core.c 194 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #ifdef CONFIG_PARAVIRT
  76. #include <asm/paravirt.h>
  77. #endif
  78. #include "sched.h"
  79. #include "../workqueue_sched.h"
  80. #define CREATE_TRACE_POINTS
  81. #include <trace/events/sched.h>
  82. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  83. {
  84. unsigned long delta;
  85. ktime_t soft, hard, now;
  86. for (;;) {
  87. if (hrtimer_active(period_timer))
  88. break;
  89. now = hrtimer_cb_get_time(period_timer);
  90. hrtimer_forward(period_timer, now, period);
  91. soft = hrtimer_get_softexpires(period_timer);
  92. hard = hrtimer_get_expires(period_timer);
  93. delta = ktime_to_ns(ktime_sub(hard, soft));
  94. __hrtimer_start_range_ns(period_timer, soft, delta,
  95. HRTIMER_MODE_ABS_PINNED, 0);
  96. }
  97. }
  98. DEFINE_MUTEX(sched_domains_mutex);
  99. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  100. static void update_rq_clock_task(struct rq *rq, s64 delta);
  101. void update_rq_clock(struct rq *rq)
  102. {
  103. s64 delta;
  104. if (rq->skip_clock_update > 0)
  105. return;
  106. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  107. rq->clock += delta;
  108. update_rq_clock_task(rq, delta);
  109. }
  110. /*
  111. * Debugging: various feature bits
  112. */
  113. #define SCHED_FEAT(name, enabled) \
  114. (1UL << __SCHED_FEAT_##name) * enabled |
  115. const_debug unsigned int sysctl_sched_features =
  116. #include "features.h"
  117. 0;
  118. #undef SCHED_FEAT
  119. #ifdef CONFIG_SCHED_DEBUG
  120. #define SCHED_FEAT(name, enabled) \
  121. #name ,
  122. static __read_mostly char *sched_feat_names[] = {
  123. #include "features.h"
  124. NULL
  125. };
  126. #undef SCHED_FEAT
  127. static int sched_feat_show(struct seq_file *m, void *v)
  128. {
  129. int i;
  130. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  131. if (!(sysctl_sched_features & (1UL << i)))
  132. seq_puts(m, "NO_");
  133. seq_printf(m, "%s ", sched_feat_names[i]);
  134. }
  135. seq_puts(m, "\n");
  136. return 0;
  137. }
  138. #ifdef HAVE_JUMP_LABEL
  139. #define jump_label_key__true jump_label_key_enabled
  140. #define jump_label_key__false jump_label_key_disabled
  141. #define SCHED_FEAT(name, enabled) \
  142. jump_label_key__##enabled ,
  143. struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
  144. #include "features.h"
  145. };
  146. #undef SCHED_FEAT
  147. static void sched_feat_disable(int i)
  148. {
  149. if (jump_label_enabled(&sched_feat_keys[i]))
  150. jump_label_dec(&sched_feat_keys[i]);
  151. }
  152. static void sched_feat_enable(int i)
  153. {
  154. if (!jump_label_enabled(&sched_feat_keys[i]))
  155. jump_label_inc(&sched_feat_keys[i]);
  156. }
  157. #else
  158. static void sched_feat_disable(int i) { };
  159. static void sched_feat_enable(int i) { };
  160. #endif /* HAVE_JUMP_LABEL */
  161. static ssize_t
  162. sched_feat_write(struct file *filp, const char __user *ubuf,
  163. size_t cnt, loff_t *ppos)
  164. {
  165. char buf[64];
  166. char *cmp;
  167. int neg = 0;
  168. int i;
  169. if (cnt > 63)
  170. cnt = 63;
  171. if (copy_from_user(&buf, ubuf, cnt))
  172. return -EFAULT;
  173. buf[cnt] = 0;
  174. cmp = strstrip(buf);
  175. if (strncmp(cmp, "NO_", 3) == 0) {
  176. neg = 1;
  177. cmp += 3;
  178. }
  179. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  180. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  181. if (neg) {
  182. sysctl_sched_features &= ~(1UL << i);
  183. sched_feat_disable(i);
  184. } else {
  185. sysctl_sched_features |= (1UL << i);
  186. sched_feat_enable(i);
  187. }
  188. break;
  189. }
  190. }
  191. if (i == __SCHED_FEAT_NR)
  192. return -EINVAL;
  193. *ppos += cnt;
  194. return cnt;
  195. }
  196. static int sched_feat_open(struct inode *inode, struct file *filp)
  197. {
  198. return single_open(filp, sched_feat_show, NULL);
  199. }
  200. static const struct file_operations sched_feat_fops = {
  201. .open = sched_feat_open,
  202. .write = sched_feat_write,
  203. .read = seq_read,
  204. .llseek = seq_lseek,
  205. .release = single_release,
  206. };
  207. static __init int sched_init_debug(void)
  208. {
  209. debugfs_create_file("sched_features", 0644, NULL, NULL,
  210. &sched_feat_fops);
  211. return 0;
  212. }
  213. late_initcall(sched_init_debug);
  214. #endif /* CONFIG_SCHED_DEBUG */
  215. /*
  216. * Number of tasks to iterate in a single balance run.
  217. * Limited because this is done with IRQs disabled.
  218. */
  219. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  220. /*
  221. * period over which we average the RT time consumption, measured
  222. * in ms.
  223. *
  224. * default: 1s
  225. */
  226. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  227. /*
  228. * period over which we measure -rt task cpu usage in us.
  229. * default: 1s
  230. */
  231. unsigned int sysctl_sched_rt_period = 1000000;
  232. __read_mostly int scheduler_running;
  233. /*
  234. * part of the period that we allow rt tasks to run in us.
  235. * default: 0.95s
  236. */
  237. int sysctl_sched_rt_runtime = 950000;
  238. /*
  239. * __task_rq_lock - lock the rq @p resides on.
  240. */
  241. static inline struct rq *__task_rq_lock(struct task_struct *p)
  242. __acquires(rq->lock)
  243. {
  244. struct rq *rq;
  245. lockdep_assert_held(&p->pi_lock);
  246. for (;;) {
  247. rq = task_rq(p);
  248. raw_spin_lock(&rq->lock);
  249. if (likely(rq == task_rq(p)))
  250. return rq;
  251. raw_spin_unlock(&rq->lock);
  252. }
  253. }
  254. /*
  255. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  256. */
  257. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  258. __acquires(p->pi_lock)
  259. __acquires(rq->lock)
  260. {
  261. struct rq *rq;
  262. for (;;) {
  263. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  264. rq = task_rq(p);
  265. raw_spin_lock(&rq->lock);
  266. if (likely(rq == task_rq(p)))
  267. return rq;
  268. raw_spin_unlock(&rq->lock);
  269. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  270. }
  271. }
  272. static void __task_rq_unlock(struct rq *rq)
  273. __releases(rq->lock)
  274. {
  275. raw_spin_unlock(&rq->lock);
  276. }
  277. static inline void
  278. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  279. __releases(rq->lock)
  280. __releases(p->pi_lock)
  281. {
  282. raw_spin_unlock(&rq->lock);
  283. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  284. }
  285. /*
  286. * this_rq_lock - lock this runqueue and disable interrupts.
  287. */
  288. static struct rq *this_rq_lock(void)
  289. __acquires(rq->lock)
  290. {
  291. struct rq *rq;
  292. local_irq_disable();
  293. rq = this_rq();
  294. raw_spin_lock(&rq->lock);
  295. return rq;
  296. }
  297. #ifdef CONFIG_SCHED_HRTICK
  298. /*
  299. * Use HR-timers to deliver accurate preemption points.
  300. *
  301. * Its all a bit involved since we cannot program an hrt while holding the
  302. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  303. * reschedule event.
  304. *
  305. * When we get rescheduled we reprogram the hrtick_timer outside of the
  306. * rq->lock.
  307. */
  308. static void hrtick_clear(struct rq *rq)
  309. {
  310. if (hrtimer_active(&rq->hrtick_timer))
  311. hrtimer_cancel(&rq->hrtick_timer);
  312. }
  313. /*
  314. * High-resolution timer tick.
  315. * Runs from hardirq context with interrupts disabled.
  316. */
  317. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  318. {
  319. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  320. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  321. raw_spin_lock(&rq->lock);
  322. update_rq_clock(rq);
  323. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  324. raw_spin_unlock(&rq->lock);
  325. return HRTIMER_NORESTART;
  326. }
  327. #ifdef CONFIG_SMP
  328. /*
  329. * called from hardirq (IPI) context
  330. */
  331. static void __hrtick_start(void *arg)
  332. {
  333. struct rq *rq = arg;
  334. raw_spin_lock(&rq->lock);
  335. hrtimer_restart(&rq->hrtick_timer);
  336. rq->hrtick_csd_pending = 0;
  337. raw_spin_unlock(&rq->lock);
  338. }
  339. /*
  340. * Called to set the hrtick timer state.
  341. *
  342. * called with rq->lock held and irqs disabled
  343. */
  344. void hrtick_start(struct rq *rq, u64 delay)
  345. {
  346. struct hrtimer *timer = &rq->hrtick_timer;
  347. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  348. hrtimer_set_expires(timer, time);
  349. if (rq == this_rq()) {
  350. hrtimer_restart(timer);
  351. } else if (!rq->hrtick_csd_pending) {
  352. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  353. rq->hrtick_csd_pending = 1;
  354. }
  355. }
  356. static int
  357. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  358. {
  359. int cpu = (int)(long)hcpu;
  360. switch (action) {
  361. case CPU_UP_CANCELED:
  362. case CPU_UP_CANCELED_FROZEN:
  363. case CPU_DOWN_PREPARE:
  364. case CPU_DOWN_PREPARE_FROZEN:
  365. case CPU_DEAD:
  366. case CPU_DEAD_FROZEN:
  367. hrtick_clear(cpu_rq(cpu));
  368. return NOTIFY_OK;
  369. }
  370. return NOTIFY_DONE;
  371. }
  372. static __init void init_hrtick(void)
  373. {
  374. hotcpu_notifier(hotplug_hrtick, 0);
  375. }
  376. #else
  377. /*
  378. * Called to set the hrtick timer state.
  379. *
  380. * called with rq->lock held and irqs disabled
  381. */
  382. void hrtick_start(struct rq *rq, u64 delay)
  383. {
  384. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  385. HRTIMER_MODE_REL_PINNED, 0);
  386. }
  387. static inline void init_hrtick(void)
  388. {
  389. }
  390. #endif /* CONFIG_SMP */
  391. static void init_rq_hrtick(struct rq *rq)
  392. {
  393. #ifdef CONFIG_SMP
  394. rq->hrtick_csd_pending = 0;
  395. rq->hrtick_csd.flags = 0;
  396. rq->hrtick_csd.func = __hrtick_start;
  397. rq->hrtick_csd.info = rq;
  398. #endif
  399. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  400. rq->hrtick_timer.function = hrtick;
  401. }
  402. #else /* CONFIG_SCHED_HRTICK */
  403. static inline void hrtick_clear(struct rq *rq)
  404. {
  405. }
  406. static inline void init_rq_hrtick(struct rq *rq)
  407. {
  408. }
  409. static inline void init_hrtick(void)
  410. {
  411. }
  412. #endif /* CONFIG_SCHED_HRTICK */
  413. /*
  414. * resched_task - mark a task 'to be rescheduled now'.
  415. *
  416. * On UP this means the setting of the need_resched flag, on SMP it
  417. * might also involve a cross-CPU call to trigger the scheduler on
  418. * the target CPU.
  419. */
  420. #ifdef CONFIG_SMP
  421. #ifndef tsk_is_polling
  422. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  423. #endif
  424. void resched_task(struct task_struct *p)
  425. {
  426. int cpu;
  427. assert_raw_spin_locked(&task_rq(p)->lock);
  428. if (test_tsk_need_resched(p))
  429. return;
  430. set_tsk_need_resched(p);
  431. cpu = task_cpu(p);
  432. if (cpu == smp_processor_id())
  433. return;
  434. /* NEED_RESCHED must be visible before we test polling */
  435. smp_mb();
  436. if (!tsk_is_polling(p))
  437. smp_send_reschedule(cpu);
  438. }
  439. void resched_cpu(int cpu)
  440. {
  441. struct rq *rq = cpu_rq(cpu);
  442. unsigned long flags;
  443. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  444. return;
  445. resched_task(cpu_curr(cpu));
  446. raw_spin_unlock_irqrestore(&rq->lock, flags);
  447. }
  448. #ifdef CONFIG_NO_HZ
  449. /*
  450. * In the semi idle case, use the nearest busy cpu for migrating timers
  451. * from an idle cpu. This is good for power-savings.
  452. *
  453. * We don't do similar optimization for completely idle system, as
  454. * selecting an idle cpu will add more delays to the timers than intended
  455. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  456. */
  457. int get_nohz_timer_target(void)
  458. {
  459. int cpu = smp_processor_id();
  460. int i;
  461. struct sched_domain *sd;
  462. rcu_read_lock();
  463. for_each_domain(cpu, sd) {
  464. for_each_cpu(i, sched_domain_span(sd)) {
  465. if (!idle_cpu(i)) {
  466. cpu = i;
  467. goto unlock;
  468. }
  469. }
  470. }
  471. unlock:
  472. rcu_read_unlock();
  473. return cpu;
  474. }
  475. /*
  476. * When add_timer_on() enqueues a timer into the timer wheel of an
  477. * idle CPU then this timer might expire before the next timer event
  478. * which is scheduled to wake up that CPU. In case of a completely
  479. * idle system the next event might even be infinite time into the
  480. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  481. * leaves the inner idle loop so the newly added timer is taken into
  482. * account when the CPU goes back to idle and evaluates the timer
  483. * wheel for the next timer event.
  484. */
  485. void wake_up_idle_cpu(int cpu)
  486. {
  487. struct rq *rq = cpu_rq(cpu);
  488. if (cpu == smp_processor_id())
  489. return;
  490. /*
  491. * This is safe, as this function is called with the timer
  492. * wheel base lock of (cpu) held. When the CPU is on the way
  493. * to idle and has not yet set rq->curr to idle then it will
  494. * be serialized on the timer wheel base lock and take the new
  495. * timer into account automatically.
  496. */
  497. if (rq->curr != rq->idle)
  498. return;
  499. /*
  500. * We can set TIF_RESCHED on the idle task of the other CPU
  501. * lockless. The worst case is that the other CPU runs the
  502. * idle task through an additional NOOP schedule()
  503. */
  504. set_tsk_need_resched(rq->idle);
  505. /* NEED_RESCHED must be visible before we test polling */
  506. smp_mb();
  507. if (!tsk_is_polling(rq->idle))
  508. smp_send_reschedule(cpu);
  509. }
  510. static inline bool got_nohz_idle_kick(void)
  511. {
  512. int cpu = smp_processor_id();
  513. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  514. }
  515. #else /* CONFIG_NO_HZ */
  516. static inline bool got_nohz_idle_kick(void)
  517. {
  518. return false;
  519. }
  520. #endif /* CONFIG_NO_HZ */
  521. void sched_avg_update(struct rq *rq)
  522. {
  523. s64 period = sched_avg_period();
  524. while ((s64)(rq->clock - rq->age_stamp) > period) {
  525. /*
  526. * Inline assembly required to prevent the compiler
  527. * optimising this loop into a divmod call.
  528. * See __iter_div_u64_rem() for another example of this.
  529. */
  530. asm("" : "+rm" (rq->age_stamp));
  531. rq->age_stamp += period;
  532. rq->rt_avg /= 2;
  533. }
  534. }
  535. #else /* !CONFIG_SMP */
  536. void resched_task(struct task_struct *p)
  537. {
  538. assert_raw_spin_locked(&task_rq(p)->lock);
  539. set_tsk_need_resched(p);
  540. }
  541. #endif /* CONFIG_SMP */
  542. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  543. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  544. /*
  545. * Iterate task_group tree rooted at *from, calling @down when first entering a
  546. * node and @up when leaving it for the final time.
  547. *
  548. * Caller must hold rcu_lock or sufficient equivalent.
  549. */
  550. int walk_tg_tree_from(struct task_group *from,
  551. tg_visitor down, tg_visitor up, void *data)
  552. {
  553. struct task_group *parent, *child;
  554. int ret;
  555. parent = from;
  556. down:
  557. ret = (*down)(parent, data);
  558. if (ret)
  559. goto out;
  560. list_for_each_entry_rcu(child, &parent->children, siblings) {
  561. parent = child;
  562. goto down;
  563. up:
  564. continue;
  565. }
  566. ret = (*up)(parent, data);
  567. if (ret || parent == from)
  568. goto out;
  569. child = parent;
  570. parent = parent->parent;
  571. if (parent)
  572. goto up;
  573. out:
  574. return ret;
  575. }
  576. int tg_nop(struct task_group *tg, void *data)
  577. {
  578. return 0;
  579. }
  580. #endif
  581. void update_cpu_load(struct rq *this_rq);
  582. static void set_load_weight(struct task_struct *p)
  583. {
  584. int prio = p->static_prio - MAX_RT_PRIO;
  585. struct load_weight *load = &p->se.load;
  586. /*
  587. * SCHED_IDLE tasks get minimal weight:
  588. */
  589. if (p->policy == SCHED_IDLE) {
  590. load->weight = scale_load(WEIGHT_IDLEPRIO);
  591. load->inv_weight = WMULT_IDLEPRIO;
  592. return;
  593. }
  594. load->weight = scale_load(prio_to_weight[prio]);
  595. load->inv_weight = prio_to_wmult[prio];
  596. }
  597. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  598. {
  599. update_rq_clock(rq);
  600. sched_info_queued(p);
  601. p->sched_class->enqueue_task(rq, p, flags);
  602. }
  603. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  604. {
  605. update_rq_clock(rq);
  606. sched_info_dequeued(p);
  607. p->sched_class->dequeue_task(rq, p, flags);
  608. }
  609. /*
  610. * activate_task - move a task to the runqueue.
  611. */
  612. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  613. {
  614. if (task_contributes_to_load(p))
  615. rq->nr_uninterruptible--;
  616. enqueue_task(rq, p, flags);
  617. }
  618. /*
  619. * deactivate_task - remove a task from the runqueue.
  620. */
  621. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  622. {
  623. if (task_contributes_to_load(p))
  624. rq->nr_uninterruptible++;
  625. dequeue_task(rq, p, flags);
  626. }
  627. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  628. /*
  629. * There are no locks covering percpu hardirq/softirq time.
  630. * They are only modified in account_system_vtime, on corresponding CPU
  631. * with interrupts disabled. So, writes are safe.
  632. * They are read and saved off onto struct rq in update_rq_clock().
  633. * This may result in other CPU reading this CPU's irq time and can
  634. * race with irq/account_system_vtime on this CPU. We would either get old
  635. * or new value with a side effect of accounting a slice of irq time to wrong
  636. * task when irq is in progress while we read rq->clock. That is a worthy
  637. * compromise in place of having locks on each irq in account_system_time.
  638. */
  639. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  640. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  641. static DEFINE_PER_CPU(u64, irq_start_time);
  642. static int sched_clock_irqtime;
  643. void enable_sched_clock_irqtime(void)
  644. {
  645. sched_clock_irqtime = 1;
  646. }
  647. void disable_sched_clock_irqtime(void)
  648. {
  649. sched_clock_irqtime = 0;
  650. }
  651. #ifndef CONFIG_64BIT
  652. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  653. static inline void irq_time_write_begin(void)
  654. {
  655. __this_cpu_inc(irq_time_seq.sequence);
  656. smp_wmb();
  657. }
  658. static inline void irq_time_write_end(void)
  659. {
  660. smp_wmb();
  661. __this_cpu_inc(irq_time_seq.sequence);
  662. }
  663. static inline u64 irq_time_read(int cpu)
  664. {
  665. u64 irq_time;
  666. unsigned seq;
  667. do {
  668. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  669. irq_time = per_cpu(cpu_softirq_time, cpu) +
  670. per_cpu(cpu_hardirq_time, cpu);
  671. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  672. return irq_time;
  673. }
  674. #else /* CONFIG_64BIT */
  675. static inline void irq_time_write_begin(void)
  676. {
  677. }
  678. static inline void irq_time_write_end(void)
  679. {
  680. }
  681. static inline u64 irq_time_read(int cpu)
  682. {
  683. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  684. }
  685. #endif /* CONFIG_64BIT */
  686. /*
  687. * Called before incrementing preempt_count on {soft,}irq_enter
  688. * and before decrementing preempt_count on {soft,}irq_exit.
  689. */
  690. void account_system_vtime(struct task_struct *curr)
  691. {
  692. unsigned long flags;
  693. s64 delta;
  694. int cpu;
  695. if (!sched_clock_irqtime)
  696. return;
  697. local_irq_save(flags);
  698. cpu = smp_processor_id();
  699. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  700. __this_cpu_add(irq_start_time, delta);
  701. irq_time_write_begin();
  702. /*
  703. * We do not account for softirq time from ksoftirqd here.
  704. * We want to continue accounting softirq time to ksoftirqd thread
  705. * in that case, so as not to confuse scheduler with a special task
  706. * that do not consume any time, but still wants to run.
  707. */
  708. if (hardirq_count())
  709. __this_cpu_add(cpu_hardirq_time, delta);
  710. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  711. __this_cpu_add(cpu_softirq_time, delta);
  712. irq_time_write_end();
  713. local_irq_restore(flags);
  714. }
  715. EXPORT_SYMBOL_GPL(account_system_vtime);
  716. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  717. #ifdef CONFIG_PARAVIRT
  718. static inline u64 steal_ticks(u64 steal)
  719. {
  720. if (unlikely(steal > NSEC_PER_SEC))
  721. return div_u64(steal, TICK_NSEC);
  722. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  723. }
  724. #endif
  725. static void update_rq_clock_task(struct rq *rq, s64 delta)
  726. {
  727. /*
  728. * In theory, the compile should just see 0 here, and optimize out the call
  729. * to sched_rt_avg_update. But I don't trust it...
  730. */
  731. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  732. s64 steal = 0, irq_delta = 0;
  733. #endif
  734. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  735. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  736. /*
  737. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  738. * this case when a previous update_rq_clock() happened inside a
  739. * {soft,}irq region.
  740. *
  741. * When this happens, we stop ->clock_task and only update the
  742. * prev_irq_time stamp to account for the part that fit, so that a next
  743. * update will consume the rest. This ensures ->clock_task is
  744. * monotonic.
  745. *
  746. * It does however cause some slight miss-attribution of {soft,}irq
  747. * time, a more accurate solution would be to update the irq_time using
  748. * the current rq->clock timestamp, except that would require using
  749. * atomic ops.
  750. */
  751. if (irq_delta > delta)
  752. irq_delta = delta;
  753. rq->prev_irq_time += irq_delta;
  754. delta -= irq_delta;
  755. #endif
  756. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  757. if (static_branch((&paravirt_steal_rq_enabled))) {
  758. u64 st;
  759. steal = paravirt_steal_clock(cpu_of(rq));
  760. steal -= rq->prev_steal_time_rq;
  761. if (unlikely(steal > delta))
  762. steal = delta;
  763. st = steal_ticks(steal);
  764. steal = st * TICK_NSEC;
  765. rq->prev_steal_time_rq += steal;
  766. delta -= steal;
  767. }
  768. #endif
  769. rq->clock_task += delta;
  770. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  771. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  772. sched_rt_avg_update(rq, irq_delta + steal);
  773. #endif
  774. }
  775. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  776. static int irqtime_account_hi_update(void)
  777. {
  778. u64 *cpustat = kcpustat_this_cpu->cpustat;
  779. unsigned long flags;
  780. u64 latest_ns;
  781. int ret = 0;
  782. local_irq_save(flags);
  783. latest_ns = this_cpu_read(cpu_hardirq_time);
  784. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  785. ret = 1;
  786. local_irq_restore(flags);
  787. return ret;
  788. }
  789. static int irqtime_account_si_update(void)
  790. {
  791. u64 *cpustat = kcpustat_this_cpu->cpustat;
  792. unsigned long flags;
  793. u64 latest_ns;
  794. int ret = 0;
  795. local_irq_save(flags);
  796. latest_ns = this_cpu_read(cpu_softirq_time);
  797. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  798. ret = 1;
  799. local_irq_restore(flags);
  800. return ret;
  801. }
  802. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  803. #define sched_clock_irqtime (0)
  804. #endif
  805. void sched_set_stop_task(int cpu, struct task_struct *stop)
  806. {
  807. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  808. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  809. if (stop) {
  810. /*
  811. * Make it appear like a SCHED_FIFO task, its something
  812. * userspace knows about and won't get confused about.
  813. *
  814. * Also, it will make PI more or less work without too
  815. * much confusion -- but then, stop work should not
  816. * rely on PI working anyway.
  817. */
  818. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  819. stop->sched_class = &stop_sched_class;
  820. }
  821. cpu_rq(cpu)->stop = stop;
  822. if (old_stop) {
  823. /*
  824. * Reset it back to a normal scheduling class so that
  825. * it can die in pieces.
  826. */
  827. old_stop->sched_class = &rt_sched_class;
  828. }
  829. }
  830. /*
  831. * __normal_prio - return the priority that is based on the static prio
  832. */
  833. static inline int __normal_prio(struct task_struct *p)
  834. {
  835. return p->static_prio;
  836. }
  837. /*
  838. * Calculate the expected normal priority: i.e. priority
  839. * without taking RT-inheritance into account. Might be
  840. * boosted by interactivity modifiers. Changes upon fork,
  841. * setprio syscalls, and whenever the interactivity
  842. * estimator recalculates.
  843. */
  844. static inline int normal_prio(struct task_struct *p)
  845. {
  846. int prio;
  847. if (task_has_rt_policy(p))
  848. prio = MAX_RT_PRIO-1 - p->rt_priority;
  849. else
  850. prio = __normal_prio(p);
  851. return prio;
  852. }
  853. /*
  854. * Calculate the current priority, i.e. the priority
  855. * taken into account by the scheduler. This value might
  856. * be boosted by RT tasks, or might be boosted by
  857. * interactivity modifiers. Will be RT if the task got
  858. * RT-boosted. If not then it returns p->normal_prio.
  859. */
  860. static int effective_prio(struct task_struct *p)
  861. {
  862. p->normal_prio = normal_prio(p);
  863. /*
  864. * If we are RT tasks or we were boosted to RT priority,
  865. * keep the priority unchanged. Otherwise, update priority
  866. * to the normal priority:
  867. */
  868. if (!rt_prio(p->prio))
  869. return p->normal_prio;
  870. return p->prio;
  871. }
  872. /**
  873. * task_curr - is this task currently executing on a CPU?
  874. * @p: the task in question.
  875. */
  876. inline int task_curr(const struct task_struct *p)
  877. {
  878. return cpu_curr(task_cpu(p)) == p;
  879. }
  880. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  881. const struct sched_class *prev_class,
  882. int oldprio)
  883. {
  884. if (prev_class != p->sched_class) {
  885. if (prev_class->switched_from)
  886. prev_class->switched_from(rq, p);
  887. p->sched_class->switched_to(rq, p);
  888. } else if (oldprio != p->prio)
  889. p->sched_class->prio_changed(rq, p, oldprio);
  890. }
  891. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  892. {
  893. const struct sched_class *class;
  894. if (p->sched_class == rq->curr->sched_class) {
  895. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  896. } else {
  897. for_each_class(class) {
  898. if (class == rq->curr->sched_class)
  899. break;
  900. if (class == p->sched_class) {
  901. resched_task(rq->curr);
  902. break;
  903. }
  904. }
  905. }
  906. /*
  907. * A queue event has occurred, and we're going to schedule. In
  908. * this case, we can save a useless back to back clock update.
  909. */
  910. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  911. rq->skip_clock_update = 1;
  912. }
  913. #ifdef CONFIG_SMP
  914. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  915. {
  916. #ifdef CONFIG_SCHED_DEBUG
  917. /*
  918. * We should never call set_task_cpu() on a blocked task,
  919. * ttwu() will sort out the placement.
  920. */
  921. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  922. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  923. #ifdef CONFIG_LOCKDEP
  924. /*
  925. * The caller should hold either p->pi_lock or rq->lock, when changing
  926. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  927. *
  928. * sched_move_task() holds both and thus holding either pins the cgroup,
  929. * see set_task_rq().
  930. *
  931. * Furthermore, all task_rq users should acquire both locks, see
  932. * task_rq_lock().
  933. */
  934. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  935. lockdep_is_held(&task_rq(p)->lock)));
  936. #endif
  937. #endif
  938. trace_sched_migrate_task(p, new_cpu);
  939. if (task_cpu(p) != new_cpu) {
  940. p->se.nr_migrations++;
  941. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  942. }
  943. __set_task_cpu(p, new_cpu);
  944. }
  945. struct migration_arg {
  946. struct task_struct *task;
  947. int dest_cpu;
  948. };
  949. static int migration_cpu_stop(void *data);
  950. /*
  951. * wait_task_inactive - wait for a thread to unschedule.
  952. *
  953. * If @match_state is nonzero, it's the @p->state value just checked and
  954. * not expected to change. If it changes, i.e. @p might have woken up,
  955. * then return zero. When we succeed in waiting for @p to be off its CPU,
  956. * we return a positive number (its total switch count). If a second call
  957. * a short while later returns the same number, the caller can be sure that
  958. * @p has remained unscheduled the whole time.
  959. *
  960. * The caller must ensure that the task *will* unschedule sometime soon,
  961. * else this function might spin for a *long* time. This function can't
  962. * be called with interrupts off, or it may introduce deadlock with
  963. * smp_call_function() if an IPI is sent by the same process we are
  964. * waiting to become inactive.
  965. */
  966. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  967. {
  968. unsigned long flags;
  969. int running, on_rq;
  970. unsigned long ncsw;
  971. struct rq *rq;
  972. for (;;) {
  973. /*
  974. * We do the initial early heuristics without holding
  975. * any task-queue locks at all. We'll only try to get
  976. * the runqueue lock when things look like they will
  977. * work out!
  978. */
  979. rq = task_rq(p);
  980. /*
  981. * If the task is actively running on another CPU
  982. * still, just relax and busy-wait without holding
  983. * any locks.
  984. *
  985. * NOTE! Since we don't hold any locks, it's not
  986. * even sure that "rq" stays as the right runqueue!
  987. * But we don't care, since "task_running()" will
  988. * return false if the runqueue has changed and p
  989. * is actually now running somewhere else!
  990. */
  991. while (task_running(rq, p)) {
  992. if (match_state && unlikely(p->state != match_state))
  993. return 0;
  994. cpu_relax();
  995. }
  996. /*
  997. * Ok, time to look more closely! We need the rq
  998. * lock now, to be *sure*. If we're wrong, we'll
  999. * just go back and repeat.
  1000. */
  1001. rq = task_rq_lock(p, &flags);
  1002. trace_sched_wait_task(p);
  1003. running = task_running(rq, p);
  1004. on_rq = p->on_rq;
  1005. ncsw = 0;
  1006. if (!match_state || p->state == match_state)
  1007. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1008. task_rq_unlock(rq, p, &flags);
  1009. /*
  1010. * If it changed from the expected state, bail out now.
  1011. */
  1012. if (unlikely(!ncsw))
  1013. break;
  1014. /*
  1015. * Was it really running after all now that we
  1016. * checked with the proper locks actually held?
  1017. *
  1018. * Oops. Go back and try again..
  1019. */
  1020. if (unlikely(running)) {
  1021. cpu_relax();
  1022. continue;
  1023. }
  1024. /*
  1025. * It's not enough that it's not actively running,
  1026. * it must be off the runqueue _entirely_, and not
  1027. * preempted!
  1028. *
  1029. * So if it was still runnable (but just not actively
  1030. * running right now), it's preempted, and we should
  1031. * yield - it could be a while.
  1032. */
  1033. if (unlikely(on_rq)) {
  1034. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1035. set_current_state(TASK_UNINTERRUPTIBLE);
  1036. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1037. continue;
  1038. }
  1039. /*
  1040. * Ahh, all good. It wasn't running, and it wasn't
  1041. * runnable, which means that it will never become
  1042. * running in the future either. We're all done!
  1043. */
  1044. break;
  1045. }
  1046. return ncsw;
  1047. }
  1048. /***
  1049. * kick_process - kick a running thread to enter/exit the kernel
  1050. * @p: the to-be-kicked thread
  1051. *
  1052. * Cause a process which is running on another CPU to enter
  1053. * kernel-mode, without any delay. (to get signals handled.)
  1054. *
  1055. * NOTE: this function doesn't have to take the runqueue lock,
  1056. * because all it wants to ensure is that the remote task enters
  1057. * the kernel. If the IPI races and the task has been migrated
  1058. * to another CPU then no harm is done and the purpose has been
  1059. * achieved as well.
  1060. */
  1061. void kick_process(struct task_struct *p)
  1062. {
  1063. int cpu;
  1064. preempt_disable();
  1065. cpu = task_cpu(p);
  1066. if ((cpu != smp_processor_id()) && task_curr(p))
  1067. smp_send_reschedule(cpu);
  1068. preempt_enable();
  1069. }
  1070. EXPORT_SYMBOL_GPL(kick_process);
  1071. #endif /* CONFIG_SMP */
  1072. #ifdef CONFIG_SMP
  1073. /*
  1074. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1075. */
  1076. static int select_fallback_rq(int cpu, struct task_struct *p)
  1077. {
  1078. int dest_cpu;
  1079. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1080. /* Look for allowed, online CPU in same node. */
  1081. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1082. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1083. return dest_cpu;
  1084. /* Any allowed, online CPU? */
  1085. dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
  1086. if (dest_cpu < nr_cpu_ids)
  1087. return dest_cpu;
  1088. /* No more Mr. Nice Guy. */
  1089. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1090. /*
  1091. * Don't tell them about moving exiting tasks or
  1092. * kernel threads (both mm NULL), since they never
  1093. * leave kernel.
  1094. */
  1095. if (p->mm && printk_ratelimit()) {
  1096. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1097. task_pid_nr(p), p->comm, cpu);
  1098. }
  1099. return dest_cpu;
  1100. }
  1101. /*
  1102. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1103. */
  1104. static inline
  1105. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1106. {
  1107. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1108. /*
  1109. * In order not to call set_task_cpu() on a blocking task we need
  1110. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1111. * cpu.
  1112. *
  1113. * Since this is common to all placement strategies, this lives here.
  1114. *
  1115. * [ this allows ->select_task() to simply return task_cpu(p) and
  1116. * not worry about this generic constraint ]
  1117. */
  1118. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1119. !cpu_online(cpu)))
  1120. cpu = select_fallback_rq(task_cpu(p), p);
  1121. return cpu;
  1122. }
  1123. static void update_avg(u64 *avg, u64 sample)
  1124. {
  1125. s64 diff = sample - *avg;
  1126. *avg += diff >> 3;
  1127. }
  1128. #endif
  1129. static void
  1130. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1131. {
  1132. #ifdef CONFIG_SCHEDSTATS
  1133. struct rq *rq = this_rq();
  1134. #ifdef CONFIG_SMP
  1135. int this_cpu = smp_processor_id();
  1136. if (cpu == this_cpu) {
  1137. schedstat_inc(rq, ttwu_local);
  1138. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1139. } else {
  1140. struct sched_domain *sd;
  1141. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1142. rcu_read_lock();
  1143. for_each_domain(this_cpu, sd) {
  1144. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1145. schedstat_inc(sd, ttwu_wake_remote);
  1146. break;
  1147. }
  1148. }
  1149. rcu_read_unlock();
  1150. }
  1151. if (wake_flags & WF_MIGRATED)
  1152. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1153. #endif /* CONFIG_SMP */
  1154. schedstat_inc(rq, ttwu_count);
  1155. schedstat_inc(p, se.statistics.nr_wakeups);
  1156. if (wake_flags & WF_SYNC)
  1157. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1158. #endif /* CONFIG_SCHEDSTATS */
  1159. }
  1160. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1161. {
  1162. activate_task(rq, p, en_flags);
  1163. p->on_rq = 1;
  1164. /* if a worker is waking up, notify workqueue */
  1165. if (p->flags & PF_WQ_WORKER)
  1166. wq_worker_waking_up(p, cpu_of(rq));
  1167. }
  1168. /*
  1169. * Mark the task runnable and perform wakeup-preemption.
  1170. */
  1171. static void
  1172. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1173. {
  1174. trace_sched_wakeup(p, true);
  1175. check_preempt_curr(rq, p, wake_flags);
  1176. p->state = TASK_RUNNING;
  1177. #ifdef CONFIG_SMP
  1178. if (p->sched_class->task_woken)
  1179. p->sched_class->task_woken(rq, p);
  1180. if (rq->idle_stamp) {
  1181. u64 delta = rq->clock - rq->idle_stamp;
  1182. u64 max = 2*sysctl_sched_migration_cost;
  1183. if (delta > max)
  1184. rq->avg_idle = max;
  1185. else
  1186. update_avg(&rq->avg_idle, delta);
  1187. rq->idle_stamp = 0;
  1188. }
  1189. #endif
  1190. }
  1191. static void
  1192. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1193. {
  1194. #ifdef CONFIG_SMP
  1195. if (p->sched_contributes_to_load)
  1196. rq->nr_uninterruptible--;
  1197. #endif
  1198. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1199. ttwu_do_wakeup(rq, p, wake_flags);
  1200. }
  1201. /*
  1202. * Called in case the task @p isn't fully descheduled from its runqueue,
  1203. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1204. * since all we need to do is flip p->state to TASK_RUNNING, since
  1205. * the task is still ->on_rq.
  1206. */
  1207. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1208. {
  1209. struct rq *rq;
  1210. int ret = 0;
  1211. rq = __task_rq_lock(p);
  1212. if (p->on_rq) {
  1213. ttwu_do_wakeup(rq, p, wake_flags);
  1214. ret = 1;
  1215. }
  1216. __task_rq_unlock(rq);
  1217. return ret;
  1218. }
  1219. #ifdef CONFIG_SMP
  1220. static void sched_ttwu_pending(void)
  1221. {
  1222. struct rq *rq = this_rq();
  1223. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1224. struct task_struct *p;
  1225. raw_spin_lock(&rq->lock);
  1226. while (llist) {
  1227. p = llist_entry(llist, struct task_struct, wake_entry);
  1228. llist = llist_next(llist);
  1229. ttwu_do_activate(rq, p, 0);
  1230. }
  1231. raw_spin_unlock(&rq->lock);
  1232. }
  1233. void scheduler_ipi(void)
  1234. {
  1235. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1236. return;
  1237. /*
  1238. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1239. * traditionally all their work was done from the interrupt return
  1240. * path. Now that we actually do some work, we need to make sure
  1241. * we do call them.
  1242. *
  1243. * Some archs already do call them, luckily irq_enter/exit nest
  1244. * properly.
  1245. *
  1246. * Arguably we should visit all archs and update all handlers,
  1247. * however a fair share of IPIs are still resched only so this would
  1248. * somewhat pessimize the simple resched case.
  1249. */
  1250. irq_enter();
  1251. sched_ttwu_pending();
  1252. /*
  1253. * Check if someone kicked us for doing the nohz idle load balance.
  1254. */
  1255. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1256. this_rq()->idle_balance = 1;
  1257. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1258. }
  1259. irq_exit();
  1260. }
  1261. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1262. {
  1263. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1264. smp_send_reschedule(cpu);
  1265. }
  1266. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1267. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1268. {
  1269. struct rq *rq;
  1270. int ret = 0;
  1271. rq = __task_rq_lock(p);
  1272. if (p->on_cpu) {
  1273. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1274. ttwu_do_wakeup(rq, p, wake_flags);
  1275. ret = 1;
  1276. }
  1277. __task_rq_unlock(rq);
  1278. return ret;
  1279. }
  1280. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1281. static inline int ttwu_share_cache(int this_cpu, int that_cpu)
  1282. {
  1283. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1284. }
  1285. #endif /* CONFIG_SMP */
  1286. static void ttwu_queue(struct task_struct *p, int cpu)
  1287. {
  1288. struct rq *rq = cpu_rq(cpu);
  1289. #if defined(CONFIG_SMP)
  1290. if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
  1291. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1292. ttwu_queue_remote(p, cpu);
  1293. return;
  1294. }
  1295. #endif
  1296. raw_spin_lock(&rq->lock);
  1297. ttwu_do_activate(rq, p, 0);
  1298. raw_spin_unlock(&rq->lock);
  1299. }
  1300. /**
  1301. * try_to_wake_up - wake up a thread
  1302. * @p: the thread to be awakened
  1303. * @state: the mask of task states that can be woken
  1304. * @wake_flags: wake modifier flags (WF_*)
  1305. *
  1306. * Put it on the run-queue if it's not already there. The "current"
  1307. * thread is always on the run-queue (except when the actual
  1308. * re-schedule is in progress), and as such you're allowed to do
  1309. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1310. * runnable without the overhead of this.
  1311. *
  1312. * Returns %true if @p was woken up, %false if it was already running
  1313. * or @state didn't match @p's state.
  1314. */
  1315. static int
  1316. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1317. {
  1318. unsigned long flags;
  1319. int cpu, success = 0;
  1320. smp_wmb();
  1321. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1322. if (!(p->state & state))
  1323. goto out;
  1324. success = 1; /* we're going to change ->state */
  1325. cpu = task_cpu(p);
  1326. if (p->on_rq && ttwu_remote(p, wake_flags))
  1327. goto stat;
  1328. #ifdef CONFIG_SMP
  1329. /*
  1330. * If the owning (remote) cpu is still in the middle of schedule() with
  1331. * this task as prev, wait until its done referencing the task.
  1332. */
  1333. while (p->on_cpu) {
  1334. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1335. /*
  1336. * In case the architecture enables interrupts in
  1337. * context_switch(), we cannot busy wait, since that
  1338. * would lead to deadlocks when an interrupt hits and
  1339. * tries to wake up @prev. So bail and do a complete
  1340. * remote wakeup.
  1341. */
  1342. if (ttwu_activate_remote(p, wake_flags))
  1343. goto stat;
  1344. #else
  1345. cpu_relax();
  1346. #endif
  1347. }
  1348. /*
  1349. * Pairs with the smp_wmb() in finish_lock_switch().
  1350. */
  1351. smp_rmb();
  1352. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1353. p->state = TASK_WAKING;
  1354. if (p->sched_class->task_waking)
  1355. p->sched_class->task_waking(p);
  1356. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1357. if (task_cpu(p) != cpu) {
  1358. wake_flags |= WF_MIGRATED;
  1359. set_task_cpu(p, cpu);
  1360. }
  1361. #endif /* CONFIG_SMP */
  1362. ttwu_queue(p, cpu);
  1363. stat:
  1364. ttwu_stat(p, cpu, wake_flags);
  1365. out:
  1366. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1367. return success;
  1368. }
  1369. /**
  1370. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1371. * @p: the thread to be awakened
  1372. *
  1373. * Put @p on the run-queue if it's not already there. The caller must
  1374. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1375. * the current task.
  1376. */
  1377. static void try_to_wake_up_local(struct task_struct *p)
  1378. {
  1379. struct rq *rq = task_rq(p);
  1380. BUG_ON(rq != this_rq());
  1381. BUG_ON(p == current);
  1382. lockdep_assert_held(&rq->lock);
  1383. if (!raw_spin_trylock(&p->pi_lock)) {
  1384. raw_spin_unlock(&rq->lock);
  1385. raw_spin_lock(&p->pi_lock);
  1386. raw_spin_lock(&rq->lock);
  1387. }
  1388. if (!(p->state & TASK_NORMAL))
  1389. goto out;
  1390. if (!p->on_rq)
  1391. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1392. ttwu_do_wakeup(rq, p, 0);
  1393. ttwu_stat(p, smp_processor_id(), 0);
  1394. out:
  1395. raw_spin_unlock(&p->pi_lock);
  1396. }
  1397. /**
  1398. * wake_up_process - Wake up a specific process
  1399. * @p: The process to be woken up.
  1400. *
  1401. * Attempt to wake up the nominated process and move it to the set of runnable
  1402. * processes. Returns 1 if the process was woken up, 0 if it was already
  1403. * running.
  1404. *
  1405. * It may be assumed that this function implies a write memory barrier before
  1406. * changing the task state if and only if any tasks are woken up.
  1407. */
  1408. int wake_up_process(struct task_struct *p)
  1409. {
  1410. return try_to_wake_up(p, TASK_ALL, 0);
  1411. }
  1412. EXPORT_SYMBOL(wake_up_process);
  1413. int wake_up_state(struct task_struct *p, unsigned int state)
  1414. {
  1415. return try_to_wake_up(p, state, 0);
  1416. }
  1417. /*
  1418. * Perform scheduler related setup for a newly forked process p.
  1419. * p is forked by current.
  1420. *
  1421. * __sched_fork() is basic setup used by init_idle() too:
  1422. */
  1423. static void __sched_fork(struct task_struct *p)
  1424. {
  1425. p->on_rq = 0;
  1426. p->se.on_rq = 0;
  1427. p->se.exec_start = 0;
  1428. p->se.sum_exec_runtime = 0;
  1429. p->se.prev_sum_exec_runtime = 0;
  1430. p->se.nr_migrations = 0;
  1431. p->se.vruntime = 0;
  1432. INIT_LIST_HEAD(&p->se.group_node);
  1433. #ifdef CONFIG_SCHEDSTATS
  1434. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1435. #endif
  1436. INIT_LIST_HEAD(&p->rt.run_list);
  1437. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1438. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1439. #endif
  1440. }
  1441. /*
  1442. * fork()/clone()-time setup:
  1443. */
  1444. void sched_fork(struct task_struct *p)
  1445. {
  1446. unsigned long flags;
  1447. int cpu = get_cpu();
  1448. __sched_fork(p);
  1449. /*
  1450. * We mark the process as running here. This guarantees that
  1451. * nobody will actually run it, and a signal or other external
  1452. * event cannot wake it up and insert it on the runqueue either.
  1453. */
  1454. p->state = TASK_RUNNING;
  1455. /*
  1456. * Make sure we do not leak PI boosting priority to the child.
  1457. */
  1458. p->prio = current->normal_prio;
  1459. /*
  1460. * Revert to default priority/policy on fork if requested.
  1461. */
  1462. if (unlikely(p->sched_reset_on_fork)) {
  1463. if (task_has_rt_policy(p)) {
  1464. p->policy = SCHED_NORMAL;
  1465. p->static_prio = NICE_TO_PRIO(0);
  1466. p->rt_priority = 0;
  1467. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1468. p->static_prio = NICE_TO_PRIO(0);
  1469. p->prio = p->normal_prio = __normal_prio(p);
  1470. set_load_weight(p);
  1471. /*
  1472. * We don't need the reset flag anymore after the fork. It has
  1473. * fulfilled its duty:
  1474. */
  1475. p->sched_reset_on_fork = 0;
  1476. }
  1477. if (!rt_prio(p->prio))
  1478. p->sched_class = &fair_sched_class;
  1479. if (p->sched_class->task_fork)
  1480. p->sched_class->task_fork(p);
  1481. /*
  1482. * The child is not yet in the pid-hash so no cgroup attach races,
  1483. * and the cgroup is pinned to this child due to cgroup_fork()
  1484. * is ran before sched_fork().
  1485. *
  1486. * Silence PROVE_RCU.
  1487. */
  1488. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1489. set_task_cpu(p, cpu);
  1490. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1491. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1492. if (likely(sched_info_on()))
  1493. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1494. #endif
  1495. #if defined(CONFIG_SMP)
  1496. p->on_cpu = 0;
  1497. #endif
  1498. #ifdef CONFIG_PREEMPT_COUNT
  1499. /* Want to start with kernel preemption disabled. */
  1500. task_thread_info(p)->preempt_count = 1;
  1501. #endif
  1502. #ifdef CONFIG_SMP
  1503. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1504. #endif
  1505. put_cpu();
  1506. }
  1507. /*
  1508. * wake_up_new_task - wake up a newly created task for the first time.
  1509. *
  1510. * This function will do some initial scheduler statistics housekeeping
  1511. * that must be done for every newly created context, then puts the task
  1512. * on the runqueue and wakes it.
  1513. */
  1514. void wake_up_new_task(struct task_struct *p)
  1515. {
  1516. unsigned long flags;
  1517. struct rq *rq;
  1518. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1519. #ifdef CONFIG_SMP
  1520. /*
  1521. * Fork balancing, do it here and not earlier because:
  1522. * - cpus_allowed can change in the fork path
  1523. * - any previously selected cpu might disappear through hotplug
  1524. */
  1525. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1526. #endif
  1527. rq = __task_rq_lock(p);
  1528. activate_task(rq, p, 0);
  1529. p->on_rq = 1;
  1530. trace_sched_wakeup_new(p, true);
  1531. check_preempt_curr(rq, p, WF_FORK);
  1532. #ifdef CONFIG_SMP
  1533. if (p->sched_class->task_woken)
  1534. p->sched_class->task_woken(rq, p);
  1535. #endif
  1536. task_rq_unlock(rq, p, &flags);
  1537. }
  1538. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1539. /**
  1540. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1541. * @notifier: notifier struct to register
  1542. */
  1543. void preempt_notifier_register(struct preempt_notifier *notifier)
  1544. {
  1545. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1546. }
  1547. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1548. /**
  1549. * preempt_notifier_unregister - no longer interested in preemption notifications
  1550. * @notifier: notifier struct to unregister
  1551. *
  1552. * This is safe to call from within a preemption notifier.
  1553. */
  1554. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1555. {
  1556. hlist_del(&notifier->link);
  1557. }
  1558. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1559. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1560. {
  1561. struct preempt_notifier *notifier;
  1562. struct hlist_node *node;
  1563. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1564. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1565. }
  1566. static void
  1567. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1568. struct task_struct *next)
  1569. {
  1570. struct preempt_notifier *notifier;
  1571. struct hlist_node *node;
  1572. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1573. notifier->ops->sched_out(notifier, next);
  1574. }
  1575. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1576. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1577. {
  1578. }
  1579. static void
  1580. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1581. struct task_struct *next)
  1582. {
  1583. }
  1584. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1585. /**
  1586. * prepare_task_switch - prepare to switch tasks
  1587. * @rq: the runqueue preparing to switch
  1588. * @prev: the current task that is being switched out
  1589. * @next: the task we are going to switch to.
  1590. *
  1591. * This is called with the rq lock held and interrupts off. It must
  1592. * be paired with a subsequent finish_task_switch after the context
  1593. * switch.
  1594. *
  1595. * prepare_task_switch sets up locking and calls architecture specific
  1596. * hooks.
  1597. */
  1598. static inline void
  1599. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1600. struct task_struct *next)
  1601. {
  1602. sched_info_switch(prev, next);
  1603. perf_event_task_sched_out(prev, next);
  1604. fire_sched_out_preempt_notifiers(prev, next);
  1605. prepare_lock_switch(rq, next);
  1606. prepare_arch_switch(next);
  1607. trace_sched_switch(prev, next);
  1608. }
  1609. /**
  1610. * finish_task_switch - clean up after a task-switch
  1611. * @rq: runqueue associated with task-switch
  1612. * @prev: the thread we just switched away from.
  1613. *
  1614. * finish_task_switch must be called after the context switch, paired
  1615. * with a prepare_task_switch call before the context switch.
  1616. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1617. * and do any other architecture-specific cleanup actions.
  1618. *
  1619. * Note that we may have delayed dropping an mm in context_switch(). If
  1620. * so, we finish that here outside of the runqueue lock. (Doing it
  1621. * with the lock held can cause deadlocks; see schedule() for
  1622. * details.)
  1623. */
  1624. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1625. __releases(rq->lock)
  1626. {
  1627. struct mm_struct *mm = rq->prev_mm;
  1628. long prev_state;
  1629. rq->prev_mm = NULL;
  1630. /*
  1631. * A task struct has one reference for the use as "current".
  1632. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1633. * schedule one last time. The schedule call will never return, and
  1634. * the scheduled task must drop that reference.
  1635. * The test for TASK_DEAD must occur while the runqueue locks are
  1636. * still held, otherwise prev could be scheduled on another cpu, die
  1637. * there before we look at prev->state, and then the reference would
  1638. * be dropped twice.
  1639. * Manfred Spraul <manfred@colorfullife.com>
  1640. */
  1641. prev_state = prev->state;
  1642. finish_arch_switch(prev);
  1643. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1644. local_irq_disable();
  1645. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1646. perf_event_task_sched_in(prev, current);
  1647. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1648. local_irq_enable();
  1649. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1650. finish_lock_switch(rq, prev);
  1651. fire_sched_in_preempt_notifiers(current);
  1652. if (mm)
  1653. mmdrop(mm);
  1654. if (unlikely(prev_state == TASK_DEAD)) {
  1655. /*
  1656. * Remove function-return probe instances associated with this
  1657. * task and put them back on the free list.
  1658. */
  1659. kprobe_flush_task(prev);
  1660. put_task_struct(prev);
  1661. }
  1662. }
  1663. #ifdef CONFIG_SMP
  1664. /* assumes rq->lock is held */
  1665. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1666. {
  1667. if (prev->sched_class->pre_schedule)
  1668. prev->sched_class->pre_schedule(rq, prev);
  1669. }
  1670. /* rq->lock is NOT held, but preemption is disabled */
  1671. static inline void post_schedule(struct rq *rq)
  1672. {
  1673. if (rq->post_schedule) {
  1674. unsigned long flags;
  1675. raw_spin_lock_irqsave(&rq->lock, flags);
  1676. if (rq->curr->sched_class->post_schedule)
  1677. rq->curr->sched_class->post_schedule(rq);
  1678. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1679. rq->post_schedule = 0;
  1680. }
  1681. }
  1682. #else
  1683. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1684. {
  1685. }
  1686. static inline void post_schedule(struct rq *rq)
  1687. {
  1688. }
  1689. #endif
  1690. /**
  1691. * schedule_tail - first thing a freshly forked thread must call.
  1692. * @prev: the thread we just switched away from.
  1693. */
  1694. asmlinkage void schedule_tail(struct task_struct *prev)
  1695. __releases(rq->lock)
  1696. {
  1697. struct rq *rq = this_rq();
  1698. finish_task_switch(rq, prev);
  1699. /*
  1700. * FIXME: do we need to worry about rq being invalidated by the
  1701. * task_switch?
  1702. */
  1703. post_schedule(rq);
  1704. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1705. /* In this case, finish_task_switch does not reenable preemption */
  1706. preempt_enable();
  1707. #endif
  1708. if (current->set_child_tid)
  1709. put_user(task_pid_vnr(current), current->set_child_tid);
  1710. }
  1711. /*
  1712. * context_switch - switch to the new MM and the new
  1713. * thread's register state.
  1714. */
  1715. static inline void
  1716. context_switch(struct rq *rq, struct task_struct *prev,
  1717. struct task_struct *next)
  1718. {
  1719. struct mm_struct *mm, *oldmm;
  1720. prepare_task_switch(rq, prev, next);
  1721. mm = next->mm;
  1722. oldmm = prev->active_mm;
  1723. /*
  1724. * For paravirt, this is coupled with an exit in switch_to to
  1725. * combine the page table reload and the switch backend into
  1726. * one hypercall.
  1727. */
  1728. arch_start_context_switch(prev);
  1729. if (!mm) {
  1730. next->active_mm = oldmm;
  1731. atomic_inc(&oldmm->mm_count);
  1732. enter_lazy_tlb(oldmm, next);
  1733. } else
  1734. switch_mm(oldmm, mm, next);
  1735. if (!prev->mm) {
  1736. prev->active_mm = NULL;
  1737. rq->prev_mm = oldmm;
  1738. }
  1739. /*
  1740. * Since the runqueue lock will be released by the next
  1741. * task (which is an invalid locking op but in the case
  1742. * of the scheduler it's an obvious special-case), so we
  1743. * do an early lockdep release here:
  1744. */
  1745. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1746. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1747. #endif
  1748. /* Here we just switch the register state and the stack. */
  1749. switch_to(prev, next, prev);
  1750. barrier();
  1751. /*
  1752. * this_rq must be evaluated again because prev may have moved
  1753. * CPUs since it called schedule(), thus the 'rq' on its stack
  1754. * frame will be invalid.
  1755. */
  1756. finish_task_switch(this_rq(), prev);
  1757. }
  1758. /*
  1759. * nr_running, nr_uninterruptible and nr_context_switches:
  1760. *
  1761. * externally visible scheduler statistics: current number of runnable
  1762. * threads, current number of uninterruptible-sleeping threads, total
  1763. * number of context switches performed since bootup.
  1764. */
  1765. unsigned long nr_running(void)
  1766. {
  1767. unsigned long i, sum = 0;
  1768. for_each_online_cpu(i)
  1769. sum += cpu_rq(i)->nr_running;
  1770. return sum;
  1771. }
  1772. unsigned long nr_uninterruptible(void)
  1773. {
  1774. unsigned long i, sum = 0;
  1775. for_each_possible_cpu(i)
  1776. sum += cpu_rq(i)->nr_uninterruptible;
  1777. /*
  1778. * Since we read the counters lockless, it might be slightly
  1779. * inaccurate. Do not allow it to go below zero though:
  1780. */
  1781. if (unlikely((long)sum < 0))
  1782. sum = 0;
  1783. return sum;
  1784. }
  1785. unsigned long long nr_context_switches(void)
  1786. {
  1787. int i;
  1788. unsigned long long sum = 0;
  1789. for_each_possible_cpu(i)
  1790. sum += cpu_rq(i)->nr_switches;
  1791. return sum;
  1792. }
  1793. unsigned long nr_iowait(void)
  1794. {
  1795. unsigned long i, sum = 0;
  1796. for_each_possible_cpu(i)
  1797. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1798. return sum;
  1799. }
  1800. unsigned long nr_iowait_cpu(int cpu)
  1801. {
  1802. struct rq *this = cpu_rq(cpu);
  1803. return atomic_read(&this->nr_iowait);
  1804. }
  1805. unsigned long this_cpu_load(void)
  1806. {
  1807. struct rq *this = this_rq();
  1808. return this->cpu_load[0];
  1809. }
  1810. /* Variables and functions for calc_load */
  1811. static atomic_long_t calc_load_tasks;
  1812. static unsigned long calc_load_update;
  1813. unsigned long avenrun[3];
  1814. EXPORT_SYMBOL(avenrun);
  1815. static long calc_load_fold_active(struct rq *this_rq)
  1816. {
  1817. long nr_active, delta = 0;
  1818. nr_active = this_rq->nr_running;
  1819. nr_active += (long) this_rq->nr_uninterruptible;
  1820. if (nr_active != this_rq->calc_load_active) {
  1821. delta = nr_active - this_rq->calc_load_active;
  1822. this_rq->calc_load_active = nr_active;
  1823. }
  1824. return delta;
  1825. }
  1826. static unsigned long
  1827. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1828. {
  1829. load *= exp;
  1830. load += active * (FIXED_1 - exp);
  1831. load += 1UL << (FSHIFT - 1);
  1832. return load >> FSHIFT;
  1833. }
  1834. #ifdef CONFIG_NO_HZ
  1835. /*
  1836. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1837. *
  1838. * When making the ILB scale, we should try to pull this in as well.
  1839. */
  1840. static atomic_long_t calc_load_tasks_idle;
  1841. void calc_load_account_idle(struct rq *this_rq)
  1842. {
  1843. long delta;
  1844. delta = calc_load_fold_active(this_rq);
  1845. if (delta)
  1846. atomic_long_add(delta, &calc_load_tasks_idle);
  1847. }
  1848. static long calc_load_fold_idle(void)
  1849. {
  1850. long delta = 0;
  1851. /*
  1852. * Its got a race, we don't care...
  1853. */
  1854. if (atomic_long_read(&calc_load_tasks_idle))
  1855. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1856. return delta;
  1857. }
  1858. /**
  1859. * fixed_power_int - compute: x^n, in O(log n) time
  1860. *
  1861. * @x: base of the power
  1862. * @frac_bits: fractional bits of @x
  1863. * @n: power to raise @x to.
  1864. *
  1865. * By exploiting the relation between the definition of the natural power
  1866. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1867. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1868. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1869. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1870. * of course trivially computable in O(log_2 n), the length of our binary
  1871. * vector.
  1872. */
  1873. static unsigned long
  1874. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1875. {
  1876. unsigned long result = 1UL << frac_bits;
  1877. if (n) for (;;) {
  1878. if (n & 1) {
  1879. result *= x;
  1880. result += 1UL << (frac_bits - 1);
  1881. result >>= frac_bits;
  1882. }
  1883. n >>= 1;
  1884. if (!n)
  1885. break;
  1886. x *= x;
  1887. x += 1UL << (frac_bits - 1);
  1888. x >>= frac_bits;
  1889. }
  1890. return result;
  1891. }
  1892. /*
  1893. * a1 = a0 * e + a * (1 - e)
  1894. *
  1895. * a2 = a1 * e + a * (1 - e)
  1896. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1897. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1898. *
  1899. * a3 = a2 * e + a * (1 - e)
  1900. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1901. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1902. *
  1903. * ...
  1904. *
  1905. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1906. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1907. * = a0 * e^n + a * (1 - e^n)
  1908. *
  1909. * [1] application of the geometric series:
  1910. *
  1911. * n 1 - x^(n+1)
  1912. * S_n := \Sum x^i = -------------
  1913. * i=0 1 - x
  1914. */
  1915. static unsigned long
  1916. calc_load_n(unsigned long load, unsigned long exp,
  1917. unsigned long active, unsigned int n)
  1918. {
  1919. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1920. }
  1921. /*
  1922. * NO_HZ can leave us missing all per-cpu ticks calling
  1923. * calc_load_account_active(), but since an idle CPU folds its delta into
  1924. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1925. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1926. *
  1927. * Once we've updated the global active value, we need to apply the exponential
  1928. * weights adjusted to the number of cycles missed.
  1929. */
  1930. static void calc_global_nohz(unsigned long ticks)
  1931. {
  1932. long delta, active, n;
  1933. if (time_before(jiffies, calc_load_update))
  1934. return;
  1935. /*
  1936. * If we crossed a calc_load_update boundary, make sure to fold
  1937. * any pending idle changes, the respective CPUs might have
  1938. * missed the tick driven calc_load_account_active() update
  1939. * due to NO_HZ.
  1940. */
  1941. delta = calc_load_fold_idle();
  1942. if (delta)
  1943. atomic_long_add(delta, &calc_load_tasks);
  1944. /*
  1945. * If we were idle for multiple load cycles, apply them.
  1946. */
  1947. if (ticks >= LOAD_FREQ) {
  1948. n = ticks / LOAD_FREQ;
  1949. active = atomic_long_read(&calc_load_tasks);
  1950. active = active > 0 ? active * FIXED_1 : 0;
  1951. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1952. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1953. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1954. calc_load_update += n * LOAD_FREQ;
  1955. }
  1956. /*
  1957. * Its possible the remainder of the above division also crosses
  1958. * a LOAD_FREQ period, the regular check in calc_global_load()
  1959. * which comes after this will take care of that.
  1960. *
  1961. * Consider us being 11 ticks before a cycle completion, and us
  1962. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  1963. * age us 4 cycles, and the test in calc_global_load() will
  1964. * pick up the final one.
  1965. */
  1966. }
  1967. #else
  1968. void calc_load_account_idle(struct rq *this_rq)
  1969. {
  1970. }
  1971. static inline long calc_load_fold_idle(void)
  1972. {
  1973. return 0;
  1974. }
  1975. static void calc_global_nohz(unsigned long ticks)
  1976. {
  1977. }
  1978. #endif
  1979. /**
  1980. * get_avenrun - get the load average array
  1981. * @loads: pointer to dest load array
  1982. * @offset: offset to add
  1983. * @shift: shift count to shift the result left
  1984. *
  1985. * These values are estimates at best, so no need for locking.
  1986. */
  1987. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1988. {
  1989. loads[0] = (avenrun[0] + offset) << shift;
  1990. loads[1] = (avenrun[1] + offset) << shift;
  1991. loads[2] = (avenrun[2] + offset) << shift;
  1992. }
  1993. /*
  1994. * calc_load - update the avenrun load estimates 10 ticks after the
  1995. * CPUs have updated calc_load_tasks.
  1996. */
  1997. void calc_global_load(unsigned long ticks)
  1998. {
  1999. long active;
  2000. calc_global_nohz(ticks);
  2001. if (time_before(jiffies, calc_load_update + 10))
  2002. return;
  2003. active = atomic_long_read(&calc_load_tasks);
  2004. active = active > 0 ? active * FIXED_1 : 0;
  2005. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2006. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2007. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2008. calc_load_update += LOAD_FREQ;
  2009. }
  2010. /*
  2011. * Called from update_cpu_load() to periodically update this CPU's
  2012. * active count.
  2013. */
  2014. static void calc_load_account_active(struct rq *this_rq)
  2015. {
  2016. long delta;
  2017. if (time_before(jiffies, this_rq->calc_load_update))
  2018. return;
  2019. delta = calc_load_fold_active(this_rq);
  2020. delta += calc_load_fold_idle();
  2021. if (delta)
  2022. atomic_long_add(delta, &calc_load_tasks);
  2023. this_rq->calc_load_update += LOAD_FREQ;
  2024. }
  2025. /*
  2026. * The exact cpuload at various idx values, calculated at every tick would be
  2027. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2028. *
  2029. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2030. * on nth tick when cpu may be busy, then we have:
  2031. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2032. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2033. *
  2034. * decay_load_missed() below does efficient calculation of
  2035. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2036. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2037. *
  2038. * The calculation is approximated on a 128 point scale.
  2039. * degrade_zero_ticks is the number of ticks after which load at any
  2040. * particular idx is approximated to be zero.
  2041. * degrade_factor is a precomputed table, a row for each load idx.
  2042. * Each column corresponds to degradation factor for a power of two ticks,
  2043. * based on 128 point scale.
  2044. * Example:
  2045. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2046. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2047. *
  2048. * With this power of 2 load factors, we can degrade the load n times
  2049. * by looking at 1 bits in n and doing as many mult/shift instead of
  2050. * n mult/shifts needed by the exact degradation.
  2051. */
  2052. #define DEGRADE_SHIFT 7
  2053. static const unsigned char
  2054. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2055. static const unsigned char
  2056. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2057. {0, 0, 0, 0, 0, 0, 0, 0},
  2058. {64, 32, 8, 0, 0, 0, 0, 0},
  2059. {96, 72, 40, 12, 1, 0, 0},
  2060. {112, 98, 75, 43, 15, 1, 0},
  2061. {120, 112, 98, 76, 45, 16, 2} };
  2062. /*
  2063. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2064. * would be when CPU is idle and so we just decay the old load without
  2065. * adding any new load.
  2066. */
  2067. static unsigned long
  2068. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2069. {
  2070. int j = 0;
  2071. if (!missed_updates)
  2072. return load;
  2073. if (missed_updates >= degrade_zero_ticks[idx])
  2074. return 0;
  2075. if (idx == 1)
  2076. return load >> missed_updates;
  2077. while (missed_updates) {
  2078. if (missed_updates % 2)
  2079. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2080. missed_updates >>= 1;
  2081. j++;
  2082. }
  2083. return load;
  2084. }
  2085. /*
  2086. * Update rq->cpu_load[] statistics. This function is usually called every
  2087. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2088. * every tick. We fix it up based on jiffies.
  2089. */
  2090. void update_cpu_load(struct rq *this_rq)
  2091. {
  2092. unsigned long this_load = this_rq->load.weight;
  2093. unsigned long curr_jiffies = jiffies;
  2094. unsigned long pending_updates;
  2095. int i, scale;
  2096. this_rq->nr_load_updates++;
  2097. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2098. if (curr_jiffies == this_rq->last_load_update_tick)
  2099. return;
  2100. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2101. this_rq->last_load_update_tick = curr_jiffies;
  2102. /* Update our load: */
  2103. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2104. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2105. unsigned long old_load, new_load;
  2106. /* scale is effectively 1 << i now, and >> i divides by scale */
  2107. old_load = this_rq->cpu_load[i];
  2108. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2109. new_load = this_load;
  2110. /*
  2111. * Round up the averaging division if load is increasing. This
  2112. * prevents us from getting stuck on 9 if the load is 10, for
  2113. * example.
  2114. */
  2115. if (new_load > old_load)
  2116. new_load += scale - 1;
  2117. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2118. }
  2119. sched_avg_update(this_rq);
  2120. }
  2121. static void update_cpu_load_active(struct rq *this_rq)
  2122. {
  2123. update_cpu_load(this_rq);
  2124. calc_load_account_active(this_rq);
  2125. }
  2126. #ifdef CONFIG_SMP
  2127. /*
  2128. * sched_exec - execve() is a valuable balancing opportunity, because at
  2129. * this point the task has the smallest effective memory and cache footprint.
  2130. */
  2131. void sched_exec(void)
  2132. {
  2133. struct task_struct *p = current;
  2134. unsigned long flags;
  2135. int dest_cpu;
  2136. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2137. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2138. if (dest_cpu == smp_processor_id())
  2139. goto unlock;
  2140. if (likely(cpu_active(dest_cpu))) {
  2141. struct migration_arg arg = { p, dest_cpu };
  2142. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2143. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2144. return;
  2145. }
  2146. unlock:
  2147. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2148. }
  2149. #endif
  2150. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2151. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2152. EXPORT_PER_CPU_SYMBOL(kstat);
  2153. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2154. /*
  2155. * Return any ns on the sched_clock that have not yet been accounted in
  2156. * @p in case that task is currently running.
  2157. *
  2158. * Called with task_rq_lock() held on @rq.
  2159. */
  2160. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2161. {
  2162. u64 ns = 0;
  2163. if (task_current(rq, p)) {
  2164. update_rq_clock(rq);
  2165. ns = rq->clock_task - p->se.exec_start;
  2166. if ((s64)ns < 0)
  2167. ns = 0;
  2168. }
  2169. return ns;
  2170. }
  2171. unsigned long long task_delta_exec(struct task_struct *p)
  2172. {
  2173. unsigned long flags;
  2174. struct rq *rq;
  2175. u64 ns = 0;
  2176. rq = task_rq_lock(p, &flags);
  2177. ns = do_task_delta_exec(p, rq);
  2178. task_rq_unlock(rq, p, &flags);
  2179. return ns;
  2180. }
  2181. /*
  2182. * Return accounted runtime for the task.
  2183. * In case the task is currently running, return the runtime plus current's
  2184. * pending runtime that have not been accounted yet.
  2185. */
  2186. unsigned long long task_sched_runtime(struct task_struct *p)
  2187. {
  2188. unsigned long flags;
  2189. struct rq *rq;
  2190. u64 ns = 0;
  2191. rq = task_rq_lock(p, &flags);
  2192. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2193. task_rq_unlock(rq, p, &flags);
  2194. return ns;
  2195. }
  2196. #ifdef CONFIG_CGROUP_CPUACCT
  2197. struct cgroup_subsys cpuacct_subsys;
  2198. struct cpuacct root_cpuacct;
  2199. #endif
  2200. static inline void task_group_account_field(struct task_struct *p, int index,
  2201. u64 tmp)
  2202. {
  2203. #ifdef CONFIG_CGROUP_CPUACCT
  2204. struct kernel_cpustat *kcpustat;
  2205. struct cpuacct *ca;
  2206. #endif
  2207. /*
  2208. * Since all updates are sure to touch the root cgroup, we
  2209. * get ourselves ahead and touch it first. If the root cgroup
  2210. * is the only cgroup, then nothing else should be necessary.
  2211. *
  2212. */
  2213. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2214. #ifdef CONFIG_CGROUP_CPUACCT
  2215. if (unlikely(!cpuacct_subsys.active))
  2216. return;
  2217. rcu_read_lock();
  2218. ca = task_ca(p);
  2219. while (ca && (ca != &root_cpuacct)) {
  2220. kcpustat = this_cpu_ptr(ca->cpustat);
  2221. kcpustat->cpustat[index] += tmp;
  2222. ca = parent_ca(ca);
  2223. }
  2224. rcu_read_unlock();
  2225. #endif
  2226. }
  2227. /*
  2228. * Account user cpu time to a process.
  2229. * @p: the process that the cpu time gets accounted to
  2230. * @cputime: the cpu time spent in user space since the last update
  2231. * @cputime_scaled: cputime scaled by cpu frequency
  2232. */
  2233. void account_user_time(struct task_struct *p, cputime_t cputime,
  2234. cputime_t cputime_scaled)
  2235. {
  2236. int index;
  2237. /* Add user time to process. */
  2238. p->utime += cputime;
  2239. p->utimescaled += cputime_scaled;
  2240. account_group_user_time(p, cputime);
  2241. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2242. /* Add user time to cpustat. */
  2243. task_group_account_field(p, index, (__force u64) cputime);
  2244. /* Account for user time used */
  2245. acct_update_integrals(p);
  2246. }
  2247. /*
  2248. * Account guest cpu time to a process.
  2249. * @p: the process that the cpu time gets accounted to
  2250. * @cputime: the cpu time spent in virtual machine since the last update
  2251. * @cputime_scaled: cputime scaled by cpu frequency
  2252. */
  2253. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2254. cputime_t cputime_scaled)
  2255. {
  2256. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2257. /* Add guest time to process. */
  2258. p->utime += cputime;
  2259. p->utimescaled += cputime_scaled;
  2260. account_group_user_time(p, cputime);
  2261. p->gtime += cputime;
  2262. /* Add guest time to cpustat. */
  2263. if (TASK_NICE(p) > 0) {
  2264. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2265. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2266. } else {
  2267. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2268. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2269. }
  2270. }
  2271. /*
  2272. * Account system cpu time to a process and desired cpustat field
  2273. * @p: the process that the cpu time gets accounted to
  2274. * @cputime: the cpu time spent in kernel space since the last update
  2275. * @cputime_scaled: cputime scaled by cpu frequency
  2276. * @target_cputime64: pointer to cpustat field that has to be updated
  2277. */
  2278. static inline
  2279. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2280. cputime_t cputime_scaled, int index)
  2281. {
  2282. /* Add system time to process. */
  2283. p->stime += cputime;
  2284. p->stimescaled += cputime_scaled;
  2285. account_group_system_time(p, cputime);
  2286. /* Add system time to cpustat. */
  2287. task_group_account_field(p, index, (__force u64) cputime);
  2288. /* Account for system time used */
  2289. acct_update_integrals(p);
  2290. }
  2291. /*
  2292. * Account system cpu time to a process.
  2293. * @p: the process that the cpu time gets accounted to
  2294. * @hardirq_offset: the offset to subtract from hardirq_count()
  2295. * @cputime: the cpu time spent in kernel space since the last update
  2296. * @cputime_scaled: cputime scaled by cpu frequency
  2297. */
  2298. void account_system_time(struct task_struct *p, int hardirq_offset,
  2299. cputime_t cputime, cputime_t cputime_scaled)
  2300. {
  2301. int index;
  2302. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2303. account_guest_time(p, cputime, cputime_scaled);
  2304. return;
  2305. }
  2306. if (hardirq_count() - hardirq_offset)
  2307. index = CPUTIME_IRQ;
  2308. else if (in_serving_softirq())
  2309. index = CPUTIME_SOFTIRQ;
  2310. else
  2311. index = CPUTIME_SYSTEM;
  2312. __account_system_time(p, cputime, cputime_scaled, index);
  2313. }
  2314. /*
  2315. * Account for involuntary wait time.
  2316. * @cputime: the cpu time spent in involuntary wait
  2317. */
  2318. void account_steal_time(cputime_t cputime)
  2319. {
  2320. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2321. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2322. }
  2323. /*
  2324. * Account for idle time.
  2325. * @cputime: the cpu time spent in idle wait
  2326. */
  2327. void account_idle_time(cputime_t cputime)
  2328. {
  2329. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2330. struct rq *rq = this_rq();
  2331. if (atomic_read(&rq->nr_iowait) > 0)
  2332. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2333. else
  2334. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2335. }
  2336. static __always_inline bool steal_account_process_tick(void)
  2337. {
  2338. #ifdef CONFIG_PARAVIRT
  2339. if (static_branch(&paravirt_steal_enabled)) {
  2340. u64 steal, st = 0;
  2341. steal = paravirt_steal_clock(smp_processor_id());
  2342. steal -= this_rq()->prev_steal_time;
  2343. st = steal_ticks(steal);
  2344. this_rq()->prev_steal_time += st * TICK_NSEC;
  2345. account_steal_time(st);
  2346. return st;
  2347. }
  2348. #endif
  2349. return false;
  2350. }
  2351. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2352. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2353. /*
  2354. * Account a tick to a process and cpustat
  2355. * @p: the process that the cpu time gets accounted to
  2356. * @user_tick: is the tick from userspace
  2357. * @rq: the pointer to rq
  2358. *
  2359. * Tick demultiplexing follows the order
  2360. * - pending hardirq update
  2361. * - pending softirq update
  2362. * - user_time
  2363. * - idle_time
  2364. * - system time
  2365. * - check for guest_time
  2366. * - else account as system_time
  2367. *
  2368. * Check for hardirq is done both for system and user time as there is
  2369. * no timer going off while we are on hardirq and hence we may never get an
  2370. * opportunity to update it solely in system time.
  2371. * p->stime and friends are only updated on system time and not on irq
  2372. * softirq as those do not count in task exec_runtime any more.
  2373. */
  2374. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2375. struct rq *rq)
  2376. {
  2377. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2378. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2379. if (steal_account_process_tick())
  2380. return;
  2381. if (irqtime_account_hi_update()) {
  2382. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2383. } else if (irqtime_account_si_update()) {
  2384. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2385. } else if (this_cpu_ksoftirqd() == p) {
  2386. /*
  2387. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2388. * So, we have to handle it separately here.
  2389. * Also, p->stime needs to be updated for ksoftirqd.
  2390. */
  2391. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2392. CPUTIME_SOFTIRQ);
  2393. } else if (user_tick) {
  2394. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2395. } else if (p == rq->idle) {
  2396. account_idle_time(cputime_one_jiffy);
  2397. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2398. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2399. } else {
  2400. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2401. CPUTIME_SYSTEM);
  2402. }
  2403. }
  2404. static void irqtime_account_idle_ticks(int ticks)
  2405. {
  2406. int i;
  2407. struct rq *rq = this_rq();
  2408. for (i = 0; i < ticks; i++)
  2409. irqtime_account_process_tick(current, 0, rq);
  2410. }
  2411. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2412. static void irqtime_account_idle_ticks(int ticks) {}
  2413. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2414. struct rq *rq) {}
  2415. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2416. /*
  2417. * Account a single tick of cpu time.
  2418. * @p: the process that the cpu time gets accounted to
  2419. * @user_tick: indicates if the tick is a user or a system tick
  2420. */
  2421. void account_process_tick(struct task_struct *p, int user_tick)
  2422. {
  2423. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2424. struct rq *rq = this_rq();
  2425. if (sched_clock_irqtime) {
  2426. irqtime_account_process_tick(p, user_tick, rq);
  2427. return;
  2428. }
  2429. if (steal_account_process_tick())
  2430. return;
  2431. if (user_tick)
  2432. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2433. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2434. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2435. one_jiffy_scaled);
  2436. else
  2437. account_idle_time(cputime_one_jiffy);
  2438. }
  2439. /*
  2440. * Account multiple ticks of steal time.
  2441. * @p: the process from which the cpu time has been stolen
  2442. * @ticks: number of stolen ticks
  2443. */
  2444. void account_steal_ticks(unsigned long ticks)
  2445. {
  2446. account_steal_time(jiffies_to_cputime(ticks));
  2447. }
  2448. /*
  2449. * Account multiple ticks of idle time.
  2450. * @ticks: number of stolen ticks
  2451. */
  2452. void account_idle_ticks(unsigned long ticks)
  2453. {
  2454. if (sched_clock_irqtime) {
  2455. irqtime_account_idle_ticks(ticks);
  2456. return;
  2457. }
  2458. account_idle_time(jiffies_to_cputime(ticks));
  2459. }
  2460. #endif
  2461. /*
  2462. * Use precise platform statistics if available:
  2463. */
  2464. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2465. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2466. {
  2467. *ut = p->utime;
  2468. *st = p->stime;
  2469. }
  2470. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2471. {
  2472. struct task_cputime cputime;
  2473. thread_group_cputime(p, &cputime);
  2474. *ut = cputime.utime;
  2475. *st = cputime.stime;
  2476. }
  2477. #else
  2478. #ifndef nsecs_to_cputime
  2479. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2480. #endif
  2481. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2482. {
  2483. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2484. /*
  2485. * Use CFS's precise accounting:
  2486. */
  2487. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2488. if (total) {
  2489. u64 temp = (__force u64) rtime;
  2490. temp *= (__force u64) utime;
  2491. do_div(temp, (__force u32) total);
  2492. utime = (__force cputime_t) temp;
  2493. } else
  2494. utime = rtime;
  2495. /*
  2496. * Compare with previous values, to keep monotonicity:
  2497. */
  2498. p->prev_utime = max(p->prev_utime, utime);
  2499. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2500. *ut = p->prev_utime;
  2501. *st = p->prev_stime;
  2502. }
  2503. /*
  2504. * Must be called with siglock held.
  2505. */
  2506. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2507. {
  2508. struct signal_struct *sig = p->signal;
  2509. struct task_cputime cputime;
  2510. cputime_t rtime, utime, total;
  2511. thread_group_cputime(p, &cputime);
  2512. total = cputime.utime + cputime.stime;
  2513. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2514. if (total) {
  2515. u64 temp = (__force u64) rtime;
  2516. temp *= (__force u64) cputime.utime;
  2517. do_div(temp, (__force u32) total);
  2518. utime = (__force cputime_t) temp;
  2519. } else
  2520. utime = rtime;
  2521. sig->prev_utime = max(sig->prev_utime, utime);
  2522. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2523. *ut = sig->prev_utime;
  2524. *st = sig->prev_stime;
  2525. }
  2526. #endif
  2527. /*
  2528. * This function gets called by the timer code, with HZ frequency.
  2529. * We call it with interrupts disabled.
  2530. */
  2531. void scheduler_tick(void)
  2532. {
  2533. int cpu = smp_processor_id();
  2534. struct rq *rq = cpu_rq(cpu);
  2535. struct task_struct *curr = rq->curr;
  2536. sched_clock_tick();
  2537. raw_spin_lock(&rq->lock);
  2538. update_rq_clock(rq);
  2539. update_cpu_load_active(rq);
  2540. curr->sched_class->task_tick(rq, curr, 0);
  2541. raw_spin_unlock(&rq->lock);
  2542. perf_event_task_tick();
  2543. #ifdef CONFIG_SMP
  2544. rq->idle_balance = idle_cpu(cpu);
  2545. trigger_load_balance(rq, cpu);
  2546. #endif
  2547. }
  2548. notrace unsigned long get_parent_ip(unsigned long addr)
  2549. {
  2550. if (in_lock_functions(addr)) {
  2551. addr = CALLER_ADDR2;
  2552. if (in_lock_functions(addr))
  2553. addr = CALLER_ADDR3;
  2554. }
  2555. return addr;
  2556. }
  2557. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2558. defined(CONFIG_PREEMPT_TRACER))
  2559. void __kprobes add_preempt_count(int val)
  2560. {
  2561. #ifdef CONFIG_DEBUG_PREEMPT
  2562. /*
  2563. * Underflow?
  2564. */
  2565. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2566. return;
  2567. #endif
  2568. preempt_count() += val;
  2569. #ifdef CONFIG_DEBUG_PREEMPT
  2570. /*
  2571. * Spinlock count overflowing soon?
  2572. */
  2573. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2574. PREEMPT_MASK - 10);
  2575. #endif
  2576. if (preempt_count() == val)
  2577. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2578. }
  2579. EXPORT_SYMBOL(add_preempt_count);
  2580. void __kprobes sub_preempt_count(int val)
  2581. {
  2582. #ifdef CONFIG_DEBUG_PREEMPT
  2583. /*
  2584. * Underflow?
  2585. */
  2586. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2587. return;
  2588. /*
  2589. * Is the spinlock portion underflowing?
  2590. */
  2591. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2592. !(preempt_count() & PREEMPT_MASK)))
  2593. return;
  2594. #endif
  2595. if (preempt_count() == val)
  2596. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2597. preempt_count() -= val;
  2598. }
  2599. EXPORT_SYMBOL(sub_preempt_count);
  2600. #endif
  2601. /*
  2602. * Print scheduling while atomic bug:
  2603. */
  2604. static noinline void __schedule_bug(struct task_struct *prev)
  2605. {
  2606. struct pt_regs *regs = get_irq_regs();
  2607. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2608. prev->comm, prev->pid, preempt_count());
  2609. debug_show_held_locks(prev);
  2610. print_modules();
  2611. if (irqs_disabled())
  2612. print_irqtrace_events(prev);
  2613. if (regs)
  2614. show_regs(regs);
  2615. else
  2616. dump_stack();
  2617. }
  2618. /*
  2619. * Various schedule()-time debugging checks and statistics:
  2620. */
  2621. static inline void schedule_debug(struct task_struct *prev)
  2622. {
  2623. /*
  2624. * Test if we are atomic. Since do_exit() needs to call into
  2625. * schedule() atomically, we ignore that path for now.
  2626. * Otherwise, whine if we are scheduling when we should not be.
  2627. */
  2628. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2629. __schedule_bug(prev);
  2630. rcu_sleep_check();
  2631. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2632. schedstat_inc(this_rq(), sched_count);
  2633. }
  2634. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2635. {
  2636. if (prev->on_rq || rq->skip_clock_update < 0)
  2637. update_rq_clock(rq);
  2638. prev->sched_class->put_prev_task(rq, prev);
  2639. }
  2640. /*
  2641. * Pick up the highest-prio task:
  2642. */
  2643. static inline struct task_struct *
  2644. pick_next_task(struct rq *rq)
  2645. {
  2646. const struct sched_class *class;
  2647. struct task_struct *p;
  2648. /*
  2649. * Optimization: we know that if all tasks are in
  2650. * the fair class we can call that function directly:
  2651. */
  2652. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2653. p = fair_sched_class.pick_next_task(rq);
  2654. if (likely(p))
  2655. return p;
  2656. }
  2657. for_each_class(class) {
  2658. p = class->pick_next_task(rq);
  2659. if (p)
  2660. return p;
  2661. }
  2662. BUG(); /* the idle class will always have a runnable task */
  2663. }
  2664. /*
  2665. * __schedule() is the main scheduler function.
  2666. */
  2667. static void __sched __schedule(void)
  2668. {
  2669. struct task_struct *prev, *next;
  2670. unsigned long *switch_count;
  2671. struct rq *rq;
  2672. int cpu;
  2673. need_resched:
  2674. preempt_disable();
  2675. cpu = smp_processor_id();
  2676. rq = cpu_rq(cpu);
  2677. rcu_note_context_switch(cpu);
  2678. prev = rq->curr;
  2679. schedule_debug(prev);
  2680. if (sched_feat(HRTICK))
  2681. hrtick_clear(rq);
  2682. raw_spin_lock_irq(&rq->lock);
  2683. switch_count = &prev->nivcsw;
  2684. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2685. if (unlikely(signal_pending_state(prev->state, prev))) {
  2686. prev->state = TASK_RUNNING;
  2687. } else {
  2688. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2689. prev->on_rq = 0;
  2690. /*
  2691. * If a worker went to sleep, notify and ask workqueue
  2692. * whether it wants to wake up a task to maintain
  2693. * concurrency.
  2694. */
  2695. if (prev->flags & PF_WQ_WORKER) {
  2696. struct task_struct *to_wakeup;
  2697. to_wakeup = wq_worker_sleeping(prev, cpu);
  2698. if (to_wakeup)
  2699. try_to_wake_up_local(to_wakeup);
  2700. }
  2701. }
  2702. switch_count = &prev->nvcsw;
  2703. }
  2704. pre_schedule(rq, prev);
  2705. if (unlikely(!rq->nr_running))
  2706. idle_balance(cpu, rq);
  2707. put_prev_task(rq, prev);
  2708. next = pick_next_task(rq);
  2709. clear_tsk_need_resched(prev);
  2710. rq->skip_clock_update = 0;
  2711. if (likely(prev != next)) {
  2712. rq->nr_switches++;
  2713. rq->curr = next;
  2714. ++*switch_count;
  2715. context_switch(rq, prev, next); /* unlocks the rq */
  2716. /*
  2717. * The context switch have flipped the stack from under us
  2718. * and restored the local variables which were saved when
  2719. * this task called schedule() in the past. prev == current
  2720. * is still correct, but it can be moved to another cpu/rq.
  2721. */
  2722. cpu = smp_processor_id();
  2723. rq = cpu_rq(cpu);
  2724. } else
  2725. raw_spin_unlock_irq(&rq->lock);
  2726. post_schedule(rq);
  2727. preempt_enable_no_resched();
  2728. if (need_resched())
  2729. goto need_resched;
  2730. }
  2731. static inline void sched_submit_work(struct task_struct *tsk)
  2732. {
  2733. if (!tsk->state)
  2734. return;
  2735. /*
  2736. * If we are going to sleep and we have plugged IO queued,
  2737. * make sure to submit it to avoid deadlocks.
  2738. */
  2739. if (blk_needs_flush_plug(tsk))
  2740. blk_schedule_flush_plug(tsk);
  2741. }
  2742. asmlinkage void __sched schedule(void)
  2743. {
  2744. struct task_struct *tsk = current;
  2745. sched_submit_work(tsk);
  2746. __schedule();
  2747. }
  2748. EXPORT_SYMBOL(schedule);
  2749. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2750. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2751. {
  2752. if (lock->owner != owner)
  2753. return false;
  2754. /*
  2755. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2756. * lock->owner still matches owner, if that fails, owner might
  2757. * point to free()d memory, if it still matches, the rcu_read_lock()
  2758. * ensures the memory stays valid.
  2759. */
  2760. barrier();
  2761. return owner->on_cpu;
  2762. }
  2763. /*
  2764. * Look out! "owner" is an entirely speculative pointer
  2765. * access and not reliable.
  2766. */
  2767. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2768. {
  2769. if (!sched_feat(OWNER_SPIN))
  2770. return 0;
  2771. rcu_read_lock();
  2772. while (owner_running(lock, owner)) {
  2773. if (need_resched())
  2774. break;
  2775. arch_mutex_cpu_relax();
  2776. }
  2777. rcu_read_unlock();
  2778. /*
  2779. * We break out the loop above on need_resched() and when the
  2780. * owner changed, which is a sign for heavy contention. Return
  2781. * success only when lock->owner is NULL.
  2782. */
  2783. return lock->owner == NULL;
  2784. }
  2785. #endif
  2786. #ifdef CONFIG_PREEMPT
  2787. /*
  2788. * this is the entry point to schedule() from in-kernel preemption
  2789. * off of preempt_enable. Kernel preemptions off return from interrupt
  2790. * occur there and call schedule directly.
  2791. */
  2792. asmlinkage void __sched notrace preempt_schedule(void)
  2793. {
  2794. struct thread_info *ti = current_thread_info();
  2795. /*
  2796. * If there is a non-zero preempt_count or interrupts are disabled,
  2797. * we do not want to preempt the current task. Just return..
  2798. */
  2799. if (likely(ti->preempt_count || irqs_disabled()))
  2800. return;
  2801. do {
  2802. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2803. __schedule();
  2804. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2805. /*
  2806. * Check again in case we missed a preemption opportunity
  2807. * between schedule and now.
  2808. */
  2809. barrier();
  2810. } while (need_resched());
  2811. }
  2812. EXPORT_SYMBOL(preempt_schedule);
  2813. /*
  2814. * this is the entry point to schedule() from kernel preemption
  2815. * off of irq context.
  2816. * Note, that this is called and return with irqs disabled. This will
  2817. * protect us against recursive calling from irq.
  2818. */
  2819. asmlinkage void __sched preempt_schedule_irq(void)
  2820. {
  2821. struct thread_info *ti = current_thread_info();
  2822. /* Catch callers which need to be fixed */
  2823. BUG_ON(ti->preempt_count || !irqs_disabled());
  2824. do {
  2825. add_preempt_count(PREEMPT_ACTIVE);
  2826. local_irq_enable();
  2827. __schedule();
  2828. local_irq_disable();
  2829. sub_preempt_count(PREEMPT_ACTIVE);
  2830. /*
  2831. * Check again in case we missed a preemption opportunity
  2832. * between schedule and now.
  2833. */
  2834. barrier();
  2835. } while (need_resched());
  2836. }
  2837. #endif /* CONFIG_PREEMPT */
  2838. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2839. void *key)
  2840. {
  2841. return try_to_wake_up(curr->private, mode, wake_flags);
  2842. }
  2843. EXPORT_SYMBOL(default_wake_function);
  2844. /*
  2845. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2846. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2847. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2848. *
  2849. * There are circumstances in which we can try to wake a task which has already
  2850. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2851. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2852. */
  2853. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2854. int nr_exclusive, int wake_flags, void *key)
  2855. {
  2856. wait_queue_t *curr, *next;
  2857. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2858. unsigned flags = curr->flags;
  2859. if (curr->func(curr, mode, wake_flags, key) &&
  2860. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2861. break;
  2862. }
  2863. }
  2864. /**
  2865. * __wake_up - wake up threads blocked on a waitqueue.
  2866. * @q: the waitqueue
  2867. * @mode: which threads
  2868. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2869. * @key: is directly passed to the wakeup function
  2870. *
  2871. * It may be assumed that this function implies a write memory barrier before
  2872. * changing the task state if and only if any tasks are woken up.
  2873. */
  2874. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2875. int nr_exclusive, void *key)
  2876. {
  2877. unsigned long flags;
  2878. spin_lock_irqsave(&q->lock, flags);
  2879. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2880. spin_unlock_irqrestore(&q->lock, flags);
  2881. }
  2882. EXPORT_SYMBOL(__wake_up);
  2883. /*
  2884. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2885. */
  2886. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2887. {
  2888. __wake_up_common(q, mode, 1, 0, NULL);
  2889. }
  2890. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2891. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2892. {
  2893. __wake_up_common(q, mode, 1, 0, key);
  2894. }
  2895. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2896. /**
  2897. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2898. * @q: the waitqueue
  2899. * @mode: which threads
  2900. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2901. * @key: opaque value to be passed to wakeup targets
  2902. *
  2903. * The sync wakeup differs that the waker knows that it will schedule
  2904. * away soon, so while the target thread will be woken up, it will not
  2905. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2906. * with each other. This can prevent needless bouncing between CPUs.
  2907. *
  2908. * On UP it can prevent extra preemption.
  2909. *
  2910. * It may be assumed that this function implies a write memory barrier before
  2911. * changing the task state if and only if any tasks are woken up.
  2912. */
  2913. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2914. int nr_exclusive, void *key)
  2915. {
  2916. unsigned long flags;
  2917. int wake_flags = WF_SYNC;
  2918. if (unlikely(!q))
  2919. return;
  2920. if (unlikely(!nr_exclusive))
  2921. wake_flags = 0;
  2922. spin_lock_irqsave(&q->lock, flags);
  2923. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2924. spin_unlock_irqrestore(&q->lock, flags);
  2925. }
  2926. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2927. /*
  2928. * __wake_up_sync - see __wake_up_sync_key()
  2929. */
  2930. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2931. {
  2932. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2933. }
  2934. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2935. /**
  2936. * complete: - signals a single thread waiting on this completion
  2937. * @x: holds the state of this particular completion
  2938. *
  2939. * This will wake up a single thread waiting on this completion. Threads will be
  2940. * awakened in the same order in which they were queued.
  2941. *
  2942. * See also complete_all(), wait_for_completion() and related routines.
  2943. *
  2944. * It may be assumed that this function implies a write memory barrier before
  2945. * changing the task state if and only if any tasks are woken up.
  2946. */
  2947. void complete(struct completion *x)
  2948. {
  2949. unsigned long flags;
  2950. spin_lock_irqsave(&x->wait.lock, flags);
  2951. x->done++;
  2952. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2953. spin_unlock_irqrestore(&x->wait.lock, flags);
  2954. }
  2955. EXPORT_SYMBOL(complete);
  2956. /**
  2957. * complete_all: - signals all threads waiting on this completion
  2958. * @x: holds the state of this particular completion
  2959. *
  2960. * This will wake up all threads waiting on this particular completion event.
  2961. *
  2962. * It may be assumed that this function implies a write memory barrier before
  2963. * changing the task state if and only if any tasks are woken up.
  2964. */
  2965. void complete_all(struct completion *x)
  2966. {
  2967. unsigned long flags;
  2968. spin_lock_irqsave(&x->wait.lock, flags);
  2969. x->done += UINT_MAX/2;
  2970. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  2971. spin_unlock_irqrestore(&x->wait.lock, flags);
  2972. }
  2973. EXPORT_SYMBOL(complete_all);
  2974. static inline long __sched
  2975. do_wait_for_common(struct completion *x, long timeout, int state)
  2976. {
  2977. if (!x->done) {
  2978. DECLARE_WAITQUEUE(wait, current);
  2979. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  2980. do {
  2981. if (signal_pending_state(state, current)) {
  2982. timeout = -ERESTARTSYS;
  2983. break;
  2984. }
  2985. __set_current_state(state);
  2986. spin_unlock_irq(&x->wait.lock);
  2987. timeout = schedule_timeout(timeout);
  2988. spin_lock_irq(&x->wait.lock);
  2989. } while (!x->done && timeout);
  2990. __remove_wait_queue(&x->wait, &wait);
  2991. if (!x->done)
  2992. return timeout;
  2993. }
  2994. x->done--;
  2995. return timeout ?: 1;
  2996. }
  2997. static long __sched
  2998. wait_for_common(struct completion *x, long timeout, int state)
  2999. {
  3000. might_sleep();
  3001. spin_lock_irq(&x->wait.lock);
  3002. timeout = do_wait_for_common(x, timeout, state);
  3003. spin_unlock_irq(&x->wait.lock);
  3004. return timeout;
  3005. }
  3006. /**
  3007. * wait_for_completion: - waits for completion of a task
  3008. * @x: holds the state of this particular completion
  3009. *
  3010. * This waits to be signaled for completion of a specific task. It is NOT
  3011. * interruptible and there is no timeout.
  3012. *
  3013. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3014. * and interrupt capability. Also see complete().
  3015. */
  3016. void __sched wait_for_completion(struct completion *x)
  3017. {
  3018. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3019. }
  3020. EXPORT_SYMBOL(wait_for_completion);
  3021. /**
  3022. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3023. * @x: holds the state of this particular completion
  3024. * @timeout: timeout value in jiffies
  3025. *
  3026. * This waits for either a completion of a specific task to be signaled or for a
  3027. * specified timeout to expire. The timeout is in jiffies. It is not
  3028. * interruptible.
  3029. *
  3030. * The return value is 0 if timed out, and positive (at least 1, or number of
  3031. * jiffies left till timeout) if completed.
  3032. */
  3033. unsigned long __sched
  3034. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3035. {
  3036. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3037. }
  3038. EXPORT_SYMBOL(wait_for_completion_timeout);
  3039. /**
  3040. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3041. * @x: holds the state of this particular completion
  3042. *
  3043. * This waits for completion of a specific task to be signaled. It is
  3044. * interruptible.
  3045. *
  3046. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3047. */
  3048. int __sched wait_for_completion_interruptible(struct completion *x)
  3049. {
  3050. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3051. if (t == -ERESTARTSYS)
  3052. return t;
  3053. return 0;
  3054. }
  3055. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3056. /**
  3057. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3058. * @x: holds the state of this particular completion
  3059. * @timeout: timeout value in jiffies
  3060. *
  3061. * This waits for either a completion of a specific task to be signaled or for a
  3062. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3063. *
  3064. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3065. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3066. */
  3067. long __sched
  3068. wait_for_completion_interruptible_timeout(struct completion *x,
  3069. unsigned long timeout)
  3070. {
  3071. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3072. }
  3073. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3074. /**
  3075. * wait_for_completion_killable: - waits for completion of a task (killable)
  3076. * @x: holds the state of this particular completion
  3077. *
  3078. * This waits to be signaled for completion of a specific task. It can be
  3079. * interrupted by a kill signal.
  3080. *
  3081. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3082. */
  3083. int __sched wait_for_completion_killable(struct completion *x)
  3084. {
  3085. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3086. if (t == -ERESTARTSYS)
  3087. return t;
  3088. return 0;
  3089. }
  3090. EXPORT_SYMBOL(wait_for_completion_killable);
  3091. /**
  3092. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3093. * @x: holds the state of this particular completion
  3094. * @timeout: timeout value in jiffies
  3095. *
  3096. * This waits for either a completion of a specific task to be
  3097. * signaled or for a specified timeout to expire. It can be
  3098. * interrupted by a kill signal. The timeout is in jiffies.
  3099. *
  3100. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3101. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3102. */
  3103. long __sched
  3104. wait_for_completion_killable_timeout(struct completion *x,
  3105. unsigned long timeout)
  3106. {
  3107. return wait_for_common(x, timeout, TASK_KILLABLE);
  3108. }
  3109. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3110. /**
  3111. * try_wait_for_completion - try to decrement a completion without blocking
  3112. * @x: completion structure
  3113. *
  3114. * Returns: 0 if a decrement cannot be done without blocking
  3115. * 1 if a decrement succeeded.
  3116. *
  3117. * If a completion is being used as a counting completion,
  3118. * attempt to decrement the counter without blocking. This
  3119. * enables us to avoid waiting if the resource the completion
  3120. * is protecting is not available.
  3121. */
  3122. bool try_wait_for_completion(struct completion *x)
  3123. {
  3124. unsigned long flags;
  3125. int ret = 1;
  3126. spin_lock_irqsave(&x->wait.lock, flags);
  3127. if (!x->done)
  3128. ret = 0;
  3129. else
  3130. x->done--;
  3131. spin_unlock_irqrestore(&x->wait.lock, flags);
  3132. return ret;
  3133. }
  3134. EXPORT_SYMBOL(try_wait_for_completion);
  3135. /**
  3136. * completion_done - Test to see if a completion has any waiters
  3137. * @x: completion structure
  3138. *
  3139. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3140. * 1 if there are no waiters.
  3141. *
  3142. */
  3143. bool completion_done(struct completion *x)
  3144. {
  3145. unsigned long flags;
  3146. int ret = 1;
  3147. spin_lock_irqsave(&x->wait.lock, flags);
  3148. if (!x->done)
  3149. ret = 0;
  3150. spin_unlock_irqrestore(&x->wait.lock, flags);
  3151. return ret;
  3152. }
  3153. EXPORT_SYMBOL(completion_done);
  3154. static long __sched
  3155. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3156. {
  3157. unsigned long flags;
  3158. wait_queue_t wait;
  3159. init_waitqueue_entry(&wait, current);
  3160. __set_current_state(state);
  3161. spin_lock_irqsave(&q->lock, flags);
  3162. __add_wait_queue(q, &wait);
  3163. spin_unlock(&q->lock);
  3164. timeout = schedule_timeout(timeout);
  3165. spin_lock_irq(&q->lock);
  3166. __remove_wait_queue(q, &wait);
  3167. spin_unlock_irqrestore(&q->lock, flags);
  3168. return timeout;
  3169. }
  3170. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3171. {
  3172. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3173. }
  3174. EXPORT_SYMBOL(interruptible_sleep_on);
  3175. long __sched
  3176. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3177. {
  3178. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3179. }
  3180. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3181. void __sched sleep_on(wait_queue_head_t *q)
  3182. {
  3183. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3184. }
  3185. EXPORT_SYMBOL(sleep_on);
  3186. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3187. {
  3188. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3189. }
  3190. EXPORT_SYMBOL(sleep_on_timeout);
  3191. #ifdef CONFIG_RT_MUTEXES
  3192. /*
  3193. * rt_mutex_setprio - set the current priority of a task
  3194. * @p: task
  3195. * @prio: prio value (kernel-internal form)
  3196. *
  3197. * This function changes the 'effective' priority of a task. It does
  3198. * not touch ->normal_prio like __setscheduler().
  3199. *
  3200. * Used by the rt_mutex code to implement priority inheritance logic.
  3201. */
  3202. void rt_mutex_setprio(struct task_struct *p, int prio)
  3203. {
  3204. int oldprio, on_rq, running;
  3205. struct rq *rq;
  3206. const struct sched_class *prev_class;
  3207. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3208. rq = __task_rq_lock(p);
  3209. trace_sched_pi_setprio(p, prio);
  3210. oldprio = p->prio;
  3211. prev_class = p->sched_class;
  3212. on_rq = p->on_rq;
  3213. running = task_current(rq, p);
  3214. if (on_rq)
  3215. dequeue_task(rq, p, 0);
  3216. if (running)
  3217. p->sched_class->put_prev_task(rq, p);
  3218. if (rt_prio(prio))
  3219. p->sched_class = &rt_sched_class;
  3220. else
  3221. p->sched_class = &fair_sched_class;
  3222. p->prio = prio;
  3223. if (running)
  3224. p->sched_class->set_curr_task(rq);
  3225. if (on_rq)
  3226. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3227. check_class_changed(rq, p, prev_class, oldprio);
  3228. __task_rq_unlock(rq);
  3229. }
  3230. #endif
  3231. void set_user_nice(struct task_struct *p, long nice)
  3232. {
  3233. int old_prio, delta, on_rq;
  3234. unsigned long flags;
  3235. struct rq *rq;
  3236. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3237. return;
  3238. /*
  3239. * We have to be careful, if called from sys_setpriority(),
  3240. * the task might be in the middle of scheduling on another CPU.
  3241. */
  3242. rq = task_rq_lock(p, &flags);
  3243. /*
  3244. * The RT priorities are set via sched_setscheduler(), but we still
  3245. * allow the 'normal' nice value to be set - but as expected
  3246. * it wont have any effect on scheduling until the task is
  3247. * SCHED_FIFO/SCHED_RR:
  3248. */
  3249. if (task_has_rt_policy(p)) {
  3250. p->static_prio = NICE_TO_PRIO(nice);
  3251. goto out_unlock;
  3252. }
  3253. on_rq = p->on_rq;
  3254. if (on_rq)
  3255. dequeue_task(rq, p, 0);
  3256. p->static_prio = NICE_TO_PRIO(nice);
  3257. set_load_weight(p);
  3258. old_prio = p->prio;
  3259. p->prio = effective_prio(p);
  3260. delta = p->prio - old_prio;
  3261. if (on_rq) {
  3262. enqueue_task(rq, p, 0);
  3263. /*
  3264. * If the task increased its priority or is running and
  3265. * lowered its priority, then reschedule its CPU:
  3266. */
  3267. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3268. resched_task(rq->curr);
  3269. }
  3270. out_unlock:
  3271. task_rq_unlock(rq, p, &flags);
  3272. }
  3273. EXPORT_SYMBOL(set_user_nice);
  3274. /*
  3275. * can_nice - check if a task can reduce its nice value
  3276. * @p: task
  3277. * @nice: nice value
  3278. */
  3279. int can_nice(const struct task_struct *p, const int nice)
  3280. {
  3281. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3282. int nice_rlim = 20 - nice;
  3283. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3284. capable(CAP_SYS_NICE));
  3285. }
  3286. #ifdef __ARCH_WANT_SYS_NICE
  3287. /*
  3288. * sys_nice - change the priority of the current process.
  3289. * @increment: priority increment
  3290. *
  3291. * sys_setpriority is a more generic, but much slower function that
  3292. * does similar things.
  3293. */
  3294. SYSCALL_DEFINE1(nice, int, increment)
  3295. {
  3296. long nice, retval;
  3297. /*
  3298. * Setpriority might change our priority at the same moment.
  3299. * We don't have to worry. Conceptually one call occurs first
  3300. * and we have a single winner.
  3301. */
  3302. if (increment < -40)
  3303. increment = -40;
  3304. if (increment > 40)
  3305. increment = 40;
  3306. nice = TASK_NICE(current) + increment;
  3307. if (nice < -20)
  3308. nice = -20;
  3309. if (nice > 19)
  3310. nice = 19;
  3311. if (increment < 0 && !can_nice(current, nice))
  3312. return -EPERM;
  3313. retval = security_task_setnice(current, nice);
  3314. if (retval)
  3315. return retval;
  3316. set_user_nice(current, nice);
  3317. return 0;
  3318. }
  3319. #endif
  3320. /**
  3321. * task_prio - return the priority value of a given task.
  3322. * @p: the task in question.
  3323. *
  3324. * This is the priority value as seen by users in /proc.
  3325. * RT tasks are offset by -200. Normal tasks are centered
  3326. * around 0, value goes from -16 to +15.
  3327. */
  3328. int task_prio(const struct task_struct *p)
  3329. {
  3330. return p->prio - MAX_RT_PRIO;
  3331. }
  3332. /**
  3333. * task_nice - return the nice value of a given task.
  3334. * @p: the task in question.
  3335. */
  3336. int task_nice(const struct task_struct *p)
  3337. {
  3338. return TASK_NICE(p);
  3339. }
  3340. EXPORT_SYMBOL(task_nice);
  3341. /**
  3342. * idle_cpu - is a given cpu idle currently?
  3343. * @cpu: the processor in question.
  3344. */
  3345. int idle_cpu(int cpu)
  3346. {
  3347. struct rq *rq = cpu_rq(cpu);
  3348. if (rq->curr != rq->idle)
  3349. return 0;
  3350. if (rq->nr_running)
  3351. return 0;
  3352. #ifdef CONFIG_SMP
  3353. if (!llist_empty(&rq->wake_list))
  3354. return 0;
  3355. #endif
  3356. return 1;
  3357. }
  3358. /**
  3359. * idle_task - return the idle task for a given cpu.
  3360. * @cpu: the processor in question.
  3361. */
  3362. struct task_struct *idle_task(int cpu)
  3363. {
  3364. return cpu_rq(cpu)->idle;
  3365. }
  3366. /**
  3367. * find_process_by_pid - find a process with a matching PID value.
  3368. * @pid: the pid in question.
  3369. */
  3370. static struct task_struct *find_process_by_pid(pid_t pid)
  3371. {
  3372. return pid ? find_task_by_vpid(pid) : current;
  3373. }
  3374. /* Actually do priority change: must hold rq lock. */
  3375. static void
  3376. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3377. {
  3378. p->policy = policy;
  3379. p->rt_priority = prio;
  3380. p->normal_prio = normal_prio(p);
  3381. /* we are holding p->pi_lock already */
  3382. p->prio = rt_mutex_getprio(p);
  3383. if (rt_prio(p->prio))
  3384. p->sched_class = &rt_sched_class;
  3385. else
  3386. p->sched_class = &fair_sched_class;
  3387. set_load_weight(p);
  3388. }
  3389. /*
  3390. * check the target process has a UID that matches the current process's
  3391. */
  3392. static bool check_same_owner(struct task_struct *p)
  3393. {
  3394. const struct cred *cred = current_cred(), *pcred;
  3395. bool match;
  3396. rcu_read_lock();
  3397. pcred = __task_cred(p);
  3398. if (cred->user->user_ns == pcred->user->user_ns)
  3399. match = (cred->euid == pcred->euid ||
  3400. cred->euid == pcred->uid);
  3401. else
  3402. match = false;
  3403. rcu_read_unlock();
  3404. return match;
  3405. }
  3406. static int __sched_setscheduler(struct task_struct *p, int policy,
  3407. const struct sched_param *param, bool user)
  3408. {
  3409. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3410. unsigned long flags;
  3411. const struct sched_class *prev_class;
  3412. struct rq *rq;
  3413. int reset_on_fork;
  3414. /* may grab non-irq protected spin_locks */
  3415. BUG_ON(in_interrupt());
  3416. recheck:
  3417. /* double check policy once rq lock held */
  3418. if (policy < 0) {
  3419. reset_on_fork = p->sched_reset_on_fork;
  3420. policy = oldpolicy = p->policy;
  3421. } else {
  3422. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3423. policy &= ~SCHED_RESET_ON_FORK;
  3424. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3425. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3426. policy != SCHED_IDLE)
  3427. return -EINVAL;
  3428. }
  3429. /*
  3430. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3431. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3432. * SCHED_BATCH and SCHED_IDLE is 0.
  3433. */
  3434. if (param->sched_priority < 0 ||
  3435. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3436. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3437. return -EINVAL;
  3438. if (rt_policy(policy) != (param->sched_priority != 0))
  3439. return -EINVAL;
  3440. /*
  3441. * Allow unprivileged RT tasks to decrease priority:
  3442. */
  3443. if (user && !capable(CAP_SYS_NICE)) {
  3444. if (rt_policy(policy)) {
  3445. unsigned long rlim_rtprio =
  3446. task_rlimit(p, RLIMIT_RTPRIO);
  3447. /* can't set/change the rt policy */
  3448. if (policy != p->policy && !rlim_rtprio)
  3449. return -EPERM;
  3450. /* can't increase priority */
  3451. if (param->sched_priority > p->rt_priority &&
  3452. param->sched_priority > rlim_rtprio)
  3453. return -EPERM;
  3454. }
  3455. /*
  3456. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3457. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3458. */
  3459. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3460. if (!can_nice(p, TASK_NICE(p)))
  3461. return -EPERM;
  3462. }
  3463. /* can't change other user's priorities */
  3464. if (!check_same_owner(p))
  3465. return -EPERM;
  3466. /* Normal users shall not reset the sched_reset_on_fork flag */
  3467. if (p->sched_reset_on_fork && !reset_on_fork)
  3468. return -EPERM;
  3469. }
  3470. if (user) {
  3471. retval = security_task_setscheduler(p);
  3472. if (retval)
  3473. return retval;
  3474. }
  3475. /*
  3476. * make sure no PI-waiters arrive (or leave) while we are
  3477. * changing the priority of the task:
  3478. *
  3479. * To be able to change p->policy safely, the appropriate
  3480. * runqueue lock must be held.
  3481. */
  3482. rq = task_rq_lock(p, &flags);
  3483. /*
  3484. * Changing the policy of the stop threads its a very bad idea
  3485. */
  3486. if (p == rq->stop) {
  3487. task_rq_unlock(rq, p, &flags);
  3488. return -EINVAL;
  3489. }
  3490. /*
  3491. * If not changing anything there's no need to proceed further:
  3492. */
  3493. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3494. param->sched_priority == p->rt_priority))) {
  3495. __task_rq_unlock(rq);
  3496. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3497. return 0;
  3498. }
  3499. #ifdef CONFIG_RT_GROUP_SCHED
  3500. if (user) {
  3501. /*
  3502. * Do not allow realtime tasks into groups that have no runtime
  3503. * assigned.
  3504. */
  3505. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3506. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3507. !task_group_is_autogroup(task_group(p))) {
  3508. task_rq_unlock(rq, p, &flags);
  3509. return -EPERM;
  3510. }
  3511. }
  3512. #endif
  3513. /* recheck policy now with rq lock held */
  3514. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3515. policy = oldpolicy = -1;
  3516. task_rq_unlock(rq, p, &flags);
  3517. goto recheck;
  3518. }
  3519. on_rq = p->on_rq;
  3520. running = task_current(rq, p);
  3521. if (on_rq)
  3522. deactivate_task(rq, p, 0);
  3523. if (running)
  3524. p->sched_class->put_prev_task(rq, p);
  3525. p->sched_reset_on_fork = reset_on_fork;
  3526. oldprio = p->prio;
  3527. prev_class = p->sched_class;
  3528. __setscheduler(rq, p, policy, param->sched_priority);
  3529. if (running)
  3530. p->sched_class->set_curr_task(rq);
  3531. if (on_rq)
  3532. activate_task(rq, p, 0);
  3533. check_class_changed(rq, p, prev_class, oldprio);
  3534. task_rq_unlock(rq, p, &flags);
  3535. rt_mutex_adjust_pi(p);
  3536. return 0;
  3537. }
  3538. /**
  3539. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3540. * @p: the task in question.
  3541. * @policy: new policy.
  3542. * @param: structure containing the new RT priority.
  3543. *
  3544. * NOTE that the task may be already dead.
  3545. */
  3546. int sched_setscheduler(struct task_struct *p, int policy,
  3547. const struct sched_param *param)
  3548. {
  3549. return __sched_setscheduler(p, policy, param, true);
  3550. }
  3551. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3552. /**
  3553. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3554. * @p: the task in question.
  3555. * @policy: new policy.
  3556. * @param: structure containing the new RT priority.
  3557. *
  3558. * Just like sched_setscheduler, only don't bother checking if the
  3559. * current context has permission. For example, this is needed in
  3560. * stop_machine(): we create temporary high priority worker threads,
  3561. * but our caller might not have that capability.
  3562. */
  3563. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3564. const struct sched_param *param)
  3565. {
  3566. return __sched_setscheduler(p, policy, param, false);
  3567. }
  3568. static int
  3569. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3570. {
  3571. struct sched_param lparam;
  3572. struct task_struct *p;
  3573. int retval;
  3574. if (!param || pid < 0)
  3575. return -EINVAL;
  3576. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3577. return -EFAULT;
  3578. rcu_read_lock();
  3579. retval = -ESRCH;
  3580. p = find_process_by_pid(pid);
  3581. if (p != NULL)
  3582. retval = sched_setscheduler(p, policy, &lparam);
  3583. rcu_read_unlock();
  3584. return retval;
  3585. }
  3586. /**
  3587. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3588. * @pid: the pid in question.
  3589. * @policy: new policy.
  3590. * @param: structure containing the new RT priority.
  3591. */
  3592. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3593. struct sched_param __user *, param)
  3594. {
  3595. /* negative values for policy are not valid */
  3596. if (policy < 0)
  3597. return -EINVAL;
  3598. return do_sched_setscheduler(pid, policy, param);
  3599. }
  3600. /**
  3601. * sys_sched_setparam - set/change the RT priority of a thread
  3602. * @pid: the pid in question.
  3603. * @param: structure containing the new RT priority.
  3604. */
  3605. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3606. {
  3607. return do_sched_setscheduler(pid, -1, param);
  3608. }
  3609. /**
  3610. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3611. * @pid: the pid in question.
  3612. */
  3613. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3614. {
  3615. struct task_struct *p;
  3616. int retval;
  3617. if (pid < 0)
  3618. return -EINVAL;
  3619. retval = -ESRCH;
  3620. rcu_read_lock();
  3621. p = find_process_by_pid(pid);
  3622. if (p) {
  3623. retval = security_task_getscheduler(p);
  3624. if (!retval)
  3625. retval = p->policy
  3626. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3627. }
  3628. rcu_read_unlock();
  3629. return retval;
  3630. }
  3631. /**
  3632. * sys_sched_getparam - get the RT priority of a thread
  3633. * @pid: the pid in question.
  3634. * @param: structure containing the RT priority.
  3635. */
  3636. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3637. {
  3638. struct sched_param lp;
  3639. struct task_struct *p;
  3640. int retval;
  3641. if (!param || pid < 0)
  3642. return -EINVAL;
  3643. rcu_read_lock();
  3644. p = find_process_by_pid(pid);
  3645. retval = -ESRCH;
  3646. if (!p)
  3647. goto out_unlock;
  3648. retval = security_task_getscheduler(p);
  3649. if (retval)
  3650. goto out_unlock;
  3651. lp.sched_priority = p->rt_priority;
  3652. rcu_read_unlock();
  3653. /*
  3654. * This one might sleep, we cannot do it with a spinlock held ...
  3655. */
  3656. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3657. return retval;
  3658. out_unlock:
  3659. rcu_read_unlock();
  3660. return retval;
  3661. }
  3662. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3663. {
  3664. cpumask_var_t cpus_allowed, new_mask;
  3665. struct task_struct *p;
  3666. int retval;
  3667. get_online_cpus();
  3668. rcu_read_lock();
  3669. p = find_process_by_pid(pid);
  3670. if (!p) {
  3671. rcu_read_unlock();
  3672. put_online_cpus();
  3673. return -ESRCH;
  3674. }
  3675. /* Prevent p going away */
  3676. get_task_struct(p);
  3677. rcu_read_unlock();
  3678. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3679. retval = -ENOMEM;
  3680. goto out_put_task;
  3681. }
  3682. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3683. retval = -ENOMEM;
  3684. goto out_free_cpus_allowed;
  3685. }
  3686. retval = -EPERM;
  3687. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  3688. goto out_unlock;
  3689. retval = security_task_setscheduler(p);
  3690. if (retval)
  3691. goto out_unlock;
  3692. cpuset_cpus_allowed(p, cpus_allowed);
  3693. cpumask_and(new_mask, in_mask, cpus_allowed);
  3694. again:
  3695. retval = set_cpus_allowed_ptr(p, new_mask);
  3696. if (!retval) {
  3697. cpuset_cpus_allowed(p, cpus_allowed);
  3698. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3699. /*
  3700. * We must have raced with a concurrent cpuset
  3701. * update. Just reset the cpus_allowed to the
  3702. * cpuset's cpus_allowed
  3703. */
  3704. cpumask_copy(new_mask, cpus_allowed);
  3705. goto again;
  3706. }
  3707. }
  3708. out_unlock:
  3709. free_cpumask_var(new_mask);
  3710. out_free_cpus_allowed:
  3711. free_cpumask_var(cpus_allowed);
  3712. out_put_task:
  3713. put_task_struct(p);
  3714. put_online_cpus();
  3715. return retval;
  3716. }
  3717. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3718. struct cpumask *new_mask)
  3719. {
  3720. if (len < cpumask_size())
  3721. cpumask_clear(new_mask);
  3722. else if (len > cpumask_size())
  3723. len = cpumask_size();
  3724. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3725. }
  3726. /**
  3727. * sys_sched_setaffinity - set the cpu affinity of a process
  3728. * @pid: pid of the process
  3729. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3730. * @user_mask_ptr: user-space pointer to the new cpu mask
  3731. */
  3732. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3733. unsigned long __user *, user_mask_ptr)
  3734. {
  3735. cpumask_var_t new_mask;
  3736. int retval;
  3737. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3738. return -ENOMEM;
  3739. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3740. if (retval == 0)
  3741. retval = sched_setaffinity(pid, new_mask);
  3742. free_cpumask_var(new_mask);
  3743. return retval;
  3744. }
  3745. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3746. {
  3747. struct task_struct *p;
  3748. unsigned long flags;
  3749. int retval;
  3750. get_online_cpus();
  3751. rcu_read_lock();
  3752. retval = -ESRCH;
  3753. p = find_process_by_pid(pid);
  3754. if (!p)
  3755. goto out_unlock;
  3756. retval = security_task_getscheduler(p);
  3757. if (retval)
  3758. goto out_unlock;
  3759. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3760. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3761. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3762. out_unlock:
  3763. rcu_read_unlock();
  3764. put_online_cpus();
  3765. return retval;
  3766. }
  3767. /**
  3768. * sys_sched_getaffinity - get the cpu affinity of a process
  3769. * @pid: pid of the process
  3770. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3771. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3772. */
  3773. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3774. unsigned long __user *, user_mask_ptr)
  3775. {
  3776. int ret;
  3777. cpumask_var_t mask;
  3778. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3779. return -EINVAL;
  3780. if (len & (sizeof(unsigned long)-1))
  3781. return -EINVAL;
  3782. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3783. return -ENOMEM;
  3784. ret = sched_getaffinity(pid, mask);
  3785. if (ret == 0) {
  3786. size_t retlen = min_t(size_t, len, cpumask_size());
  3787. if (copy_to_user(user_mask_ptr, mask, retlen))
  3788. ret = -EFAULT;
  3789. else
  3790. ret = retlen;
  3791. }
  3792. free_cpumask_var(mask);
  3793. return ret;
  3794. }
  3795. /**
  3796. * sys_sched_yield - yield the current processor to other threads.
  3797. *
  3798. * This function yields the current CPU to other tasks. If there are no
  3799. * other threads running on this CPU then this function will return.
  3800. */
  3801. SYSCALL_DEFINE0(sched_yield)
  3802. {
  3803. struct rq *rq = this_rq_lock();
  3804. schedstat_inc(rq, yld_count);
  3805. current->sched_class->yield_task(rq);
  3806. /*
  3807. * Since we are going to call schedule() anyway, there's
  3808. * no need to preempt or enable interrupts:
  3809. */
  3810. __release(rq->lock);
  3811. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3812. do_raw_spin_unlock(&rq->lock);
  3813. preempt_enable_no_resched();
  3814. schedule();
  3815. return 0;
  3816. }
  3817. static inline int should_resched(void)
  3818. {
  3819. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3820. }
  3821. static void __cond_resched(void)
  3822. {
  3823. add_preempt_count(PREEMPT_ACTIVE);
  3824. __schedule();
  3825. sub_preempt_count(PREEMPT_ACTIVE);
  3826. }
  3827. int __sched _cond_resched(void)
  3828. {
  3829. if (should_resched()) {
  3830. __cond_resched();
  3831. return 1;
  3832. }
  3833. return 0;
  3834. }
  3835. EXPORT_SYMBOL(_cond_resched);
  3836. /*
  3837. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3838. * call schedule, and on return reacquire the lock.
  3839. *
  3840. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3841. * operations here to prevent schedule() from being called twice (once via
  3842. * spin_unlock(), once by hand).
  3843. */
  3844. int __cond_resched_lock(spinlock_t *lock)
  3845. {
  3846. int resched = should_resched();
  3847. int ret = 0;
  3848. lockdep_assert_held(lock);
  3849. if (spin_needbreak(lock) || resched) {
  3850. spin_unlock(lock);
  3851. if (resched)
  3852. __cond_resched();
  3853. else
  3854. cpu_relax();
  3855. ret = 1;
  3856. spin_lock(lock);
  3857. }
  3858. return ret;
  3859. }
  3860. EXPORT_SYMBOL(__cond_resched_lock);
  3861. int __sched __cond_resched_softirq(void)
  3862. {
  3863. BUG_ON(!in_softirq());
  3864. if (should_resched()) {
  3865. local_bh_enable();
  3866. __cond_resched();
  3867. local_bh_disable();
  3868. return 1;
  3869. }
  3870. return 0;
  3871. }
  3872. EXPORT_SYMBOL(__cond_resched_softirq);
  3873. /**
  3874. * yield - yield the current processor to other threads.
  3875. *
  3876. * This is a shortcut for kernel-space yielding - it marks the
  3877. * thread runnable and calls sys_sched_yield().
  3878. */
  3879. void __sched yield(void)
  3880. {
  3881. set_current_state(TASK_RUNNING);
  3882. sys_sched_yield();
  3883. }
  3884. EXPORT_SYMBOL(yield);
  3885. /**
  3886. * yield_to - yield the current processor to another thread in
  3887. * your thread group, or accelerate that thread toward the
  3888. * processor it's on.
  3889. * @p: target task
  3890. * @preempt: whether task preemption is allowed or not
  3891. *
  3892. * It's the caller's job to ensure that the target task struct
  3893. * can't go away on us before we can do any checks.
  3894. *
  3895. * Returns true if we indeed boosted the target task.
  3896. */
  3897. bool __sched yield_to(struct task_struct *p, bool preempt)
  3898. {
  3899. struct task_struct *curr = current;
  3900. struct rq *rq, *p_rq;
  3901. unsigned long flags;
  3902. bool yielded = 0;
  3903. local_irq_save(flags);
  3904. rq = this_rq();
  3905. again:
  3906. p_rq = task_rq(p);
  3907. double_rq_lock(rq, p_rq);
  3908. while (task_rq(p) != p_rq) {
  3909. double_rq_unlock(rq, p_rq);
  3910. goto again;
  3911. }
  3912. if (!curr->sched_class->yield_to_task)
  3913. goto out;
  3914. if (curr->sched_class != p->sched_class)
  3915. goto out;
  3916. if (task_running(p_rq, p) || p->state)
  3917. goto out;
  3918. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3919. if (yielded) {
  3920. schedstat_inc(rq, yld_count);
  3921. /*
  3922. * Make p's CPU reschedule; pick_next_entity takes care of
  3923. * fairness.
  3924. */
  3925. if (preempt && rq != p_rq)
  3926. resched_task(p_rq->curr);
  3927. } else {
  3928. /*
  3929. * We might have set it in task_yield_fair(), but are
  3930. * not going to schedule(), so don't want to skip
  3931. * the next update.
  3932. */
  3933. rq->skip_clock_update = 0;
  3934. }
  3935. out:
  3936. double_rq_unlock(rq, p_rq);
  3937. local_irq_restore(flags);
  3938. if (yielded)
  3939. schedule();
  3940. return yielded;
  3941. }
  3942. EXPORT_SYMBOL_GPL(yield_to);
  3943. /*
  3944. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3945. * that process accounting knows that this is a task in IO wait state.
  3946. */
  3947. void __sched io_schedule(void)
  3948. {
  3949. struct rq *rq = raw_rq();
  3950. delayacct_blkio_start();
  3951. atomic_inc(&rq->nr_iowait);
  3952. blk_flush_plug(current);
  3953. current->in_iowait = 1;
  3954. schedule();
  3955. current->in_iowait = 0;
  3956. atomic_dec(&rq->nr_iowait);
  3957. delayacct_blkio_end();
  3958. }
  3959. EXPORT_SYMBOL(io_schedule);
  3960. long __sched io_schedule_timeout(long timeout)
  3961. {
  3962. struct rq *rq = raw_rq();
  3963. long ret;
  3964. delayacct_blkio_start();
  3965. atomic_inc(&rq->nr_iowait);
  3966. blk_flush_plug(current);
  3967. current->in_iowait = 1;
  3968. ret = schedule_timeout(timeout);
  3969. current->in_iowait = 0;
  3970. atomic_dec(&rq->nr_iowait);
  3971. delayacct_blkio_end();
  3972. return ret;
  3973. }
  3974. /**
  3975. * sys_sched_get_priority_max - return maximum RT priority.
  3976. * @policy: scheduling class.
  3977. *
  3978. * this syscall returns the maximum rt_priority that can be used
  3979. * by a given scheduling class.
  3980. */
  3981. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3982. {
  3983. int ret = -EINVAL;
  3984. switch (policy) {
  3985. case SCHED_FIFO:
  3986. case SCHED_RR:
  3987. ret = MAX_USER_RT_PRIO-1;
  3988. break;
  3989. case SCHED_NORMAL:
  3990. case SCHED_BATCH:
  3991. case SCHED_IDLE:
  3992. ret = 0;
  3993. break;
  3994. }
  3995. return ret;
  3996. }
  3997. /**
  3998. * sys_sched_get_priority_min - return minimum RT priority.
  3999. * @policy: scheduling class.
  4000. *
  4001. * this syscall returns the minimum rt_priority that can be used
  4002. * by a given scheduling class.
  4003. */
  4004. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4005. {
  4006. int ret = -EINVAL;
  4007. switch (policy) {
  4008. case SCHED_FIFO:
  4009. case SCHED_RR:
  4010. ret = 1;
  4011. break;
  4012. case SCHED_NORMAL:
  4013. case SCHED_BATCH:
  4014. case SCHED_IDLE:
  4015. ret = 0;
  4016. }
  4017. return ret;
  4018. }
  4019. /**
  4020. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4021. * @pid: pid of the process.
  4022. * @interval: userspace pointer to the timeslice value.
  4023. *
  4024. * this syscall writes the default timeslice value of a given process
  4025. * into the user-space timespec buffer. A value of '0' means infinity.
  4026. */
  4027. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4028. struct timespec __user *, interval)
  4029. {
  4030. struct task_struct *p;
  4031. unsigned int time_slice;
  4032. unsigned long flags;
  4033. struct rq *rq;
  4034. int retval;
  4035. struct timespec t;
  4036. if (pid < 0)
  4037. return -EINVAL;
  4038. retval = -ESRCH;
  4039. rcu_read_lock();
  4040. p = find_process_by_pid(pid);
  4041. if (!p)
  4042. goto out_unlock;
  4043. retval = security_task_getscheduler(p);
  4044. if (retval)
  4045. goto out_unlock;
  4046. rq = task_rq_lock(p, &flags);
  4047. time_slice = p->sched_class->get_rr_interval(rq, p);
  4048. task_rq_unlock(rq, p, &flags);
  4049. rcu_read_unlock();
  4050. jiffies_to_timespec(time_slice, &t);
  4051. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4052. return retval;
  4053. out_unlock:
  4054. rcu_read_unlock();
  4055. return retval;
  4056. }
  4057. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4058. void sched_show_task(struct task_struct *p)
  4059. {
  4060. unsigned long free = 0;
  4061. unsigned state;
  4062. state = p->state ? __ffs(p->state) + 1 : 0;
  4063. printk(KERN_INFO "%-15.15s %c", p->comm,
  4064. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4065. #if BITS_PER_LONG == 32
  4066. if (state == TASK_RUNNING)
  4067. printk(KERN_CONT " running ");
  4068. else
  4069. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4070. #else
  4071. if (state == TASK_RUNNING)
  4072. printk(KERN_CONT " running task ");
  4073. else
  4074. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4075. #endif
  4076. #ifdef CONFIG_DEBUG_STACK_USAGE
  4077. free = stack_not_used(p);
  4078. #endif
  4079. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4080. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4081. (unsigned long)task_thread_info(p)->flags);
  4082. show_stack(p, NULL);
  4083. }
  4084. void show_state_filter(unsigned long state_filter)
  4085. {
  4086. struct task_struct *g, *p;
  4087. #if BITS_PER_LONG == 32
  4088. printk(KERN_INFO
  4089. " task PC stack pid father\n");
  4090. #else
  4091. printk(KERN_INFO
  4092. " task PC stack pid father\n");
  4093. #endif
  4094. rcu_read_lock();
  4095. do_each_thread(g, p) {
  4096. /*
  4097. * reset the NMI-timeout, listing all files on a slow
  4098. * console might take a lot of time:
  4099. */
  4100. touch_nmi_watchdog();
  4101. if (!state_filter || (p->state & state_filter))
  4102. sched_show_task(p);
  4103. } while_each_thread(g, p);
  4104. touch_all_softlockup_watchdogs();
  4105. #ifdef CONFIG_SCHED_DEBUG
  4106. sysrq_sched_debug_show();
  4107. #endif
  4108. rcu_read_unlock();
  4109. /*
  4110. * Only show locks if all tasks are dumped:
  4111. */
  4112. if (!state_filter)
  4113. debug_show_all_locks();
  4114. }
  4115. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4116. {
  4117. idle->sched_class = &idle_sched_class;
  4118. }
  4119. /**
  4120. * init_idle - set up an idle thread for a given CPU
  4121. * @idle: task in question
  4122. * @cpu: cpu the idle task belongs to
  4123. *
  4124. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4125. * flag, to make booting more robust.
  4126. */
  4127. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4128. {
  4129. struct rq *rq = cpu_rq(cpu);
  4130. unsigned long flags;
  4131. raw_spin_lock_irqsave(&rq->lock, flags);
  4132. __sched_fork(idle);
  4133. idle->state = TASK_RUNNING;
  4134. idle->se.exec_start = sched_clock();
  4135. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4136. /*
  4137. * We're having a chicken and egg problem, even though we are
  4138. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4139. * lockdep check in task_group() will fail.
  4140. *
  4141. * Similar case to sched_fork(). / Alternatively we could
  4142. * use task_rq_lock() here and obtain the other rq->lock.
  4143. *
  4144. * Silence PROVE_RCU
  4145. */
  4146. rcu_read_lock();
  4147. __set_task_cpu(idle, cpu);
  4148. rcu_read_unlock();
  4149. rq->curr = rq->idle = idle;
  4150. #if defined(CONFIG_SMP)
  4151. idle->on_cpu = 1;
  4152. #endif
  4153. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4154. /* Set the preempt count _outside_ the spinlocks! */
  4155. task_thread_info(idle)->preempt_count = 0;
  4156. /*
  4157. * The idle tasks have their own, simple scheduling class:
  4158. */
  4159. idle->sched_class = &idle_sched_class;
  4160. ftrace_graph_init_idle_task(idle, cpu);
  4161. #if defined(CONFIG_SMP)
  4162. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4163. #endif
  4164. }
  4165. #ifdef CONFIG_SMP
  4166. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4167. {
  4168. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4169. p->sched_class->set_cpus_allowed(p, new_mask);
  4170. cpumask_copy(&p->cpus_allowed, new_mask);
  4171. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4172. }
  4173. /*
  4174. * This is how migration works:
  4175. *
  4176. * 1) we invoke migration_cpu_stop() on the target CPU using
  4177. * stop_one_cpu().
  4178. * 2) stopper starts to run (implicitly forcing the migrated thread
  4179. * off the CPU)
  4180. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4181. * 4) if it's in the wrong runqueue then the migration thread removes
  4182. * it and puts it into the right queue.
  4183. * 5) stopper completes and stop_one_cpu() returns and the migration
  4184. * is done.
  4185. */
  4186. /*
  4187. * Change a given task's CPU affinity. Migrate the thread to a
  4188. * proper CPU and schedule it away if the CPU it's executing on
  4189. * is removed from the allowed bitmask.
  4190. *
  4191. * NOTE: the caller must have a valid reference to the task, the
  4192. * task must not exit() & deallocate itself prematurely. The
  4193. * call is not atomic; no spinlocks may be held.
  4194. */
  4195. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4196. {
  4197. unsigned long flags;
  4198. struct rq *rq;
  4199. unsigned int dest_cpu;
  4200. int ret = 0;
  4201. rq = task_rq_lock(p, &flags);
  4202. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4203. goto out;
  4204. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4205. ret = -EINVAL;
  4206. goto out;
  4207. }
  4208. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4209. ret = -EINVAL;
  4210. goto out;
  4211. }
  4212. do_set_cpus_allowed(p, new_mask);
  4213. /* Can the task run on the task's current CPU? If so, we're done */
  4214. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4215. goto out;
  4216. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4217. if (p->on_rq) {
  4218. struct migration_arg arg = { p, dest_cpu };
  4219. /* Need help from migration thread: drop lock and wait. */
  4220. task_rq_unlock(rq, p, &flags);
  4221. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4222. tlb_migrate_finish(p->mm);
  4223. return 0;
  4224. }
  4225. out:
  4226. task_rq_unlock(rq, p, &flags);
  4227. return ret;
  4228. }
  4229. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4230. /*
  4231. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4232. * this because either it can't run here any more (set_cpus_allowed()
  4233. * away from this CPU, or CPU going down), or because we're
  4234. * attempting to rebalance this task on exec (sched_exec).
  4235. *
  4236. * So we race with normal scheduler movements, but that's OK, as long
  4237. * as the task is no longer on this CPU.
  4238. *
  4239. * Returns non-zero if task was successfully migrated.
  4240. */
  4241. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4242. {
  4243. struct rq *rq_dest, *rq_src;
  4244. int ret = 0;
  4245. if (unlikely(!cpu_active(dest_cpu)))
  4246. return ret;
  4247. rq_src = cpu_rq(src_cpu);
  4248. rq_dest = cpu_rq(dest_cpu);
  4249. raw_spin_lock(&p->pi_lock);
  4250. double_rq_lock(rq_src, rq_dest);
  4251. /* Already moved. */
  4252. if (task_cpu(p) != src_cpu)
  4253. goto done;
  4254. /* Affinity changed (again). */
  4255. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4256. goto fail;
  4257. /*
  4258. * If we're not on a rq, the next wake-up will ensure we're
  4259. * placed properly.
  4260. */
  4261. if (p->on_rq) {
  4262. deactivate_task(rq_src, p, 0);
  4263. set_task_cpu(p, dest_cpu);
  4264. activate_task(rq_dest, p, 0);
  4265. check_preempt_curr(rq_dest, p, 0);
  4266. }
  4267. done:
  4268. ret = 1;
  4269. fail:
  4270. double_rq_unlock(rq_src, rq_dest);
  4271. raw_spin_unlock(&p->pi_lock);
  4272. return ret;
  4273. }
  4274. /*
  4275. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4276. * and performs thread migration by bumping thread off CPU then
  4277. * 'pushing' onto another runqueue.
  4278. */
  4279. static int migration_cpu_stop(void *data)
  4280. {
  4281. struct migration_arg *arg = data;
  4282. /*
  4283. * The original target cpu might have gone down and we might
  4284. * be on another cpu but it doesn't matter.
  4285. */
  4286. local_irq_disable();
  4287. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4288. local_irq_enable();
  4289. return 0;
  4290. }
  4291. #ifdef CONFIG_HOTPLUG_CPU
  4292. /*
  4293. * Ensures that the idle task is using init_mm right before its cpu goes
  4294. * offline.
  4295. */
  4296. void idle_task_exit(void)
  4297. {
  4298. struct mm_struct *mm = current->active_mm;
  4299. BUG_ON(cpu_online(smp_processor_id()));
  4300. if (mm != &init_mm)
  4301. switch_mm(mm, &init_mm, current);
  4302. mmdrop(mm);
  4303. }
  4304. /*
  4305. * While a dead CPU has no uninterruptible tasks queued at this point,
  4306. * it might still have a nonzero ->nr_uninterruptible counter, because
  4307. * for performance reasons the counter is not stricly tracking tasks to
  4308. * their home CPUs. So we just add the counter to another CPU's counter,
  4309. * to keep the global sum constant after CPU-down:
  4310. */
  4311. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4312. {
  4313. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4314. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4315. rq_src->nr_uninterruptible = 0;
  4316. }
  4317. /*
  4318. * remove the tasks which were accounted by rq from calc_load_tasks.
  4319. */
  4320. static void calc_global_load_remove(struct rq *rq)
  4321. {
  4322. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4323. rq->calc_load_active = 0;
  4324. }
  4325. /*
  4326. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4327. * try_to_wake_up()->select_task_rq().
  4328. *
  4329. * Called with rq->lock held even though we'er in stop_machine() and
  4330. * there's no concurrency possible, we hold the required locks anyway
  4331. * because of lock validation efforts.
  4332. */
  4333. static void migrate_tasks(unsigned int dead_cpu)
  4334. {
  4335. struct rq *rq = cpu_rq(dead_cpu);
  4336. struct task_struct *next, *stop = rq->stop;
  4337. int dest_cpu;
  4338. /*
  4339. * Fudge the rq selection such that the below task selection loop
  4340. * doesn't get stuck on the currently eligible stop task.
  4341. *
  4342. * We're currently inside stop_machine() and the rq is either stuck
  4343. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4344. * either way we should never end up calling schedule() until we're
  4345. * done here.
  4346. */
  4347. rq->stop = NULL;
  4348. /* Ensure any throttled groups are reachable by pick_next_task */
  4349. unthrottle_offline_cfs_rqs(rq);
  4350. for ( ; ; ) {
  4351. /*
  4352. * There's this thread running, bail when that's the only
  4353. * remaining thread.
  4354. */
  4355. if (rq->nr_running == 1)
  4356. break;
  4357. next = pick_next_task(rq);
  4358. BUG_ON(!next);
  4359. next->sched_class->put_prev_task(rq, next);
  4360. /* Find suitable destination for @next, with force if needed. */
  4361. dest_cpu = select_fallback_rq(dead_cpu, next);
  4362. raw_spin_unlock(&rq->lock);
  4363. __migrate_task(next, dead_cpu, dest_cpu);
  4364. raw_spin_lock(&rq->lock);
  4365. }
  4366. rq->stop = stop;
  4367. }
  4368. #endif /* CONFIG_HOTPLUG_CPU */
  4369. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4370. static struct ctl_table sd_ctl_dir[] = {
  4371. {
  4372. .procname = "sched_domain",
  4373. .mode = 0555,
  4374. },
  4375. {}
  4376. };
  4377. static struct ctl_table sd_ctl_root[] = {
  4378. {
  4379. .procname = "kernel",
  4380. .mode = 0555,
  4381. .child = sd_ctl_dir,
  4382. },
  4383. {}
  4384. };
  4385. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4386. {
  4387. struct ctl_table *entry =
  4388. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4389. return entry;
  4390. }
  4391. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4392. {
  4393. struct ctl_table *entry;
  4394. /*
  4395. * In the intermediate directories, both the child directory and
  4396. * procname are dynamically allocated and could fail but the mode
  4397. * will always be set. In the lowest directory the names are
  4398. * static strings and all have proc handlers.
  4399. */
  4400. for (entry = *tablep; entry->mode; entry++) {
  4401. if (entry->child)
  4402. sd_free_ctl_entry(&entry->child);
  4403. if (entry->proc_handler == NULL)
  4404. kfree(entry->procname);
  4405. }
  4406. kfree(*tablep);
  4407. *tablep = NULL;
  4408. }
  4409. static void
  4410. set_table_entry(struct ctl_table *entry,
  4411. const char *procname, void *data, int maxlen,
  4412. mode_t mode, proc_handler *proc_handler)
  4413. {
  4414. entry->procname = procname;
  4415. entry->data = data;
  4416. entry->maxlen = maxlen;
  4417. entry->mode = mode;
  4418. entry->proc_handler = proc_handler;
  4419. }
  4420. static struct ctl_table *
  4421. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4422. {
  4423. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4424. if (table == NULL)
  4425. return NULL;
  4426. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4427. sizeof(long), 0644, proc_doulongvec_minmax);
  4428. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4429. sizeof(long), 0644, proc_doulongvec_minmax);
  4430. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4431. sizeof(int), 0644, proc_dointvec_minmax);
  4432. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4433. sizeof(int), 0644, proc_dointvec_minmax);
  4434. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4435. sizeof(int), 0644, proc_dointvec_minmax);
  4436. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4437. sizeof(int), 0644, proc_dointvec_minmax);
  4438. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4439. sizeof(int), 0644, proc_dointvec_minmax);
  4440. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4441. sizeof(int), 0644, proc_dointvec_minmax);
  4442. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4443. sizeof(int), 0644, proc_dointvec_minmax);
  4444. set_table_entry(&table[9], "cache_nice_tries",
  4445. &sd->cache_nice_tries,
  4446. sizeof(int), 0644, proc_dointvec_minmax);
  4447. set_table_entry(&table[10], "flags", &sd->flags,
  4448. sizeof(int), 0644, proc_dointvec_minmax);
  4449. set_table_entry(&table[11], "name", sd->name,
  4450. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4451. /* &table[12] is terminator */
  4452. return table;
  4453. }
  4454. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4455. {
  4456. struct ctl_table *entry, *table;
  4457. struct sched_domain *sd;
  4458. int domain_num = 0, i;
  4459. char buf[32];
  4460. for_each_domain(cpu, sd)
  4461. domain_num++;
  4462. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4463. if (table == NULL)
  4464. return NULL;
  4465. i = 0;
  4466. for_each_domain(cpu, sd) {
  4467. snprintf(buf, 32, "domain%d", i);
  4468. entry->procname = kstrdup(buf, GFP_KERNEL);
  4469. entry->mode = 0555;
  4470. entry->child = sd_alloc_ctl_domain_table(sd);
  4471. entry++;
  4472. i++;
  4473. }
  4474. return table;
  4475. }
  4476. static struct ctl_table_header *sd_sysctl_header;
  4477. static void register_sched_domain_sysctl(void)
  4478. {
  4479. int i, cpu_num = num_possible_cpus();
  4480. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4481. char buf[32];
  4482. WARN_ON(sd_ctl_dir[0].child);
  4483. sd_ctl_dir[0].child = entry;
  4484. if (entry == NULL)
  4485. return;
  4486. for_each_possible_cpu(i) {
  4487. snprintf(buf, 32, "cpu%d", i);
  4488. entry->procname = kstrdup(buf, GFP_KERNEL);
  4489. entry->mode = 0555;
  4490. entry->child = sd_alloc_ctl_cpu_table(i);
  4491. entry++;
  4492. }
  4493. WARN_ON(sd_sysctl_header);
  4494. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4495. }
  4496. /* may be called multiple times per register */
  4497. static void unregister_sched_domain_sysctl(void)
  4498. {
  4499. if (sd_sysctl_header)
  4500. unregister_sysctl_table(sd_sysctl_header);
  4501. sd_sysctl_header = NULL;
  4502. if (sd_ctl_dir[0].child)
  4503. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4504. }
  4505. #else
  4506. static void register_sched_domain_sysctl(void)
  4507. {
  4508. }
  4509. static void unregister_sched_domain_sysctl(void)
  4510. {
  4511. }
  4512. #endif
  4513. static void set_rq_online(struct rq *rq)
  4514. {
  4515. if (!rq->online) {
  4516. const struct sched_class *class;
  4517. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4518. rq->online = 1;
  4519. for_each_class(class) {
  4520. if (class->rq_online)
  4521. class->rq_online(rq);
  4522. }
  4523. }
  4524. }
  4525. static void set_rq_offline(struct rq *rq)
  4526. {
  4527. if (rq->online) {
  4528. const struct sched_class *class;
  4529. for_each_class(class) {
  4530. if (class->rq_offline)
  4531. class->rq_offline(rq);
  4532. }
  4533. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4534. rq->online = 0;
  4535. }
  4536. }
  4537. /*
  4538. * migration_call - callback that gets triggered when a CPU is added.
  4539. * Here we can start up the necessary migration thread for the new CPU.
  4540. */
  4541. static int __cpuinit
  4542. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4543. {
  4544. int cpu = (long)hcpu;
  4545. unsigned long flags;
  4546. struct rq *rq = cpu_rq(cpu);
  4547. switch (action & ~CPU_TASKS_FROZEN) {
  4548. case CPU_UP_PREPARE:
  4549. rq->calc_load_update = calc_load_update;
  4550. break;
  4551. case CPU_ONLINE:
  4552. /* Update our root-domain */
  4553. raw_spin_lock_irqsave(&rq->lock, flags);
  4554. if (rq->rd) {
  4555. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4556. set_rq_online(rq);
  4557. }
  4558. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4559. break;
  4560. #ifdef CONFIG_HOTPLUG_CPU
  4561. case CPU_DYING:
  4562. sched_ttwu_pending();
  4563. /* Update our root-domain */
  4564. raw_spin_lock_irqsave(&rq->lock, flags);
  4565. if (rq->rd) {
  4566. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4567. set_rq_offline(rq);
  4568. }
  4569. migrate_tasks(cpu);
  4570. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4571. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4572. migrate_nr_uninterruptible(rq);
  4573. calc_global_load_remove(rq);
  4574. break;
  4575. #endif
  4576. }
  4577. update_max_interval();
  4578. return NOTIFY_OK;
  4579. }
  4580. /*
  4581. * Register at high priority so that task migration (migrate_all_tasks)
  4582. * happens before everything else. This has to be lower priority than
  4583. * the notifier in the perf_event subsystem, though.
  4584. */
  4585. static struct notifier_block __cpuinitdata migration_notifier = {
  4586. .notifier_call = migration_call,
  4587. .priority = CPU_PRI_MIGRATION,
  4588. };
  4589. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4590. unsigned long action, void *hcpu)
  4591. {
  4592. switch (action & ~CPU_TASKS_FROZEN) {
  4593. case CPU_ONLINE:
  4594. case CPU_DOWN_FAILED:
  4595. set_cpu_active((long)hcpu, true);
  4596. return NOTIFY_OK;
  4597. default:
  4598. return NOTIFY_DONE;
  4599. }
  4600. }
  4601. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4602. unsigned long action, void *hcpu)
  4603. {
  4604. switch (action & ~CPU_TASKS_FROZEN) {
  4605. case CPU_DOWN_PREPARE:
  4606. set_cpu_active((long)hcpu, false);
  4607. return NOTIFY_OK;
  4608. default:
  4609. return NOTIFY_DONE;
  4610. }
  4611. }
  4612. static int __init migration_init(void)
  4613. {
  4614. void *cpu = (void *)(long)smp_processor_id();
  4615. int err;
  4616. /* Initialize migration for the boot CPU */
  4617. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4618. BUG_ON(err == NOTIFY_BAD);
  4619. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4620. register_cpu_notifier(&migration_notifier);
  4621. /* Register cpu active notifiers */
  4622. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4623. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4624. return 0;
  4625. }
  4626. early_initcall(migration_init);
  4627. #endif
  4628. #ifdef CONFIG_SMP
  4629. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4630. #ifdef CONFIG_SCHED_DEBUG
  4631. static __read_mostly int sched_domain_debug_enabled;
  4632. static int __init sched_domain_debug_setup(char *str)
  4633. {
  4634. sched_domain_debug_enabled = 1;
  4635. return 0;
  4636. }
  4637. early_param("sched_debug", sched_domain_debug_setup);
  4638. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4639. struct cpumask *groupmask)
  4640. {
  4641. struct sched_group *group = sd->groups;
  4642. char str[256];
  4643. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4644. cpumask_clear(groupmask);
  4645. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4646. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4647. printk("does not load-balance\n");
  4648. if (sd->parent)
  4649. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4650. " has parent");
  4651. return -1;
  4652. }
  4653. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4654. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4655. printk(KERN_ERR "ERROR: domain->span does not contain "
  4656. "CPU%d\n", cpu);
  4657. }
  4658. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4659. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4660. " CPU%d\n", cpu);
  4661. }
  4662. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4663. do {
  4664. if (!group) {
  4665. printk("\n");
  4666. printk(KERN_ERR "ERROR: group is NULL\n");
  4667. break;
  4668. }
  4669. if (!group->sgp->power) {
  4670. printk(KERN_CONT "\n");
  4671. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4672. "set\n");
  4673. break;
  4674. }
  4675. if (!cpumask_weight(sched_group_cpus(group))) {
  4676. printk(KERN_CONT "\n");
  4677. printk(KERN_ERR "ERROR: empty group\n");
  4678. break;
  4679. }
  4680. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4681. printk(KERN_CONT "\n");
  4682. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4683. break;
  4684. }
  4685. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4686. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4687. printk(KERN_CONT " %s", str);
  4688. if (group->sgp->power != SCHED_POWER_SCALE) {
  4689. printk(KERN_CONT " (cpu_power = %d)",
  4690. group->sgp->power);
  4691. }
  4692. group = group->next;
  4693. } while (group != sd->groups);
  4694. printk(KERN_CONT "\n");
  4695. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4696. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4697. if (sd->parent &&
  4698. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4699. printk(KERN_ERR "ERROR: parent span is not a superset "
  4700. "of domain->span\n");
  4701. return 0;
  4702. }
  4703. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4704. {
  4705. int level = 0;
  4706. if (!sched_domain_debug_enabled)
  4707. return;
  4708. if (!sd) {
  4709. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4710. return;
  4711. }
  4712. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4713. for (;;) {
  4714. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4715. break;
  4716. level++;
  4717. sd = sd->parent;
  4718. if (!sd)
  4719. break;
  4720. }
  4721. }
  4722. #else /* !CONFIG_SCHED_DEBUG */
  4723. # define sched_domain_debug(sd, cpu) do { } while (0)
  4724. #endif /* CONFIG_SCHED_DEBUG */
  4725. static int sd_degenerate(struct sched_domain *sd)
  4726. {
  4727. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4728. return 1;
  4729. /* Following flags need at least 2 groups */
  4730. if (sd->flags & (SD_LOAD_BALANCE |
  4731. SD_BALANCE_NEWIDLE |
  4732. SD_BALANCE_FORK |
  4733. SD_BALANCE_EXEC |
  4734. SD_SHARE_CPUPOWER |
  4735. SD_SHARE_PKG_RESOURCES)) {
  4736. if (sd->groups != sd->groups->next)
  4737. return 0;
  4738. }
  4739. /* Following flags don't use groups */
  4740. if (sd->flags & (SD_WAKE_AFFINE))
  4741. return 0;
  4742. return 1;
  4743. }
  4744. static int
  4745. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4746. {
  4747. unsigned long cflags = sd->flags, pflags = parent->flags;
  4748. if (sd_degenerate(parent))
  4749. return 1;
  4750. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4751. return 0;
  4752. /* Flags needing groups don't count if only 1 group in parent */
  4753. if (parent->groups == parent->groups->next) {
  4754. pflags &= ~(SD_LOAD_BALANCE |
  4755. SD_BALANCE_NEWIDLE |
  4756. SD_BALANCE_FORK |
  4757. SD_BALANCE_EXEC |
  4758. SD_SHARE_CPUPOWER |
  4759. SD_SHARE_PKG_RESOURCES);
  4760. if (nr_node_ids == 1)
  4761. pflags &= ~SD_SERIALIZE;
  4762. }
  4763. if (~cflags & pflags)
  4764. return 0;
  4765. return 1;
  4766. }
  4767. static void free_rootdomain(struct rcu_head *rcu)
  4768. {
  4769. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4770. cpupri_cleanup(&rd->cpupri);
  4771. free_cpumask_var(rd->rto_mask);
  4772. free_cpumask_var(rd->online);
  4773. free_cpumask_var(rd->span);
  4774. kfree(rd);
  4775. }
  4776. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4777. {
  4778. struct root_domain *old_rd = NULL;
  4779. unsigned long flags;
  4780. raw_spin_lock_irqsave(&rq->lock, flags);
  4781. if (rq->rd) {
  4782. old_rd = rq->rd;
  4783. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4784. set_rq_offline(rq);
  4785. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4786. /*
  4787. * If we dont want to free the old_rt yet then
  4788. * set old_rd to NULL to skip the freeing later
  4789. * in this function:
  4790. */
  4791. if (!atomic_dec_and_test(&old_rd->refcount))
  4792. old_rd = NULL;
  4793. }
  4794. atomic_inc(&rd->refcount);
  4795. rq->rd = rd;
  4796. cpumask_set_cpu(rq->cpu, rd->span);
  4797. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4798. set_rq_online(rq);
  4799. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4800. if (old_rd)
  4801. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4802. }
  4803. static int init_rootdomain(struct root_domain *rd)
  4804. {
  4805. memset(rd, 0, sizeof(*rd));
  4806. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4807. goto out;
  4808. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4809. goto free_span;
  4810. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4811. goto free_online;
  4812. if (cpupri_init(&rd->cpupri) != 0)
  4813. goto free_rto_mask;
  4814. return 0;
  4815. free_rto_mask:
  4816. free_cpumask_var(rd->rto_mask);
  4817. free_online:
  4818. free_cpumask_var(rd->online);
  4819. free_span:
  4820. free_cpumask_var(rd->span);
  4821. out:
  4822. return -ENOMEM;
  4823. }
  4824. /*
  4825. * By default the system creates a single root-domain with all cpus as
  4826. * members (mimicking the global state we have today).
  4827. */
  4828. struct root_domain def_root_domain;
  4829. static void init_defrootdomain(void)
  4830. {
  4831. init_rootdomain(&def_root_domain);
  4832. atomic_set(&def_root_domain.refcount, 1);
  4833. }
  4834. static struct root_domain *alloc_rootdomain(void)
  4835. {
  4836. struct root_domain *rd;
  4837. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4838. if (!rd)
  4839. return NULL;
  4840. if (init_rootdomain(rd) != 0) {
  4841. kfree(rd);
  4842. return NULL;
  4843. }
  4844. return rd;
  4845. }
  4846. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4847. {
  4848. struct sched_group *tmp, *first;
  4849. if (!sg)
  4850. return;
  4851. first = sg;
  4852. do {
  4853. tmp = sg->next;
  4854. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4855. kfree(sg->sgp);
  4856. kfree(sg);
  4857. sg = tmp;
  4858. } while (sg != first);
  4859. }
  4860. static void free_sched_domain(struct rcu_head *rcu)
  4861. {
  4862. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4863. /*
  4864. * If its an overlapping domain it has private groups, iterate and
  4865. * nuke them all.
  4866. */
  4867. if (sd->flags & SD_OVERLAP) {
  4868. free_sched_groups(sd->groups, 1);
  4869. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4870. kfree(sd->groups->sgp);
  4871. kfree(sd->groups);
  4872. }
  4873. kfree(sd);
  4874. }
  4875. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4876. {
  4877. call_rcu(&sd->rcu, free_sched_domain);
  4878. }
  4879. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4880. {
  4881. for (; sd; sd = sd->parent)
  4882. destroy_sched_domain(sd, cpu);
  4883. }
  4884. /*
  4885. * Keep a special pointer to the highest sched_domain that has
  4886. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4887. * allows us to avoid some pointer chasing select_idle_sibling().
  4888. *
  4889. * Also keep a unique ID per domain (we use the first cpu number in
  4890. * the cpumask of the domain), this allows us to quickly tell if
  4891. * two cpus are in the same cache domain, see ttwu_share_cache().
  4892. */
  4893. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4894. DEFINE_PER_CPU(int, sd_llc_id);
  4895. static void update_top_cache_domain(int cpu)
  4896. {
  4897. struct sched_domain *sd;
  4898. int id = cpu;
  4899. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4900. if (sd)
  4901. id = cpumask_first(sched_domain_span(sd));
  4902. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4903. per_cpu(sd_llc_id, cpu) = id;
  4904. }
  4905. /*
  4906. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4907. * hold the hotplug lock.
  4908. */
  4909. static void
  4910. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4911. {
  4912. struct rq *rq = cpu_rq(cpu);
  4913. struct sched_domain *tmp;
  4914. /* Remove the sched domains which do not contribute to scheduling. */
  4915. for (tmp = sd; tmp; ) {
  4916. struct sched_domain *parent = tmp->parent;
  4917. if (!parent)
  4918. break;
  4919. if (sd_parent_degenerate(tmp, parent)) {
  4920. tmp->parent = parent->parent;
  4921. if (parent->parent)
  4922. parent->parent->child = tmp;
  4923. destroy_sched_domain(parent, cpu);
  4924. } else
  4925. tmp = tmp->parent;
  4926. }
  4927. if (sd && sd_degenerate(sd)) {
  4928. tmp = sd;
  4929. sd = sd->parent;
  4930. destroy_sched_domain(tmp, cpu);
  4931. if (sd)
  4932. sd->child = NULL;
  4933. }
  4934. sched_domain_debug(sd, cpu);
  4935. rq_attach_root(rq, rd);
  4936. tmp = rq->sd;
  4937. rcu_assign_pointer(rq->sd, sd);
  4938. destroy_sched_domains(tmp, cpu);
  4939. update_top_cache_domain(cpu);
  4940. }
  4941. /* cpus with isolated domains */
  4942. static cpumask_var_t cpu_isolated_map;
  4943. /* Setup the mask of cpus configured for isolated domains */
  4944. static int __init isolated_cpu_setup(char *str)
  4945. {
  4946. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4947. cpulist_parse(str, cpu_isolated_map);
  4948. return 1;
  4949. }
  4950. __setup("isolcpus=", isolated_cpu_setup);
  4951. #ifdef CONFIG_NUMA
  4952. /**
  4953. * find_next_best_node - find the next node to include in a sched_domain
  4954. * @node: node whose sched_domain we're building
  4955. * @used_nodes: nodes already in the sched_domain
  4956. *
  4957. * Find the next node to include in a given scheduling domain. Simply
  4958. * finds the closest node not already in the @used_nodes map.
  4959. *
  4960. * Should use nodemask_t.
  4961. */
  4962. static int find_next_best_node(int node, nodemask_t *used_nodes)
  4963. {
  4964. int i, n, val, min_val, best_node = -1;
  4965. min_val = INT_MAX;
  4966. for (i = 0; i < nr_node_ids; i++) {
  4967. /* Start at @node */
  4968. n = (node + i) % nr_node_ids;
  4969. if (!nr_cpus_node(n))
  4970. continue;
  4971. /* Skip already used nodes */
  4972. if (node_isset(n, *used_nodes))
  4973. continue;
  4974. /* Simple min distance search */
  4975. val = node_distance(node, n);
  4976. if (val < min_val) {
  4977. min_val = val;
  4978. best_node = n;
  4979. }
  4980. }
  4981. if (best_node != -1)
  4982. node_set(best_node, *used_nodes);
  4983. return best_node;
  4984. }
  4985. /**
  4986. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4987. * @node: node whose cpumask we're constructing
  4988. * @span: resulting cpumask
  4989. *
  4990. * Given a node, construct a good cpumask for its sched_domain to span. It
  4991. * should be one that prevents unnecessary balancing, but also spreads tasks
  4992. * out optimally.
  4993. */
  4994. static void sched_domain_node_span(int node, struct cpumask *span)
  4995. {
  4996. nodemask_t used_nodes;
  4997. int i;
  4998. cpumask_clear(span);
  4999. nodes_clear(used_nodes);
  5000. cpumask_or(span, span, cpumask_of_node(node));
  5001. node_set(node, used_nodes);
  5002. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5003. int next_node = find_next_best_node(node, &used_nodes);
  5004. if (next_node < 0)
  5005. break;
  5006. cpumask_or(span, span, cpumask_of_node(next_node));
  5007. }
  5008. }
  5009. static const struct cpumask *cpu_node_mask(int cpu)
  5010. {
  5011. lockdep_assert_held(&sched_domains_mutex);
  5012. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5013. return sched_domains_tmpmask;
  5014. }
  5015. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5016. {
  5017. return cpu_possible_mask;
  5018. }
  5019. #endif /* CONFIG_NUMA */
  5020. static const struct cpumask *cpu_cpu_mask(int cpu)
  5021. {
  5022. return cpumask_of_node(cpu_to_node(cpu));
  5023. }
  5024. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5025. struct sd_data {
  5026. struct sched_domain **__percpu sd;
  5027. struct sched_group **__percpu sg;
  5028. struct sched_group_power **__percpu sgp;
  5029. };
  5030. struct s_data {
  5031. struct sched_domain ** __percpu sd;
  5032. struct root_domain *rd;
  5033. };
  5034. enum s_alloc {
  5035. sa_rootdomain,
  5036. sa_sd,
  5037. sa_sd_storage,
  5038. sa_none,
  5039. };
  5040. struct sched_domain_topology_level;
  5041. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5042. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5043. #define SDTL_OVERLAP 0x01
  5044. struct sched_domain_topology_level {
  5045. sched_domain_init_f init;
  5046. sched_domain_mask_f mask;
  5047. int flags;
  5048. struct sd_data data;
  5049. };
  5050. static int
  5051. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5052. {
  5053. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5054. const struct cpumask *span = sched_domain_span(sd);
  5055. struct cpumask *covered = sched_domains_tmpmask;
  5056. struct sd_data *sdd = sd->private;
  5057. struct sched_domain *child;
  5058. int i;
  5059. cpumask_clear(covered);
  5060. for_each_cpu(i, span) {
  5061. struct cpumask *sg_span;
  5062. if (cpumask_test_cpu(i, covered))
  5063. continue;
  5064. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5065. GFP_KERNEL, cpu_to_node(cpu));
  5066. if (!sg)
  5067. goto fail;
  5068. sg_span = sched_group_cpus(sg);
  5069. child = *per_cpu_ptr(sdd->sd, i);
  5070. if (child->child) {
  5071. child = child->child;
  5072. cpumask_copy(sg_span, sched_domain_span(child));
  5073. } else
  5074. cpumask_set_cpu(i, sg_span);
  5075. cpumask_or(covered, covered, sg_span);
  5076. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5077. atomic_inc(&sg->sgp->ref);
  5078. if (cpumask_test_cpu(cpu, sg_span))
  5079. groups = sg;
  5080. if (!first)
  5081. first = sg;
  5082. if (last)
  5083. last->next = sg;
  5084. last = sg;
  5085. last->next = first;
  5086. }
  5087. sd->groups = groups;
  5088. return 0;
  5089. fail:
  5090. free_sched_groups(first, 0);
  5091. return -ENOMEM;
  5092. }
  5093. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5094. {
  5095. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5096. struct sched_domain *child = sd->child;
  5097. if (child)
  5098. cpu = cpumask_first(sched_domain_span(child));
  5099. if (sg) {
  5100. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5101. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5102. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5103. }
  5104. return cpu;
  5105. }
  5106. /*
  5107. * build_sched_groups will build a circular linked list of the groups
  5108. * covered by the given span, and will set each group's ->cpumask correctly,
  5109. * and ->cpu_power to 0.
  5110. *
  5111. * Assumes the sched_domain tree is fully constructed
  5112. */
  5113. static int
  5114. build_sched_groups(struct sched_domain *sd, int cpu)
  5115. {
  5116. struct sched_group *first = NULL, *last = NULL;
  5117. struct sd_data *sdd = sd->private;
  5118. const struct cpumask *span = sched_domain_span(sd);
  5119. struct cpumask *covered;
  5120. int i;
  5121. get_group(cpu, sdd, &sd->groups);
  5122. atomic_inc(&sd->groups->ref);
  5123. if (cpu != cpumask_first(sched_domain_span(sd)))
  5124. return 0;
  5125. lockdep_assert_held(&sched_domains_mutex);
  5126. covered = sched_domains_tmpmask;
  5127. cpumask_clear(covered);
  5128. for_each_cpu(i, span) {
  5129. struct sched_group *sg;
  5130. int group = get_group(i, sdd, &sg);
  5131. int j;
  5132. if (cpumask_test_cpu(i, covered))
  5133. continue;
  5134. cpumask_clear(sched_group_cpus(sg));
  5135. sg->sgp->power = 0;
  5136. for_each_cpu(j, span) {
  5137. if (get_group(j, sdd, NULL) != group)
  5138. continue;
  5139. cpumask_set_cpu(j, covered);
  5140. cpumask_set_cpu(j, sched_group_cpus(sg));
  5141. }
  5142. if (!first)
  5143. first = sg;
  5144. if (last)
  5145. last->next = sg;
  5146. last = sg;
  5147. }
  5148. last->next = first;
  5149. return 0;
  5150. }
  5151. /*
  5152. * Initialize sched groups cpu_power.
  5153. *
  5154. * cpu_power indicates the capacity of sched group, which is used while
  5155. * distributing the load between different sched groups in a sched domain.
  5156. * Typically cpu_power for all the groups in a sched domain will be same unless
  5157. * there are asymmetries in the topology. If there are asymmetries, group
  5158. * having more cpu_power will pickup more load compared to the group having
  5159. * less cpu_power.
  5160. */
  5161. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5162. {
  5163. struct sched_group *sg = sd->groups;
  5164. WARN_ON(!sd || !sg);
  5165. do {
  5166. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5167. sg = sg->next;
  5168. } while (sg != sd->groups);
  5169. if (cpu != group_first_cpu(sg))
  5170. return;
  5171. update_group_power(sd, cpu);
  5172. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5173. }
  5174. int __weak arch_sd_sibling_asym_packing(void)
  5175. {
  5176. return 0*SD_ASYM_PACKING;
  5177. }
  5178. /*
  5179. * Initializers for schedule domains
  5180. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5181. */
  5182. #ifdef CONFIG_SCHED_DEBUG
  5183. # define SD_INIT_NAME(sd, type) sd->name = #type
  5184. #else
  5185. # define SD_INIT_NAME(sd, type) do { } while (0)
  5186. #endif
  5187. #define SD_INIT_FUNC(type) \
  5188. static noinline struct sched_domain * \
  5189. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5190. { \
  5191. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5192. *sd = SD_##type##_INIT; \
  5193. SD_INIT_NAME(sd, type); \
  5194. sd->private = &tl->data; \
  5195. return sd; \
  5196. }
  5197. SD_INIT_FUNC(CPU)
  5198. #ifdef CONFIG_NUMA
  5199. SD_INIT_FUNC(ALLNODES)
  5200. SD_INIT_FUNC(NODE)
  5201. #endif
  5202. #ifdef CONFIG_SCHED_SMT
  5203. SD_INIT_FUNC(SIBLING)
  5204. #endif
  5205. #ifdef CONFIG_SCHED_MC
  5206. SD_INIT_FUNC(MC)
  5207. #endif
  5208. #ifdef CONFIG_SCHED_BOOK
  5209. SD_INIT_FUNC(BOOK)
  5210. #endif
  5211. static int default_relax_domain_level = -1;
  5212. int sched_domain_level_max;
  5213. static int __init setup_relax_domain_level(char *str)
  5214. {
  5215. unsigned long val;
  5216. val = simple_strtoul(str, NULL, 0);
  5217. if (val < sched_domain_level_max)
  5218. default_relax_domain_level = val;
  5219. return 1;
  5220. }
  5221. __setup("relax_domain_level=", setup_relax_domain_level);
  5222. static void set_domain_attribute(struct sched_domain *sd,
  5223. struct sched_domain_attr *attr)
  5224. {
  5225. int request;
  5226. if (!attr || attr->relax_domain_level < 0) {
  5227. if (default_relax_domain_level < 0)
  5228. return;
  5229. else
  5230. request = default_relax_domain_level;
  5231. } else
  5232. request = attr->relax_domain_level;
  5233. if (request < sd->level) {
  5234. /* turn off idle balance on this domain */
  5235. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5236. } else {
  5237. /* turn on idle balance on this domain */
  5238. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5239. }
  5240. }
  5241. static void __sdt_free(const struct cpumask *cpu_map);
  5242. static int __sdt_alloc(const struct cpumask *cpu_map);
  5243. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5244. const struct cpumask *cpu_map)
  5245. {
  5246. switch (what) {
  5247. case sa_rootdomain:
  5248. if (!atomic_read(&d->rd->refcount))
  5249. free_rootdomain(&d->rd->rcu); /* fall through */
  5250. case sa_sd:
  5251. free_percpu(d->sd); /* fall through */
  5252. case sa_sd_storage:
  5253. __sdt_free(cpu_map); /* fall through */
  5254. case sa_none:
  5255. break;
  5256. }
  5257. }
  5258. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5259. const struct cpumask *cpu_map)
  5260. {
  5261. memset(d, 0, sizeof(*d));
  5262. if (__sdt_alloc(cpu_map))
  5263. return sa_sd_storage;
  5264. d->sd = alloc_percpu(struct sched_domain *);
  5265. if (!d->sd)
  5266. return sa_sd_storage;
  5267. d->rd = alloc_rootdomain();
  5268. if (!d->rd)
  5269. return sa_sd;
  5270. return sa_rootdomain;
  5271. }
  5272. /*
  5273. * NULL the sd_data elements we've used to build the sched_domain and
  5274. * sched_group structure so that the subsequent __free_domain_allocs()
  5275. * will not free the data we're using.
  5276. */
  5277. static void claim_allocations(int cpu, struct sched_domain *sd)
  5278. {
  5279. struct sd_data *sdd = sd->private;
  5280. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5281. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5282. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5283. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5284. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5285. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5286. }
  5287. #ifdef CONFIG_SCHED_SMT
  5288. static const struct cpumask *cpu_smt_mask(int cpu)
  5289. {
  5290. return topology_thread_cpumask(cpu);
  5291. }
  5292. #endif
  5293. /*
  5294. * Topology list, bottom-up.
  5295. */
  5296. static struct sched_domain_topology_level default_topology[] = {
  5297. #ifdef CONFIG_SCHED_SMT
  5298. { sd_init_SIBLING, cpu_smt_mask, },
  5299. #endif
  5300. #ifdef CONFIG_SCHED_MC
  5301. { sd_init_MC, cpu_coregroup_mask, },
  5302. #endif
  5303. #ifdef CONFIG_SCHED_BOOK
  5304. { sd_init_BOOK, cpu_book_mask, },
  5305. #endif
  5306. { sd_init_CPU, cpu_cpu_mask, },
  5307. #ifdef CONFIG_NUMA
  5308. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5309. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5310. #endif
  5311. { NULL, },
  5312. };
  5313. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5314. static int __sdt_alloc(const struct cpumask *cpu_map)
  5315. {
  5316. struct sched_domain_topology_level *tl;
  5317. int j;
  5318. for (tl = sched_domain_topology; tl->init; tl++) {
  5319. struct sd_data *sdd = &tl->data;
  5320. sdd->sd = alloc_percpu(struct sched_domain *);
  5321. if (!sdd->sd)
  5322. return -ENOMEM;
  5323. sdd->sg = alloc_percpu(struct sched_group *);
  5324. if (!sdd->sg)
  5325. return -ENOMEM;
  5326. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5327. if (!sdd->sgp)
  5328. return -ENOMEM;
  5329. for_each_cpu(j, cpu_map) {
  5330. struct sched_domain *sd;
  5331. struct sched_group *sg;
  5332. struct sched_group_power *sgp;
  5333. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5334. GFP_KERNEL, cpu_to_node(j));
  5335. if (!sd)
  5336. return -ENOMEM;
  5337. *per_cpu_ptr(sdd->sd, j) = sd;
  5338. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5339. GFP_KERNEL, cpu_to_node(j));
  5340. if (!sg)
  5341. return -ENOMEM;
  5342. *per_cpu_ptr(sdd->sg, j) = sg;
  5343. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5344. GFP_KERNEL, cpu_to_node(j));
  5345. if (!sgp)
  5346. return -ENOMEM;
  5347. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5348. }
  5349. }
  5350. return 0;
  5351. }
  5352. static void __sdt_free(const struct cpumask *cpu_map)
  5353. {
  5354. struct sched_domain_topology_level *tl;
  5355. int j;
  5356. for (tl = sched_domain_topology; tl->init; tl++) {
  5357. struct sd_data *sdd = &tl->data;
  5358. for_each_cpu(j, cpu_map) {
  5359. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5360. if (sd && (sd->flags & SD_OVERLAP))
  5361. free_sched_groups(sd->groups, 0);
  5362. kfree(*per_cpu_ptr(sdd->sd, j));
  5363. kfree(*per_cpu_ptr(sdd->sg, j));
  5364. kfree(*per_cpu_ptr(sdd->sgp, j));
  5365. }
  5366. free_percpu(sdd->sd);
  5367. free_percpu(sdd->sg);
  5368. free_percpu(sdd->sgp);
  5369. }
  5370. }
  5371. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5372. struct s_data *d, const struct cpumask *cpu_map,
  5373. struct sched_domain_attr *attr, struct sched_domain *child,
  5374. int cpu)
  5375. {
  5376. struct sched_domain *sd = tl->init(tl, cpu);
  5377. if (!sd)
  5378. return child;
  5379. set_domain_attribute(sd, attr);
  5380. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5381. if (child) {
  5382. sd->level = child->level + 1;
  5383. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5384. child->parent = sd;
  5385. }
  5386. sd->child = child;
  5387. return sd;
  5388. }
  5389. /*
  5390. * Build sched domains for a given set of cpus and attach the sched domains
  5391. * to the individual cpus
  5392. */
  5393. static int build_sched_domains(const struct cpumask *cpu_map,
  5394. struct sched_domain_attr *attr)
  5395. {
  5396. enum s_alloc alloc_state = sa_none;
  5397. struct sched_domain *sd;
  5398. struct s_data d;
  5399. int i, ret = -ENOMEM;
  5400. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5401. if (alloc_state != sa_rootdomain)
  5402. goto error;
  5403. /* Set up domains for cpus specified by the cpu_map. */
  5404. for_each_cpu(i, cpu_map) {
  5405. struct sched_domain_topology_level *tl;
  5406. sd = NULL;
  5407. for (tl = sched_domain_topology; tl->init; tl++) {
  5408. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5409. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5410. sd->flags |= SD_OVERLAP;
  5411. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5412. break;
  5413. }
  5414. while (sd->child)
  5415. sd = sd->child;
  5416. *per_cpu_ptr(d.sd, i) = sd;
  5417. }
  5418. /* Build the groups for the domains */
  5419. for_each_cpu(i, cpu_map) {
  5420. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5421. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5422. if (sd->flags & SD_OVERLAP) {
  5423. if (build_overlap_sched_groups(sd, i))
  5424. goto error;
  5425. } else {
  5426. if (build_sched_groups(sd, i))
  5427. goto error;
  5428. }
  5429. }
  5430. }
  5431. /* Calculate CPU power for physical packages and nodes */
  5432. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5433. if (!cpumask_test_cpu(i, cpu_map))
  5434. continue;
  5435. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5436. claim_allocations(i, sd);
  5437. init_sched_groups_power(i, sd);
  5438. }
  5439. }
  5440. /* Attach the domains */
  5441. rcu_read_lock();
  5442. for_each_cpu(i, cpu_map) {
  5443. sd = *per_cpu_ptr(d.sd, i);
  5444. cpu_attach_domain(sd, d.rd, i);
  5445. }
  5446. rcu_read_unlock();
  5447. ret = 0;
  5448. error:
  5449. __free_domain_allocs(&d, alloc_state, cpu_map);
  5450. return ret;
  5451. }
  5452. static cpumask_var_t *doms_cur; /* current sched domains */
  5453. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5454. static struct sched_domain_attr *dattr_cur;
  5455. /* attribues of custom domains in 'doms_cur' */
  5456. /*
  5457. * Special case: If a kmalloc of a doms_cur partition (array of
  5458. * cpumask) fails, then fallback to a single sched domain,
  5459. * as determined by the single cpumask fallback_doms.
  5460. */
  5461. static cpumask_var_t fallback_doms;
  5462. /*
  5463. * arch_update_cpu_topology lets virtualized architectures update the
  5464. * cpu core maps. It is supposed to return 1 if the topology changed
  5465. * or 0 if it stayed the same.
  5466. */
  5467. int __attribute__((weak)) arch_update_cpu_topology(void)
  5468. {
  5469. return 0;
  5470. }
  5471. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5472. {
  5473. int i;
  5474. cpumask_var_t *doms;
  5475. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5476. if (!doms)
  5477. return NULL;
  5478. for (i = 0; i < ndoms; i++) {
  5479. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5480. free_sched_domains(doms, i);
  5481. return NULL;
  5482. }
  5483. }
  5484. return doms;
  5485. }
  5486. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5487. {
  5488. unsigned int i;
  5489. for (i = 0; i < ndoms; i++)
  5490. free_cpumask_var(doms[i]);
  5491. kfree(doms);
  5492. }
  5493. /*
  5494. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5495. * For now this just excludes isolated cpus, but could be used to
  5496. * exclude other special cases in the future.
  5497. */
  5498. static int init_sched_domains(const struct cpumask *cpu_map)
  5499. {
  5500. int err;
  5501. arch_update_cpu_topology();
  5502. ndoms_cur = 1;
  5503. doms_cur = alloc_sched_domains(ndoms_cur);
  5504. if (!doms_cur)
  5505. doms_cur = &fallback_doms;
  5506. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5507. dattr_cur = NULL;
  5508. err = build_sched_domains(doms_cur[0], NULL);
  5509. register_sched_domain_sysctl();
  5510. return err;
  5511. }
  5512. /*
  5513. * Detach sched domains from a group of cpus specified in cpu_map
  5514. * These cpus will now be attached to the NULL domain
  5515. */
  5516. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5517. {
  5518. int i;
  5519. rcu_read_lock();
  5520. for_each_cpu(i, cpu_map)
  5521. cpu_attach_domain(NULL, &def_root_domain, i);
  5522. rcu_read_unlock();
  5523. }
  5524. /* handle null as "default" */
  5525. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5526. struct sched_domain_attr *new, int idx_new)
  5527. {
  5528. struct sched_domain_attr tmp;
  5529. /* fast path */
  5530. if (!new && !cur)
  5531. return 1;
  5532. tmp = SD_ATTR_INIT;
  5533. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5534. new ? (new + idx_new) : &tmp,
  5535. sizeof(struct sched_domain_attr));
  5536. }
  5537. /*
  5538. * Partition sched domains as specified by the 'ndoms_new'
  5539. * cpumasks in the array doms_new[] of cpumasks. This compares
  5540. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5541. * It destroys each deleted domain and builds each new domain.
  5542. *
  5543. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5544. * The masks don't intersect (don't overlap.) We should setup one
  5545. * sched domain for each mask. CPUs not in any of the cpumasks will
  5546. * not be load balanced. If the same cpumask appears both in the
  5547. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5548. * it as it is.
  5549. *
  5550. * The passed in 'doms_new' should be allocated using
  5551. * alloc_sched_domains. This routine takes ownership of it and will
  5552. * free_sched_domains it when done with it. If the caller failed the
  5553. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5554. * and partition_sched_domains() will fallback to the single partition
  5555. * 'fallback_doms', it also forces the domains to be rebuilt.
  5556. *
  5557. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5558. * ndoms_new == 0 is a special case for destroying existing domains,
  5559. * and it will not create the default domain.
  5560. *
  5561. * Call with hotplug lock held
  5562. */
  5563. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5564. struct sched_domain_attr *dattr_new)
  5565. {
  5566. int i, j, n;
  5567. int new_topology;
  5568. mutex_lock(&sched_domains_mutex);
  5569. /* always unregister in case we don't destroy any domains */
  5570. unregister_sched_domain_sysctl();
  5571. /* Let architecture update cpu core mappings. */
  5572. new_topology = arch_update_cpu_topology();
  5573. n = doms_new ? ndoms_new : 0;
  5574. /* Destroy deleted domains */
  5575. for (i = 0; i < ndoms_cur; i++) {
  5576. for (j = 0; j < n && !new_topology; j++) {
  5577. if (cpumask_equal(doms_cur[i], doms_new[j])
  5578. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5579. goto match1;
  5580. }
  5581. /* no match - a current sched domain not in new doms_new[] */
  5582. detach_destroy_domains(doms_cur[i]);
  5583. match1:
  5584. ;
  5585. }
  5586. if (doms_new == NULL) {
  5587. ndoms_cur = 0;
  5588. doms_new = &fallback_doms;
  5589. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5590. WARN_ON_ONCE(dattr_new);
  5591. }
  5592. /* Build new domains */
  5593. for (i = 0; i < ndoms_new; i++) {
  5594. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5595. if (cpumask_equal(doms_new[i], doms_cur[j])
  5596. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5597. goto match2;
  5598. }
  5599. /* no match - add a new doms_new */
  5600. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5601. match2:
  5602. ;
  5603. }
  5604. /* Remember the new sched domains */
  5605. if (doms_cur != &fallback_doms)
  5606. free_sched_domains(doms_cur, ndoms_cur);
  5607. kfree(dattr_cur); /* kfree(NULL) is safe */
  5608. doms_cur = doms_new;
  5609. dattr_cur = dattr_new;
  5610. ndoms_cur = ndoms_new;
  5611. register_sched_domain_sysctl();
  5612. mutex_unlock(&sched_domains_mutex);
  5613. }
  5614. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5615. static void reinit_sched_domains(void)
  5616. {
  5617. get_online_cpus();
  5618. /* Destroy domains first to force the rebuild */
  5619. partition_sched_domains(0, NULL, NULL);
  5620. rebuild_sched_domains();
  5621. put_online_cpus();
  5622. }
  5623. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5624. {
  5625. unsigned int level = 0;
  5626. if (sscanf(buf, "%u", &level) != 1)
  5627. return -EINVAL;
  5628. /*
  5629. * level is always be positive so don't check for
  5630. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5631. * What happens on 0 or 1 byte write,
  5632. * need to check for count as well?
  5633. */
  5634. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5635. return -EINVAL;
  5636. if (smt)
  5637. sched_smt_power_savings = level;
  5638. else
  5639. sched_mc_power_savings = level;
  5640. reinit_sched_domains();
  5641. return count;
  5642. }
  5643. #ifdef CONFIG_SCHED_MC
  5644. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  5645. struct sysdev_class_attribute *attr,
  5646. char *page)
  5647. {
  5648. return sprintf(page, "%u\n", sched_mc_power_savings);
  5649. }
  5650. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  5651. struct sysdev_class_attribute *attr,
  5652. const char *buf, size_t count)
  5653. {
  5654. return sched_power_savings_store(buf, count, 0);
  5655. }
  5656. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  5657. sched_mc_power_savings_show,
  5658. sched_mc_power_savings_store);
  5659. #endif
  5660. #ifdef CONFIG_SCHED_SMT
  5661. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  5662. struct sysdev_class_attribute *attr,
  5663. char *page)
  5664. {
  5665. return sprintf(page, "%u\n", sched_smt_power_savings);
  5666. }
  5667. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  5668. struct sysdev_class_attribute *attr,
  5669. const char *buf, size_t count)
  5670. {
  5671. return sched_power_savings_store(buf, count, 1);
  5672. }
  5673. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  5674. sched_smt_power_savings_show,
  5675. sched_smt_power_savings_store);
  5676. #endif
  5677. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5678. {
  5679. int err = 0;
  5680. #ifdef CONFIG_SCHED_SMT
  5681. if (smt_capable())
  5682. err = sysfs_create_file(&cls->kset.kobj,
  5683. &attr_sched_smt_power_savings.attr);
  5684. #endif
  5685. #ifdef CONFIG_SCHED_MC
  5686. if (!err && mc_capable())
  5687. err = sysfs_create_file(&cls->kset.kobj,
  5688. &attr_sched_mc_power_savings.attr);
  5689. #endif
  5690. return err;
  5691. }
  5692. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5693. /*
  5694. * Update cpusets according to cpu_active mask. If cpusets are
  5695. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5696. * around partition_sched_domains().
  5697. */
  5698. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5699. void *hcpu)
  5700. {
  5701. switch (action & ~CPU_TASKS_FROZEN) {
  5702. case CPU_ONLINE:
  5703. case CPU_DOWN_FAILED:
  5704. cpuset_update_active_cpus();
  5705. return NOTIFY_OK;
  5706. default:
  5707. return NOTIFY_DONE;
  5708. }
  5709. }
  5710. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5711. void *hcpu)
  5712. {
  5713. switch (action & ~CPU_TASKS_FROZEN) {
  5714. case CPU_DOWN_PREPARE:
  5715. cpuset_update_active_cpus();
  5716. return NOTIFY_OK;
  5717. default:
  5718. return NOTIFY_DONE;
  5719. }
  5720. }
  5721. void __init sched_init_smp(void)
  5722. {
  5723. cpumask_var_t non_isolated_cpus;
  5724. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5725. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5726. get_online_cpus();
  5727. mutex_lock(&sched_domains_mutex);
  5728. init_sched_domains(cpu_active_mask);
  5729. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5730. if (cpumask_empty(non_isolated_cpus))
  5731. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5732. mutex_unlock(&sched_domains_mutex);
  5733. put_online_cpus();
  5734. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5735. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5736. /* RT runtime code needs to handle some hotplug events */
  5737. hotcpu_notifier(update_runtime, 0);
  5738. init_hrtick();
  5739. /* Move init over to a non-isolated CPU */
  5740. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5741. BUG();
  5742. sched_init_granularity();
  5743. free_cpumask_var(non_isolated_cpus);
  5744. init_sched_rt_class();
  5745. }
  5746. #else
  5747. void __init sched_init_smp(void)
  5748. {
  5749. sched_init_granularity();
  5750. }
  5751. #endif /* CONFIG_SMP */
  5752. const_debug unsigned int sysctl_timer_migration = 1;
  5753. int in_sched_functions(unsigned long addr)
  5754. {
  5755. return in_lock_functions(addr) ||
  5756. (addr >= (unsigned long)__sched_text_start
  5757. && addr < (unsigned long)__sched_text_end);
  5758. }
  5759. #ifdef CONFIG_CGROUP_SCHED
  5760. struct task_group root_task_group;
  5761. #endif
  5762. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5763. void __init sched_init(void)
  5764. {
  5765. int i, j;
  5766. unsigned long alloc_size = 0, ptr;
  5767. #ifdef CONFIG_FAIR_GROUP_SCHED
  5768. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5769. #endif
  5770. #ifdef CONFIG_RT_GROUP_SCHED
  5771. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5772. #endif
  5773. #ifdef CONFIG_CPUMASK_OFFSTACK
  5774. alloc_size += num_possible_cpus() * cpumask_size();
  5775. #endif
  5776. if (alloc_size) {
  5777. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5778. #ifdef CONFIG_FAIR_GROUP_SCHED
  5779. root_task_group.se = (struct sched_entity **)ptr;
  5780. ptr += nr_cpu_ids * sizeof(void **);
  5781. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5782. ptr += nr_cpu_ids * sizeof(void **);
  5783. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5784. #ifdef CONFIG_RT_GROUP_SCHED
  5785. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5786. ptr += nr_cpu_ids * sizeof(void **);
  5787. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5788. ptr += nr_cpu_ids * sizeof(void **);
  5789. #endif /* CONFIG_RT_GROUP_SCHED */
  5790. #ifdef CONFIG_CPUMASK_OFFSTACK
  5791. for_each_possible_cpu(i) {
  5792. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5793. ptr += cpumask_size();
  5794. }
  5795. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5796. }
  5797. #ifdef CONFIG_SMP
  5798. init_defrootdomain();
  5799. #endif
  5800. init_rt_bandwidth(&def_rt_bandwidth,
  5801. global_rt_period(), global_rt_runtime());
  5802. #ifdef CONFIG_RT_GROUP_SCHED
  5803. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5804. global_rt_period(), global_rt_runtime());
  5805. #endif /* CONFIG_RT_GROUP_SCHED */
  5806. #ifdef CONFIG_CGROUP_SCHED
  5807. list_add(&root_task_group.list, &task_groups);
  5808. INIT_LIST_HEAD(&root_task_group.children);
  5809. INIT_LIST_HEAD(&root_task_group.siblings);
  5810. autogroup_init(&init_task);
  5811. #endif /* CONFIG_CGROUP_SCHED */
  5812. #ifdef CONFIG_CGROUP_CPUACCT
  5813. root_cpuacct.cpustat = &kernel_cpustat;
  5814. root_cpuacct.cpuusage = alloc_percpu(u64);
  5815. /* Too early, not expected to fail */
  5816. BUG_ON(!root_cpuacct.cpuusage);
  5817. #endif
  5818. for_each_possible_cpu(i) {
  5819. struct rq *rq;
  5820. rq = cpu_rq(i);
  5821. raw_spin_lock_init(&rq->lock);
  5822. rq->nr_running = 0;
  5823. rq->calc_load_active = 0;
  5824. rq->calc_load_update = jiffies + LOAD_FREQ;
  5825. init_cfs_rq(&rq->cfs);
  5826. init_rt_rq(&rq->rt, rq);
  5827. #ifdef CONFIG_FAIR_GROUP_SCHED
  5828. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5829. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5830. /*
  5831. * How much cpu bandwidth does root_task_group get?
  5832. *
  5833. * In case of task-groups formed thr' the cgroup filesystem, it
  5834. * gets 100% of the cpu resources in the system. This overall
  5835. * system cpu resource is divided among the tasks of
  5836. * root_task_group and its child task-groups in a fair manner,
  5837. * based on each entity's (task or task-group's) weight
  5838. * (se->load.weight).
  5839. *
  5840. * In other words, if root_task_group has 10 tasks of weight
  5841. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5842. * then A0's share of the cpu resource is:
  5843. *
  5844. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5845. *
  5846. * We achieve this by letting root_task_group's tasks sit
  5847. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5848. */
  5849. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5850. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5851. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5852. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5853. #ifdef CONFIG_RT_GROUP_SCHED
  5854. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5855. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5856. #endif
  5857. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5858. rq->cpu_load[j] = 0;
  5859. rq->last_load_update_tick = jiffies;
  5860. #ifdef CONFIG_SMP
  5861. rq->sd = NULL;
  5862. rq->rd = NULL;
  5863. rq->cpu_power = SCHED_POWER_SCALE;
  5864. rq->post_schedule = 0;
  5865. rq->active_balance = 0;
  5866. rq->next_balance = jiffies;
  5867. rq->push_cpu = 0;
  5868. rq->cpu = i;
  5869. rq->online = 0;
  5870. rq->idle_stamp = 0;
  5871. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5872. rq_attach_root(rq, &def_root_domain);
  5873. #ifdef CONFIG_NO_HZ
  5874. rq->nohz_flags = 0;
  5875. #endif
  5876. #endif
  5877. init_rq_hrtick(rq);
  5878. atomic_set(&rq->nr_iowait, 0);
  5879. }
  5880. set_load_weight(&init_task);
  5881. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5882. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5883. #endif
  5884. #ifdef CONFIG_RT_MUTEXES
  5885. plist_head_init(&init_task.pi_waiters);
  5886. #endif
  5887. /*
  5888. * The boot idle thread does lazy MMU switching as well:
  5889. */
  5890. atomic_inc(&init_mm.mm_count);
  5891. enter_lazy_tlb(&init_mm, current);
  5892. /*
  5893. * Make us the idle thread. Technically, schedule() should not be
  5894. * called from this thread, however somewhere below it might be,
  5895. * but because we are the idle thread, we just pick up running again
  5896. * when this runqueue becomes "idle".
  5897. */
  5898. init_idle(current, smp_processor_id());
  5899. calc_load_update = jiffies + LOAD_FREQ;
  5900. /*
  5901. * During early bootup we pretend to be a normal task:
  5902. */
  5903. current->sched_class = &fair_sched_class;
  5904. #ifdef CONFIG_SMP
  5905. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5906. /* May be allocated at isolcpus cmdline parse time */
  5907. if (cpu_isolated_map == NULL)
  5908. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5909. #endif
  5910. init_sched_fair_class();
  5911. scheduler_running = 1;
  5912. }
  5913. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5914. static inline int preempt_count_equals(int preempt_offset)
  5915. {
  5916. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5917. return (nested == preempt_offset);
  5918. }
  5919. void __might_sleep(const char *file, int line, int preempt_offset)
  5920. {
  5921. static unsigned long prev_jiffy; /* ratelimiting */
  5922. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5923. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5924. system_state != SYSTEM_RUNNING || oops_in_progress)
  5925. return;
  5926. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5927. return;
  5928. prev_jiffy = jiffies;
  5929. printk(KERN_ERR
  5930. "BUG: sleeping function called from invalid context at %s:%d\n",
  5931. file, line);
  5932. printk(KERN_ERR
  5933. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5934. in_atomic(), irqs_disabled(),
  5935. current->pid, current->comm);
  5936. debug_show_held_locks(current);
  5937. if (irqs_disabled())
  5938. print_irqtrace_events(current);
  5939. dump_stack();
  5940. }
  5941. EXPORT_SYMBOL(__might_sleep);
  5942. #endif
  5943. #ifdef CONFIG_MAGIC_SYSRQ
  5944. static void normalize_task(struct rq *rq, struct task_struct *p)
  5945. {
  5946. const struct sched_class *prev_class = p->sched_class;
  5947. int old_prio = p->prio;
  5948. int on_rq;
  5949. on_rq = p->on_rq;
  5950. if (on_rq)
  5951. deactivate_task(rq, p, 0);
  5952. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5953. if (on_rq) {
  5954. activate_task(rq, p, 0);
  5955. resched_task(rq->curr);
  5956. }
  5957. check_class_changed(rq, p, prev_class, old_prio);
  5958. }
  5959. void normalize_rt_tasks(void)
  5960. {
  5961. struct task_struct *g, *p;
  5962. unsigned long flags;
  5963. struct rq *rq;
  5964. read_lock_irqsave(&tasklist_lock, flags);
  5965. do_each_thread(g, p) {
  5966. /*
  5967. * Only normalize user tasks:
  5968. */
  5969. if (!p->mm)
  5970. continue;
  5971. p->se.exec_start = 0;
  5972. #ifdef CONFIG_SCHEDSTATS
  5973. p->se.statistics.wait_start = 0;
  5974. p->se.statistics.sleep_start = 0;
  5975. p->se.statistics.block_start = 0;
  5976. #endif
  5977. if (!rt_task(p)) {
  5978. /*
  5979. * Renice negative nice level userspace
  5980. * tasks back to 0:
  5981. */
  5982. if (TASK_NICE(p) < 0 && p->mm)
  5983. set_user_nice(p, 0);
  5984. continue;
  5985. }
  5986. raw_spin_lock(&p->pi_lock);
  5987. rq = __task_rq_lock(p);
  5988. normalize_task(rq, p);
  5989. __task_rq_unlock(rq);
  5990. raw_spin_unlock(&p->pi_lock);
  5991. } while_each_thread(g, p);
  5992. read_unlock_irqrestore(&tasklist_lock, flags);
  5993. }
  5994. #endif /* CONFIG_MAGIC_SYSRQ */
  5995. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5996. /*
  5997. * These functions are only useful for the IA64 MCA handling, or kdb.
  5998. *
  5999. * They can only be called when the whole system has been
  6000. * stopped - every CPU needs to be quiescent, and no scheduling
  6001. * activity can take place. Using them for anything else would
  6002. * be a serious bug, and as a result, they aren't even visible
  6003. * under any other configuration.
  6004. */
  6005. /**
  6006. * curr_task - return the current task for a given cpu.
  6007. * @cpu: the processor in question.
  6008. *
  6009. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6010. */
  6011. struct task_struct *curr_task(int cpu)
  6012. {
  6013. return cpu_curr(cpu);
  6014. }
  6015. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6016. #ifdef CONFIG_IA64
  6017. /**
  6018. * set_curr_task - set the current task for a given cpu.
  6019. * @cpu: the processor in question.
  6020. * @p: the task pointer to set.
  6021. *
  6022. * Description: This function must only be used when non-maskable interrupts
  6023. * are serviced on a separate stack. It allows the architecture to switch the
  6024. * notion of the current task on a cpu in a non-blocking manner. This function
  6025. * must be called with all CPU's synchronized, and interrupts disabled, the
  6026. * and caller must save the original value of the current task (see
  6027. * curr_task() above) and restore that value before reenabling interrupts and
  6028. * re-starting the system.
  6029. *
  6030. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6031. */
  6032. void set_curr_task(int cpu, struct task_struct *p)
  6033. {
  6034. cpu_curr(cpu) = p;
  6035. }
  6036. #endif
  6037. #ifdef CONFIG_RT_GROUP_SCHED
  6038. #else /* !CONFIG_RT_GROUP_SCHED */
  6039. #endif /* CONFIG_RT_GROUP_SCHED */
  6040. #ifdef CONFIG_CGROUP_SCHED
  6041. /* task_group_lock serializes the addition/removal of task groups */
  6042. static DEFINE_SPINLOCK(task_group_lock);
  6043. static void free_sched_group(struct task_group *tg)
  6044. {
  6045. free_fair_sched_group(tg);
  6046. free_rt_sched_group(tg);
  6047. autogroup_free(tg);
  6048. kfree(tg);
  6049. }
  6050. /* allocate runqueue etc for a new task group */
  6051. struct task_group *sched_create_group(struct task_group *parent)
  6052. {
  6053. struct task_group *tg;
  6054. unsigned long flags;
  6055. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6056. if (!tg)
  6057. return ERR_PTR(-ENOMEM);
  6058. if (!alloc_fair_sched_group(tg, parent))
  6059. goto err;
  6060. if (!alloc_rt_sched_group(tg, parent))
  6061. goto err;
  6062. spin_lock_irqsave(&task_group_lock, flags);
  6063. list_add_rcu(&tg->list, &task_groups);
  6064. WARN_ON(!parent); /* root should already exist */
  6065. tg->parent = parent;
  6066. INIT_LIST_HEAD(&tg->children);
  6067. list_add_rcu(&tg->siblings, &parent->children);
  6068. spin_unlock_irqrestore(&task_group_lock, flags);
  6069. return tg;
  6070. err:
  6071. free_sched_group(tg);
  6072. return ERR_PTR(-ENOMEM);
  6073. }
  6074. /* rcu callback to free various structures associated with a task group */
  6075. static void free_sched_group_rcu(struct rcu_head *rhp)
  6076. {
  6077. /* now it should be safe to free those cfs_rqs */
  6078. free_sched_group(container_of(rhp, struct task_group, rcu));
  6079. }
  6080. /* Destroy runqueue etc associated with a task group */
  6081. void sched_destroy_group(struct task_group *tg)
  6082. {
  6083. unsigned long flags;
  6084. int i;
  6085. /* end participation in shares distribution */
  6086. for_each_possible_cpu(i)
  6087. unregister_fair_sched_group(tg, i);
  6088. spin_lock_irqsave(&task_group_lock, flags);
  6089. list_del_rcu(&tg->list);
  6090. list_del_rcu(&tg->siblings);
  6091. spin_unlock_irqrestore(&task_group_lock, flags);
  6092. /* wait for possible concurrent references to cfs_rqs complete */
  6093. call_rcu(&tg->rcu, free_sched_group_rcu);
  6094. }
  6095. /* change task's runqueue when it moves between groups.
  6096. * The caller of this function should have put the task in its new group
  6097. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6098. * reflect its new group.
  6099. */
  6100. void sched_move_task(struct task_struct *tsk)
  6101. {
  6102. int on_rq, running;
  6103. unsigned long flags;
  6104. struct rq *rq;
  6105. rq = task_rq_lock(tsk, &flags);
  6106. running = task_current(rq, tsk);
  6107. on_rq = tsk->on_rq;
  6108. if (on_rq)
  6109. dequeue_task(rq, tsk, 0);
  6110. if (unlikely(running))
  6111. tsk->sched_class->put_prev_task(rq, tsk);
  6112. #ifdef CONFIG_FAIR_GROUP_SCHED
  6113. if (tsk->sched_class->task_move_group)
  6114. tsk->sched_class->task_move_group(tsk, on_rq);
  6115. else
  6116. #endif
  6117. set_task_rq(tsk, task_cpu(tsk));
  6118. if (unlikely(running))
  6119. tsk->sched_class->set_curr_task(rq);
  6120. if (on_rq)
  6121. enqueue_task(rq, tsk, 0);
  6122. task_rq_unlock(rq, tsk, &flags);
  6123. }
  6124. #endif /* CONFIG_CGROUP_SCHED */
  6125. #ifdef CONFIG_FAIR_GROUP_SCHED
  6126. #endif
  6127. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6128. static unsigned long to_ratio(u64 period, u64 runtime)
  6129. {
  6130. if (runtime == RUNTIME_INF)
  6131. return 1ULL << 20;
  6132. return div64_u64(runtime << 20, period);
  6133. }
  6134. #endif
  6135. #ifdef CONFIG_RT_GROUP_SCHED
  6136. /*
  6137. * Ensure that the real time constraints are schedulable.
  6138. */
  6139. static DEFINE_MUTEX(rt_constraints_mutex);
  6140. /* Must be called with tasklist_lock held */
  6141. static inline int tg_has_rt_tasks(struct task_group *tg)
  6142. {
  6143. struct task_struct *g, *p;
  6144. do_each_thread(g, p) {
  6145. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6146. return 1;
  6147. } while_each_thread(g, p);
  6148. return 0;
  6149. }
  6150. struct rt_schedulable_data {
  6151. struct task_group *tg;
  6152. u64 rt_period;
  6153. u64 rt_runtime;
  6154. };
  6155. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6156. {
  6157. struct rt_schedulable_data *d = data;
  6158. struct task_group *child;
  6159. unsigned long total, sum = 0;
  6160. u64 period, runtime;
  6161. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6162. runtime = tg->rt_bandwidth.rt_runtime;
  6163. if (tg == d->tg) {
  6164. period = d->rt_period;
  6165. runtime = d->rt_runtime;
  6166. }
  6167. /*
  6168. * Cannot have more runtime than the period.
  6169. */
  6170. if (runtime > period && runtime != RUNTIME_INF)
  6171. return -EINVAL;
  6172. /*
  6173. * Ensure we don't starve existing RT tasks.
  6174. */
  6175. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6176. return -EBUSY;
  6177. total = to_ratio(period, runtime);
  6178. /*
  6179. * Nobody can have more than the global setting allows.
  6180. */
  6181. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6182. return -EINVAL;
  6183. /*
  6184. * The sum of our children's runtime should not exceed our own.
  6185. */
  6186. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6187. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6188. runtime = child->rt_bandwidth.rt_runtime;
  6189. if (child == d->tg) {
  6190. period = d->rt_period;
  6191. runtime = d->rt_runtime;
  6192. }
  6193. sum += to_ratio(period, runtime);
  6194. }
  6195. if (sum > total)
  6196. return -EINVAL;
  6197. return 0;
  6198. }
  6199. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6200. {
  6201. int ret;
  6202. struct rt_schedulable_data data = {
  6203. .tg = tg,
  6204. .rt_period = period,
  6205. .rt_runtime = runtime,
  6206. };
  6207. rcu_read_lock();
  6208. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6209. rcu_read_unlock();
  6210. return ret;
  6211. }
  6212. static int tg_set_rt_bandwidth(struct task_group *tg,
  6213. u64 rt_period, u64 rt_runtime)
  6214. {
  6215. int i, err = 0;
  6216. mutex_lock(&rt_constraints_mutex);
  6217. read_lock(&tasklist_lock);
  6218. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6219. if (err)
  6220. goto unlock;
  6221. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6222. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6223. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6224. for_each_possible_cpu(i) {
  6225. struct rt_rq *rt_rq = tg->rt_rq[i];
  6226. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6227. rt_rq->rt_runtime = rt_runtime;
  6228. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6229. }
  6230. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6231. unlock:
  6232. read_unlock(&tasklist_lock);
  6233. mutex_unlock(&rt_constraints_mutex);
  6234. return err;
  6235. }
  6236. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6237. {
  6238. u64 rt_runtime, rt_period;
  6239. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6240. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6241. if (rt_runtime_us < 0)
  6242. rt_runtime = RUNTIME_INF;
  6243. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6244. }
  6245. long sched_group_rt_runtime(struct task_group *tg)
  6246. {
  6247. u64 rt_runtime_us;
  6248. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6249. return -1;
  6250. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6251. do_div(rt_runtime_us, NSEC_PER_USEC);
  6252. return rt_runtime_us;
  6253. }
  6254. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6255. {
  6256. u64 rt_runtime, rt_period;
  6257. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6258. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6259. if (rt_period == 0)
  6260. return -EINVAL;
  6261. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6262. }
  6263. long sched_group_rt_period(struct task_group *tg)
  6264. {
  6265. u64 rt_period_us;
  6266. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6267. do_div(rt_period_us, NSEC_PER_USEC);
  6268. return rt_period_us;
  6269. }
  6270. static int sched_rt_global_constraints(void)
  6271. {
  6272. u64 runtime, period;
  6273. int ret = 0;
  6274. if (sysctl_sched_rt_period <= 0)
  6275. return -EINVAL;
  6276. runtime = global_rt_runtime();
  6277. period = global_rt_period();
  6278. /*
  6279. * Sanity check on the sysctl variables.
  6280. */
  6281. if (runtime > period && runtime != RUNTIME_INF)
  6282. return -EINVAL;
  6283. mutex_lock(&rt_constraints_mutex);
  6284. read_lock(&tasklist_lock);
  6285. ret = __rt_schedulable(NULL, 0, 0);
  6286. read_unlock(&tasklist_lock);
  6287. mutex_unlock(&rt_constraints_mutex);
  6288. return ret;
  6289. }
  6290. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6291. {
  6292. /* Don't accept realtime tasks when there is no way for them to run */
  6293. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6294. return 0;
  6295. return 1;
  6296. }
  6297. #else /* !CONFIG_RT_GROUP_SCHED */
  6298. static int sched_rt_global_constraints(void)
  6299. {
  6300. unsigned long flags;
  6301. int i;
  6302. if (sysctl_sched_rt_period <= 0)
  6303. return -EINVAL;
  6304. /*
  6305. * There's always some RT tasks in the root group
  6306. * -- migration, kstopmachine etc..
  6307. */
  6308. if (sysctl_sched_rt_runtime == 0)
  6309. return -EBUSY;
  6310. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6311. for_each_possible_cpu(i) {
  6312. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6313. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6314. rt_rq->rt_runtime = global_rt_runtime();
  6315. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6316. }
  6317. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6318. return 0;
  6319. }
  6320. #endif /* CONFIG_RT_GROUP_SCHED */
  6321. int sched_rt_handler(struct ctl_table *table, int write,
  6322. void __user *buffer, size_t *lenp,
  6323. loff_t *ppos)
  6324. {
  6325. int ret;
  6326. int old_period, old_runtime;
  6327. static DEFINE_MUTEX(mutex);
  6328. mutex_lock(&mutex);
  6329. old_period = sysctl_sched_rt_period;
  6330. old_runtime = sysctl_sched_rt_runtime;
  6331. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6332. if (!ret && write) {
  6333. ret = sched_rt_global_constraints();
  6334. if (ret) {
  6335. sysctl_sched_rt_period = old_period;
  6336. sysctl_sched_rt_runtime = old_runtime;
  6337. } else {
  6338. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6339. def_rt_bandwidth.rt_period =
  6340. ns_to_ktime(global_rt_period());
  6341. }
  6342. }
  6343. mutex_unlock(&mutex);
  6344. return ret;
  6345. }
  6346. #ifdef CONFIG_CGROUP_SCHED
  6347. /* return corresponding task_group object of a cgroup */
  6348. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6349. {
  6350. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6351. struct task_group, css);
  6352. }
  6353. static struct cgroup_subsys_state *
  6354. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6355. {
  6356. struct task_group *tg, *parent;
  6357. if (!cgrp->parent) {
  6358. /* This is early initialization for the top cgroup */
  6359. return &root_task_group.css;
  6360. }
  6361. parent = cgroup_tg(cgrp->parent);
  6362. tg = sched_create_group(parent);
  6363. if (IS_ERR(tg))
  6364. return ERR_PTR(-ENOMEM);
  6365. return &tg->css;
  6366. }
  6367. static void
  6368. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6369. {
  6370. struct task_group *tg = cgroup_tg(cgrp);
  6371. sched_destroy_group(tg);
  6372. }
  6373. static int
  6374. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  6375. {
  6376. #ifdef CONFIG_RT_GROUP_SCHED
  6377. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  6378. return -EINVAL;
  6379. #else
  6380. /* We don't support RT-tasks being in separate groups */
  6381. if (tsk->sched_class != &fair_sched_class)
  6382. return -EINVAL;
  6383. #endif
  6384. return 0;
  6385. }
  6386. static void
  6387. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  6388. {
  6389. sched_move_task(tsk);
  6390. }
  6391. static void
  6392. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6393. struct cgroup *old_cgrp, struct task_struct *task)
  6394. {
  6395. /*
  6396. * cgroup_exit() is called in the copy_process() failure path.
  6397. * Ignore this case since the task hasn't ran yet, this avoids
  6398. * trying to poke a half freed task state from generic code.
  6399. */
  6400. if (!(task->flags & PF_EXITING))
  6401. return;
  6402. sched_move_task(task);
  6403. }
  6404. #ifdef CONFIG_FAIR_GROUP_SCHED
  6405. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6406. u64 shareval)
  6407. {
  6408. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6409. }
  6410. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6411. {
  6412. struct task_group *tg = cgroup_tg(cgrp);
  6413. return (u64) scale_load_down(tg->shares);
  6414. }
  6415. #ifdef CONFIG_CFS_BANDWIDTH
  6416. static DEFINE_MUTEX(cfs_constraints_mutex);
  6417. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6418. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6419. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6420. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6421. {
  6422. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6423. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6424. if (tg == &root_task_group)
  6425. return -EINVAL;
  6426. /*
  6427. * Ensure we have at some amount of bandwidth every period. This is
  6428. * to prevent reaching a state of large arrears when throttled via
  6429. * entity_tick() resulting in prolonged exit starvation.
  6430. */
  6431. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6432. return -EINVAL;
  6433. /*
  6434. * Likewise, bound things on the otherside by preventing insane quota
  6435. * periods. This also allows us to normalize in computing quota
  6436. * feasibility.
  6437. */
  6438. if (period > max_cfs_quota_period)
  6439. return -EINVAL;
  6440. mutex_lock(&cfs_constraints_mutex);
  6441. ret = __cfs_schedulable(tg, period, quota);
  6442. if (ret)
  6443. goto out_unlock;
  6444. runtime_enabled = quota != RUNTIME_INF;
  6445. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6446. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6447. raw_spin_lock_irq(&cfs_b->lock);
  6448. cfs_b->period = ns_to_ktime(period);
  6449. cfs_b->quota = quota;
  6450. __refill_cfs_bandwidth_runtime(cfs_b);
  6451. /* restart the period timer (if active) to handle new period expiry */
  6452. if (runtime_enabled && cfs_b->timer_active) {
  6453. /* force a reprogram */
  6454. cfs_b->timer_active = 0;
  6455. __start_cfs_bandwidth(cfs_b);
  6456. }
  6457. raw_spin_unlock_irq(&cfs_b->lock);
  6458. for_each_possible_cpu(i) {
  6459. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6460. struct rq *rq = cfs_rq->rq;
  6461. raw_spin_lock_irq(&rq->lock);
  6462. cfs_rq->runtime_enabled = runtime_enabled;
  6463. cfs_rq->runtime_remaining = 0;
  6464. if (cfs_rq->throttled)
  6465. unthrottle_cfs_rq(cfs_rq);
  6466. raw_spin_unlock_irq(&rq->lock);
  6467. }
  6468. out_unlock:
  6469. mutex_unlock(&cfs_constraints_mutex);
  6470. return ret;
  6471. }
  6472. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6473. {
  6474. u64 quota, period;
  6475. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6476. if (cfs_quota_us < 0)
  6477. quota = RUNTIME_INF;
  6478. else
  6479. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6480. return tg_set_cfs_bandwidth(tg, period, quota);
  6481. }
  6482. long tg_get_cfs_quota(struct task_group *tg)
  6483. {
  6484. u64 quota_us;
  6485. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6486. return -1;
  6487. quota_us = tg->cfs_bandwidth.quota;
  6488. do_div(quota_us, NSEC_PER_USEC);
  6489. return quota_us;
  6490. }
  6491. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6492. {
  6493. u64 quota, period;
  6494. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6495. quota = tg->cfs_bandwidth.quota;
  6496. return tg_set_cfs_bandwidth(tg, period, quota);
  6497. }
  6498. long tg_get_cfs_period(struct task_group *tg)
  6499. {
  6500. u64 cfs_period_us;
  6501. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6502. do_div(cfs_period_us, NSEC_PER_USEC);
  6503. return cfs_period_us;
  6504. }
  6505. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6506. {
  6507. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6508. }
  6509. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6510. s64 cfs_quota_us)
  6511. {
  6512. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6513. }
  6514. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6515. {
  6516. return tg_get_cfs_period(cgroup_tg(cgrp));
  6517. }
  6518. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6519. u64 cfs_period_us)
  6520. {
  6521. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6522. }
  6523. struct cfs_schedulable_data {
  6524. struct task_group *tg;
  6525. u64 period, quota;
  6526. };
  6527. /*
  6528. * normalize group quota/period to be quota/max_period
  6529. * note: units are usecs
  6530. */
  6531. static u64 normalize_cfs_quota(struct task_group *tg,
  6532. struct cfs_schedulable_data *d)
  6533. {
  6534. u64 quota, period;
  6535. if (tg == d->tg) {
  6536. period = d->period;
  6537. quota = d->quota;
  6538. } else {
  6539. period = tg_get_cfs_period(tg);
  6540. quota = tg_get_cfs_quota(tg);
  6541. }
  6542. /* note: these should typically be equivalent */
  6543. if (quota == RUNTIME_INF || quota == -1)
  6544. return RUNTIME_INF;
  6545. return to_ratio(period, quota);
  6546. }
  6547. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6548. {
  6549. struct cfs_schedulable_data *d = data;
  6550. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6551. s64 quota = 0, parent_quota = -1;
  6552. if (!tg->parent) {
  6553. quota = RUNTIME_INF;
  6554. } else {
  6555. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6556. quota = normalize_cfs_quota(tg, d);
  6557. parent_quota = parent_b->hierarchal_quota;
  6558. /*
  6559. * ensure max(child_quota) <= parent_quota, inherit when no
  6560. * limit is set
  6561. */
  6562. if (quota == RUNTIME_INF)
  6563. quota = parent_quota;
  6564. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6565. return -EINVAL;
  6566. }
  6567. cfs_b->hierarchal_quota = quota;
  6568. return 0;
  6569. }
  6570. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6571. {
  6572. int ret;
  6573. struct cfs_schedulable_data data = {
  6574. .tg = tg,
  6575. .period = period,
  6576. .quota = quota,
  6577. };
  6578. if (quota != RUNTIME_INF) {
  6579. do_div(data.period, NSEC_PER_USEC);
  6580. do_div(data.quota, NSEC_PER_USEC);
  6581. }
  6582. rcu_read_lock();
  6583. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6584. rcu_read_unlock();
  6585. return ret;
  6586. }
  6587. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6588. struct cgroup_map_cb *cb)
  6589. {
  6590. struct task_group *tg = cgroup_tg(cgrp);
  6591. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6592. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6593. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6594. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6595. return 0;
  6596. }
  6597. #endif /* CONFIG_CFS_BANDWIDTH */
  6598. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6599. #ifdef CONFIG_RT_GROUP_SCHED
  6600. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6601. s64 val)
  6602. {
  6603. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6604. }
  6605. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6606. {
  6607. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6608. }
  6609. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6610. u64 rt_period_us)
  6611. {
  6612. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6613. }
  6614. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6615. {
  6616. return sched_group_rt_period(cgroup_tg(cgrp));
  6617. }
  6618. #endif /* CONFIG_RT_GROUP_SCHED */
  6619. static struct cftype cpu_files[] = {
  6620. #ifdef CONFIG_FAIR_GROUP_SCHED
  6621. {
  6622. .name = "shares",
  6623. .read_u64 = cpu_shares_read_u64,
  6624. .write_u64 = cpu_shares_write_u64,
  6625. },
  6626. #endif
  6627. #ifdef CONFIG_CFS_BANDWIDTH
  6628. {
  6629. .name = "cfs_quota_us",
  6630. .read_s64 = cpu_cfs_quota_read_s64,
  6631. .write_s64 = cpu_cfs_quota_write_s64,
  6632. },
  6633. {
  6634. .name = "cfs_period_us",
  6635. .read_u64 = cpu_cfs_period_read_u64,
  6636. .write_u64 = cpu_cfs_period_write_u64,
  6637. },
  6638. {
  6639. .name = "stat",
  6640. .read_map = cpu_stats_show,
  6641. },
  6642. #endif
  6643. #ifdef CONFIG_RT_GROUP_SCHED
  6644. {
  6645. .name = "rt_runtime_us",
  6646. .read_s64 = cpu_rt_runtime_read,
  6647. .write_s64 = cpu_rt_runtime_write,
  6648. },
  6649. {
  6650. .name = "rt_period_us",
  6651. .read_u64 = cpu_rt_period_read_uint,
  6652. .write_u64 = cpu_rt_period_write_uint,
  6653. },
  6654. #endif
  6655. };
  6656. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6657. {
  6658. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6659. }
  6660. struct cgroup_subsys cpu_cgroup_subsys = {
  6661. .name = "cpu",
  6662. .create = cpu_cgroup_create,
  6663. .destroy = cpu_cgroup_destroy,
  6664. .can_attach_task = cpu_cgroup_can_attach_task,
  6665. .attach_task = cpu_cgroup_attach_task,
  6666. .exit = cpu_cgroup_exit,
  6667. .populate = cpu_cgroup_populate,
  6668. .subsys_id = cpu_cgroup_subsys_id,
  6669. .early_init = 1,
  6670. };
  6671. #endif /* CONFIG_CGROUP_SCHED */
  6672. #ifdef CONFIG_CGROUP_CPUACCT
  6673. /*
  6674. * CPU accounting code for task groups.
  6675. *
  6676. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6677. * (balbir@in.ibm.com).
  6678. */
  6679. /* create a new cpu accounting group */
  6680. static struct cgroup_subsys_state *cpuacct_create(
  6681. struct cgroup_subsys *ss, struct cgroup *cgrp)
  6682. {
  6683. struct cpuacct *ca;
  6684. if (!cgrp->parent)
  6685. return &root_cpuacct.css;
  6686. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6687. if (!ca)
  6688. goto out;
  6689. ca->cpuusage = alloc_percpu(u64);
  6690. if (!ca->cpuusage)
  6691. goto out_free_ca;
  6692. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6693. if (!ca->cpustat)
  6694. goto out_free_cpuusage;
  6695. return &ca->css;
  6696. out_free_cpuusage:
  6697. free_percpu(ca->cpuusage);
  6698. out_free_ca:
  6699. kfree(ca);
  6700. out:
  6701. return ERR_PTR(-ENOMEM);
  6702. }
  6703. /* destroy an existing cpu accounting group */
  6704. static void
  6705. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6706. {
  6707. struct cpuacct *ca = cgroup_ca(cgrp);
  6708. free_percpu(ca->cpustat);
  6709. free_percpu(ca->cpuusage);
  6710. kfree(ca);
  6711. }
  6712. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6713. {
  6714. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6715. u64 data;
  6716. #ifndef CONFIG_64BIT
  6717. /*
  6718. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6719. */
  6720. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6721. data = *cpuusage;
  6722. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6723. #else
  6724. data = *cpuusage;
  6725. #endif
  6726. return data;
  6727. }
  6728. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6729. {
  6730. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6731. #ifndef CONFIG_64BIT
  6732. /*
  6733. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6734. */
  6735. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6736. *cpuusage = val;
  6737. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6738. #else
  6739. *cpuusage = val;
  6740. #endif
  6741. }
  6742. /* return total cpu usage (in nanoseconds) of a group */
  6743. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6744. {
  6745. struct cpuacct *ca = cgroup_ca(cgrp);
  6746. u64 totalcpuusage = 0;
  6747. int i;
  6748. for_each_present_cpu(i)
  6749. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6750. return totalcpuusage;
  6751. }
  6752. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6753. u64 reset)
  6754. {
  6755. struct cpuacct *ca = cgroup_ca(cgrp);
  6756. int err = 0;
  6757. int i;
  6758. if (reset) {
  6759. err = -EINVAL;
  6760. goto out;
  6761. }
  6762. for_each_present_cpu(i)
  6763. cpuacct_cpuusage_write(ca, i, 0);
  6764. out:
  6765. return err;
  6766. }
  6767. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6768. struct seq_file *m)
  6769. {
  6770. struct cpuacct *ca = cgroup_ca(cgroup);
  6771. u64 percpu;
  6772. int i;
  6773. for_each_present_cpu(i) {
  6774. percpu = cpuacct_cpuusage_read(ca, i);
  6775. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6776. }
  6777. seq_printf(m, "\n");
  6778. return 0;
  6779. }
  6780. static const char *cpuacct_stat_desc[] = {
  6781. [CPUACCT_STAT_USER] = "user",
  6782. [CPUACCT_STAT_SYSTEM] = "system",
  6783. };
  6784. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6785. struct cgroup_map_cb *cb)
  6786. {
  6787. struct cpuacct *ca = cgroup_ca(cgrp);
  6788. int cpu;
  6789. s64 val = 0;
  6790. for_each_online_cpu(cpu) {
  6791. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6792. val += kcpustat->cpustat[CPUTIME_USER];
  6793. val += kcpustat->cpustat[CPUTIME_NICE];
  6794. }
  6795. val = cputime64_to_clock_t(val);
  6796. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6797. val = 0;
  6798. for_each_online_cpu(cpu) {
  6799. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6800. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6801. val += kcpustat->cpustat[CPUTIME_IRQ];
  6802. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6803. }
  6804. val = cputime64_to_clock_t(val);
  6805. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6806. return 0;
  6807. }
  6808. static struct cftype files[] = {
  6809. {
  6810. .name = "usage",
  6811. .read_u64 = cpuusage_read,
  6812. .write_u64 = cpuusage_write,
  6813. },
  6814. {
  6815. .name = "usage_percpu",
  6816. .read_seq_string = cpuacct_percpu_seq_read,
  6817. },
  6818. {
  6819. .name = "stat",
  6820. .read_map = cpuacct_stats_show,
  6821. },
  6822. };
  6823. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6824. {
  6825. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6826. }
  6827. /*
  6828. * charge this task's execution time to its accounting group.
  6829. *
  6830. * called with rq->lock held.
  6831. */
  6832. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6833. {
  6834. struct cpuacct *ca;
  6835. int cpu;
  6836. if (unlikely(!cpuacct_subsys.active))
  6837. return;
  6838. cpu = task_cpu(tsk);
  6839. rcu_read_lock();
  6840. ca = task_ca(tsk);
  6841. for (; ca; ca = parent_ca(ca)) {
  6842. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6843. *cpuusage += cputime;
  6844. }
  6845. rcu_read_unlock();
  6846. }
  6847. struct cgroup_subsys cpuacct_subsys = {
  6848. .name = "cpuacct",
  6849. .create = cpuacct_create,
  6850. .destroy = cpuacct_destroy,
  6851. .populate = cpuacct_populate,
  6852. .subsys_id = cpuacct_subsys_id,
  6853. };
  6854. #endif /* CONFIG_CGROUP_CPUACCT */