backref.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 data_offset;
  37. u64 data_len;
  38. struct extent_inode_elem *e;
  39. data_offset = btrfs_file_extent_offset(eb, fi);
  40. data_len = btrfs_file_extent_num_bytes(eb, fi);
  41. if (extent_item_pos < data_offset ||
  42. extent_item_pos >= data_offset + data_len)
  43. return 1;
  44. e = kmalloc(sizeof(*e), GFP_NOFS);
  45. if (!e)
  46. return -ENOMEM;
  47. e->next = *eie;
  48. e->inum = key->objectid;
  49. e->offset = key->offset + (extent_item_pos - data_offset);
  50. *eie = e;
  51. return 0;
  52. }
  53. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  54. u64 extent_item_pos,
  55. struct extent_inode_elem **eie)
  56. {
  57. u64 disk_byte;
  58. struct btrfs_key key;
  59. struct btrfs_file_extent_item *fi;
  60. int slot;
  61. int nritems;
  62. int extent_type;
  63. int ret;
  64. /*
  65. * from the shared data ref, we only have the leaf but we need
  66. * the key. thus, we must look into all items and see that we
  67. * find one (some) with a reference to our extent item.
  68. */
  69. nritems = btrfs_header_nritems(eb);
  70. for (slot = 0; slot < nritems; ++slot) {
  71. btrfs_item_key_to_cpu(eb, &key, slot);
  72. if (key.type != BTRFS_EXTENT_DATA_KEY)
  73. continue;
  74. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  75. extent_type = btrfs_file_extent_type(eb, fi);
  76. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  77. continue;
  78. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  79. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  80. if (disk_byte != wanted_disk_byte)
  81. continue;
  82. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  83. if (ret < 0)
  84. return ret;
  85. }
  86. return 0;
  87. }
  88. /*
  89. * this structure records all encountered refs on the way up to the root
  90. */
  91. struct __prelim_ref {
  92. struct list_head list;
  93. u64 root_id;
  94. struct btrfs_key key_for_search;
  95. int level;
  96. int count;
  97. struct extent_inode_elem *inode_list;
  98. u64 parent;
  99. u64 wanted_disk_byte;
  100. };
  101. /*
  102. * the rules for all callers of this function are:
  103. * - obtaining the parent is the goal
  104. * - if you add a key, you must know that it is a correct key
  105. * - if you cannot add the parent or a correct key, then we will look into the
  106. * block later to set a correct key
  107. *
  108. * delayed refs
  109. * ============
  110. * backref type | shared | indirect | shared | indirect
  111. * information | tree | tree | data | data
  112. * --------------------+--------+----------+--------+----------
  113. * parent logical | y | - | - | -
  114. * key to resolve | - | y | y | y
  115. * tree block logical | - | - | - | -
  116. * root for resolving | y | y | y | y
  117. *
  118. * - column 1: we've the parent -> done
  119. * - column 2, 3, 4: we use the key to find the parent
  120. *
  121. * on disk refs (inline or keyed)
  122. * ==============================
  123. * backref type | shared | indirect | shared | indirect
  124. * information | tree | tree | data | data
  125. * --------------------+--------+----------+--------+----------
  126. * parent logical | y | - | y | -
  127. * key to resolve | - | - | - | y
  128. * tree block logical | y | y | y | y
  129. * root for resolving | - | y | y | y
  130. *
  131. * - column 1, 3: we've the parent -> done
  132. * - column 2: we take the first key from the block to find the parent
  133. * (see __add_missing_keys)
  134. * - column 4: we use the key to find the parent
  135. *
  136. * additional information that's available but not required to find the parent
  137. * block might help in merging entries to gain some speed.
  138. */
  139. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  140. struct btrfs_key *key, int level,
  141. u64 parent, u64 wanted_disk_byte, int count)
  142. {
  143. struct __prelim_ref *ref;
  144. /* in case we're adding delayed refs, we're holding the refs spinlock */
  145. ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
  146. if (!ref)
  147. return -ENOMEM;
  148. ref->root_id = root_id;
  149. if (key)
  150. ref->key_for_search = *key;
  151. else
  152. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  153. ref->inode_list = NULL;
  154. ref->level = level;
  155. ref->count = count;
  156. ref->parent = parent;
  157. ref->wanted_disk_byte = wanted_disk_byte;
  158. list_add_tail(&ref->list, head);
  159. return 0;
  160. }
  161. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  162. struct ulist *parents, int level,
  163. struct btrfs_key *key_for_search, u64 time_seq,
  164. u64 wanted_disk_byte,
  165. const u64 *extent_item_pos)
  166. {
  167. int ret = 0;
  168. int slot;
  169. struct extent_buffer *eb;
  170. struct btrfs_key key;
  171. struct btrfs_file_extent_item *fi;
  172. struct extent_inode_elem *eie = NULL;
  173. u64 disk_byte;
  174. if (level != 0) {
  175. eb = path->nodes[level];
  176. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  177. if (ret < 0)
  178. return ret;
  179. return 0;
  180. }
  181. /*
  182. * We normally enter this function with the path already pointing to
  183. * the first item to check. But sometimes, we may enter it with
  184. * slot==nritems. In that case, go to the next leaf before we continue.
  185. */
  186. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  187. ret = btrfs_next_old_leaf(root, path, time_seq);
  188. while (!ret) {
  189. eb = path->nodes[0];
  190. slot = path->slots[0];
  191. btrfs_item_key_to_cpu(eb, &key, slot);
  192. if (key.objectid != key_for_search->objectid ||
  193. key.type != BTRFS_EXTENT_DATA_KEY)
  194. break;
  195. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  196. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  197. if (disk_byte == wanted_disk_byte) {
  198. eie = NULL;
  199. if (extent_item_pos) {
  200. ret = check_extent_in_eb(&key, eb, fi,
  201. *extent_item_pos,
  202. &eie);
  203. if (ret < 0)
  204. break;
  205. }
  206. if (!ret) {
  207. ret = ulist_add(parents, eb->start,
  208. (uintptr_t)eie, GFP_NOFS);
  209. if (ret < 0)
  210. break;
  211. if (!extent_item_pos) {
  212. ret = btrfs_next_old_leaf(root, path,
  213. time_seq);
  214. continue;
  215. }
  216. }
  217. }
  218. ret = btrfs_next_old_item(root, path, time_seq);
  219. }
  220. if (ret > 0)
  221. ret = 0;
  222. return ret;
  223. }
  224. /*
  225. * resolve an indirect backref in the form (root_id, key, level)
  226. * to a logical address
  227. */
  228. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  229. int search_commit_root,
  230. u64 time_seq,
  231. struct __prelim_ref *ref,
  232. struct ulist *parents,
  233. const u64 *extent_item_pos)
  234. {
  235. struct btrfs_path *path;
  236. struct btrfs_root *root;
  237. struct btrfs_key root_key;
  238. struct extent_buffer *eb;
  239. int ret = 0;
  240. int root_level;
  241. int level = ref->level;
  242. path = btrfs_alloc_path();
  243. if (!path)
  244. return -ENOMEM;
  245. path->search_commit_root = !!search_commit_root;
  246. root_key.objectid = ref->root_id;
  247. root_key.type = BTRFS_ROOT_ITEM_KEY;
  248. root_key.offset = (u64)-1;
  249. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  250. if (IS_ERR(root)) {
  251. ret = PTR_ERR(root);
  252. goto out;
  253. }
  254. root_level = btrfs_old_root_level(root, time_seq);
  255. if (root_level + 1 == level)
  256. goto out;
  257. path->lowest_level = level;
  258. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  259. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  260. "%d for key (%llu %u %llu)\n",
  261. (unsigned long long)ref->root_id, level, ref->count, ret,
  262. (unsigned long long)ref->key_for_search.objectid,
  263. ref->key_for_search.type,
  264. (unsigned long long)ref->key_for_search.offset);
  265. if (ret < 0)
  266. goto out;
  267. eb = path->nodes[level];
  268. while (!eb) {
  269. if (!level) {
  270. WARN_ON(1);
  271. ret = 1;
  272. goto out;
  273. }
  274. level--;
  275. eb = path->nodes[level];
  276. }
  277. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  278. time_seq, ref->wanted_disk_byte,
  279. extent_item_pos);
  280. out:
  281. btrfs_free_path(path);
  282. return ret;
  283. }
  284. /*
  285. * resolve all indirect backrefs from the list
  286. */
  287. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  288. int search_commit_root, u64 time_seq,
  289. struct list_head *head,
  290. const u64 *extent_item_pos)
  291. {
  292. int err;
  293. int ret = 0;
  294. struct __prelim_ref *ref;
  295. struct __prelim_ref *ref_safe;
  296. struct __prelim_ref *new_ref;
  297. struct ulist *parents;
  298. struct ulist_node *node;
  299. struct ulist_iterator uiter;
  300. parents = ulist_alloc(GFP_NOFS);
  301. if (!parents)
  302. return -ENOMEM;
  303. /*
  304. * _safe allows us to insert directly after the current item without
  305. * iterating over the newly inserted items.
  306. * we're also allowed to re-assign ref during iteration.
  307. */
  308. list_for_each_entry_safe(ref, ref_safe, head, list) {
  309. if (ref->parent) /* already direct */
  310. continue;
  311. if (ref->count == 0)
  312. continue;
  313. err = __resolve_indirect_ref(fs_info, search_commit_root,
  314. time_seq, ref, parents,
  315. extent_item_pos);
  316. if (err)
  317. continue;
  318. /* we put the first parent into the ref at hand */
  319. ULIST_ITER_INIT(&uiter);
  320. node = ulist_next(parents, &uiter);
  321. ref->parent = node ? node->val : 0;
  322. ref->inode_list = node ?
  323. (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
  324. /* additional parents require new refs being added here */
  325. while ((node = ulist_next(parents, &uiter))) {
  326. new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
  327. if (!new_ref) {
  328. ret = -ENOMEM;
  329. break;
  330. }
  331. memcpy(new_ref, ref, sizeof(*ref));
  332. new_ref->parent = node->val;
  333. new_ref->inode_list = (struct extent_inode_elem *)
  334. (uintptr_t)node->aux;
  335. list_add(&new_ref->list, &ref->list);
  336. }
  337. ulist_reinit(parents);
  338. }
  339. ulist_free(parents);
  340. return ret;
  341. }
  342. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  343. struct __prelim_ref *ref2)
  344. {
  345. if (ref1->level != ref2->level)
  346. return 0;
  347. if (ref1->root_id != ref2->root_id)
  348. return 0;
  349. if (ref1->key_for_search.type != ref2->key_for_search.type)
  350. return 0;
  351. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  352. return 0;
  353. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  354. return 0;
  355. if (ref1->parent != ref2->parent)
  356. return 0;
  357. return 1;
  358. }
  359. /*
  360. * read tree blocks and add keys where required.
  361. */
  362. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  363. struct list_head *head)
  364. {
  365. struct list_head *pos;
  366. struct extent_buffer *eb;
  367. list_for_each(pos, head) {
  368. struct __prelim_ref *ref;
  369. ref = list_entry(pos, struct __prelim_ref, list);
  370. if (ref->parent)
  371. continue;
  372. if (ref->key_for_search.type)
  373. continue;
  374. BUG_ON(!ref->wanted_disk_byte);
  375. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  376. fs_info->tree_root->leafsize, 0);
  377. BUG_ON(!eb);
  378. btrfs_tree_read_lock(eb);
  379. if (btrfs_header_level(eb) == 0)
  380. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  381. else
  382. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  383. btrfs_tree_read_unlock(eb);
  384. free_extent_buffer(eb);
  385. }
  386. return 0;
  387. }
  388. /*
  389. * merge two lists of backrefs and adjust counts accordingly
  390. *
  391. * mode = 1: merge identical keys, if key is set
  392. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  393. * additionally, we could even add a key range for the blocks we
  394. * looked into to merge even more (-> replace unresolved refs by those
  395. * having a parent).
  396. * mode = 2: merge identical parents
  397. */
  398. static int __merge_refs(struct list_head *head, int mode)
  399. {
  400. struct list_head *pos1;
  401. list_for_each(pos1, head) {
  402. struct list_head *n2;
  403. struct list_head *pos2;
  404. struct __prelim_ref *ref1;
  405. ref1 = list_entry(pos1, struct __prelim_ref, list);
  406. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  407. pos2 = n2, n2 = pos2->next) {
  408. struct __prelim_ref *ref2;
  409. struct __prelim_ref *xchg;
  410. struct extent_inode_elem *eie;
  411. ref2 = list_entry(pos2, struct __prelim_ref, list);
  412. if (mode == 1) {
  413. if (!ref_for_same_block(ref1, ref2))
  414. continue;
  415. if (!ref1->parent && ref2->parent) {
  416. xchg = ref1;
  417. ref1 = ref2;
  418. ref2 = xchg;
  419. }
  420. } else {
  421. if (ref1->parent != ref2->parent)
  422. continue;
  423. }
  424. eie = ref1->inode_list;
  425. while (eie && eie->next)
  426. eie = eie->next;
  427. if (eie)
  428. eie->next = ref2->inode_list;
  429. else
  430. ref1->inode_list = ref2->inode_list;
  431. ref1->count += ref2->count;
  432. list_del(&ref2->list);
  433. kfree(ref2);
  434. }
  435. }
  436. return 0;
  437. }
  438. /*
  439. * add all currently queued delayed refs from this head whose seq nr is
  440. * smaller or equal that seq to the list
  441. */
  442. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  443. struct list_head *prefs)
  444. {
  445. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  446. struct rb_node *n = &head->node.rb_node;
  447. struct btrfs_key key;
  448. struct btrfs_key op_key = {0};
  449. int sgn;
  450. int ret = 0;
  451. if (extent_op && extent_op->update_key)
  452. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  453. while ((n = rb_prev(n))) {
  454. struct btrfs_delayed_ref_node *node;
  455. node = rb_entry(n, struct btrfs_delayed_ref_node,
  456. rb_node);
  457. if (node->bytenr != head->node.bytenr)
  458. break;
  459. WARN_ON(node->is_head);
  460. if (node->seq > seq)
  461. continue;
  462. switch (node->action) {
  463. case BTRFS_ADD_DELAYED_EXTENT:
  464. case BTRFS_UPDATE_DELAYED_HEAD:
  465. WARN_ON(1);
  466. continue;
  467. case BTRFS_ADD_DELAYED_REF:
  468. sgn = 1;
  469. break;
  470. case BTRFS_DROP_DELAYED_REF:
  471. sgn = -1;
  472. break;
  473. default:
  474. BUG_ON(1);
  475. }
  476. switch (node->type) {
  477. case BTRFS_TREE_BLOCK_REF_KEY: {
  478. struct btrfs_delayed_tree_ref *ref;
  479. ref = btrfs_delayed_node_to_tree_ref(node);
  480. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  481. ref->level + 1, 0, node->bytenr,
  482. node->ref_mod * sgn);
  483. break;
  484. }
  485. case BTRFS_SHARED_BLOCK_REF_KEY: {
  486. struct btrfs_delayed_tree_ref *ref;
  487. ref = btrfs_delayed_node_to_tree_ref(node);
  488. ret = __add_prelim_ref(prefs, ref->root, NULL,
  489. ref->level + 1, ref->parent,
  490. node->bytenr,
  491. node->ref_mod * sgn);
  492. break;
  493. }
  494. case BTRFS_EXTENT_DATA_REF_KEY: {
  495. struct btrfs_delayed_data_ref *ref;
  496. ref = btrfs_delayed_node_to_data_ref(node);
  497. key.objectid = ref->objectid;
  498. key.type = BTRFS_EXTENT_DATA_KEY;
  499. key.offset = ref->offset;
  500. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  501. node->bytenr,
  502. node->ref_mod * sgn);
  503. break;
  504. }
  505. case BTRFS_SHARED_DATA_REF_KEY: {
  506. struct btrfs_delayed_data_ref *ref;
  507. ref = btrfs_delayed_node_to_data_ref(node);
  508. key.objectid = ref->objectid;
  509. key.type = BTRFS_EXTENT_DATA_KEY;
  510. key.offset = ref->offset;
  511. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  512. ref->parent, node->bytenr,
  513. node->ref_mod * sgn);
  514. break;
  515. }
  516. default:
  517. WARN_ON(1);
  518. }
  519. if (ret)
  520. return ret;
  521. }
  522. return 0;
  523. }
  524. /*
  525. * add all inline backrefs for bytenr to the list
  526. */
  527. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  528. struct btrfs_path *path, u64 bytenr,
  529. int *info_level, struct list_head *prefs)
  530. {
  531. int ret = 0;
  532. int slot;
  533. struct extent_buffer *leaf;
  534. struct btrfs_key key;
  535. unsigned long ptr;
  536. unsigned long end;
  537. struct btrfs_extent_item *ei;
  538. u64 flags;
  539. u64 item_size;
  540. /*
  541. * enumerate all inline refs
  542. */
  543. leaf = path->nodes[0];
  544. slot = path->slots[0];
  545. item_size = btrfs_item_size_nr(leaf, slot);
  546. BUG_ON(item_size < sizeof(*ei));
  547. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  548. flags = btrfs_extent_flags(leaf, ei);
  549. ptr = (unsigned long)(ei + 1);
  550. end = (unsigned long)ei + item_size;
  551. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  552. struct btrfs_tree_block_info *info;
  553. info = (struct btrfs_tree_block_info *)ptr;
  554. *info_level = btrfs_tree_block_level(leaf, info);
  555. ptr += sizeof(struct btrfs_tree_block_info);
  556. BUG_ON(ptr > end);
  557. } else {
  558. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  559. }
  560. while (ptr < end) {
  561. struct btrfs_extent_inline_ref *iref;
  562. u64 offset;
  563. int type;
  564. iref = (struct btrfs_extent_inline_ref *)ptr;
  565. type = btrfs_extent_inline_ref_type(leaf, iref);
  566. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  567. switch (type) {
  568. case BTRFS_SHARED_BLOCK_REF_KEY:
  569. ret = __add_prelim_ref(prefs, 0, NULL,
  570. *info_level + 1, offset,
  571. bytenr, 1);
  572. break;
  573. case BTRFS_SHARED_DATA_REF_KEY: {
  574. struct btrfs_shared_data_ref *sdref;
  575. int count;
  576. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  577. count = btrfs_shared_data_ref_count(leaf, sdref);
  578. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  579. bytenr, count);
  580. break;
  581. }
  582. case BTRFS_TREE_BLOCK_REF_KEY:
  583. ret = __add_prelim_ref(prefs, offset, NULL,
  584. *info_level + 1, 0,
  585. bytenr, 1);
  586. break;
  587. case BTRFS_EXTENT_DATA_REF_KEY: {
  588. struct btrfs_extent_data_ref *dref;
  589. int count;
  590. u64 root;
  591. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  592. count = btrfs_extent_data_ref_count(leaf, dref);
  593. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  594. dref);
  595. key.type = BTRFS_EXTENT_DATA_KEY;
  596. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  597. root = btrfs_extent_data_ref_root(leaf, dref);
  598. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  599. bytenr, count);
  600. break;
  601. }
  602. default:
  603. WARN_ON(1);
  604. }
  605. if (ret)
  606. return ret;
  607. ptr += btrfs_extent_inline_ref_size(type);
  608. }
  609. return 0;
  610. }
  611. /*
  612. * add all non-inline backrefs for bytenr to the list
  613. */
  614. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  615. struct btrfs_path *path, u64 bytenr,
  616. int info_level, struct list_head *prefs)
  617. {
  618. struct btrfs_root *extent_root = fs_info->extent_root;
  619. int ret;
  620. int slot;
  621. struct extent_buffer *leaf;
  622. struct btrfs_key key;
  623. while (1) {
  624. ret = btrfs_next_item(extent_root, path);
  625. if (ret < 0)
  626. break;
  627. if (ret) {
  628. ret = 0;
  629. break;
  630. }
  631. slot = path->slots[0];
  632. leaf = path->nodes[0];
  633. btrfs_item_key_to_cpu(leaf, &key, slot);
  634. if (key.objectid != bytenr)
  635. break;
  636. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  637. continue;
  638. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  639. break;
  640. switch (key.type) {
  641. case BTRFS_SHARED_BLOCK_REF_KEY:
  642. ret = __add_prelim_ref(prefs, 0, NULL,
  643. info_level + 1, key.offset,
  644. bytenr, 1);
  645. break;
  646. case BTRFS_SHARED_DATA_REF_KEY: {
  647. struct btrfs_shared_data_ref *sdref;
  648. int count;
  649. sdref = btrfs_item_ptr(leaf, slot,
  650. struct btrfs_shared_data_ref);
  651. count = btrfs_shared_data_ref_count(leaf, sdref);
  652. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  653. bytenr, count);
  654. break;
  655. }
  656. case BTRFS_TREE_BLOCK_REF_KEY:
  657. ret = __add_prelim_ref(prefs, key.offset, NULL,
  658. info_level + 1, 0,
  659. bytenr, 1);
  660. break;
  661. case BTRFS_EXTENT_DATA_REF_KEY: {
  662. struct btrfs_extent_data_ref *dref;
  663. int count;
  664. u64 root;
  665. dref = btrfs_item_ptr(leaf, slot,
  666. struct btrfs_extent_data_ref);
  667. count = btrfs_extent_data_ref_count(leaf, dref);
  668. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  669. dref);
  670. key.type = BTRFS_EXTENT_DATA_KEY;
  671. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  672. root = btrfs_extent_data_ref_root(leaf, dref);
  673. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  674. bytenr, count);
  675. break;
  676. }
  677. default:
  678. WARN_ON(1);
  679. }
  680. if (ret)
  681. return ret;
  682. }
  683. return ret;
  684. }
  685. /*
  686. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  687. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  688. * indirect refs to their parent bytenr.
  689. * When roots are found, they're added to the roots list
  690. *
  691. * FIXME some caching might speed things up
  692. */
  693. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  694. struct btrfs_fs_info *fs_info, u64 bytenr,
  695. u64 time_seq, struct ulist *refs,
  696. struct ulist *roots, const u64 *extent_item_pos)
  697. {
  698. struct btrfs_key key;
  699. struct btrfs_path *path;
  700. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  701. struct btrfs_delayed_ref_head *head;
  702. int info_level = 0;
  703. int ret;
  704. int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
  705. struct list_head prefs_delayed;
  706. struct list_head prefs;
  707. struct __prelim_ref *ref;
  708. INIT_LIST_HEAD(&prefs);
  709. INIT_LIST_HEAD(&prefs_delayed);
  710. key.objectid = bytenr;
  711. key.type = BTRFS_EXTENT_ITEM_KEY;
  712. key.offset = (u64)-1;
  713. path = btrfs_alloc_path();
  714. if (!path)
  715. return -ENOMEM;
  716. path->search_commit_root = !!search_commit_root;
  717. /*
  718. * grab both a lock on the path and a lock on the delayed ref head.
  719. * We need both to get a consistent picture of how the refs look
  720. * at a specified point in time
  721. */
  722. again:
  723. head = NULL;
  724. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  725. if (ret < 0)
  726. goto out;
  727. BUG_ON(ret == 0);
  728. if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
  729. /*
  730. * look if there are updates for this ref queued and lock the
  731. * head
  732. */
  733. delayed_refs = &trans->transaction->delayed_refs;
  734. spin_lock(&delayed_refs->lock);
  735. head = btrfs_find_delayed_ref_head(trans, bytenr);
  736. if (head) {
  737. if (!mutex_trylock(&head->mutex)) {
  738. atomic_inc(&head->node.refs);
  739. spin_unlock(&delayed_refs->lock);
  740. btrfs_release_path(path);
  741. /*
  742. * Mutex was contended, block until it's
  743. * released and try again
  744. */
  745. mutex_lock(&head->mutex);
  746. mutex_unlock(&head->mutex);
  747. btrfs_put_delayed_ref(&head->node);
  748. goto again;
  749. }
  750. ret = __add_delayed_refs(head, time_seq,
  751. &prefs_delayed);
  752. mutex_unlock(&head->mutex);
  753. if (ret) {
  754. spin_unlock(&delayed_refs->lock);
  755. goto out;
  756. }
  757. }
  758. spin_unlock(&delayed_refs->lock);
  759. }
  760. if (path->slots[0]) {
  761. struct extent_buffer *leaf;
  762. int slot;
  763. path->slots[0]--;
  764. leaf = path->nodes[0];
  765. slot = path->slots[0];
  766. btrfs_item_key_to_cpu(leaf, &key, slot);
  767. if (key.objectid == bytenr &&
  768. key.type == BTRFS_EXTENT_ITEM_KEY) {
  769. ret = __add_inline_refs(fs_info, path, bytenr,
  770. &info_level, &prefs);
  771. if (ret)
  772. goto out;
  773. ret = __add_keyed_refs(fs_info, path, bytenr,
  774. info_level, &prefs);
  775. if (ret)
  776. goto out;
  777. }
  778. }
  779. btrfs_release_path(path);
  780. list_splice_init(&prefs_delayed, &prefs);
  781. ret = __add_missing_keys(fs_info, &prefs);
  782. if (ret)
  783. goto out;
  784. ret = __merge_refs(&prefs, 1);
  785. if (ret)
  786. goto out;
  787. ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
  788. &prefs, extent_item_pos);
  789. if (ret)
  790. goto out;
  791. ret = __merge_refs(&prefs, 2);
  792. if (ret)
  793. goto out;
  794. while (!list_empty(&prefs)) {
  795. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  796. list_del(&ref->list);
  797. WARN_ON(ref->count < 0);
  798. if (ref->count && ref->root_id && ref->parent == 0) {
  799. /* no parent == root of tree */
  800. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  801. if (ret < 0)
  802. goto out;
  803. }
  804. if (ref->count && ref->parent) {
  805. struct extent_inode_elem *eie = NULL;
  806. if (extent_item_pos && !ref->inode_list) {
  807. u32 bsz;
  808. struct extent_buffer *eb;
  809. bsz = btrfs_level_size(fs_info->extent_root,
  810. info_level);
  811. eb = read_tree_block(fs_info->extent_root,
  812. ref->parent, bsz, 0);
  813. BUG_ON(!eb);
  814. ret = find_extent_in_eb(eb, bytenr,
  815. *extent_item_pos, &eie);
  816. ref->inode_list = eie;
  817. free_extent_buffer(eb);
  818. }
  819. ret = ulist_add_merge(refs, ref->parent,
  820. (uintptr_t)ref->inode_list,
  821. (u64 *)&eie, GFP_NOFS);
  822. if (ret < 0)
  823. goto out;
  824. if (!ret && extent_item_pos) {
  825. /*
  826. * we've recorded that parent, so we must extend
  827. * its inode list here
  828. */
  829. BUG_ON(!eie);
  830. while (eie->next)
  831. eie = eie->next;
  832. eie->next = ref->inode_list;
  833. }
  834. }
  835. kfree(ref);
  836. }
  837. out:
  838. btrfs_free_path(path);
  839. while (!list_empty(&prefs)) {
  840. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  841. list_del(&ref->list);
  842. kfree(ref);
  843. }
  844. while (!list_empty(&prefs_delayed)) {
  845. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  846. list);
  847. list_del(&ref->list);
  848. kfree(ref);
  849. }
  850. return ret;
  851. }
  852. static void free_leaf_list(struct ulist *blocks)
  853. {
  854. struct ulist_node *node = NULL;
  855. struct extent_inode_elem *eie;
  856. struct extent_inode_elem *eie_next;
  857. struct ulist_iterator uiter;
  858. ULIST_ITER_INIT(&uiter);
  859. while ((node = ulist_next(blocks, &uiter))) {
  860. if (!node->aux)
  861. continue;
  862. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  863. for (; eie; eie = eie_next) {
  864. eie_next = eie->next;
  865. kfree(eie);
  866. }
  867. node->aux = 0;
  868. }
  869. ulist_free(blocks);
  870. }
  871. /*
  872. * Finds all leafs with a reference to the specified combination of bytenr and
  873. * offset. key_list_head will point to a list of corresponding keys (caller must
  874. * free each list element). The leafs will be stored in the leafs ulist, which
  875. * must be freed with ulist_free.
  876. *
  877. * returns 0 on success, <0 on error
  878. */
  879. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  880. struct btrfs_fs_info *fs_info, u64 bytenr,
  881. u64 time_seq, struct ulist **leafs,
  882. const u64 *extent_item_pos)
  883. {
  884. struct ulist *tmp;
  885. int ret;
  886. tmp = ulist_alloc(GFP_NOFS);
  887. if (!tmp)
  888. return -ENOMEM;
  889. *leafs = ulist_alloc(GFP_NOFS);
  890. if (!*leafs) {
  891. ulist_free(tmp);
  892. return -ENOMEM;
  893. }
  894. ret = find_parent_nodes(trans, fs_info, bytenr,
  895. time_seq, *leafs, tmp, extent_item_pos);
  896. ulist_free(tmp);
  897. if (ret < 0 && ret != -ENOENT) {
  898. free_leaf_list(*leafs);
  899. return ret;
  900. }
  901. return 0;
  902. }
  903. /*
  904. * walk all backrefs for a given extent to find all roots that reference this
  905. * extent. Walking a backref means finding all extents that reference this
  906. * extent and in turn walk the backrefs of those, too. Naturally this is a
  907. * recursive process, but here it is implemented in an iterative fashion: We
  908. * find all referencing extents for the extent in question and put them on a
  909. * list. In turn, we find all referencing extents for those, further appending
  910. * to the list. The way we iterate the list allows adding more elements after
  911. * the current while iterating. The process stops when we reach the end of the
  912. * list. Found roots are added to the roots list.
  913. *
  914. * returns 0 on success, < 0 on error.
  915. */
  916. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  917. struct btrfs_fs_info *fs_info, u64 bytenr,
  918. u64 time_seq, struct ulist **roots)
  919. {
  920. struct ulist *tmp;
  921. struct ulist_node *node = NULL;
  922. struct ulist_iterator uiter;
  923. int ret;
  924. tmp = ulist_alloc(GFP_NOFS);
  925. if (!tmp)
  926. return -ENOMEM;
  927. *roots = ulist_alloc(GFP_NOFS);
  928. if (!*roots) {
  929. ulist_free(tmp);
  930. return -ENOMEM;
  931. }
  932. ULIST_ITER_INIT(&uiter);
  933. while (1) {
  934. ret = find_parent_nodes(trans, fs_info, bytenr,
  935. time_seq, tmp, *roots, NULL);
  936. if (ret < 0 && ret != -ENOENT) {
  937. ulist_free(tmp);
  938. ulist_free(*roots);
  939. return ret;
  940. }
  941. node = ulist_next(tmp, &uiter);
  942. if (!node)
  943. break;
  944. bytenr = node->val;
  945. }
  946. ulist_free(tmp);
  947. return 0;
  948. }
  949. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  950. struct btrfs_root *fs_root, struct btrfs_path *path,
  951. struct btrfs_key *found_key)
  952. {
  953. int ret;
  954. struct btrfs_key key;
  955. struct extent_buffer *eb;
  956. key.type = key_type;
  957. key.objectid = inum;
  958. key.offset = ioff;
  959. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  960. if (ret < 0)
  961. return ret;
  962. eb = path->nodes[0];
  963. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  964. ret = btrfs_next_leaf(fs_root, path);
  965. if (ret)
  966. return ret;
  967. eb = path->nodes[0];
  968. }
  969. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  970. if (found_key->type != key.type || found_key->objectid != key.objectid)
  971. return 1;
  972. return 0;
  973. }
  974. /*
  975. * this makes the path point to (inum INODE_ITEM ioff)
  976. */
  977. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  978. struct btrfs_path *path)
  979. {
  980. struct btrfs_key key;
  981. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  982. &key);
  983. }
  984. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  985. struct btrfs_path *path,
  986. struct btrfs_key *found_key)
  987. {
  988. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  989. found_key);
  990. }
  991. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  992. u64 start_off, struct btrfs_path *path,
  993. struct btrfs_inode_extref **ret_extref,
  994. u64 *found_off)
  995. {
  996. int ret, slot;
  997. struct btrfs_key key;
  998. struct btrfs_key found_key;
  999. struct btrfs_inode_extref *extref;
  1000. struct extent_buffer *leaf;
  1001. unsigned long ptr;
  1002. key.objectid = inode_objectid;
  1003. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1004. key.offset = start_off;
  1005. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1006. if (ret < 0)
  1007. return ret;
  1008. while (1) {
  1009. leaf = path->nodes[0];
  1010. slot = path->slots[0];
  1011. if (slot >= btrfs_header_nritems(leaf)) {
  1012. /*
  1013. * If the item at offset is not found,
  1014. * btrfs_search_slot will point us to the slot
  1015. * where it should be inserted. In our case
  1016. * that will be the slot directly before the
  1017. * next INODE_REF_KEY_V2 item. In the case
  1018. * that we're pointing to the last slot in a
  1019. * leaf, we must move one leaf over.
  1020. */
  1021. ret = btrfs_next_leaf(root, path);
  1022. if (ret) {
  1023. if (ret >= 1)
  1024. ret = -ENOENT;
  1025. break;
  1026. }
  1027. continue;
  1028. }
  1029. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1030. /*
  1031. * Check that we're still looking at an extended ref key for
  1032. * this particular objectid. If we have different
  1033. * objectid or type then there are no more to be found
  1034. * in the tree and we can exit.
  1035. */
  1036. ret = -ENOENT;
  1037. if (found_key.objectid != inode_objectid)
  1038. break;
  1039. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1040. break;
  1041. ret = 0;
  1042. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1043. extref = (struct btrfs_inode_extref *)ptr;
  1044. *ret_extref = extref;
  1045. if (found_off)
  1046. *found_off = found_key.offset;
  1047. break;
  1048. }
  1049. return ret;
  1050. }
  1051. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1052. u32 name_len, unsigned long name_off,
  1053. struct extent_buffer *eb_in, u64 parent,
  1054. char *dest, u32 size)
  1055. {
  1056. int slot;
  1057. u64 next_inum;
  1058. int ret;
  1059. s64 bytes_left = ((s64)size) - 1;
  1060. struct extent_buffer *eb = eb_in;
  1061. struct btrfs_key found_key;
  1062. int leave_spinning = path->leave_spinning;
  1063. struct btrfs_inode_ref *iref;
  1064. if (bytes_left >= 0)
  1065. dest[bytes_left] = '\0';
  1066. path->leave_spinning = 1;
  1067. while (1) {
  1068. bytes_left -= name_len;
  1069. if (bytes_left >= 0)
  1070. read_extent_buffer(eb, dest + bytes_left,
  1071. name_off, name_len);
  1072. if (eb != eb_in) {
  1073. btrfs_tree_read_unlock_blocking(eb);
  1074. free_extent_buffer(eb);
  1075. }
  1076. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1077. if (ret > 0)
  1078. ret = -ENOENT;
  1079. if (ret)
  1080. break;
  1081. next_inum = found_key.offset;
  1082. /* regular exit ahead */
  1083. if (parent == next_inum)
  1084. break;
  1085. slot = path->slots[0];
  1086. eb = path->nodes[0];
  1087. /* make sure we can use eb after releasing the path */
  1088. if (eb != eb_in) {
  1089. atomic_inc(&eb->refs);
  1090. btrfs_tree_read_lock(eb);
  1091. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1092. }
  1093. btrfs_release_path(path);
  1094. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1095. name_len = btrfs_inode_ref_name_len(eb, iref);
  1096. name_off = (unsigned long)(iref + 1);
  1097. parent = next_inum;
  1098. --bytes_left;
  1099. if (bytes_left >= 0)
  1100. dest[bytes_left] = '/';
  1101. }
  1102. btrfs_release_path(path);
  1103. path->leave_spinning = leave_spinning;
  1104. if (ret)
  1105. return ERR_PTR(ret);
  1106. return dest + bytes_left;
  1107. }
  1108. /*
  1109. * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
  1110. * of the path are separated by '/' and the path is guaranteed to be
  1111. * 0-terminated. the path is only given within the current file system.
  1112. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1113. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1114. * the start point of the resulting string is returned. this pointer is within
  1115. * dest, normally.
  1116. * in case the path buffer would overflow, the pointer is decremented further
  1117. * as if output was written to the buffer, though no more output is actually
  1118. * generated. that way, the caller can determine how much space would be
  1119. * required for the path to fit into the buffer. in that case, the returned
  1120. * value will be smaller than dest. callers must check this!
  1121. */
  1122. char *btrfs_iref_to_path(struct btrfs_root *fs_root,
  1123. struct btrfs_path *path,
  1124. struct btrfs_inode_ref *iref,
  1125. struct extent_buffer *eb_in, u64 parent,
  1126. char *dest, u32 size)
  1127. {
  1128. return btrfs_ref_to_path(fs_root, path,
  1129. btrfs_inode_ref_name_len(eb_in, iref),
  1130. (unsigned long)(iref + 1),
  1131. eb_in, parent, dest, size);
  1132. }
  1133. /*
  1134. * this makes the path point to (logical EXTENT_ITEM *)
  1135. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1136. * tree blocks and <0 on error.
  1137. */
  1138. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1139. struct btrfs_path *path, struct btrfs_key *found_key,
  1140. u64 *flags_ret)
  1141. {
  1142. int ret;
  1143. u64 flags;
  1144. u32 item_size;
  1145. struct extent_buffer *eb;
  1146. struct btrfs_extent_item *ei;
  1147. struct btrfs_key key;
  1148. key.type = BTRFS_EXTENT_ITEM_KEY;
  1149. key.objectid = logical;
  1150. key.offset = (u64)-1;
  1151. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1152. if (ret < 0)
  1153. return ret;
  1154. ret = btrfs_previous_item(fs_info->extent_root, path,
  1155. 0, BTRFS_EXTENT_ITEM_KEY);
  1156. if (ret < 0)
  1157. return ret;
  1158. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1159. if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
  1160. found_key->objectid > logical ||
  1161. found_key->objectid + found_key->offset <= logical) {
  1162. pr_debug("logical %llu is not within any extent\n",
  1163. (unsigned long long)logical);
  1164. return -ENOENT;
  1165. }
  1166. eb = path->nodes[0];
  1167. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1168. BUG_ON(item_size < sizeof(*ei));
  1169. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1170. flags = btrfs_extent_flags(eb, ei);
  1171. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1172. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1173. (unsigned long long)logical,
  1174. (unsigned long long)(logical - found_key->objectid),
  1175. (unsigned long long)found_key->objectid,
  1176. (unsigned long long)found_key->offset,
  1177. (unsigned long long)flags, item_size);
  1178. WARN_ON(!flags_ret);
  1179. if (flags_ret) {
  1180. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1181. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1182. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1183. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1184. else
  1185. BUG_ON(1);
  1186. return 0;
  1187. }
  1188. return -EIO;
  1189. }
  1190. /*
  1191. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1192. * for the first call and may be modified. it is used to track state.
  1193. * if more refs exist, 0 is returned and the next call to
  1194. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1195. * next ref. after the last ref was processed, 1 is returned.
  1196. * returns <0 on error
  1197. */
  1198. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1199. struct btrfs_extent_item *ei, u32 item_size,
  1200. struct btrfs_extent_inline_ref **out_eiref,
  1201. int *out_type)
  1202. {
  1203. unsigned long end;
  1204. u64 flags;
  1205. struct btrfs_tree_block_info *info;
  1206. if (!*ptr) {
  1207. /* first call */
  1208. flags = btrfs_extent_flags(eb, ei);
  1209. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1210. info = (struct btrfs_tree_block_info *)(ei + 1);
  1211. *out_eiref =
  1212. (struct btrfs_extent_inline_ref *)(info + 1);
  1213. } else {
  1214. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1215. }
  1216. *ptr = (unsigned long)*out_eiref;
  1217. if ((void *)*ptr >= (void *)ei + item_size)
  1218. return -ENOENT;
  1219. }
  1220. end = (unsigned long)ei + item_size;
  1221. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1222. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1223. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1224. WARN_ON(*ptr > end);
  1225. if (*ptr == end)
  1226. return 1; /* last */
  1227. return 0;
  1228. }
  1229. /*
  1230. * reads the tree block backref for an extent. tree level and root are returned
  1231. * through out_level and out_root. ptr must point to a 0 value for the first
  1232. * call and may be modified (see __get_extent_inline_ref comment).
  1233. * returns 0 if data was provided, 1 if there was no more data to provide or
  1234. * <0 on error.
  1235. */
  1236. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1237. struct btrfs_extent_item *ei, u32 item_size,
  1238. u64 *out_root, u8 *out_level)
  1239. {
  1240. int ret;
  1241. int type;
  1242. struct btrfs_tree_block_info *info;
  1243. struct btrfs_extent_inline_ref *eiref;
  1244. if (*ptr == (unsigned long)-1)
  1245. return 1;
  1246. while (1) {
  1247. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1248. &eiref, &type);
  1249. if (ret < 0)
  1250. return ret;
  1251. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1252. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1253. break;
  1254. if (ret == 1)
  1255. return 1;
  1256. }
  1257. /* we can treat both ref types equally here */
  1258. info = (struct btrfs_tree_block_info *)(ei + 1);
  1259. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1260. *out_level = btrfs_tree_block_level(eb, info);
  1261. if (ret == 1)
  1262. *ptr = (unsigned long)-1;
  1263. return 0;
  1264. }
  1265. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1266. u64 root, u64 extent_item_objectid,
  1267. iterate_extent_inodes_t *iterate, void *ctx)
  1268. {
  1269. struct extent_inode_elem *eie;
  1270. int ret = 0;
  1271. for (eie = inode_list; eie; eie = eie->next) {
  1272. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1273. "root %llu\n", extent_item_objectid,
  1274. eie->inum, eie->offset, root);
  1275. ret = iterate(eie->inum, eie->offset, root, ctx);
  1276. if (ret) {
  1277. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1278. extent_item_objectid, ret);
  1279. break;
  1280. }
  1281. }
  1282. return ret;
  1283. }
  1284. /*
  1285. * calls iterate() for every inode that references the extent identified by
  1286. * the given parameters.
  1287. * when the iterator function returns a non-zero value, iteration stops.
  1288. */
  1289. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1290. u64 extent_item_objectid, u64 extent_item_pos,
  1291. int search_commit_root,
  1292. iterate_extent_inodes_t *iterate, void *ctx)
  1293. {
  1294. int ret;
  1295. struct list_head data_refs = LIST_HEAD_INIT(data_refs);
  1296. struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
  1297. struct btrfs_trans_handle *trans;
  1298. struct ulist *refs = NULL;
  1299. struct ulist *roots = NULL;
  1300. struct ulist_node *ref_node = NULL;
  1301. struct ulist_node *root_node = NULL;
  1302. struct seq_list tree_mod_seq_elem = {};
  1303. struct ulist_iterator ref_uiter;
  1304. struct ulist_iterator root_uiter;
  1305. pr_debug("resolving all inodes for extent %llu\n",
  1306. extent_item_objectid);
  1307. if (search_commit_root) {
  1308. trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
  1309. } else {
  1310. trans = btrfs_join_transaction(fs_info->extent_root);
  1311. if (IS_ERR(trans))
  1312. return PTR_ERR(trans);
  1313. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1314. }
  1315. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1316. tree_mod_seq_elem.seq, &refs,
  1317. &extent_item_pos);
  1318. if (ret)
  1319. goto out;
  1320. ULIST_ITER_INIT(&ref_uiter);
  1321. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1322. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1323. tree_mod_seq_elem.seq, &roots);
  1324. if (ret)
  1325. break;
  1326. ULIST_ITER_INIT(&root_uiter);
  1327. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1328. pr_debug("root %llu references leaf %llu, data list "
  1329. "%#llx\n", root_node->val, ref_node->val,
  1330. (long long)ref_node->aux);
  1331. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1332. (uintptr_t)ref_node->aux,
  1333. root_node->val,
  1334. extent_item_objectid,
  1335. iterate, ctx);
  1336. }
  1337. ulist_free(roots);
  1338. }
  1339. free_leaf_list(refs);
  1340. out:
  1341. if (!search_commit_root) {
  1342. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1343. btrfs_end_transaction(trans, fs_info->extent_root);
  1344. }
  1345. return ret;
  1346. }
  1347. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1348. struct btrfs_path *path,
  1349. iterate_extent_inodes_t *iterate, void *ctx)
  1350. {
  1351. int ret;
  1352. u64 extent_item_pos;
  1353. u64 flags = 0;
  1354. struct btrfs_key found_key;
  1355. int search_commit_root = path->search_commit_root;
  1356. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1357. btrfs_release_path(path);
  1358. if (ret < 0)
  1359. return ret;
  1360. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1361. return -EINVAL;
  1362. extent_item_pos = logical - found_key.objectid;
  1363. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1364. extent_item_pos, search_commit_root,
  1365. iterate, ctx);
  1366. return ret;
  1367. }
  1368. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1369. struct extent_buffer *eb, void *ctx);
  1370. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1371. struct btrfs_path *path,
  1372. iterate_irefs_t *iterate, void *ctx)
  1373. {
  1374. int ret = 0;
  1375. int slot;
  1376. u32 cur;
  1377. u32 len;
  1378. u32 name_len;
  1379. u64 parent = 0;
  1380. int found = 0;
  1381. struct extent_buffer *eb;
  1382. struct btrfs_item *item;
  1383. struct btrfs_inode_ref *iref;
  1384. struct btrfs_key found_key;
  1385. while (!ret) {
  1386. path->leave_spinning = 1;
  1387. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1388. &found_key);
  1389. if (ret < 0)
  1390. break;
  1391. if (ret) {
  1392. ret = found ? 0 : -ENOENT;
  1393. break;
  1394. }
  1395. ++found;
  1396. parent = found_key.offset;
  1397. slot = path->slots[0];
  1398. eb = path->nodes[0];
  1399. /* make sure we can use eb after releasing the path */
  1400. atomic_inc(&eb->refs);
  1401. btrfs_tree_read_lock(eb);
  1402. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1403. btrfs_release_path(path);
  1404. item = btrfs_item_nr(eb, slot);
  1405. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1406. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1407. name_len = btrfs_inode_ref_name_len(eb, iref);
  1408. /* path must be released before calling iterate()! */
  1409. pr_debug("following ref at offset %u for inode %llu in "
  1410. "tree %llu\n", cur,
  1411. (unsigned long long)found_key.objectid,
  1412. (unsigned long long)fs_root->objectid);
  1413. ret = iterate(parent, name_len,
  1414. (unsigned long)(iref + 1), eb, ctx);
  1415. if (ret)
  1416. break;
  1417. len = sizeof(*iref) + name_len;
  1418. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1419. }
  1420. btrfs_tree_read_unlock_blocking(eb);
  1421. free_extent_buffer(eb);
  1422. }
  1423. btrfs_release_path(path);
  1424. return ret;
  1425. }
  1426. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1427. struct btrfs_path *path,
  1428. iterate_irefs_t *iterate, void *ctx)
  1429. {
  1430. int ret;
  1431. int slot;
  1432. u64 offset = 0;
  1433. u64 parent;
  1434. int found = 0;
  1435. struct extent_buffer *eb;
  1436. struct btrfs_inode_extref *extref;
  1437. struct extent_buffer *leaf;
  1438. u32 item_size;
  1439. u32 cur_offset;
  1440. unsigned long ptr;
  1441. while (1) {
  1442. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1443. &offset);
  1444. if (ret < 0)
  1445. break;
  1446. if (ret) {
  1447. ret = found ? 0 : -ENOENT;
  1448. break;
  1449. }
  1450. ++found;
  1451. slot = path->slots[0];
  1452. eb = path->nodes[0];
  1453. /* make sure we can use eb after releasing the path */
  1454. atomic_inc(&eb->refs);
  1455. btrfs_tree_read_lock(eb);
  1456. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1457. btrfs_release_path(path);
  1458. leaf = path->nodes[0];
  1459. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1460. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1461. cur_offset = 0;
  1462. while (cur_offset < item_size) {
  1463. u32 name_len;
  1464. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1465. parent = btrfs_inode_extref_parent(eb, extref);
  1466. name_len = btrfs_inode_extref_name_len(eb, extref);
  1467. ret = iterate(parent, name_len,
  1468. (unsigned long)&extref->name, eb, ctx);
  1469. if (ret)
  1470. break;
  1471. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1472. cur_offset += sizeof(*extref);
  1473. }
  1474. btrfs_tree_read_unlock_blocking(eb);
  1475. free_extent_buffer(eb);
  1476. offset++;
  1477. }
  1478. btrfs_release_path(path);
  1479. return ret;
  1480. }
  1481. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1482. struct btrfs_path *path, iterate_irefs_t *iterate,
  1483. void *ctx)
  1484. {
  1485. int ret;
  1486. int found_refs = 0;
  1487. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1488. if (!ret)
  1489. ++found_refs;
  1490. else if (ret != -ENOENT)
  1491. return ret;
  1492. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1493. if (ret == -ENOENT && found_refs)
  1494. return 0;
  1495. return ret;
  1496. }
  1497. /*
  1498. * returns 0 if the path could be dumped (probably truncated)
  1499. * returns <0 in case of an error
  1500. */
  1501. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1502. struct extent_buffer *eb, void *ctx)
  1503. {
  1504. struct inode_fs_paths *ipath = ctx;
  1505. char *fspath;
  1506. char *fspath_min;
  1507. int i = ipath->fspath->elem_cnt;
  1508. const int s_ptr = sizeof(char *);
  1509. u32 bytes_left;
  1510. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1511. ipath->fspath->bytes_left - s_ptr : 0;
  1512. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1513. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1514. name_off, eb, inum, fspath_min, bytes_left);
  1515. if (IS_ERR(fspath))
  1516. return PTR_ERR(fspath);
  1517. if (fspath > fspath_min) {
  1518. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1519. ++ipath->fspath->elem_cnt;
  1520. ipath->fspath->bytes_left = fspath - fspath_min;
  1521. } else {
  1522. ++ipath->fspath->elem_missed;
  1523. ipath->fspath->bytes_missing += fspath_min - fspath;
  1524. ipath->fspath->bytes_left = 0;
  1525. }
  1526. return 0;
  1527. }
  1528. /*
  1529. * this dumps all file system paths to the inode into the ipath struct, provided
  1530. * is has been created large enough. each path is zero-terminated and accessed
  1531. * from ipath->fspath->val[i].
  1532. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1533. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1534. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1535. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1536. * have been needed to return all paths.
  1537. */
  1538. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1539. {
  1540. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1541. inode_to_path, ipath);
  1542. }
  1543. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1544. {
  1545. struct btrfs_data_container *data;
  1546. size_t alloc_bytes;
  1547. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1548. data = vmalloc(alloc_bytes);
  1549. if (!data)
  1550. return ERR_PTR(-ENOMEM);
  1551. if (total_bytes >= sizeof(*data)) {
  1552. data->bytes_left = total_bytes - sizeof(*data);
  1553. data->bytes_missing = 0;
  1554. } else {
  1555. data->bytes_missing = sizeof(*data) - total_bytes;
  1556. data->bytes_left = 0;
  1557. }
  1558. data->elem_cnt = 0;
  1559. data->elem_missed = 0;
  1560. return data;
  1561. }
  1562. /*
  1563. * allocates space to return multiple file system paths for an inode.
  1564. * total_bytes to allocate are passed, note that space usable for actual path
  1565. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1566. * the returned pointer must be freed with free_ipath() in the end.
  1567. */
  1568. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1569. struct btrfs_path *path)
  1570. {
  1571. struct inode_fs_paths *ifp;
  1572. struct btrfs_data_container *fspath;
  1573. fspath = init_data_container(total_bytes);
  1574. if (IS_ERR(fspath))
  1575. return (void *)fspath;
  1576. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1577. if (!ifp) {
  1578. kfree(fspath);
  1579. return ERR_PTR(-ENOMEM);
  1580. }
  1581. ifp->btrfs_path = path;
  1582. ifp->fspath = fspath;
  1583. ifp->fs_root = fs_root;
  1584. return ifp;
  1585. }
  1586. void free_ipath(struct inode_fs_paths *ipath)
  1587. {
  1588. if (!ipath)
  1589. return;
  1590. vfree(ipath->fspath);
  1591. kfree(ipath);
  1592. }