sched.c 163 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/sysctl.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/times.h>
  58. #include <linux/tsacct_kern.h>
  59. #include <linux/kprobes.h>
  60. #include <linux/delayacct.h>
  61. #include <linux/reciprocal_div.h>
  62. #include <linux/unistd.h>
  63. #include <linux/pagemap.h>
  64. #include <asm/tlb.h>
  65. /*
  66. * Scheduler clock - returns current time in nanosec units.
  67. * This is default implementation.
  68. * Architectures and sub-architectures can override this.
  69. */
  70. unsigned long long __attribute__((weak)) sched_clock(void)
  71. {
  72. return (unsigned long long)jiffies * (1000000000 / HZ);
  73. }
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Some helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  94. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  101. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. #define SCALE_PRIO(x, prio) \
  126. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  127. /*
  128. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  129. * to time slice values: [800ms ... 100ms ... 5ms]
  130. */
  131. static unsigned int static_prio_timeslice(int static_prio)
  132. {
  133. if (static_prio == NICE_TO_PRIO(19))
  134. return 1;
  135. if (static_prio < NICE_TO_PRIO(0))
  136. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  137. else
  138. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  139. }
  140. static inline int rt_policy(int policy)
  141. {
  142. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  143. return 1;
  144. return 0;
  145. }
  146. static inline int task_has_rt_policy(struct task_struct *p)
  147. {
  148. return rt_policy(p->policy);
  149. }
  150. /*
  151. * This is the priority-queue data structure of the RT scheduling class:
  152. */
  153. struct rt_prio_array {
  154. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  155. struct list_head queue[MAX_RT_PRIO];
  156. };
  157. /* CFS-related fields in a runqueue */
  158. struct cfs_rq {
  159. struct load_weight load;
  160. unsigned long nr_running;
  161. u64 exec_clock;
  162. u64 min_vruntime;
  163. struct rb_root tasks_timeline;
  164. struct rb_node *rb_leftmost;
  165. struct rb_node *rb_load_balance_curr;
  166. /* 'curr' points to currently running entity on this cfs_rq.
  167. * It is set to NULL otherwise (i.e when none are currently running).
  168. */
  169. struct sched_entity *curr;
  170. #ifdef CONFIG_FAIR_GROUP_SCHED
  171. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  172. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  173. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  174. * (like users, containers etc.)
  175. *
  176. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  177. * list is used during load balance.
  178. */
  179. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  180. #endif
  181. };
  182. /* Real-Time classes' related field in a runqueue: */
  183. struct rt_rq {
  184. struct rt_prio_array active;
  185. int rt_load_balance_idx;
  186. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  187. };
  188. /*
  189. * This is the main, per-CPU runqueue data structure.
  190. *
  191. * Locking rule: those places that want to lock multiple runqueues
  192. * (such as the load balancing or the thread migration code), lock
  193. * acquire operations must be ordered by ascending &runqueue.
  194. */
  195. struct rq {
  196. spinlock_t lock; /* runqueue lock */
  197. /*
  198. * nr_running and cpu_load should be in the same cacheline because
  199. * remote CPUs use both these fields when doing load calculation.
  200. */
  201. unsigned long nr_running;
  202. #define CPU_LOAD_IDX_MAX 5
  203. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  204. unsigned char idle_at_tick;
  205. #ifdef CONFIG_NO_HZ
  206. unsigned char in_nohz_recently;
  207. #endif
  208. struct load_weight load; /* capture load from *all* tasks on this cpu */
  209. unsigned long nr_load_updates;
  210. u64 nr_switches;
  211. struct cfs_rq cfs;
  212. #ifdef CONFIG_FAIR_GROUP_SCHED
  213. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  214. #endif
  215. struct rt_rq rt;
  216. /*
  217. * This is part of a global counter where only the total sum
  218. * over all CPUs matters. A task can increase this counter on
  219. * one CPU and if it got migrated afterwards it may decrease
  220. * it on another CPU. Always updated under the runqueue lock:
  221. */
  222. unsigned long nr_uninterruptible;
  223. struct task_struct *curr, *idle;
  224. unsigned long next_balance;
  225. struct mm_struct *prev_mm;
  226. u64 clock, prev_clock_raw;
  227. s64 clock_max_delta;
  228. unsigned int clock_warps, clock_overflows;
  229. u64 idle_clock;
  230. unsigned int clock_deep_idle_events;
  231. u64 tick_timestamp;
  232. atomic_t nr_iowait;
  233. #ifdef CONFIG_SMP
  234. struct sched_domain *sd;
  235. /* For active balancing */
  236. int active_balance;
  237. int push_cpu;
  238. int cpu; /* cpu of this runqueue */
  239. struct task_struct *migration_thread;
  240. struct list_head migration_queue;
  241. #endif
  242. #ifdef CONFIG_SCHEDSTATS
  243. /* latency stats */
  244. struct sched_info rq_sched_info;
  245. /* sys_sched_yield() stats */
  246. unsigned long yld_exp_empty;
  247. unsigned long yld_act_empty;
  248. unsigned long yld_both_empty;
  249. unsigned long yld_cnt;
  250. /* schedule() stats */
  251. unsigned long sched_switch;
  252. unsigned long sched_cnt;
  253. unsigned long sched_goidle;
  254. /* try_to_wake_up() stats */
  255. unsigned long ttwu_cnt;
  256. unsigned long ttwu_local;
  257. #endif
  258. struct lock_class_key rq_lock_key;
  259. };
  260. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  261. static DEFINE_MUTEX(sched_hotcpu_mutex);
  262. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  263. {
  264. rq->curr->sched_class->check_preempt_curr(rq, p);
  265. }
  266. static inline int cpu_of(struct rq *rq)
  267. {
  268. #ifdef CONFIG_SMP
  269. return rq->cpu;
  270. #else
  271. return 0;
  272. #endif
  273. }
  274. /*
  275. * Update the per-runqueue clock, as finegrained as the platform can give
  276. * us, but without assuming monotonicity, etc.:
  277. */
  278. static void __update_rq_clock(struct rq *rq)
  279. {
  280. u64 prev_raw = rq->prev_clock_raw;
  281. u64 now = sched_clock();
  282. s64 delta = now - prev_raw;
  283. u64 clock = rq->clock;
  284. #ifdef CONFIG_SCHED_DEBUG
  285. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  286. #endif
  287. /*
  288. * Protect against sched_clock() occasionally going backwards:
  289. */
  290. if (unlikely(delta < 0)) {
  291. clock++;
  292. rq->clock_warps++;
  293. } else {
  294. /*
  295. * Catch too large forward jumps too:
  296. */
  297. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  298. if (clock < rq->tick_timestamp + TICK_NSEC)
  299. clock = rq->tick_timestamp + TICK_NSEC;
  300. else
  301. clock++;
  302. rq->clock_overflows++;
  303. } else {
  304. if (unlikely(delta > rq->clock_max_delta))
  305. rq->clock_max_delta = delta;
  306. clock += delta;
  307. }
  308. }
  309. rq->prev_clock_raw = now;
  310. rq->clock = clock;
  311. }
  312. static void update_rq_clock(struct rq *rq)
  313. {
  314. if (likely(smp_processor_id() == cpu_of(rq)))
  315. __update_rq_clock(rq);
  316. }
  317. /*
  318. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  319. * See detach_destroy_domains: synchronize_sched for details.
  320. *
  321. * The domain tree of any CPU may only be accessed from within
  322. * preempt-disabled sections.
  323. */
  324. #define for_each_domain(cpu, __sd) \
  325. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  326. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  327. #define this_rq() (&__get_cpu_var(runqueues))
  328. #define task_rq(p) cpu_rq(task_cpu(p))
  329. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  330. /*
  331. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  332. */
  333. #ifdef CONFIG_SCHED_DEBUG
  334. # define const_debug __read_mostly
  335. #else
  336. # define const_debug static const
  337. #endif
  338. /*
  339. * Debugging: various feature bits
  340. */
  341. enum {
  342. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  343. SCHED_FEAT_START_DEBIT = 2,
  344. SCHED_FEAT_USE_TREE_AVG = 4,
  345. SCHED_FEAT_APPROX_AVG = 8,
  346. };
  347. const_debug unsigned int sysctl_sched_features =
  348. SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
  349. SCHED_FEAT_START_DEBIT *1 |
  350. SCHED_FEAT_USE_TREE_AVG *0 |
  351. SCHED_FEAT_APPROX_AVG *0;
  352. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  353. /*
  354. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  355. * clock constructed from sched_clock():
  356. */
  357. unsigned long long cpu_clock(int cpu)
  358. {
  359. unsigned long long now;
  360. unsigned long flags;
  361. struct rq *rq;
  362. local_irq_save(flags);
  363. rq = cpu_rq(cpu);
  364. update_rq_clock(rq);
  365. now = rq->clock;
  366. local_irq_restore(flags);
  367. return now;
  368. }
  369. #ifdef CONFIG_FAIR_GROUP_SCHED
  370. /* Change a task's ->cfs_rq if it moves across CPUs */
  371. static inline void set_task_cfs_rq(struct task_struct *p)
  372. {
  373. p->se.cfs_rq = &task_rq(p)->cfs;
  374. }
  375. #else
  376. static inline void set_task_cfs_rq(struct task_struct *p)
  377. {
  378. }
  379. #endif
  380. #ifndef prepare_arch_switch
  381. # define prepare_arch_switch(next) do { } while (0)
  382. #endif
  383. #ifndef finish_arch_switch
  384. # define finish_arch_switch(prev) do { } while (0)
  385. #endif
  386. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  387. static inline int task_running(struct rq *rq, struct task_struct *p)
  388. {
  389. return rq->curr == p;
  390. }
  391. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  392. {
  393. }
  394. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  395. {
  396. #ifdef CONFIG_DEBUG_SPINLOCK
  397. /* this is a valid case when another task releases the spinlock */
  398. rq->lock.owner = current;
  399. #endif
  400. /*
  401. * If we are tracking spinlock dependencies then we have to
  402. * fix up the runqueue lock - which gets 'carried over' from
  403. * prev into current:
  404. */
  405. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  406. spin_unlock_irq(&rq->lock);
  407. }
  408. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  409. static inline int task_running(struct rq *rq, struct task_struct *p)
  410. {
  411. #ifdef CONFIG_SMP
  412. return p->oncpu;
  413. #else
  414. return rq->curr == p;
  415. #endif
  416. }
  417. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  418. {
  419. #ifdef CONFIG_SMP
  420. /*
  421. * We can optimise this out completely for !SMP, because the
  422. * SMP rebalancing from interrupt is the only thing that cares
  423. * here.
  424. */
  425. next->oncpu = 1;
  426. #endif
  427. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  428. spin_unlock_irq(&rq->lock);
  429. #else
  430. spin_unlock(&rq->lock);
  431. #endif
  432. }
  433. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  434. {
  435. #ifdef CONFIG_SMP
  436. /*
  437. * After ->oncpu is cleared, the task can be moved to a different CPU.
  438. * We must ensure this doesn't happen until the switch is completely
  439. * finished.
  440. */
  441. smp_wmb();
  442. prev->oncpu = 0;
  443. #endif
  444. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  445. local_irq_enable();
  446. #endif
  447. }
  448. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  449. /*
  450. * __task_rq_lock - lock the runqueue a given task resides on.
  451. * Must be called interrupts disabled.
  452. */
  453. static inline struct rq *__task_rq_lock(struct task_struct *p)
  454. __acquires(rq->lock)
  455. {
  456. struct rq *rq;
  457. repeat_lock_task:
  458. rq = task_rq(p);
  459. spin_lock(&rq->lock);
  460. if (unlikely(rq != task_rq(p))) {
  461. spin_unlock(&rq->lock);
  462. goto repeat_lock_task;
  463. }
  464. return rq;
  465. }
  466. /*
  467. * task_rq_lock - lock the runqueue a given task resides on and disable
  468. * interrupts. Note the ordering: we can safely lookup the task_rq without
  469. * explicitly disabling preemption.
  470. */
  471. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  472. __acquires(rq->lock)
  473. {
  474. struct rq *rq;
  475. repeat_lock_task:
  476. local_irq_save(*flags);
  477. rq = task_rq(p);
  478. spin_lock(&rq->lock);
  479. if (unlikely(rq != task_rq(p))) {
  480. spin_unlock_irqrestore(&rq->lock, *flags);
  481. goto repeat_lock_task;
  482. }
  483. return rq;
  484. }
  485. static inline void __task_rq_unlock(struct rq *rq)
  486. __releases(rq->lock)
  487. {
  488. spin_unlock(&rq->lock);
  489. }
  490. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  491. __releases(rq->lock)
  492. {
  493. spin_unlock_irqrestore(&rq->lock, *flags);
  494. }
  495. /*
  496. * this_rq_lock - lock this runqueue and disable interrupts.
  497. */
  498. static inline struct rq *this_rq_lock(void)
  499. __acquires(rq->lock)
  500. {
  501. struct rq *rq;
  502. local_irq_disable();
  503. rq = this_rq();
  504. spin_lock(&rq->lock);
  505. return rq;
  506. }
  507. /*
  508. * We are going deep-idle (irqs are disabled):
  509. */
  510. void sched_clock_idle_sleep_event(void)
  511. {
  512. struct rq *rq = cpu_rq(smp_processor_id());
  513. spin_lock(&rq->lock);
  514. __update_rq_clock(rq);
  515. spin_unlock(&rq->lock);
  516. rq->clock_deep_idle_events++;
  517. }
  518. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  519. /*
  520. * We just idled delta nanoseconds (called with irqs disabled):
  521. */
  522. void sched_clock_idle_wakeup_event(u64 delta_ns)
  523. {
  524. struct rq *rq = cpu_rq(smp_processor_id());
  525. u64 now = sched_clock();
  526. rq->idle_clock += delta_ns;
  527. /*
  528. * Override the previous timestamp and ignore all
  529. * sched_clock() deltas that occured while we idled,
  530. * and use the PM-provided delta_ns to advance the
  531. * rq clock:
  532. */
  533. spin_lock(&rq->lock);
  534. rq->prev_clock_raw = now;
  535. rq->clock += delta_ns;
  536. spin_unlock(&rq->lock);
  537. }
  538. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  539. /*
  540. * resched_task - mark a task 'to be rescheduled now'.
  541. *
  542. * On UP this means the setting of the need_resched flag, on SMP it
  543. * might also involve a cross-CPU call to trigger the scheduler on
  544. * the target CPU.
  545. */
  546. #ifdef CONFIG_SMP
  547. #ifndef tsk_is_polling
  548. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  549. #endif
  550. static void resched_task(struct task_struct *p)
  551. {
  552. int cpu;
  553. assert_spin_locked(&task_rq(p)->lock);
  554. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  555. return;
  556. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  557. cpu = task_cpu(p);
  558. if (cpu == smp_processor_id())
  559. return;
  560. /* NEED_RESCHED must be visible before we test polling */
  561. smp_mb();
  562. if (!tsk_is_polling(p))
  563. smp_send_reschedule(cpu);
  564. }
  565. static void resched_cpu(int cpu)
  566. {
  567. struct rq *rq = cpu_rq(cpu);
  568. unsigned long flags;
  569. if (!spin_trylock_irqsave(&rq->lock, flags))
  570. return;
  571. resched_task(cpu_curr(cpu));
  572. spin_unlock_irqrestore(&rq->lock, flags);
  573. }
  574. #else
  575. static inline void resched_task(struct task_struct *p)
  576. {
  577. assert_spin_locked(&task_rq(p)->lock);
  578. set_tsk_need_resched(p);
  579. }
  580. #endif
  581. #if BITS_PER_LONG == 32
  582. # define WMULT_CONST (~0UL)
  583. #else
  584. # define WMULT_CONST (1UL << 32)
  585. #endif
  586. #define WMULT_SHIFT 32
  587. /*
  588. * Shift right and round:
  589. */
  590. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  591. static unsigned long
  592. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  593. struct load_weight *lw)
  594. {
  595. u64 tmp;
  596. if (unlikely(!lw->inv_weight))
  597. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  598. tmp = (u64)delta_exec * weight;
  599. /*
  600. * Check whether we'd overflow the 64-bit multiplication:
  601. */
  602. if (unlikely(tmp > WMULT_CONST))
  603. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  604. WMULT_SHIFT/2);
  605. else
  606. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  607. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  608. }
  609. static inline unsigned long
  610. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  611. {
  612. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  613. }
  614. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  615. {
  616. lw->weight += inc;
  617. }
  618. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  619. {
  620. lw->weight -= dec;
  621. }
  622. /*
  623. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  624. * of tasks with abnormal "nice" values across CPUs the contribution that
  625. * each task makes to its run queue's load is weighted according to its
  626. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  627. * scaled version of the new time slice allocation that they receive on time
  628. * slice expiry etc.
  629. */
  630. #define WEIGHT_IDLEPRIO 2
  631. #define WMULT_IDLEPRIO (1 << 31)
  632. /*
  633. * Nice levels are multiplicative, with a gentle 10% change for every
  634. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  635. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  636. * that remained on nice 0.
  637. *
  638. * The "10% effect" is relative and cumulative: from _any_ nice level,
  639. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  640. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  641. * If a task goes up by ~10% and another task goes down by ~10% then
  642. * the relative distance between them is ~25%.)
  643. */
  644. static const int prio_to_weight[40] = {
  645. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  646. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  647. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  648. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  649. /* 0 */ 1024, 820, 655, 526, 423,
  650. /* 5 */ 335, 272, 215, 172, 137,
  651. /* 10 */ 110, 87, 70, 56, 45,
  652. /* 15 */ 36, 29, 23, 18, 15,
  653. };
  654. /*
  655. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  656. *
  657. * In cases where the weight does not change often, we can use the
  658. * precalculated inverse to speed up arithmetics by turning divisions
  659. * into multiplications:
  660. */
  661. static const u32 prio_to_wmult[40] = {
  662. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  663. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  664. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  665. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  666. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  667. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  668. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  669. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  670. };
  671. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  672. /*
  673. * runqueue iterator, to support SMP load-balancing between different
  674. * scheduling classes, without having to expose their internal data
  675. * structures to the load-balancing proper:
  676. */
  677. struct rq_iterator {
  678. void *arg;
  679. struct task_struct *(*start)(void *);
  680. struct task_struct *(*next)(void *);
  681. };
  682. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  683. unsigned long max_nr_move, unsigned long max_load_move,
  684. struct sched_domain *sd, enum cpu_idle_type idle,
  685. int *all_pinned, unsigned long *load_moved,
  686. int *this_best_prio, struct rq_iterator *iterator);
  687. #include "sched_stats.h"
  688. #include "sched_rt.c"
  689. #include "sched_fair.c"
  690. #include "sched_idletask.c"
  691. #ifdef CONFIG_SCHED_DEBUG
  692. # include "sched_debug.c"
  693. #endif
  694. #define sched_class_highest (&rt_sched_class)
  695. /*
  696. * Update delta_exec, delta_fair fields for rq.
  697. *
  698. * delta_fair clock advances at a rate inversely proportional to
  699. * total load (rq->load.weight) on the runqueue, while
  700. * delta_exec advances at the same rate as wall-clock (provided
  701. * cpu is not idle).
  702. *
  703. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  704. * runqueue over any given interval. This (smoothened) load is used
  705. * during load balance.
  706. *
  707. * This function is called /before/ updating rq->load
  708. * and when switching tasks.
  709. */
  710. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  711. {
  712. update_load_add(&rq->load, p->se.load.weight);
  713. }
  714. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  715. {
  716. update_load_sub(&rq->load, p->se.load.weight);
  717. }
  718. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  719. {
  720. rq->nr_running++;
  721. inc_load(rq, p);
  722. }
  723. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  724. {
  725. rq->nr_running--;
  726. dec_load(rq, p);
  727. }
  728. static void set_load_weight(struct task_struct *p)
  729. {
  730. if (task_has_rt_policy(p)) {
  731. p->se.load.weight = prio_to_weight[0] * 2;
  732. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  733. return;
  734. }
  735. /*
  736. * SCHED_IDLE tasks get minimal weight:
  737. */
  738. if (p->policy == SCHED_IDLE) {
  739. p->se.load.weight = WEIGHT_IDLEPRIO;
  740. p->se.load.inv_weight = WMULT_IDLEPRIO;
  741. return;
  742. }
  743. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  744. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  745. }
  746. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  747. {
  748. sched_info_queued(p);
  749. p->sched_class->enqueue_task(rq, p, wakeup);
  750. p->se.on_rq = 1;
  751. }
  752. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  753. {
  754. p->sched_class->dequeue_task(rq, p, sleep);
  755. p->se.on_rq = 0;
  756. }
  757. /*
  758. * __normal_prio - return the priority that is based on the static prio
  759. */
  760. static inline int __normal_prio(struct task_struct *p)
  761. {
  762. return p->static_prio;
  763. }
  764. /*
  765. * Calculate the expected normal priority: i.e. priority
  766. * without taking RT-inheritance into account. Might be
  767. * boosted by interactivity modifiers. Changes upon fork,
  768. * setprio syscalls, and whenever the interactivity
  769. * estimator recalculates.
  770. */
  771. static inline int normal_prio(struct task_struct *p)
  772. {
  773. int prio;
  774. if (task_has_rt_policy(p))
  775. prio = MAX_RT_PRIO-1 - p->rt_priority;
  776. else
  777. prio = __normal_prio(p);
  778. return prio;
  779. }
  780. /*
  781. * Calculate the current priority, i.e. the priority
  782. * taken into account by the scheduler. This value might
  783. * be boosted by RT tasks, or might be boosted by
  784. * interactivity modifiers. Will be RT if the task got
  785. * RT-boosted. If not then it returns p->normal_prio.
  786. */
  787. static int effective_prio(struct task_struct *p)
  788. {
  789. p->normal_prio = normal_prio(p);
  790. /*
  791. * If we are RT tasks or we were boosted to RT priority,
  792. * keep the priority unchanged. Otherwise, update priority
  793. * to the normal priority:
  794. */
  795. if (!rt_prio(p->prio))
  796. return p->normal_prio;
  797. return p->prio;
  798. }
  799. /*
  800. * activate_task - move a task to the runqueue.
  801. */
  802. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  803. {
  804. if (p->state == TASK_UNINTERRUPTIBLE)
  805. rq->nr_uninterruptible--;
  806. enqueue_task(rq, p, wakeup);
  807. inc_nr_running(p, rq);
  808. }
  809. /*
  810. * activate_idle_task - move idle task to the _front_ of runqueue.
  811. */
  812. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  813. {
  814. update_rq_clock(rq);
  815. if (p->state == TASK_UNINTERRUPTIBLE)
  816. rq->nr_uninterruptible--;
  817. enqueue_task(rq, p, 0);
  818. inc_nr_running(p, rq);
  819. }
  820. /*
  821. * deactivate_task - remove a task from the runqueue.
  822. */
  823. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  824. {
  825. if (p->state == TASK_UNINTERRUPTIBLE)
  826. rq->nr_uninterruptible++;
  827. dequeue_task(rq, p, sleep);
  828. dec_nr_running(p, rq);
  829. }
  830. /**
  831. * task_curr - is this task currently executing on a CPU?
  832. * @p: the task in question.
  833. */
  834. inline int task_curr(const struct task_struct *p)
  835. {
  836. return cpu_curr(task_cpu(p)) == p;
  837. }
  838. /* Used instead of source_load when we know the type == 0 */
  839. unsigned long weighted_cpuload(const int cpu)
  840. {
  841. return cpu_rq(cpu)->load.weight;
  842. }
  843. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  844. {
  845. #ifdef CONFIG_SMP
  846. task_thread_info(p)->cpu = cpu;
  847. set_task_cfs_rq(p);
  848. #endif
  849. }
  850. #ifdef CONFIG_SMP
  851. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  852. {
  853. int old_cpu = task_cpu(p);
  854. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  855. u64 clock_offset;
  856. clock_offset = old_rq->clock - new_rq->clock;
  857. #ifdef CONFIG_SCHEDSTATS
  858. if (p->se.wait_start)
  859. p->se.wait_start -= clock_offset;
  860. if (p->se.sleep_start)
  861. p->se.sleep_start -= clock_offset;
  862. if (p->se.block_start)
  863. p->se.block_start -= clock_offset;
  864. #endif
  865. if (likely(new_rq->cfs.min_vruntime))
  866. p->se.vruntime -= old_rq->cfs.min_vruntime -
  867. new_rq->cfs.min_vruntime;
  868. __set_task_cpu(p, new_cpu);
  869. }
  870. struct migration_req {
  871. struct list_head list;
  872. struct task_struct *task;
  873. int dest_cpu;
  874. struct completion done;
  875. };
  876. /*
  877. * The task's runqueue lock must be held.
  878. * Returns true if you have to wait for migration thread.
  879. */
  880. static int
  881. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  882. {
  883. struct rq *rq = task_rq(p);
  884. /*
  885. * If the task is not on a runqueue (and not running), then
  886. * it is sufficient to simply update the task's cpu field.
  887. */
  888. if (!p->se.on_rq && !task_running(rq, p)) {
  889. set_task_cpu(p, dest_cpu);
  890. return 0;
  891. }
  892. init_completion(&req->done);
  893. req->task = p;
  894. req->dest_cpu = dest_cpu;
  895. list_add(&req->list, &rq->migration_queue);
  896. return 1;
  897. }
  898. /*
  899. * wait_task_inactive - wait for a thread to unschedule.
  900. *
  901. * The caller must ensure that the task *will* unschedule sometime soon,
  902. * else this function might spin for a *long* time. This function can't
  903. * be called with interrupts off, or it may introduce deadlock with
  904. * smp_call_function() if an IPI is sent by the same process we are
  905. * waiting to become inactive.
  906. */
  907. void wait_task_inactive(struct task_struct *p)
  908. {
  909. unsigned long flags;
  910. int running, on_rq;
  911. struct rq *rq;
  912. repeat:
  913. /*
  914. * We do the initial early heuristics without holding
  915. * any task-queue locks at all. We'll only try to get
  916. * the runqueue lock when things look like they will
  917. * work out!
  918. */
  919. rq = task_rq(p);
  920. /*
  921. * If the task is actively running on another CPU
  922. * still, just relax and busy-wait without holding
  923. * any locks.
  924. *
  925. * NOTE! Since we don't hold any locks, it's not
  926. * even sure that "rq" stays as the right runqueue!
  927. * But we don't care, since "task_running()" will
  928. * return false if the runqueue has changed and p
  929. * is actually now running somewhere else!
  930. */
  931. while (task_running(rq, p))
  932. cpu_relax();
  933. /*
  934. * Ok, time to look more closely! We need the rq
  935. * lock now, to be *sure*. If we're wrong, we'll
  936. * just go back and repeat.
  937. */
  938. rq = task_rq_lock(p, &flags);
  939. running = task_running(rq, p);
  940. on_rq = p->se.on_rq;
  941. task_rq_unlock(rq, &flags);
  942. /*
  943. * Was it really running after all now that we
  944. * checked with the proper locks actually held?
  945. *
  946. * Oops. Go back and try again..
  947. */
  948. if (unlikely(running)) {
  949. cpu_relax();
  950. goto repeat;
  951. }
  952. /*
  953. * It's not enough that it's not actively running,
  954. * it must be off the runqueue _entirely_, and not
  955. * preempted!
  956. *
  957. * So if it wa still runnable (but just not actively
  958. * running right now), it's preempted, and we should
  959. * yield - it could be a while.
  960. */
  961. if (unlikely(on_rq)) {
  962. yield();
  963. goto repeat;
  964. }
  965. /*
  966. * Ahh, all good. It wasn't running, and it wasn't
  967. * runnable, which means that it will never become
  968. * running in the future either. We're all done!
  969. */
  970. }
  971. /***
  972. * kick_process - kick a running thread to enter/exit the kernel
  973. * @p: the to-be-kicked thread
  974. *
  975. * Cause a process which is running on another CPU to enter
  976. * kernel-mode, without any delay. (to get signals handled.)
  977. *
  978. * NOTE: this function doesnt have to take the runqueue lock,
  979. * because all it wants to ensure is that the remote task enters
  980. * the kernel. If the IPI races and the task has been migrated
  981. * to another CPU then no harm is done and the purpose has been
  982. * achieved as well.
  983. */
  984. void kick_process(struct task_struct *p)
  985. {
  986. int cpu;
  987. preempt_disable();
  988. cpu = task_cpu(p);
  989. if ((cpu != smp_processor_id()) && task_curr(p))
  990. smp_send_reschedule(cpu);
  991. preempt_enable();
  992. }
  993. /*
  994. * Return a low guess at the load of a migration-source cpu weighted
  995. * according to the scheduling class and "nice" value.
  996. *
  997. * We want to under-estimate the load of migration sources, to
  998. * balance conservatively.
  999. */
  1000. static inline unsigned long source_load(int cpu, int type)
  1001. {
  1002. struct rq *rq = cpu_rq(cpu);
  1003. unsigned long total = weighted_cpuload(cpu);
  1004. if (type == 0)
  1005. return total;
  1006. return min(rq->cpu_load[type-1], total);
  1007. }
  1008. /*
  1009. * Return a high guess at the load of a migration-target cpu weighted
  1010. * according to the scheduling class and "nice" value.
  1011. */
  1012. static inline unsigned long target_load(int cpu, int type)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. unsigned long total = weighted_cpuload(cpu);
  1016. if (type == 0)
  1017. return total;
  1018. return max(rq->cpu_load[type-1], total);
  1019. }
  1020. /*
  1021. * Return the average load per task on the cpu's run queue
  1022. */
  1023. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. unsigned long total = weighted_cpuload(cpu);
  1027. unsigned long n = rq->nr_running;
  1028. return n ? total / n : SCHED_LOAD_SCALE;
  1029. }
  1030. /*
  1031. * find_idlest_group finds and returns the least busy CPU group within the
  1032. * domain.
  1033. */
  1034. static struct sched_group *
  1035. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1036. {
  1037. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1038. unsigned long min_load = ULONG_MAX, this_load = 0;
  1039. int load_idx = sd->forkexec_idx;
  1040. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1041. do {
  1042. unsigned long load, avg_load;
  1043. int local_group;
  1044. int i;
  1045. /* Skip over this group if it has no CPUs allowed */
  1046. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1047. goto nextgroup;
  1048. local_group = cpu_isset(this_cpu, group->cpumask);
  1049. /* Tally up the load of all CPUs in the group */
  1050. avg_load = 0;
  1051. for_each_cpu_mask(i, group->cpumask) {
  1052. /* Bias balancing toward cpus of our domain */
  1053. if (local_group)
  1054. load = source_load(i, load_idx);
  1055. else
  1056. load = target_load(i, load_idx);
  1057. avg_load += load;
  1058. }
  1059. /* Adjust by relative CPU power of the group */
  1060. avg_load = sg_div_cpu_power(group,
  1061. avg_load * SCHED_LOAD_SCALE);
  1062. if (local_group) {
  1063. this_load = avg_load;
  1064. this = group;
  1065. } else if (avg_load < min_load) {
  1066. min_load = avg_load;
  1067. idlest = group;
  1068. }
  1069. nextgroup:
  1070. group = group->next;
  1071. } while (group != sd->groups);
  1072. if (!idlest || 100*this_load < imbalance*min_load)
  1073. return NULL;
  1074. return idlest;
  1075. }
  1076. /*
  1077. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1078. */
  1079. static int
  1080. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1081. {
  1082. cpumask_t tmp;
  1083. unsigned long load, min_load = ULONG_MAX;
  1084. int idlest = -1;
  1085. int i;
  1086. /* Traverse only the allowed CPUs */
  1087. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1088. for_each_cpu_mask(i, tmp) {
  1089. load = weighted_cpuload(i);
  1090. if (load < min_load || (load == min_load && i == this_cpu)) {
  1091. min_load = load;
  1092. idlest = i;
  1093. }
  1094. }
  1095. return idlest;
  1096. }
  1097. /*
  1098. * sched_balance_self: balance the current task (running on cpu) in domains
  1099. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1100. * SD_BALANCE_EXEC.
  1101. *
  1102. * Balance, ie. select the least loaded group.
  1103. *
  1104. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1105. *
  1106. * preempt must be disabled.
  1107. */
  1108. static int sched_balance_self(int cpu, int flag)
  1109. {
  1110. struct task_struct *t = current;
  1111. struct sched_domain *tmp, *sd = NULL;
  1112. for_each_domain(cpu, tmp) {
  1113. /*
  1114. * If power savings logic is enabled for a domain, stop there.
  1115. */
  1116. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1117. break;
  1118. if (tmp->flags & flag)
  1119. sd = tmp;
  1120. }
  1121. while (sd) {
  1122. cpumask_t span;
  1123. struct sched_group *group;
  1124. int new_cpu, weight;
  1125. if (!(sd->flags & flag)) {
  1126. sd = sd->child;
  1127. continue;
  1128. }
  1129. span = sd->span;
  1130. group = find_idlest_group(sd, t, cpu);
  1131. if (!group) {
  1132. sd = sd->child;
  1133. continue;
  1134. }
  1135. new_cpu = find_idlest_cpu(group, t, cpu);
  1136. if (new_cpu == -1 || new_cpu == cpu) {
  1137. /* Now try balancing at a lower domain level of cpu */
  1138. sd = sd->child;
  1139. continue;
  1140. }
  1141. /* Now try balancing at a lower domain level of new_cpu */
  1142. cpu = new_cpu;
  1143. sd = NULL;
  1144. weight = cpus_weight(span);
  1145. for_each_domain(cpu, tmp) {
  1146. if (weight <= cpus_weight(tmp->span))
  1147. break;
  1148. if (tmp->flags & flag)
  1149. sd = tmp;
  1150. }
  1151. /* while loop will break here if sd == NULL */
  1152. }
  1153. return cpu;
  1154. }
  1155. #endif /* CONFIG_SMP */
  1156. /*
  1157. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1158. * not idle and an idle cpu is available. The span of cpus to
  1159. * search starts with cpus closest then further out as needed,
  1160. * so we always favor a closer, idle cpu.
  1161. *
  1162. * Returns the CPU we should wake onto.
  1163. */
  1164. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1165. static int wake_idle(int cpu, struct task_struct *p)
  1166. {
  1167. cpumask_t tmp;
  1168. struct sched_domain *sd;
  1169. int i;
  1170. /*
  1171. * If it is idle, then it is the best cpu to run this task.
  1172. *
  1173. * This cpu is also the best, if it has more than one task already.
  1174. * Siblings must be also busy(in most cases) as they didn't already
  1175. * pickup the extra load from this cpu and hence we need not check
  1176. * sibling runqueue info. This will avoid the checks and cache miss
  1177. * penalities associated with that.
  1178. */
  1179. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1180. return cpu;
  1181. for_each_domain(cpu, sd) {
  1182. if (sd->flags & SD_WAKE_IDLE) {
  1183. cpus_and(tmp, sd->span, p->cpus_allowed);
  1184. for_each_cpu_mask(i, tmp) {
  1185. if (idle_cpu(i))
  1186. return i;
  1187. }
  1188. } else {
  1189. break;
  1190. }
  1191. }
  1192. return cpu;
  1193. }
  1194. #else
  1195. static inline int wake_idle(int cpu, struct task_struct *p)
  1196. {
  1197. return cpu;
  1198. }
  1199. #endif
  1200. /***
  1201. * try_to_wake_up - wake up a thread
  1202. * @p: the to-be-woken-up thread
  1203. * @state: the mask of task states that can be woken
  1204. * @sync: do a synchronous wakeup?
  1205. *
  1206. * Put it on the run-queue if it's not already there. The "current"
  1207. * thread is always on the run-queue (except when the actual
  1208. * re-schedule is in progress), and as such you're allowed to do
  1209. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1210. * runnable without the overhead of this.
  1211. *
  1212. * returns failure only if the task is already active.
  1213. */
  1214. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1215. {
  1216. int cpu, this_cpu, success = 0;
  1217. unsigned long flags;
  1218. long old_state;
  1219. struct rq *rq;
  1220. #ifdef CONFIG_SMP
  1221. struct sched_domain *sd, *this_sd = NULL;
  1222. unsigned long load, this_load;
  1223. int new_cpu;
  1224. #endif
  1225. rq = task_rq_lock(p, &flags);
  1226. old_state = p->state;
  1227. if (!(old_state & state))
  1228. goto out;
  1229. if (p->se.on_rq)
  1230. goto out_running;
  1231. cpu = task_cpu(p);
  1232. this_cpu = smp_processor_id();
  1233. #ifdef CONFIG_SMP
  1234. if (unlikely(task_running(rq, p)))
  1235. goto out_activate;
  1236. new_cpu = cpu;
  1237. schedstat_inc(rq, ttwu_cnt);
  1238. if (cpu == this_cpu) {
  1239. schedstat_inc(rq, ttwu_local);
  1240. goto out_set_cpu;
  1241. }
  1242. for_each_domain(this_cpu, sd) {
  1243. if (cpu_isset(cpu, sd->span)) {
  1244. schedstat_inc(sd, ttwu_wake_remote);
  1245. this_sd = sd;
  1246. break;
  1247. }
  1248. }
  1249. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1250. goto out_set_cpu;
  1251. /*
  1252. * Check for affine wakeup and passive balancing possibilities.
  1253. */
  1254. if (this_sd) {
  1255. int idx = this_sd->wake_idx;
  1256. unsigned int imbalance;
  1257. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1258. load = source_load(cpu, idx);
  1259. this_load = target_load(this_cpu, idx);
  1260. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1261. if (this_sd->flags & SD_WAKE_AFFINE) {
  1262. unsigned long tl = this_load;
  1263. unsigned long tl_per_task;
  1264. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1265. /*
  1266. * If sync wakeup then subtract the (maximum possible)
  1267. * effect of the currently running task from the load
  1268. * of the current CPU:
  1269. */
  1270. if (sync)
  1271. tl -= current->se.load.weight;
  1272. if ((tl <= load &&
  1273. tl + target_load(cpu, idx) <= tl_per_task) ||
  1274. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1275. /*
  1276. * This domain has SD_WAKE_AFFINE and
  1277. * p is cache cold in this domain, and
  1278. * there is no bad imbalance.
  1279. */
  1280. schedstat_inc(this_sd, ttwu_move_affine);
  1281. goto out_set_cpu;
  1282. }
  1283. }
  1284. /*
  1285. * Start passive balancing when half the imbalance_pct
  1286. * limit is reached.
  1287. */
  1288. if (this_sd->flags & SD_WAKE_BALANCE) {
  1289. if (imbalance*this_load <= 100*load) {
  1290. schedstat_inc(this_sd, ttwu_move_balance);
  1291. goto out_set_cpu;
  1292. }
  1293. }
  1294. }
  1295. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1296. out_set_cpu:
  1297. new_cpu = wake_idle(new_cpu, p);
  1298. if (new_cpu != cpu) {
  1299. set_task_cpu(p, new_cpu);
  1300. task_rq_unlock(rq, &flags);
  1301. /* might preempt at this point */
  1302. rq = task_rq_lock(p, &flags);
  1303. old_state = p->state;
  1304. if (!(old_state & state))
  1305. goto out;
  1306. if (p->se.on_rq)
  1307. goto out_running;
  1308. this_cpu = smp_processor_id();
  1309. cpu = task_cpu(p);
  1310. }
  1311. out_activate:
  1312. #endif /* CONFIG_SMP */
  1313. update_rq_clock(rq);
  1314. activate_task(rq, p, 1);
  1315. /*
  1316. * Sync wakeups (i.e. those types of wakeups where the waker
  1317. * has indicated that it will leave the CPU in short order)
  1318. * don't trigger a preemption, if the woken up task will run on
  1319. * this cpu. (in this case the 'I will reschedule' promise of
  1320. * the waker guarantees that the freshly woken up task is going
  1321. * to be considered on this CPU.)
  1322. */
  1323. if (!sync || cpu != this_cpu)
  1324. check_preempt_curr(rq, p);
  1325. success = 1;
  1326. out_running:
  1327. p->state = TASK_RUNNING;
  1328. out:
  1329. task_rq_unlock(rq, &flags);
  1330. return success;
  1331. }
  1332. int fastcall wake_up_process(struct task_struct *p)
  1333. {
  1334. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1335. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1336. }
  1337. EXPORT_SYMBOL(wake_up_process);
  1338. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1339. {
  1340. return try_to_wake_up(p, state, 0);
  1341. }
  1342. /*
  1343. * Perform scheduler related setup for a newly forked process p.
  1344. * p is forked by current.
  1345. *
  1346. * __sched_fork() is basic setup used by init_idle() too:
  1347. */
  1348. static void __sched_fork(struct task_struct *p)
  1349. {
  1350. p->se.exec_start = 0;
  1351. p->se.sum_exec_runtime = 0;
  1352. p->se.prev_sum_exec_runtime = 0;
  1353. #ifdef CONFIG_SCHEDSTATS
  1354. p->se.wait_start = 0;
  1355. p->se.sum_sleep_runtime = 0;
  1356. p->se.sleep_start = 0;
  1357. p->se.block_start = 0;
  1358. p->se.sleep_max = 0;
  1359. p->se.block_max = 0;
  1360. p->se.exec_max = 0;
  1361. p->se.slice_max = 0;
  1362. p->se.wait_max = 0;
  1363. #endif
  1364. INIT_LIST_HEAD(&p->run_list);
  1365. p->se.on_rq = 0;
  1366. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1367. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1368. #endif
  1369. /*
  1370. * We mark the process as running here, but have not actually
  1371. * inserted it onto the runqueue yet. This guarantees that
  1372. * nobody will actually run it, and a signal or other external
  1373. * event cannot wake it up and insert it on the runqueue either.
  1374. */
  1375. p->state = TASK_RUNNING;
  1376. }
  1377. /*
  1378. * fork()/clone()-time setup:
  1379. */
  1380. void sched_fork(struct task_struct *p, int clone_flags)
  1381. {
  1382. int cpu = get_cpu();
  1383. __sched_fork(p);
  1384. #ifdef CONFIG_SMP
  1385. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1386. #endif
  1387. __set_task_cpu(p, cpu);
  1388. /*
  1389. * Make sure we do not leak PI boosting priority to the child:
  1390. */
  1391. p->prio = current->normal_prio;
  1392. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1393. if (likely(sched_info_on()))
  1394. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1395. #endif
  1396. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1397. p->oncpu = 0;
  1398. #endif
  1399. #ifdef CONFIG_PREEMPT
  1400. /* Want to start with kernel preemption disabled. */
  1401. task_thread_info(p)->preempt_count = 1;
  1402. #endif
  1403. put_cpu();
  1404. }
  1405. /*
  1406. * wake_up_new_task - wake up a newly created task for the first time.
  1407. *
  1408. * This function will do some initial scheduler statistics housekeeping
  1409. * that must be done for every newly created context, then puts the task
  1410. * on the runqueue and wakes it.
  1411. */
  1412. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1413. {
  1414. unsigned long flags;
  1415. struct rq *rq;
  1416. int this_cpu;
  1417. rq = task_rq_lock(p, &flags);
  1418. BUG_ON(p->state != TASK_RUNNING);
  1419. this_cpu = smp_processor_id(); /* parent's CPU */
  1420. update_rq_clock(rq);
  1421. p->prio = effective_prio(p);
  1422. if (rt_prio(p->prio))
  1423. p->sched_class = &rt_sched_class;
  1424. else
  1425. p->sched_class = &fair_sched_class;
  1426. if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
  1427. !current->se.on_rq) {
  1428. activate_task(rq, p, 0);
  1429. } else {
  1430. /*
  1431. * Let the scheduling class do new task startup
  1432. * management (if any):
  1433. */
  1434. p->sched_class->task_new(rq, p);
  1435. inc_nr_running(p, rq);
  1436. }
  1437. check_preempt_curr(rq, p);
  1438. task_rq_unlock(rq, &flags);
  1439. }
  1440. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1441. /**
  1442. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1443. * @notifier: notifier struct to register
  1444. */
  1445. void preempt_notifier_register(struct preempt_notifier *notifier)
  1446. {
  1447. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1448. }
  1449. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1450. /**
  1451. * preempt_notifier_unregister - no longer interested in preemption notifications
  1452. * @notifier: notifier struct to unregister
  1453. *
  1454. * This is safe to call from within a preemption notifier.
  1455. */
  1456. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1457. {
  1458. hlist_del(&notifier->link);
  1459. }
  1460. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1461. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1462. {
  1463. struct preempt_notifier *notifier;
  1464. struct hlist_node *node;
  1465. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1466. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1467. }
  1468. static void
  1469. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1470. struct task_struct *next)
  1471. {
  1472. struct preempt_notifier *notifier;
  1473. struct hlist_node *node;
  1474. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1475. notifier->ops->sched_out(notifier, next);
  1476. }
  1477. #else
  1478. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1479. {
  1480. }
  1481. static void
  1482. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1483. struct task_struct *next)
  1484. {
  1485. }
  1486. #endif
  1487. /**
  1488. * prepare_task_switch - prepare to switch tasks
  1489. * @rq: the runqueue preparing to switch
  1490. * @prev: the current task that is being switched out
  1491. * @next: the task we are going to switch to.
  1492. *
  1493. * This is called with the rq lock held and interrupts off. It must
  1494. * be paired with a subsequent finish_task_switch after the context
  1495. * switch.
  1496. *
  1497. * prepare_task_switch sets up locking and calls architecture specific
  1498. * hooks.
  1499. */
  1500. static inline void
  1501. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1502. struct task_struct *next)
  1503. {
  1504. fire_sched_out_preempt_notifiers(prev, next);
  1505. prepare_lock_switch(rq, next);
  1506. prepare_arch_switch(next);
  1507. }
  1508. /**
  1509. * finish_task_switch - clean up after a task-switch
  1510. * @rq: runqueue associated with task-switch
  1511. * @prev: the thread we just switched away from.
  1512. *
  1513. * finish_task_switch must be called after the context switch, paired
  1514. * with a prepare_task_switch call before the context switch.
  1515. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1516. * and do any other architecture-specific cleanup actions.
  1517. *
  1518. * Note that we may have delayed dropping an mm in context_switch(). If
  1519. * so, we finish that here outside of the runqueue lock. (Doing it
  1520. * with the lock held can cause deadlocks; see schedule() for
  1521. * details.)
  1522. */
  1523. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1524. __releases(rq->lock)
  1525. {
  1526. struct mm_struct *mm = rq->prev_mm;
  1527. long prev_state;
  1528. rq->prev_mm = NULL;
  1529. /*
  1530. * A task struct has one reference for the use as "current".
  1531. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1532. * schedule one last time. The schedule call will never return, and
  1533. * the scheduled task must drop that reference.
  1534. * The test for TASK_DEAD must occur while the runqueue locks are
  1535. * still held, otherwise prev could be scheduled on another cpu, die
  1536. * there before we look at prev->state, and then the reference would
  1537. * be dropped twice.
  1538. * Manfred Spraul <manfred@colorfullife.com>
  1539. */
  1540. prev_state = prev->state;
  1541. finish_arch_switch(prev);
  1542. finish_lock_switch(rq, prev);
  1543. fire_sched_in_preempt_notifiers(current);
  1544. if (mm)
  1545. mmdrop(mm);
  1546. if (unlikely(prev_state == TASK_DEAD)) {
  1547. /*
  1548. * Remove function-return probe instances associated with this
  1549. * task and put them back on the free list.
  1550. */
  1551. kprobe_flush_task(prev);
  1552. put_task_struct(prev);
  1553. }
  1554. }
  1555. /**
  1556. * schedule_tail - first thing a freshly forked thread must call.
  1557. * @prev: the thread we just switched away from.
  1558. */
  1559. asmlinkage void schedule_tail(struct task_struct *prev)
  1560. __releases(rq->lock)
  1561. {
  1562. struct rq *rq = this_rq();
  1563. finish_task_switch(rq, prev);
  1564. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1565. /* In this case, finish_task_switch does not reenable preemption */
  1566. preempt_enable();
  1567. #endif
  1568. if (current->set_child_tid)
  1569. put_user(current->pid, current->set_child_tid);
  1570. }
  1571. /*
  1572. * context_switch - switch to the new MM and the new
  1573. * thread's register state.
  1574. */
  1575. static inline void
  1576. context_switch(struct rq *rq, struct task_struct *prev,
  1577. struct task_struct *next)
  1578. {
  1579. struct mm_struct *mm, *oldmm;
  1580. prepare_task_switch(rq, prev, next);
  1581. mm = next->mm;
  1582. oldmm = prev->active_mm;
  1583. /*
  1584. * For paravirt, this is coupled with an exit in switch_to to
  1585. * combine the page table reload and the switch backend into
  1586. * one hypercall.
  1587. */
  1588. arch_enter_lazy_cpu_mode();
  1589. if (unlikely(!mm)) {
  1590. next->active_mm = oldmm;
  1591. atomic_inc(&oldmm->mm_count);
  1592. enter_lazy_tlb(oldmm, next);
  1593. } else
  1594. switch_mm(oldmm, mm, next);
  1595. if (unlikely(!prev->mm)) {
  1596. prev->active_mm = NULL;
  1597. rq->prev_mm = oldmm;
  1598. }
  1599. /*
  1600. * Since the runqueue lock will be released by the next
  1601. * task (which is an invalid locking op but in the case
  1602. * of the scheduler it's an obvious special-case), so we
  1603. * do an early lockdep release here:
  1604. */
  1605. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1606. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1607. #endif
  1608. /* Here we just switch the register state and the stack. */
  1609. switch_to(prev, next, prev);
  1610. barrier();
  1611. /*
  1612. * this_rq must be evaluated again because prev may have moved
  1613. * CPUs since it called schedule(), thus the 'rq' on its stack
  1614. * frame will be invalid.
  1615. */
  1616. finish_task_switch(this_rq(), prev);
  1617. }
  1618. /*
  1619. * nr_running, nr_uninterruptible and nr_context_switches:
  1620. *
  1621. * externally visible scheduler statistics: current number of runnable
  1622. * threads, current number of uninterruptible-sleeping threads, total
  1623. * number of context switches performed since bootup.
  1624. */
  1625. unsigned long nr_running(void)
  1626. {
  1627. unsigned long i, sum = 0;
  1628. for_each_online_cpu(i)
  1629. sum += cpu_rq(i)->nr_running;
  1630. return sum;
  1631. }
  1632. unsigned long nr_uninterruptible(void)
  1633. {
  1634. unsigned long i, sum = 0;
  1635. for_each_possible_cpu(i)
  1636. sum += cpu_rq(i)->nr_uninterruptible;
  1637. /*
  1638. * Since we read the counters lockless, it might be slightly
  1639. * inaccurate. Do not allow it to go below zero though:
  1640. */
  1641. if (unlikely((long)sum < 0))
  1642. sum = 0;
  1643. return sum;
  1644. }
  1645. unsigned long long nr_context_switches(void)
  1646. {
  1647. int i;
  1648. unsigned long long sum = 0;
  1649. for_each_possible_cpu(i)
  1650. sum += cpu_rq(i)->nr_switches;
  1651. return sum;
  1652. }
  1653. unsigned long nr_iowait(void)
  1654. {
  1655. unsigned long i, sum = 0;
  1656. for_each_possible_cpu(i)
  1657. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1658. return sum;
  1659. }
  1660. unsigned long nr_active(void)
  1661. {
  1662. unsigned long i, running = 0, uninterruptible = 0;
  1663. for_each_online_cpu(i) {
  1664. running += cpu_rq(i)->nr_running;
  1665. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1666. }
  1667. if (unlikely((long)uninterruptible < 0))
  1668. uninterruptible = 0;
  1669. return running + uninterruptible;
  1670. }
  1671. /*
  1672. * Update rq->cpu_load[] statistics. This function is usually called every
  1673. * scheduler tick (TICK_NSEC).
  1674. */
  1675. static void update_cpu_load(struct rq *this_rq)
  1676. {
  1677. unsigned long this_load = this_rq->load.weight;
  1678. int i, scale;
  1679. this_rq->nr_load_updates++;
  1680. /* Update our load: */
  1681. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1682. unsigned long old_load, new_load;
  1683. /* scale is effectively 1 << i now, and >> i divides by scale */
  1684. old_load = this_rq->cpu_load[i];
  1685. new_load = this_load;
  1686. /*
  1687. * Round up the averaging division if load is increasing. This
  1688. * prevents us from getting stuck on 9 if the load is 10, for
  1689. * example.
  1690. */
  1691. if (new_load > old_load)
  1692. new_load += scale-1;
  1693. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1694. }
  1695. }
  1696. #ifdef CONFIG_SMP
  1697. /*
  1698. * double_rq_lock - safely lock two runqueues
  1699. *
  1700. * Note this does not disable interrupts like task_rq_lock,
  1701. * you need to do so manually before calling.
  1702. */
  1703. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1704. __acquires(rq1->lock)
  1705. __acquires(rq2->lock)
  1706. {
  1707. BUG_ON(!irqs_disabled());
  1708. if (rq1 == rq2) {
  1709. spin_lock(&rq1->lock);
  1710. __acquire(rq2->lock); /* Fake it out ;) */
  1711. } else {
  1712. if (rq1 < rq2) {
  1713. spin_lock(&rq1->lock);
  1714. spin_lock(&rq2->lock);
  1715. } else {
  1716. spin_lock(&rq2->lock);
  1717. spin_lock(&rq1->lock);
  1718. }
  1719. }
  1720. update_rq_clock(rq1);
  1721. update_rq_clock(rq2);
  1722. }
  1723. /*
  1724. * double_rq_unlock - safely unlock two runqueues
  1725. *
  1726. * Note this does not restore interrupts like task_rq_unlock,
  1727. * you need to do so manually after calling.
  1728. */
  1729. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1730. __releases(rq1->lock)
  1731. __releases(rq2->lock)
  1732. {
  1733. spin_unlock(&rq1->lock);
  1734. if (rq1 != rq2)
  1735. spin_unlock(&rq2->lock);
  1736. else
  1737. __release(rq2->lock);
  1738. }
  1739. /*
  1740. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1741. */
  1742. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1743. __releases(this_rq->lock)
  1744. __acquires(busiest->lock)
  1745. __acquires(this_rq->lock)
  1746. {
  1747. if (unlikely(!irqs_disabled())) {
  1748. /* printk() doesn't work good under rq->lock */
  1749. spin_unlock(&this_rq->lock);
  1750. BUG_ON(1);
  1751. }
  1752. if (unlikely(!spin_trylock(&busiest->lock))) {
  1753. if (busiest < this_rq) {
  1754. spin_unlock(&this_rq->lock);
  1755. spin_lock(&busiest->lock);
  1756. spin_lock(&this_rq->lock);
  1757. } else
  1758. spin_lock(&busiest->lock);
  1759. }
  1760. }
  1761. /*
  1762. * If dest_cpu is allowed for this process, migrate the task to it.
  1763. * This is accomplished by forcing the cpu_allowed mask to only
  1764. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1765. * the cpu_allowed mask is restored.
  1766. */
  1767. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1768. {
  1769. struct migration_req req;
  1770. unsigned long flags;
  1771. struct rq *rq;
  1772. rq = task_rq_lock(p, &flags);
  1773. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1774. || unlikely(cpu_is_offline(dest_cpu)))
  1775. goto out;
  1776. /* force the process onto the specified CPU */
  1777. if (migrate_task(p, dest_cpu, &req)) {
  1778. /* Need to wait for migration thread (might exit: take ref). */
  1779. struct task_struct *mt = rq->migration_thread;
  1780. get_task_struct(mt);
  1781. task_rq_unlock(rq, &flags);
  1782. wake_up_process(mt);
  1783. put_task_struct(mt);
  1784. wait_for_completion(&req.done);
  1785. return;
  1786. }
  1787. out:
  1788. task_rq_unlock(rq, &flags);
  1789. }
  1790. /*
  1791. * sched_exec - execve() is a valuable balancing opportunity, because at
  1792. * this point the task has the smallest effective memory and cache footprint.
  1793. */
  1794. void sched_exec(void)
  1795. {
  1796. int new_cpu, this_cpu = get_cpu();
  1797. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1798. put_cpu();
  1799. if (new_cpu != this_cpu)
  1800. sched_migrate_task(current, new_cpu);
  1801. }
  1802. /*
  1803. * pull_task - move a task from a remote runqueue to the local runqueue.
  1804. * Both runqueues must be locked.
  1805. */
  1806. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1807. struct rq *this_rq, int this_cpu)
  1808. {
  1809. deactivate_task(src_rq, p, 0);
  1810. set_task_cpu(p, this_cpu);
  1811. activate_task(this_rq, p, 0);
  1812. /*
  1813. * Note that idle threads have a prio of MAX_PRIO, for this test
  1814. * to be always true for them.
  1815. */
  1816. check_preempt_curr(this_rq, p);
  1817. }
  1818. /*
  1819. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1820. */
  1821. static
  1822. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1823. struct sched_domain *sd, enum cpu_idle_type idle,
  1824. int *all_pinned)
  1825. {
  1826. /*
  1827. * We do not migrate tasks that are:
  1828. * 1) running (obviously), or
  1829. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1830. * 3) are cache-hot on their current CPU.
  1831. */
  1832. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1833. return 0;
  1834. *all_pinned = 0;
  1835. if (task_running(rq, p))
  1836. return 0;
  1837. return 1;
  1838. }
  1839. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1840. unsigned long max_nr_move, unsigned long max_load_move,
  1841. struct sched_domain *sd, enum cpu_idle_type idle,
  1842. int *all_pinned, unsigned long *load_moved,
  1843. int *this_best_prio, struct rq_iterator *iterator)
  1844. {
  1845. int pulled = 0, pinned = 0, skip_for_load;
  1846. struct task_struct *p;
  1847. long rem_load_move = max_load_move;
  1848. if (max_nr_move == 0 || max_load_move == 0)
  1849. goto out;
  1850. pinned = 1;
  1851. /*
  1852. * Start the load-balancing iterator:
  1853. */
  1854. p = iterator->start(iterator->arg);
  1855. next:
  1856. if (!p)
  1857. goto out;
  1858. /*
  1859. * To help distribute high priority tasks accross CPUs we don't
  1860. * skip a task if it will be the highest priority task (i.e. smallest
  1861. * prio value) on its new queue regardless of its load weight
  1862. */
  1863. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1864. SCHED_LOAD_SCALE_FUZZ;
  1865. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1866. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1867. p = iterator->next(iterator->arg);
  1868. goto next;
  1869. }
  1870. pull_task(busiest, p, this_rq, this_cpu);
  1871. pulled++;
  1872. rem_load_move -= p->se.load.weight;
  1873. /*
  1874. * We only want to steal up to the prescribed number of tasks
  1875. * and the prescribed amount of weighted load.
  1876. */
  1877. if (pulled < max_nr_move && rem_load_move > 0) {
  1878. if (p->prio < *this_best_prio)
  1879. *this_best_prio = p->prio;
  1880. p = iterator->next(iterator->arg);
  1881. goto next;
  1882. }
  1883. out:
  1884. /*
  1885. * Right now, this is the only place pull_task() is called,
  1886. * so we can safely collect pull_task() stats here rather than
  1887. * inside pull_task().
  1888. */
  1889. schedstat_add(sd, lb_gained[idle], pulled);
  1890. if (all_pinned)
  1891. *all_pinned = pinned;
  1892. *load_moved = max_load_move - rem_load_move;
  1893. return pulled;
  1894. }
  1895. /*
  1896. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1897. * this_rq, as part of a balancing operation within domain "sd".
  1898. * Returns 1 if successful and 0 otherwise.
  1899. *
  1900. * Called with both runqueues locked.
  1901. */
  1902. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1903. unsigned long max_load_move,
  1904. struct sched_domain *sd, enum cpu_idle_type idle,
  1905. int *all_pinned)
  1906. {
  1907. struct sched_class *class = sched_class_highest;
  1908. unsigned long total_load_moved = 0;
  1909. int this_best_prio = this_rq->curr->prio;
  1910. do {
  1911. total_load_moved +=
  1912. class->load_balance(this_rq, this_cpu, busiest,
  1913. ULONG_MAX, max_load_move - total_load_moved,
  1914. sd, idle, all_pinned, &this_best_prio);
  1915. class = class->next;
  1916. } while (class && max_load_move > total_load_moved);
  1917. return total_load_moved > 0;
  1918. }
  1919. /*
  1920. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1921. * part of active balancing operations within "domain".
  1922. * Returns 1 if successful and 0 otherwise.
  1923. *
  1924. * Called with both runqueues locked.
  1925. */
  1926. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1927. struct sched_domain *sd, enum cpu_idle_type idle)
  1928. {
  1929. struct sched_class *class;
  1930. int this_best_prio = MAX_PRIO;
  1931. for (class = sched_class_highest; class; class = class->next)
  1932. if (class->load_balance(this_rq, this_cpu, busiest,
  1933. 1, ULONG_MAX, sd, idle, NULL,
  1934. &this_best_prio))
  1935. return 1;
  1936. return 0;
  1937. }
  1938. /*
  1939. * find_busiest_group finds and returns the busiest CPU group within the
  1940. * domain. It calculates and returns the amount of weighted load which
  1941. * should be moved to restore balance via the imbalance parameter.
  1942. */
  1943. static struct sched_group *
  1944. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1945. unsigned long *imbalance, enum cpu_idle_type idle,
  1946. int *sd_idle, cpumask_t *cpus, int *balance)
  1947. {
  1948. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1949. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1950. unsigned long max_pull;
  1951. unsigned long busiest_load_per_task, busiest_nr_running;
  1952. unsigned long this_load_per_task, this_nr_running;
  1953. int load_idx;
  1954. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1955. int power_savings_balance = 1;
  1956. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1957. unsigned long min_nr_running = ULONG_MAX;
  1958. struct sched_group *group_min = NULL, *group_leader = NULL;
  1959. #endif
  1960. max_load = this_load = total_load = total_pwr = 0;
  1961. busiest_load_per_task = busiest_nr_running = 0;
  1962. this_load_per_task = this_nr_running = 0;
  1963. if (idle == CPU_NOT_IDLE)
  1964. load_idx = sd->busy_idx;
  1965. else if (idle == CPU_NEWLY_IDLE)
  1966. load_idx = sd->newidle_idx;
  1967. else
  1968. load_idx = sd->idle_idx;
  1969. do {
  1970. unsigned long load, group_capacity;
  1971. int local_group;
  1972. int i;
  1973. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1974. unsigned long sum_nr_running, sum_weighted_load;
  1975. local_group = cpu_isset(this_cpu, group->cpumask);
  1976. if (local_group)
  1977. balance_cpu = first_cpu(group->cpumask);
  1978. /* Tally up the load of all CPUs in the group */
  1979. sum_weighted_load = sum_nr_running = avg_load = 0;
  1980. for_each_cpu_mask(i, group->cpumask) {
  1981. struct rq *rq;
  1982. if (!cpu_isset(i, *cpus))
  1983. continue;
  1984. rq = cpu_rq(i);
  1985. if (*sd_idle && rq->nr_running)
  1986. *sd_idle = 0;
  1987. /* Bias balancing toward cpus of our domain */
  1988. if (local_group) {
  1989. if (idle_cpu(i) && !first_idle_cpu) {
  1990. first_idle_cpu = 1;
  1991. balance_cpu = i;
  1992. }
  1993. load = target_load(i, load_idx);
  1994. } else
  1995. load = source_load(i, load_idx);
  1996. avg_load += load;
  1997. sum_nr_running += rq->nr_running;
  1998. sum_weighted_load += weighted_cpuload(i);
  1999. }
  2000. /*
  2001. * First idle cpu or the first cpu(busiest) in this sched group
  2002. * is eligible for doing load balancing at this and above
  2003. * domains. In the newly idle case, we will allow all the cpu's
  2004. * to do the newly idle load balance.
  2005. */
  2006. if (idle != CPU_NEWLY_IDLE && local_group &&
  2007. balance_cpu != this_cpu && balance) {
  2008. *balance = 0;
  2009. goto ret;
  2010. }
  2011. total_load += avg_load;
  2012. total_pwr += group->__cpu_power;
  2013. /* Adjust by relative CPU power of the group */
  2014. avg_load = sg_div_cpu_power(group,
  2015. avg_load * SCHED_LOAD_SCALE);
  2016. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2017. if (local_group) {
  2018. this_load = avg_load;
  2019. this = group;
  2020. this_nr_running = sum_nr_running;
  2021. this_load_per_task = sum_weighted_load;
  2022. } else if (avg_load > max_load &&
  2023. sum_nr_running > group_capacity) {
  2024. max_load = avg_load;
  2025. busiest = group;
  2026. busiest_nr_running = sum_nr_running;
  2027. busiest_load_per_task = sum_weighted_load;
  2028. }
  2029. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2030. /*
  2031. * Busy processors will not participate in power savings
  2032. * balance.
  2033. */
  2034. if (idle == CPU_NOT_IDLE ||
  2035. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2036. goto group_next;
  2037. /*
  2038. * If the local group is idle or completely loaded
  2039. * no need to do power savings balance at this domain
  2040. */
  2041. if (local_group && (this_nr_running >= group_capacity ||
  2042. !this_nr_running))
  2043. power_savings_balance = 0;
  2044. /*
  2045. * If a group is already running at full capacity or idle,
  2046. * don't include that group in power savings calculations
  2047. */
  2048. if (!power_savings_balance || sum_nr_running >= group_capacity
  2049. || !sum_nr_running)
  2050. goto group_next;
  2051. /*
  2052. * Calculate the group which has the least non-idle load.
  2053. * This is the group from where we need to pick up the load
  2054. * for saving power
  2055. */
  2056. if ((sum_nr_running < min_nr_running) ||
  2057. (sum_nr_running == min_nr_running &&
  2058. first_cpu(group->cpumask) <
  2059. first_cpu(group_min->cpumask))) {
  2060. group_min = group;
  2061. min_nr_running = sum_nr_running;
  2062. min_load_per_task = sum_weighted_load /
  2063. sum_nr_running;
  2064. }
  2065. /*
  2066. * Calculate the group which is almost near its
  2067. * capacity but still has some space to pick up some load
  2068. * from other group and save more power
  2069. */
  2070. if (sum_nr_running <= group_capacity - 1) {
  2071. if (sum_nr_running > leader_nr_running ||
  2072. (sum_nr_running == leader_nr_running &&
  2073. first_cpu(group->cpumask) >
  2074. first_cpu(group_leader->cpumask))) {
  2075. group_leader = group;
  2076. leader_nr_running = sum_nr_running;
  2077. }
  2078. }
  2079. group_next:
  2080. #endif
  2081. group = group->next;
  2082. } while (group != sd->groups);
  2083. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2084. goto out_balanced;
  2085. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2086. if (this_load >= avg_load ||
  2087. 100*max_load <= sd->imbalance_pct*this_load)
  2088. goto out_balanced;
  2089. busiest_load_per_task /= busiest_nr_running;
  2090. /*
  2091. * We're trying to get all the cpus to the average_load, so we don't
  2092. * want to push ourselves above the average load, nor do we wish to
  2093. * reduce the max loaded cpu below the average load, as either of these
  2094. * actions would just result in more rebalancing later, and ping-pong
  2095. * tasks around. Thus we look for the minimum possible imbalance.
  2096. * Negative imbalances (*we* are more loaded than anyone else) will
  2097. * be counted as no imbalance for these purposes -- we can't fix that
  2098. * by pulling tasks to us. Be careful of negative numbers as they'll
  2099. * appear as very large values with unsigned longs.
  2100. */
  2101. if (max_load <= busiest_load_per_task)
  2102. goto out_balanced;
  2103. /*
  2104. * In the presence of smp nice balancing, certain scenarios can have
  2105. * max load less than avg load(as we skip the groups at or below
  2106. * its cpu_power, while calculating max_load..)
  2107. */
  2108. if (max_load < avg_load) {
  2109. *imbalance = 0;
  2110. goto small_imbalance;
  2111. }
  2112. /* Don't want to pull so many tasks that a group would go idle */
  2113. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2114. /* How much load to actually move to equalise the imbalance */
  2115. *imbalance = min(max_pull * busiest->__cpu_power,
  2116. (avg_load - this_load) * this->__cpu_power)
  2117. / SCHED_LOAD_SCALE;
  2118. /*
  2119. * if *imbalance is less than the average load per runnable task
  2120. * there is no gaurantee that any tasks will be moved so we'll have
  2121. * a think about bumping its value to force at least one task to be
  2122. * moved
  2123. */
  2124. if (*imbalance < busiest_load_per_task) {
  2125. unsigned long tmp, pwr_now, pwr_move;
  2126. unsigned int imbn;
  2127. small_imbalance:
  2128. pwr_move = pwr_now = 0;
  2129. imbn = 2;
  2130. if (this_nr_running) {
  2131. this_load_per_task /= this_nr_running;
  2132. if (busiest_load_per_task > this_load_per_task)
  2133. imbn = 1;
  2134. } else
  2135. this_load_per_task = SCHED_LOAD_SCALE;
  2136. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2137. busiest_load_per_task * imbn) {
  2138. *imbalance = busiest_load_per_task;
  2139. return busiest;
  2140. }
  2141. /*
  2142. * OK, we don't have enough imbalance to justify moving tasks,
  2143. * however we may be able to increase total CPU power used by
  2144. * moving them.
  2145. */
  2146. pwr_now += busiest->__cpu_power *
  2147. min(busiest_load_per_task, max_load);
  2148. pwr_now += this->__cpu_power *
  2149. min(this_load_per_task, this_load);
  2150. pwr_now /= SCHED_LOAD_SCALE;
  2151. /* Amount of load we'd subtract */
  2152. tmp = sg_div_cpu_power(busiest,
  2153. busiest_load_per_task * SCHED_LOAD_SCALE);
  2154. if (max_load > tmp)
  2155. pwr_move += busiest->__cpu_power *
  2156. min(busiest_load_per_task, max_load - tmp);
  2157. /* Amount of load we'd add */
  2158. if (max_load * busiest->__cpu_power <
  2159. busiest_load_per_task * SCHED_LOAD_SCALE)
  2160. tmp = sg_div_cpu_power(this,
  2161. max_load * busiest->__cpu_power);
  2162. else
  2163. tmp = sg_div_cpu_power(this,
  2164. busiest_load_per_task * SCHED_LOAD_SCALE);
  2165. pwr_move += this->__cpu_power *
  2166. min(this_load_per_task, this_load + tmp);
  2167. pwr_move /= SCHED_LOAD_SCALE;
  2168. /* Move if we gain throughput */
  2169. if (pwr_move > pwr_now)
  2170. *imbalance = busiest_load_per_task;
  2171. }
  2172. return busiest;
  2173. out_balanced:
  2174. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2175. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2176. goto ret;
  2177. if (this == group_leader && group_leader != group_min) {
  2178. *imbalance = min_load_per_task;
  2179. return group_min;
  2180. }
  2181. #endif
  2182. ret:
  2183. *imbalance = 0;
  2184. return NULL;
  2185. }
  2186. /*
  2187. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2188. */
  2189. static struct rq *
  2190. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2191. unsigned long imbalance, cpumask_t *cpus)
  2192. {
  2193. struct rq *busiest = NULL, *rq;
  2194. unsigned long max_load = 0;
  2195. int i;
  2196. for_each_cpu_mask(i, group->cpumask) {
  2197. unsigned long wl;
  2198. if (!cpu_isset(i, *cpus))
  2199. continue;
  2200. rq = cpu_rq(i);
  2201. wl = weighted_cpuload(i);
  2202. if (rq->nr_running == 1 && wl > imbalance)
  2203. continue;
  2204. if (wl > max_load) {
  2205. max_load = wl;
  2206. busiest = rq;
  2207. }
  2208. }
  2209. return busiest;
  2210. }
  2211. /*
  2212. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2213. * so long as it is large enough.
  2214. */
  2215. #define MAX_PINNED_INTERVAL 512
  2216. /*
  2217. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2218. * tasks if there is an imbalance.
  2219. */
  2220. static int load_balance(int this_cpu, struct rq *this_rq,
  2221. struct sched_domain *sd, enum cpu_idle_type idle,
  2222. int *balance)
  2223. {
  2224. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2225. struct sched_group *group;
  2226. unsigned long imbalance;
  2227. struct rq *busiest;
  2228. cpumask_t cpus = CPU_MASK_ALL;
  2229. unsigned long flags;
  2230. /*
  2231. * When power savings policy is enabled for the parent domain, idle
  2232. * sibling can pick up load irrespective of busy siblings. In this case,
  2233. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2234. * portraying it as CPU_NOT_IDLE.
  2235. */
  2236. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2237. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2238. sd_idle = 1;
  2239. schedstat_inc(sd, lb_cnt[idle]);
  2240. redo:
  2241. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2242. &cpus, balance);
  2243. if (*balance == 0)
  2244. goto out_balanced;
  2245. if (!group) {
  2246. schedstat_inc(sd, lb_nobusyg[idle]);
  2247. goto out_balanced;
  2248. }
  2249. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2250. if (!busiest) {
  2251. schedstat_inc(sd, lb_nobusyq[idle]);
  2252. goto out_balanced;
  2253. }
  2254. BUG_ON(busiest == this_rq);
  2255. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2256. ld_moved = 0;
  2257. if (busiest->nr_running > 1) {
  2258. /*
  2259. * Attempt to move tasks. If find_busiest_group has found
  2260. * an imbalance but busiest->nr_running <= 1, the group is
  2261. * still unbalanced. ld_moved simply stays zero, so it is
  2262. * correctly treated as an imbalance.
  2263. */
  2264. local_irq_save(flags);
  2265. double_rq_lock(this_rq, busiest);
  2266. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2267. imbalance, sd, idle, &all_pinned);
  2268. double_rq_unlock(this_rq, busiest);
  2269. local_irq_restore(flags);
  2270. /*
  2271. * some other cpu did the load balance for us.
  2272. */
  2273. if (ld_moved && this_cpu != smp_processor_id())
  2274. resched_cpu(this_cpu);
  2275. /* All tasks on this runqueue were pinned by CPU affinity */
  2276. if (unlikely(all_pinned)) {
  2277. cpu_clear(cpu_of(busiest), cpus);
  2278. if (!cpus_empty(cpus))
  2279. goto redo;
  2280. goto out_balanced;
  2281. }
  2282. }
  2283. if (!ld_moved) {
  2284. schedstat_inc(sd, lb_failed[idle]);
  2285. sd->nr_balance_failed++;
  2286. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2287. spin_lock_irqsave(&busiest->lock, flags);
  2288. /* don't kick the migration_thread, if the curr
  2289. * task on busiest cpu can't be moved to this_cpu
  2290. */
  2291. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2292. spin_unlock_irqrestore(&busiest->lock, flags);
  2293. all_pinned = 1;
  2294. goto out_one_pinned;
  2295. }
  2296. if (!busiest->active_balance) {
  2297. busiest->active_balance = 1;
  2298. busiest->push_cpu = this_cpu;
  2299. active_balance = 1;
  2300. }
  2301. spin_unlock_irqrestore(&busiest->lock, flags);
  2302. if (active_balance)
  2303. wake_up_process(busiest->migration_thread);
  2304. /*
  2305. * We've kicked active balancing, reset the failure
  2306. * counter.
  2307. */
  2308. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2309. }
  2310. } else
  2311. sd->nr_balance_failed = 0;
  2312. if (likely(!active_balance)) {
  2313. /* We were unbalanced, so reset the balancing interval */
  2314. sd->balance_interval = sd->min_interval;
  2315. } else {
  2316. /*
  2317. * If we've begun active balancing, start to back off. This
  2318. * case may not be covered by the all_pinned logic if there
  2319. * is only 1 task on the busy runqueue (because we don't call
  2320. * move_tasks).
  2321. */
  2322. if (sd->balance_interval < sd->max_interval)
  2323. sd->balance_interval *= 2;
  2324. }
  2325. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2326. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2327. return -1;
  2328. return ld_moved;
  2329. out_balanced:
  2330. schedstat_inc(sd, lb_balanced[idle]);
  2331. sd->nr_balance_failed = 0;
  2332. out_one_pinned:
  2333. /* tune up the balancing interval */
  2334. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2335. (sd->balance_interval < sd->max_interval))
  2336. sd->balance_interval *= 2;
  2337. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2338. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2339. return -1;
  2340. return 0;
  2341. }
  2342. /*
  2343. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2344. * tasks if there is an imbalance.
  2345. *
  2346. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2347. * this_rq is locked.
  2348. */
  2349. static int
  2350. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2351. {
  2352. struct sched_group *group;
  2353. struct rq *busiest = NULL;
  2354. unsigned long imbalance;
  2355. int ld_moved = 0;
  2356. int sd_idle = 0;
  2357. int all_pinned = 0;
  2358. cpumask_t cpus = CPU_MASK_ALL;
  2359. /*
  2360. * When power savings policy is enabled for the parent domain, idle
  2361. * sibling can pick up load irrespective of busy siblings. In this case,
  2362. * let the state of idle sibling percolate up as IDLE, instead of
  2363. * portraying it as CPU_NOT_IDLE.
  2364. */
  2365. if (sd->flags & SD_SHARE_CPUPOWER &&
  2366. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2367. sd_idle = 1;
  2368. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2369. redo:
  2370. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2371. &sd_idle, &cpus, NULL);
  2372. if (!group) {
  2373. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2374. goto out_balanced;
  2375. }
  2376. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2377. &cpus);
  2378. if (!busiest) {
  2379. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2380. goto out_balanced;
  2381. }
  2382. BUG_ON(busiest == this_rq);
  2383. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2384. ld_moved = 0;
  2385. if (busiest->nr_running > 1) {
  2386. /* Attempt to move tasks */
  2387. double_lock_balance(this_rq, busiest);
  2388. /* this_rq->clock is already updated */
  2389. update_rq_clock(busiest);
  2390. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2391. imbalance, sd, CPU_NEWLY_IDLE,
  2392. &all_pinned);
  2393. spin_unlock(&busiest->lock);
  2394. if (unlikely(all_pinned)) {
  2395. cpu_clear(cpu_of(busiest), cpus);
  2396. if (!cpus_empty(cpus))
  2397. goto redo;
  2398. }
  2399. }
  2400. if (!ld_moved) {
  2401. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2402. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2403. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2404. return -1;
  2405. } else
  2406. sd->nr_balance_failed = 0;
  2407. return ld_moved;
  2408. out_balanced:
  2409. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2410. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2411. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2412. return -1;
  2413. sd->nr_balance_failed = 0;
  2414. return 0;
  2415. }
  2416. /*
  2417. * idle_balance is called by schedule() if this_cpu is about to become
  2418. * idle. Attempts to pull tasks from other CPUs.
  2419. */
  2420. static void idle_balance(int this_cpu, struct rq *this_rq)
  2421. {
  2422. struct sched_domain *sd;
  2423. int pulled_task = -1;
  2424. unsigned long next_balance = jiffies + HZ;
  2425. for_each_domain(this_cpu, sd) {
  2426. unsigned long interval;
  2427. if (!(sd->flags & SD_LOAD_BALANCE))
  2428. continue;
  2429. if (sd->flags & SD_BALANCE_NEWIDLE)
  2430. /* If we've pulled tasks over stop searching: */
  2431. pulled_task = load_balance_newidle(this_cpu,
  2432. this_rq, sd);
  2433. interval = msecs_to_jiffies(sd->balance_interval);
  2434. if (time_after(next_balance, sd->last_balance + interval))
  2435. next_balance = sd->last_balance + interval;
  2436. if (pulled_task)
  2437. break;
  2438. }
  2439. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2440. /*
  2441. * We are going idle. next_balance may be set based on
  2442. * a busy processor. So reset next_balance.
  2443. */
  2444. this_rq->next_balance = next_balance;
  2445. }
  2446. }
  2447. /*
  2448. * active_load_balance is run by migration threads. It pushes running tasks
  2449. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2450. * running on each physical CPU where possible, and avoids physical /
  2451. * logical imbalances.
  2452. *
  2453. * Called with busiest_rq locked.
  2454. */
  2455. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2456. {
  2457. int target_cpu = busiest_rq->push_cpu;
  2458. struct sched_domain *sd;
  2459. struct rq *target_rq;
  2460. /* Is there any task to move? */
  2461. if (busiest_rq->nr_running <= 1)
  2462. return;
  2463. target_rq = cpu_rq(target_cpu);
  2464. /*
  2465. * This condition is "impossible", if it occurs
  2466. * we need to fix it. Originally reported by
  2467. * Bjorn Helgaas on a 128-cpu setup.
  2468. */
  2469. BUG_ON(busiest_rq == target_rq);
  2470. /* move a task from busiest_rq to target_rq */
  2471. double_lock_balance(busiest_rq, target_rq);
  2472. update_rq_clock(busiest_rq);
  2473. update_rq_clock(target_rq);
  2474. /* Search for an sd spanning us and the target CPU. */
  2475. for_each_domain(target_cpu, sd) {
  2476. if ((sd->flags & SD_LOAD_BALANCE) &&
  2477. cpu_isset(busiest_cpu, sd->span))
  2478. break;
  2479. }
  2480. if (likely(sd)) {
  2481. schedstat_inc(sd, alb_cnt);
  2482. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2483. sd, CPU_IDLE))
  2484. schedstat_inc(sd, alb_pushed);
  2485. else
  2486. schedstat_inc(sd, alb_failed);
  2487. }
  2488. spin_unlock(&target_rq->lock);
  2489. }
  2490. #ifdef CONFIG_NO_HZ
  2491. static struct {
  2492. atomic_t load_balancer;
  2493. cpumask_t cpu_mask;
  2494. } nohz ____cacheline_aligned = {
  2495. .load_balancer = ATOMIC_INIT(-1),
  2496. .cpu_mask = CPU_MASK_NONE,
  2497. };
  2498. /*
  2499. * This routine will try to nominate the ilb (idle load balancing)
  2500. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2501. * load balancing on behalf of all those cpus. If all the cpus in the system
  2502. * go into this tickless mode, then there will be no ilb owner (as there is
  2503. * no need for one) and all the cpus will sleep till the next wakeup event
  2504. * arrives...
  2505. *
  2506. * For the ilb owner, tick is not stopped. And this tick will be used
  2507. * for idle load balancing. ilb owner will still be part of
  2508. * nohz.cpu_mask..
  2509. *
  2510. * While stopping the tick, this cpu will become the ilb owner if there
  2511. * is no other owner. And will be the owner till that cpu becomes busy
  2512. * or if all cpus in the system stop their ticks at which point
  2513. * there is no need for ilb owner.
  2514. *
  2515. * When the ilb owner becomes busy, it nominates another owner, during the
  2516. * next busy scheduler_tick()
  2517. */
  2518. int select_nohz_load_balancer(int stop_tick)
  2519. {
  2520. int cpu = smp_processor_id();
  2521. if (stop_tick) {
  2522. cpu_set(cpu, nohz.cpu_mask);
  2523. cpu_rq(cpu)->in_nohz_recently = 1;
  2524. /*
  2525. * If we are going offline and still the leader, give up!
  2526. */
  2527. if (cpu_is_offline(cpu) &&
  2528. atomic_read(&nohz.load_balancer) == cpu) {
  2529. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2530. BUG();
  2531. return 0;
  2532. }
  2533. /* time for ilb owner also to sleep */
  2534. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2535. if (atomic_read(&nohz.load_balancer) == cpu)
  2536. atomic_set(&nohz.load_balancer, -1);
  2537. return 0;
  2538. }
  2539. if (atomic_read(&nohz.load_balancer) == -1) {
  2540. /* make me the ilb owner */
  2541. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2542. return 1;
  2543. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2544. return 1;
  2545. } else {
  2546. if (!cpu_isset(cpu, nohz.cpu_mask))
  2547. return 0;
  2548. cpu_clear(cpu, nohz.cpu_mask);
  2549. if (atomic_read(&nohz.load_balancer) == cpu)
  2550. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2551. BUG();
  2552. }
  2553. return 0;
  2554. }
  2555. #endif
  2556. static DEFINE_SPINLOCK(balancing);
  2557. /*
  2558. * It checks each scheduling domain to see if it is due to be balanced,
  2559. * and initiates a balancing operation if so.
  2560. *
  2561. * Balancing parameters are set up in arch_init_sched_domains.
  2562. */
  2563. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2564. {
  2565. int balance = 1;
  2566. struct rq *rq = cpu_rq(cpu);
  2567. unsigned long interval;
  2568. struct sched_domain *sd;
  2569. /* Earliest time when we have to do rebalance again */
  2570. unsigned long next_balance = jiffies + 60*HZ;
  2571. int update_next_balance = 0;
  2572. for_each_domain(cpu, sd) {
  2573. if (!(sd->flags & SD_LOAD_BALANCE))
  2574. continue;
  2575. interval = sd->balance_interval;
  2576. if (idle != CPU_IDLE)
  2577. interval *= sd->busy_factor;
  2578. /* scale ms to jiffies */
  2579. interval = msecs_to_jiffies(interval);
  2580. if (unlikely(!interval))
  2581. interval = 1;
  2582. if (interval > HZ*NR_CPUS/10)
  2583. interval = HZ*NR_CPUS/10;
  2584. if (sd->flags & SD_SERIALIZE) {
  2585. if (!spin_trylock(&balancing))
  2586. goto out;
  2587. }
  2588. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2589. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2590. /*
  2591. * We've pulled tasks over so either we're no
  2592. * longer idle, or one of our SMT siblings is
  2593. * not idle.
  2594. */
  2595. idle = CPU_NOT_IDLE;
  2596. }
  2597. sd->last_balance = jiffies;
  2598. }
  2599. if (sd->flags & SD_SERIALIZE)
  2600. spin_unlock(&balancing);
  2601. out:
  2602. if (time_after(next_balance, sd->last_balance + interval)) {
  2603. next_balance = sd->last_balance + interval;
  2604. update_next_balance = 1;
  2605. }
  2606. /*
  2607. * Stop the load balance at this level. There is another
  2608. * CPU in our sched group which is doing load balancing more
  2609. * actively.
  2610. */
  2611. if (!balance)
  2612. break;
  2613. }
  2614. /*
  2615. * next_balance will be updated only when there is a need.
  2616. * When the cpu is attached to null domain for ex, it will not be
  2617. * updated.
  2618. */
  2619. if (likely(update_next_balance))
  2620. rq->next_balance = next_balance;
  2621. }
  2622. /*
  2623. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2624. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2625. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2626. */
  2627. static void run_rebalance_domains(struct softirq_action *h)
  2628. {
  2629. int this_cpu = smp_processor_id();
  2630. struct rq *this_rq = cpu_rq(this_cpu);
  2631. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2632. CPU_IDLE : CPU_NOT_IDLE;
  2633. rebalance_domains(this_cpu, idle);
  2634. #ifdef CONFIG_NO_HZ
  2635. /*
  2636. * If this cpu is the owner for idle load balancing, then do the
  2637. * balancing on behalf of the other idle cpus whose ticks are
  2638. * stopped.
  2639. */
  2640. if (this_rq->idle_at_tick &&
  2641. atomic_read(&nohz.load_balancer) == this_cpu) {
  2642. cpumask_t cpus = nohz.cpu_mask;
  2643. struct rq *rq;
  2644. int balance_cpu;
  2645. cpu_clear(this_cpu, cpus);
  2646. for_each_cpu_mask(balance_cpu, cpus) {
  2647. /*
  2648. * If this cpu gets work to do, stop the load balancing
  2649. * work being done for other cpus. Next load
  2650. * balancing owner will pick it up.
  2651. */
  2652. if (need_resched())
  2653. break;
  2654. rebalance_domains(balance_cpu, CPU_IDLE);
  2655. rq = cpu_rq(balance_cpu);
  2656. if (time_after(this_rq->next_balance, rq->next_balance))
  2657. this_rq->next_balance = rq->next_balance;
  2658. }
  2659. }
  2660. #endif
  2661. }
  2662. /*
  2663. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2664. *
  2665. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2666. * idle load balancing owner or decide to stop the periodic load balancing,
  2667. * if the whole system is idle.
  2668. */
  2669. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2670. {
  2671. #ifdef CONFIG_NO_HZ
  2672. /*
  2673. * If we were in the nohz mode recently and busy at the current
  2674. * scheduler tick, then check if we need to nominate new idle
  2675. * load balancer.
  2676. */
  2677. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2678. rq->in_nohz_recently = 0;
  2679. if (atomic_read(&nohz.load_balancer) == cpu) {
  2680. cpu_clear(cpu, nohz.cpu_mask);
  2681. atomic_set(&nohz.load_balancer, -1);
  2682. }
  2683. if (atomic_read(&nohz.load_balancer) == -1) {
  2684. /*
  2685. * simple selection for now: Nominate the
  2686. * first cpu in the nohz list to be the next
  2687. * ilb owner.
  2688. *
  2689. * TBD: Traverse the sched domains and nominate
  2690. * the nearest cpu in the nohz.cpu_mask.
  2691. */
  2692. int ilb = first_cpu(nohz.cpu_mask);
  2693. if (ilb != NR_CPUS)
  2694. resched_cpu(ilb);
  2695. }
  2696. }
  2697. /*
  2698. * If this cpu is idle and doing idle load balancing for all the
  2699. * cpus with ticks stopped, is it time for that to stop?
  2700. */
  2701. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2702. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2703. resched_cpu(cpu);
  2704. return;
  2705. }
  2706. /*
  2707. * If this cpu is idle and the idle load balancing is done by
  2708. * someone else, then no need raise the SCHED_SOFTIRQ
  2709. */
  2710. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2711. cpu_isset(cpu, nohz.cpu_mask))
  2712. return;
  2713. #endif
  2714. if (time_after_eq(jiffies, rq->next_balance))
  2715. raise_softirq(SCHED_SOFTIRQ);
  2716. }
  2717. #else /* CONFIG_SMP */
  2718. /*
  2719. * on UP we do not need to balance between CPUs:
  2720. */
  2721. static inline void idle_balance(int cpu, struct rq *rq)
  2722. {
  2723. }
  2724. /* Avoid "used but not defined" warning on UP */
  2725. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2726. unsigned long max_nr_move, unsigned long max_load_move,
  2727. struct sched_domain *sd, enum cpu_idle_type idle,
  2728. int *all_pinned, unsigned long *load_moved,
  2729. int *this_best_prio, struct rq_iterator *iterator)
  2730. {
  2731. *load_moved = 0;
  2732. return 0;
  2733. }
  2734. #endif
  2735. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2736. EXPORT_PER_CPU_SYMBOL(kstat);
  2737. /*
  2738. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2739. * that have not yet been banked in case the task is currently running.
  2740. */
  2741. unsigned long long task_sched_runtime(struct task_struct *p)
  2742. {
  2743. unsigned long flags;
  2744. u64 ns, delta_exec;
  2745. struct rq *rq;
  2746. rq = task_rq_lock(p, &flags);
  2747. ns = p->se.sum_exec_runtime;
  2748. if (rq->curr == p) {
  2749. update_rq_clock(rq);
  2750. delta_exec = rq->clock - p->se.exec_start;
  2751. if ((s64)delta_exec > 0)
  2752. ns += delta_exec;
  2753. }
  2754. task_rq_unlock(rq, &flags);
  2755. return ns;
  2756. }
  2757. /*
  2758. * Account user cpu time to a process.
  2759. * @p: the process that the cpu time gets accounted to
  2760. * @hardirq_offset: the offset to subtract from hardirq_count()
  2761. * @cputime: the cpu time spent in user space since the last update
  2762. */
  2763. void account_user_time(struct task_struct *p, cputime_t cputime)
  2764. {
  2765. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2766. cputime64_t tmp;
  2767. p->utime = cputime_add(p->utime, cputime);
  2768. /* Add user time to cpustat. */
  2769. tmp = cputime_to_cputime64(cputime);
  2770. if (TASK_NICE(p) > 0)
  2771. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2772. else
  2773. cpustat->user = cputime64_add(cpustat->user, tmp);
  2774. }
  2775. /*
  2776. * Account system cpu time to a process.
  2777. * @p: the process that the cpu time gets accounted to
  2778. * @hardirq_offset: the offset to subtract from hardirq_count()
  2779. * @cputime: the cpu time spent in kernel space since the last update
  2780. */
  2781. void account_system_time(struct task_struct *p, int hardirq_offset,
  2782. cputime_t cputime)
  2783. {
  2784. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2785. struct rq *rq = this_rq();
  2786. cputime64_t tmp;
  2787. p->stime = cputime_add(p->stime, cputime);
  2788. /* Add system time to cpustat. */
  2789. tmp = cputime_to_cputime64(cputime);
  2790. if (hardirq_count() - hardirq_offset)
  2791. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2792. else if (softirq_count())
  2793. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2794. else if (p != rq->idle)
  2795. cpustat->system = cputime64_add(cpustat->system, tmp);
  2796. else if (atomic_read(&rq->nr_iowait) > 0)
  2797. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2798. else
  2799. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2800. /* Account for system time used */
  2801. acct_update_integrals(p);
  2802. }
  2803. /*
  2804. * Account for involuntary wait time.
  2805. * @p: the process from which the cpu time has been stolen
  2806. * @steal: the cpu time spent in involuntary wait
  2807. */
  2808. void account_steal_time(struct task_struct *p, cputime_t steal)
  2809. {
  2810. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2811. cputime64_t tmp = cputime_to_cputime64(steal);
  2812. struct rq *rq = this_rq();
  2813. if (p == rq->idle) {
  2814. p->stime = cputime_add(p->stime, steal);
  2815. if (atomic_read(&rq->nr_iowait) > 0)
  2816. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2817. else
  2818. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2819. } else
  2820. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2821. }
  2822. /*
  2823. * This function gets called by the timer code, with HZ frequency.
  2824. * We call it with interrupts disabled.
  2825. *
  2826. * It also gets called by the fork code, when changing the parent's
  2827. * timeslices.
  2828. */
  2829. void scheduler_tick(void)
  2830. {
  2831. int cpu = smp_processor_id();
  2832. struct rq *rq = cpu_rq(cpu);
  2833. struct task_struct *curr = rq->curr;
  2834. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2835. spin_lock(&rq->lock);
  2836. __update_rq_clock(rq);
  2837. /*
  2838. * Let rq->clock advance by at least TICK_NSEC:
  2839. */
  2840. if (unlikely(rq->clock < next_tick))
  2841. rq->clock = next_tick;
  2842. rq->tick_timestamp = rq->clock;
  2843. update_cpu_load(rq);
  2844. if (curr != rq->idle) /* FIXME: needed? */
  2845. curr->sched_class->task_tick(rq, curr);
  2846. spin_unlock(&rq->lock);
  2847. #ifdef CONFIG_SMP
  2848. rq->idle_at_tick = idle_cpu(cpu);
  2849. trigger_load_balance(rq, cpu);
  2850. #endif
  2851. }
  2852. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2853. void fastcall add_preempt_count(int val)
  2854. {
  2855. /*
  2856. * Underflow?
  2857. */
  2858. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2859. return;
  2860. preempt_count() += val;
  2861. /*
  2862. * Spinlock count overflowing soon?
  2863. */
  2864. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2865. PREEMPT_MASK - 10);
  2866. }
  2867. EXPORT_SYMBOL(add_preempt_count);
  2868. void fastcall sub_preempt_count(int val)
  2869. {
  2870. /*
  2871. * Underflow?
  2872. */
  2873. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2874. return;
  2875. /*
  2876. * Is the spinlock portion underflowing?
  2877. */
  2878. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2879. !(preempt_count() & PREEMPT_MASK)))
  2880. return;
  2881. preempt_count() -= val;
  2882. }
  2883. EXPORT_SYMBOL(sub_preempt_count);
  2884. #endif
  2885. /*
  2886. * Print scheduling while atomic bug:
  2887. */
  2888. static noinline void __schedule_bug(struct task_struct *prev)
  2889. {
  2890. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2891. prev->comm, preempt_count(), prev->pid);
  2892. debug_show_held_locks(prev);
  2893. if (irqs_disabled())
  2894. print_irqtrace_events(prev);
  2895. dump_stack();
  2896. }
  2897. /*
  2898. * Various schedule()-time debugging checks and statistics:
  2899. */
  2900. static inline void schedule_debug(struct task_struct *prev)
  2901. {
  2902. /*
  2903. * Test if we are atomic. Since do_exit() needs to call into
  2904. * schedule() atomically, we ignore that path for now.
  2905. * Otherwise, whine if we are scheduling when we should not be.
  2906. */
  2907. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2908. __schedule_bug(prev);
  2909. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2910. schedstat_inc(this_rq(), sched_cnt);
  2911. }
  2912. /*
  2913. * Pick up the highest-prio task:
  2914. */
  2915. static inline struct task_struct *
  2916. pick_next_task(struct rq *rq, struct task_struct *prev)
  2917. {
  2918. struct sched_class *class;
  2919. struct task_struct *p;
  2920. /*
  2921. * Optimization: we know that if all tasks are in
  2922. * the fair class we can call that function directly:
  2923. */
  2924. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2925. p = fair_sched_class.pick_next_task(rq);
  2926. if (likely(p))
  2927. return p;
  2928. }
  2929. class = sched_class_highest;
  2930. for ( ; ; ) {
  2931. p = class->pick_next_task(rq);
  2932. if (p)
  2933. return p;
  2934. /*
  2935. * Will never be NULL as the idle class always
  2936. * returns a non-NULL p:
  2937. */
  2938. class = class->next;
  2939. }
  2940. }
  2941. /*
  2942. * schedule() is the main scheduler function.
  2943. */
  2944. asmlinkage void __sched schedule(void)
  2945. {
  2946. struct task_struct *prev, *next;
  2947. long *switch_count;
  2948. struct rq *rq;
  2949. int cpu;
  2950. need_resched:
  2951. preempt_disable();
  2952. cpu = smp_processor_id();
  2953. rq = cpu_rq(cpu);
  2954. rcu_qsctr_inc(cpu);
  2955. prev = rq->curr;
  2956. switch_count = &prev->nivcsw;
  2957. release_kernel_lock(prev);
  2958. need_resched_nonpreemptible:
  2959. schedule_debug(prev);
  2960. spin_lock_irq(&rq->lock);
  2961. clear_tsk_need_resched(prev);
  2962. __update_rq_clock(rq);
  2963. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2964. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2965. unlikely(signal_pending(prev)))) {
  2966. prev->state = TASK_RUNNING;
  2967. } else {
  2968. deactivate_task(rq, prev, 1);
  2969. }
  2970. switch_count = &prev->nvcsw;
  2971. }
  2972. if (unlikely(!rq->nr_running))
  2973. idle_balance(cpu, rq);
  2974. prev->sched_class->put_prev_task(rq, prev);
  2975. next = pick_next_task(rq, prev);
  2976. sched_info_switch(prev, next);
  2977. if (likely(prev != next)) {
  2978. rq->nr_switches++;
  2979. rq->curr = next;
  2980. ++*switch_count;
  2981. context_switch(rq, prev, next); /* unlocks the rq */
  2982. } else
  2983. spin_unlock_irq(&rq->lock);
  2984. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2985. cpu = smp_processor_id();
  2986. rq = cpu_rq(cpu);
  2987. goto need_resched_nonpreemptible;
  2988. }
  2989. preempt_enable_no_resched();
  2990. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2991. goto need_resched;
  2992. }
  2993. EXPORT_SYMBOL(schedule);
  2994. #ifdef CONFIG_PREEMPT
  2995. /*
  2996. * this is the entry point to schedule() from in-kernel preemption
  2997. * off of preempt_enable. Kernel preemptions off return from interrupt
  2998. * occur there and call schedule directly.
  2999. */
  3000. asmlinkage void __sched preempt_schedule(void)
  3001. {
  3002. struct thread_info *ti = current_thread_info();
  3003. #ifdef CONFIG_PREEMPT_BKL
  3004. struct task_struct *task = current;
  3005. int saved_lock_depth;
  3006. #endif
  3007. /*
  3008. * If there is a non-zero preempt_count or interrupts are disabled,
  3009. * we do not want to preempt the current task. Just return..
  3010. */
  3011. if (likely(ti->preempt_count || irqs_disabled()))
  3012. return;
  3013. need_resched:
  3014. add_preempt_count(PREEMPT_ACTIVE);
  3015. /*
  3016. * We keep the big kernel semaphore locked, but we
  3017. * clear ->lock_depth so that schedule() doesnt
  3018. * auto-release the semaphore:
  3019. */
  3020. #ifdef CONFIG_PREEMPT_BKL
  3021. saved_lock_depth = task->lock_depth;
  3022. task->lock_depth = -1;
  3023. #endif
  3024. schedule();
  3025. #ifdef CONFIG_PREEMPT_BKL
  3026. task->lock_depth = saved_lock_depth;
  3027. #endif
  3028. sub_preempt_count(PREEMPT_ACTIVE);
  3029. /* we could miss a preemption opportunity between schedule and now */
  3030. barrier();
  3031. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3032. goto need_resched;
  3033. }
  3034. EXPORT_SYMBOL(preempt_schedule);
  3035. /*
  3036. * this is the entry point to schedule() from kernel preemption
  3037. * off of irq context.
  3038. * Note, that this is called and return with irqs disabled. This will
  3039. * protect us against recursive calling from irq.
  3040. */
  3041. asmlinkage void __sched preempt_schedule_irq(void)
  3042. {
  3043. struct thread_info *ti = current_thread_info();
  3044. #ifdef CONFIG_PREEMPT_BKL
  3045. struct task_struct *task = current;
  3046. int saved_lock_depth;
  3047. #endif
  3048. /* Catch callers which need to be fixed */
  3049. BUG_ON(ti->preempt_count || !irqs_disabled());
  3050. need_resched:
  3051. add_preempt_count(PREEMPT_ACTIVE);
  3052. /*
  3053. * We keep the big kernel semaphore locked, but we
  3054. * clear ->lock_depth so that schedule() doesnt
  3055. * auto-release the semaphore:
  3056. */
  3057. #ifdef CONFIG_PREEMPT_BKL
  3058. saved_lock_depth = task->lock_depth;
  3059. task->lock_depth = -1;
  3060. #endif
  3061. local_irq_enable();
  3062. schedule();
  3063. local_irq_disable();
  3064. #ifdef CONFIG_PREEMPT_BKL
  3065. task->lock_depth = saved_lock_depth;
  3066. #endif
  3067. sub_preempt_count(PREEMPT_ACTIVE);
  3068. /* we could miss a preemption opportunity between schedule and now */
  3069. barrier();
  3070. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3071. goto need_resched;
  3072. }
  3073. #endif /* CONFIG_PREEMPT */
  3074. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3075. void *key)
  3076. {
  3077. return try_to_wake_up(curr->private, mode, sync);
  3078. }
  3079. EXPORT_SYMBOL(default_wake_function);
  3080. /*
  3081. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3082. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3083. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3084. *
  3085. * There are circumstances in which we can try to wake a task which has already
  3086. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3087. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3088. */
  3089. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3090. int nr_exclusive, int sync, void *key)
  3091. {
  3092. wait_queue_t *curr, *next;
  3093. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3094. unsigned flags = curr->flags;
  3095. if (curr->func(curr, mode, sync, key) &&
  3096. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3097. break;
  3098. }
  3099. }
  3100. /**
  3101. * __wake_up - wake up threads blocked on a waitqueue.
  3102. * @q: the waitqueue
  3103. * @mode: which threads
  3104. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3105. * @key: is directly passed to the wakeup function
  3106. */
  3107. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3108. int nr_exclusive, void *key)
  3109. {
  3110. unsigned long flags;
  3111. spin_lock_irqsave(&q->lock, flags);
  3112. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3113. spin_unlock_irqrestore(&q->lock, flags);
  3114. }
  3115. EXPORT_SYMBOL(__wake_up);
  3116. /*
  3117. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3118. */
  3119. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3120. {
  3121. __wake_up_common(q, mode, 1, 0, NULL);
  3122. }
  3123. /**
  3124. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3125. * @q: the waitqueue
  3126. * @mode: which threads
  3127. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3128. *
  3129. * The sync wakeup differs that the waker knows that it will schedule
  3130. * away soon, so while the target thread will be woken up, it will not
  3131. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3132. * with each other. This can prevent needless bouncing between CPUs.
  3133. *
  3134. * On UP it can prevent extra preemption.
  3135. */
  3136. void fastcall
  3137. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3138. {
  3139. unsigned long flags;
  3140. int sync = 1;
  3141. if (unlikely(!q))
  3142. return;
  3143. if (unlikely(!nr_exclusive))
  3144. sync = 0;
  3145. spin_lock_irqsave(&q->lock, flags);
  3146. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3147. spin_unlock_irqrestore(&q->lock, flags);
  3148. }
  3149. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3150. void fastcall complete(struct completion *x)
  3151. {
  3152. unsigned long flags;
  3153. spin_lock_irqsave(&x->wait.lock, flags);
  3154. x->done++;
  3155. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3156. 1, 0, NULL);
  3157. spin_unlock_irqrestore(&x->wait.lock, flags);
  3158. }
  3159. EXPORT_SYMBOL(complete);
  3160. void fastcall complete_all(struct completion *x)
  3161. {
  3162. unsigned long flags;
  3163. spin_lock_irqsave(&x->wait.lock, flags);
  3164. x->done += UINT_MAX/2;
  3165. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3166. 0, 0, NULL);
  3167. spin_unlock_irqrestore(&x->wait.lock, flags);
  3168. }
  3169. EXPORT_SYMBOL(complete_all);
  3170. void fastcall __sched wait_for_completion(struct completion *x)
  3171. {
  3172. might_sleep();
  3173. spin_lock_irq(&x->wait.lock);
  3174. if (!x->done) {
  3175. DECLARE_WAITQUEUE(wait, current);
  3176. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3177. __add_wait_queue_tail(&x->wait, &wait);
  3178. do {
  3179. __set_current_state(TASK_UNINTERRUPTIBLE);
  3180. spin_unlock_irq(&x->wait.lock);
  3181. schedule();
  3182. spin_lock_irq(&x->wait.lock);
  3183. } while (!x->done);
  3184. __remove_wait_queue(&x->wait, &wait);
  3185. }
  3186. x->done--;
  3187. spin_unlock_irq(&x->wait.lock);
  3188. }
  3189. EXPORT_SYMBOL(wait_for_completion);
  3190. unsigned long fastcall __sched
  3191. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3192. {
  3193. might_sleep();
  3194. spin_lock_irq(&x->wait.lock);
  3195. if (!x->done) {
  3196. DECLARE_WAITQUEUE(wait, current);
  3197. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3198. __add_wait_queue_tail(&x->wait, &wait);
  3199. do {
  3200. __set_current_state(TASK_UNINTERRUPTIBLE);
  3201. spin_unlock_irq(&x->wait.lock);
  3202. timeout = schedule_timeout(timeout);
  3203. spin_lock_irq(&x->wait.lock);
  3204. if (!timeout) {
  3205. __remove_wait_queue(&x->wait, &wait);
  3206. goto out;
  3207. }
  3208. } while (!x->done);
  3209. __remove_wait_queue(&x->wait, &wait);
  3210. }
  3211. x->done--;
  3212. out:
  3213. spin_unlock_irq(&x->wait.lock);
  3214. return timeout;
  3215. }
  3216. EXPORT_SYMBOL(wait_for_completion_timeout);
  3217. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3218. {
  3219. int ret = 0;
  3220. might_sleep();
  3221. spin_lock_irq(&x->wait.lock);
  3222. if (!x->done) {
  3223. DECLARE_WAITQUEUE(wait, current);
  3224. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3225. __add_wait_queue_tail(&x->wait, &wait);
  3226. do {
  3227. if (signal_pending(current)) {
  3228. ret = -ERESTARTSYS;
  3229. __remove_wait_queue(&x->wait, &wait);
  3230. goto out;
  3231. }
  3232. __set_current_state(TASK_INTERRUPTIBLE);
  3233. spin_unlock_irq(&x->wait.lock);
  3234. schedule();
  3235. spin_lock_irq(&x->wait.lock);
  3236. } while (!x->done);
  3237. __remove_wait_queue(&x->wait, &wait);
  3238. }
  3239. x->done--;
  3240. out:
  3241. spin_unlock_irq(&x->wait.lock);
  3242. return ret;
  3243. }
  3244. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3245. unsigned long fastcall __sched
  3246. wait_for_completion_interruptible_timeout(struct completion *x,
  3247. unsigned long timeout)
  3248. {
  3249. might_sleep();
  3250. spin_lock_irq(&x->wait.lock);
  3251. if (!x->done) {
  3252. DECLARE_WAITQUEUE(wait, current);
  3253. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3254. __add_wait_queue_tail(&x->wait, &wait);
  3255. do {
  3256. if (signal_pending(current)) {
  3257. timeout = -ERESTARTSYS;
  3258. __remove_wait_queue(&x->wait, &wait);
  3259. goto out;
  3260. }
  3261. __set_current_state(TASK_INTERRUPTIBLE);
  3262. spin_unlock_irq(&x->wait.lock);
  3263. timeout = schedule_timeout(timeout);
  3264. spin_lock_irq(&x->wait.lock);
  3265. if (!timeout) {
  3266. __remove_wait_queue(&x->wait, &wait);
  3267. goto out;
  3268. }
  3269. } while (!x->done);
  3270. __remove_wait_queue(&x->wait, &wait);
  3271. }
  3272. x->done--;
  3273. out:
  3274. spin_unlock_irq(&x->wait.lock);
  3275. return timeout;
  3276. }
  3277. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3278. static inline void
  3279. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3280. {
  3281. spin_lock_irqsave(&q->lock, *flags);
  3282. __add_wait_queue(q, wait);
  3283. spin_unlock(&q->lock);
  3284. }
  3285. static inline void
  3286. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3287. {
  3288. spin_lock_irq(&q->lock);
  3289. __remove_wait_queue(q, wait);
  3290. spin_unlock_irqrestore(&q->lock, *flags);
  3291. }
  3292. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3293. {
  3294. unsigned long flags;
  3295. wait_queue_t wait;
  3296. init_waitqueue_entry(&wait, current);
  3297. current->state = TASK_INTERRUPTIBLE;
  3298. sleep_on_head(q, &wait, &flags);
  3299. schedule();
  3300. sleep_on_tail(q, &wait, &flags);
  3301. }
  3302. EXPORT_SYMBOL(interruptible_sleep_on);
  3303. long __sched
  3304. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3305. {
  3306. unsigned long flags;
  3307. wait_queue_t wait;
  3308. init_waitqueue_entry(&wait, current);
  3309. current->state = TASK_INTERRUPTIBLE;
  3310. sleep_on_head(q, &wait, &flags);
  3311. timeout = schedule_timeout(timeout);
  3312. sleep_on_tail(q, &wait, &flags);
  3313. return timeout;
  3314. }
  3315. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3316. void __sched sleep_on(wait_queue_head_t *q)
  3317. {
  3318. unsigned long flags;
  3319. wait_queue_t wait;
  3320. init_waitqueue_entry(&wait, current);
  3321. current->state = TASK_UNINTERRUPTIBLE;
  3322. sleep_on_head(q, &wait, &flags);
  3323. schedule();
  3324. sleep_on_tail(q, &wait, &flags);
  3325. }
  3326. EXPORT_SYMBOL(sleep_on);
  3327. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3328. {
  3329. unsigned long flags;
  3330. wait_queue_t wait;
  3331. init_waitqueue_entry(&wait, current);
  3332. current->state = TASK_UNINTERRUPTIBLE;
  3333. sleep_on_head(q, &wait, &flags);
  3334. timeout = schedule_timeout(timeout);
  3335. sleep_on_tail(q, &wait, &flags);
  3336. return timeout;
  3337. }
  3338. EXPORT_SYMBOL(sleep_on_timeout);
  3339. #ifdef CONFIG_RT_MUTEXES
  3340. /*
  3341. * rt_mutex_setprio - set the current priority of a task
  3342. * @p: task
  3343. * @prio: prio value (kernel-internal form)
  3344. *
  3345. * This function changes the 'effective' priority of a task. It does
  3346. * not touch ->normal_prio like __setscheduler().
  3347. *
  3348. * Used by the rt_mutex code to implement priority inheritance logic.
  3349. */
  3350. void rt_mutex_setprio(struct task_struct *p, int prio)
  3351. {
  3352. unsigned long flags;
  3353. int oldprio, on_rq;
  3354. struct rq *rq;
  3355. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3356. rq = task_rq_lock(p, &flags);
  3357. update_rq_clock(rq);
  3358. oldprio = p->prio;
  3359. on_rq = p->se.on_rq;
  3360. if (on_rq)
  3361. dequeue_task(rq, p, 0);
  3362. if (rt_prio(prio))
  3363. p->sched_class = &rt_sched_class;
  3364. else
  3365. p->sched_class = &fair_sched_class;
  3366. p->prio = prio;
  3367. if (on_rq) {
  3368. enqueue_task(rq, p, 0);
  3369. /*
  3370. * Reschedule if we are currently running on this runqueue and
  3371. * our priority decreased, or if we are not currently running on
  3372. * this runqueue and our priority is higher than the current's
  3373. */
  3374. if (task_running(rq, p)) {
  3375. if (p->prio > oldprio)
  3376. resched_task(rq->curr);
  3377. } else {
  3378. check_preempt_curr(rq, p);
  3379. }
  3380. }
  3381. task_rq_unlock(rq, &flags);
  3382. }
  3383. #endif
  3384. void set_user_nice(struct task_struct *p, long nice)
  3385. {
  3386. int old_prio, delta, on_rq;
  3387. unsigned long flags;
  3388. struct rq *rq;
  3389. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3390. return;
  3391. /*
  3392. * We have to be careful, if called from sys_setpriority(),
  3393. * the task might be in the middle of scheduling on another CPU.
  3394. */
  3395. rq = task_rq_lock(p, &flags);
  3396. update_rq_clock(rq);
  3397. /*
  3398. * The RT priorities are set via sched_setscheduler(), but we still
  3399. * allow the 'normal' nice value to be set - but as expected
  3400. * it wont have any effect on scheduling until the task is
  3401. * SCHED_FIFO/SCHED_RR:
  3402. */
  3403. if (task_has_rt_policy(p)) {
  3404. p->static_prio = NICE_TO_PRIO(nice);
  3405. goto out_unlock;
  3406. }
  3407. on_rq = p->se.on_rq;
  3408. if (on_rq) {
  3409. dequeue_task(rq, p, 0);
  3410. dec_load(rq, p);
  3411. }
  3412. p->static_prio = NICE_TO_PRIO(nice);
  3413. set_load_weight(p);
  3414. old_prio = p->prio;
  3415. p->prio = effective_prio(p);
  3416. delta = p->prio - old_prio;
  3417. if (on_rq) {
  3418. enqueue_task(rq, p, 0);
  3419. inc_load(rq, p);
  3420. /*
  3421. * If the task increased its priority or is running and
  3422. * lowered its priority, then reschedule its CPU:
  3423. */
  3424. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3425. resched_task(rq->curr);
  3426. }
  3427. out_unlock:
  3428. task_rq_unlock(rq, &flags);
  3429. }
  3430. EXPORT_SYMBOL(set_user_nice);
  3431. /*
  3432. * can_nice - check if a task can reduce its nice value
  3433. * @p: task
  3434. * @nice: nice value
  3435. */
  3436. int can_nice(const struct task_struct *p, const int nice)
  3437. {
  3438. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3439. int nice_rlim = 20 - nice;
  3440. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3441. capable(CAP_SYS_NICE));
  3442. }
  3443. #ifdef __ARCH_WANT_SYS_NICE
  3444. /*
  3445. * sys_nice - change the priority of the current process.
  3446. * @increment: priority increment
  3447. *
  3448. * sys_setpriority is a more generic, but much slower function that
  3449. * does similar things.
  3450. */
  3451. asmlinkage long sys_nice(int increment)
  3452. {
  3453. long nice, retval;
  3454. /*
  3455. * Setpriority might change our priority at the same moment.
  3456. * We don't have to worry. Conceptually one call occurs first
  3457. * and we have a single winner.
  3458. */
  3459. if (increment < -40)
  3460. increment = -40;
  3461. if (increment > 40)
  3462. increment = 40;
  3463. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3464. if (nice < -20)
  3465. nice = -20;
  3466. if (nice > 19)
  3467. nice = 19;
  3468. if (increment < 0 && !can_nice(current, nice))
  3469. return -EPERM;
  3470. retval = security_task_setnice(current, nice);
  3471. if (retval)
  3472. return retval;
  3473. set_user_nice(current, nice);
  3474. return 0;
  3475. }
  3476. #endif
  3477. /**
  3478. * task_prio - return the priority value of a given task.
  3479. * @p: the task in question.
  3480. *
  3481. * This is the priority value as seen by users in /proc.
  3482. * RT tasks are offset by -200. Normal tasks are centered
  3483. * around 0, value goes from -16 to +15.
  3484. */
  3485. int task_prio(const struct task_struct *p)
  3486. {
  3487. return p->prio - MAX_RT_PRIO;
  3488. }
  3489. /**
  3490. * task_nice - return the nice value of a given task.
  3491. * @p: the task in question.
  3492. */
  3493. int task_nice(const struct task_struct *p)
  3494. {
  3495. return TASK_NICE(p);
  3496. }
  3497. EXPORT_SYMBOL_GPL(task_nice);
  3498. /**
  3499. * idle_cpu - is a given cpu idle currently?
  3500. * @cpu: the processor in question.
  3501. */
  3502. int idle_cpu(int cpu)
  3503. {
  3504. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3505. }
  3506. /**
  3507. * idle_task - return the idle task for a given cpu.
  3508. * @cpu: the processor in question.
  3509. */
  3510. struct task_struct *idle_task(int cpu)
  3511. {
  3512. return cpu_rq(cpu)->idle;
  3513. }
  3514. /**
  3515. * find_process_by_pid - find a process with a matching PID value.
  3516. * @pid: the pid in question.
  3517. */
  3518. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3519. {
  3520. return pid ? find_task_by_pid(pid) : current;
  3521. }
  3522. /* Actually do priority change: must hold rq lock. */
  3523. static void
  3524. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3525. {
  3526. BUG_ON(p->se.on_rq);
  3527. p->policy = policy;
  3528. switch (p->policy) {
  3529. case SCHED_NORMAL:
  3530. case SCHED_BATCH:
  3531. case SCHED_IDLE:
  3532. p->sched_class = &fair_sched_class;
  3533. break;
  3534. case SCHED_FIFO:
  3535. case SCHED_RR:
  3536. p->sched_class = &rt_sched_class;
  3537. break;
  3538. }
  3539. p->rt_priority = prio;
  3540. p->normal_prio = normal_prio(p);
  3541. /* we are holding p->pi_lock already */
  3542. p->prio = rt_mutex_getprio(p);
  3543. set_load_weight(p);
  3544. }
  3545. /**
  3546. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3547. * @p: the task in question.
  3548. * @policy: new policy.
  3549. * @param: structure containing the new RT priority.
  3550. *
  3551. * NOTE that the task may be already dead.
  3552. */
  3553. int sched_setscheduler(struct task_struct *p, int policy,
  3554. struct sched_param *param)
  3555. {
  3556. int retval, oldprio, oldpolicy = -1, on_rq;
  3557. unsigned long flags;
  3558. struct rq *rq;
  3559. /* may grab non-irq protected spin_locks */
  3560. BUG_ON(in_interrupt());
  3561. recheck:
  3562. /* double check policy once rq lock held */
  3563. if (policy < 0)
  3564. policy = oldpolicy = p->policy;
  3565. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3566. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3567. policy != SCHED_IDLE)
  3568. return -EINVAL;
  3569. /*
  3570. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3571. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3572. * SCHED_BATCH and SCHED_IDLE is 0.
  3573. */
  3574. if (param->sched_priority < 0 ||
  3575. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3576. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3577. return -EINVAL;
  3578. if (rt_policy(policy) != (param->sched_priority != 0))
  3579. return -EINVAL;
  3580. /*
  3581. * Allow unprivileged RT tasks to decrease priority:
  3582. */
  3583. if (!capable(CAP_SYS_NICE)) {
  3584. if (rt_policy(policy)) {
  3585. unsigned long rlim_rtprio;
  3586. if (!lock_task_sighand(p, &flags))
  3587. return -ESRCH;
  3588. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3589. unlock_task_sighand(p, &flags);
  3590. /* can't set/change the rt policy */
  3591. if (policy != p->policy && !rlim_rtprio)
  3592. return -EPERM;
  3593. /* can't increase priority */
  3594. if (param->sched_priority > p->rt_priority &&
  3595. param->sched_priority > rlim_rtprio)
  3596. return -EPERM;
  3597. }
  3598. /*
  3599. * Like positive nice levels, dont allow tasks to
  3600. * move out of SCHED_IDLE either:
  3601. */
  3602. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3603. return -EPERM;
  3604. /* can't change other user's priorities */
  3605. if ((current->euid != p->euid) &&
  3606. (current->euid != p->uid))
  3607. return -EPERM;
  3608. }
  3609. retval = security_task_setscheduler(p, policy, param);
  3610. if (retval)
  3611. return retval;
  3612. /*
  3613. * make sure no PI-waiters arrive (or leave) while we are
  3614. * changing the priority of the task:
  3615. */
  3616. spin_lock_irqsave(&p->pi_lock, flags);
  3617. /*
  3618. * To be able to change p->policy safely, the apropriate
  3619. * runqueue lock must be held.
  3620. */
  3621. rq = __task_rq_lock(p);
  3622. /* recheck policy now with rq lock held */
  3623. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3624. policy = oldpolicy = -1;
  3625. __task_rq_unlock(rq);
  3626. spin_unlock_irqrestore(&p->pi_lock, flags);
  3627. goto recheck;
  3628. }
  3629. update_rq_clock(rq);
  3630. on_rq = p->se.on_rq;
  3631. if (on_rq)
  3632. deactivate_task(rq, p, 0);
  3633. oldprio = p->prio;
  3634. __setscheduler(rq, p, policy, param->sched_priority);
  3635. if (on_rq) {
  3636. activate_task(rq, p, 0);
  3637. /*
  3638. * Reschedule if we are currently running on this runqueue and
  3639. * our priority decreased, or if we are not currently running on
  3640. * this runqueue and our priority is higher than the current's
  3641. */
  3642. if (task_running(rq, p)) {
  3643. if (p->prio > oldprio)
  3644. resched_task(rq->curr);
  3645. } else {
  3646. check_preempt_curr(rq, p);
  3647. }
  3648. }
  3649. __task_rq_unlock(rq);
  3650. spin_unlock_irqrestore(&p->pi_lock, flags);
  3651. rt_mutex_adjust_pi(p);
  3652. return 0;
  3653. }
  3654. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3655. static int
  3656. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3657. {
  3658. struct sched_param lparam;
  3659. struct task_struct *p;
  3660. int retval;
  3661. if (!param || pid < 0)
  3662. return -EINVAL;
  3663. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3664. return -EFAULT;
  3665. rcu_read_lock();
  3666. retval = -ESRCH;
  3667. p = find_process_by_pid(pid);
  3668. if (p != NULL)
  3669. retval = sched_setscheduler(p, policy, &lparam);
  3670. rcu_read_unlock();
  3671. return retval;
  3672. }
  3673. /**
  3674. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3675. * @pid: the pid in question.
  3676. * @policy: new policy.
  3677. * @param: structure containing the new RT priority.
  3678. */
  3679. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3680. struct sched_param __user *param)
  3681. {
  3682. /* negative values for policy are not valid */
  3683. if (policy < 0)
  3684. return -EINVAL;
  3685. return do_sched_setscheduler(pid, policy, param);
  3686. }
  3687. /**
  3688. * sys_sched_setparam - set/change the RT priority of a thread
  3689. * @pid: the pid in question.
  3690. * @param: structure containing the new RT priority.
  3691. */
  3692. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3693. {
  3694. return do_sched_setscheduler(pid, -1, param);
  3695. }
  3696. /**
  3697. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3698. * @pid: the pid in question.
  3699. */
  3700. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3701. {
  3702. struct task_struct *p;
  3703. int retval = -EINVAL;
  3704. if (pid < 0)
  3705. goto out_nounlock;
  3706. retval = -ESRCH;
  3707. read_lock(&tasklist_lock);
  3708. p = find_process_by_pid(pid);
  3709. if (p) {
  3710. retval = security_task_getscheduler(p);
  3711. if (!retval)
  3712. retval = p->policy;
  3713. }
  3714. read_unlock(&tasklist_lock);
  3715. out_nounlock:
  3716. return retval;
  3717. }
  3718. /**
  3719. * sys_sched_getscheduler - get the RT priority of a thread
  3720. * @pid: the pid in question.
  3721. * @param: structure containing the RT priority.
  3722. */
  3723. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3724. {
  3725. struct sched_param lp;
  3726. struct task_struct *p;
  3727. int retval = -EINVAL;
  3728. if (!param || pid < 0)
  3729. goto out_nounlock;
  3730. read_lock(&tasklist_lock);
  3731. p = find_process_by_pid(pid);
  3732. retval = -ESRCH;
  3733. if (!p)
  3734. goto out_unlock;
  3735. retval = security_task_getscheduler(p);
  3736. if (retval)
  3737. goto out_unlock;
  3738. lp.sched_priority = p->rt_priority;
  3739. read_unlock(&tasklist_lock);
  3740. /*
  3741. * This one might sleep, we cannot do it with a spinlock held ...
  3742. */
  3743. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3744. out_nounlock:
  3745. return retval;
  3746. out_unlock:
  3747. read_unlock(&tasklist_lock);
  3748. return retval;
  3749. }
  3750. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3751. {
  3752. cpumask_t cpus_allowed;
  3753. struct task_struct *p;
  3754. int retval;
  3755. mutex_lock(&sched_hotcpu_mutex);
  3756. read_lock(&tasklist_lock);
  3757. p = find_process_by_pid(pid);
  3758. if (!p) {
  3759. read_unlock(&tasklist_lock);
  3760. mutex_unlock(&sched_hotcpu_mutex);
  3761. return -ESRCH;
  3762. }
  3763. /*
  3764. * It is not safe to call set_cpus_allowed with the
  3765. * tasklist_lock held. We will bump the task_struct's
  3766. * usage count and then drop tasklist_lock.
  3767. */
  3768. get_task_struct(p);
  3769. read_unlock(&tasklist_lock);
  3770. retval = -EPERM;
  3771. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3772. !capable(CAP_SYS_NICE))
  3773. goto out_unlock;
  3774. retval = security_task_setscheduler(p, 0, NULL);
  3775. if (retval)
  3776. goto out_unlock;
  3777. cpus_allowed = cpuset_cpus_allowed(p);
  3778. cpus_and(new_mask, new_mask, cpus_allowed);
  3779. retval = set_cpus_allowed(p, new_mask);
  3780. out_unlock:
  3781. put_task_struct(p);
  3782. mutex_unlock(&sched_hotcpu_mutex);
  3783. return retval;
  3784. }
  3785. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3786. cpumask_t *new_mask)
  3787. {
  3788. if (len < sizeof(cpumask_t)) {
  3789. memset(new_mask, 0, sizeof(cpumask_t));
  3790. } else if (len > sizeof(cpumask_t)) {
  3791. len = sizeof(cpumask_t);
  3792. }
  3793. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3794. }
  3795. /**
  3796. * sys_sched_setaffinity - set the cpu affinity of a process
  3797. * @pid: pid of the process
  3798. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3799. * @user_mask_ptr: user-space pointer to the new cpu mask
  3800. */
  3801. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3802. unsigned long __user *user_mask_ptr)
  3803. {
  3804. cpumask_t new_mask;
  3805. int retval;
  3806. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3807. if (retval)
  3808. return retval;
  3809. return sched_setaffinity(pid, new_mask);
  3810. }
  3811. /*
  3812. * Represents all cpu's present in the system
  3813. * In systems capable of hotplug, this map could dynamically grow
  3814. * as new cpu's are detected in the system via any platform specific
  3815. * method, such as ACPI for e.g.
  3816. */
  3817. cpumask_t cpu_present_map __read_mostly;
  3818. EXPORT_SYMBOL(cpu_present_map);
  3819. #ifndef CONFIG_SMP
  3820. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3821. EXPORT_SYMBOL(cpu_online_map);
  3822. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3823. EXPORT_SYMBOL(cpu_possible_map);
  3824. #endif
  3825. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3826. {
  3827. struct task_struct *p;
  3828. int retval;
  3829. mutex_lock(&sched_hotcpu_mutex);
  3830. read_lock(&tasklist_lock);
  3831. retval = -ESRCH;
  3832. p = find_process_by_pid(pid);
  3833. if (!p)
  3834. goto out_unlock;
  3835. retval = security_task_getscheduler(p);
  3836. if (retval)
  3837. goto out_unlock;
  3838. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3839. out_unlock:
  3840. read_unlock(&tasklist_lock);
  3841. mutex_unlock(&sched_hotcpu_mutex);
  3842. return retval;
  3843. }
  3844. /**
  3845. * sys_sched_getaffinity - get the cpu affinity of a process
  3846. * @pid: pid of the process
  3847. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3848. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3849. */
  3850. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3851. unsigned long __user *user_mask_ptr)
  3852. {
  3853. int ret;
  3854. cpumask_t mask;
  3855. if (len < sizeof(cpumask_t))
  3856. return -EINVAL;
  3857. ret = sched_getaffinity(pid, &mask);
  3858. if (ret < 0)
  3859. return ret;
  3860. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3861. return -EFAULT;
  3862. return sizeof(cpumask_t);
  3863. }
  3864. /**
  3865. * sys_sched_yield - yield the current processor to other threads.
  3866. *
  3867. * This function yields the current CPU to other tasks. If there are no
  3868. * other threads running on this CPU then this function will return.
  3869. */
  3870. asmlinkage long sys_sched_yield(void)
  3871. {
  3872. struct rq *rq = this_rq_lock();
  3873. schedstat_inc(rq, yld_cnt);
  3874. current->sched_class->yield_task(rq, current);
  3875. /*
  3876. * Since we are going to call schedule() anyway, there's
  3877. * no need to preempt or enable interrupts:
  3878. */
  3879. __release(rq->lock);
  3880. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3881. _raw_spin_unlock(&rq->lock);
  3882. preempt_enable_no_resched();
  3883. schedule();
  3884. return 0;
  3885. }
  3886. static void __cond_resched(void)
  3887. {
  3888. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3889. __might_sleep(__FILE__, __LINE__);
  3890. #endif
  3891. /*
  3892. * The BKS might be reacquired before we have dropped
  3893. * PREEMPT_ACTIVE, which could trigger a second
  3894. * cond_resched() call.
  3895. */
  3896. do {
  3897. add_preempt_count(PREEMPT_ACTIVE);
  3898. schedule();
  3899. sub_preempt_count(PREEMPT_ACTIVE);
  3900. } while (need_resched());
  3901. }
  3902. int __sched cond_resched(void)
  3903. {
  3904. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3905. system_state == SYSTEM_RUNNING) {
  3906. __cond_resched();
  3907. return 1;
  3908. }
  3909. return 0;
  3910. }
  3911. EXPORT_SYMBOL(cond_resched);
  3912. /*
  3913. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3914. * call schedule, and on return reacquire the lock.
  3915. *
  3916. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3917. * operations here to prevent schedule() from being called twice (once via
  3918. * spin_unlock(), once by hand).
  3919. */
  3920. int cond_resched_lock(spinlock_t *lock)
  3921. {
  3922. int ret = 0;
  3923. if (need_lockbreak(lock)) {
  3924. spin_unlock(lock);
  3925. cpu_relax();
  3926. ret = 1;
  3927. spin_lock(lock);
  3928. }
  3929. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3930. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3931. _raw_spin_unlock(lock);
  3932. preempt_enable_no_resched();
  3933. __cond_resched();
  3934. ret = 1;
  3935. spin_lock(lock);
  3936. }
  3937. return ret;
  3938. }
  3939. EXPORT_SYMBOL(cond_resched_lock);
  3940. int __sched cond_resched_softirq(void)
  3941. {
  3942. BUG_ON(!in_softirq());
  3943. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3944. local_bh_enable();
  3945. __cond_resched();
  3946. local_bh_disable();
  3947. return 1;
  3948. }
  3949. return 0;
  3950. }
  3951. EXPORT_SYMBOL(cond_resched_softirq);
  3952. /**
  3953. * yield - yield the current processor to other threads.
  3954. *
  3955. * This is a shortcut for kernel-space yielding - it marks the
  3956. * thread runnable and calls sys_sched_yield().
  3957. */
  3958. void __sched yield(void)
  3959. {
  3960. set_current_state(TASK_RUNNING);
  3961. sys_sched_yield();
  3962. }
  3963. EXPORT_SYMBOL(yield);
  3964. /*
  3965. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3966. * that process accounting knows that this is a task in IO wait state.
  3967. *
  3968. * But don't do that if it is a deliberate, throttling IO wait (this task
  3969. * has set its backing_dev_info: the queue against which it should throttle)
  3970. */
  3971. void __sched io_schedule(void)
  3972. {
  3973. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3974. delayacct_blkio_start();
  3975. atomic_inc(&rq->nr_iowait);
  3976. schedule();
  3977. atomic_dec(&rq->nr_iowait);
  3978. delayacct_blkio_end();
  3979. }
  3980. EXPORT_SYMBOL(io_schedule);
  3981. long __sched io_schedule_timeout(long timeout)
  3982. {
  3983. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3984. long ret;
  3985. delayacct_blkio_start();
  3986. atomic_inc(&rq->nr_iowait);
  3987. ret = schedule_timeout(timeout);
  3988. atomic_dec(&rq->nr_iowait);
  3989. delayacct_blkio_end();
  3990. return ret;
  3991. }
  3992. /**
  3993. * sys_sched_get_priority_max - return maximum RT priority.
  3994. * @policy: scheduling class.
  3995. *
  3996. * this syscall returns the maximum rt_priority that can be used
  3997. * by a given scheduling class.
  3998. */
  3999. asmlinkage long sys_sched_get_priority_max(int policy)
  4000. {
  4001. int ret = -EINVAL;
  4002. switch (policy) {
  4003. case SCHED_FIFO:
  4004. case SCHED_RR:
  4005. ret = MAX_USER_RT_PRIO-1;
  4006. break;
  4007. case SCHED_NORMAL:
  4008. case SCHED_BATCH:
  4009. case SCHED_IDLE:
  4010. ret = 0;
  4011. break;
  4012. }
  4013. return ret;
  4014. }
  4015. /**
  4016. * sys_sched_get_priority_min - return minimum RT priority.
  4017. * @policy: scheduling class.
  4018. *
  4019. * this syscall returns the minimum rt_priority that can be used
  4020. * by a given scheduling class.
  4021. */
  4022. asmlinkage long sys_sched_get_priority_min(int policy)
  4023. {
  4024. int ret = -EINVAL;
  4025. switch (policy) {
  4026. case SCHED_FIFO:
  4027. case SCHED_RR:
  4028. ret = 1;
  4029. break;
  4030. case SCHED_NORMAL:
  4031. case SCHED_BATCH:
  4032. case SCHED_IDLE:
  4033. ret = 0;
  4034. }
  4035. return ret;
  4036. }
  4037. /**
  4038. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4039. * @pid: pid of the process.
  4040. * @interval: userspace pointer to the timeslice value.
  4041. *
  4042. * this syscall writes the default timeslice value of a given process
  4043. * into the user-space timespec buffer. A value of '0' means infinity.
  4044. */
  4045. asmlinkage
  4046. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4047. {
  4048. struct task_struct *p;
  4049. int retval = -EINVAL;
  4050. struct timespec t;
  4051. if (pid < 0)
  4052. goto out_nounlock;
  4053. retval = -ESRCH;
  4054. read_lock(&tasklist_lock);
  4055. p = find_process_by_pid(pid);
  4056. if (!p)
  4057. goto out_unlock;
  4058. retval = security_task_getscheduler(p);
  4059. if (retval)
  4060. goto out_unlock;
  4061. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4062. 0 : static_prio_timeslice(p->static_prio), &t);
  4063. read_unlock(&tasklist_lock);
  4064. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4065. out_nounlock:
  4066. return retval;
  4067. out_unlock:
  4068. read_unlock(&tasklist_lock);
  4069. return retval;
  4070. }
  4071. static const char stat_nam[] = "RSDTtZX";
  4072. static void show_task(struct task_struct *p)
  4073. {
  4074. unsigned long free = 0;
  4075. unsigned state;
  4076. state = p->state ? __ffs(p->state) + 1 : 0;
  4077. printk("%-13.13s %c", p->comm,
  4078. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4079. #if BITS_PER_LONG == 32
  4080. if (state == TASK_RUNNING)
  4081. printk(" running ");
  4082. else
  4083. printk(" %08lx ", thread_saved_pc(p));
  4084. #else
  4085. if (state == TASK_RUNNING)
  4086. printk(" running task ");
  4087. else
  4088. printk(" %016lx ", thread_saved_pc(p));
  4089. #endif
  4090. #ifdef CONFIG_DEBUG_STACK_USAGE
  4091. {
  4092. unsigned long *n = end_of_stack(p);
  4093. while (!*n)
  4094. n++;
  4095. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4096. }
  4097. #endif
  4098. printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
  4099. if (state != TASK_RUNNING)
  4100. show_stack(p, NULL);
  4101. }
  4102. void show_state_filter(unsigned long state_filter)
  4103. {
  4104. struct task_struct *g, *p;
  4105. #if BITS_PER_LONG == 32
  4106. printk(KERN_INFO
  4107. " task PC stack pid father\n");
  4108. #else
  4109. printk(KERN_INFO
  4110. " task PC stack pid father\n");
  4111. #endif
  4112. read_lock(&tasklist_lock);
  4113. do_each_thread(g, p) {
  4114. /*
  4115. * reset the NMI-timeout, listing all files on a slow
  4116. * console might take alot of time:
  4117. */
  4118. touch_nmi_watchdog();
  4119. if (!state_filter || (p->state & state_filter))
  4120. show_task(p);
  4121. } while_each_thread(g, p);
  4122. touch_all_softlockup_watchdogs();
  4123. #ifdef CONFIG_SCHED_DEBUG
  4124. sysrq_sched_debug_show();
  4125. #endif
  4126. read_unlock(&tasklist_lock);
  4127. /*
  4128. * Only show locks if all tasks are dumped:
  4129. */
  4130. if (state_filter == -1)
  4131. debug_show_all_locks();
  4132. }
  4133. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4134. {
  4135. idle->sched_class = &idle_sched_class;
  4136. }
  4137. /**
  4138. * init_idle - set up an idle thread for a given CPU
  4139. * @idle: task in question
  4140. * @cpu: cpu the idle task belongs to
  4141. *
  4142. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4143. * flag, to make booting more robust.
  4144. */
  4145. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4146. {
  4147. struct rq *rq = cpu_rq(cpu);
  4148. unsigned long flags;
  4149. __sched_fork(idle);
  4150. idle->se.exec_start = sched_clock();
  4151. idle->prio = idle->normal_prio = MAX_PRIO;
  4152. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4153. __set_task_cpu(idle, cpu);
  4154. spin_lock_irqsave(&rq->lock, flags);
  4155. rq->curr = rq->idle = idle;
  4156. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4157. idle->oncpu = 1;
  4158. #endif
  4159. spin_unlock_irqrestore(&rq->lock, flags);
  4160. /* Set the preempt count _outside_ the spinlocks! */
  4161. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4162. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4163. #else
  4164. task_thread_info(idle)->preempt_count = 0;
  4165. #endif
  4166. /*
  4167. * The idle tasks have their own, simple scheduling class:
  4168. */
  4169. idle->sched_class = &idle_sched_class;
  4170. }
  4171. /*
  4172. * In a system that switches off the HZ timer nohz_cpu_mask
  4173. * indicates which cpus entered this state. This is used
  4174. * in the rcu update to wait only for active cpus. For system
  4175. * which do not switch off the HZ timer nohz_cpu_mask should
  4176. * always be CPU_MASK_NONE.
  4177. */
  4178. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4179. #ifdef CONFIG_SMP
  4180. /*
  4181. * This is how migration works:
  4182. *
  4183. * 1) we queue a struct migration_req structure in the source CPU's
  4184. * runqueue and wake up that CPU's migration thread.
  4185. * 2) we down() the locked semaphore => thread blocks.
  4186. * 3) migration thread wakes up (implicitly it forces the migrated
  4187. * thread off the CPU)
  4188. * 4) it gets the migration request and checks whether the migrated
  4189. * task is still in the wrong runqueue.
  4190. * 5) if it's in the wrong runqueue then the migration thread removes
  4191. * it and puts it into the right queue.
  4192. * 6) migration thread up()s the semaphore.
  4193. * 7) we wake up and the migration is done.
  4194. */
  4195. /*
  4196. * Change a given task's CPU affinity. Migrate the thread to a
  4197. * proper CPU and schedule it away if the CPU it's executing on
  4198. * is removed from the allowed bitmask.
  4199. *
  4200. * NOTE: the caller must have a valid reference to the task, the
  4201. * task must not exit() & deallocate itself prematurely. The
  4202. * call is not atomic; no spinlocks may be held.
  4203. */
  4204. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4205. {
  4206. struct migration_req req;
  4207. unsigned long flags;
  4208. struct rq *rq;
  4209. int ret = 0;
  4210. rq = task_rq_lock(p, &flags);
  4211. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4212. ret = -EINVAL;
  4213. goto out;
  4214. }
  4215. p->cpus_allowed = new_mask;
  4216. /* Can the task run on the task's current CPU? If so, we're done */
  4217. if (cpu_isset(task_cpu(p), new_mask))
  4218. goto out;
  4219. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4220. /* Need help from migration thread: drop lock and wait. */
  4221. task_rq_unlock(rq, &flags);
  4222. wake_up_process(rq->migration_thread);
  4223. wait_for_completion(&req.done);
  4224. tlb_migrate_finish(p->mm);
  4225. return 0;
  4226. }
  4227. out:
  4228. task_rq_unlock(rq, &flags);
  4229. return ret;
  4230. }
  4231. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4232. /*
  4233. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4234. * this because either it can't run here any more (set_cpus_allowed()
  4235. * away from this CPU, or CPU going down), or because we're
  4236. * attempting to rebalance this task on exec (sched_exec).
  4237. *
  4238. * So we race with normal scheduler movements, but that's OK, as long
  4239. * as the task is no longer on this CPU.
  4240. *
  4241. * Returns non-zero if task was successfully migrated.
  4242. */
  4243. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4244. {
  4245. struct rq *rq_dest, *rq_src;
  4246. int ret = 0, on_rq;
  4247. if (unlikely(cpu_is_offline(dest_cpu)))
  4248. return ret;
  4249. rq_src = cpu_rq(src_cpu);
  4250. rq_dest = cpu_rq(dest_cpu);
  4251. double_rq_lock(rq_src, rq_dest);
  4252. /* Already moved. */
  4253. if (task_cpu(p) != src_cpu)
  4254. goto out;
  4255. /* Affinity changed (again). */
  4256. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4257. goto out;
  4258. on_rq = p->se.on_rq;
  4259. if (on_rq)
  4260. deactivate_task(rq_src, p, 0);
  4261. set_task_cpu(p, dest_cpu);
  4262. if (on_rq) {
  4263. activate_task(rq_dest, p, 0);
  4264. check_preempt_curr(rq_dest, p);
  4265. }
  4266. ret = 1;
  4267. out:
  4268. double_rq_unlock(rq_src, rq_dest);
  4269. return ret;
  4270. }
  4271. /*
  4272. * migration_thread - this is a highprio system thread that performs
  4273. * thread migration by bumping thread off CPU then 'pushing' onto
  4274. * another runqueue.
  4275. */
  4276. static int migration_thread(void *data)
  4277. {
  4278. int cpu = (long)data;
  4279. struct rq *rq;
  4280. rq = cpu_rq(cpu);
  4281. BUG_ON(rq->migration_thread != current);
  4282. set_current_state(TASK_INTERRUPTIBLE);
  4283. while (!kthread_should_stop()) {
  4284. struct migration_req *req;
  4285. struct list_head *head;
  4286. spin_lock_irq(&rq->lock);
  4287. if (cpu_is_offline(cpu)) {
  4288. spin_unlock_irq(&rq->lock);
  4289. goto wait_to_die;
  4290. }
  4291. if (rq->active_balance) {
  4292. active_load_balance(rq, cpu);
  4293. rq->active_balance = 0;
  4294. }
  4295. head = &rq->migration_queue;
  4296. if (list_empty(head)) {
  4297. spin_unlock_irq(&rq->lock);
  4298. schedule();
  4299. set_current_state(TASK_INTERRUPTIBLE);
  4300. continue;
  4301. }
  4302. req = list_entry(head->next, struct migration_req, list);
  4303. list_del_init(head->next);
  4304. spin_unlock(&rq->lock);
  4305. __migrate_task(req->task, cpu, req->dest_cpu);
  4306. local_irq_enable();
  4307. complete(&req->done);
  4308. }
  4309. __set_current_state(TASK_RUNNING);
  4310. return 0;
  4311. wait_to_die:
  4312. /* Wait for kthread_stop */
  4313. set_current_state(TASK_INTERRUPTIBLE);
  4314. while (!kthread_should_stop()) {
  4315. schedule();
  4316. set_current_state(TASK_INTERRUPTIBLE);
  4317. }
  4318. __set_current_state(TASK_RUNNING);
  4319. return 0;
  4320. }
  4321. #ifdef CONFIG_HOTPLUG_CPU
  4322. /*
  4323. * Figure out where task on dead CPU should go, use force if neccessary.
  4324. * NOTE: interrupts should be disabled by the caller
  4325. */
  4326. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4327. {
  4328. unsigned long flags;
  4329. cpumask_t mask;
  4330. struct rq *rq;
  4331. int dest_cpu;
  4332. restart:
  4333. /* On same node? */
  4334. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4335. cpus_and(mask, mask, p->cpus_allowed);
  4336. dest_cpu = any_online_cpu(mask);
  4337. /* On any allowed CPU? */
  4338. if (dest_cpu == NR_CPUS)
  4339. dest_cpu = any_online_cpu(p->cpus_allowed);
  4340. /* No more Mr. Nice Guy. */
  4341. if (dest_cpu == NR_CPUS) {
  4342. rq = task_rq_lock(p, &flags);
  4343. cpus_setall(p->cpus_allowed);
  4344. dest_cpu = any_online_cpu(p->cpus_allowed);
  4345. task_rq_unlock(rq, &flags);
  4346. /*
  4347. * Don't tell them about moving exiting tasks or
  4348. * kernel threads (both mm NULL), since they never
  4349. * leave kernel.
  4350. */
  4351. if (p->mm && printk_ratelimit())
  4352. printk(KERN_INFO "process %d (%s) no "
  4353. "longer affine to cpu%d\n",
  4354. p->pid, p->comm, dead_cpu);
  4355. }
  4356. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4357. goto restart;
  4358. }
  4359. /*
  4360. * While a dead CPU has no uninterruptible tasks queued at this point,
  4361. * it might still have a nonzero ->nr_uninterruptible counter, because
  4362. * for performance reasons the counter is not stricly tracking tasks to
  4363. * their home CPUs. So we just add the counter to another CPU's counter,
  4364. * to keep the global sum constant after CPU-down:
  4365. */
  4366. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4367. {
  4368. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4369. unsigned long flags;
  4370. local_irq_save(flags);
  4371. double_rq_lock(rq_src, rq_dest);
  4372. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4373. rq_src->nr_uninterruptible = 0;
  4374. double_rq_unlock(rq_src, rq_dest);
  4375. local_irq_restore(flags);
  4376. }
  4377. /* Run through task list and migrate tasks from the dead cpu. */
  4378. static void migrate_live_tasks(int src_cpu)
  4379. {
  4380. struct task_struct *p, *t;
  4381. write_lock_irq(&tasklist_lock);
  4382. do_each_thread(t, p) {
  4383. if (p == current)
  4384. continue;
  4385. if (task_cpu(p) == src_cpu)
  4386. move_task_off_dead_cpu(src_cpu, p);
  4387. } while_each_thread(t, p);
  4388. write_unlock_irq(&tasklist_lock);
  4389. }
  4390. /*
  4391. * Schedules idle task to be the next runnable task on current CPU.
  4392. * It does so by boosting its priority to highest possible and adding it to
  4393. * the _front_ of the runqueue. Used by CPU offline code.
  4394. */
  4395. void sched_idle_next(void)
  4396. {
  4397. int this_cpu = smp_processor_id();
  4398. struct rq *rq = cpu_rq(this_cpu);
  4399. struct task_struct *p = rq->idle;
  4400. unsigned long flags;
  4401. /* cpu has to be offline */
  4402. BUG_ON(cpu_online(this_cpu));
  4403. /*
  4404. * Strictly not necessary since rest of the CPUs are stopped by now
  4405. * and interrupts disabled on the current cpu.
  4406. */
  4407. spin_lock_irqsave(&rq->lock, flags);
  4408. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4409. /* Add idle task to the _front_ of its priority queue: */
  4410. activate_idle_task(p, rq);
  4411. spin_unlock_irqrestore(&rq->lock, flags);
  4412. }
  4413. /*
  4414. * Ensures that the idle task is using init_mm right before its cpu goes
  4415. * offline.
  4416. */
  4417. void idle_task_exit(void)
  4418. {
  4419. struct mm_struct *mm = current->active_mm;
  4420. BUG_ON(cpu_online(smp_processor_id()));
  4421. if (mm != &init_mm)
  4422. switch_mm(mm, &init_mm, current);
  4423. mmdrop(mm);
  4424. }
  4425. /* called under rq->lock with disabled interrupts */
  4426. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4427. {
  4428. struct rq *rq = cpu_rq(dead_cpu);
  4429. /* Must be exiting, otherwise would be on tasklist. */
  4430. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4431. /* Cannot have done final schedule yet: would have vanished. */
  4432. BUG_ON(p->state == TASK_DEAD);
  4433. get_task_struct(p);
  4434. /*
  4435. * Drop lock around migration; if someone else moves it,
  4436. * that's OK. No task can be added to this CPU, so iteration is
  4437. * fine.
  4438. * NOTE: interrupts should be left disabled --dev@
  4439. */
  4440. spin_unlock(&rq->lock);
  4441. move_task_off_dead_cpu(dead_cpu, p);
  4442. spin_lock(&rq->lock);
  4443. put_task_struct(p);
  4444. }
  4445. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4446. static void migrate_dead_tasks(unsigned int dead_cpu)
  4447. {
  4448. struct rq *rq = cpu_rq(dead_cpu);
  4449. struct task_struct *next;
  4450. for ( ; ; ) {
  4451. if (!rq->nr_running)
  4452. break;
  4453. update_rq_clock(rq);
  4454. next = pick_next_task(rq, rq->curr);
  4455. if (!next)
  4456. break;
  4457. migrate_dead(dead_cpu, next);
  4458. }
  4459. }
  4460. #endif /* CONFIG_HOTPLUG_CPU */
  4461. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4462. static struct ctl_table sd_ctl_dir[] = {
  4463. {
  4464. .procname = "sched_domain",
  4465. .mode = 0555,
  4466. },
  4467. {0,},
  4468. };
  4469. static struct ctl_table sd_ctl_root[] = {
  4470. {
  4471. .ctl_name = CTL_KERN,
  4472. .procname = "kernel",
  4473. .mode = 0555,
  4474. .child = sd_ctl_dir,
  4475. },
  4476. {0,},
  4477. };
  4478. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4479. {
  4480. struct ctl_table *entry =
  4481. kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
  4482. BUG_ON(!entry);
  4483. memset(entry, 0, n * sizeof(struct ctl_table));
  4484. return entry;
  4485. }
  4486. static void
  4487. set_table_entry(struct ctl_table *entry,
  4488. const char *procname, void *data, int maxlen,
  4489. mode_t mode, proc_handler *proc_handler)
  4490. {
  4491. entry->procname = procname;
  4492. entry->data = data;
  4493. entry->maxlen = maxlen;
  4494. entry->mode = mode;
  4495. entry->proc_handler = proc_handler;
  4496. }
  4497. static struct ctl_table *
  4498. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4499. {
  4500. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4501. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4502. sizeof(long), 0644, proc_doulongvec_minmax);
  4503. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4504. sizeof(long), 0644, proc_doulongvec_minmax);
  4505. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4506. sizeof(int), 0644, proc_dointvec_minmax);
  4507. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4508. sizeof(int), 0644, proc_dointvec_minmax);
  4509. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4510. sizeof(int), 0644, proc_dointvec_minmax);
  4511. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4512. sizeof(int), 0644, proc_dointvec_minmax);
  4513. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4514. sizeof(int), 0644, proc_dointvec_minmax);
  4515. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4516. sizeof(int), 0644, proc_dointvec_minmax);
  4517. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4518. sizeof(int), 0644, proc_dointvec_minmax);
  4519. set_table_entry(&table[10], "cache_nice_tries",
  4520. &sd->cache_nice_tries,
  4521. sizeof(int), 0644, proc_dointvec_minmax);
  4522. set_table_entry(&table[12], "flags", &sd->flags,
  4523. sizeof(int), 0644, proc_dointvec_minmax);
  4524. return table;
  4525. }
  4526. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4527. {
  4528. struct ctl_table *entry, *table;
  4529. struct sched_domain *sd;
  4530. int domain_num = 0, i;
  4531. char buf[32];
  4532. for_each_domain(cpu, sd)
  4533. domain_num++;
  4534. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4535. i = 0;
  4536. for_each_domain(cpu, sd) {
  4537. snprintf(buf, 32, "domain%d", i);
  4538. entry->procname = kstrdup(buf, GFP_KERNEL);
  4539. entry->mode = 0555;
  4540. entry->child = sd_alloc_ctl_domain_table(sd);
  4541. entry++;
  4542. i++;
  4543. }
  4544. return table;
  4545. }
  4546. static struct ctl_table_header *sd_sysctl_header;
  4547. static void init_sched_domain_sysctl(void)
  4548. {
  4549. int i, cpu_num = num_online_cpus();
  4550. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4551. char buf[32];
  4552. sd_ctl_dir[0].child = entry;
  4553. for (i = 0; i < cpu_num; i++, entry++) {
  4554. snprintf(buf, 32, "cpu%d", i);
  4555. entry->procname = kstrdup(buf, GFP_KERNEL);
  4556. entry->mode = 0555;
  4557. entry->child = sd_alloc_ctl_cpu_table(i);
  4558. }
  4559. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4560. }
  4561. #else
  4562. static void init_sched_domain_sysctl(void)
  4563. {
  4564. }
  4565. #endif
  4566. /*
  4567. * migration_call - callback that gets triggered when a CPU is added.
  4568. * Here we can start up the necessary migration thread for the new CPU.
  4569. */
  4570. static int __cpuinit
  4571. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4572. {
  4573. struct task_struct *p;
  4574. int cpu = (long)hcpu;
  4575. unsigned long flags;
  4576. struct rq *rq;
  4577. switch (action) {
  4578. case CPU_LOCK_ACQUIRE:
  4579. mutex_lock(&sched_hotcpu_mutex);
  4580. break;
  4581. case CPU_UP_PREPARE:
  4582. case CPU_UP_PREPARE_FROZEN:
  4583. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4584. if (IS_ERR(p))
  4585. return NOTIFY_BAD;
  4586. kthread_bind(p, cpu);
  4587. /* Must be high prio: stop_machine expects to yield to it. */
  4588. rq = task_rq_lock(p, &flags);
  4589. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4590. task_rq_unlock(rq, &flags);
  4591. cpu_rq(cpu)->migration_thread = p;
  4592. break;
  4593. case CPU_ONLINE:
  4594. case CPU_ONLINE_FROZEN:
  4595. /* Strictly unneccessary, as first user will wake it. */
  4596. wake_up_process(cpu_rq(cpu)->migration_thread);
  4597. break;
  4598. #ifdef CONFIG_HOTPLUG_CPU
  4599. case CPU_UP_CANCELED:
  4600. case CPU_UP_CANCELED_FROZEN:
  4601. if (!cpu_rq(cpu)->migration_thread)
  4602. break;
  4603. /* Unbind it from offline cpu so it can run. Fall thru. */
  4604. kthread_bind(cpu_rq(cpu)->migration_thread,
  4605. any_online_cpu(cpu_online_map));
  4606. kthread_stop(cpu_rq(cpu)->migration_thread);
  4607. cpu_rq(cpu)->migration_thread = NULL;
  4608. break;
  4609. case CPU_DEAD:
  4610. case CPU_DEAD_FROZEN:
  4611. migrate_live_tasks(cpu);
  4612. rq = cpu_rq(cpu);
  4613. kthread_stop(rq->migration_thread);
  4614. rq->migration_thread = NULL;
  4615. /* Idle task back to normal (off runqueue, low prio) */
  4616. rq = task_rq_lock(rq->idle, &flags);
  4617. update_rq_clock(rq);
  4618. deactivate_task(rq, rq->idle, 0);
  4619. rq->idle->static_prio = MAX_PRIO;
  4620. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4621. rq->idle->sched_class = &idle_sched_class;
  4622. migrate_dead_tasks(cpu);
  4623. task_rq_unlock(rq, &flags);
  4624. migrate_nr_uninterruptible(rq);
  4625. BUG_ON(rq->nr_running != 0);
  4626. /* No need to migrate the tasks: it was best-effort if
  4627. * they didn't take sched_hotcpu_mutex. Just wake up
  4628. * the requestors. */
  4629. spin_lock_irq(&rq->lock);
  4630. while (!list_empty(&rq->migration_queue)) {
  4631. struct migration_req *req;
  4632. req = list_entry(rq->migration_queue.next,
  4633. struct migration_req, list);
  4634. list_del_init(&req->list);
  4635. complete(&req->done);
  4636. }
  4637. spin_unlock_irq(&rq->lock);
  4638. break;
  4639. #endif
  4640. case CPU_LOCK_RELEASE:
  4641. mutex_unlock(&sched_hotcpu_mutex);
  4642. break;
  4643. }
  4644. return NOTIFY_OK;
  4645. }
  4646. /* Register at highest priority so that task migration (migrate_all_tasks)
  4647. * happens before everything else.
  4648. */
  4649. static struct notifier_block __cpuinitdata migration_notifier = {
  4650. .notifier_call = migration_call,
  4651. .priority = 10
  4652. };
  4653. int __init migration_init(void)
  4654. {
  4655. void *cpu = (void *)(long)smp_processor_id();
  4656. int err;
  4657. /* Start one for the boot CPU: */
  4658. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4659. BUG_ON(err == NOTIFY_BAD);
  4660. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4661. register_cpu_notifier(&migration_notifier);
  4662. return 0;
  4663. }
  4664. #endif
  4665. #ifdef CONFIG_SMP
  4666. /* Number of possible processor ids */
  4667. int nr_cpu_ids __read_mostly = NR_CPUS;
  4668. EXPORT_SYMBOL(nr_cpu_ids);
  4669. #undef SCHED_DOMAIN_DEBUG
  4670. #ifdef SCHED_DOMAIN_DEBUG
  4671. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4672. {
  4673. int level = 0;
  4674. if (!sd) {
  4675. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4676. return;
  4677. }
  4678. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4679. do {
  4680. int i;
  4681. char str[NR_CPUS];
  4682. struct sched_group *group = sd->groups;
  4683. cpumask_t groupmask;
  4684. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4685. cpus_clear(groupmask);
  4686. printk(KERN_DEBUG);
  4687. for (i = 0; i < level + 1; i++)
  4688. printk(" ");
  4689. printk("domain %d: ", level);
  4690. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4691. printk("does not load-balance\n");
  4692. if (sd->parent)
  4693. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4694. " has parent");
  4695. break;
  4696. }
  4697. printk("span %s\n", str);
  4698. if (!cpu_isset(cpu, sd->span))
  4699. printk(KERN_ERR "ERROR: domain->span does not contain "
  4700. "CPU%d\n", cpu);
  4701. if (!cpu_isset(cpu, group->cpumask))
  4702. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4703. " CPU%d\n", cpu);
  4704. printk(KERN_DEBUG);
  4705. for (i = 0; i < level + 2; i++)
  4706. printk(" ");
  4707. printk("groups:");
  4708. do {
  4709. if (!group) {
  4710. printk("\n");
  4711. printk(KERN_ERR "ERROR: group is NULL\n");
  4712. break;
  4713. }
  4714. if (!group->__cpu_power) {
  4715. printk("\n");
  4716. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4717. "set\n");
  4718. }
  4719. if (!cpus_weight(group->cpumask)) {
  4720. printk("\n");
  4721. printk(KERN_ERR "ERROR: empty group\n");
  4722. }
  4723. if (cpus_intersects(groupmask, group->cpumask)) {
  4724. printk("\n");
  4725. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4726. }
  4727. cpus_or(groupmask, groupmask, group->cpumask);
  4728. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4729. printk(" %s", str);
  4730. group = group->next;
  4731. } while (group != sd->groups);
  4732. printk("\n");
  4733. if (!cpus_equal(sd->span, groupmask))
  4734. printk(KERN_ERR "ERROR: groups don't span "
  4735. "domain->span\n");
  4736. level++;
  4737. sd = sd->parent;
  4738. if (!sd)
  4739. continue;
  4740. if (!cpus_subset(groupmask, sd->span))
  4741. printk(KERN_ERR "ERROR: parent span is not a superset "
  4742. "of domain->span\n");
  4743. } while (sd);
  4744. }
  4745. #else
  4746. # define sched_domain_debug(sd, cpu) do { } while (0)
  4747. #endif
  4748. static int sd_degenerate(struct sched_domain *sd)
  4749. {
  4750. if (cpus_weight(sd->span) == 1)
  4751. return 1;
  4752. /* Following flags need at least 2 groups */
  4753. if (sd->flags & (SD_LOAD_BALANCE |
  4754. SD_BALANCE_NEWIDLE |
  4755. SD_BALANCE_FORK |
  4756. SD_BALANCE_EXEC |
  4757. SD_SHARE_CPUPOWER |
  4758. SD_SHARE_PKG_RESOURCES)) {
  4759. if (sd->groups != sd->groups->next)
  4760. return 0;
  4761. }
  4762. /* Following flags don't use groups */
  4763. if (sd->flags & (SD_WAKE_IDLE |
  4764. SD_WAKE_AFFINE |
  4765. SD_WAKE_BALANCE))
  4766. return 0;
  4767. return 1;
  4768. }
  4769. static int
  4770. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4771. {
  4772. unsigned long cflags = sd->flags, pflags = parent->flags;
  4773. if (sd_degenerate(parent))
  4774. return 1;
  4775. if (!cpus_equal(sd->span, parent->span))
  4776. return 0;
  4777. /* Does parent contain flags not in child? */
  4778. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4779. if (cflags & SD_WAKE_AFFINE)
  4780. pflags &= ~SD_WAKE_BALANCE;
  4781. /* Flags needing groups don't count if only 1 group in parent */
  4782. if (parent->groups == parent->groups->next) {
  4783. pflags &= ~(SD_LOAD_BALANCE |
  4784. SD_BALANCE_NEWIDLE |
  4785. SD_BALANCE_FORK |
  4786. SD_BALANCE_EXEC |
  4787. SD_SHARE_CPUPOWER |
  4788. SD_SHARE_PKG_RESOURCES);
  4789. }
  4790. if (~cflags & pflags)
  4791. return 0;
  4792. return 1;
  4793. }
  4794. /*
  4795. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4796. * hold the hotplug lock.
  4797. */
  4798. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4799. {
  4800. struct rq *rq = cpu_rq(cpu);
  4801. struct sched_domain *tmp;
  4802. /* Remove the sched domains which do not contribute to scheduling. */
  4803. for (tmp = sd; tmp; tmp = tmp->parent) {
  4804. struct sched_domain *parent = tmp->parent;
  4805. if (!parent)
  4806. break;
  4807. if (sd_parent_degenerate(tmp, parent)) {
  4808. tmp->parent = parent->parent;
  4809. if (parent->parent)
  4810. parent->parent->child = tmp;
  4811. }
  4812. }
  4813. if (sd && sd_degenerate(sd)) {
  4814. sd = sd->parent;
  4815. if (sd)
  4816. sd->child = NULL;
  4817. }
  4818. sched_domain_debug(sd, cpu);
  4819. rcu_assign_pointer(rq->sd, sd);
  4820. }
  4821. /* cpus with isolated domains */
  4822. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4823. /* Setup the mask of cpus configured for isolated domains */
  4824. static int __init isolated_cpu_setup(char *str)
  4825. {
  4826. int ints[NR_CPUS], i;
  4827. str = get_options(str, ARRAY_SIZE(ints), ints);
  4828. cpus_clear(cpu_isolated_map);
  4829. for (i = 1; i <= ints[0]; i++)
  4830. if (ints[i] < NR_CPUS)
  4831. cpu_set(ints[i], cpu_isolated_map);
  4832. return 1;
  4833. }
  4834. __setup ("isolcpus=", isolated_cpu_setup);
  4835. /*
  4836. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4837. * to a function which identifies what group(along with sched group) a CPU
  4838. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4839. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4840. *
  4841. * init_sched_build_groups will build a circular linked list of the groups
  4842. * covered by the given span, and will set each group's ->cpumask correctly,
  4843. * and ->cpu_power to 0.
  4844. */
  4845. static void
  4846. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4847. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4848. struct sched_group **sg))
  4849. {
  4850. struct sched_group *first = NULL, *last = NULL;
  4851. cpumask_t covered = CPU_MASK_NONE;
  4852. int i;
  4853. for_each_cpu_mask(i, span) {
  4854. struct sched_group *sg;
  4855. int group = group_fn(i, cpu_map, &sg);
  4856. int j;
  4857. if (cpu_isset(i, covered))
  4858. continue;
  4859. sg->cpumask = CPU_MASK_NONE;
  4860. sg->__cpu_power = 0;
  4861. for_each_cpu_mask(j, span) {
  4862. if (group_fn(j, cpu_map, NULL) != group)
  4863. continue;
  4864. cpu_set(j, covered);
  4865. cpu_set(j, sg->cpumask);
  4866. }
  4867. if (!first)
  4868. first = sg;
  4869. if (last)
  4870. last->next = sg;
  4871. last = sg;
  4872. }
  4873. last->next = first;
  4874. }
  4875. #define SD_NODES_PER_DOMAIN 16
  4876. #ifdef CONFIG_NUMA
  4877. /**
  4878. * find_next_best_node - find the next node to include in a sched_domain
  4879. * @node: node whose sched_domain we're building
  4880. * @used_nodes: nodes already in the sched_domain
  4881. *
  4882. * Find the next node to include in a given scheduling domain. Simply
  4883. * finds the closest node not already in the @used_nodes map.
  4884. *
  4885. * Should use nodemask_t.
  4886. */
  4887. static int find_next_best_node(int node, unsigned long *used_nodes)
  4888. {
  4889. int i, n, val, min_val, best_node = 0;
  4890. min_val = INT_MAX;
  4891. for (i = 0; i < MAX_NUMNODES; i++) {
  4892. /* Start at @node */
  4893. n = (node + i) % MAX_NUMNODES;
  4894. if (!nr_cpus_node(n))
  4895. continue;
  4896. /* Skip already used nodes */
  4897. if (test_bit(n, used_nodes))
  4898. continue;
  4899. /* Simple min distance search */
  4900. val = node_distance(node, n);
  4901. if (val < min_val) {
  4902. min_val = val;
  4903. best_node = n;
  4904. }
  4905. }
  4906. set_bit(best_node, used_nodes);
  4907. return best_node;
  4908. }
  4909. /**
  4910. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4911. * @node: node whose cpumask we're constructing
  4912. * @size: number of nodes to include in this span
  4913. *
  4914. * Given a node, construct a good cpumask for its sched_domain to span. It
  4915. * should be one that prevents unnecessary balancing, but also spreads tasks
  4916. * out optimally.
  4917. */
  4918. static cpumask_t sched_domain_node_span(int node)
  4919. {
  4920. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4921. cpumask_t span, nodemask;
  4922. int i;
  4923. cpus_clear(span);
  4924. bitmap_zero(used_nodes, MAX_NUMNODES);
  4925. nodemask = node_to_cpumask(node);
  4926. cpus_or(span, span, nodemask);
  4927. set_bit(node, used_nodes);
  4928. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4929. int next_node = find_next_best_node(node, used_nodes);
  4930. nodemask = node_to_cpumask(next_node);
  4931. cpus_or(span, span, nodemask);
  4932. }
  4933. return span;
  4934. }
  4935. #endif
  4936. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4937. /*
  4938. * SMT sched-domains:
  4939. */
  4940. #ifdef CONFIG_SCHED_SMT
  4941. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4942. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4943. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4944. struct sched_group **sg)
  4945. {
  4946. if (sg)
  4947. *sg = &per_cpu(sched_group_cpus, cpu);
  4948. return cpu;
  4949. }
  4950. #endif
  4951. /*
  4952. * multi-core sched-domains:
  4953. */
  4954. #ifdef CONFIG_SCHED_MC
  4955. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4956. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4957. #endif
  4958. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4959. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4960. struct sched_group **sg)
  4961. {
  4962. int group;
  4963. cpumask_t mask = cpu_sibling_map[cpu];
  4964. cpus_and(mask, mask, *cpu_map);
  4965. group = first_cpu(mask);
  4966. if (sg)
  4967. *sg = &per_cpu(sched_group_core, group);
  4968. return group;
  4969. }
  4970. #elif defined(CONFIG_SCHED_MC)
  4971. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4972. struct sched_group **sg)
  4973. {
  4974. if (sg)
  4975. *sg = &per_cpu(sched_group_core, cpu);
  4976. return cpu;
  4977. }
  4978. #endif
  4979. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4980. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  4981. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  4982. struct sched_group **sg)
  4983. {
  4984. int group;
  4985. #ifdef CONFIG_SCHED_MC
  4986. cpumask_t mask = cpu_coregroup_map(cpu);
  4987. cpus_and(mask, mask, *cpu_map);
  4988. group = first_cpu(mask);
  4989. #elif defined(CONFIG_SCHED_SMT)
  4990. cpumask_t mask = cpu_sibling_map[cpu];
  4991. cpus_and(mask, mask, *cpu_map);
  4992. group = first_cpu(mask);
  4993. #else
  4994. group = cpu;
  4995. #endif
  4996. if (sg)
  4997. *sg = &per_cpu(sched_group_phys, group);
  4998. return group;
  4999. }
  5000. #ifdef CONFIG_NUMA
  5001. /*
  5002. * The init_sched_build_groups can't handle what we want to do with node
  5003. * groups, so roll our own. Now each node has its own list of groups which
  5004. * gets dynamically allocated.
  5005. */
  5006. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5007. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5008. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5009. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5010. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5011. struct sched_group **sg)
  5012. {
  5013. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5014. int group;
  5015. cpus_and(nodemask, nodemask, *cpu_map);
  5016. group = first_cpu(nodemask);
  5017. if (sg)
  5018. *sg = &per_cpu(sched_group_allnodes, group);
  5019. return group;
  5020. }
  5021. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5022. {
  5023. struct sched_group *sg = group_head;
  5024. int j;
  5025. if (!sg)
  5026. return;
  5027. next_sg:
  5028. for_each_cpu_mask(j, sg->cpumask) {
  5029. struct sched_domain *sd;
  5030. sd = &per_cpu(phys_domains, j);
  5031. if (j != first_cpu(sd->groups->cpumask)) {
  5032. /*
  5033. * Only add "power" once for each
  5034. * physical package.
  5035. */
  5036. continue;
  5037. }
  5038. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5039. }
  5040. sg = sg->next;
  5041. if (sg != group_head)
  5042. goto next_sg;
  5043. }
  5044. #endif
  5045. #ifdef CONFIG_NUMA
  5046. /* Free memory allocated for various sched_group structures */
  5047. static void free_sched_groups(const cpumask_t *cpu_map)
  5048. {
  5049. int cpu, i;
  5050. for_each_cpu_mask(cpu, *cpu_map) {
  5051. struct sched_group **sched_group_nodes
  5052. = sched_group_nodes_bycpu[cpu];
  5053. if (!sched_group_nodes)
  5054. continue;
  5055. for (i = 0; i < MAX_NUMNODES; i++) {
  5056. cpumask_t nodemask = node_to_cpumask(i);
  5057. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5058. cpus_and(nodemask, nodemask, *cpu_map);
  5059. if (cpus_empty(nodemask))
  5060. continue;
  5061. if (sg == NULL)
  5062. continue;
  5063. sg = sg->next;
  5064. next_sg:
  5065. oldsg = sg;
  5066. sg = sg->next;
  5067. kfree(oldsg);
  5068. if (oldsg != sched_group_nodes[i])
  5069. goto next_sg;
  5070. }
  5071. kfree(sched_group_nodes);
  5072. sched_group_nodes_bycpu[cpu] = NULL;
  5073. }
  5074. }
  5075. #else
  5076. static void free_sched_groups(const cpumask_t *cpu_map)
  5077. {
  5078. }
  5079. #endif
  5080. /*
  5081. * Initialize sched groups cpu_power.
  5082. *
  5083. * cpu_power indicates the capacity of sched group, which is used while
  5084. * distributing the load between different sched groups in a sched domain.
  5085. * Typically cpu_power for all the groups in a sched domain will be same unless
  5086. * there are asymmetries in the topology. If there are asymmetries, group
  5087. * having more cpu_power will pickup more load compared to the group having
  5088. * less cpu_power.
  5089. *
  5090. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5091. * the maximum number of tasks a group can handle in the presence of other idle
  5092. * or lightly loaded groups in the same sched domain.
  5093. */
  5094. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5095. {
  5096. struct sched_domain *child;
  5097. struct sched_group *group;
  5098. WARN_ON(!sd || !sd->groups);
  5099. if (cpu != first_cpu(sd->groups->cpumask))
  5100. return;
  5101. child = sd->child;
  5102. sd->groups->__cpu_power = 0;
  5103. /*
  5104. * For perf policy, if the groups in child domain share resources
  5105. * (for example cores sharing some portions of the cache hierarchy
  5106. * or SMT), then set this domain groups cpu_power such that each group
  5107. * can handle only one task, when there are other idle groups in the
  5108. * same sched domain.
  5109. */
  5110. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5111. (child->flags &
  5112. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5113. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5114. return;
  5115. }
  5116. /*
  5117. * add cpu_power of each child group to this groups cpu_power
  5118. */
  5119. group = child->groups;
  5120. do {
  5121. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5122. group = group->next;
  5123. } while (group != child->groups);
  5124. }
  5125. /*
  5126. * Build sched domains for a given set of cpus and attach the sched domains
  5127. * to the individual cpus
  5128. */
  5129. static int build_sched_domains(const cpumask_t *cpu_map)
  5130. {
  5131. int i;
  5132. #ifdef CONFIG_NUMA
  5133. struct sched_group **sched_group_nodes = NULL;
  5134. int sd_allnodes = 0;
  5135. /*
  5136. * Allocate the per-node list of sched groups
  5137. */
  5138. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5139. GFP_KERNEL);
  5140. if (!sched_group_nodes) {
  5141. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5142. return -ENOMEM;
  5143. }
  5144. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5145. #endif
  5146. /*
  5147. * Set up domains for cpus specified by the cpu_map.
  5148. */
  5149. for_each_cpu_mask(i, *cpu_map) {
  5150. struct sched_domain *sd = NULL, *p;
  5151. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5152. cpus_and(nodemask, nodemask, *cpu_map);
  5153. #ifdef CONFIG_NUMA
  5154. if (cpus_weight(*cpu_map) >
  5155. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5156. sd = &per_cpu(allnodes_domains, i);
  5157. *sd = SD_ALLNODES_INIT;
  5158. sd->span = *cpu_map;
  5159. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5160. p = sd;
  5161. sd_allnodes = 1;
  5162. } else
  5163. p = NULL;
  5164. sd = &per_cpu(node_domains, i);
  5165. *sd = SD_NODE_INIT;
  5166. sd->span = sched_domain_node_span(cpu_to_node(i));
  5167. sd->parent = p;
  5168. if (p)
  5169. p->child = sd;
  5170. cpus_and(sd->span, sd->span, *cpu_map);
  5171. #endif
  5172. p = sd;
  5173. sd = &per_cpu(phys_domains, i);
  5174. *sd = SD_CPU_INIT;
  5175. sd->span = nodemask;
  5176. sd->parent = p;
  5177. if (p)
  5178. p->child = sd;
  5179. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5180. #ifdef CONFIG_SCHED_MC
  5181. p = sd;
  5182. sd = &per_cpu(core_domains, i);
  5183. *sd = SD_MC_INIT;
  5184. sd->span = cpu_coregroup_map(i);
  5185. cpus_and(sd->span, sd->span, *cpu_map);
  5186. sd->parent = p;
  5187. p->child = sd;
  5188. cpu_to_core_group(i, cpu_map, &sd->groups);
  5189. #endif
  5190. #ifdef CONFIG_SCHED_SMT
  5191. p = sd;
  5192. sd = &per_cpu(cpu_domains, i);
  5193. *sd = SD_SIBLING_INIT;
  5194. sd->span = cpu_sibling_map[i];
  5195. cpus_and(sd->span, sd->span, *cpu_map);
  5196. sd->parent = p;
  5197. p->child = sd;
  5198. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5199. #endif
  5200. }
  5201. #ifdef CONFIG_SCHED_SMT
  5202. /* Set up CPU (sibling) groups */
  5203. for_each_cpu_mask(i, *cpu_map) {
  5204. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5205. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5206. if (i != first_cpu(this_sibling_map))
  5207. continue;
  5208. init_sched_build_groups(this_sibling_map, cpu_map,
  5209. &cpu_to_cpu_group);
  5210. }
  5211. #endif
  5212. #ifdef CONFIG_SCHED_MC
  5213. /* Set up multi-core groups */
  5214. for_each_cpu_mask(i, *cpu_map) {
  5215. cpumask_t this_core_map = cpu_coregroup_map(i);
  5216. cpus_and(this_core_map, this_core_map, *cpu_map);
  5217. if (i != first_cpu(this_core_map))
  5218. continue;
  5219. init_sched_build_groups(this_core_map, cpu_map,
  5220. &cpu_to_core_group);
  5221. }
  5222. #endif
  5223. /* Set up physical groups */
  5224. for (i = 0; i < MAX_NUMNODES; i++) {
  5225. cpumask_t nodemask = node_to_cpumask(i);
  5226. cpus_and(nodemask, nodemask, *cpu_map);
  5227. if (cpus_empty(nodemask))
  5228. continue;
  5229. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5230. }
  5231. #ifdef CONFIG_NUMA
  5232. /* Set up node groups */
  5233. if (sd_allnodes)
  5234. init_sched_build_groups(*cpu_map, cpu_map,
  5235. &cpu_to_allnodes_group);
  5236. for (i = 0; i < MAX_NUMNODES; i++) {
  5237. /* Set up node groups */
  5238. struct sched_group *sg, *prev;
  5239. cpumask_t nodemask = node_to_cpumask(i);
  5240. cpumask_t domainspan;
  5241. cpumask_t covered = CPU_MASK_NONE;
  5242. int j;
  5243. cpus_and(nodemask, nodemask, *cpu_map);
  5244. if (cpus_empty(nodemask)) {
  5245. sched_group_nodes[i] = NULL;
  5246. continue;
  5247. }
  5248. domainspan = sched_domain_node_span(i);
  5249. cpus_and(domainspan, domainspan, *cpu_map);
  5250. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5251. if (!sg) {
  5252. printk(KERN_WARNING "Can not alloc domain group for "
  5253. "node %d\n", i);
  5254. goto error;
  5255. }
  5256. sched_group_nodes[i] = sg;
  5257. for_each_cpu_mask(j, nodemask) {
  5258. struct sched_domain *sd;
  5259. sd = &per_cpu(node_domains, j);
  5260. sd->groups = sg;
  5261. }
  5262. sg->__cpu_power = 0;
  5263. sg->cpumask = nodemask;
  5264. sg->next = sg;
  5265. cpus_or(covered, covered, nodemask);
  5266. prev = sg;
  5267. for (j = 0; j < MAX_NUMNODES; j++) {
  5268. cpumask_t tmp, notcovered;
  5269. int n = (i + j) % MAX_NUMNODES;
  5270. cpus_complement(notcovered, covered);
  5271. cpus_and(tmp, notcovered, *cpu_map);
  5272. cpus_and(tmp, tmp, domainspan);
  5273. if (cpus_empty(tmp))
  5274. break;
  5275. nodemask = node_to_cpumask(n);
  5276. cpus_and(tmp, tmp, nodemask);
  5277. if (cpus_empty(tmp))
  5278. continue;
  5279. sg = kmalloc_node(sizeof(struct sched_group),
  5280. GFP_KERNEL, i);
  5281. if (!sg) {
  5282. printk(KERN_WARNING
  5283. "Can not alloc domain group for node %d\n", j);
  5284. goto error;
  5285. }
  5286. sg->__cpu_power = 0;
  5287. sg->cpumask = tmp;
  5288. sg->next = prev->next;
  5289. cpus_or(covered, covered, tmp);
  5290. prev->next = sg;
  5291. prev = sg;
  5292. }
  5293. }
  5294. #endif
  5295. /* Calculate CPU power for physical packages and nodes */
  5296. #ifdef CONFIG_SCHED_SMT
  5297. for_each_cpu_mask(i, *cpu_map) {
  5298. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5299. init_sched_groups_power(i, sd);
  5300. }
  5301. #endif
  5302. #ifdef CONFIG_SCHED_MC
  5303. for_each_cpu_mask(i, *cpu_map) {
  5304. struct sched_domain *sd = &per_cpu(core_domains, i);
  5305. init_sched_groups_power(i, sd);
  5306. }
  5307. #endif
  5308. for_each_cpu_mask(i, *cpu_map) {
  5309. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5310. init_sched_groups_power(i, sd);
  5311. }
  5312. #ifdef CONFIG_NUMA
  5313. for (i = 0; i < MAX_NUMNODES; i++)
  5314. init_numa_sched_groups_power(sched_group_nodes[i]);
  5315. if (sd_allnodes) {
  5316. struct sched_group *sg;
  5317. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5318. init_numa_sched_groups_power(sg);
  5319. }
  5320. #endif
  5321. /* Attach the domains */
  5322. for_each_cpu_mask(i, *cpu_map) {
  5323. struct sched_domain *sd;
  5324. #ifdef CONFIG_SCHED_SMT
  5325. sd = &per_cpu(cpu_domains, i);
  5326. #elif defined(CONFIG_SCHED_MC)
  5327. sd = &per_cpu(core_domains, i);
  5328. #else
  5329. sd = &per_cpu(phys_domains, i);
  5330. #endif
  5331. cpu_attach_domain(sd, i);
  5332. }
  5333. return 0;
  5334. #ifdef CONFIG_NUMA
  5335. error:
  5336. free_sched_groups(cpu_map);
  5337. return -ENOMEM;
  5338. #endif
  5339. }
  5340. /*
  5341. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5342. */
  5343. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5344. {
  5345. cpumask_t cpu_default_map;
  5346. int err;
  5347. /*
  5348. * Setup mask for cpus without special case scheduling requirements.
  5349. * For now this just excludes isolated cpus, but could be used to
  5350. * exclude other special cases in the future.
  5351. */
  5352. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5353. err = build_sched_domains(&cpu_default_map);
  5354. return err;
  5355. }
  5356. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5357. {
  5358. free_sched_groups(cpu_map);
  5359. }
  5360. /*
  5361. * Detach sched domains from a group of cpus specified in cpu_map
  5362. * These cpus will now be attached to the NULL domain
  5363. */
  5364. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5365. {
  5366. int i;
  5367. for_each_cpu_mask(i, *cpu_map)
  5368. cpu_attach_domain(NULL, i);
  5369. synchronize_sched();
  5370. arch_destroy_sched_domains(cpu_map);
  5371. }
  5372. /*
  5373. * Partition sched domains as specified by the cpumasks below.
  5374. * This attaches all cpus from the cpumasks to the NULL domain,
  5375. * waits for a RCU quiescent period, recalculates sched
  5376. * domain information and then attaches them back to the
  5377. * correct sched domains
  5378. * Call with hotplug lock held
  5379. */
  5380. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5381. {
  5382. cpumask_t change_map;
  5383. int err = 0;
  5384. cpus_and(*partition1, *partition1, cpu_online_map);
  5385. cpus_and(*partition2, *partition2, cpu_online_map);
  5386. cpus_or(change_map, *partition1, *partition2);
  5387. /* Detach sched domains from all of the affected cpus */
  5388. detach_destroy_domains(&change_map);
  5389. if (!cpus_empty(*partition1))
  5390. err = build_sched_domains(partition1);
  5391. if (!err && !cpus_empty(*partition2))
  5392. err = build_sched_domains(partition2);
  5393. return err;
  5394. }
  5395. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5396. static int arch_reinit_sched_domains(void)
  5397. {
  5398. int err;
  5399. mutex_lock(&sched_hotcpu_mutex);
  5400. detach_destroy_domains(&cpu_online_map);
  5401. err = arch_init_sched_domains(&cpu_online_map);
  5402. mutex_unlock(&sched_hotcpu_mutex);
  5403. return err;
  5404. }
  5405. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5406. {
  5407. int ret;
  5408. if (buf[0] != '0' && buf[0] != '1')
  5409. return -EINVAL;
  5410. if (smt)
  5411. sched_smt_power_savings = (buf[0] == '1');
  5412. else
  5413. sched_mc_power_savings = (buf[0] == '1');
  5414. ret = arch_reinit_sched_domains();
  5415. return ret ? ret : count;
  5416. }
  5417. #ifdef CONFIG_SCHED_MC
  5418. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5419. {
  5420. return sprintf(page, "%u\n", sched_mc_power_savings);
  5421. }
  5422. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5423. const char *buf, size_t count)
  5424. {
  5425. return sched_power_savings_store(buf, count, 0);
  5426. }
  5427. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5428. sched_mc_power_savings_store);
  5429. #endif
  5430. #ifdef CONFIG_SCHED_SMT
  5431. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5432. {
  5433. return sprintf(page, "%u\n", sched_smt_power_savings);
  5434. }
  5435. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5436. const char *buf, size_t count)
  5437. {
  5438. return sched_power_savings_store(buf, count, 1);
  5439. }
  5440. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5441. sched_smt_power_savings_store);
  5442. #endif
  5443. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5444. {
  5445. int err = 0;
  5446. #ifdef CONFIG_SCHED_SMT
  5447. if (smt_capable())
  5448. err = sysfs_create_file(&cls->kset.kobj,
  5449. &attr_sched_smt_power_savings.attr);
  5450. #endif
  5451. #ifdef CONFIG_SCHED_MC
  5452. if (!err && mc_capable())
  5453. err = sysfs_create_file(&cls->kset.kobj,
  5454. &attr_sched_mc_power_savings.attr);
  5455. #endif
  5456. return err;
  5457. }
  5458. #endif
  5459. /*
  5460. * Force a reinitialization of the sched domains hierarchy. The domains
  5461. * and groups cannot be updated in place without racing with the balancing
  5462. * code, so we temporarily attach all running cpus to the NULL domain
  5463. * which will prevent rebalancing while the sched domains are recalculated.
  5464. */
  5465. static int update_sched_domains(struct notifier_block *nfb,
  5466. unsigned long action, void *hcpu)
  5467. {
  5468. switch (action) {
  5469. case CPU_UP_PREPARE:
  5470. case CPU_UP_PREPARE_FROZEN:
  5471. case CPU_DOWN_PREPARE:
  5472. case CPU_DOWN_PREPARE_FROZEN:
  5473. detach_destroy_domains(&cpu_online_map);
  5474. return NOTIFY_OK;
  5475. case CPU_UP_CANCELED:
  5476. case CPU_UP_CANCELED_FROZEN:
  5477. case CPU_DOWN_FAILED:
  5478. case CPU_DOWN_FAILED_FROZEN:
  5479. case CPU_ONLINE:
  5480. case CPU_ONLINE_FROZEN:
  5481. case CPU_DEAD:
  5482. case CPU_DEAD_FROZEN:
  5483. /*
  5484. * Fall through and re-initialise the domains.
  5485. */
  5486. break;
  5487. default:
  5488. return NOTIFY_DONE;
  5489. }
  5490. /* The hotplug lock is already held by cpu_up/cpu_down */
  5491. arch_init_sched_domains(&cpu_online_map);
  5492. return NOTIFY_OK;
  5493. }
  5494. void __init sched_init_smp(void)
  5495. {
  5496. cpumask_t non_isolated_cpus;
  5497. mutex_lock(&sched_hotcpu_mutex);
  5498. arch_init_sched_domains(&cpu_online_map);
  5499. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5500. if (cpus_empty(non_isolated_cpus))
  5501. cpu_set(smp_processor_id(), non_isolated_cpus);
  5502. mutex_unlock(&sched_hotcpu_mutex);
  5503. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5504. hotcpu_notifier(update_sched_domains, 0);
  5505. init_sched_domain_sysctl();
  5506. /* Move init over to a non-isolated CPU */
  5507. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5508. BUG();
  5509. }
  5510. #else
  5511. void __init sched_init_smp(void)
  5512. {
  5513. }
  5514. #endif /* CONFIG_SMP */
  5515. int in_sched_functions(unsigned long addr)
  5516. {
  5517. /* Linker adds these: start and end of __sched functions */
  5518. extern char __sched_text_start[], __sched_text_end[];
  5519. return in_lock_functions(addr) ||
  5520. (addr >= (unsigned long)__sched_text_start
  5521. && addr < (unsigned long)__sched_text_end);
  5522. }
  5523. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5524. {
  5525. cfs_rq->tasks_timeline = RB_ROOT;
  5526. #ifdef CONFIG_FAIR_GROUP_SCHED
  5527. cfs_rq->rq = rq;
  5528. #endif
  5529. }
  5530. void __init sched_init(void)
  5531. {
  5532. int highest_cpu = 0;
  5533. int i, j;
  5534. /*
  5535. * Link up the scheduling class hierarchy:
  5536. */
  5537. rt_sched_class.next = &fair_sched_class;
  5538. fair_sched_class.next = &idle_sched_class;
  5539. idle_sched_class.next = NULL;
  5540. for_each_possible_cpu(i) {
  5541. struct rt_prio_array *array;
  5542. struct rq *rq;
  5543. rq = cpu_rq(i);
  5544. spin_lock_init(&rq->lock);
  5545. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5546. rq->nr_running = 0;
  5547. rq->clock = 1;
  5548. init_cfs_rq(&rq->cfs, rq);
  5549. #ifdef CONFIG_FAIR_GROUP_SCHED
  5550. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5551. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5552. #endif
  5553. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5554. rq->cpu_load[j] = 0;
  5555. #ifdef CONFIG_SMP
  5556. rq->sd = NULL;
  5557. rq->active_balance = 0;
  5558. rq->next_balance = jiffies;
  5559. rq->push_cpu = 0;
  5560. rq->cpu = i;
  5561. rq->migration_thread = NULL;
  5562. INIT_LIST_HEAD(&rq->migration_queue);
  5563. #endif
  5564. atomic_set(&rq->nr_iowait, 0);
  5565. array = &rq->rt.active;
  5566. for (j = 0; j < MAX_RT_PRIO; j++) {
  5567. INIT_LIST_HEAD(array->queue + j);
  5568. __clear_bit(j, array->bitmap);
  5569. }
  5570. highest_cpu = i;
  5571. /* delimiter for bitsearch: */
  5572. __set_bit(MAX_RT_PRIO, array->bitmap);
  5573. }
  5574. set_load_weight(&init_task);
  5575. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5576. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5577. #endif
  5578. #ifdef CONFIG_SMP
  5579. nr_cpu_ids = highest_cpu + 1;
  5580. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5581. #endif
  5582. #ifdef CONFIG_RT_MUTEXES
  5583. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5584. #endif
  5585. /*
  5586. * The boot idle thread does lazy MMU switching as well:
  5587. */
  5588. atomic_inc(&init_mm.mm_count);
  5589. enter_lazy_tlb(&init_mm, current);
  5590. /*
  5591. * Make us the idle thread. Technically, schedule() should not be
  5592. * called from this thread, however somewhere below it might be,
  5593. * but because we are the idle thread, we just pick up running again
  5594. * when this runqueue becomes "idle".
  5595. */
  5596. init_idle(current, smp_processor_id());
  5597. /*
  5598. * During early bootup we pretend to be a normal task:
  5599. */
  5600. current->sched_class = &fair_sched_class;
  5601. }
  5602. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5603. void __might_sleep(char *file, int line)
  5604. {
  5605. #ifdef in_atomic
  5606. static unsigned long prev_jiffy; /* ratelimiting */
  5607. if ((in_atomic() || irqs_disabled()) &&
  5608. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5609. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5610. return;
  5611. prev_jiffy = jiffies;
  5612. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5613. " context at %s:%d\n", file, line);
  5614. printk("in_atomic():%d, irqs_disabled():%d\n",
  5615. in_atomic(), irqs_disabled());
  5616. debug_show_held_locks(current);
  5617. if (irqs_disabled())
  5618. print_irqtrace_events(current);
  5619. dump_stack();
  5620. }
  5621. #endif
  5622. }
  5623. EXPORT_SYMBOL(__might_sleep);
  5624. #endif
  5625. #ifdef CONFIG_MAGIC_SYSRQ
  5626. void normalize_rt_tasks(void)
  5627. {
  5628. struct task_struct *g, *p;
  5629. unsigned long flags;
  5630. struct rq *rq;
  5631. int on_rq;
  5632. read_lock_irq(&tasklist_lock);
  5633. do_each_thread(g, p) {
  5634. p->se.fair_key = 0;
  5635. p->se.exec_start = 0;
  5636. #ifdef CONFIG_SCHEDSTATS
  5637. p->se.wait_start = 0;
  5638. p->se.sleep_start = 0;
  5639. p->se.block_start = 0;
  5640. #endif
  5641. task_rq(p)->clock = 0;
  5642. if (!rt_task(p)) {
  5643. /*
  5644. * Renice negative nice level userspace
  5645. * tasks back to 0:
  5646. */
  5647. if (TASK_NICE(p) < 0 && p->mm)
  5648. set_user_nice(p, 0);
  5649. continue;
  5650. }
  5651. spin_lock_irqsave(&p->pi_lock, flags);
  5652. rq = __task_rq_lock(p);
  5653. #ifdef CONFIG_SMP
  5654. /*
  5655. * Do not touch the migration thread:
  5656. */
  5657. if (p == rq->migration_thread)
  5658. goto out_unlock;
  5659. #endif
  5660. update_rq_clock(rq);
  5661. on_rq = p->se.on_rq;
  5662. if (on_rq)
  5663. deactivate_task(rq, p, 0);
  5664. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5665. if (on_rq) {
  5666. activate_task(rq, p, 0);
  5667. resched_task(rq->curr);
  5668. }
  5669. #ifdef CONFIG_SMP
  5670. out_unlock:
  5671. #endif
  5672. __task_rq_unlock(rq);
  5673. spin_unlock_irqrestore(&p->pi_lock, flags);
  5674. } while_each_thread(g, p);
  5675. read_unlock_irq(&tasklist_lock);
  5676. }
  5677. #endif /* CONFIG_MAGIC_SYSRQ */
  5678. #ifdef CONFIG_IA64
  5679. /*
  5680. * These functions are only useful for the IA64 MCA handling.
  5681. *
  5682. * They can only be called when the whole system has been
  5683. * stopped - every CPU needs to be quiescent, and no scheduling
  5684. * activity can take place. Using them for anything else would
  5685. * be a serious bug, and as a result, they aren't even visible
  5686. * under any other configuration.
  5687. */
  5688. /**
  5689. * curr_task - return the current task for a given cpu.
  5690. * @cpu: the processor in question.
  5691. *
  5692. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5693. */
  5694. struct task_struct *curr_task(int cpu)
  5695. {
  5696. return cpu_curr(cpu);
  5697. }
  5698. /**
  5699. * set_curr_task - set the current task for a given cpu.
  5700. * @cpu: the processor in question.
  5701. * @p: the task pointer to set.
  5702. *
  5703. * Description: This function must only be used when non-maskable interrupts
  5704. * are serviced on a separate stack. It allows the architecture to switch the
  5705. * notion of the current task on a cpu in a non-blocking manner. This function
  5706. * must be called with all CPU's synchronized, and interrupts disabled, the
  5707. * and caller must save the original value of the current task (see
  5708. * curr_task() above) and restore that value before reenabling interrupts and
  5709. * re-starting the system.
  5710. *
  5711. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5712. */
  5713. void set_curr_task(int cpu, struct task_struct *p)
  5714. {
  5715. cpu_curr(cpu) = p;
  5716. }
  5717. #endif