
  274. case EVENT_TYPE_INV_DEV_REQ:
  275. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  276. "address=0x%016llx flags=0x%04x]\n",
  277. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  278. address, flags);
  279. break;
  280. default:
  281. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  282. }
  283. }
  284. static void iommu_poll_events(struct amd_iommu *iommu)
  285. {
  286. u32 head, tail;
  287. unsigned long flags;
  288. spin_lock_irqsave(&iommu->lock, flags);
  289. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  290. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  291. while (head != tail) {
  292. iommu_print_event(iommu, iommu->evt_buf + head);
  293. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  294. }
  295. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  296. spin_unlock_irqrestore(&iommu->lock, flags);
  297. }
  298. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  299. {
  300. struct amd_iommu *iommu;
  301. for_each_iommu(iommu)
  302. iommu_poll_events(iommu);
  303. return IRQ_HANDLED;
  304. }
  305. /****************************************************************************
  306. *
  307. * IOMMU command queuing functions
  308. *
  309. ****************************************************************************/
  310. static void build_completion_wait(struct iommu_cmd *cmd)
  311. {
  312. memset(cmd, 0, sizeof(*cmd));
  313. cmd->data[0] = CMD_COMPL_WAIT_INT_MASK;
  314. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  315. }
  316. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  317. {
  318. memset(cmd, 0, sizeof(*cmd));
  319. cmd->data[0] = devid;
  320. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  321. }
  322. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  323. size_t size, u16 domid, int pde)
  324. {
  325. u64 pages;
  326. int s;
  327. pages = iommu_num_pages(address, size, PAGE_SIZE);
  328. s = 0;
  329. if (pages > 1) {
  330. /*
  331. * If we have to flush more than one page, flush all
  332. * TLB entries for this domain
  333. */
  334. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  335. s = 1;
  336. }
  337. address &= PAGE_MASK;
  338. memset(cmd, 0, sizeof(*cmd));
  339. cmd->data[1] |= domid;
  340. cmd->data[2] = lower_32_bits(address);
  341. cmd->data[3] = upper_32_bits(address);
  342. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  343. if (s) /* size bit - we flush more than one 4kb page */
  344. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  345. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  346. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  347. }
  348. /*
  349. * Writes the command to the IOMMUs command buffer and informs the
  350. * hardware about the new command. Must be called with iommu->lock held.
  351. */
  352. static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  353. {
  354. u32 tail, head;
  355. u8 *target;
  356. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  357. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  358. target = iommu->cmd_buf + tail;
  359. memcpy_toio(target, cmd, sizeof(*cmd));
  360. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  361. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  362. if (tail == head)
  363. return -ENOMEM;
  364. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  365. return 0;
  366. }
  367. /*
  368. * General queuing function for commands. Takes iommu->lock and calls
  369. * __iommu_queue_command().
  370. */
  371. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  372. {
  373. unsigned long flags;
  374. int ret;
  375. spin_lock_irqsave(&iommu->lock, flags);
  376. ret = __iommu_queue_command(iommu, cmd);
  377. if (!ret)
  378. iommu->need_sync = true;
  379. spin_unlock_irqrestore(&iommu->lock, flags);
  380. return ret;
  381. }
  382. /*
  383. * This function waits until an IOMMU has completed a completion
  384. * wait command
  385. */
  386. static void __iommu_wait_for_completion(struct amd_iommu *iommu)
  387. {
  388. int ready = 0;
  389. unsigned status = 0;
  390. unsigned long i = 0;
  391. INC_STATS_COUNTER(compl_wait);
  392. while (!ready && (i < EXIT_LOOP_COUNT)) {
  393. ++i;
  394. /* wait for the bit to become one */
  395. status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
  396. ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
  397. }
  398. /* set bit back to zero */
  399. status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
  400. writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
  401. if (unlikely(i == EXIT_LOOP_COUNT))
  402. iommu->reset_in_progress = true;
  403. }
  404. /*
  405. * This function queues a completion wait command into the command
  406. * buffer of an IOMMU
  407. */
  408. static int __iommu_completion_wait(struct amd_iommu *iommu)
  409. {
  410. struct iommu_cmd cmd;
  411. build_completion_wait(&cmd);
  412. return __iommu_queue_command(iommu, &cmd);
  413. }
  414. /*
  415. * This function is called whenever we need to ensure that the IOMMU has
  416. * completed execution of all commands we sent. It sends a
  417. * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
  418. * us about that by writing a value to a physical address we pass with
  419. * the command.
  420. */
  421. static int iommu_completion_wait(struct amd_iommu *iommu)
  422. {
  423. int ret = 0;
  424. unsigned long flags;
  425. spin_lock_irqsave(&iommu->lock, flags);
  426. if (!iommu->need_sync)
  427. goto out;
  428. ret = __iommu_completion_wait(iommu);
  429. iommu->need_sync = false;
  430. if (ret)
  431. goto out;
  432. __iommu_wait_for_completion(iommu);
  433. out:
  434. spin_unlock_irqrestore(&iommu->lock, flags);
  435. if (iommu->reset_in_progress)
  436. reset_iommu_command_buffer(iommu);
  437. return 0;
  438. }
  439. static void iommu_flush_complete(struct protection_domain *domain)
  440. {
  441. int i;
  442. for (i = 0; i < amd_iommus_present; ++i) {
  443. if (!domain->dev_iommu[i])
  444. continue;
  445. /*
  446. * Devices of this domain are behind this IOMMU
  447. * We need to wait for completion of all commands.
  448. */
  449. iommu_completion_wait(amd_iommus[i]);
  450. }
  451. }
  452. /*
  453. * Command send function for invalidating a device table entry
  454. */
  455. static int iommu_flush_device(struct device *dev)
  456. {
  457. struct amd_iommu *iommu;
  458. struct iommu_cmd cmd;
  459. u16 devid;
  460. devid = get_device_id(dev);
  461. iommu = amd_iommu_rlookup_table[devid];
  462. build_inv_dte(&cmd, devid);
  463. return iommu_queue_command(iommu, &cmd);
  464. }
  465. /*
  466. * TLB invalidation function which is called from the mapping functions.
  467. * It invalidates a single PTE if the range to flush is within a single
  468. * page. Otherwise it flushes the whole TLB of the IOMMU.
  469. */
  470. static void __iommu_flush_pages(struct protection_domain *domain,
  471. u64 address, size_t size, int pde)
  472. {
  473. struct iommu_cmd cmd;
  474. int ret = 0, i;
  475. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  476. for (i = 0; i < amd_iommus_present; ++i) {
  477. if (!domain->dev_iommu[i])
  478. continue;
  479. /*
  480. * Devices of this domain are behind this IOMMU
  481. * We need a TLB flush
  482. */
  483. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  484. }
  485. WARN_ON(ret);
  486. }
  487. static void iommu_flush_pages(struct protection_domain *domain,
  488. u64 address, size_t size)
  489. {
  490. __iommu_flush_pages(domain, address, size, 0);
  491. }
  492. /* Flush the whole IO/TLB for a given protection domain */
  493. static void iommu_flush_tlb(struct protection_domain *domain)
  494. {
  495. __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  496. }
  497. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  498. static void iommu_flush_tlb_pde(struct protection_domain *domain)
  499. {
  500. __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  501. }
  502. /*
  503. * This function flushes the DTEs for all devices in domain
  504. */
  505. static void iommu_flush_domain_devices(struct protection_domain *domain)
  506. {
  507. struct iommu_dev_data *dev_data;
  508. unsigned long flags;
  509. spin_lock_irqsave(&domain->lock, flags);
  510. list_for_each_entry(dev_data, &domain->dev_list, list)
  511. iommu_flush_device(dev_data->dev);
  512. spin_unlock_irqrestore(&domain->lock, flags);
  513. }
  514. static void iommu_flush_all_domain_devices(void)
  515. {
  516. struct protection_domain *domain;
  517. unsigned long flags;
  518. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  519. list_for_each_entry(domain, &amd_iommu_pd_list, list) {
  520. iommu_flush_domain_devices(domain);
  521. iommu_flush_complete(domain);
  522. }
  523. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  524. }
  525. void amd_iommu_flush_all_devices(void)
  526. {
  527. iommu_flush_all_domain_devices();
  528. }
  529. /*
  530. * This function uses heavy locking and may disable irqs for some time. But
  531. * this is no issue because it is only called during resume.
  532. */
  533. void amd_iommu_flush_all_domains(void)
  534. {
  535. struct protection_domain *domain;
  536. unsigned long flags;
  537. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  538. list_for_each_entry(domain, &amd_iommu_pd_list, list) {
  539. spin_lock(&domain->lock);
  540. iommu_flush_tlb_pde(domain);
  541. iommu_flush_complete(domain);
  542. spin_unlock(&domain->lock);
  543. }
  544. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  545. }
  546. static void reset_iommu_command_buffer(struct amd_iommu *iommu)
  547. {
  548. pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
  549. if (iommu->reset_in_progress)
  550. panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
  551. amd_iommu_reset_cmd_buffer(iommu);
  552. amd_iommu_flush_all_devices();
  553. amd_iommu_flush_all_domains();
  554. iommu->reset_in_progress = false;
  555. }
  556. /****************************************************************************
  557. *
  558. * The functions below are used the create the page table mappings for
  559. * unity mapped regions.
  560. *
  561. ****************************************************************************/
  562. /*
  563. * This function is used to add another level to an IO page table. Adding
  564. * another level increases the size of the address space by 9 bits to a size up
  565. * to 64 bits.
  566. */
  567. static bool increase_address_space(struct protection_domain *domain,
  568. gfp_t gfp)
  569. {
  570. u64 *pte;
  571. if (domain->mode == PAGE_MODE_6_LEVEL)
  572. /* address space already 64 bit large */
  573. return false;
  574. pte = (void *)get_zeroed_page(gfp);
  575. if (!pte)
  576. return false;
  577. *pte = PM_LEVEL_PDE(domain->mode,
  578. virt_to_phys(domain->pt_root));
  579. domain->pt_root = pte;
  580. domain->mode += 1;
  581. domain->updated = true;
  582. return true;
  583. }
  584. static u64 *alloc_pte(struct protection_domain *domain,
  585. unsigned long address,
  586. unsigned long page_size,
  587. u64 **pte_page,
  588. gfp_t gfp)
  589. {
  590. int level, end_lvl;
  591. u64 *pte, *page;
  592. BUG_ON(!is_power_of_2(page_size));
  593. while (address > PM_LEVEL_SIZE(domain->mode))
  594. increase_address_space(domain, gfp);
  595. level = domain->mode - 1;
  596. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  597. address = PAGE_SIZE_ALIGN(address, page_size);
  598. end_lvl = PAGE_SIZE_LEVEL(page_size);
  599. while (level > end_lvl) {
  600. if (!IOMMU_PTE_PRESENT(*pte)) {
  601. page = (u64 *)get_zeroed_page(gfp);
  602. if (!page)
  603. return NULL;
  604. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  605. }
  606. /* No level skipping support yet */
  607. if (PM_PTE_LEVEL(*pte) != level)
  608. return NULL;
  609. level -= 1;
  610. pte = IOMMU_PTE_PAGE(*pte);
  611. if (pte_page && level == end_lvl)
  612. *pte_page = pte;
  613. pte = &pte[PM_LEVEL_INDEX(level, address)];
  614. }
  615. return pte;
  616. }
  617. /*
  618. * This function checks if there is a PTE for a given dma address. If
  619. * there is one, it returns the pointer to it.
  620. */
  621. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  622. {
  623. int level;
  624. u64 *pte;
  625. if (address > PM_LEVEL_SIZE(domain->mode))
  626. return NULL;
  627. level = domain->mode - 1;
  628. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  629. while (level > 0) {
  630. /* Not Present */
  631. if (!IOMMU_PTE_PRESENT(*pte))
  632. return NULL;
  633. /* Large PTE */
  634. if (PM_PTE_LEVEL(*pte) == 0x07) {
  635. unsigned long pte_mask, __pte;
  636. /*
  637. * If we have a series of large PTEs, make
  638. * sure to return a pointer to the first one.
  639. */
  640. pte_mask = PTE_PAGE_SIZE(*pte);
  641. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  642. __pte = ((unsigned long)pte) & pte_mask;
  643. return (u64 *)__pte;
  644. }
  645. /* No level skipping support yet */
  646. if (PM_PTE_LEVEL(*pte) != level)
  647. return NULL;
  648. level -= 1;
  649. /* Walk to the next level */
  650. pte = IOMMU_PTE_PAGE(*pte);
  651. pte = &pte[PM_LEVEL_INDEX(level, address)];
  652. }
  653. return pte;
  654. }
  655. /*
  656. * Generic mapping functions. It maps a physical address into a DMA
  657. * address space. It allocates the page table pages if necessary.
  658. * In the future it can be extended to a generic mapping function
  659. * supporting all features of AMD IOMMU page tables like level skipping
  660. * and full 64 bit address spaces.
  661. */
  662. static int iommu_map_page(struct protection_domain *dom,
  663. unsigned long bus_addr,
  664. unsigned long phys_addr,
  665. int prot,
  666. unsigned long page_size)
  667. {
  668. u64 __pte, *pte;
  669. int i, count;
  670. if (!(prot & IOMMU_PROT_MASK))
  671. return -EINVAL;
  672. bus_addr = PAGE_ALIGN(bus_addr);
  673. phys_addr = PAGE_ALIGN(phys_addr);
  674. count = PAGE_SIZE_PTE_COUNT(page_size);
  675. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  676. for (i = 0; i < count; ++i)
  677. if (IOMMU_PTE_PRESENT(pte[i]))
  678. return -EBUSY;
  679. if (page_size > PAGE_SIZE) {
  680. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  681. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  682. } else
  683. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  684. if (prot & IOMMU_PROT_IR)
  685. __pte |= IOMMU_PTE_IR;
  686. if (prot & IOMMU_PROT_IW)
  687. __pte |= IOMMU_PTE_IW;
  688. for (i = 0; i < count; ++i)
  689. pte[i] = __pte;
  690. update_domain(dom);
  691. return 0;
  692. }
  693. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  694. unsigned long bus_addr,
  695. unsigned long page_size)
  696. {
  697. unsigned long long unmap_size, unmapped;
  698. u64 *pte;
  699. BUG_ON(!is_power_of_2(page_size));
  700. unmapped = 0;
  701. while (unmapped < page_size) {
  702. pte = fetch_pte(dom, bus_addr);
  703. if (!pte) {
  704. /*
  705. * No PTE for this address
  706. * move forward in 4kb steps
  707. */
  708. unmap_size = PAGE_SIZE;
  709. } else if (PM_PTE_LEVEL(*pte) == 0) {
  710. /* 4kb PTE found for this address */
  711. unmap_size = PAGE_SIZE;
  712. *pte = 0ULL;
  713. } else {
  714. int count, i;
  715. /* Large PTE found which maps this address */
  716. unmap_size = PTE_PAGE_SIZE(*pte);
  717. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  718. for (i = 0; i < count; i++)
  719. pte[i] = 0ULL;
  720. }
  721. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  722. unmapped += unmap_size;
  723. }
  724. BUG_ON(!is_power_of_2(unmapped));
  725. return unmapped;
  726. }
  727. /*
  728. * This function checks if a specific unity mapping entry is needed for
  729. * this specific IOMMU.
  730. */
  731. static int iommu_for_unity_map(struct amd_iommu *iommu,
  732. struct unity_map_entry *entry)
  733. {
  734. u16 bdf, i;
  735. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  736. bdf = amd_iommu_alias_table[i];
  737. if (amd_iommu_rlookup_table[bdf] == iommu)
  738. return 1;
  739. }
  740. return 0;
  741. }
  742. /*
  743. * This function actually applies the mapping to the page table of the
  744. * dma_ops domain.
  745. */
  746. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  747. struct unity_map_entry *e)
  748. {
  749. u64 addr;
  750. int ret;
  751. for (addr = e->address_start; addr < e->address_end;
  752. addr += PAGE_SIZE) {
  753. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  754. PAGE_SIZE);
  755. if (ret)
  756. return ret;
  757. /*
  758. * if unity mapping is in aperture range mark the page
  759. * as allocated in the aperture
  760. */
  761. if (addr < dma_dom->aperture_size)
  762. __set_bit(addr >> PAGE_SHIFT,
  763. dma_dom->aperture[0]->bitmap);
  764. }
  765. return 0;
  766. }
  767. /*
  768. * Init the unity mappings for a specific IOMMU in the system
  769. *
  770. * Basically iterates over all unity mapping entries and applies them to
  771. * the default domain DMA of that IOMMU if necessary.
  772. */
  773. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  774. {
  775. struct unity_map_entry *entry;
  776. int ret;
  777. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  778. if (!iommu_for_unity_map(iommu, entry))
  779. continue;
  780. ret = dma_ops_unity_map(iommu->default_dom, entry);
  781. if (ret)
  782. return ret;
  783. }
  784. return 0;
  785. }
  786. /*
  787. * Inits the unity mappings required for a specific device
  788. */
  789. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  790. u16 devid)
  791. {
  792. struct unity_map_entry *e;
  793. int ret;
  794. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  795. if (!(devid >= e->devid_start && devid <= e->devid_end))
  796. continue;
  797. ret = dma_ops_unity_map(dma_dom, e);
  798. if (ret)
  799. return ret;
  800. }
  801. return 0;
  802. }
  803. /****************************************************************************
  804. *
  805. * The next functions belong to the address allocator for the dma_ops
  806. * interface functions. They work like the allocators in the other IOMMU
  807. * drivers. Its basically a bitmap which marks the allocated pages in
  808. * the aperture. Maybe it could be enhanced in the future to a more
  809. * efficient allocator.
  810. *
  811. ****************************************************************************/
  812. /*
  813. * The address allocator core functions.
  814. *
  815. * called with domain->lock held
  816. */
  817. /*
  818. * Used to reserve address ranges in the aperture (e.g. for exclusion
  819. * ranges.
  820. */
  821. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  822. unsigned long start_page,
  823. unsigned int pages)
  824. {
  825. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  826. if (start_page + pages > last_page)
  827. pages = last_page - start_page;
  828. for (i = start_page; i < start_page + pages; ++i) {
  829. int index = i / APERTURE_RANGE_PAGES;
  830. int page = i % APERTURE_RANGE_PAGES;
  831. __set_bit(page, dom->aperture[index]->bitmap);
  832. }
  833. }
  834. /*
  835. * This function is used to add a new aperture range to an existing
  836. * aperture in case of dma_ops domain allocation or address allocation
  837. * failure.
  838. */
  839. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  840. bool populate, gfp_t gfp)
  841. {
  842. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  843. struct amd_iommu *iommu;
  844. unsigned long i;
  845. #ifdef CONFIG_IOMMU_STRESS
  846. populate = false;
  847. #endif
  848. if (index >= APERTURE_MAX_RANGES)
  849. return -ENOMEM;
  850. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  851. if (!dma_dom->aperture[index])
  852. return -ENOMEM;
  853. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  854. if (!dma_dom->aperture[index]->bitmap)
  855. goto out_free;
  856. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  857. if (populate) {
  858. unsigned long address = dma_dom->aperture_size;
  859. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  860. u64 *pte, *pte_page;
  861. for (i = 0; i < num_ptes; ++i) {
  862. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  863. &pte_page, gfp);
  864. if (!pte)
  865. goto out_free;
  866. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  867. address += APERTURE_RANGE_SIZE / 64;
  868. }
  869. }
  870. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  871. /* Initialize the exclusion range if necessary */
  872. for_each_iommu(iommu) {
  873. if (iommu->exclusion_start &&
  874. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  875. && iommu->exclusion_start < dma_dom->aperture_size) {
  876. unsigned long startpage;
  877. int pages = iommu_num_pages(iommu->exclusion_start,
  878. iommu->exclusion_length,
  879. PAGE_SIZE);
  880. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  881. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  882. }
  883. }
  884. /*
  885. * Check for areas already mapped as present in the new aperture
  886. * range and mark those pages as reserved in the allocator. Such
  887. * mappings may already exist as a result of requested unity
  888. * mappings for devices.
  889. */
  890. for (i = dma_dom->aperture[index]->offset;
  891. i < dma_dom->aperture_size;
  892. i += PAGE_SIZE) {
  893. u64 *pte = fetch_pte(&dma_dom->domain, i);
  894. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  895. continue;
  896. dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
  897. }
  898. update_domain(&dma_dom->domain);
  899. return 0;
  900. out_free:
  901. update_domain(&dma_dom->domain);
  902. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  903. kfree(dma_dom->aperture[index]);
  904. dma_dom->aperture[index] = NULL;
  905. return -ENOMEM;
  906. }
  907. static unsigned long dma_ops_area_alloc(struct device *dev,
  908. struct dma_ops_domain *dom,
  909. unsigned int pages,
  910. unsigned long align_mask,
  911. u64 dma_mask,
  912. unsigned long start)
  913. {
  914. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  915. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  916. int i = start >> APERTURE_RANGE_SHIFT;
  917. unsigned long boundary_size;
  918. unsigned long address = -1;
  919. unsigned long limit;
  920. next_bit >>= PAGE_SHIFT;
  921. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  922. PAGE_SIZE) >> PAGE_SHIFT;
  923. for (;i < max_index; ++i) {
  924. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  925. if (dom->aperture[i]->offset >= dma_mask)
  926. break;
  927. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  928. dma_mask >> PAGE_SHIFT);
  929. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  930. limit, next_bit, pages, 0,
  931. boundary_size, align_mask);
  932. if (address != -1) {
  933. address = dom->aperture[i]->offset +
  934. (address << PAGE_SHIFT);
  935. dom->next_address = address + (pages << PAGE_SHIFT);
  936. break;
  937. }
  938. next_bit = 0;
  939. }
  940. return address;
  941. }
  942. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  943. struct dma_ops_domain *dom,
  944. unsigned int pages,
  945. unsigned long align_mask,
  946. u64 dma_mask)
  947. {
  948. unsigned long address;
  949. #ifdef CONFIG_IOMMU_STRESS
  950. dom->next_address = 0;
  951. dom->need_flush = true;
  952. #endif
  953. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  954. dma_mask, dom->next_address);
  955. if (address == -1) {
  956. dom->next_address = 0;
  957. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  958. dma_mask, 0);
  959. dom->need_flush = true;
  960. }
  961. if (unlikely(address == -1))
  962. address = DMA_ERROR_CODE;
  963. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  964. return address;
  965. }
  966. /*
  967. * The address free function.
  968. *
  969. * called with domain->lock held
  970. */
  971. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  972. unsigned long address,
  973. unsigned int pages)
  974. {
  975. unsigned i = address >> APERTURE_RANGE_SHIFT;
  976. struct aperture_range *range = dom->aperture[i];
  977. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  978. #ifdef CONFIG_IOMMU_STRESS
  979. if (i < 4)
  980. return;
  981. #endif
  982. if (address >= dom->next_address)
  983. dom->need_flush = true;
  984. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  985. bitmap_clear(range->bitmap, address, pages);
  986. }
  987. /****************************************************************************
  988. *
  989. * The next functions belong to the domain allocation. A domain is
  990. * allocated for every IOMMU as the default domain. If device isolation
  991. * is enabled, every device get its own domain. The most important thing
  992. * about domains is the page table mapping the DMA address space they
  993. * contain.
  994. *
  995. ****************************************************************************/
  996. /*
  997. * This function adds a protection domain to the global protection domain list
  998. */
  999. static void add_domain_to_list(struct protection_domain *domain)
  1000. {
  1001. unsigned long flags;
  1002. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1003. list_add(&domain->list, &amd_iommu_pd_list);
  1004. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1005. }
  1006. /*
  1007. * This function removes a protection domain to the global
  1008. * protection domain list
  1009. */
  1010. static void del_domain_from_list(struct protection_domain *domain)
  1011. {
  1012. unsigned long flags;
  1013. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1014. list_del(&domain->list);
  1015. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1016. }
  1017. static u16 domain_id_alloc(void)
  1018. {
  1019. unsigned long flags;
  1020. int id;
  1021. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1022. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1023. BUG_ON(id == 0);
  1024. if (id > 0 && id < MAX_DOMAIN_ID)
  1025. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1026. else
  1027. id = 0;
  1028. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1029. return id;
  1030. }
  1031. static void domain_id_free(int id)
  1032. {
  1033. unsigned long flags;
  1034. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1035. if (id > 0 && id < MAX_DOMAIN_ID)
  1036. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1037. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1038. }
  1039. static void free_pagetable(struct protection_domain *domain)
  1040. {
  1041. int i, j;
  1042. u64 *p1, *p2, *p3;
  1043. p1 = domain->pt_root;
  1044. if (!p1)
  1045. return;
  1046. for (i = 0; i < 512; ++i) {
  1047. if (!IOMMU_PTE_PRESENT(p1[i]))
  1048. continue;
  1049. p2 = IOMMU_PTE_PAGE(p1[i]);
  1050. for (j = 0; j < 512; ++j) {
  1051. if (!IOMMU_PTE_PRESENT(p2[j]))
  1052. continue;
  1053. p3 = IOMMU_PTE_PAGE(p2[j]);
  1054. free_page((unsigned long)p3);
  1055. }
  1056. free_page((unsigned long)p2);
  1057. }
  1058. free_page((unsigned long)p1);
  1059. domain->pt_root = NULL;
  1060. }
  1061. /*
  1062. * Free a domain, only used if something went wrong in the
  1063. * allocation path and we need to free an already allocated page table
  1064. */
  1065. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1066. {
  1067. int i;
  1068. if (!dom)
  1069. return;
  1070. del_domain_from_list(&dom->domain);
  1071. free_pagetable(&dom->domain);
  1072. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1073. if (!dom->aperture[i])
  1074. continue;
  1075. free_page((unsigned long)dom->aperture[i]->bitmap);
  1076. kfree(dom->aperture[i]);
  1077. }
  1078. kfree(dom);
  1079. }
  1080. /*
  1081. * Allocates a new protection domain usable for the dma_ops functions.
  1082. * It also initializes the page table and the address allocator data
  1083. * structures required for the dma_ops interface
  1084. */
  1085. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1086. {
  1087. struct dma_ops_domain *dma_dom;
  1088. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1089. if (!dma_dom)
  1090. return NULL;
  1091. spin_lock_init(&dma_dom->domain.lock);
  1092. dma_dom->domain.id = domain_id_alloc();
  1093. if (dma_dom->domain.id == 0)
  1094. goto free_dma_dom;
  1095. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1096. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1097. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1098. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1099. dma_dom->domain.priv = dma_dom;
  1100. if (!dma_dom->domain.pt_root)
  1101. goto free_dma_dom;
  1102. dma_dom->need_flush = false;
  1103. dma_dom->target_dev = 0xffff;
  1104. add_domain_to_list(&dma_dom->domain);
  1105. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1106. goto free_dma_dom;
  1107. /*
  1108. * mark the first page as allocated so we never return 0 as
  1109. * a valid dma-address. So we can use 0 as error value
  1110. */
  1111. dma_dom->aperture[0]->bitmap[0] = 1;
  1112. dma_dom->next_address = 0;
  1113. return dma_dom;
  1114. free_dma_dom:
  1115. dma_ops_domain_free(dma_dom);
  1116. return NULL;
  1117. }
  1118. /*
  1119. * little helper function to check whether a given protection domain is a
  1120. * dma_ops domain
  1121. */
  1122. static bool dma_ops_domain(struct protection_domain *domain)
  1123. {
  1124. return domain->flags & PD_DMA_OPS_MASK;
  1125. }
  1126. static void set_dte_entry(u16 devid, struct protection_domain *domain)
  1127. {
  1128. u64 pte_root = virt_to_phys(domain->pt_root);
  1129. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1130. << DEV_ENTRY_MODE_SHIFT;
  1131. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1132. amd_iommu_dev_table[devid].data[2] = domain->id;
  1133. amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
  1134. amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
  1135. }
  1136. static void clear_dte_entry(u16 devid)
  1137. {
  1138. /* remove entry from the device table seen by the hardware */
  1139. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1140. amd_iommu_dev_table[devid].data[1] = 0;
  1141. amd_iommu_dev_table[devid].data[2] = 0;
  1142. amd_iommu_apply_erratum_63(devid);
  1143. }
  1144. static void do_attach(struct device *dev, struct protection_domain *domain)
  1145. {
  1146. struct iommu_dev_data *dev_data;
  1147. struct amd_iommu *iommu;
  1148. u16 devid;
  1149. devid = get_device_id(dev);
  1150. iommu = amd_iommu_rlookup_table[devid];
  1151. dev_data = get_dev_data(dev);
  1152. /* Update data structures */
  1153. dev_data->domain = domain;
  1154. list_add(&dev_data->list, &domain->dev_list);
  1155. set_dte_entry(devid, domain);
  1156. /* Do reference counting */
  1157. domain->dev_iommu[iommu->index] += 1;
  1158. domain->dev_cnt += 1;
  1159. /* Flush the DTE entry */
  1160. iommu_flush_device(dev);
  1161. }
  1162. static void do_detach(struct device *dev)
  1163. {
  1164. struct iommu_dev_data *dev_data;
  1165. struct amd_iommu *iommu;
  1166. u16 devid;
  1167. devid = get_device_id(dev);
  1168. iommu = amd_iommu_rlookup_table[devid];
  1169. dev_data = get_dev_data(dev);
  1170. /* decrease reference counters */
  1171. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1172. dev_data->domain->dev_cnt -= 1;
  1173. /* Update data structures */
  1174. dev_data->domain = NULL;
  1175. list_del(&dev_data->list);
  1176. clear_dte_entry(devid);
  1177. /* Flush the DTE entry */
  1178. iommu_flush_device(dev);
  1179. }
  1180. /*
  1181. * If a device is not yet associated with a domain, this function does
  1182. * assigns it visible for the hardware
  1183. */
  1184. static int __attach_device(struct device *dev,
  1185. struct protection_domain *domain)
  1186. {
  1187. struct iommu_dev_data *dev_data, *alias_data;
  1188. int ret;
  1189. dev_data = get_dev_data(dev);
  1190. alias_data = get_dev_data(dev_data->alias);
  1191. if (!alias_data)
  1192. return -EINVAL;
  1193. /* lock domain */
  1194. spin_lock(&domain->lock);
  1195. /* Some sanity checks */
  1196. ret = -EBUSY;
  1197. if (alias_data->domain != NULL &&
  1198. alias_data->domain != domain)
  1199. goto out_unlock;
  1200. if (dev_data->domain != NULL &&
  1201. dev_data->domain != domain)
  1202. goto out_unlock;
  1203. /* Do real assignment */
  1204. if (dev_data->alias != dev) {
  1205. alias_data = get_dev_data(dev_data->alias);
  1206. if (alias_data->domain == NULL)
  1207. do_attach(dev_data->alias, domain);
  1208. atomic_inc(&alias_data->bind);
  1209. }
  1210. if (dev_data->domain == NULL)
  1211. do_attach(dev, domain);
  1212. atomic_inc(&dev_data->bind);
  1213. ret = 0;
  1214. out_unlock:
  1215. /* ready */
  1216. spin_unlock(&domain->lock);
  1217. return ret;
  1218. }
  1219. /*
  1220. * If a device is not yet associated with a domain, this function does
  1221. * assigns it visible for the hardware
  1222. */
  1223. static int attach_device(struct device *dev,
  1224. struct protection_domain *domain)
  1225. {
  1226. unsigned long flags;
  1227. int ret;
  1228. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1229. ret = __attach_device(dev, domain);
  1230. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1231. /*
  1232. * We might boot into a crash-kernel here. The crashed kernel
  1233. * left the caches in the IOMMU dirty. So we have to flush
  1234. * here to evict all dirty stuff.
  1235. */
  1236. iommu_flush_tlb_pde(domain);
  1237. return ret;
  1238. }
  1239. /*
  1240. * Removes a device from a protection domain (unlocked)
  1241. */
  1242. static void __detach_device(struct device *dev)
  1243. {
  1244. struct iommu_dev_data *dev_data = get_dev_data(dev);
  1245. struct iommu_dev_data *alias_data;
  1246. struct protection_domain *domain;
  1247. unsigned long flags;
  1248. BUG_ON(!dev_data->domain);
  1249. domain = dev_data->domain;
  1250. spin_lock_irqsave(&domain->lock, flags);
  1251. if (dev_data->alias != dev) {
  1252. alias_data = get_dev_data(dev_data->alias);
  1253. if (atomic_dec_and_test(&alias_data->bind))
  1254. do_detach(dev_data->alias);
  1255. }
  1256. if (atomic_dec_and_test(&dev_data->bind))
  1257. do_detach(dev);
  1258. spin_unlock_irqrestore(&domain->lock, flags);
  1259. /*
  1260. * If we run in passthrough mode the device must be assigned to the
  1261. * passthrough domain if it is detached from any other domain.
  1262. * Make sure we can deassign from the pt_domain itself.
  1263. */
  1264. if (iommu_pass_through &&
  1265. (dev_data->domain == NULL && domain != pt_domain))
  1266. __attach_device(dev, pt_domain);
  1267. }
  1268. /*
  1269. * Removes a device from a protection domain (with devtable_lock held)
  1270. */
  1271. static void detach_device(struct device *dev)
  1272. {
  1273. unsigned long flags;
  1274. /* lock device table */
  1275. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1276. __detach_device(dev);
  1277. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1278. }
  1279. /*
  1280. * Find out the protection domain structure for a given PCI device. This
  1281. * will give us the pointer to the page table root for example.
  1282. */
  1283. static struct protection_domain *domain_for_device(struct device *dev)
  1284. {
  1285. struct protection_domain *dom;
  1286. struct iommu_dev_data *dev_data, *alias_data;
  1287. unsigned long flags;
  1288. u16 devid, alias;
  1289. devid = get_device_id(dev);
  1290. alias = amd_iommu_alias_table[devid];
  1291. dev_data = get_dev_data(dev);
  1292. alias_data = get_dev_data(dev_data->alias);
  1293. if (!alias_data)
  1294. return NULL;
  1295. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1296. dom = dev_data->domain;
  1297. if (dom == NULL &&
  1298. alias_data->domain != NULL) {
  1299. __attach_device(dev, alias_data->domain);
  1300. dom = alias_data->domain;
  1301. }
  1302. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1303. return dom;
  1304. }
  1305. static int device_change_notifier(struct notifier_block *nb,
  1306. unsigned long action, void *data)
  1307. {
  1308. struct device *dev = data;
  1309. u16 devid;
  1310. struct protection_domain *domain;
  1311. struct dma_ops_domain *dma_domain;
  1312. struct amd_iommu *iommu;
  1313. unsigned long flags;
  1314. if (!check_device(dev))
  1315. return 0;
  1316. devid = get_device_id(dev);
  1317. iommu = amd_iommu_rlookup_table[devid];
  1318. switch (action) {
  1319. case BUS_NOTIFY_UNBOUND_DRIVER:
  1320. domain = domain_for_device(dev);
  1321. if (!domain)
  1322. goto out;
  1323. if (iommu_pass_through)
  1324. break;
  1325. detach_device(dev);
  1326. break;
  1327. case BUS_NOTIFY_ADD_DEVICE:
  1328. iommu_init_device(dev);
  1329. domain = domain_for_device(dev);
  1330. /* allocate a protection domain if a device is added */
  1331. dma_domain = find_protection_domain(devid);
  1332. if (dma_domain)
  1333. goto out;
  1334. dma_domain = dma_ops_domain_alloc();
  1335. if (!dma_domain)
  1336. goto out;
  1337. dma_domain->target_dev = devid;
  1338. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1339. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1340. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1341. break;
  1342. case BUS_NOTIFY_DEL_DEVICE:
  1343. iommu_uninit_device(dev);
  1344. default:
  1345. goto out;
  1346. }
  1347. iommu_flush_device(dev);
  1348. iommu_completion_wait(iommu);
  1349. out:
  1350. return 0;
  1351. }
  1352. static struct notifier_block device_nb = {
  1353. .notifier_call = device_change_notifier,
  1354. };
  1355. void amd_iommu_init_notifier(void)
  1356. {
  1357. bus_register_notifier(&pci_bus_type, &device_nb);
  1358. }
  1359. /*****************************************************************************
  1360. *
  1361. * The next functions belong to the dma_ops mapping/unmapping code.
  1362. *
  1363. *****************************************************************************/
  1364. /*
  1365. * In the dma_ops path we only have the struct device. This function
  1366. * finds the corresponding IOMMU, the protection domain and the
  1367. * requestor id for a given device.
  1368. * If the device is not yet associated with a domain this is also done
  1369. * in this function.
  1370. */
  1371. static struct protection_domain *get_domain(struct device *dev)
  1372. {
  1373. struct protection_domain *domain;
  1374. struct dma_ops_domain *dma_dom;
  1375. u16 devid = get_device_id(dev);
  1376. if (!check_device(dev))
  1377. return ERR_PTR(-EINVAL);
  1378. domain = domain_for_device(dev);
  1379. if (domain != NULL && !dma_ops_domain(domain))
  1380. return ERR_PTR(-EBUSY);
  1381. if (domain != NULL)
  1382. return domain;
  1383. /* Device not bount yet - bind it */
  1384. dma_dom = find_protection_domain(devid);
  1385. if (!dma_dom)
  1386. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1387. attach_device(dev, &dma_dom->domain);
  1388. DUMP_printk("Using protection domain %d for device %s\n",
  1389. dma_dom->domain.id, dev_name(dev));
  1390. return &dma_dom->domain;
  1391. }
  1392. static void update_device_table(struct protection_domain *domain)
  1393. {
  1394. struct iommu_dev_data *dev_data;
  1395. list_for_each_entry(dev_data, &domain->dev_list, list) {
  1396. u16 devid = get_device_id(dev_data->dev);
  1397. set_dte_entry(devid, domain);
  1398. }
  1399. }
  1400. static void update_domain(struct protection_domain *domain)
  1401. {
  1402. if (!domain->updated)
  1403. return;
  1404. update_device_table(domain);
  1405. iommu_flush_domain_devices(domain);
  1406. iommu_flush_tlb_pde(domain);
  1407. domain->updated = false;
  1408. }
  1409. /*
  1410. * This function fetches the PTE for a given address in the aperture
  1411. */
  1412. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1413. unsigned long address)
  1414. {
  1415. struct aperture_range *aperture;
  1416. u64 *pte, *pte_page;
  1417. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1418. if (!aperture)
  1419. return NULL;
  1420. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1421. if (!pte) {
  1422. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1423. GFP_ATOMIC);
  1424. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1425. } else
  1426. pte += PM_LEVEL_INDEX(0, address);
  1427. update_domain(&dom->domain);
  1428. return pte;
  1429. }
  1430. /*
  1431. * This is the generic map function. It maps one 4kb page at paddr to
  1432. * the given address in the DMA address space for the domain.
  1433. */
  1434. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1435. unsigned long address,
  1436. phys_addr_t paddr,
  1437. int direction)
  1438. {
  1439. u64 *pte, __pte;
  1440. WARN_ON(address > dom->aperture_size);
  1441. paddr &= PAGE_MASK;
  1442. pte = dma_ops_get_pte(dom, address);
  1443. if (!pte)
  1444. return DMA_ERROR_CODE;
  1445. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1446. if (direction == DMA_TO_DEVICE)
  1447. __pte |= IOMMU_PTE_IR;
  1448. else if (direction == DMA_FROM_DEVICE)
  1449. __pte |= IOMMU_PTE_IW;
  1450. else if (direction == DMA_BIDIRECTIONAL)
  1451. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1452. WARN_ON(*pte);
  1453. *pte = __pte;
  1454. return (dma_addr_t)address;
  1455. }
  1456. /*
  1457. * The generic unmapping function for on page in the DMA address space.
  1458. */
  1459. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1460. unsigned long address)
  1461. {
  1462. struct aperture_range *aperture;
  1463. u64 *pte;
  1464. if (address >= dom->aperture_size)
  1465. return;
  1466. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1467. if (!aperture)
  1468. return;
  1469. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1470. if (!pte)
  1471. return;
  1472. pte += PM_LEVEL_INDEX(0, address);
  1473. WARN_ON(!*pte);
  1474. *pte = 0ULL;
  1475. }
  1476. /*
  1477. * This function contains common code for mapping of a physically
  1478. * contiguous memory region into DMA address space. It is used by all
  1479. * mapping functions provided with this IOMMU driver.
  1480. * Must be called with the domain lock held.
  1481. */
  1482. static dma_addr_t __map_single(struct device *dev,
  1483. struct dma_ops_domain *dma_dom,
  1484. phys_addr_t paddr,
  1485. size_t size,
  1486. int dir,
  1487. bool align,
  1488. u64 dma_mask)
  1489. {
  1490. dma_addr_t offset = paddr & ~PAGE_MASK;
  1491. dma_addr_t address, start, ret;
  1492. unsigned int pages;
  1493. unsigned long align_mask = 0;
  1494. int i;
  1495. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1496. paddr &= PAGE_MASK;
  1497. INC_STATS_COUNTER(total_map_requests);
  1498. if (pages > 1)
  1499. INC_STATS_COUNTER(cross_page);
  1500. if (align)
  1501. align_mask = (1UL << get_order(size)) - 1;
  1502. retry:
  1503. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1504. dma_mask);
  1505. if (unlikely(address == DMA_ERROR_CODE)) {
  1506. /*
  1507. * setting next_address here will let the address
  1508. * allocator only scan the new allocated range in the
  1509. * first run. This is a small optimization.
  1510. */
  1511. dma_dom->next_address = dma_dom->aperture_size;
  1512. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  1513. goto out;
  1514. /*
  1515. * aperture was successfully enlarged by 128 MB, try
  1516. * allocation again
  1517. */
  1518. goto retry;
  1519. }
  1520. start = address;
  1521. for (i = 0; i < pages; ++i) {
  1522. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  1523. if (ret == DMA_ERROR_CODE)
  1524. goto out_unmap;
  1525. paddr += PAGE_SIZE;
  1526. start += PAGE_SIZE;
  1527. }
  1528. address += offset;
  1529. ADD_STATS_COUNTER(alloced_io_mem, size);
  1530. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  1531. iommu_flush_tlb(&dma_dom->domain);
  1532. dma_dom->need_flush = false;
  1533. } else if (unlikely(amd_iommu_np_cache))
  1534. iommu_flush_pages(&dma_dom->domain, address, size);
  1535. out:
  1536. return address;
  1537. out_unmap:
  1538. for (--i; i >= 0; --i) {
  1539. start -= PAGE_SIZE;
  1540. dma_ops_domain_unmap(dma_dom, start);
  1541. }
  1542. dma_ops_free_addresses(dma_dom, address, pages);
  1543. return DMA_ERROR_CODE;
  1544. }
  1545. /*
  1546. * Does the reverse of the __map_single function. Must be called with
  1547. * the domain lock held too
  1548. */
  1549. static void __unmap_single(struct dma_ops_domain *dma_dom,
  1550. dma_addr_t dma_addr,
  1551. size_t size,
  1552. int dir)
  1553. {
  1554. dma_addr_t flush_addr;
  1555. dma_addr_t i, start;
  1556. unsigned int pages;
  1557. if ((dma_addr == DMA_ERROR_CODE) ||
  1558. (dma_addr + size > dma_dom->aperture_size))
  1559. return;
  1560. flush_addr = dma_addr;
  1561. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  1562. dma_addr &= PAGE_MASK;
  1563. start = dma_addr;
  1564. for (i = 0; i < pages; ++i) {
  1565. dma_ops_domain_unmap(dma_dom, start);
  1566. start += PAGE_SIZE;
  1567. }
  1568. SUB_STATS_COUNTER(alloced_io_mem, size);
  1569. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  1570. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  1571. iommu_flush_pages(&dma_dom->domain, flush_addr, size);
  1572. dma_dom->need_flush = false;
  1573. }
  1574. }
  1575. /*
  1576. * The exported map_single function for dma_ops.
  1577. */
  1578. static dma_addr_t map_page(struct device *dev, struct page *page,
  1579. unsigned long offset, size_t size,
  1580. enum dma_data_direction dir,
  1581. struct dma_attrs *attrs)
  1582. {
  1583. unsigned long flags;
  1584. struct protection_domain *domain;
  1585. dma_addr_t addr;
  1586. u64 dma_mask;
  1587. phys_addr_t paddr = page_to_phys(page) + offset;
  1588. INC_STATS_COUNTER(cnt_map_single);
  1589. domain = get_domain(dev);
  1590. if (PTR_ERR(domain) == -EINVAL)
  1591. return (dma_addr_t)paddr;
  1592. else if (IS_ERR(domain))
  1593. return DMA_ERROR_CODE;
  1594. dma_mask = *dev->dma_mask;
  1595. spin_lock_irqsave(&domain->lock, flags);
  1596. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  1597. dma_mask);
  1598. if (addr == DMA_ERROR_CODE)
  1599. goto out;
  1600. iommu_flush_complete(domain);
  1601. out:
  1602. spin_unlock_irqrestore(&domain->lock, flags);
  1603. return addr;
  1604. }
  1605. /*
  1606. * The exported unmap_single function for dma_ops.
  1607. */
  1608. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  1609. enum dma_data_direction dir, struct dma_attrs *attrs)
  1610. {
  1611. unsigned long flags;
  1612. struct protection_domain *domain;
  1613. INC_STATS_COUNTER(cnt_unmap_single);
  1614. domain = get_domain(dev);
  1615. if (IS_ERR(domain))
  1616. return;
  1617. spin_lock_irqsave(&domain->lock, flags);
  1618. __unmap_single(domain->priv, dma_addr, size, dir);
  1619. iommu_flush_complete(domain);
  1620. spin_unlock_irqrestore(&domain->lock, flags);
  1621. }
  1622. /*
  1623. * This is a special map_sg function which is used if we should map a
  1624. * device which is not handled by an AMD IOMMU in the system.
  1625. */
  1626. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  1627. int nelems, int dir)
  1628. {
  1629. struct scatterlist *s;
  1630. int i;
  1631. for_each_sg(sglist, s, nelems, i) {
  1632. s->dma_address = (dma_addr_t)sg_phys(s);
  1633. s->dma_length = s->length;
  1634. }
  1635. return nelems;
  1636. }
  1637. /*
  1638. * The exported map_sg function for dma_ops (handles scatter-gather
  1639. * lists).
  1640. */
  1641. static int map_sg(struct device *dev, struct scatterlist *sglist,
  1642. int nelems, enum dma_data_direction dir,
  1643. struct dma_attrs *attrs)
  1644. {
  1645. unsigned long flags;
  1646. struct protection_domain *domain;
  1647. int i;
  1648. struct scatterlist *s;
  1649. phys_addr_t paddr;
  1650. int mapped_elems = 0;
  1651. u64 dma_mask;
  1652. INC_STATS_COUNTER(cnt_map_sg);
  1653. domain = get_domain(dev);
  1654. if (PTR_ERR(domain) == -EINVAL)
  1655. return map_sg_no_iommu(dev, sglist, nelems, dir);
  1656. else if (IS_ERR(domain))
  1657. return 0;
  1658. dma_mask = *dev->dma_mask;
  1659. spin_lock_irqsave(&domain->lock, flags);
  1660. for_each_sg(sglist, s, nelems, i) {
  1661. paddr = sg_phys(s);
  1662. s->dma_address = __map_single(dev, domain->priv,
  1663. paddr, s->length, dir, false,
  1664. dma_mask);
  1665. if (s->dma_address) {
  1666. s->dma_length = s->length;
  1667. mapped_elems++;
  1668. } else
  1669. goto unmap;
  1670. }
  1671. iommu_flush_complete(domain);
  1672. out:
  1673. spin_unlock_irqrestore(&domain->lock, flags);
  1674. return mapped_elems;
  1675. unmap:
  1676. for_each_sg(sglist, s, mapped_elems, i) {
  1677. if (s->dma_address)
  1678. __unmap_single(domain->priv, s->dma_address,
  1679. s->dma_length, dir);
  1680. s->dma_address = s->dma_length = 0;
  1681. }
  1682. mapped_elems = 0;
  1683. goto out;
  1684. }
  1685. /*
  1686. * The exported map_sg function for dma_ops (handles scatter-gather
  1687. * lists).
  1688. */
  1689. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  1690. int nelems, enum dma_data_direction dir,
  1691. struct dma_attrs *attrs)
  1692. {
  1693. unsigned long flags;
  1694. struct protection_domain *domain;
  1695. struct scatterlist *s;
  1696. int i;
  1697. INC_STATS_COUNTER(cnt_unmap_sg);
  1698. domain = get_domain(dev);
  1699. if (IS_ERR(domain))
  1700. return;
  1701. spin_lock_irqsave(&domain->lock, flags);
  1702. for_each_sg(sglist, s, nelems, i) {
  1703. __unmap_single(domain->priv, s->dma_address,
  1704. s->dma_length, dir);
  1705. s->dma_address = s->dma_length = 0;
  1706. }
  1707. iommu_flush_complete(domain);
  1708. spin_unlock_irqrestore(&domain->lock, flags);
  1709. }
  1710. /*
  1711. * The exported alloc_coherent function for dma_ops.
  1712. */
  1713. static void *alloc_coherent(struct device *dev, size_t size,
  1714. dma_addr_t *dma_addr, gfp_t flag)
  1715. {
  1716. unsigned long flags;
  1717. void *virt_addr;
  1718. struct protection_domain *domain;
  1719. phys_addr_t paddr;
  1720. u64 dma_mask = dev->coherent_dma_mask;
  1721. INC_STATS_COUNTER(cnt_alloc_coherent);
  1722. domain = get_domain(dev);
  1723. if (PTR_ERR(domain) == -EINVAL) {
  1724. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1725. *dma_addr = __pa(virt_addr);
  1726. return virt_addr;
  1727. } else if (IS_ERR(domain))
  1728. return NULL;
  1729. dma_mask = dev->coherent_dma_mask;
  1730. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  1731. flag |= __GFP_ZERO;
  1732. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  1733. if (!virt_addr)
  1734. return NULL;
  1735. paddr = virt_to_phys(virt_addr);
  1736. if (!dma_mask)
  1737. dma_mask = *dev->dma_mask;
  1738. spin_lock_irqsave(&domain->lock, flags);
  1739. *dma_addr = __map_single(dev, domain->priv, paddr,
  1740. size, DMA_BIDIRECTIONAL, true, dma_mask);
  1741. if (*dma_addr == DMA_ERROR_CODE) {
  1742. spin_unlock_irqrestore(&domain->lock, flags);
  1743. goto out_free;
  1744. }
  1745. iommu_flush_complete(domain);
  1746. spin_unlock_irqrestore(&domain->lock, flags);
  1747. return virt_addr;
  1748. out_free:
  1749. free_pages((unsigned long)virt_addr, get_order(size));
  1750. return NULL;
  1751. }
  1752. /*
  1753. * The exported free_coherent function for dma_ops.
  1754. */
  1755. static void free_coherent(struct device *dev, size_t size,
  1756. void *virt_addr, dma_addr_t dma_addr)
  1757. {
  1758. unsigned long flags;
  1759. struct protection_domain *domain;
  1760. INC_STATS_COUNTER(cnt_free_coherent);
  1761. domain = get_domain(dev);
  1762. if (IS_ERR(domain))
  1763. goto free_mem;
  1764. spin_lock_irqsave(&domain->lock, flags);
  1765. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  1766. iommu_flush_complete(domain);
  1767. spin_unlock_irqrestore(&domain->lock, flags);
  1768. free_mem:
  1769. free_pages((unsigned long)virt_addr, get_order(size));
  1770. }
  1771. /*
  1772. * This function is called by the DMA layer to find out if we can handle a
  1773. * particular device. It is part of the dma_ops.
  1774. */
  1775. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  1776. {
  1777. return check_device(dev);
  1778. }
  1779. /*
  1780. * The function for pre-allocating protection domains.
  1781. *
  1782. * If the driver core informs the DMA layer if a driver grabs a device
  1783. * we don't need to preallocate the protection domains anymore.
  1784. * For now we have to.
  1785. */
  1786. static void prealloc_protection_domains(void)
  1787. {
  1788. struct pci_dev *dev = NULL;
  1789. struct dma_ops_domain *dma_dom;
  1790. u16 devid;
  1791. for_each_pci_dev(dev) {
  1792. /* Do we handle this device? */
  1793. if (!check_device(&dev->dev))
  1794. continue;
  1795. /* Is there already any domain for it? */
  1796. if (domain_for_device(&dev->dev))
  1797. continue;
  1798. devid = get_device_id(&dev->dev);
  1799. dma_dom = dma_ops_domain_alloc();
  1800. if (!dma_dom)
  1801. continue;
  1802. init_unity_mappings_for_device(dma_dom, devid);
  1803. dma_dom->target_dev = devid;
  1804. attach_device(&dev->dev, &dma_dom->domain);
  1805. list_add_tail(&dma_dom->list, &iommu_pd_list);
  1806. }
  1807. }
  1808. static struct dma_map_ops amd_iommu_dma_ops = {
  1809. .alloc_coherent = alloc_coherent,
  1810. .free_coherent = free_coherent,
  1811. .map_page = map_page,
  1812. .unmap_page = unmap_page,
  1813. .map_sg = map_sg,
  1814. .unmap_sg = unmap_sg,
  1815. .dma_supported = amd_iommu_dma_supported,
  1816. };
  1817. /*
  1818. * The function which clues the AMD IOMMU driver into dma_ops.
  1819. */
  1820. void __init amd_iommu_init_api(void)
  1821. {
  1822. register_iommu(&amd_iommu_ops);
  1823. }
  1824. int __init amd_iommu_init_dma_ops(void)
  1825. {
  1826. struct amd_iommu *iommu;
  1827. int ret;
  1828. /*
  1829. * first allocate a default protection domain for every IOMMU we
  1830. * found in the system. Devices not assigned to any other
  1831. * protection domain will be assigned to the default one.
  1832. */
  1833. for_each_iommu(iommu) {
  1834. iommu->default_dom = dma_ops_domain_alloc();
  1835. if (iommu->default_dom == NULL)
  1836. return -ENOMEM;
  1837. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  1838. ret = iommu_init_unity_mappings(iommu);
  1839. if (ret)
  1840. goto free_domains;
  1841. }
  1842. /*
  1843. * Pre-allocate the protection domains for each device.
  1844. */
  1845. prealloc_protection_domains();
  1846. iommu_detected = 1;
  1847. swiotlb = 0;
  1848. /* Make the driver finally visible to the drivers */
  1849. dma_ops = &amd_iommu_dma_ops;
  1850. amd_iommu_stats_init();
  1851. return 0;
  1852. free_domains:
  1853. for_each_iommu(iommu) {
  1854. if (iommu->default_dom)
  1855. dma_ops_domain_free(iommu->default_dom);
  1856. }
  1857. return ret;
  1858. }
  1859. /*****************************************************************************
  1860. *
  1861. * The following functions belong to the exported interface of AMD IOMMU
  1862. *
  1863. * This interface allows access to lower level functions of the IOMMU
  1864. * like protection domain handling and assignement of devices to domains
  1865. * which is not possible with the dma_ops interface.
  1866. *
  1867. *****************************************************************************/
  1868. static void cleanup_domain(struct protection_domain *domain)
  1869. {
  1870. struct iommu_dev_data *dev_data, *next;
  1871. unsigned long flags;
  1872. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1873. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  1874. struct device *dev = dev_data->dev;
  1875. __detach_device(dev);
  1876. atomic_set(&dev_data->bind, 0);
  1877. }
  1878. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1879. }
  1880. static void protection_domain_free(struct protection_domain *domain)
  1881. {
  1882. if (!domain)
  1883. return;
  1884. del_domain_from_list(domain);
  1885. if (domain->id)
  1886. domain_id_free(domain->id);
  1887. kfree(domain);
  1888. }
  1889. static struct protection_domain *protection_domain_alloc(void)
  1890. {
  1891. struct protection_domain *domain;
  1892. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  1893. if (!domain)
  1894. return NULL;
  1895. spin_lock_init(&domain->lock);
  1896. mutex_init(&domain->api_lock);
  1897. domain->id = domain_id_alloc();
  1898. if (!domain->id)
  1899. goto out_err;
  1900. INIT_LIST_HEAD(&domain->dev_list);
  1901. add_domain_to_list(domain);
  1902. return domain;
  1903. out_err:
  1904. kfree(domain);
  1905. return NULL;
  1906. }
  1907. static int amd_iommu_domain_init(struct iommu_domain *dom)
  1908. {
  1909. struct protection_domain *domain;
  1910. domain = protection_domain_alloc();
  1911. if (!domain)
  1912. goto out_free;
  1913. domain->mode = PAGE_MODE_3_LEVEL;
  1914. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1915. if (!domain->pt_root)
  1916. goto out_free;
  1917. dom->priv = domain;
  1918. return 0;
  1919. out_free:
  1920. protection_domain_free(domain);
  1921. return -ENOMEM;
  1922. }
  1923. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  1924. {
  1925. struct protection_domain *domain = dom->priv;
  1926. if (!domain)
  1927. return;
  1928. if (domain->dev_cnt > 0)
  1929. cleanup_domain(domain);
  1930. BUG_ON(domain->dev_cnt != 0);
  1931. free_pagetable(domain);
  1932. protection_domain_free(domain);
  1933. dom->priv = NULL;
  1934. }
  1935. static void amd_iommu_detach_device(struct iommu_domain *dom,
  1936. struct device *dev)
  1937. {
  1938. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  1939. struct amd_iommu *iommu;
  1940. u16 devid;
  1941. if (!check_device(dev))
  1942. return;
  1943. devid = get_device_id(dev);
  1944. if (dev_data->domain != NULL)
  1945. detach_device(dev);
  1946. iommu = amd_iommu_rlookup_table[devid];
  1947. if (!iommu)
  1948. return;
  1949. iommu_flush_device(dev);
  1950. iommu_completion_wait(iommu);
  1951. }
  1952. static int amd_iommu_attach_device(struct iommu_domain *dom,
  1953. struct device *dev)
  1954. {
  1955. struct protection_domain *domain = dom->priv;
  1956. struct iommu_dev_data *dev_data;
  1957. struct amd_iommu *iommu;
  1958. int ret;
  1959. u16 devid;
  1960. if (!check_device(dev))
  1961. return -EINVAL;
  1962. dev_data = dev->archdata.iommu;
  1963. devid = get_device_id(dev);
  1964. iommu = amd_iommu_rlookup_table[devid];
  1965. if (!iommu)
  1966. return -EINVAL;
  1967. if (dev_data->domain)
  1968. detach_device(dev);
  1969. ret = attach_device(dev, domain);
  1970. iommu_completion_wait(iommu);
  1971. return ret;
  1972. }
  1973. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  1974. phys_addr_t paddr, int gfp_order, int iommu_prot)
  1975. {
  1976. unsigned long page_size = 0x1000UL << gfp_order;
  1977. struct protection_domain *domain = dom->priv;
  1978. int prot = 0;
  1979. int ret;
  1980. if (iommu_prot & IOMMU_READ)
  1981. prot |= IOMMU_PROT_IR;
  1982. if (iommu_prot & IOMMU_WRITE)
  1983. prot |= IOMMU_PROT_IW;
  1984. mutex_lock(&domain->api_lock);
  1985. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  1986. mutex_unlock(&domain->api_lock);
  1987. return ret;
  1988. }
  1989. static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  1990. int gfp_order)
  1991. {
  1992. struct protection_domain *domain = dom->priv;
  1993. unsigned long page_size, unmap_size;
  1994. page_size = 0x1000UL << gfp_order;
  1995. mutex_lock(&domain->api_lock);
  1996. unmap_size = iommu_unmap_page(domain, iova, page_size);
  1997. mutex_unlock(&domain->api_lock);
  1998. iommu_flush_tlb_pde(domain);
  1999. return get_order(unmap_size);
  2000. }
  2001. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2002. unsigned long iova)
  2003. {
  2004. struct protection_domain *domain = dom->priv;
  2005. unsigned long offset_mask;
  2006. phys_addr_t paddr;
  2007. u64 *pte, __pte;
  2008. pte = fetch_pte(domain, iova);
  2009. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2010. return 0;
  2011. if (PM_PTE_LEVEL(*pte) == 0)
  2012. offset_mask = PAGE_SIZE - 1;
  2013. else
  2014. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2015. __pte = *pte & PM_ADDR_MASK;
  2016. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2017. return paddr;
  2018. }
  2019. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2020. unsigned long cap)
  2021. {
  2022. switch (cap) {
  2023. case IOMMU_CAP_CACHE_COHERENCY:
  2024. return 1;
  2025. }
  2026. return 0;
  2027. }
  2028. static struct iommu_ops amd_iommu_ops = {
  2029. .domain_init = amd_iommu_domain_init,
  2030. .domain_destroy = amd_iommu_domain_destroy,
  2031. .attach_dev = amd_iommu_attach_device,
  2032. .detach_dev = amd_iommu_detach_device,
  2033. .map = amd_iommu_map,
  2034. .unmap = amd_iommu_unmap,
  2035. .iova_to_phys = amd_iommu_iova_to_phys,
  2036. .domain_has_cap = amd_iommu_domain_has_cap,
  2037. };
  2038. /*****************************************************************************
  2039. *
  2040. * The next functions do a basic initialization of IOMMU for pass through
  2041. * mode
  2042. *
  2043. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2044. * DMA-API translation.
  2045. *
  2046. *****************************************************************************/
  2047. int __init amd_iommu_init_passthrough(void)
  2048. {
  2049. struct amd_iommu *iommu;
  2050. struct pci_dev *dev = NULL;
  2051. u16 devid;
  2052. /* allocate passthrough domain */
  2053. pt_domain = protection_domain_alloc();
  2054. if (!pt_domain)
  2055. return -ENOMEM;
  2056. pt_domain->mode |= PAGE_MODE_NONE;
  2057. for_each_pci_dev(dev) {
  2058. if (!check_device(&dev->dev))
  2059. continue;
  2060. devid = get_device_id(&dev->dev);
  2061. iommu = amd_iommu_rlookup_table[devid];
  2062. if (!iommu)
  2063. continue;
  2064. attach_device(&dev->dev, pt_domain);
  2065. }
  2066. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2067. return 0;
  2068. }