pxa2xx_spi.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/delay.h>
  33. #include <asm/dma.h>
  34. #include <mach/hardware.h>
  35. #include <mach/pxa-regs.h>
  36. #include <mach/regs-ssp.h>
  37. #include <mach/ssp.h>
  38. #include <mach/pxa2xx_spi.h>
  39. MODULE_AUTHOR("Stephen Street");
  40. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41. MODULE_LICENSE("GPL");
  42. MODULE_ALIAS("platform:pxa2xx-spi");
  43. #define MAX_BUSES 3
  44. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  45. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  46. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  47. /*
  48. * for testing SSCR1 changes that require SSP restart, basically
  49. * everything except the service and interrupt enables, the pxa270 developer
  50. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  51. * list, but the PXA255 dev man says all bits without really meaning the
  52. * service and interrupt enables
  53. */
  54. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  55. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  56. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  57. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  58. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  59. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  60. #define DEFINE_SSP_REG(reg, off) \
  61. static inline u32 read_##reg(void const __iomem *p) \
  62. { return __raw_readl(p + (off)); } \
  63. \
  64. static inline void write_##reg(u32 v, void __iomem *p) \
  65. { __raw_writel(v, p + (off)); }
  66. DEFINE_SSP_REG(SSCR0, 0x00)
  67. DEFINE_SSP_REG(SSCR1, 0x04)
  68. DEFINE_SSP_REG(SSSR, 0x08)
  69. DEFINE_SSP_REG(SSITR, 0x0c)
  70. DEFINE_SSP_REG(SSDR, 0x10)
  71. DEFINE_SSP_REG(SSTO, 0x28)
  72. DEFINE_SSP_REG(SSPSP, 0x2c)
  73. #define START_STATE ((void*)0)
  74. #define RUNNING_STATE ((void*)1)
  75. #define DONE_STATE ((void*)2)
  76. #define ERROR_STATE ((void*)-1)
  77. #define QUEUE_RUNNING 0
  78. #define QUEUE_STOPPED 1
  79. struct driver_data {
  80. /* Driver model hookup */
  81. struct platform_device *pdev;
  82. /* SSP Info */
  83. struct ssp_device *ssp;
  84. /* SPI framework hookup */
  85. enum pxa_ssp_type ssp_type;
  86. struct spi_master *master;
  87. /* PXA hookup */
  88. struct pxa2xx_spi_master *master_info;
  89. /* DMA setup stuff */
  90. int rx_channel;
  91. int tx_channel;
  92. u32 *null_dma_buf;
  93. /* SSP register addresses */
  94. void __iomem *ioaddr;
  95. u32 ssdr_physical;
  96. /* SSP masks*/
  97. u32 dma_cr1;
  98. u32 int_cr1;
  99. u32 clear_sr;
  100. u32 mask_sr;
  101. /* Driver message queue */
  102. struct workqueue_struct *workqueue;
  103. struct work_struct pump_messages;
  104. spinlock_t lock;
  105. struct list_head queue;
  106. int busy;
  107. int run;
  108. /* Message Transfer pump */
  109. struct tasklet_struct pump_transfers;
  110. /* Current message transfer state info */
  111. struct spi_message* cur_msg;
  112. struct spi_transfer* cur_transfer;
  113. struct chip_data *cur_chip;
  114. size_t len;
  115. void *tx;
  116. void *tx_end;
  117. void *rx;
  118. void *rx_end;
  119. int dma_mapped;
  120. dma_addr_t rx_dma;
  121. dma_addr_t tx_dma;
  122. size_t rx_map_len;
  123. size_t tx_map_len;
  124. u8 n_bytes;
  125. u32 dma_width;
  126. int cs_change;
  127. int (*write)(struct driver_data *drv_data);
  128. int (*read)(struct driver_data *drv_data);
  129. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  130. void (*cs_control)(u32 command);
  131. };
  132. struct chip_data {
  133. u32 cr0;
  134. u32 cr1;
  135. u32 psp;
  136. u32 timeout;
  137. u8 n_bytes;
  138. u32 dma_width;
  139. u32 dma_burst_size;
  140. u32 threshold;
  141. u32 dma_threshold;
  142. u8 enable_dma;
  143. u8 bits_per_word;
  144. u32 speed_hz;
  145. int (*write)(struct driver_data *drv_data);
  146. int (*read)(struct driver_data *drv_data);
  147. void (*cs_control)(u32 command);
  148. };
  149. static void pump_messages(struct work_struct *work);
  150. static int flush(struct driver_data *drv_data)
  151. {
  152. unsigned long limit = loops_per_jiffy << 1;
  153. void __iomem *reg = drv_data->ioaddr;
  154. do {
  155. while (read_SSSR(reg) & SSSR_RNE) {
  156. read_SSDR(reg);
  157. }
  158. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  159. write_SSSR(SSSR_ROR, reg);
  160. return limit;
  161. }
  162. static void null_cs_control(u32 command)
  163. {
  164. }
  165. static int null_writer(struct driver_data *drv_data)
  166. {
  167. void __iomem *reg = drv_data->ioaddr;
  168. u8 n_bytes = drv_data->n_bytes;
  169. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  170. || (drv_data->tx == drv_data->tx_end))
  171. return 0;
  172. write_SSDR(0, reg);
  173. drv_data->tx += n_bytes;
  174. return 1;
  175. }
  176. static int null_reader(struct driver_data *drv_data)
  177. {
  178. void __iomem *reg = drv_data->ioaddr;
  179. u8 n_bytes = drv_data->n_bytes;
  180. while ((read_SSSR(reg) & SSSR_RNE)
  181. && (drv_data->rx < drv_data->rx_end)) {
  182. read_SSDR(reg);
  183. drv_data->rx += n_bytes;
  184. }
  185. return drv_data->rx == drv_data->rx_end;
  186. }
  187. static int u8_writer(struct driver_data *drv_data)
  188. {
  189. void __iomem *reg = drv_data->ioaddr;
  190. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  191. || (drv_data->tx == drv_data->tx_end))
  192. return 0;
  193. write_SSDR(*(u8 *)(drv_data->tx), reg);
  194. ++drv_data->tx;
  195. return 1;
  196. }
  197. static int u8_reader(struct driver_data *drv_data)
  198. {
  199. void __iomem *reg = drv_data->ioaddr;
  200. while ((read_SSSR(reg) & SSSR_RNE)
  201. && (drv_data->rx < drv_data->rx_end)) {
  202. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  203. ++drv_data->rx;
  204. }
  205. return drv_data->rx == drv_data->rx_end;
  206. }
  207. static int u16_writer(struct driver_data *drv_data)
  208. {
  209. void __iomem *reg = drv_data->ioaddr;
  210. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  211. || (drv_data->tx == drv_data->tx_end))
  212. return 0;
  213. write_SSDR(*(u16 *)(drv_data->tx), reg);
  214. drv_data->tx += 2;
  215. return 1;
  216. }
  217. static int u16_reader(struct driver_data *drv_data)
  218. {
  219. void __iomem *reg = drv_data->ioaddr;
  220. while ((read_SSSR(reg) & SSSR_RNE)
  221. && (drv_data->rx < drv_data->rx_end)) {
  222. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  223. drv_data->rx += 2;
  224. }
  225. return drv_data->rx == drv_data->rx_end;
  226. }
  227. static int u32_writer(struct driver_data *drv_data)
  228. {
  229. void __iomem *reg = drv_data->ioaddr;
  230. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  231. || (drv_data->tx == drv_data->tx_end))
  232. return 0;
  233. write_SSDR(*(u32 *)(drv_data->tx), reg);
  234. drv_data->tx += 4;
  235. return 1;
  236. }
  237. static int u32_reader(struct driver_data *drv_data)
  238. {
  239. void __iomem *reg = drv_data->ioaddr;
  240. while ((read_SSSR(reg) & SSSR_RNE)
  241. && (drv_data->rx < drv_data->rx_end)) {
  242. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  243. drv_data->rx += 4;
  244. }
  245. return drv_data->rx == drv_data->rx_end;
  246. }
  247. static void *next_transfer(struct driver_data *drv_data)
  248. {
  249. struct spi_message *msg = drv_data->cur_msg;
  250. struct spi_transfer *trans = drv_data->cur_transfer;
  251. /* Move to next transfer */
  252. if (trans->transfer_list.next != &msg->transfers) {
  253. drv_data->cur_transfer =
  254. list_entry(trans->transfer_list.next,
  255. struct spi_transfer,
  256. transfer_list);
  257. return RUNNING_STATE;
  258. } else
  259. return DONE_STATE;
  260. }
  261. static int map_dma_buffers(struct driver_data *drv_data)
  262. {
  263. struct spi_message *msg = drv_data->cur_msg;
  264. struct device *dev = &msg->spi->dev;
  265. if (!drv_data->cur_chip->enable_dma)
  266. return 0;
  267. if (msg->is_dma_mapped)
  268. return drv_data->rx_dma && drv_data->tx_dma;
  269. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  270. return 0;
  271. /* Modify setup if rx buffer is null */
  272. if (drv_data->rx == NULL) {
  273. *drv_data->null_dma_buf = 0;
  274. drv_data->rx = drv_data->null_dma_buf;
  275. drv_data->rx_map_len = 4;
  276. } else
  277. drv_data->rx_map_len = drv_data->len;
  278. /* Modify setup if tx buffer is null */
  279. if (drv_data->tx == NULL) {
  280. *drv_data->null_dma_buf = 0;
  281. drv_data->tx = drv_data->null_dma_buf;
  282. drv_data->tx_map_len = 4;
  283. } else
  284. drv_data->tx_map_len = drv_data->len;
  285. /* Stream map the rx buffer */
  286. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  287. drv_data->rx_map_len,
  288. DMA_FROM_DEVICE);
  289. if (dma_mapping_error(dev, drv_data->rx_dma))
  290. return 0;
  291. /* Stream map the tx buffer */
  292. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  293. drv_data->tx_map_len,
  294. DMA_TO_DEVICE);
  295. if (dma_mapping_error(dev, drv_data->tx_dma)) {
  296. dma_unmap_single(dev, drv_data->rx_dma,
  297. drv_data->rx_map_len, DMA_FROM_DEVICE);
  298. return 0;
  299. }
  300. return 1;
  301. }
  302. static void unmap_dma_buffers(struct driver_data *drv_data)
  303. {
  304. struct device *dev;
  305. if (!drv_data->dma_mapped)
  306. return;
  307. if (!drv_data->cur_msg->is_dma_mapped) {
  308. dev = &drv_data->cur_msg->spi->dev;
  309. dma_unmap_single(dev, drv_data->rx_dma,
  310. drv_data->rx_map_len, DMA_FROM_DEVICE);
  311. dma_unmap_single(dev, drv_data->tx_dma,
  312. drv_data->tx_map_len, DMA_TO_DEVICE);
  313. }
  314. drv_data->dma_mapped = 0;
  315. }
  316. /* caller already set message->status; dma and pio irqs are blocked */
  317. static void giveback(struct driver_data *drv_data)
  318. {
  319. struct spi_transfer* last_transfer;
  320. unsigned long flags;
  321. struct spi_message *msg;
  322. spin_lock_irqsave(&drv_data->lock, flags);
  323. msg = drv_data->cur_msg;
  324. drv_data->cur_msg = NULL;
  325. drv_data->cur_transfer = NULL;
  326. drv_data->cur_chip = NULL;
  327. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  328. spin_unlock_irqrestore(&drv_data->lock, flags);
  329. last_transfer = list_entry(msg->transfers.prev,
  330. struct spi_transfer,
  331. transfer_list);
  332. if (!last_transfer->cs_change)
  333. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  334. msg->state = NULL;
  335. if (msg->complete)
  336. msg->complete(msg->context);
  337. }
  338. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  339. {
  340. unsigned long limit = loops_per_jiffy << 1;
  341. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  342. cpu_relax();
  343. return limit;
  344. }
  345. static int wait_dma_channel_stop(int channel)
  346. {
  347. unsigned long limit = loops_per_jiffy << 1;
  348. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  349. cpu_relax();
  350. return limit;
  351. }
  352. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  353. {
  354. void __iomem *reg = drv_data->ioaddr;
  355. /* Stop and reset */
  356. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  357. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  358. write_SSSR(drv_data->clear_sr, reg);
  359. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  360. if (drv_data->ssp_type != PXA25x_SSP)
  361. write_SSTO(0, reg);
  362. flush(drv_data);
  363. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  364. unmap_dma_buffers(drv_data);
  365. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  366. drv_data->cur_msg->state = ERROR_STATE;
  367. tasklet_schedule(&drv_data->pump_transfers);
  368. }
  369. static void dma_transfer_complete(struct driver_data *drv_data)
  370. {
  371. void __iomem *reg = drv_data->ioaddr;
  372. struct spi_message *msg = drv_data->cur_msg;
  373. /* Clear and disable interrupts on SSP and DMA channels*/
  374. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  375. write_SSSR(drv_data->clear_sr, reg);
  376. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  377. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  378. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  379. dev_err(&drv_data->pdev->dev,
  380. "dma_handler: dma rx channel stop failed\n");
  381. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  382. dev_err(&drv_data->pdev->dev,
  383. "dma_transfer: ssp rx stall failed\n");
  384. unmap_dma_buffers(drv_data);
  385. /* update the buffer pointer for the amount completed in dma */
  386. drv_data->rx += drv_data->len -
  387. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  388. /* read trailing data from fifo, it does not matter how many
  389. * bytes are in the fifo just read until buffer is full
  390. * or fifo is empty, which ever occurs first */
  391. drv_data->read(drv_data);
  392. /* return count of what was actually read */
  393. msg->actual_length += drv_data->len -
  394. (drv_data->rx_end - drv_data->rx);
  395. /* Release chip select if requested, transfer delays are
  396. * handled in pump_transfers */
  397. if (drv_data->cs_change)
  398. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  399. /* Move to next transfer */
  400. msg->state = next_transfer(drv_data);
  401. /* Schedule transfer tasklet */
  402. tasklet_schedule(&drv_data->pump_transfers);
  403. }
  404. static void dma_handler(int channel, void *data)
  405. {
  406. struct driver_data *drv_data = data;
  407. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  408. if (irq_status & DCSR_BUSERR) {
  409. if (channel == drv_data->tx_channel)
  410. dma_error_stop(drv_data,
  411. "dma_handler: "
  412. "bad bus address on tx channel");
  413. else
  414. dma_error_stop(drv_data,
  415. "dma_handler: "
  416. "bad bus address on rx channel");
  417. return;
  418. }
  419. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  420. if ((channel == drv_data->tx_channel)
  421. && (irq_status & DCSR_ENDINTR)
  422. && (drv_data->ssp_type == PXA25x_SSP)) {
  423. /* Wait for rx to stall */
  424. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  425. dev_err(&drv_data->pdev->dev,
  426. "dma_handler: ssp rx stall failed\n");
  427. /* finish this transfer, start the next */
  428. dma_transfer_complete(drv_data);
  429. }
  430. }
  431. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  432. {
  433. u32 irq_status;
  434. void __iomem *reg = drv_data->ioaddr;
  435. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  436. if (irq_status & SSSR_ROR) {
  437. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  438. return IRQ_HANDLED;
  439. }
  440. /* Check for false positive timeout */
  441. if ((irq_status & SSSR_TINT)
  442. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  443. write_SSSR(SSSR_TINT, reg);
  444. return IRQ_HANDLED;
  445. }
  446. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  447. /* Clear and disable timeout interrupt, do the rest in
  448. * dma_transfer_complete */
  449. if (drv_data->ssp_type != PXA25x_SSP)
  450. write_SSTO(0, reg);
  451. /* finish this transfer, start the next */
  452. dma_transfer_complete(drv_data);
  453. return IRQ_HANDLED;
  454. }
  455. /* Opps problem detected */
  456. return IRQ_NONE;
  457. }
  458. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  459. {
  460. void __iomem *reg = drv_data->ioaddr;
  461. /* Stop and reset SSP */
  462. write_SSSR(drv_data->clear_sr, reg);
  463. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  464. if (drv_data->ssp_type != PXA25x_SSP)
  465. write_SSTO(0, reg);
  466. flush(drv_data);
  467. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  468. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  469. drv_data->cur_msg->state = ERROR_STATE;
  470. tasklet_schedule(&drv_data->pump_transfers);
  471. }
  472. static void int_transfer_complete(struct driver_data *drv_data)
  473. {
  474. void __iomem *reg = drv_data->ioaddr;
  475. /* Stop SSP */
  476. write_SSSR(drv_data->clear_sr, reg);
  477. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  478. if (drv_data->ssp_type != PXA25x_SSP)
  479. write_SSTO(0, reg);
  480. /* Update total byte transfered return count actual bytes read */
  481. drv_data->cur_msg->actual_length += drv_data->len -
  482. (drv_data->rx_end - drv_data->rx);
  483. /* Release chip select if requested, transfer delays are
  484. * handled in pump_transfers */
  485. if (drv_data->cs_change)
  486. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  487. /* Move to next transfer */
  488. drv_data->cur_msg->state = next_transfer(drv_data);
  489. /* Schedule transfer tasklet */
  490. tasklet_schedule(&drv_data->pump_transfers);
  491. }
  492. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  493. {
  494. void __iomem *reg = drv_data->ioaddr;
  495. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  496. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  497. u32 irq_status = read_SSSR(reg) & irq_mask;
  498. if (irq_status & SSSR_ROR) {
  499. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  500. return IRQ_HANDLED;
  501. }
  502. if (irq_status & SSSR_TINT) {
  503. write_SSSR(SSSR_TINT, reg);
  504. if (drv_data->read(drv_data)) {
  505. int_transfer_complete(drv_data);
  506. return IRQ_HANDLED;
  507. }
  508. }
  509. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  510. do {
  511. if (drv_data->read(drv_data)) {
  512. int_transfer_complete(drv_data);
  513. return IRQ_HANDLED;
  514. }
  515. } while (drv_data->write(drv_data));
  516. if (drv_data->read(drv_data)) {
  517. int_transfer_complete(drv_data);
  518. return IRQ_HANDLED;
  519. }
  520. if (drv_data->tx == drv_data->tx_end) {
  521. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  522. /* PXA25x_SSP has no timeout, read trailing bytes */
  523. if (drv_data->ssp_type == PXA25x_SSP) {
  524. if (!wait_ssp_rx_stall(reg))
  525. {
  526. int_error_stop(drv_data, "interrupt_transfer: "
  527. "rx stall failed");
  528. return IRQ_HANDLED;
  529. }
  530. if (!drv_data->read(drv_data))
  531. {
  532. int_error_stop(drv_data,
  533. "interrupt_transfer: "
  534. "trailing byte read failed");
  535. return IRQ_HANDLED;
  536. }
  537. int_transfer_complete(drv_data);
  538. }
  539. }
  540. /* We did something */
  541. return IRQ_HANDLED;
  542. }
  543. static irqreturn_t ssp_int(int irq, void *dev_id)
  544. {
  545. struct driver_data *drv_data = dev_id;
  546. void __iomem *reg = drv_data->ioaddr;
  547. if (!drv_data->cur_msg) {
  548. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  549. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  550. if (drv_data->ssp_type != PXA25x_SSP)
  551. write_SSTO(0, reg);
  552. write_SSSR(drv_data->clear_sr, reg);
  553. dev_err(&drv_data->pdev->dev, "bad message state "
  554. "in interrupt handler\n");
  555. /* Never fail */
  556. return IRQ_HANDLED;
  557. }
  558. return drv_data->transfer_handler(drv_data);
  559. }
  560. static int set_dma_burst_and_threshold(struct chip_data *chip,
  561. struct spi_device *spi,
  562. u8 bits_per_word, u32 *burst_code,
  563. u32 *threshold)
  564. {
  565. struct pxa2xx_spi_chip *chip_info =
  566. (struct pxa2xx_spi_chip *)spi->controller_data;
  567. int bytes_per_word;
  568. int burst_bytes;
  569. int thresh_words;
  570. int req_burst_size;
  571. int retval = 0;
  572. /* Set the threshold (in registers) to equal the same amount of data
  573. * as represented by burst size (in bytes). The computation below
  574. * is (burst_size rounded up to nearest 8 byte, word or long word)
  575. * divided by (bytes/register); the tx threshold is the inverse of
  576. * the rx, so that there will always be enough data in the rx fifo
  577. * to satisfy a burst, and there will always be enough space in the
  578. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  579. * there is not enough space), there must always remain enough empty
  580. * space in the rx fifo for any data loaded to the tx fifo.
  581. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  582. * will be 8, or half the fifo;
  583. * The threshold can only be set to 2, 4 or 8, but not 16, because
  584. * to burst 16 to the tx fifo, the fifo would have to be empty;
  585. * however, the minimum fifo trigger level is 1, and the tx will
  586. * request service when the fifo is at this level, with only 15 spaces.
  587. */
  588. /* find bytes/word */
  589. if (bits_per_word <= 8)
  590. bytes_per_word = 1;
  591. else if (bits_per_word <= 16)
  592. bytes_per_word = 2;
  593. else
  594. bytes_per_word = 4;
  595. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  596. if (chip_info)
  597. req_burst_size = chip_info->dma_burst_size;
  598. else {
  599. switch (chip->dma_burst_size) {
  600. default:
  601. /* if the default burst size is not set,
  602. * do it now */
  603. chip->dma_burst_size = DCMD_BURST8;
  604. case DCMD_BURST8:
  605. req_burst_size = 8;
  606. break;
  607. case DCMD_BURST16:
  608. req_burst_size = 16;
  609. break;
  610. case DCMD_BURST32:
  611. req_burst_size = 32;
  612. break;
  613. }
  614. }
  615. if (req_burst_size <= 8) {
  616. *burst_code = DCMD_BURST8;
  617. burst_bytes = 8;
  618. } else if (req_burst_size <= 16) {
  619. if (bytes_per_word == 1) {
  620. /* don't burst more than 1/2 the fifo */
  621. *burst_code = DCMD_BURST8;
  622. burst_bytes = 8;
  623. retval = 1;
  624. } else {
  625. *burst_code = DCMD_BURST16;
  626. burst_bytes = 16;
  627. }
  628. } else {
  629. if (bytes_per_word == 1) {
  630. /* don't burst more than 1/2 the fifo */
  631. *burst_code = DCMD_BURST8;
  632. burst_bytes = 8;
  633. retval = 1;
  634. } else if (bytes_per_word == 2) {
  635. /* don't burst more than 1/2 the fifo */
  636. *burst_code = DCMD_BURST16;
  637. burst_bytes = 16;
  638. retval = 1;
  639. } else {
  640. *burst_code = DCMD_BURST32;
  641. burst_bytes = 32;
  642. }
  643. }
  644. thresh_words = burst_bytes / bytes_per_word;
  645. /* thresh_words will be between 2 and 8 */
  646. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  647. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  648. return retval;
  649. }
  650. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  651. {
  652. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  653. if (ssp->type == PXA25x_SSP)
  654. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  655. else
  656. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  657. }
  658. static void pump_transfers(unsigned long data)
  659. {
  660. struct driver_data *drv_data = (struct driver_data *)data;
  661. struct spi_message *message = NULL;
  662. struct spi_transfer *transfer = NULL;
  663. struct spi_transfer *previous = NULL;
  664. struct chip_data *chip = NULL;
  665. struct ssp_device *ssp = drv_data->ssp;
  666. void __iomem *reg = drv_data->ioaddr;
  667. u32 clk_div = 0;
  668. u8 bits = 0;
  669. u32 speed = 0;
  670. u32 cr0;
  671. u32 cr1;
  672. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  673. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  674. /* Get current state information */
  675. message = drv_data->cur_msg;
  676. transfer = drv_data->cur_transfer;
  677. chip = drv_data->cur_chip;
  678. /* Handle for abort */
  679. if (message->state == ERROR_STATE) {
  680. message->status = -EIO;
  681. giveback(drv_data);
  682. return;
  683. }
  684. /* Handle end of message */
  685. if (message->state == DONE_STATE) {
  686. message->status = 0;
  687. giveback(drv_data);
  688. return;
  689. }
  690. /* Delay if requested at end of transfer*/
  691. if (message->state == RUNNING_STATE) {
  692. previous = list_entry(transfer->transfer_list.prev,
  693. struct spi_transfer,
  694. transfer_list);
  695. if (previous->delay_usecs)
  696. udelay(previous->delay_usecs);
  697. }
  698. /* Check transfer length */
  699. if (transfer->len > 8191)
  700. {
  701. dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
  702. "length greater than 8191\n");
  703. message->status = -EINVAL;
  704. giveback(drv_data);
  705. return;
  706. }
  707. /* Setup the transfer state based on the type of transfer */
  708. if (flush(drv_data) == 0) {
  709. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  710. message->status = -EIO;
  711. giveback(drv_data);
  712. return;
  713. }
  714. drv_data->n_bytes = chip->n_bytes;
  715. drv_data->dma_width = chip->dma_width;
  716. drv_data->cs_control = chip->cs_control;
  717. drv_data->tx = (void *)transfer->tx_buf;
  718. drv_data->tx_end = drv_data->tx + transfer->len;
  719. drv_data->rx = transfer->rx_buf;
  720. drv_data->rx_end = drv_data->rx + transfer->len;
  721. drv_data->rx_dma = transfer->rx_dma;
  722. drv_data->tx_dma = transfer->tx_dma;
  723. drv_data->len = transfer->len & DCMD_LENGTH;
  724. drv_data->write = drv_data->tx ? chip->write : null_writer;
  725. drv_data->read = drv_data->rx ? chip->read : null_reader;
  726. drv_data->cs_change = transfer->cs_change;
  727. /* Change speed and bit per word on a per transfer */
  728. cr0 = chip->cr0;
  729. if (transfer->speed_hz || transfer->bits_per_word) {
  730. bits = chip->bits_per_word;
  731. speed = chip->speed_hz;
  732. if (transfer->speed_hz)
  733. speed = transfer->speed_hz;
  734. if (transfer->bits_per_word)
  735. bits = transfer->bits_per_word;
  736. clk_div = ssp_get_clk_div(ssp, speed);
  737. if (bits <= 8) {
  738. drv_data->n_bytes = 1;
  739. drv_data->dma_width = DCMD_WIDTH1;
  740. drv_data->read = drv_data->read != null_reader ?
  741. u8_reader : null_reader;
  742. drv_data->write = drv_data->write != null_writer ?
  743. u8_writer : null_writer;
  744. } else if (bits <= 16) {
  745. drv_data->n_bytes = 2;
  746. drv_data->dma_width = DCMD_WIDTH2;
  747. drv_data->read = drv_data->read != null_reader ?
  748. u16_reader : null_reader;
  749. drv_data->write = drv_data->write != null_writer ?
  750. u16_writer : null_writer;
  751. } else if (bits <= 32) {
  752. drv_data->n_bytes = 4;
  753. drv_data->dma_width = DCMD_WIDTH4;
  754. drv_data->read = drv_data->read != null_reader ?
  755. u32_reader : null_reader;
  756. drv_data->write = drv_data->write != null_writer ?
  757. u32_writer : null_writer;
  758. }
  759. /* if bits/word is changed in dma mode, then must check the
  760. * thresholds and burst also */
  761. if (chip->enable_dma) {
  762. if (set_dma_burst_and_threshold(chip, message->spi,
  763. bits, &dma_burst,
  764. &dma_thresh))
  765. if (printk_ratelimit())
  766. dev_warn(&message->spi->dev,
  767. "pump_transfer: "
  768. "DMA burst size reduced to "
  769. "match bits_per_word\n");
  770. }
  771. cr0 = clk_div
  772. | SSCR0_Motorola
  773. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  774. | SSCR0_SSE
  775. | (bits > 16 ? SSCR0_EDSS : 0);
  776. }
  777. message->state = RUNNING_STATE;
  778. /* Try to map dma buffer and do a dma transfer if successful */
  779. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  780. /* Ensure we have the correct interrupt handler */
  781. drv_data->transfer_handler = dma_transfer;
  782. /* Setup rx DMA Channel */
  783. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  784. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  785. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  786. if (drv_data->rx == drv_data->null_dma_buf)
  787. /* No target address increment */
  788. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  789. | drv_data->dma_width
  790. | dma_burst
  791. | drv_data->len;
  792. else
  793. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  794. | DCMD_FLOWSRC
  795. | drv_data->dma_width
  796. | dma_burst
  797. | drv_data->len;
  798. /* Setup tx DMA Channel */
  799. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  800. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  801. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  802. if (drv_data->tx == drv_data->null_dma_buf)
  803. /* No source address increment */
  804. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  805. | drv_data->dma_width
  806. | dma_burst
  807. | drv_data->len;
  808. else
  809. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  810. | DCMD_FLOWTRG
  811. | drv_data->dma_width
  812. | dma_burst
  813. | drv_data->len;
  814. /* Enable dma end irqs on SSP to detect end of transfer */
  815. if (drv_data->ssp_type == PXA25x_SSP)
  816. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  817. /* Clear status and start DMA engine */
  818. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  819. write_SSSR(drv_data->clear_sr, reg);
  820. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  821. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  822. } else {
  823. /* Ensure we have the correct interrupt handler */
  824. drv_data->transfer_handler = interrupt_transfer;
  825. /* Clear status */
  826. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  827. write_SSSR(drv_data->clear_sr, reg);
  828. }
  829. /* see if we need to reload the config registers */
  830. if ((read_SSCR0(reg) != cr0)
  831. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  832. (cr1 & SSCR1_CHANGE_MASK)) {
  833. /* stop the SSP, and update the other bits */
  834. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  835. if (drv_data->ssp_type != PXA25x_SSP)
  836. write_SSTO(chip->timeout, reg);
  837. /* first set CR1 without interrupt and service enables */
  838. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  839. /* restart the SSP */
  840. write_SSCR0(cr0, reg);
  841. } else {
  842. if (drv_data->ssp_type != PXA25x_SSP)
  843. write_SSTO(chip->timeout, reg);
  844. }
  845. /* FIXME, need to handle cs polarity,
  846. * this driver uses struct pxa2xx_spi_chip.cs_control to
  847. * specify a CS handling function, and it ignores most
  848. * struct spi_device.mode[s], including SPI_CS_HIGH */
  849. drv_data->cs_control(PXA2XX_CS_ASSERT);
  850. /* after chip select, release the data by enabling service
  851. * requests and interrupts, without changing any mode bits */
  852. write_SSCR1(cr1, reg);
  853. }
  854. static void pump_messages(struct work_struct *work)
  855. {
  856. struct driver_data *drv_data =
  857. container_of(work, struct driver_data, pump_messages);
  858. unsigned long flags;
  859. /* Lock queue and check for queue work */
  860. spin_lock_irqsave(&drv_data->lock, flags);
  861. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  862. drv_data->busy = 0;
  863. spin_unlock_irqrestore(&drv_data->lock, flags);
  864. return;
  865. }
  866. /* Make sure we are not already running a message */
  867. if (drv_data->cur_msg) {
  868. spin_unlock_irqrestore(&drv_data->lock, flags);
  869. return;
  870. }
  871. /* Extract head of queue */
  872. drv_data->cur_msg = list_entry(drv_data->queue.next,
  873. struct spi_message, queue);
  874. list_del_init(&drv_data->cur_msg->queue);
  875. /* Initial message state*/
  876. drv_data->cur_msg->state = START_STATE;
  877. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  878. struct spi_transfer,
  879. transfer_list);
  880. /* prepare to setup the SSP, in pump_transfers, using the per
  881. * chip configuration */
  882. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  883. /* Mark as busy and launch transfers */
  884. tasklet_schedule(&drv_data->pump_transfers);
  885. drv_data->busy = 1;
  886. spin_unlock_irqrestore(&drv_data->lock, flags);
  887. }
  888. static int transfer(struct spi_device *spi, struct spi_message *msg)
  889. {
  890. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  891. unsigned long flags;
  892. spin_lock_irqsave(&drv_data->lock, flags);
  893. if (drv_data->run == QUEUE_STOPPED) {
  894. spin_unlock_irqrestore(&drv_data->lock, flags);
  895. return -ESHUTDOWN;
  896. }
  897. msg->actual_length = 0;
  898. msg->status = -EINPROGRESS;
  899. msg->state = START_STATE;
  900. list_add_tail(&msg->queue, &drv_data->queue);
  901. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  902. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  903. spin_unlock_irqrestore(&drv_data->lock, flags);
  904. return 0;
  905. }
  906. /* the spi->mode bits understood by this driver: */
  907. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  908. static int setup(struct spi_device *spi)
  909. {
  910. struct pxa2xx_spi_chip *chip_info = NULL;
  911. struct chip_data *chip;
  912. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  913. struct ssp_device *ssp = drv_data->ssp;
  914. unsigned int clk_div;
  915. if (!spi->bits_per_word)
  916. spi->bits_per_word = 8;
  917. if (drv_data->ssp_type != PXA25x_SSP
  918. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  919. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  920. "b/w not 4-32 for type non-PXA25x_SSP\n",
  921. drv_data->ssp_type, spi->bits_per_word);
  922. return -EINVAL;
  923. }
  924. else if (drv_data->ssp_type == PXA25x_SSP
  925. && (spi->bits_per_word < 4
  926. || spi->bits_per_word > 16)) {
  927. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  928. "b/w not 4-16 for type PXA25x_SSP\n",
  929. drv_data->ssp_type, spi->bits_per_word);
  930. return -EINVAL;
  931. }
  932. if (spi->mode & ~MODEBITS) {
  933. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  934. spi->mode & ~MODEBITS);
  935. return -EINVAL;
  936. }
  937. /* Only alloc on first setup */
  938. chip = spi_get_ctldata(spi);
  939. if (!chip) {
  940. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  941. if (!chip) {
  942. dev_err(&spi->dev,
  943. "failed setup: can't allocate chip data\n");
  944. return -ENOMEM;
  945. }
  946. chip->cs_control = null_cs_control;
  947. chip->enable_dma = 0;
  948. chip->timeout = 1000;
  949. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  950. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  951. DCMD_BURST8 : 0;
  952. }
  953. /* protocol drivers may change the chip settings, so...
  954. * if chip_info exists, use it */
  955. chip_info = spi->controller_data;
  956. /* chip_info isn't always needed */
  957. chip->cr1 = 0;
  958. if (chip_info) {
  959. if (chip_info->cs_control)
  960. chip->cs_control = chip_info->cs_control;
  961. chip->timeout = chip_info->timeout;
  962. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  963. SSCR1_RFT) |
  964. (SSCR1_TxTresh(chip_info->tx_threshold) &
  965. SSCR1_TFT);
  966. chip->enable_dma = chip_info->dma_burst_size != 0
  967. && drv_data->master_info->enable_dma;
  968. chip->dma_threshold = 0;
  969. if (chip_info->enable_loopback)
  970. chip->cr1 = SSCR1_LBM;
  971. }
  972. /* set dma burst and threshold outside of chip_info path so that if
  973. * chip_info goes away after setting chip->enable_dma, the
  974. * burst and threshold can still respond to changes in bits_per_word */
  975. if (chip->enable_dma) {
  976. /* set up legal burst and threshold for dma */
  977. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  978. &chip->dma_burst_size,
  979. &chip->dma_threshold)) {
  980. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  981. "to match bits_per_word\n");
  982. }
  983. }
  984. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  985. chip->speed_hz = spi->max_speed_hz;
  986. chip->cr0 = clk_div
  987. | SSCR0_Motorola
  988. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  989. spi->bits_per_word - 16 : spi->bits_per_word)
  990. | SSCR0_SSE
  991. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  992. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  993. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  994. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  995. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  996. if (drv_data->ssp_type != PXA25x_SSP)
  997. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  998. spi->bits_per_word,
  999. clk_get_rate(ssp->clk)
  1000. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1001. spi->mode & 0x3);
  1002. else
  1003. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  1004. spi->bits_per_word,
  1005. clk_get_rate(ssp->clk)
  1006. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1007. spi->mode & 0x3);
  1008. if (spi->bits_per_word <= 8) {
  1009. chip->n_bytes = 1;
  1010. chip->dma_width = DCMD_WIDTH1;
  1011. chip->read = u8_reader;
  1012. chip->write = u8_writer;
  1013. } else if (spi->bits_per_word <= 16) {
  1014. chip->n_bytes = 2;
  1015. chip->dma_width = DCMD_WIDTH2;
  1016. chip->read = u16_reader;
  1017. chip->write = u16_writer;
  1018. } else if (spi->bits_per_word <= 32) {
  1019. chip->cr0 |= SSCR0_EDSS;
  1020. chip->n_bytes = 4;
  1021. chip->dma_width = DCMD_WIDTH4;
  1022. chip->read = u32_reader;
  1023. chip->write = u32_writer;
  1024. } else {
  1025. dev_err(&spi->dev, "invalid wordsize\n");
  1026. return -ENODEV;
  1027. }
  1028. chip->bits_per_word = spi->bits_per_word;
  1029. spi_set_ctldata(spi, chip);
  1030. return 0;
  1031. }
  1032. static void cleanup(struct spi_device *spi)
  1033. {
  1034. struct chip_data *chip = spi_get_ctldata(spi);
  1035. kfree(chip);
  1036. }
  1037. static int __init init_queue(struct driver_data *drv_data)
  1038. {
  1039. INIT_LIST_HEAD(&drv_data->queue);
  1040. spin_lock_init(&drv_data->lock);
  1041. drv_data->run = QUEUE_STOPPED;
  1042. drv_data->busy = 0;
  1043. tasklet_init(&drv_data->pump_transfers,
  1044. pump_transfers, (unsigned long)drv_data);
  1045. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1046. drv_data->workqueue = create_singlethread_workqueue(
  1047. drv_data->master->dev.parent->bus_id);
  1048. if (drv_data->workqueue == NULL)
  1049. return -EBUSY;
  1050. return 0;
  1051. }
  1052. static int start_queue(struct driver_data *drv_data)
  1053. {
  1054. unsigned long flags;
  1055. spin_lock_irqsave(&drv_data->lock, flags);
  1056. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1057. spin_unlock_irqrestore(&drv_data->lock, flags);
  1058. return -EBUSY;
  1059. }
  1060. drv_data->run = QUEUE_RUNNING;
  1061. drv_data->cur_msg = NULL;
  1062. drv_data->cur_transfer = NULL;
  1063. drv_data->cur_chip = NULL;
  1064. spin_unlock_irqrestore(&drv_data->lock, flags);
  1065. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1066. return 0;
  1067. }
  1068. static int stop_queue(struct driver_data *drv_data)
  1069. {
  1070. unsigned long flags;
  1071. unsigned limit = 500;
  1072. int status = 0;
  1073. spin_lock_irqsave(&drv_data->lock, flags);
  1074. /* This is a bit lame, but is optimized for the common execution path.
  1075. * A wait_queue on the drv_data->busy could be used, but then the common
  1076. * execution path (pump_messages) would be required to call wake_up or
  1077. * friends on every SPI message. Do this instead */
  1078. drv_data->run = QUEUE_STOPPED;
  1079. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1080. spin_unlock_irqrestore(&drv_data->lock, flags);
  1081. msleep(10);
  1082. spin_lock_irqsave(&drv_data->lock, flags);
  1083. }
  1084. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1085. status = -EBUSY;
  1086. spin_unlock_irqrestore(&drv_data->lock, flags);
  1087. return status;
  1088. }
  1089. static int destroy_queue(struct driver_data *drv_data)
  1090. {
  1091. int status;
  1092. status = stop_queue(drv_data);
  1093. /* we are unloading the module or failing to load (only two calls
  1094. * to this routine), and neither call can handle a return value.
  1095. * However, destroy_workqueue calls flush_workqueue, and that will
  1096. * block until all work is done. If the reason that stop_queue
  1097. * timed out is that the work will never finish, then it does no
  1098. * good to call destroy_workqueue, so return anyway. */
  1099. if (status != 0)
  1100. return status;
  1101. destroy_workqueue(drv_data->workqueue);
  1102. return 0;
  1103. }
  1104. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1105. {
  1106. struct device *dev = &pdev->dev;
  1107. struct pxa2xx_spi_master *platform_info;
  1108. struct spi_master *master;
  1109. struct driver_data *drv_data = NULL;
  1110. struct ssp_device *ssp;
  1111. int status = 0;
  1112. platform_info = dev->platform_data;
  1113. ssp = ssp_request(pdev->id, pdev->name);
  1114. if (ssp == NULL) {
  1115. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1116. return -ENODEV;
  1117. }
  1118. /* Allocate master with space for drv_data and null dma buffer */
  1119. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1120. if (!master) {
  1121. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1122. ssp_free(ssp);
  1123. return -ENOMEM;
  1124. }
  1125. drv_data = spi_master_get_devdata(master);
  1126. drv_data->master = master;
  1127. drv_data->master_info = platform_info;
  1128. drv_data->pdev = pdev;
  1129. drv_data->ssp = ssp;
  1130. master->bus_num = pdev->id;
  1131. master->num_chipselect = platform_info->num_chipselect;
  1132. master->cleanup = cleanup;
  1133. master->setup = setup;
  1134. master->transfer = transfer;
  1135. drv_data->ssp_type = ssp->type;
  1136. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1137. sizeof(struct driver_data)), 8);
  1138. drv_data->ioaddr = ssp->mmio_base;
  1139. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1140. if (ssp->type == PXA25x_SSP) {
  1141. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1142. drv_data->dma_cr1 = 0;
  1143. drv_data->clear_sr = SSSR_ROR;
  1144. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1145. } else {
  1146. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1147. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1148. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1149. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1150. }
  1151. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1152. if (status < 0) {
  1153. dev_err(&pdev->dev, "can not get IRQ\n");
  1154. goto out_error_master_alloc;
  1155. }
  1156. /* Setup DMA if requested */
  1157. drv_data->tx_channel = -1;
  1158. drv_data->rx_channel = -1;
  1159. if (platform_info->enable_dma) {
  1160. /* Get two DMA channels (rx and tx) */
  1161. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1162. DMA_PRIO_HIGH,
  1163. dma_handler,
  1164. drv_data);
  1165. if (drv_data->rx_channel < 0) {
  1166. dev_err(dev, "problem (%d) requesting rx channel\n",
  1167. drv_data->rx_channel);
  1168. status = -ENODEV;
  1169. goto out_error_irq_alloc;
  1170. }
  1171. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1172. DMA_PRIO_MEDIUM,
  1173. dma_handler,
  1174. drv_data);
  1175. if (drv_data->tx_channel < 0) {
  1176. dev_err(dev, "problem (%d) requesting tx channel\n",
  1177. drv_data->tx_channel);
  1178. status = -ENODEV;
  1179. goto out_error_dma_alloc;
  1180. }
  1181. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1182. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1183. }
  1184. /* Enable SOC clock */
  1185. clk_enable(ssp->clk);
  1186. /* Load default SSP configuration */
  1187. write_SSCR0(0, drv_data->ioaddr);
  1188. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1189. write_SSCR0(SSCR0_SerClkDiv(2)
  1190. | SSCR0_Motorola
  1191. | SSCR0_DataSize(8),
  1192. drv_data->ioaddr);
  1193. if (drv_data->ssp_type != PXA25x_SSP)
  1194. write_SSTO(0, drv_data->ioaddr);
  1195. write_SSPSP(0, drv_data->ioaddr);
  1196. /* Initial and start queue */
  1197. status = init_queue(drv_data);
  1198. if (status != 0) {
  1199. dev_err(&pdev->dev, "problem initializing queue\n");
  1200. goto out_error_clock_enabled;
  1201. }
  1202. status = start_queue(drv_data);
  1203. if (status != 0) {
  1204. dev_err(&pdev->dev, "problem starting queue\n");
  1205. goto out_error_clock_enabled;
  1206. }
  1207. /* Register with the SPI framework */
  1208. platform_set_drvdata(pdev, drv_data);
  1209. status = spi_register_master(master);
  1210. if (status != 0) {
  1211. dev_err(&pdev->dev, "problem registering spi master\n");
  1212. goto out_error_queue_alloc;
  1213. }
  1214. return status;
  1215. out_error_queue_alloc:
  1216. destroy_queue(drv_data);
  1217. out_error_clock_enabled:
  1218. clk_disable(ssp->clk);
  1219. out_error_dma_alloc:
  1220. if (drv_data->tx_channel != -1)
  1221. pxa_free_dma(drv_data->tx_channel);
  1222. if (drv_data->rx_channel != -1)
  1223. pxa_free_dma(drv_data->rx_channel);
  1224. out_error_irq_alloc:
  1225. free_irq(ssp->irq, drv_data);
  1226. out_error_master_alloc:
  1227. spi_master_put(master);
  1228. ssp_free(ssp);
  1229. return status;
  1230. }
  1231. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1232. {
  1233. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1234. struct ssp_device *ssp = drv_data->ssp;
  1235. int status = 0;
  1236. if (!drv_data)
  1237. return 0;
  1238. /* Remove the queue */
  1239. status = destroy_queue(drv_data);
  1240. if (status != 0)
  1241. /* the kernel does not check the return status of this
  1242. * this routine (mod->exit, within the kernel). Therefore
  1243. * nothing is gained by returning from here, the module is
  1244. * going away regardless, and we should not leave any more
  1245. * resources allocated than necessary. We cannot free the
  1246. * message memory in drv_data->queue, but we can release the
  1247. * resources below. I think the kernel should honor -EBUSY
  1248. * returns but... */
  1249. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1250. "complete, message memory not freed\n");
  1251. /* Disable the SSP at the peripheral and SOC level */
  1252. write_SSCR0(0, drv_data->ioaddr);
  1253. clk_disable(ssp->clk);
  1254. /* Release DMA */
  1255. if (drv_data->master_info->enable_dma) {
  1256. DRCMR(ssp->drcmr_rx) = 0;
  1257. DRCMR(ssp->drcmr_tx) = 0;
  1258. pxa_free_dma(drv_data->tx_channel);
  1259. pxa_free_dma(drv_data->rx_channel);
  1260. }
  1261. /* Release IRQ */
  1262. free_irq(ssp->irq, drv_data);
  1263. /* Release SSP */
  1264. ssp_free(ssp);
  1265. /* Disconnect from the SPI framework */
  1266. spi_unregister_master(drv_data->master);
  1267. /* Prevent double remove */
  1268. platform_set_drvdata(pdev, NULL);
  1269. return 0;
  1270. }
  1271. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1272. {
  1273. int status = 0;
  1274. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1275. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1276. }
  1277. #ifdef CONFIG_PM
  1278. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1279. {
  1280. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1281. struct ssp_device *ssp = drv_data->ssp;
  1282. int status = 0;
  1283. status = stop_queue(drv_data);
  1284. if (status != 0)
  1285. return status;
  1286. write_SSCR0(0, drv_data->ioaddr);
  1287. clk_disable(ssp->clk);
  1288. return 0;
  1289. }
  1290. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1291. {
  1292. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1293. struct ssp_device *ssp = drv_data->ssp;
  1294. int status = 0;
  1295. /* Enable the SSP clock */
  1296. clk_enable(ssp->clk);
  1297. /* Start the queue running */
  1298. status = start_queue(drv_data);
  1299. if (status != 0) {
  1300. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1301. return status;
  1302. }
  1303. return 0;
  1304. }
  1305. #else
  1306. #define pxa2xx_spi_suspend NULL
  1307. #define pxa2xx_spi_resume NULL
  1308. #endif /* CONFIG_PM */
  1309. static struct platform_driver driver = {
  1310. .driver = {
  1311. .name = "pxa2xx-spi",
  1312. .owner = THIS_MODULE,
  1313. },
  1314. .remove = pxa2xx_spi_remove,
  1315. .shutdown = pxa2xx_spi_shutdown,
  1316. .suspend = pxa2xx_spi_suspend,
  1317. .resume = pxa2xx_spi_resume,
  1318. };
  1319. static int __init pxa2xx_spi_init(void)
  1320. {
  1321. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1322. }
  1323. module_init(pxa2xx_spi_init);
  1324. static void __exit pxa2xx_spi_exit(void)
  1325. {
  1326. platform_driver_unregister(&driver);
  1327. }
  1328. module_exit(pxa2xx_spi_exit);