enlighten.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/page-flags.h>
  26. #include <linux/highmem.h>
  27. #include <linux/console.h>
  28. #include <xen/interface/xen.h>
  29. #include <xen/interface/physdev.h>
  30. #include <xen/interface/vcpu.h>
  31. #include <xen/interface/sched.h>
  32. #include <xen/features.h>
  33. #include <xen/page.h>
  34. #include <xen/hvc-console.h>
  35. #include <asm/paravirt.h>
  36. #include <asm/page.h>
  37. #include <asm/xen/hypercall.h>
  38. #include <asm/xen/hypervisor.h>
  39. #include <asm/fixmap.h>
  40. #include <asm/processor.h>
  41. #include <asm/msr-index.h>
  42. #include <asm/setup.h>
  43. #include <asm/desc.h>
  44. #include <asm/pgtable.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/reboot.h>
  47. #include "xen-ops.h"
  48. #include "mmu.h"
  49. #include "multicalls.h"
  50. EXPORT_SYMBOL_GPL(hypercall_page);
  51. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  52. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  53. /*
  54. * Identity map, in addition to plain kernel map. This needs to be
  55. * large enough to allocate page table pages to allocate the rest.
  56. * Each page can map 2MB.
  57. */
  58. static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
  59. #ifdef CONFIG_X86_64
  60. /* l3 pud for userspace vsyscall mapping */
  61. static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  62. #endif /* CONFIG_X86_64 */
  63. /*
  64. * Note about cr3 (pagetable base) values:
  65. *
  66. * xen_cr3 contains the current logical cr3 value; it contains the
  67. * last set cr3. This may not be the current effective cr3, because
  68. * its update may be being lazily deferred. However, a vcpu looking
  69. * at its own cr3 can use this value knowing that it everything will
  70. * be self-consistent.
  71. *
  72. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  73. * hypercall to set the vcpu cr3 is complete (so it may be a little
  74. * out of date, but it will never be set early). If one vcpu is
  75. * looking at another vcpu's cr3 value, it should use this variable.
  76. */
  77. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  78. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  79. struct start_info *xen_start_info;
  80. EXPORT_SYMBOL_GPL(xen_start_info);
  81. struct shared_info xen_dummy_shared_info;
  82. /*
  83. * Point at some empty memory to start with. We map the real shared_info
  84. * page as soon as fixmap is up and running.
  85. */
  86. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  87. /*
  88. * Flag to determine whether vcpu info placement is available on all
  89. * VCPUs. We assume it is to start with, and then set it to zero on
  90. * the first failure. This is because it can succeed on some VCPUs
  91. * and not others, since it can involve hypervisor memory allocation,
  92. * or because the guest failed to guarantee all the appropriate
  93. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  94. *
  95. * Note that any particular CPU may be using a placed vcpu structure,
  96. * but we can only optimise if the all are.
  97. *
  98. * 0: not available, 1: available
  99. */
  100. static int have_vcpu_info_placement = 1;
  101. static void xen_vcpu_setup(int cpu)
  102. {
  103. struct vcpu_register_vcpu_info info;
  104. int err;
  105. struct vcpu_info *vcpup;
  106. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  107. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  108. if (!have_vcpu_info_placement)
  109. return; /* already tested, not available */
  110. vcpup = &per_cpu(xen_vcpu_info, cpu);
  111. info.mfn = virt_to_mfn(vcpup);
  112. info.offset = offset_in_page(vcpup);
  113. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  114. cpu, vcpup, info.mfn, info.offset);
  115. /* Check to see if the hypervisor will put the vcpu_info
  116. structure where we want it, which allows direct access via
  117. a percpu-variable. */
  118. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  119. if (err) {
  120. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  121. have_vcpu_info_placement = 0;
  122. } else {
  123. /* This cpu is using the registered vcpu info, even if
  124. later ones fail to. */
  125. per_cpu(xen_vcpu, cpu) = vcpup;
  126. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  127. cpu, vcpup);
  128. }
  129. }
  130. /*
  131. * On restore, set the vcpu placement up again.
  132. * If it fails, then we're in a bad state, since
  133. * we can't back out from using it...
  134. */
  135. void xen_vcpu_restore(void)
  136. {
  137. if (have_vcpu_info_placement) {
  138. int cpu;
  139. for_each_online_cpu(cpu) {
  140. bool other_cpu = (cpu != smp_processor_id());
  141. if (other_cpu &&
  142. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  143. BUG();
  144. xen_vcpu_setup(cpu);
  145. if (other_cpu &&
  146. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  147. BUG();
  148. }
  149. BUG_ON(!have_vcpu_info_placement);
  150. }
  151. }
  152. static void __init xen_banner(void)
  153. {
  154. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  155. pv_info.name);
  156. printk(KERN_INFO "Hypervisor signature: %s%s\n",
  157. xen_start_info->magic,
  158. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  159. }
  160. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  161. unsigned int *cx, unsigned int *dx)
  162. {
  163. unsigned maskedx = ~0;
  164. /*
  165. * Mask out inconvenient features, to try and disable as many
  166. * unsupported kernel subsystems as possible.
  167. */
  168. if (*ax == 1)
  169. maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
  170. (1 << X86_FEATURE_ACPI) | /* disable ACPI */
  171. (1 << X86_FEATURE_MCE) | /* disable MCE */
  172. (1 << X86_FEATURE_MCA) | /* disable MCA */
  173. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  174. asm(XEN_EMULATE_PREFIX "cpuid"
  175. : "=a" (*ax),
  176. "=b" (*bx),
  177. "=c" (*cx),
  178. "=d" (*dx)
  179. : "0" (*ax), "2" (*cx));
  180. *dx &= maskedx;
  181. }
  182. static void xen_set_debugreg(int reg, unsigned long val)
  183. {
  184. HYPERVISOR_set_debugreg(reg, val);
  185. }
  186. static unsigned long xen_get_debugreg(int reg)
  187. {
  188. return HYPERVISOR_get_debugreg(reg);
  189. }
  190. static unsigned long xen_save_fl(void)
  191. {
  192. struct vcpu_info *vcpu;
  193. unsigned long flags;
  194. vcpu = x86_read_percpu(xen_vcpu);
  195. /* flag has opposite sense of mask */
  196. flags = !vcpu->evtchn_upcall_mask;
  197. /* convert to IF type flag
  198. -0 -> 0x00000000
  199. -1 -> 0xffffffff
  200. */
  201. return (-flags) & X86_EFLAGS_IF;
  202. }
  203. static void xen_restore_fl(unsigned long flags)
  204. {
  205. struct vcpu_info *vcpu;
  206. /* convert from IF type flag */
  207. flags = !(flags & X86_EFLAGS_IF);
  208. /* There's a one instruction preempt window here. We need to
  209. make sure we're don't switch CPUs between getting the vcpu
  210. pointer and updating the mask. */
  211. preempt_disable();
  212. vcpu = x86_read_percpu(xen_vcpu);
  213. vcpu->evtchn_upcall_mask = flags;
  214. preempt_enable_no_resched();
  215. /* Doesn't matter if we get preempted here, because any
  216. pending event will get dealt with anyway. */
  217. if (flags == 0) {
  218. preempt_check_resched();
  219. barrier(); /* unmask then check (avoid races) */
  220. if (unlikely(vcpu->evtchn_upcall_pending))
  221. force_evtchn_callback();
  222. }
  223. }
  224. static void xen_irq_disable(void)
  225. {
  226. /* There's a one instruction preempt window here. We need to
  227. make sure we're don't switch CPUs between getting the vcpu
  228. pointer and updating the mask. */
  229. preempt_disable();
  230. x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
  231. preempt_enable_no_resched();
  232. }
  233. static void xen_irq_enable(void)
  234. {
  235. struct vcpu_info *vcpu;
  236. /* We don't need to worry about being preempted here, since
  237. either a) interrupts are disabled, so no preemption, or b)
  238. the caller is confused and is trying to re-enable interrupts
  239. on an indeterminate processor. */
  240. vcpu = x86_read_percpu(xen_vcpu);
  241. vcpu->evtchn_upcall_mask = 0;
  242. /* Doesn't matter if we get preempted here, because any
  243. pending event will get dealt with anyway. */
  244. barrier(); /* unmask then check (avoid races) */
  245. if (unlikely(vcpu->evtchn_upcall_pending))
  246. force_evtchn_callback();
  247. }
  248. static void xen_safe_halt(void)
  249. {
  250. /* Blocking includes an implicit local_irq_enable(). */
  251. if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
  252. BUG();
  253. }
  254. static void xen_halt(void)
  255. {
  256. if (irqs_disabled())
  257. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  258. else
  259. xen_safe_halt();
  260. }
  261. static void xen_leave_lazy(void)
  262. {
  263. paravirt_leave_lazy(paravirt_get_lazy_mode());
  264. xen_mc_flush();
  265. }
  266. static unsigned long xen_store_tr(void)
  267. {
  268. return 0;
  269. }
  270. static void xen_set_ldt(const void *addr, unsigned entries)
  271. {
  272. struct mmuext_op *op;
  273. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  274. op = mcs.args;
  275. op->cmd = MMUEXT_SET_LDT;
  276. op->arg1.linear_addr = (unsigned long)addr;
  277. op->arg2.nr_ents = entries;
  278. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  279. xen_mc_issue(PARAVIRT_LAZY_CPU);
  280. }
  281. static void xen_load_gdt(const struct desc_ptr *dtr)
  282. {
  283. unsigned long *frames;
  284. unsigned long va = dtr->address;
  285. unsigned int size = dtr->size + 1;
  286. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  287. int f;
  288. struct multicall_space mcs;
  289. /* A GDT can be up to 64k in size, which corresponds to 8192
  290. 8-byte entries, or 16 4k pages.. */
  291. BUG_ON(size > 65536);
  292. BUG_ON(va & ~PAGE_MASK);
  293. mcs = xen_mc_entry(sizeof(*frames) * pages);
  294. frames = mcs.args;
  295. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  296. frames[f] = virt_to_mfn(va);
  297. make_lowmem_page_readonly((void *)va);
  298. }
  299. MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
  300. xen_mc_issue(PARAVIRT_LAZY_CPU);
  301. }
  302. static void load_TLS_descriptor(struct thread_struct *t,
  303. unsigned int cpu, unsigned int i)
  304. {
  305. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  306. xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  307. struct multicall_space mc = __xen_mc_entry(0);
  308. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  309. }
  310. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  311. {
  312. /*
  313. * XXX sleazy hack: If we're being called in a lazy-cpu zone,
  314. * it means we're in a context switch, and %gs has just been
  315. * saved. This means we can zero it out to prevent faults on
  316. * exit from the hypervisor if the next process has no %gs.
  317. * Either way, it has been saved, and the new value will get
  318. * loaded properly. This will go away as soon as Xen has been
  319. * modified to not save/restore %gs for normal hypercalls.
  320. *
  321. * On x86_64, this hack is not used for %gs, because gs points
  322. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  323. * must not zero %gs on x86_64
  324. *
  325. * For x86_64, we need to zero %fs, otherwise we may get an
  326. * exception between the new %fs descriptor being loaded and
  327. * %fs being effectively cleared at __switch_to().
  328. */
  329. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  330. #ifdef CONFIG_X86_32
  331. loadsegment(gs, 0);
  332. #else
  333. loadsegment(fs, 0);
  334. #endif
  335. }
  336. xen_mc_batch();
  337. load_TLS_descriptor(t, cpu, 0);
  338. load_TLS_descriptor(t, cpu, 1);
  339. load_TLS_descriptor(t, cpu, 2);
  340. xen_mc_issue(PARAVIRT_LAZY_CPU);
  341. }
  342. #ifdef CONFIG_X86_64
  343. static void xen_load_gs_index(unsigned int idx)
  344. {
  345. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  346. BUG();
  347. }
  348. #endif
  349. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  350. const void *ptr)
  351. {
  352. unsigned long lp = (unsigned long)&dt[entrynum];
  353. xmaddr_t mach_lp = virt_to_machine(lp);
  354. u64 entry = *(u64 *)ptr;
  355. preempt_disable();
  356. xen_mc_flush();
  357. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  358. BUG();
  359. preempt_enable();
  360. }
  361. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  362. struct trap_info *info)
  363. {
  364. if (val->type != 0xf && val->type != 0xe)
  365. return 0;
  366. info->vector = vector;
  367. info->address = gate_offset(*val);
  368. info->cs = gate_segment(*val);
  369. info->flags = val->dpl;
  370. /* interrupt gates clear IF */
  371. if (val->type == 0xe)
  372. info->flags |= 4;
  373. return 1;
  374. }
  375. /* Locations of each CPU's IDT */
  376. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  377. /* Set an IDT entry. If the entry is part of the current IDT, then
  378. also update Xen. */
  379. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  380. {
  381. unsigned long p = (unsigned long)&dt[entrynum];
  382. unsigned long start, end;
  383. preempt_disable();
  384. start = __get_cpu_var(idt_desc).address;
  385. end = start + __get_cpu_var(idt_desc).size + 1;
  386. xen_mc_flush();
  387. native_write_idt_entry(dt, entrynum, g);
  388. if (p >= start && (p + 8) <= end) {
  389. struct trap_info info[2];
  390. info[1].address = 0;
  391. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  392. if (HYPERVISOR_set_trap_table(info))
  393. BUG();
  394. }
  395. preempt_enable();
  396. }
  397. static void xen_convert_trap_info(const struct desc_ptr *desc,
  398. struct trap_info *traps)
  399. {
  400. unsigned in, out, count;
  401. count = (desc->size+1) / sizeof(gate_desc);
  402. BUG_ON(count > 256);
  403. for (in = out = 0; in < count; in++) {
  404. gate_desc *entry = (gate_desc*)(desc->address) + in;
  405. if (cvt_gate_to_trap(in, entry, &traps[out]))
  406. out++;
  407. }
  408. traps[out].address = 0;
  409. }
  410. void xen_copy_trap_info(struct trap_info *traps)
  411. {
  412. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  413. xen_convert_trap_info(desc, traps);
  414. }
  415. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  416. hold a spinlock to protect the static traps[] array (static because
  417. it avoids allocation, and saves stack space). */
  418. static void xen_load_idt(const struct desc_ptr *desc)
  419. {
  420. static DEFINE_SPINLOCK(lock);
  421. static struct trap_info traps[257];
  422. spin_lock(&lock);
  423. __get_cpu_var(idt_desc) = *desc;
  424. xen_convert_trap_info(desc, traps);
  425. xen_mc_flush();
  426. if (HYPERVISOR_set_trap_table(traps))
  427. BUG();
  428. spin_unlock(&lock);
  429. }
  430. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  431. they're handled differently. */
  432. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  433. const void *desc, int type)
  434. {
  435. preempt_disable();
  436. switch (type) {
  437. case DESC_LDT:
  438. case DESC_TSS:
  439. /* ignore */
  440. break;
  441. default: {
  442. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  443. xen_mc_flush();
  444. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  445. BUG();
  446. }
  447. }
  448. preempt_enable();
  449. }
  450. static void xen_load_sp0(struct tss_struct *tss,
  451. struct thread_struct *thread)
  452. {
  453. struct multicall_space mcs = xen_mc_entry(0);
  454. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  455. xen_mc_issue(PARAVIRT_LAZY_CPU);
  456. }
  457. static void xen_set_iopl_mask(unsigned mask)
  458. {
  459. struct physdev_set_iopl set_iopl;
  460. /* Force the change at ring 0. */
  461. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  462. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  463. }
  464. static void xen_io_delay(void)
  465. {
  466. }
  467. #ifdef CONFIG_X86_LOCAL_APIC
  468. static u32 xen_apic_read(unsigned long reg)
  469. {
  470. return 0;
  471. }
  472. static void xen_apic_write(unsigned long reg, u32 val)
  473. {
  474. /* Warn to see if there's any stray references */
  475. WARN_ON(1);
  476. }
  477. #endif
  478. static void xen_flush_tlb(void)
  479. {
  480. struct mmuext_op *op;
  481. struct multicall_space mcs;
  482. preempt_disable();
  483. mcs = xen_mc_entry(sizeof(*op));
  484. op = mcs.args;
  485. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  486. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  487. xen_mc_issue(PARAVIRT_LAZY_MMU);
  488. preempt_enable();
  489. }
  490. static void xen_flush_tlb_single(unsigned long addr)
  491. {
  492. struct mmuext_op *op;
  493. struct multicall_space mcs;
  494. preempt_disable();
  495. mcs = xen_mc_entry(sizeof(*op));
  496. op = mcs.args;
  497. op->cmd = MMUEXT_INVLPG_LOCAL;
  498. op->arg1.linear_addr = addr & PAGE_MASK;
  499. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  500. xen_mc_issue(PARAVIRT_LAZY_MMU);
  501. preempt_enable();
  502. }
  503. static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
  504. unsigned long va)
  505. {
  506. struct {
  507. struct mmuext_op op;
  508. cpumask_t mask;
  509. } *args;
  510. cpumask_t cpumask = *cpus;
  511. struct multicall_space mcs;
  512. /*
  513. * A couple of (to be removed) sanity checks:
  514. *
  515. * - current CPU must not be in mask
  516. * - mask must exist :)
  517. */
  518. BUG_ON(cpus_empty(cpumask));
  519. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  520. BUG_ON(!mm);
  521. /* If a CPU which we ran on has gone down, OK. */
  522. cpus_and(cpumask, cpumask, cpu_online_map);
  523. if (cpus_empty(cpumask))
  524. return;
  525. mcs = xen_mc_entry(sizeof(*args));
  526. args = mcs.args;
  527. args->mask = cpumask;
  528. args->op.arg2.vcpumask = &args->mask;
  529. if (va == TLB_FLUSH_ALL) {
  530. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  531. } else {
  532. args->op.cmd = MMUEXT_INVLPG_MULTI;
  533. args->op.arg1.linear_addr = va;
  534. }
  535. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  536. xen_mc_issue(PARAVIRT_LAZY_MMU);
  537. }
  538. static void xen_clts(void)
  539. {
  540. struct multicall_space mcs;
  541. mcs = xen_mc_entry(0);
  542. MULTI_fpu_taskswitch(mcs.mc, 0);
  543. xen_mc_issue(PARAVIRT_LAZY_CPU);
  544. }
  545. static void xen_write_cr0(unsigned long cr0)
  546. {
  547. struct multicall_space mcs;
  548. /* Only pay attention to cr0.TS; everything else is
  549. ignored. */
  550. mcs = xen_mc_entry(0);
  551. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  552. xen_mc_issue(PARAVIRT_LAZY_CPU);
  553. }
  554. static void xen_write_cr2(unsigned long cr2)
  555. {
  556. x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
  557. }
  558. static unsigned long xen_read_cr2(void)
  559. {
  560. return x86_read_percpu(xen_vcpu)->arch.cr2;
  561. }
  562. static unsigned long xen_read_cr2_direct(void)
  563. {
  564. return x86_read_percpu(xen_vcpu_info.arch.cr2);
  565. }
  566. static void xen_write_cr4(unsigned long cr4)
  567. {
  568. cr4 &= ~X86_CR4_PGE;
  569. cr4 &= ~X86_CR4_PSE;
  570. native_write_cr4(cr4);
  571. }
  572. static unsigned long xen_read_cr3(void)
  573. {
  574. return x86_read_percpu(xen_cr3);
  575. }
  576. static void set_current_cr3(void *v)
  577. {
  578. x86_write_percpu(xen_current_cr3, (unsigned long)v);
  579. }
  580. static void __xen_write_cr3(bool kernel, unsigned long cr3)
  581. {
  582. struct mmuext_op *op;
  583. struct multicall_space mcs;
  584. unsigned long mfn;
  585. if (cr3)
  586. mfn = pfn_to_mfn(PFN_DOWN(cr3));
  587. else
  588. mfn = 0;
  589. WARN_ON(mfn == 0 && kernel);
  590. mcs = __xen_mc_entry(sizeof(*op));
  591. op = mcs.args;
  592. op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
  593. op->arg1.mfn = mfn;
  594. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  595. if (kernel) {
  596. x86_write_percpu(xen_cr3, cr3);
  597. /* Update xen_current_cr3 once the batch has actually
  598. been submitted. */
  599. xen_mc_callback(set_current_cr3, (void *)cr3);
  600. }
  601. }
  602. static void xen_write_cr3(unsigned long cr3)
  603. {
  604. BUG_ON(preemptible());
  605. xen_mc_batch(); /* disables interrupts */
  606. /* Update while interrupts are disabled, so its atomic with
  607. respect to ipis */
  608. x86_write_percpu(xen_cr3, cr3);
  609. __xen_write_cr3(true, cr3);
  610. #ifdef CONFIG_X86_64
  611. {
  612. pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
  613. if (user_pgd)
  614. __xen_write_cr3(false, __pa(user_pgd));
  615. else
  616. __xen_write_cr3(false, 0);
  617. }
  618. #endif
  619. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  620. }
  621. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  622. {
  623. int ret;
  624. ret = 0;
  625. switch(msr) {
  626. #ifdef CONFIG_X86_64
  627. unsigned which;
  628. u64 base;
  629. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  630. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  631. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  632. set:
  633. base = ((u64)high << 32) | low;
  634. if (HYPERVISOR_set_segment_base(which, base) != 0)
  635. ret = -EFAULT;
  636. break;
  637. #endif
  638. default:
  639. ret = native_write_msr_safe(msr, low, high);
  640. }
  641. return ret;
  642. }
  643. /* Early in boot, while setting up the initial pagetable, assume
  644. everything is pinned. */
  645. static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
  646. {
  647. #ifdef CONFIG_FLATMEM
  648. BUG_ON(mem_map); /* should only be used early */
  649. #endif
  650. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  651. }
  652. /* Early release_pte assumes that all pts are pinned, since there's
  653. only init_mm and anything attached to that is pinned. */
  654. static void xen_release_pte_init(u32 pfn)
  655. {
  656. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  657. }
  658. static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  659. {
  660. struct mmuext_op op;
  661. op.cmd = cmd;
  662. op.arg1.mfn = pfn_to_mfn(pfn);
  663. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  664. BUG();
  665. }
  666. /* This needs to make sure the new pte page is pinned iff its being
  667. attached to a pinned pagetable. */
  668. static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
  669. {
  670. struct page *page = pfn_to_page(pfn);
  671. if (PagePinned(virt_to_page(mm->pgd))) {
  672. SetPagePinned(page);
  673. if (!PageHighMem(page)) {
  674. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  675. if (level == PT_PTE)
  676. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  677. } else
  678. /* make sure there are no stray mappings of
  679. this page */
  680. kmap_flush_unused();
  681. }
  682. }
  683. static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
  684. {
  685. xen_alloc_ptpage(mm, pfn, PT_PTE);
  686. }
  687. static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
  688. {
  689. xen_alloc_ptpage(mm, pfn, PT_PMD);
  690. }
  691. static int xen_pgd_alloc(struct mm_struct *mm)
  692. {
  693. pgd_t *pgd = mm->pgd;
  694. int ret = 0;
  695. BUG_ON(PagePinned(virt_to_page(pgd)));
  696. #ifdef CONFIG_X86_64
  697. {
  698. struct page *page = virt_to_page(pgd);
  699. pgd_t *user_pgd;
  700. BUG_ON(page->private != 0);
  701. ret = -ENOMEM;
  702. user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  703. page->private = (unsigned long)user_pgd;
  704. if (user_pgd != NULL) {
  705. user_pgd[pgd_index(VSYSCALL_START)] =
  706. __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
  707. ret = 0;
  708. }
  709. BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
  710. }
  711. #endif
  712. return ret;
  713. }
  714. static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
  715. {
  716. #ifdef CONFIG_X86_64
  717. pgd_t *user_pgd = xen_get_user_pgd(pgd);
  718. if (user_pgd)
  719. free_page((unsigned long)user_pgd);
  720. #endif
  721. }
  722. /* This should never happen until we're OK to use struct page */
  723. static void xen_release_ptpage(u32 pfn, unsigned level)
  724. {
  725. struct page *page = pfn_to_page(pfn);
  726. if (PagePinned(page)) {
  727. if (!PageHighMem(page)) {
  728. if (level == PT_PTE)
  729. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  730. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  731. }
  732. ClearPagePinned(page);
  733. }
  734. }
  735. static void xen_release_pte(u32 pfn)
  736. {
  737. xen_release_ptpage(pfn, PT_PTE);
  738. }
  739. static void xen_release_pmd(u32 pfn)
  740. {
  741. xen_release_ptpage(pfn, PT_PMD);
  742. }
  743. #if PAGETABLE_LEVELS == 4
  744. static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
  745. {
  746. xen_alloc_ptpage(mm, pfn, PT_PUD);
  747. }
  748. static void xen_release_pud(u32 pfn)
  749. {
  750. xen_release_ptpage(pfn, PT_PUD);
  751. }
  752. #endif
  753. #ifdef CONFIG_HIGHPTE
  754. static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
  755. {
  756. pgprot_t prot = PAGE_KERNEL;
  757. if (PagePinned(page))
  758. prot = PAGE_KERNEL_RO;
  759. if (0 && PageHighMem(page))
  760. printk("mapping highpte %lx type %d prot %s\n",
  761. page_to_pfn(page), type,
  762. (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
  763. return kmap_atomic_prot(page, type, prot);
  764. }
  765. #endif
  766. static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
  767. {
  768. /* If there's an existing pte, then don't allow _PAGE_RW to be set */
  769. if (pte_val_ma(*ptep) & _PAGE_PRESENT)
  770. pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
  771. pte_val_ma(pte));
  772. return pte;
  773. }
  774. /* Init-time set_pte while constructing initial pagetables, which
  775. doesn't allow RO pagetable pages to be remapped RW */
  776. static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
  777. {
  778. pte = mask_rw_pte(ptep, pte);
  779. xen_set_pte(ptep, pte);
  780. }
  781. static __init void xen_pagetable_setup_start(pgd_t *base)
  782. {
  783. }
  784. void xen_setup_shared_info(void)
  785. {
  786. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  787. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  788. xen_start_info->shared_info);
  789. HYPERVISOR_shared_info =
  790. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  791. } else
  792. HYPERVISOR_shared_info =
  793. (struct shared_info *)__va(xen_start_info->shared_info);
  794. #ifndef CONFIG_SMP
  795. /* In UP this is as good a place as any to set up shared info */
  796. xen_setup_vcpu_info_placement();
  797. #endif
  798. xen_setup_mfn_list_list();
  799. }
  800. static __init void xen_pagetable_setup_done(pgd_t *base)
  801. {
  802. xen_setup_shared_info();
  803. }
  804. static __init void xen_post_allocator_init(void)
  805. {
  806. pv_mmu_ops.set_pte = xen_set_pte;
  807. pv_mmu_ops.set_pmd = xen_set_pmd;
  808. pv_mmu_ops.set_pud = xen_set_pud;
  809. #if PAGETABLE_LEVELS == 4
  810. pv_mmu_ops.set_pgd = xen_set_pgd;
  811. #endif
  812. /* This will work as long as patching hasn't happened yet
  813. (which it hasn't) */
  814. pv_mmu_ops.alloc_pte = xen_alloc_pte;
  815. pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
  816. pv_mmu_ops.release_pte = xen_release_pte;
  817. pv_mmu_ops.release_pmd = xen_release_pmd;
  818. #if PAGETABLE_LEVELS == 4
  819. pv_mmu_ops.alloc_pud = xen_alloc_pud;
  820. pv_mmu_ops.release_pud = xen_release_pud;
  821. #endif
  822. #ifdef CONFIG_X86_64
  823. SetPagePinned(virt_to_page(level3_user_vsyscall));
  824. #endif
  825. xen_mark_init_mm_pinned();
  826. }
  827. /* This is called once we have the cpu_possible_map */
  828. void xen_setup_vcpu_info_placement(void)
  829. {
  830. int cpu;
  831. for_each_possible_cpu(cpu)
  832. xen_vcpu_setup(cpu);
  833. /* xen_vcpu_setup managed to place the vcpu_info within the
  834. percpu area for all cpus, so make use of it */
  835. #ifdef CONFIG_X86_32
  836. if (have_vcpu_info_placement) {
  837. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  838. pv_irq_ops.save_fl = xen_save_fl_direct;
  839. pv_irq_ops.restore_fl = xen_restore_fl_direct;
  840. pv_irq_ops.irq_disable = xen_irq_disable_direct;
  841. pv_irq_ops.irq_enable = xen_irq_enable_direct;
  842. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  843. }
  844. #endif
  845. }
  846. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  847. unsigned long addr, unsigned len)
  848. {
  849. char *start, *end, *reloc;
  850. unsigned ret;
  851. start = end = reloc = NULL;
  852. #define SITE(op, x) \
  853. case PARAVIRT_PATCH(op.x): \
  854. if (have_vcpu_info_placement) { \
  855. start = (char *)xen_##x##_direct; \
  856. end = xen_##x##_direct_end; \
  857. reloc = xen_##x##_direct_reloc; \
  858. } \
  859. goto patch_site
  860. switch (type) {
  861. #ifdef CONFIG_X86_32
  862. SITE(pv_irq_ops, irq_enable);
  863. SITE(pv_irq_ops, irq_disable);
  864. SITE(pv_irq_ops, save_fl);
  865. SITE(pv_irq_ops, restore_fl);
  866. #endif /* CONFIG_X86_32 */
  867. #undef SITE
  868. patch_site:
  869. if (start == NULL || (end-start) > len)
  870. goto default_patch;
  871. ret = paravirt_patch_insns(insnbuf, len, start, end);
  872. /* Note: because reloc is assigned from something that
  873. appears to be an array, gcc assumes it's non-null,
  874. but doesn't know its relationship with start and
  875. end. */
  876. if (reloc > start && reloc < end) {
  877. int reloc_off = reloc - start;
  878. long *relocp = (long *)(insnbuf + reloc_off);
  879. long delta = start - (char *)addr;
  880. *relocp += delta;
  881. }
  882. break;
  883. default_patch:
  884. default:
  885. ret = paravirt_patch_default(type, clobbers, insnbuf,
  886. addr, len);
  887. break;
  888. }
  889. return ret;
  890. }
  891. static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
  892. {
  893. pte_t pte;
  894. phys >>= PAGE_SHIFT;
  895. switch (idx) {
  896. case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
  897. #ifdef CONFIG_X86_F00F_BUG
  898. case FIX_F00F_IDT:
  899. #endif
  900. #ifdef CONFIG_X86_32
  901. case FIX_WP_TEST:
  902. case FIX_VDSO:
  903. case FIX_KMAP_BEGIN ... FIX_KMAP_END:
  904. #else
  905. case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
  906. #endif
  907. #ifdef CONFIG_X86_LOCAL_APIC
  908. case FIX_APIC_BASE: /* maps dummy local APIC */
  909. #endif
  910. pte = pfn_pte(phys, prot);
  911. break;
  912. default:
  913. pte = mfn_pte(phys, prot);
  914. break;
  915. }
  916. __native_set_fixmap(idx, pte);
  917. #ifdef CONFIG_X86_64
  918. /* Replicate changes to map the vsyscall page into the user
  919. pagetable vsyscall mapping. */
  920. if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
  921. unsigned long vaddr = __fix_to_virt(idx);
  922. set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
  923. }
  924. #endif
  925. }
  926. static const struct pv_info xen_info __initdata = {
  927. .paravirt_enabled = 1,
  928. .shared_kernel_pmd = 0,
  929. .name = "Xen",
  930. };
  931. static const struct pv_init_ops xen_init_ops __initdata = {
  932. .patch = xen_patch,
  933. .banner = xen_banner,
  934. .memory_setup = xen_memory_setup,
  935. .arch_setup = xen_arch_setup,
  936. .post_allocator_init = xen_post_allocator_init,
  937. };
  938. static const struct pv_time_ops xen_time_ops __initdata = {
  939. .time_init = xen_time_init,
  940. .set_wallclock = xen_set_wallclock,
  941. .get_wallclock = xen_get_wallclock,
  942. .get_tsc_khz = xen_tsc_khz,
  943. .sched_clock = xen_sched_clock,
  944. };
  945. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  946. .cpuid = xen_cpuid,
  947. .set_debugreg = xen_set_debugreg,
  948. .get_debugreg = xen_get_debugreg,
  949. .clts = xen_clts,
  950. .read_cr0 = native_read_cr0,
  951. .write_cr0 = xen_write_cr0,
  952. .read_cr4 = native_read_cr4,
  953. .read_cr4_safe = native_read_cr4_safe,
  954. .write_cr4 = xen_write_cr4,
  955. .wbinvd = native_wbinvd,
  956. .read_msr = native_read_msr_safe,
  957. .write_msr = xen_write_msr_safe,
  958. .read_tsc = native_read_tsc,
  959. .read_pmc = native_read_pmc,
  960. .iret = xen_iret,
  961. .irq_enable_sysexit = xen_sysexit,
  962. #ifdef CONFIG_X86_64
  963. .usergs_sysret32 = xen_sysret32,
  964. .usergs_sysret64 = xen_sysret64,
  965. #endif
  966. .load_tr_desc = paravirt_nop,
  967. .set_ldt = xen_set_ldt,
  968. .load_gdt = xen_load_gdt,
  969. .load_idt = xen_load_idt,
  970. .load_tls = xen_load_tls,
  971. #ifdef CONFIG_X86_64
  972. .load_gs_index = xen_load_gs_index,
  973. #endif
  974. .store_gdt = native_store_gdt,
  975. .store_idt = native_store_idt,
  976. .store_tr = xen_store_tr,
  977. .write_ldt_entry = xen_write_ldt_entry,
  978. .write_gdt_entry = xen_write_gdt_entry,
  979. .write_idt_entry = xen_write_idt_entry,
  980. .load_sp0 = xen_load_sp0,
  981. .set_iopl_mask = xen_set_iopl_mask,
  982. .io_delay = xen_io_delay,
  983. /* Xen takes care of %gs when switching to usermode for us */
  984. .swapgs = paravirt_nop,
  985. .lazy_mode = {
  986. .enter = paravirt_enter_lazy_cpu,
  987. .leave = xen_leave_lazy,
  988. },
  989. };
  990. static void __init __xen_init_IRQ(void)
  991. {
  992. #ifdef CONFIG_X86_64
  993. int i;
  994. /* Create identity vector->irq map */
  995. for(i = 0; i < NR_VECTORS; i++) {
  996. int cpu;
  997. for_each_possible_cpu(cpu)
  998. per_cpu(vector_irq, cpu)[i] = i;
  999. }
  1000. #endif /* CONFIG_X86_64 */
  1001. xen_init_IRQ();
  1002. }
  1003. static const struct pv_irq_ops xen_irq_ops __initdata = {
  1004. .init_IRQ = __xen_init_IRQ,
  1005. .save_fl = xen_save_fl,
  1006. .restore_fl = xen_restore_fl,
  1007. .irq_disable = xen_irq_disable,
  1008. .irq_enable = xen_irq_enable,
  1009. .safe_halt = xen_safe_halt,
  1010. .halt = xen_halt,
  1011. #ifdef CONFIG_X86_64
  1012. .adjust_exception_frame = xen_adjust_exception_frame,
  1013. #endif
  1014. };
  1015. static const struct pv_apic_ops xen_apic_ops __initdata = {
  1016. #ifdef CONFIG_X86_LOCAL_APIC
  1017. .apic_write = xen_apic_write,
  1018. .apic_write_atomic = xen_apic_write,
  1019. .apic_read = xen_apic_read,
  1020. .setup_boot_clock = paravirt_nop,
  1021. .setup_secondary_clock = paravirt_nop,
  1022. .startup_ipi_hook = paravirt_nop,
  1023. #endif
  1024. };
  1025. static const struct pv_mmu_ops xen_mmu_ops __initdata = {
  1026. .pagetable_setup_start = xen_pagetable_setup_start,
  1027. .pagetable_setup_done = xen_pagetable_setup_done,
  1028. .read_cr2 = xen_read_cr2,
  1029. .write_cr2 = xen_write_cr2,
  1030. .read_cr3 = xen_read_cr3,
  1031. .write_cr3 = xen_write_cr3,
  1032. .flush_tlb_user = xen_flush_tlb,
  1033. .flush_tlb_kernel = xen_flush_tlb,
  1034. .flush_tlb_single = xen_flush_tlb_single,
  1035. .flush_tlb_others = xen_flush_tlb_others,
  1036. .pte_update = paravirt_nop,
  1037. .pte_update_defer = paravirt_nop,
  1038. .pgd_alloc = xen_pgd_alloc,
  1039. .pgd_free = xen_pgd_free,
  1040. .alloc_pte = xen_alloc_pte_init,
  1041. .release_pte = xen_release_pte_init,
  1042. .alloc_pmd = xen_alloc_pte_init,
  1043. .alloc_pmd_clone = paravirt_nop,
  1044. .release_pmd = xen_release_pte_init,
  1045. #ifdef CONFIG_HIGHPTE
  1046. .kmap_atomic_pte = xen_kmap_atomic_pte,
  1047. #endif
  1048. #ifdef CONFIG_X86_64
  1049. .set_pte = xen_set_pte,
  1050. #else
  1051. .set_pte = xen_set_pte_init,
  1052. #endif
  1053. .set_pte_at = xen_set_pte_at,
  1054. .set_pmd = xen_set_pmd_hyper,
  1055. .ptep_modify_prot_start = __ptep_modify_prot_start,
  1056. .ptep_modify_prot_commit = __ptep_modify_prot_commit,
  1057. .pte_val = xen_pte_val,
  1058. .pte_flags = native_pte_val,
  1059. .pgd_val = xen_pgd_val,
  1060. .make_pte = xen_make_pte,
  1061. .make_pgd = xen_make_pgd,
  1062. #ifdef CONFIG_X86_PAE
  1063. .set_pte_atomic = xen_set_pte_atomic,
  1064. .set_pte_present = xen_set_pte_at,
  1065. .pte_clear = xen_pte_clear,
  1066. .pmd_clear = xen_pmd_clear,
  1067. #endif /* CONFIG_X86_PAE */
  1068. .set_pud = xen_set_pud_hyper,
  1069. .make_pmd = xen_make_pmd,
  1070. .pmd_val = xen_pmd_val,
  1071. #if PAGETABLE_LEVELS == 4
  1072. .pud_val = xen_pud_val,
  1073. .make_pud = xen_make_pud,
  1074. .set_pgd = xen_set_pgd_hyper,
  1075. .alloc_pud = xen_alloc_pte_init,
  1076. .release_pud = xen_release_pte_init,
  1077. #endif /* PAGETABLE_LEVELS == 4 */
  1078. .activate_mm = xen_activate_mm,
  1079. .dup_mmap = xen_dup_mmap,
  1080. .exit_mmap = xen_exit_mmap,
  1081. .lazy_mode = {
  1082. .enter = paravirt_enter_lazy_mmu,
  1083. .leave = xen_leave_lazy,
  1084. },
  1085. .set_fixmap = xen_set_fixmap,
  1086. };
  1087. static void xen_reboot(int reason)
  1088. {
  1089. struct sched_shutdown r = { .reason = reason };
  1090. #ifdef CONFIG_SMP
  1091. smp_send_stop();
  1092. #endif
  1093. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  1094. BUG();
  1095. }
  1096. static void xen_restart(char *msg)
  1097. {
  1098. xen_reboot(SHUTDOWN_reboot);
  1099. }
  1100. static void xen_emergency_restart(void)
  1101. {
  1102. xen_reboot(SHUTDOWN_reboot);
  1103. }
  1104. static void xen_machine_halt(void)
  1105. {
  1106. xen_reboot(SHUTDOWN_poweroff);
  1107. }
  1108. static void xen_crash_shutdown(struct pt_regs *regs)
  1109. {
  1110. xen_reboot(SHUTDOWN_crash);
  1111. }
  1112. static const struct machine_ops __initdata xen_machine_ops = {
  1113. .restart = xen_restart,
  1114. .halt = xen_machine_halt,
  1115. .power_off = xen_machine_halt,
  1116. .shutdown = xen_machine_halt,
  1117. .crash_shutdown = xen_crash_shutdown,
  1118. .emergency_restart = xen_emergency_restart,
  1119. };
  1120. static void __init xen_reserve_top(void)
  1121. {
  1122. #ifdef CONFIG_X86_32
  1123. unsigned long top = HYPERVISOR_VIRT_START;
  1124. struct xen_platform_parameters pp;
  1125. if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
  1126. top = pp.virt_start;
  1127. reserve_top_address(-top + 2 * PAGE_SIZE);
  1128. #endif /* CONFIG_X86_32 */
  1129. }
  1130. /*
  1131. * Like __va(), but returns address in the kernel mapping (which is
  1132. * all we have until the physical memory mapping has been set up.
  1133. */
  1134. static void *__ka(phys_addr_t paddr)
  1135. {
  1136. #ifdef CONFIG_X86_64
  1137. return (void *)(paddr + __START_KERNEL_map);
  1138. #else
  1139. return __va(paddr);
  1140. #endif
  1141. }
  1142. /* Convert a machine address to physical address */
  1143. static unsigned long m2p(phys_addr_t maddr)
  1144. {
  1145. phys_addr_t paddr;
  1146. maddr &= PTE_MASK;
  1147. paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
  1148. return paddr;
  1149. }
  1150. /* Convert a machine address to kernel virtual */
  1151. static void *m2v(phys_addr_t maddr)
  1152. {
  1153. return __ka(m2p(maddr));
  1154. }
  1155. #ifdef CONFIG_X86_64
  1156. static void walk(pgd_t *pgd, unsigned long addr)
  1157. {
  1158. unsigned l4idx = pgd_index(addr);
  1159. unsigned l3idx = pud_index(addr);
  1160. unsigned l2idx = pmd_index(addr);
  1161. unsigned l1idx = pte_index(addr);
  1162. pgd_t l4;
  1163. pud_t l3;
  1164. pmd_t l2;
  1165. pte_t l1;
  1166. xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
  1167. pgd, addr, l4idx, l3idx, l2idx, l1idx);
  1168. l4 = pgd[l4idx];
  1169. xen_raw_printk(" l4: %016lx\n", l4.pgd);
  1170. xen_raw_printk(" %016lx\n", pgd_val(l4));
  1171. l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
  1172. xen_raw_printk(" l3: %016lx\n", l3.pud);
  1173. xen_raw_printk(" %016lx\n", pud_val(l3));
  1174. l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
  1175. xen_raw_printk(" l2: %016lx\n", l2.pmd);
  1176. xen_raw_printk(" %016lx\n", pmd_val(l2));
  1177. l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
  1178. xen_raw_printk(" l1: %016lx\n", l1.pte);
  1179. xen_raw_printk(" %016lx\n", pte_val(l1));
  1180. }
  1181. #endif
  1182. static void set_page_prot(void *addr, pgprot_t prot)
  1183. {
  1184. unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
  1185. pte_t pte = pfn_pte(pfn, prot);
  1186. xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
  1187. addr, pfn, get_phys_to_machine(pfn),
  1188. pgprot_val(prot), pte.pte);
  1189. if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
  1190. BUG();
  1191. }
  1192. static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
  1193. {
  1194. unsigned pmdidx, pteidx;
  1195. unsigned ident_pte;
  1196. unsigned long pfn;
  1197. ident_pte = 0;
  1198. pfn = 0;
  1199. for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
  1200. pte_t *pte_page;
  1201. /* Reuse or allocate a page of ptes */
  1202. if (pmd_present(pmd[pmdidx]))
  1203. pte_page = m2v(pmd[pmdidx].pmd);
  1204. else {
  1205. /* Check for free pte pages */
  1206. if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
  1207. break;
  1208. pte_page = &level1_ident_pgt[ident_pte];
  1209. ident_pte += PTRS_PER_PTE;
  1210. pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
  1211. }
  1212. /* Install mappings */
  1213. for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
  1214. pte_t pte;
  1215. if (pfn > max_pfn_mapped)
  1216. max_pfn_mapped = pfn;
  1217. if (!pte_none(pte_page[pteidx]))
  1218. continue;
  1219. pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
  1220. pte_page[pteidx] = pte;
  1221. }
  1222. }
  1223. for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
  1224. set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
  1225. set_page_prot(pmd, PAGE_KERNEL_RO);
  1226. }
  1227. #ifdef CONFIG_X86_64
  1228. static void convert_pfn_mfn(void *v)
  1229. {
  1230. pte_t *pte = v;
  1231. int i;
  1232. /* All levels are converted the same way, so just treat them
  1233. as ptes. */
  1234. for(i = 0; i < PTRS_PER_PTE; i++)
  1235. pte[i] = xen_make_pte(pte[i].pte);
  1236. }
  1237. /*
  1238. * Set up the inital kernel pagetable.
  1239. *
  1240. * We can construct this by grafting the Xen provided pagetable into
  1241. * head_64.S's preconstructed pagetables. We copy the Xen L2's into
  1242. * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
  1243. * means that only the kernel has a physical mapping to start with -
  1244. * but that's enough to get __va working. We need to fill in the rest
  1245. * of the physical mapping once some sort of allocator has been set
  1246. * up.
  1247. */
  1248. static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1249. {
  1250. pud_t *l3;
  1251. pmd_t *l2;
  1252. /* Zap identity mapping */
  1253. init_level4_pgt[0] = __pgd(0);
  1254. /* Pre-constructed entries are in pfn, so convert to mfn */
  1255. convert_pfn_mfn(init_level4_pgt);
  1256. convert_pfn_mfn(level3_ident_pgt);
  1257. convert_pfn_mfn(level3_kernel_pgt);
  1258. l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
  1259. l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
  1260. memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1261. memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1262. l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
  1263. l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
  1264. memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1265. /* Set up identity map */
  1266. xen_map_identity_early(level2_ident_pgt, max_pfn);
  1267. /* Make pagetable pieces RO */
  1268. set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
  1269. set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
  1270. set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
  1271. set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
  1272. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1273. set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
  1274. /* Pin down new L4 */
  1275. pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
  1276. PFN_DOWN(__pa_symbol(init_level4_pgt)));
  1277. /* Unpin Xen-provided one */
  1278. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1279. /* Switch over */
  1280. pgd = init_level4_pgt;
  1281. /*
  1282. * At this stage there can be no user pgd, and no page
  1283. * structure to attach it to, so make sure we just set kernel
  1284. * pgd.
  1285. */
  1286. xen_mc_batch();
  1287. __xen_write_cr3(true, __pa(pgd));
  1288. xen_mc_issue(PARAVIRT_LAZY_CPU);
  1289. reserve_early(__pa(xen_start_info->pt_base),
  1290. __pa(xen_start_info->pt_base +
  1291. xen_start_info->nr_pt_frames * PAGE_SIZE),
  1292. "XEN PAGETABLES");
  1293. return pgd;
  1294. }
  1295. #else /* !CONFIG_X86_64 */
  1296. static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
  1297. static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1298. {
  1299. pmd_t *kernel_pmd;
  1300. init_pg_tables_start = __pa(pgd);
  1301. init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
  1302. max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
  1303. kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
  1304. memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
  1305. xen_map_identity_early(level2_kernel_pgt, max_pfn);
  1306. memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
  1307. set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
  1308. __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
  1309. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1310. set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
  1311. set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
  1312. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1313. xen_write_cr3(__pa(swapper_pg_dir));
  1314. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
  1315. return swapper_pg_dir;
  1316. }
  1317. #endif /* CONFIG_X86_64 */
  1318. /* First C function to be called on Xen boot */
  1319. asmlinkage void __init xen_start_kernel(void)
  1320. {
  1321. pgd_t *pgd;
  1322. if (!xen_start_info)
  1323. return;
  1324. BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
  1325. xen_setup_features();
  1326. /* Install Xen paravirt ops */
  1327. pv_info = xen_info;
  1328. pv_init_ops = xen_init_ops;
  1329. pv_time_ops = xen_time_ops;
  1330. pv_cpu_ops = xen_cpu_ops;
  1331. pv_irq_ops = xen_irq_ops;
  1332. pv_apic_ops = xen_apic_ops;
  1333. pv_mmu_ops = xen_mmu_ops;
  1334. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1335. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1336. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1337. }
  1338. machine_ops = xen_machine_ops;
  1339. #ifdef CONFIG_X86_64
  1340. /* Disable until direct per-cpu data access. */
  1341. have_vcpu_info_placement = 0;
  1342. x86_64_init_pda();
  1343. #endif
  1344. xen_smp_init();
  1345. /* Get mfn list */
  1346. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1347. xen_build_dynamic_phys_to_machine();
  1348. pgd = (pgd_t *)xen_start_info->pt_base;
  1349. /* Prevent unwanted bits from being set in PTEs. */
  1350. __supported_pte_mask &= ~_PAGE_GLOBAL;
  1351. if (!is_initial_xendomain())
  1352. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1353. /* Don't do the full vcpu_info placement stuff until we have a
  1354. possible map and a non-dummy shared_info. */
  1355. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1356. xen_raw_console_write("mapping kernel into physical memory\n");
  1357. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  1358. init_mm.pgd = pgd;
  1359. /* keep using Xen gdt for now; no urgent need to change it */
  1360. pv_info.kernel_rpl = 1;
  1361. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1362. pv_info.kernel_rpl = 0;
  1363. /* set the limit of our address space */
  1364. xen_reserve_top();
  1365. #ifdef CONFIG_X86_32
  1366. /* set up basic CPUID stuff */
  1367. cpu_detect(&new_cpu_data);
  1368. new_cpu_data.hard_math = 1;
  1369. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1370. #endif
  1371. /* Poke various useful things into boot_params */
  1372. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1373. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1374. ? __pa(xen_start_info->mod_start) : 0;
  1375. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1376. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  1377. if (!is_initial_xendomain()) {
  1378. add_preferred_console("xenboot", 0, NULL);
  1379. add_preferred_console("tty", 0, NULL);
  1380. add_preferred_console("hvc", 0, NULL);
  1381. }
  1382. xen_raw_console_write("about to get started...\n");
  1383. #if 0
  1384. xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
  1385. &boot_params, __pa_symbol(&boot_params),
  1386. __va(__pa_symbol(&boot_params)));
  1387. walk(pgd, &boot_params);
  1388. walk(pgd, __va(__pa(&boot_params)));
  1389. #endif
  1390. /* Start the world */
  1391. #ifdef CONFIG_X86_32
  1392. i386_start_kernel();
  1393. #else
  1394. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  1395. #endif
  1396. }