sched.c 207 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <asm/tlb.h>
  71. #include <asm/irq_regs.h>
  72. /*
  73. * Scheduler clock - returns current time in nanosec units.
  74. * This is default implementation.
  75. * Architectures and sub-architectures can override this.
  76. */
  77. unsigned long long __attribute__((weak)) sched_clock(void)
  78. {
  79. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  80. }
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. #ifdef CONFIG_SMP
  115. /*
  116. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  117. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  118. */
  119. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  120. {
  121. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  122. }
  123. /*
  124. * Each time a sched group cpu_power is changed,
  125. * we must compute its reciprocal value
  126. */
  127. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  128. {
  129. sg->__cpu_power += val;
  130. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  131. }
  132. #endif
  133. static inline int rt_policy(int policy)
  134. {
  135. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  136. return 1;
  137. return 0;
  138. }
  139. static inline int task_has_rt_policy(struct task_struct *p)
  140. {
  141. return rt_policy(p->policy);
  142. }
  143. /*
  144. * This is the priority-queue data structure of the RT scheduling class:
  145. */
  146. struct rt_prio_array {
  147. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  148. struct list_head queue[MAX_RT_PRIO];
  149. };
  150. struct rt_bandwidth {
  151. ktime_t rt_period;
  152. u64 rt_runtime;
  153. spinlock_t rt_runtime_lock;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  184. }
  185. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  186. {
  187. ktime_t now;
  188. if (rt_b->rt_runtime == RUNTIME_INF)
  189. return;
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. return;
  192. spin_lock(&rt_b->rt_runtime_lock);
  193. for (;;) {
  194. if (hrtimer_active(&rt_b->rt_period_timer))
  195. break;
  196. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  197. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  198. hrtimer_start(&rt_b->rt_period_timer,
  199. rt_b->rt_period_timer.expires,
  200. HRTIMER_MODE_ABS);
  201. }
  202. spin_unlock(&rt_b->rt_runtime_lock);
  203. }
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  206. {
  207. hrtimer_cancel(&rt_b->rt_period_timer);
  208. }
  209. #endif
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. };
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* Default task group's sched entity on each cpu */
  236. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  237. /* Default task group's cfs_rq on each cpu */
  238. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  242. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  243. #endif
  244. /* task_group_lock serializes add/remove of task groups and also changes to
  245. * a task group's cpu shares.
  246. */
  247. static DEFINE_SPINLOCK(task_group_lock);
  248. /* doms_cur_mutex serializes access to doms_cur[] array */
  249. static DEFINE_MUTEX(doms_cur_mutex);
  250. #ifdef CONFIG_FAIR_GROUP_SCHED
  251. #ifdef CONFIG_USER_SCHED
  252. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  253. #else
  254. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  255. #endif
  256. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  257. #endif
  258. /* Default task group.
  259. * Every task in system belong to this group at bootup.
  260. */
  261. struct task_group init_task_group;
  262. /* return group to which a task belongs */
  263. static inline struct task_group *task_group(struct task_struct *p)
  264. {
  265. struct task_group *tg;
  266. #ifdef CONFIG_USER_SCHED
  267. tg = p->user->tg;
  268. #elif defined(CONFIG_CGROUP_SCHED)
  269. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  270. struct task_group, css);
  271. #else
  272. tg = &init_task_group;
  273. #endif
  274. return tg;
  275. }
  276. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  277. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  278. {
  279. #ifdef CONFIG_FAIR_GROUP_SCHED
  280. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  281. p->se.parent = task_group(p)->se[cpu];
  282. #endif
  283. #ifdef CONFIG_RT_GROUP_SCHED
  284. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  285. p->rt.parent = task_group(p)->rt_se[cpu];
  286. #endif
  287. }
  288. static inline void lock_doms_cur(void)
  289. {
  290. mutex_lock(&doms_cur_mutex);
  291. }
  292. static inline void unlock_doms_cur(void)
  293. {
  294. mutex_unlock(&doms_cur_mutex);
  295. }
  296. #else
  297. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  298. static inline void lock_doms_cur(void) { }
  299. static inline void unlock_doms_cur(void) { }
  300. #endif /* CONFIG_GROUP_SCHED */
  301. /* CFS-related fields in a runqueue */
  302. struct cfs_rq {
  303. struct load_weight load;
  304. unsigned long nr_running;
  305. u64 exec_clock;
  306. u64 min_vruntime;
  307. struct rb_root tasks_timeline;
  308. struct rb_node *rb_leftmost;
  309. struct rb_node *rb_load_balance_curr;
  310. /* 'curr' points to currently running entity on this cfs_rq.
  311. * It is set to NULL otherwise (i.e when none are currently running).
  312. */
  313. struct sched_entity *curr, *next;
  314. unsigned long nr_spread_over;
  315. #ifdef CONFIG_FAIR_GROUP_SCHED
  316. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  317. /*
  318. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  319. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  320. * (like users, containers etc.)
  321. *
  322. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  323. * list is used during load balance.
  324. */
  325. struct list_head leaf_cfs_rq_list;
  326. struct task_group *tg; /* group that "owns" this runqueue */
  327. #endif
  328. };
  329. /* Real-Time classes' related field in a runqueue: */
  330. struct rt_rq {
  331. struct rt_prio_array active;
  332. unsigned long rt_nr_running;
  333. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  334. int highest_prio; /* highest queued rt task prio */
  335. #endif
  336. #ifdef CONFIG_SMP
  337. unsigned long rt_nr_migratory;
  338. int overloaded;
  339. #endif
  340. int rt_throttled;
  341. u64 rt_time;
  342. u64 rt_runtime;
  343. spinlock_t rt_runtime_lock;
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. unsigned long rt_nr_boosted;
  346. struct rq *rq;
  347. struct list_head leaf_rt_rq_list;
  348. struct task_group *tg;
  349. struct sched_rt_entity *rt_se;
  350. #endif
  351. };
  352. #ifdef CONFIG_SMP
  353. /*
  354. * We add the notion of a root-domain which will be used to define per-domain
  355. * variables. Each exclusive cpuset essentially defines an island domain by
  356. * fully partitioning the member cpus from any other cpuset. Whenever a new
  357. * exclusive cpuset is created, we also create and attach a new root-domain
  358. * object.
  359. *
  360. */
  361. struct root_domain {
  362. atomic_t refcount;
  363. cpumask_t span;
  364. cpumask_t online;
  365. /*
  366. * The "RT overload" flag: it gets set if a CPU has more than
  367. * one runnable RT task.
  368. */
  369. cpumask_t rto_mask;
  370. atomic_t rto_count;
  371. };
  372. /*
  373. * By default the system creates a single root-domain with all cpus as
  374. * members (mimicking the global state we have today).
  375. */
  376. static struct root_domain def_root_domain;
  377. #endif
  378. /*
  379. * This is the main, per-CPU runqueue data structure.
  380. *
  381. * Locking rule: those places that want to lock multiple runqueues
  382. * (such as the load balancing or the thread migration code), lock
  383. * acquire operations must be ordered by ascending &runqueue.
  384. */
  385. struct rq {
  386. /* runqueue lock: */
  387. spinlock_t lock;
  388. /*
  389. * nr_running and cpu_load should be in the same cacheline because
  390. * remote CPUs use both these fields when doing load calculation.
  391. */
  392. unsigned long nr_running;
  393. #define CPU_LOAD_IDX_MAX 5
  394. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  395. unsigned char idle_at_tick;
  396. #ifdef CONFIG_NO_HZ
  397. unsigned long last_tick_seen;
  398. unsigned char in_nohz_recently;
  399. #endif
  400. /* capture load from *all* tasks on this cpu: */
  401. struct load_weight load;
  402. unsigned long nr_load_updates;
  403. u64 nr_switches;
  404. struct cfs_rq cfs;
  405. struct rt_rq rt;
  406. #ifdef CONFIG_FAIR_GROUP_SCHED
  407. /* list of leaf cfs_rq on this cpu: */
  408. struct list_head leaf_cfs_rq_list;
  409. #endif
  410. #ifdef CONFIG_RT_GROUP_SCHED
  411. struct list_head leaf_rt_rq_list;
  412. #endif
  413. /*
  414. * This is part of a global counter where only the total sum
  415. * over all CPUs matters. A task can increase this counter on
  416. * one CPU and if it got migrated afterwards it may decrease
  417. * it on another CPU. Always updated under the runqueue lock:
  418. */
  419. unsigned long nr_uninterruptible;
  420. struct task_struct *curr, *idle;
  421. unsigned long next_balance;
  422. struct mm_struct *prev_mm;
  423. u64 clock, prev_clock_raw;
  424. s64 clock_max_delta;
  425. unsigned int clock_warps, clock_overflows, clock_underflows;
  426. u64 idle_clock;
  427. unsigned int clock_deep_idle_events;
  428. u64 tick_timestamp;
  429. atomic_t nr_iowait;
  430. #ifdef CONFIG_SMP
  431. struct root_domain *rd;
  432. struct sched_domain *sd;
  433. /* For active balancing */
  434. int active_balance;
  435. int push_cpu;
  436. /* cpu of this runqueue: */
  437. int cpu;
  438. struct task_struct *migration_thread;
  439. struct list_head migration_queue;
  440. #endif
  441. #ifdef CONFIG_SCHED_HRTICK
  442. unsigned long hrtick_flags;
  443. ktime_t hrtick_expire;
  444. struct hrtimer hrtick_timer;
  445. #endif
  446. #ifdef CONFIG_SCHEDSTATS
  447. /* latency stats */
  448. struct sched_info rq_sched_info;
  449. /* sys_sched_yield() stats */
  450. unsigned int yld_exp_empty;
  451. unsigned int yld_act_empty;
  452. unsigned int yld_both_empty;
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. /* BKL stats */
  462. unsigned int bkl_count;
  463. #endif
  464. struct lock_class_key rq_lock_key;
  465. };
  466. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  467. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  468. {
  469. rq->curr->sched_class->check_preempt_curr(rq, p);
  470. }
  471. static inline int cpu_of(struct rq *rq)
  472. {
  473. #ifdef CONFIG_SMP
  474. return rq->cpu;
  475. #else
  476. return 0;
  477. #endif
  478. }
  479. #ifdef CONFIG_NO_HZ
  480. static inline bool nohz_on(int cpu)
  481. {
  482. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  483. }
  484. static inline u64 max_skipped_ticks(struct rq *rq)
  485. {
  486. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  487. }
  488. static inline void update_last_tick_seen(struct rq *rq)
  489. {
  490. rq->last_tick_seen = jiffies;
  491. }
  492. #else
  493. static inline u64 max_skipped_ticks(struct rq *rq)
  494. {
  495. return 1;
  496. }
  497. static inline void update_last_tick_seen(struct rq *rq)
  498. {
  499. }
  500. #endif
  501. /*
  502. * Update the per-runqueue clock, as finegrained as the platform can give
  503. * us, but without assuming monotonicity, etc.:
  504. */
  505. static void __update_rq_clock(struct rq *rq)
  506. {
  507. u64 prev_raw = rq->prev_clock_raw;
  508. u64 now = sched_clock();
  509. s64 delta = now - prev_raw;
  510. u64 clock = rq->clock;
  511. #ifdef CONFIG_SCHED_DEBUG
  512. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  513. #endif
  514. /*
  515. * Protect against sched_clock() occasionally going backwards:
  516. */
  517. if (unlikely(delta < 0)) {
  518. clock++;
  519. rq->clock_warps++;
  520. } else {
  521. /*
  522. * Catch too large forward jumps too:
  523. */
  524. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  525. u64 max_time = rq->tick_timestamp + max_jump;
  526. if (unlikely(clock + delta > max_time)) {
  527. if (clock < max_time)
  528. clock = max_time;
  529. else
  530. clock++;
  531. rq->clock_overflows++;
  532. } else {
  533. if (unlikely(delta > rq->clock_max_delta))
  534. rq->clock_max_delta = delta;
  535. clock += delta;
  536. }
  537. }
  538. rq->prev_clock_raw = now;
  539. rq->clock = clock;
  540. }
  541. static void update_rq_clock(struct rq *rq)
  542. {
  543. if (likely(smp_processor_id() == cpu_of(rq)))
  544. __update_rq_clock(rq);
  545. }
  546. /*
  547. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  548. * See detach_destroy_domains: synchronize_sched for details.
  549. *
  550. * The domain tree of any CPU may only be accessed from within
  551. * preempt-disabled sections.
  552. */
  553. #define for_each_domain(cpu, __sd) \
  554. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  555. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  556. #define this_rq() (&__get_cpu_var(runqueues))
  557. #define task_rq(p) cpu_rq(task_cpu(p))
  558. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /*
  568. * Debugging: various feature bits
  569. */
  570. enum {
  571. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  572. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  573. SCHED_FEAT_START_DEBIT = 4,
  574. SCHED_FEAT_AFFINE_WAKEUPS = 8,
  575. SCHED_FEAT_CACHE_HOT_BUDDY = 16,
  576. SCHED_FEAT_SYNC_WAKEUPS = 32,
  577. SCHED_FEAT_HRTICK = 64,
  578. SCHED_FEAT_DOUBLE_TICK = 128,
  579. SCHED_FEAT_NORMALIZED_SLEEPER = 256,
  580. };
  581. const_debug unsigned int sysctl_sched_features =
  582. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  583. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  584. SCHED_FEAT_START_DEBIT * 1 |
  585. SCHED_FEAT_AFFINE_WAKEUPS * 1 |
  586. SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
  587. SCHED_FEAT_SYNC_WAKEUPS * 1 |
  588. SCHED_FEAT_HRTICK * 1 |
  589. SCHED_FEAT_DOUBLE_TICK * 0 |
  590. SCHED_FEAT_NORMALIZED_SLEEPER * 1;
  591. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  592. /*
  593. * Number of tasks to iterate in a single balance run.
  594. * Limited because this is done with IRQs disabled.
  595. */
  596. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  597. /*
  598. * period over which we measure -rt task cpu usage in us.
  599. * default: 1s
  600. */
  601. unsigned int sysctl_sched_rt_period = 1000000;
  602. static __read_mostly int scheduler_running;
  603. /*
  604. * part of the period that we allow rt tasks to run in us.
  605. * default: 0.95s
  606. */
  607. int sysctl_sched_rt_runtime = 950000;
  608. static inline u64 global_rt_period(void)
  609. {
  610. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  611. }
  612. static inline u64 global_rt_runtime(void)
  613. {
  614. if (sysctl_sched_rt_period < 0)
  615. return RUNTIME_INF;
  616. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  617. }
  618. static const unsigned long long time_sync_thresh = 100000;
  619. static DEFINE_PER_CPU(unsigned long long, time_offset);
  620. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  621. /*
  622. * Global lock which we take every now and then to synchronize
  623. * the CPUs time. This method is not warp-safe, but it's good
  624. * enough to synchronize slowly diverging time sources and thus
  625. * it's good enough for tracing:
  626. */
  627. static DEFINE_SPINLOCK(time_sync_lock);
  628. static unsigned long long prev_global_time;
  629. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  630. {
  631. unsigned long flags;
  632. spin_lock_irqsave(&time_sync_lock, flags);
  633. if (time < prev_global_time) {
  634. per_cpu(time_offset, cpu) += prev_global_time - time;
  635. time = prev_global_time;
  636. } else {
  637. prev_global_time = time;
  638. }
  639. spin_unlock_irqrestore(&time_sync_lock, flags);
  640. return time;
  641. }
  642. static unsigned long long __cpu_clock(int cpu)
  643. {
  644. unsigned long long now;
  645. unsigned long flags;
  646. struct rq *rq;
  647. /*
  648. * Only call sched_clock() if the scheduler has already been
  649. * initialized (some code might call cpu_clock() very early):
  650. */
  651. if (unlikely(!scheduler_running))
  652. return 0;
  653. local_irq_save(flags);
  654. rq = cpu_rq(cpu);
  655. update_rq_clock(rq);
  656. now = rq->clock;
  657. local_irq_restore(flags);
  658. return now;
  659. }
  660. /*
  661. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  662. * clock constructed from sched_clock():
  663. */
  664. unsigned long long cpu_clock(int cpu)
  665. {
  666. unsigned long long prev_cpu_time, time, delta_time;
  667. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  668. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  669. delta_time = time-prev_cpu_time;
  670. if (unlikely(delta_time > time_sync_thresh))
  671. time = __sync_cpu_clock(time, cpu);
  672. return time;
  673. }
  674. EXPORT_SYMBOL_GPL(cpu_clock);
  675. #ifndef prepare_arch_switch
  676. # define prepare_arch_switch(next) do { } while (0)
  677. #endif
  678. #ifndef finish_arch_switch
  679. # define finish_arch_switch(prev) do { } while (0)
  680. #endif
  681. static inline int task_current(struct rq *rq, struct task_struct *p)
  682. {
  683. return rq->curr == p;
  684. }
  685. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  686. static inline int task_running(struct rq *rq, struct task_struct *p)
  687. {
  688. return task_current(rq, p);
  689. }
  690. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  691. {
  692. }
  693. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  694. {
  695. #ifdef CONFIG_DEBUG_SPINLOCK
  696. /* this is a valid case when another task releases the spinlock */
  697. rq->lock.owner = current;
  698. #endif
  699. /*
  700. * If we are tracking spinlock dependencies then we have to
  701. * fix up the runqueue lock - which gets 'carried over' from
  702. * prev into current:
  703. */
  704. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  705. spin_unlock_irq(&rq->lock);
  706. }
  707. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  708. static inline int task_running(struct rq *rq, struct task_struct *p)
  709. {
  710. #ifdef CONFIG_SMP
  711. return p->oncpu;
  712. #else
  713. return task_current(rq, p);
  714. #endif
  715. }
  716. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  717. {
  718. #ifdef CONFIG_SMP
  719. /*
  720. * We can optimise this out completely for !SMP, because the
  721. * SMP rebalancing from interrupt is the only thing that cares
  722. * here.
  723. */
  724. next->oncpu = 1;
  725. #endif
  726. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  727. spin_unlock_irq(&rq->lock);
  728. #else
  729. spin_unlock(&rq->lock);
  730. #endif
  731. }
  732. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  733. {
  734. #ifdef CONFIG_SMP
  735. /*
  736. * After ->oncpu is cleared, the task can be moved to a different CPU.
  737. * We must ensure this doesn't happen until the switch is completely
  738. * finished.
  739. */
  740. smp_wmb();
  741. prev->oncpu = 0;
  742. #endif
  743. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. local_irq_enable();
  745. #endif
  746. }
  747. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  748. /*
  749. * __task_rq_lock - lock the runqueue a given task resides on.
  750. * Must be called interrupts disabled.
  751. */
  752. static inline struct rq *__task_rq_lock(struct task_struct *p)
  753. __acquires(rq->lock)
  754. {
  755. for (;;) {
  756. struct rq *rq = task_rq(p);
  757. spin_lock(&rq->lock);
  758. if (likely(rq == task_rq(p)))
  759. return rq;
  760. spin_unlock(&rq->lock);
  761. }
  762. }
  763. /*
  764. * task_rq_lock - lock the runqueue a given task resides on and disable
  765. * interrupts. Note the ordering: we can safely lookup the task_rq without
  766. * explicitly disabling preemption.
  767. */
  768. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  769. __acquires(rq->lock)
  770. {
  771. struct rq *rq;
  772. for (;;) {
  773. local_irq_save(*flags);
  774. rq = task_rq(p);
  775. spin_lock(&rq->lock);
  776. if (likely(rq == task_rq(p)))
  777. return rq;
  778. spin_unlock_irqrestore(&rq->lock, *flags);
  779. }
  780. }
  781. static void __task_rq_unlock(struct rq *rq)
  782. __releases(rq->lock)
  783. {
  784. spin_unlock(&rq->lock);
  785. }
  786. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  787. __releases(rq->lock)
  788. {
  789. spin_unlock_irqrestore(&rq->lock, *flags);
  790. }
  791. /*
  792. * this_rq_lock - lock this runqueue and disable interrupts.
  793. */
  794. static struct rq *this_rq_lock(void)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. local_irq_disable();
  799. rq = this_rq();
  800. spin_lock(&rq->lock);
  801. return rq;
  802. }
  803. /*
  804. * We are going deep-idle (irqs are disabled):
  805. */
  806. void sched_clock_idle_sleep_event(void)
  807. {
  808. struct rq *rq = cpu_rq(smp_processor_id());
  809. spin_lock(&rq->lock);
  810. __update_rq_clock(rq);
  811. spin_unlock(&rq->lock);
  812. rq->clock_deep_idle_events++;
  813. }
  814. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  815. /*
  816. * We just idled delta nanoseconds (called with irqs disabled):
  817. */
  818. void sched_clock_idle_wakeup_event(u64 delta_ns)
  819. {
  820. struct rq *rq = cpu_rq(smp_processor_id());
  821. u64 now = sched_clock();
  822. rq->idle_clock += delta_ns;
  823. /*
  824. * Override the previous timestamp and ignore all
  825. * sched_clock() deltas that occured while we idled,
  826. * and use the PM-provided delta_ns to advance the
  827. * rq clock:
  828. */
  829. spin_lock(&rq->lock);
  830. rq->prev_clock_raw = now;
  831. rq->clock += delta_ns;
  832. spin_unlock(&rq->lock);
  833. touch_softlockup_watchdog();
  834. }
  835. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  836. static void __resched_task(struct task_struct *p, int tif_bit);
  837. static inline void resched_task(struct task_struct *p)
  838. {
  839. __resched_task(p, TIF_NEED_RESCHED);
  840. }
  841. #ifdef CONFIG_SCHED_HRTICK
  842. /*
  843. * Use HR-timers to deliver accurate preemption points.
  844. *
  845. * Its all a bit involved since we cannot program an hrt while holding the
  846. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  847. * reschedule event.
  848. *
  849. * When we get rescheduled we reprogram the hrtick_timer outside of the
  850. * rq->lock.
  851. */
  852. static inline void resched_hrt(struct task_struct *p)
  853. {
  854. __resched_task(p, TIF_HRTICK_RESCHED);
  855. }
  856. static inline void resched_rq(struct rq *rq)
  857. {
  858. unsigned long flags;
  859. spin_lock_irqsave(&rq->lock, flags);
  860. resched_task(rq->curr);
  861. spin_unlock_irqrestore(&rq->lock, flags);
  862. }
  863. enum {
  864. HRTICK_SET, /* re-programm hrtick_timer */
  865. HRTICK_RESET, /* not a new slice */
  866. };
  867. /*
  868. * Use hrtick when:
  869. * - enabled by features
  870. * - hrtimer is actually high res
  871. */
  872. static inline int hrtick_enabled(struct rq *rq)
  873. {
  874. if (!sched_feat(HRTICK))
  875. return 0;
  876. return hrtimer_is_hres_active(&rq->hrtick_timer);
  877. }
  878. /*
  879. * Called to set the hrtick timer state.
  880. *
  881. * called with rq->lock held and irqs disabled
  882. */
  883. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  884. {
  885. assert_spin_locked(&rq->lock);
  886. /*
  887. * preempt at: now + delay
  888. */
  889. rq->hrtick_expire =
  890. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  891. /*
  892. * indicate we need to program the timer
  893. */
  894. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  895. if (reset)
  896. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  897. /*
  898. * New slices are called from the schedule path and don't need a
  899. * forced reschedule.
  900. */
  901. if (reset)
  902. resched_hrt(rq->curr);
  903. }
  904. static void hrtick_clear(struct rq *rq)
  905. {
  906. if (hrtimer_active(&rq->hrtick_timer))
  907. hrtimer_cancel(&rq->hrtick_timer);
  908. }
  909. /*
  910. * Update the timer from the possible pending state.
  911. */
  912. static void hrtick_set(struct rq *rq)
  913. {
  914. ktime_t time;
  915. int set, reset;
  916. unsigned long flags;
  917. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  918. spin_lock_irqsave(&rq->lock, flags);
  919. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  920. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  921. time = rq->hrtick_expire;
  922. clear_thread_flag(TIF_HRTICK_RESCHED);
  923. spin_unlock_irqrestore(&rq->lock, flags);
  924. if (set) {
  925. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  926. if (reset && !hrtimer_active(&rq->hrtick_timer))
  927. resched_rq(rq);
  928. } else
  929. hrtick_clear(rq);
  930. }
  931. /*
  932. * High-resolution timer tick.
  933. * Runs from hardirq context with interrupts disabled.
  934. */
  935. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  936. {
  937. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  938. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  939. spin_lock(&rq->lock);
  940. __update_rq_clock(rq);
  941. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  942. spin_unlock(&rq->lock);
  943. return HRTIMER_NORESTART;
  944. }
  945. static inline void init_rq_hrtick(struct rq *rq)
  946. {
  947. rq->hrtick_flags = 0;
  948. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  949. rq->hrtick_timer.function = hrtick;
  950. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  951. }
  952. void hrtick_resched(void)
  953. {
  954. struct rq *rq;
  955. unsigned long flags;
  956. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  957. return;
  958. local_irq_save(flags);
  959. rq = cpu_rq(smp_processor_id());
  960. hrtick_set(rq);
  961. local_irq_restore(flags);
  962. }
  963. #else
  964. static inline void hrtick_clear(struct rq *rq)
  965. {
  966. }
  967. static inline void hrtick_set(struct rq *rq)
  968. {
  969. }
  970. static inline void init_rq_hrtick(struct rq *rq)
  971. {
  972. }
  973. void hrtick_resched(void)
  974. {
  975. }
  976. #endif
  977. /*
  978. * resched_task - mark a task 'to be rescheduled now'.
  979. *
  980. * On UP this means the setting of the need_resched flag, on SMP it
  981. * might also involve a cross-CPU call to trigger the scheduler on
  982. * the target CPU.
  983. */
  984. #ifdef CONFIG_SMP
  985. #ifndef tsk_is_polling
  986. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  987. #endif
  988. static void __resched_task(struct task_struct *p, int tif_bit)
  989. {
  990. int cpu;
  991. assert_spin_locked(&task_rq(p)->lock);
  992. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  993. return;
  994. set_tsk_thread_flag(p, tif_bit);
  995. cpu = task_cpu(p);
  996. if (cpu == smp_processor_id())
  997. return;
  998. /* NEED_RESCHED must be visible before we test polling */
  999. smp_mb();
  1000. if (!tsk_is_polling(p))
  1001. smp_send_reschedule(cpu);
  1002. }
  1003. static void resched_cpu(int cpu)
  1004. {
  1005. struct rq *rq = cpu_rq(cpu);
  1006. unsigned long flags;
  1007. if (!spin_trylock_irqsave(&rq->lock, flags))
  1008. return;
  1009. resched_task(cpu_curr(cpu));
  1010. spin_unlock_irqrestore(&rq->lock, flags);
  1011. }
  1012. #ifdef CONFIG_NO_HZ
  1013. /*
  1014. * When add_timer_on() enqueues a timer into the timer wheel of an
  1015. * idle CPU then this timer might expire before the next timer event
  1016. * which is scheduled to wake up that CPU. In case of a completely
  1017. * idle system the next event might even be infinite time into the
  1018. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1019. * leaves the inner idle loop so the newly added timer is taken into
  1020. * account when the CPU goes back to idle and evaluates the timer
  1021. * wheel for the next timer event.
  1022. */
  1023. void wake_up_idle_cpu(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. if (cpu == smp_processor_id())
  1027. return;
  1028. /*
  1029. * This is safe, as this function is called with the timer
  1030. * wheel base lock of (cpu) held. When the CPU is on the way
  1031. * to idle and has not yet set rq->curr to idle then it will
  1032. * be serialized on the timer wheel base lock and take the new
  1033. * timer into account automatically.
  1034. */
  1035. if (rq->curr != rq->idle)
  1036. return;
  1037. /*
  1038. * We can set TIF_RESCHED on the idle task of the other CPU
  1039. * lockless. The worst case is that the other CPU runs the
  1040. * idle task through an additional NOOP schedule()
  1041. */
  1042. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1043. /* NEED_RESCHED must be visible before we test polling */
  1044. smp_mb();
  1045. if (!tsk_is_polling(rq->idle))
  1046. smp_send_reschedule(cpu);
  1047. }
  1048. #endif
  1049. #else
  1050. static void __resched_task(struct task_struct *p, int tif_bit)
  1051. {
  1052. assert_spin_locked(&task_rq(p)->lock);
  1053. set_tsk_thread_flag(p, tif_bit);
  1054. }
  1055. #endif
  1056. #if BITS_PER_LONG == 32
  1057. # define WMULT_CONST (~0UL)
  1058. #else
  1059. # define WMULT_CONST (1UL << 32)
  1060. #endif
  1061. #define WMULT_SHIFT 32
  1062. /*
  1063. * Shift right and round:
  1064. */
  1065. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1066. static unsigned long
  1067. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1068. struct load_weight *lw)
  1069. {
  1070. u64 tmp;
  1071. if (unlikely(!lw->inv_weight))
  1072. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1073. tmp = (u64)delta_exec * weight;
  1074. /*
  1075. * Check whether we'd overflow the 64-bit multiplication:
  1076. */
  1077. if (unlikely(tmp > WMULT_CONST))
  1078. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1079. WMULT_SHIFT/2);
  1080. else
  1081. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1082. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1083. }
  1084. static inline unsigned long
  1085. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1086. {
  1087. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1088. }
  1089. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1090. {
  1091. lw->weight += inc;
  1092. lw->inv_weight = 0;
  1093. }
  1094. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1095. {
  1096. lw->weight -= dec;
  1097. lw->inv_weight = 0;
  1098. }
  1099. /*
  1100. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1101. * of tasks with abnormal "nice" values across CPUs the contribution that
  1102. * each task makes to its run queue's load is weighted according to its
  1103. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1104. * scaled version of the new time slice allocation that they receive on time
  1105. * slice expiry etc.
  1106. */
  1107. #define WEIGHT_IDLEPRIO 2
  1108. #define WMULT_IDLEPRIO (1 << 31)
  1109. /*
  1110. * Nice levels are multiplicative, with a gentle 10% change for every
  1111. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1112. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1113. * that remained on nice 0.
  1114. *
  1115. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1116. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1117. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1118. * If a task goes up by ~10% and another task goes down by ~10% then
  1119. * the relative distance between them is ~25%.)
  1120. */
  1121. static const int prio_to_weight[40] = {
  1122. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1123. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1124. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1125. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1126. /* 0 */ 1024, 820, 655, 526, 423,
  1127. /* 5 */ 335, 272, 215, 172, 137,
  1128. /* 10 */ 110, 87, 70, 56, 45,
  1129. /* 15 */ 36, 29, 23, 18, 15,
  1130. };
  1131. /*
  1132. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1133. *
  1134. * In cases where the weight does not change often, we can use the
  1135. * precalculated inverse to speed up arithmetics by turning divisions
  1136. * into multiplications:
  1137. */
  1138. static const u32 prio_to_wmult[40] = {
  1139. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1140. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1141. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1142. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1143. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1144. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1145. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1146. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1147. };
  1148. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1149. /*
  1150. * runqueue iterator, to support SMP load-balancing between different
  1151. * scheduling classes, without having to expose their internal data
  1152. * structures to the load-balancing proper:
  1153. */
  1154. struct rq_iterator {
  1155. void *arg;
  1156. struct task_struct *(*start)(void *);
  1157. struct task_struct *(*next)(void *);
  1158. };
  1159. #ifdef CONFIG_SMP
  1160. static unsigned long
  1161. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1162. unsigned long max_load_move, struct sched_domain *sd,
  1163. enum cpu_idle_type idle, int *all_pinned,
  1164. int *this_best_prio, struct rq_iterator *iterator);
  1165. static int
  1166. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1167. struct sched_domain *sd, enum cpu_idle_type idle,
  1168. struct rq_iterator *iterator);
  1169. #endif
  1170. #ifdef CONFIG_CGROUP_CPUACCT
  1171. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1172. #else
  1173. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1174. #endif
  1175. #ifdef CONFIG_SMP
  1176. static unsigned long source_load(int cpu, int type);
  1177. static unsigned long target_load(int cpu, int type);
  1178. static unsigned long cpu_avg_load_per_task(int cpu);
  1179. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1180. #endif /* CONFIG_SMP */
  1181. #include "sched_stats.h"
  1182. #include "sched_idletask.c"
  1183. #include "sched_fair.c"
  1184. #include "sched_rt.c"
  1185. #ifdef CONFIG_SCHED_DEBUG
  1186. # include "sched_debug.c"
  1187. #endif
  1188. #define sched_class_highest (&rt_sched_class)
  1189. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1190. {
  1191. update_load_add(&rq->load, p->se.load.weight);
  1192. }
  1193. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1194. {
  1195. update_load_sub(&rq->load, p->se.load.weight);
  1196. }
  1197. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1198. {
  1199. rq->nr_running++;
  1200. inc_load(rq, p);
  1201. }
  1202. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1203. {
  1204. rq->nr_running--;
  1205. dec_load(rq, p);
  1206. }
  1207. static void set_load_weight(struct task_struct *p)
  1208. {
  1209. if (task_has_rt_policy(p)) {
  1210. p->se.load.weight = prio_to_weight[0] * 2;
  1211. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1212. return;
  1213. }
  1214. /*
  1215. * SCHED_IDLE tasks get minimal weight:
  1216. */
  1217. if (p->policy == SCHED_IDLE) {
  1218. p->se.load.weight = WEIGHT_IDLEPRIO;
  1219. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1220. return;
  1221. }
  1222. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1223. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1224. }
  1225. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1226. {
  1227. sched_info_queued(p);
  1228. p->sched_class->enqueue_task(rq, p, wakeup);
  1229. p->se.on_rq = 1;
  1230. }
  1231. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1232. {
  1233. p->sched_class->dequeue_task(rq, p, sleep);
  1234. p->se.on_rq = 0;
  1235. }
  1236. /*
  1237. * __normal_prio - return the priority that is based on the static prio
  1238. */
  1239. static inline int __normal_prio(struct task_struct *p)
  1240. {
  1241. return p->static_prio;
  1242. }
  1243. /*
  1244. * Calculate the expected normal priority: i.e. priority
  1245. * without taking RT-inheritance into account. Might be
  1246. * boosted by interactivity modifiers. Changes upon fork,
  1247. * setprio syscalls, and whenever the interactivity
  1248. * estimator recalculates.
  1249. */
  1250. static inline int normal_prio(struct task_struct *p)
  1251. {
  1252. int prio;
  1253. if (task_has_rt_policy(p))
  1254. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1255. else
  1256. prio = __normal_prio(p);
  1257. return prio;
  1258. }
  1259. /*
  1260. * Calculate the current priority, i.e. the priority
  1261. * taken into account by the scheduler. This value might
  1262. * be boosted by RT tasks, or might be boosted by
  1263. * interactivity modifiers. Will be RT if the task got
  1264. * RT-boosted. If not then it returns p->normal_prio.
  1265. */
  1266. static int effective_prio(struct task_struct *p)
  1267. {
  1268. p->normal_prio = normal_prio(p);
  1269. /*
  1270. * If we are RT tasks or we were boosted to RT priority,
  1271. * keep the priority unchanged. Otherwise, update priority
  1272. * to the normal priority:
  1273. */
  1274. if (!rt_prio(p->prio))
  1275. return p->normal_prio;
  1276. return p->prio;
  1277. }
  1278. /*
  1279. * activate_task - move a task to the runqueue.
  1280. */
  1281. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1282. {
  1283. if (task_contributes_to_load(p))
  1284. rq->nr_uninterruptible--;
  1285. enqueue_task(rq, p, wakeup);
  1286. inc_nr_running(p, rq);
  1287. }
  1288. /*
  1289. * deactivate_task - remove a task from the runqueue.
  1290. */
  1291. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1292. {
  1293. if (task_contributes_to_load(p))
  1294. rq->nr_uninterruptible++;
  1295. dequeue_task(rq, p, sleep);
  1296. dec_nr_running(p, rq);
  1297. }
  1298. /**
  1299. * task_curr - is this task currently executing on a CPU?
  1300. * @p: the task in question.
  1301. */
  1302. inline int task_curr(const struct task_struct *p)
  1303. {
  1304. return cpu_curr(task_cpu(p)) == p;
  1305. }
  1306. /* Used instead of source_load when we know the type == 0 */
  1307. unsigned long weighted_cpuload(const int cpu)
  1308. {
  1309. return cpu_rq(cpu)->load.weight;
  1310. }
  1311. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1312. {
  1313. set_task_rq(p, cpu);
  1314. #ifdef CONFIG_SMP
  1315. /*
  1316. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1317. * successfuly executed on another CPU. We must ensure that updates of
  1318. * per-task data have been completed by this moment.
  1319. */
  1320. smp_wmb();
  1321. task_thread_info(p)->cpu = cpu;
  1322. #endif
  1323. }
  1324. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1325. const struct sched_class *prev_class,
  1326. int oldprio, int running)
  1327. {
  1328. if (prev_class != p->sched_class) {
  1329. if (prev_class->switched_from)
  1330. prev_class->switched_from(rq, p, running);
  1331. p->sched_class->switched_to(rq, p, running);
  1332. } else
  1333. p->sched_class->prio_changed(rq, p, oldprio, running);
  1334. }
  1335. #ifdef CONFIG_SMP
  1336. /*
  1337. * Is this task likely cache-hot:
  1338. */
  1339. static int
  1340. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1341. {
  1342. s64 delta;
  1343. /*
  1344. * Buddy candidates are cache hot:
  1345. */
  1346. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1347. return 1;
  1348. if (p->sched_class != &fair_sched_class)
  1349. return 0;
  1350. if (sysctl_sched_migration_cost == -1)
  1351. return 1;
  1352. if (sysctl_sched_migration_cost == 0)
  1353. return 0;
  1354. delta = now - p->se.exec_start;
  1355. return delta < (s64)sysctl_sched_migration_cost;
  1356. }
  1357. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1358. {
  1359. int old_cpu = task_cpu(p);
  1360. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1361. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1362. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1363. u64 clock_offset;
  1364. clock_offset = old_rq->clock - new_rq->clock;
  1365. #ifdef CONFIG_SCHEDSTATS
  1366. if (p->se.wait_start)
  1367. p->se.wait_start -= clock_offset;
  1368. if (p->se.sleep_start)
  1369. p->se.sleep_start -= clock_offset;
  1370. if (p->se.block_start)
  1371. p->se.block_start -= clock_offset;
  1372. if (old_cpu != new_cpu) {
  1373. schedstat_inc(p, se.nr_migrations);
  1374. if (task_hot(p, old_rq->clock, NULL))
  1375. schedstat_inc(p, se.nr_forced2_migrations);
  1376. }
  1377. #endif
  1378. p->se.vruntime -= old_cfsrq->min_vruntime -
  1379. new_cfsrq->min_vruntime;
  1380. __set_task_cpu(p, new_cpu);
  1381. }
  1382. struct migration_req {
  1383. struct list_head list;
  1384. struct task_struct *task;
  1385. int dest_cpu;
  1386. struct completion done;
  1387. };
  1388. /*
  1389. * The task's runqueue lock must be held.
  1390. * Returns true if you have to wait for migration thread.
  1391. */
  1392. static int
  1393. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1394. {
  1395. struct rq *rq = task_rq(p);
  1396. /*
  1397. * If the task is not on a runqueue (and not running), then
  1398. * it is sufficient to simply update the task's cpu field.
  1399. */
  1400. if (!p->se.on_rq && !task_running(rq, p)) {
  1401. set_task_cpu(p, dest_cpu);
  1402. return 0;
  1403. }
  1404. init_completion(&req->done);
  1405. req->task = p;
  1406. req->dest_cpu = dest_cpu;
  1407. list_add(&req->list, &rq->migration_queue);
  1408. return 1;
  1409. }
  1410. /*
  1411. * wait_task_inactive - wait for a thread to unschedule.
  1412. *
  1413. * The caller must ensure that the task *will* unschedule sometime soon,
  1414. * else this function might spin for a *long* time. This function can't
  1415. * be called with interrupts off, or it may introduce deadlock with
  1416. * smp_call_function() if an IPI is sent by the same process we are
  1417. * waiting to become inactive.
  1418. */
  1419. void wait_task_inactive(struct task_struct *p)
  1420. {
  1421. unsigned long flags;
  1422. int running, on_rq;
  1423. struct rq *rq;
  1424. for (;;) {
  1425. /*
  1426. * We do the initial early heuristics without holding
  1427. * any task-queue locks at all. We'll only try to get
  1428. * the runqueue lock when things look like they will
  1429. * work out!
  1430. */
  1431. rq = task_rq(p);
  1432. /*
  1433. * If the task is actively running on another CPU
  1434. * still, just relax and busy-wait without holding
  1435. * any locks.
  1436. *
  1437. * NOTE! Since we don't hold any locks, it's not
  1438. * even sure that "rq" stays as the right runqueue!
  1439. * But we don't care, since "task_running()" will
  1440. * return false if the runqueue has changed and p
  1441. * is actually now running somewhere else!
  1442. */
  1443. while (task_running(rq, p))
  1444. cpu_relax();
  1445. /*
  1446. * Ok, time to look more closely! We need the rq
  1447. * lock now, to be *sure*. If we're wrong, we'll
  1448. * just go back and repeat.
  1449. */
  1450. rq = task_rq_lock(p, &flags);
  1451. running = task_running(rq, p);
  1452. on_rq = p->se.on_rq;
  1453. task_rq_unlock(rq, &flags);
  1454. /*
  1455. * Was it really running after all now that we
  1456. * checked with the proper locks actually held?
  1457. *
  1458. * Oops. Go back and try again..
  1459. */
  1460. if (unlikely(running)) {
  1461. cpu_relax();
  1462. continue;
  1463. }
  1464. /*
  1465. * It's not enough that it's not actively running,
  1466. * it must be off the runqueue _entirely_, and not
  1467. * preempted!
  1468. *
  1469. * So if it wa still runnable (but just not actively
  1470. * running right now), it's preempted, and we should
  1471. * yield - it could be a while.
  1472. */
  1473. if (unlikely(on_rq)) {
  1474. schedule_timeout_uninterruptible(1);
  1475. continue;
  1476. }
  1477. /*
  1478. * Ahh, all good. It wasn't running, and it wasn't
  1479. * runnable, which means that it will never become
  1480. * running in the future either. We're all done!
  1481. */
  1482. break;
  1483. }
  1484. }
  1485. /***
  1486. * kick_process - kick a running thread to enter/exit the kernel
  1487. * @p: the to-be-kicked thread
  1488. *
  1489. * Cause a process which is running on another CPU to enter
  1490. * kernel-mode, without any delay. (to get signals handled.)
  1491. *
  1492. * NOTE: this function doesnt have to take the runqueue lock,
  1493. * because all it wants to ensure is that the remote task enters
  1494. * the kernel. If the IPI races and the task has been migrated
  1495. * to another CPU then no harm is done and the purpose has been
  1496. * achieved as well.
  1497. */
  1498. void kick_process(struct task_struct *p)
  1499. {
  1500. int cpu;
  1501. preempt_disable();
  1502. cpu = task_cpu(p);
  1503. if ((cpu != smp_processor_id()) && task_curr(p))
  1504. smp_send_reschedule(cpu);
  1505. preempt_enable();
  1506. }
  1507. /*
  1508. * Return a low guess at the load of a migration-source cpu weighted
  1509. * according to the scheduling class and "nice" value.
  1510. *
  1511. * We want to under-estimate the load of migration sources, to
  1512. * balance conservatively.
  1513. */
  1514. static unsigned long source_load(int cpu, int type)
  1515. {
  1516. struct rq *rq = cpu_rq(cpu);
  1517. unsigned long total = weighted_cpuload(cpu);
  1518. if (type == 0)
  1519. return total;
  1520. return min(rq->cpu_load[type-1], total);
  1521. }
  1522. /*
  1523. * Return a high guess at the load of a migration-target cpu weighted
  1524. * according to the scheduling class and "nice" value.
  1525. */
  1526. static unsigned long target_load(int cpu, int type)
  1527. {
  1528. struct rq *rq = cpu_rq(cpu);
  1529. unsigned long total = weighted_cpuload(cpu);
  1530. if (type == 0)
  1531. return total;
  1532. return max(rq->cpu_load[type-1], total);
  1533. }
  1534. /*
  1535. * Return the average load per task on the cpu's run queue
  1536. */
  1537. static unsigned long cpu_avg_load_per_task(int cpu)
  1538. {
  1539. struct rq *rq = cpu_rq(cpu);
  1540. unsigned long total = weighted_cpuload(cpu);
  1541. unsigned long n = rq->nr_running;
  1542. return n ? total / n : SCHED_LOAD_SCALE;
  1543. }
  1544. /*
  1545. * find_idlest_group finds and returns the least busy CPU group within the
  1546. * domain.
  1547. */
  1548. static struct sched_group *
  1549. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1550. {
  1551. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1552. unsigned long min_load = ULONG_MAX, this_load = 0;
  1553. int load_idx = sd->forkexec_idx;
  1554. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1555. do {
  1556. unsigned long load, avg_load;
  1557. int local_group;
  1558. int i;
  1559. /* Skip over this group if it has no CPUs allowed */
  1560. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1561. continue;
  1562. local_group = cpu_isset(this_cpu, group->cpumask);
  1563. /* Tally up the load of all CPUs in the group */
  1564. avg_load = 0;
  1565. for_each_cpu_mask(i, group->cpumask) {
  1566. /* Bias balancing toward cpus of our domain */
  1567. if (local_group)
  1568. load = source_load(i, load_idx);
  1569. else
  1570. load = target_load(i, load_idx);
  1571. avg_load += load;
  1572. }
  1573. /* Adjust by relative CPU power of the group */
  1574. avg_load = sg_div_cpu_power(group,
  1575. avg_load * SCHED_LOAD_SCALE);
  1576. if (local_group) {
  1577. this_load = avg_load;
  1578. this = group;
  1579. } else if (avg_load < min_load) {
  1580. min_load = avg_load;
  1581. idlest = group;
  1582. }
  1583. } while (group = group->next, group != sd->groups);
  1584. if (!idlest || 100*this_load < imbalance*min_load)
  1585. return NULL;
  1586. return idlest;
  1587. }
  1588. /*
  1589. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1590. */
  1591. static int
  1592. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1593. cpumask_t *tmp)
  1594. {
  1595. unsigned long load, min_load = ULONG_MAX;
  1596. int idlest = -1;
  1597. int i;
  1598. /* Traverse only the allowed CPUs */
  1599. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1600. for_each_cpu_mask(i, *tmp) {
  1601. load = weighted_cpuload(i);
  1602. if (load < min_load || (load == min_load && i == this_cpu)) {
  1603. min_load = load;
  1604. idlest = i;
  1605. }
  1606. }
  1607. return idlest;
  1608. }
  1609. /*
  1610. * sched_balance_self: balance the current task (running on cpu) in domains
  1611. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1612. * SD_BALANCE_EXEC.
  1613. *
  1614. * Balance, ie. select the least loaded group.
  1615. *
  1616. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1617. *
  1618. * preempt must be disabled.
  1619. */
  1620. static int sched_balance_self(int cpu, int flag)
  1621. {
  1622. struct task_struct *t = current;
  1623. struct sched_domain *tmp, *sd = NULL;
  1624. for_each_domain(cpu, tmp) {
  1625. /*
  1626. * If power savings logic is enabled for a domain, stop there.
  1627. */
  1628. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1629. break;
  1630. if (tmp->flags & flag)
  1631. sd = tmp;
  1632. }
  1633. while (sd) {
  1634. cpumask_t span, tmpmask;
  1635. struct sched_group *group;
  1636. int new_cpu, weight;
  1637. if (!(sd->flags & flag)) {
  1638. sd = sd->child;
  1639. continue;
  1640. }
  1641. span = sd->span;
  1642. group = find_idlest_group(sd, t, cpu);
  1643. if (!group) {
  1644. sd = sd->child;
  1645. continue;
  1646. }
  1647. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1648. if (new_cpu == -1 || new_cpu == cpu) {
  1649. /* Now try balancing at a lower domain level of cpu */
  1650. sd = sd->child;
  1651. continue;
  1652. }
  1653. /* Now try balancing at a lower domain level of new_cpu */
  1654. cpu = new_cpu;
  1655. sd = NULL;
  1656. weight = cpus_weight(span);
  1657. for_each_domain(cpu, tmp) {
  1658. if (weight <= cpus_weight(tmp->span))
  1659. break;
  1660. if (tmp->flags & flag)
  1661. sd = tmp;
  1662. }
  1663. /* while loop will break here if sd == NULL */
  1664. }
  1665. return cpu;
  1666. }
  1667. #endif /* CONFIG_SMP */
  1668. /***
  1669. * try_to_wake_up - wake up a thread
  1670. * @p: the to-be-woken-up thread
  1671. * @state: the mask of task states that can be woken
  1672. * @sync: do a synchronous wakeup?
  1673. *
  1674. * Put it on the run-queue if it's not already there. The "current"
  1675. * thread is always on the run-queue (except when the actual
  1676. * re-schedule is in progress), and as such you're allowed to do
  1677. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1678. * runnable without the overhead of this.
  1679. *
  1680. * returns failure only if the task is already active.
  1681. */
  1682. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1683. {
  1684. int cpu, orig_cpu, this_cpu, success = 0;
  1685. unsigned long flags;
  1686. long old_state;
  1687. struct rq *rq;
  1688. if (!sched_feat(SYNC_WAKEUPS))
  1689. sync = 0;
  1690. smp_wmb();
  1691. rq = task_rq_lock(p, &flags);
  1692. old_state = p->state;
  1693. if (!(old_state & state))
  1694. goto out;
  1695. if (p->se.on_rq)
  1696. goto out_running;
  1697. cpu = task_cpu(p);
  1698. orig_cpu = cpu;
  1699. this_cpu = smp_processor_id();
  1700. #ifdef CONFIG_SMP
  1701. if (unlikely(task_running(rq, p)))
  1702. goto out_activate;
  1703. cpu = p->sched_class->select_task_rq(p, sync);
  1704. if (cpu != orig_cpu) {
  1705. set_task_cpu(p, cpu);
  1706. task_rq_unlock(rq, &flags);
  1707. /* might preempt at this point */
  1708. rq = task_rq_lock(p, &flags);
  1709. old_state = p->state;
  1710. if (!(old_state & state))
  1711. goto out;
  1712. if (p->se.on_rq)
  1713. goto out_running;
  1714. this_cpu = smp_processor_id();
  1715. cpu = task_cpu(p);
  1716. }
  1717. #ifdef CONFIG_SCHEDSTATS
  1718. schedstat_inc(rq, ttwu_count);
  1719. if (cpu == this_cpu)
  1720. schedstat_inc(rq, ttwu_local);
  1721. else {
  1722. struct sched_domain *sd;
  1723. for_each_domain(this_cpu, sd) {
  1724. if (cpu_isset(cpu, sd->span)) {
  1725. schedstat_inc(sd, ttwu_wake_remote);
  1726. break;
  1727. }
  1728. }
  1729. }
  1730. #endif
  1731. out_activate:
  1732. #endif /* CONFIG_SMP */
  1733. schedstat_inc(p, se.nr_wakeups);
  1734. if (sync)
  1735. schedstat_inc(p, se.nr_wakeups_sync);
  1736. if (orig_cpu != cpu)
  1737. schedstat_inc(p, se.nr_wakeups_migrate);
  1738. if (cpu == this_cpu)
  1739. schedstat_inc(p, se.nr_wakeups_local);
  1740. else
  1741. schedstat_inc(p, se.nr_wakeups_remote);
  1742. update_rq_clock(rq);
  1743. activate_task(rq, p, 1);
  1744. success = 1;
  1745. out_running:
  1746. check_preempt_curr(rq, p);
  1747. p->state = TASK_RUNNING;
  1748. #ifdef CONFIG_SMP
  1749. if (p->sched_class->task_wake_up)
  1750. p->sched_class->task_wake_up(rq, p);
  1751. #endif
  1752. out:
  1753. task_rq_unlock(rq, &flags);
  1754. return success;
  1755. }
  1756. int wake_up_process(struct task_struct *p)
  1757. {
  1758. return try_to_wake_up(p, TASK_ALL, 0);
  1759. }
  1760. EXPORT_SYMBOL(wake_up_process);
  1761. int wake_up_state(struct task_struct *p, unsigned int state)
  1762. {
  1763. return try_to_wake_up(p, state, 0);
  1764. }
  1765. /*
  1766. * Perform scheduler related setup for a newly forked process p.
  1767. * p is forked by current.
  1768. *
  1769. * __sched_fork() is basic setup used by init_idle() too:
  1770. */
  1771. static void __sched_fork(struct task_struct *p)
  1772. {
  1773. p->se.exec_start = 0;
  1774. p->se.sum_exec_runtime = 0;
  1775. p->se.prev_sum_exec_runtime = 0;
  1776. p->se.last_wakeup = 0;
  1777. p->se.avg_overlap = 0;
  1778. #ifdef CONFIG_SCHEDSTATS
  1779. p->se.wait_start = 0;
  1780. p->se.sum_sleep_runtime = 0;
  1781. p->se.sleep_start = 0;
  1782. p->se.block_start = 0;
  1783. p->se.sleep_max = 0;
  1784. p->se.block_max = 0;
  1785. p->se.exec_max = 0;
  1786. p->se.slice_max = 0;
  1787. p->se.wait_max = 0;
  1788. #endif
  1789. INIT_LIST_HEAD(&p->rt.run_list);
  1790. p->se.on_rq = 0;
  1791. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1792. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1793. #endif
  1794. /*
  1795. * We mark the process as running here, but have not actually
  1796. * inserted it onto the runqueue yet. This guarantees that
  1797. * nobody will actually run it, and a signal or other external
  1798. * event cannot wake it up and insert it on the runqueue either.
  1799. */
  1800. p->state = TASK_RUNNING;
  1801. }
  1802. /*
  1803. * fork()/clone()-time setup:
  1804. */
  1805. void sched_fork(struct task_struct *p, int clone_flags)
  1806. {
  1807. int cpu = get_cpu();
  1808. __sched_fork(p);
  1809. #ifdef CONFIG_SMP
  1810. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1811. #endif
  1812. set_task_cpu(p, cpu);
  1813. /*
  1814. * Make sure we do not leak PI boosting priority to the child:
  1815. */
  1816. p->prio = current->normal_prio;
  1817. if (!rt_prio(p->prio))
  1818. p->sched_class = &fair_sched_class;
  1819. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1820. if (likely(sched_info_on()))
  1821. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1822. #endif
  1823. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1824. p->oncpu = 0;
  1825. #endif
  1826. #ifdef CONFIG_PREEMPT
  1827. /* Want to start with kernel preemption disabled. */
  1828. task_thread_info(p)->preempt_count = 1;
  1829. #endif
  1830. put_cpu();
  1831. }
  1832. /*
  1833. * wake_up_new_task - wake up a newly created task for the first time.
  1834. *
  1835. * This function will do some initial scheduler statistics housekeeping
  1836. * that must be done for every newly created context, then puts the task
  1837. * on the runqueue and wakes it.
  1838. */
  1839. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1840. {
  1841. unsigned long flags;
  1842. struct rq *rq;
  1843. rq = task_rq_lock(p, &flags);
  1844. BUG_ON(p->state != TASK_RUNNING);
  1845. update_rq_clock(rq);
  1846. p->prio = effective_prio(p);
  1847. if (!p->sched_class->task_new || !current->se.on_rq) {
  1848. activate_task(rq, p, 0);
  1849. } else {
  1850. /*
  1851. * Let the scheduling class do new task startup
  1852. * management (if any):
  1853. */
  1854. p->sched_class->task_new(rq, p);
  1855. inc_nr_running(p, rq);
  1856. }
  1857. check_preempt_curr(rq, p);
  1858. #ifdef CONFIG_SMP
  1859. if (p->sched_class->task_wake_up)
  1860. p->sched_class->task_wake_up(rq, p);
  1861. #endif
  1862. task_rq_unlock(rq, &flags);
  1863. }
  1864. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1865. /**
  1866. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1867. * @notifier: notifier struct to register
  1868. */
  1869. void preempt_notifier_register(struct preempt_notifier *notifier)
  1870. {
  1871. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1872. }
  1873. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1874. /**
  1875. * preempt_notifier_unregister - no longer interested in preemption notifications
  1876. * @notifier: notifier struct to unregister
  1877. *
  1878. * This is safe to call from within a preemption notifier.
  1879. */
  1880. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1881. {
  1882. hlist_del(&notifier->link);
  1883. }
  1884. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1885. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1886. {
  1887. struct preempt_notifier *notifier;
  1888. struct hlist_node *node;
  1889. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1890. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1891. }
  1892. static void
  1893. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1894. struct task_struct *next)
  1895. {
  1896. struct preempt_notifier *notifier;
  1897. struct hlist_node *node;
  1898. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1899. notifier->ops->sched_out(notifier, next);
  1900. }
  1901. #else
  1902. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1903. {
  1904. }
  1905. static void
  1906. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1907. struct task_struct *next)
  1908. {
  1909. }
  1910. #endif
  1911. /**
  1912. * prepare_task_switch - prepare to switch tasks
  1913. * @rq: the runqueue preparing to switch
  1914. * @prev: the current task that is being switched out
  1915. * @next: the task we are going to switch to.
  1916. *
  1917. * This is called with the rq lock held and interrupts off. It must
  1918. * be paired with a subsequent finish_task_switch after the context
  1919. * switch.
  1920. *
  1921. * prepare_task_switch sets up locking and calls architecture specific
  1922. * hooks.
  1923. */
  1924. static inline void
  1925. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1926. struct task_struct *next)
  1927. {
  1928. fire_sched_out_preempt_notifiers(prev, next);
  1929. prepare_lock_switch(rq, next);
  1930. prepare_arch_switch(next);
  1931. }
  1932. /**
  1933. * finish_task_switch - clean up after a task-switch
  1934. * @rq: runqueue associated with task-switch
  1935. * @prev: the thread we just switched away from.
  1936. *
  1937. * finish_task_switch must be called after the context switch, paired
  1938. * with a prepare_task_switch call before the context switch.
  1939. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1940. * and do any other architecture-specific cleanup actions.
  1941. *
  1942. * Note that we may have delayed dropping an mm in context_switch(). If
  1943. * so, we finish that here outside of the runqueue lock. (Doing it
  1944. * with the lock held can cause deadlocks; see schedule() for
  1945. * details.)
  1946. */
  1947. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1948. __releases(rq->lock)
  1949. {
  1950. struct mm_struct *mm = rq->prev_mm;
  1951. long prev_state;
  1952. rq->prev_mm = NULL;
  1953. /*
  1954. * A task struct has one reference for the use as "current".
  1955. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1956. * schedule one last time. The schedule call will never return, and
  1957. * the scheduled task must drop that reference.
  1958. * The test for TASK_DEAD must occur while the runqueue locks are
  1959. * still held, otherwise prev could be scheduled on another cpu, die
  1960. * there before we look at prev->state, and then the reference would
  1961. * be dropped twice.
  1962. * Manfred Spraul <manfred@colorfullife.com>
  1963. */
  1964. prev_state = prev->state;
  1965. finish_arch_switch(prev);
  1966. finish_lock_switch(rq, prev);
  1967. #ifdef CONFIG_SMP
  1968. if (current->sched_class->post_schedule)
  1969. current->sched_class->post_schedule(rq);
  1970. #endif
  1971. fire_sched_in_preempt_notifiers(current);
  1972. if (mm)
  1973. mmdrop(mm);
  1974. if (unlikely(prev_state == TASK_DEAD)) {
  1975. /*
  1976. * Remove function-return probe instances associated with this
  1977. * task and put them back on the free list.
  1978. */
  1979. kprobe_flush_task(prev);
  1980. put_task_struct(prev);
  1981. }
  1982. }
  1983. /**
  1984. * schedule_tail - first thing a freshly forked thread must call.
  1985. * @prev: the thread we just switched away from.
  1986. */
  1987. asmlinkage void schedule_tail(struct task_struct *prev)
  1988. __releases(rq->lock)
  1989. {
  1990. struct rq *rq = this_rq();
  1991. finish_task_switch(rq, prev);
  1992. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1993. /* In this case, finish_task_switch does not reenable preemption */
  1994. preempt_enable();
  1995. #endif
  1996. if (current->set_child_tid)
  1997. put_user(task_pid_vnr(current), current->set_child_tid);
  1998. }
  1999. /*
  2000. * context_switch - switch to the new MM and the new
  2001. * thread's register state.
  2002. */
  2003. static inline void
  2004. context_switch(struct rq *rq, struct task_struct *prev,
  2005. struct task_struct *next)
  2006. {
  2007. struct mm_struct *mm, *oldmm;
  2008. prepare_task_switch(rq, prev, next);
  2009. mm = next->mm;
  2010. oldmm = prev->active_mm;
  2011. /*
  2012. * For paravirt, this is coupled with an exit in switch_to to
  2013. * combine the page table reload and the switch backend into
  2014. * one hypercall.
  2015. */
  2016. arch_enter_lazy_cpu_mode();
  2017. if (unlikely(!mm)) {
  2018. next->active_mm = oldmm;
  2019. atomic_inc(&oldmm->mm_count);
  2020. enter_lazy_tlb(oldmm, next);
  2021. } else
  2022. switch_mm(oldmm, mm, next);
  2023. if (unlikely(!prev->mm)) {
  2024. prev->active_mm = NULL;
  2025. rq->prev_mm = oldmm;
  2026. }
  2027. /*
  2028. * Since the runqueue lock will be released by the next
  2029. * task (which is an invalid locking op but in the case
  2030. * of the scheduler it's an obvious special-case), so we
  2031. * do an early lockdep release here:
  2032. */
  2033. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2034. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2035. #endif
  2036. /* Here we just switch the register state and the stack. */
  2037. switch_to(prev, next, prev);
  2038. barrier();
  2039. /*
  2040. * this_rq must be evaluated again because prev may have moved
  2041. * CPUs since it called schedule(), thus the 'rq' on its stack
  2042. * frame will be invalid.
  2043. */
  2044. finish_task_switch(this_rq(), prev);
  2045. }
  2046. /*
  2047. * nr_running, nr_uninterruptible and nr_context_switches:
  2048. *
  2049. * externally visible scheduler statistics: current number of runnable
  2050. * threads, current number of uninterruptible-sleeping threads, total
  2051. * number of context switches performed since bootup.
  2052. */
  2053. unsigned long nr_running(void)
  2054. {
  2055. unsigned long i, sum = 0;
  2056. for_each_online_cpu(i)
  2057. sum += cpu_rq(i)->nr_running;
  2058. return sum;
  2059. }
  2060. unsigned long nr_uninterruptible(void)
  2061. {
  2062. unsigned long i, sum = 0;
  2063. for_each_possible_cpu(i)
  2064. sum += cpu_rq(i)->nr_uninterruptible;
  2065. /*
  2066. * Since we read the counters lockless, it might be slightly
  2067. * inaccurate. Do not allow it to go below zero though:
  2068. */
  2069. if (unlikely((long)sum < 0))
  2070. sum = 0;
  2071. return sum;
  2072. }
  2073. unsigned long long nr_context_switches(void)
  2074. {
  2075. int i;
  2076. unsigned long long sum = 0;
  2077. for_each_possible_cpu(i)
  2078. sum += cpu_rq(i)->nr_switches;
  2079. return sum;
  2080. }
  2081. unsigned long nr_iowait(void)
  2082. {
  2083. unsigned long i, sum = 0;
  2084. for_each_possible_cpu(i)
  2085. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2086. return sum;
  2087. }
  2088. unsigned long nr_active(void)
  2089. {
  2090. unsigned long i, running = 0, uninterruptible = 0;
  2091. for_each_online_cpu(i) {
  2092. running += cpu_rq(i)->nr_running;
  2093. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2094. }
  2095. if (unlikely((long)uninterruptible < 0))
  2096. uninterruptible = 0;
  2097. return running + uninterruptible;
  2098. }
  2099. /*
  2100. * Update rq->cpu_load[] statistics. This function is usually called every
  2101. * scheduler tick (TICK_NSEC).
  2102. */
  2103. static void update_cpu_load(struct rq *this_rq)
  2104. {
  2105. unsigned long this_load = this_rq->load.weight;
  2106. int i, scale;
  2107. this_rq->nr_load_updates++;
  2108. /* Update our load: */
  2109. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2110. unsigned long old_load, new_load;
  2111. /* scale is effectively 1 << i now, and >> i divides by scale */
  2112. old_load = this_rq->cpu_load[i];
  2113. new_load = this_load;
  2114. /*
  2115. * Round up the averaging division if load is increasing. This
  2116. * prevents us from getting stuck on 9 if the load is 10, for
  2117. * example.
  2118. */
  2119. if (new_load > old_load)
  2120. new_load += scale-1;
  2121. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2122. }
  2123. }
  2124. #ifdef CONFIG_SMP
  2125. /*
  2126. * double_rq_lock - safely lock two runqueues
  2127. *
  2128. * Note this does not disable interrupts like task_rq_lock,
  2129. * you need to do so manually before calling.
  2130. */
  2131. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2132. __acquires(rq1->lock)
  2133. __acquires(rq2->lock)
  2134. {
  2135. BUG_ON(!irqs_disabled());
  2136. if (rq1 == rq2) {
  2137. spin_lock(&rq1->lock);
  2138. __acquire(rq2->lock); /* Fake it out ;) */
  2139. } else {
  2140. if (rq1 < rq2) {
  2141. spin_lock(&rq1->lock);
  2142. spin_lock(&rq2->lock);
  2143. } else {
  2144. spin_lock(&rq2->lock);
  2145. spin_lock(&rq1->lock);
  2146. }
  2147. }
  2148. update_rq_clock(rq1);
  2149. update_rq_clock(rq2);
  2150. }
  2151. /*
  2152. * double_rq_unlock - safely unlock two runqueues
  2153. *
  2154. * Note this does not restore interrupts like task_rq_unlock,
  2155. * you need to do so manually after calling.
  2156. */
  2157. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2158. __releases(rq1->lock)
  2159. __releases(rq2->lock)
  2160. {
  2161. spin_unlock(&rq1->lock);
  2162. if (rq1 != rq2)
  2163. spin_unlock(&rq2->lock);
  2164. else
  2165. __release(rq2->lock);
  2166. }
  2167. /*
  2168. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2169. */
  2170. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2171. __releases(this_rq->lock)
  2172. __acquires(busiest->lock)
  2173. __acquires(this_rq->lock)
  2174. {
  2175. int ret = 0;
  2176. if (unlikely(!irqs_disabled())) {
  2177. /* printk() doesn't work good under rq->lock */
  2178. spin_unlock(&this_rq->lock);
  2179. BUG_ON(1);
  2180. }
  2181. if (unlikely(!spin_trylock(&busiest->lock))) {
  2182. if (busiest < this_rq) {
  2183. spin_unlock(&this_rq->lock);
  2184. spin_lock(&busiest->lock);
  2185. spin_lock(&this_rq->lock);
  2186. ret = 1;
  2187. } else
  2188. spin_lock(&busiest->lock);
  2189. }
  2190. return ret;
  2191. }
  2192. /*
  2193. * If dest_cpu is allowed for this process, migrate the task to it.
  2194. * This is accomplished by forcing the cpu_allowed mask to only
  2195. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2196. * the cpu_allowed mask is restored.
  2197. */
  2198. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2199. {
  2200. struct migration_req req;
  2201. unsigned long flags;
  2202. struct rq *rq;
  2203. rq = task_rq_lock(p, &flags);
  2204. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2205. || unlikely(cpu_is_offline(dest_cpu)))
  2206. goto out;
  2207. /* force the process onto the specified CPU */
  2208. if (migrate_task(p, dest_cpu, &req)) {
  2209. /* Need to wait for migration thread (might exit: take ref). */
  2210. struct task_struct *mt = rq->migration_thread;
  2211. get_task_struct(mt);
  2212. task_rq_unlock(rq, &flags);
  2213. wake_up_process(mt);
  2214. put_task_struct(mt);
  2215. wait_for_completion(&req.done);
  2216. return;
  2217. }
  2218. out:
  2219. task_rq_unlock(rq, &flags);
  2220. }
  2221. /*
  2222. * sched_exec - execve() is a valuable balancing opportunity, because at
  2223. * this point the task has the smallest effective memory and cache footprint.
  2224. */
  2225. void sched_exec(void)
  2226. {
  2227. int new_cpu, this_cpu = get_cpu();
  2228. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2229. put_cpu();
  2230. if (new_cpu != this_cpu)
  2231. sched_migrate_task(current, new_cpu);
  2232. }
  2233. /*
  2234. * pull_task - move a task from a remote runqueue to the local runqueue.
  2235. * Both runqueues must be locked.
  2236. */
  2237. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2238. struct rq *this_rq, int this_cpu)
  2239. {
  2240. deactivate_task(src_rq, p, 0);
  2241. set_task_cpu(p, this_cpu);
  2242. activate_task(this_rq, p, 0);
  2243. /*
  2244. * Note that idle threads have a prio of MAX_PRIO, for this test
  2245. * to be always true for them.
  2246. */
  2247. check_preempt_curr(this_rq, p);
  2248. }
  2249. /*
  2250. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2251. */
  2252. static
  2253. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2254. struct sched_domain *sd, enum cpu_idle_type idle,
  2255. int *all_pinned)
  2256. {
  2257. /*
  2258. * We do not migrate tasks that are:
  2259. * 1) running (obviously), or
  2260. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2261. * 3) are cache-hot on their current CPU.
  2262. */
  2263. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2264. schedstat_inc(p, se.nr_failed_migrations_affine);
  2265. return 0;
  2266. }
  2267. *all_pinned = 0;
  2268. if (task_running(rq, p)) {
  2269. schedstat_inc(p, se.nr_failed_migrations_running);
  2270. return 0;
  2271. }
  2272. /*
  2273. * Aggressive migration if:
  2274. * 1) task is cache cold, or
  2275. * 2) too many balance attempts have failed.
  2276. */
  2277. if (!task_hot(p, rq->clock, sd) ||
  2278. sd->nr_balance_failed > sd->cache_nice_tries) {
  2279. #ifdef CONFIG_SCHEDSTATS
  2280. if (task_hot(p, rq->clock, sd)) {
  2281. schedstat_inc(sd, lb_hot_gained[idle]);
  2282. schedstat_inc(p, se.nr_forced_migrations);
  2283. }
  2284. #endif
  2285. return 1;
  2286. }
  2287. if (task_hot(p, rq->clock, sd)) {
  2288. schedstat_inc(p, se.nr_failed_migrations_hot);
  2289. return 0;
  2290. }
  2291. return 1;
  2292. }
  2293. static unsigned long
  2294. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2295. unsigned long max_load_move, struct sched_domain *sd,
  2296. enum cpu_idle_type idle, int *all_pinned,
  2297. int *this_best_prio, struct rq_iterator *iterator)
  2298. {
  2299. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2300. struct task_struct *p;
  2301. long rem_load_move = max_load_move;
  2302. if (max_load_move == 0)
  2303. goto out;
  2304. pinned = 1;
  2305. /*
  2306. * Start the load-balancing iterator:
  2307. */
  2308. p = iterator->start(iterator->arg);
  2309. next:
  2310. if (!p || loops++ > sysctl_sched_nr_migrate)
  2311. goto out;
  2312. /*
  2313. * To help distribute high priority tasks across CPUs we don't
  2314. * skip a task if it will be the highest priority task (i.e. smallest
  2315. * prio value) on its new queue regardless of its load weight
  2316. */
  2317. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2318. SCHED_LOAD_SCALE_FUZZ;
  2319. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2320. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2321. p = iterator->next(iterator->arg);
  2322. goto next;
  2323. }
  2324. pull_task(busiest, p, this_rq, this_cpu);
  2325. pulled++;
  2326. rem_load_move -= p->se.load.weight;
  2327. /*
  2328. * We only want to steal up to the prescribed amount of weighted load.
  2329. */
  2330. if (rem_load_move > 0) {
  2331. if (p->prio < *this_best_prio)
  2332. *this_best_prio = p->prio;
  2333. p = iterator->next(iterator->arg);
  2334. goto next;
  2335. }
  2336. out:
  2337. /*
  2338. * Right now, this is one of only two places pull_task() is called,
  2339. * so we can safely collect pull_task() stats here rather than
  2340. * inside pull_task().
  2341. */
  2342. schedstat_add(sd, lb_gained[idle], pulled);
  2343. if (all_pinned)
  2344. *all_pinned = pinned;
  2345. return max_load_move - rem_load_move;
  2346. }
  2347. /*
  2348. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2349. * this_rq, as part of a balancing operation within domain "sd".
  2350. * Returns 1 if successful and 0 otherwise.
  2351. *
  2352. * Called with both runqueues locked.
  2353. */
  2354. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2355. unsigned long max_load_move,
  2356. struct sched_domain *sd, enum cpu_idle_type idle,
  2357. int *all_pinned)
  2358. {
  2359. const struct sched_class *class = sched_class_highest;
  2360. unsigned long total_load_moved = 0;
  2361. int this_best_prio = this_rq->curr->prio;
  2362. do {
  2363. total_load_moved +=
  2364. class->load_balance(this_rq, this_cpu, busiest,
  2365. max_load_move - total_load_moved,
  2366. sd, idle, all_pinned, &this_best_prio);
  2367. class = class->next;
  2368. } while (class && max_load_move > total_load_moved);
  2369. return total_load_moved > 0;
  2370. }
  2371. static int
  2372. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2373. struct sched_domain *sd, enum cpu_idle_type idle,
  2374. struct rq_iterator *iterator)
  2375. {
  2376. struct task_struct *p = iterator->start(iterator->arg);
  2377. int pinned = 0;
  2378. while (p) {
  2379. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2380. pull_task(busiest, p, this_rq, this_cpu);
  2381. /*
  2382. * Right now, this is only the second place pull_task()
  2383. * is called, so we can safely collect pull_task()
  2384. * stats here rather than inside pull_task().
  2385. */
  2386. schedstat_inc(sd, lb_gained[idle]);
  2387. return 1;
  2388. }
  2389. p = iterator->next(iterator->arg);
  2390. }
  2391. return 0;
  2392. }
  2393. /*
  2394. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2395. * part of active balancing operations within "domain".
  2396. * Returns 1 if successful and 0 otherwise.
  2397. *
  2398. * Called with both runqueues locked.
  2399. */
  2400. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2401. struct sched_domain *sd, enum cpu_idle_type idle)
  2402. {
  2403. const struct sched_class *class;
  2404. for (class = sched_class_highest; class; class = class->next)
  2405. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2406. return 1;
  2407. return 0;
  2408. }
  2409. /*
  2410. * find_busiest_group finds and returns the busiest CPU group within the
  2411. * domain. It calculates and returns the amount of weighted load which
  2412. * should be moved to restore balance via the imbalance parameter.
  2413. */
  2414. static struct sched_group *
  2415. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2416. unsigned long *imbalance, enum cpu_idle_type idle,
  2417. int *sd_idle, const cpumask_t *cpus, int *balance)
  2418. {
  2419. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2420. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2421. unsigned long max_pull;
  2422. unsigned long busiest_load_per_task, busiest_nr_running;
  2423. unsigned long this_load_per_task, this_nr_running;
  2424. int load_idx, group_imb = 0;
  2425. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2426. int power_savings_balance = 1;
  2427. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2428. unsigned long min_nr_running = ULONG_MAX;
  2429. struct sched_group *group_min = NULL, *group_leader = NULL;
  2430. #endif
  2431. max_load = this_load = total_load = total_pwr = 0;
  2432. busiest_load_per_task = busiest_nr_running = 0;
  2433. this_load_per_task = this_nr_running = 0;
  2434. if (idle == CPU_NOT_IDLE)
  2435. load_idx = sd->busy_idx;
  2436. else if (idle == CPU_NEWLY_IDLE)
  2437. load_idx = sd->newidle_idx;
  2438. else
  2439. load_idx = sd->idle_idx;
  2440. do {
  2441. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2442. int local_group;
  2443. int i;
  2444. int __group_imb = 0;
  2445. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2446. unsigned long sum_nr_running, sum_weighted_load;
  2447. local_group = cpu_isset(this_cpu, group->cpumask);
  2448. if (local_group)
  2449. balance_cpu = first_cpu(group->cpumask);
  2450. /* Tally up the load of all CPUs in the group */
  2451. sum_weighted_load = sum_nr_running = avg_load = 0;
  2452. max_cpu_load = 0;
  2453. min_cpu_load = ~0UL;
  2454. for_each_cpu_mask(i, group->cpumask) {
  2455. struct rq *rq;
  2456. if (!cpu_isset(i, *cpus))
  2457. continue;
  2458. rq = cpu_rq(i);
  2459. if (*sd_idle && rq->nr_running)
  2460. *sd_idle = 0;
  2461. /* Bias balancing toward cpus of our domain */
  2462. if (local_group) {
  2463. if (idle_cpu(i) && !first_idle_cpu) {
  2464. first_idle_cpu = 1;
  2465. balance_cpu = i;
  2466. }
  2467. load = target_load(i, load_idx);
  2468. } else {
  2469. load = source_load(i, load_idx);
  2470. if (load > max_cpu_load)
  2471. max_cpu_load = load;
  2472. if (min_cpu_load > load)
  2473. min_cpu_load = load;
  2474. }
  2475. avg_load += load;
  2476. sum_nr_running += rq->nr_running;
  2477. sum_weighted_load += weighted_cpuload(i);
  2478. }
  2479. /*
  2480. * First idle cpu or the first cpu(busiest) in this sched group
  2481. * is eligible for doing load balancing at this and above
  2482. * domains. In the newly idle case, we will allow all the cpu's
  2483. * to do the newly idle load balance.
  2484. */
  2485. if (idle != CPU_NEWLY_IDLE && local_group &&
  2486. balance_cpu != this_cpu && balance) {
  2487. *balance = 0;
  2488. goto ret;
  2489. }
  2490. total_load += avg_load;
  2491. total_pwr += group->__cpu_power;
  2492. /* Adjust by relative CPU power of the group */
  2493. avg_load = sg_div_cpu_power(group,
  2494. avg_load * SCHED_LOAD_SCALE);
  2495. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2496. __group_imb = 1;
  2497. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2498. if (local_group) {
  2499. this_load = avg_load;
  2500. this = group;
  2501. this_nr_running = sum_nr_running;
  2502. this_load_per_task = sum_weighted_load;
  2503. } else if (avg_load > max_load &&
  2504. (sum_nr_running > group_capacity || __group_imb)) {
  2505. max_load = avg_load;
  2506. busiest = group;
  2507. busiest_nr_running = sum_nr_running;
  2508. busiest_load_per_task = sum_weighted_load;
  2509. group_imb = __group_imb;
  2510. }
  2511. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2512. /*
  2513. * Busy processors will not participate in power savings
  2514. * balance.
  2515. */
  2516. if (idle == CPU_NOT_IDLE ||
  2517. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2518. goto group_next;
  2519. /*
  2520. * If the local group is idle or completely loaded
  2521. * no need to do power savings balance at this domain
  2522. */
  2523. if (local_group && (this_nr_running >= group_capacity ||
  2524. !this_nr_running))
  2525. power_savings_balance = 0;
  2526. /*
  2527. * If a group is already running at full capacity or idle,
  2528. * don't include that group in power savings calculations
  2529. */
  2530. if (!power_savings_balance || sum_nr_running >= group_capacity
  2531. || !sum_nr_running)
  2532. goto group_next;
  2533. /*
  2534. * Calculate the group which has the least non-idle load.
  2535. * This is the group from where we need to pick up the load
  2536. * for saving power
  2537. */
  2538. if ((sum_nr_running < min_nr_running) ||
  2539. (sum_nr_running == min_nr_running &&
  2540. first_cpu(group->cpumask) <
  2541. first_cpu(group_min->cpumask))) {
  2542. group_min = group;
  2543. min_nr_running = sum_nr_running;
  2544. min_load_per_task = sum_weighted_load /
  2545. sum_nr_running;
  2546. }
  2547. /*
  2548. * Calculate the group which is almost near its
  2549. * capacity but still has some space to pick up some load
  2550. * from other group and save more power
  2551. */
  2552. if (sum_nr_running <= group_capacity - 1) {
  2553. if (sum_nr_running > leader_nr_running ||
  2554. (sum_nr_running == leader_nr_running &&
  2555. first_cpu(group->cpumask) >
  2556. first_cpu(group_leader->cpumask))) {
  2557. group_leader = group;
  2558. leader_nr_running = sum_nr_running;
  2559. }
  2560. }
  2561. group_next:
  2562. #endif
  2563. group = group->next;
  2564. } while (group != sd->groups);
  2565. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2566. goto out_balanced;
  2567. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2568. if (this_load >= avg_load ||
  2569. 100*max_load <= sd->imbalance_pct*this_load)
  2570. goto out_balanced;
  2571. busiest_load_per_task /= busiest_nr_running;
  2572. if (group_imb)
  2573. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2574. /*
  2575. * We're trying to get all the cpus to the average_load, so we don't
  2576. * want to push ourselves above the average load, nor do we wish to
  2577. * reduce the max loaded cpu below the average load, as either of these
  2578. * actions would just result in more rebalancing later, and ping-pong
  2579. * tasks around. Thus we look for the minimum possible imbalance.
  2580. * Negative imbalances (*we* are more loaded than anyone else) will
  2581. * be counted as no imbalance for these purposes -- we can't fix that
  2582. * by pulling tasks to us. Be careful of negative numbers as they'll
  2583. * appear as very large values with unsigned longs.
  2584. */
  2585. if (max_load <= busiest_load_per_task)
  2586. goto out_balanced;
  2587. /*
  2588. * In the presence of smp nice balancing, certain scenarios can have
  2589. * max load less than avg load(as we skip the groups at or below
  2590. * its cpu_power, while calculating max_load..)
  2591. */
  2592. if (max_load < avg_load) {
  2593. *imbalance = 0;
  2594. goto small_imbalance;
  2595. }
  2596. /* Don't want to pull so many tasks that a group would go idle */
  2597. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2598. /* How much load to actually move to equalise the imbalance */
  2599. *imbalance = min(max_pull * busiest->__cpu_power,
  2600. (avg_load - this_load) * this->__cpu_power)
  2601. / SCHED_LOAD_SCALE;
  2602. /*
  2603. * if *imbalance is less than the average load per runnable task
  2604. * there is no gaurantee that any tasks will be moved so we'll have
  2605. * a think about bumping its value to force at least one task to be
  2606. * moved
  2607. */
  2608. if (*imbalance < busiest_load_per_task) {
  2609. unsigned long tmp, pwr_now, pwr_move;
  2610. unsigned int imbn;
  2611. small_imbalance:
  2612. pwr_move = pwr_now = 0;
  2613. imbn = 2;
  2614. if (this_nr_running) {
  2615. this_load_per_task /= this_nr_running;
  2616. if (busiest_load_per_task > this_load_per_task)
  2617. imbn = 1;
  2618. } else
  2619. this_load_per_task = SCHED_LOAD_SCALE;
  2620. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2621. busiest_load_per_task * imbn) {
  2622. *imbalance = busiest_load_per_task;
  2623. return busiest;
  2624. }
  2625. /*
  2626. * OK, we don't have enough imbalance to justify moving tasks,
  2627. * however we may be able to increase total CPU power used by
  2628. * moving them.
  2629. */
  2630. pwr_now += busiest->__cpu_power *
  2631. min(busiest_load_per_task, max_load);
  2632. pwr_now += this->__cpu_power *
  2633. min(this_load_per_task, this_load);
  2634. pwr_now /= SCHED_LOAD_SCALE;
  2635. /* Amount of load we'd subtract */
  2636. tmp = sg_div_cpu_power(busiest,
  2637. busiest_load_per_task * SCHED_LOAD_SCALE);
  2638. if (max_load > tmp)
  2639. pwr_move += busiest->__cpu_power *
  2640. min(busiest_load_per_task, max_load - tmp);
  2641. /* Amount of load we'd add */
  2642. if (max_load * busiest->__cpu_power <
  2643. busiest_load_per_task * SCHED_LOAD_SCALE)
  2644. tmp = sg_div_cpu_power(this,
  2645. max_load * busiest->__cpu_power);
  2646. else
  2647. tmp = sg_div_cpu_power(this,
  2648. busiest_load_per_task * SCHED_LOAD_SCALE);
  2649. pwr_move += this->__cpu_power *
  2650. min(this_load_per_task, this_load + tmp);
  2651. pwr_move /= SCHED_LOAD_SCALE;
  2652. /* Move if we gain throughput */
  2653. if (pwr_move > pwr_now)
  2654. *imbalance = busiest_load_per_task;
  2655. }
  2656. return busiest;
  2657. out_balanced:
  2658. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2659. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2660. goto ret;
  2661. if (this == group_leader && group_leader != group_min) {
  2662. *imbalance = min_load_per_task;
  2663. return group_min;
  2664. }
  2665. #endif
  2666. ret:
  2667. *imbalance = 0;
  2668. return NULL;
  2669. }
  2670. /*
  2671. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2672. */
  2673. static struct rq *
  2674. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2675. unsigned long imbalance, const cpumask_t *cpus)
  2676. {
  2677. struct rq *busiest = NULL, *rq;
  2678. unsigned long max_load = 0;
  2679. int i;
  2680. for_each_cpu_mask(i, group->cpumask) {
  2681. unsigned long wl;
  2682. if (!cpu_isset(i, *cpus))
  2683. continue;
  2684. rq = cpu_rq(i);
  2685. wl = weighted_cpuload(i);
  2686. if (rq->nr_running == 1 && wl > imbalance)
  2687. continue;
  2688. if (wl > max_load) {
  2689. max_load = wl;
  2690. busiest = rq;
  2691. }
  2692. }
  2693. return busiest;
  2694. }
  2695. /*
  2696. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2697. * so long as it is large enough.
  2698. */
  2699. #define MAX_PINNED_INTERVAL 512
  2700. /*
  2701. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2702. * tasks if there is an imbalance.
  2703. */
  2704. static int load_balance(int this_cpu, struct rq *this_rq,
  2705. struct sched_domain *sd, enum cpu_idle_type idle,
  2706. int *balance, cpumask_t *cpus)
  2707. {
  2708. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2709. struct sched_group *group;
  2710. unsigned long imbalance;
  2711. struct rq *busiest;
  2712. unsigned long flags;
  2713. cpus_setall(*cpus);
  2714. /*
  2715. * When power savings policy is enabled for the parent domain, idle
  2716. * sibling can pick up load irrespective of busy siblings. In this case,
  2717. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2718. * portraying it as CPU_NOT_IDLE.
  2719. */
  2720. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2721. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2722. sd_idle = 1;
  2723. schedstat_inc(sd, lb_count[idle]);
  2724. redo:
  2725. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2726. cpus, balance);
  2727. if (*balance == 0)
  2728. goto out_balanced;
  2729. if (!group) {
  2730. schedstat_inc(sd, lb_nobusyg[idle]);
  2731. goto out_balanced;
  2732. }
  2733. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2734. if (!busiest) {
  2735. schedstat_inc(sd, lb_nobusyq[idle]);
  2736. goto out_balanced;
  2737. }
  2738. BUG_ON(busiest == this_rq);
  2739. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2740. ld_moved = 0;
  2741. if (busiest->nr_running > 1) {
  2742. /*
  2743. * Attempt to move tasks. If find_busiest_group has found
  2744. * an imbalance but busiest->nr_running <= 1, the group is
  2745. * still unbalanced. ld_moved simply stays zero, so it is
  2746. * correctly treated as an imbalance.
  2747. */
  2748. local_irq_save(flags);
  2749. double_rq_lock(this_rq, busiest);
  2750. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2751. imbalance, sd, idle, &all_pinned);
  2752. double_rq_unlock(this_rq, busiest);
  2753. local_irq_restore(flags);
  2754. /*
  2755. * some other cpu did the load balance for us.
  2756. */
  2757. if (ld_moved && this_cpu != smp_processor_id())
  2758. resched_cpu(this_cpu);
  2759. /* All tasks on this runqueue were pinned by CPU affinity */
  2760. if (unlikely(all_pinned)) {
  2761. cpu_clear(cpu_of(busiest), *cpus);
  2762. if (!cpus_empty(*cpus))
  2763. goto redo;
  2764. goto out_balanced;
  2765. }
  2766. }
  2767. if (!ld_moved) {
  2768. schedstat_inc(sd, lb_failed[idle]);
  2769. sd->nr_balance_failed++;
  2770. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2771. spin_lock_irqsave(&busiest->lock, flags);
  2772. /* don't kick the migration_thread, if the curr
  2773. * task on busiest cpu can't be moved to this_cpu
  2774. */
  2775. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2776. spin_unlock_irqrestore(&busiest->lock, flags);
  2777. all_pinned = 1;
  2778. goto out_one_pinned;
  2779. }
  2780. if (!busiest->active_balance) {
  2781. busiest->active_balance = 1;
  2782. busiest->push_cpu = this_cpu;
  2783. active_balance = 1;
  2784. }
  2785. spin_unlock_irqrestore(&busiest->lock, flags);
  2786. if (active_balance)
  2787. wake_up_process(busiest->migration_thread);
  2788. /*
  2789. * We've kicked active balancing, reset the failure
  2790. * counter.
  2791. */
  2792. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2793. }
  2794. } else
  2795. sd->nr_balance_failed = 0;
  2796. if (likely(!active_balance)) {
  2797. /* We were unbalanced, so reset the balancing interval */
  2798. sd->balance_interval = sd->min_interval;
  2799. } else {
  2800. /*
  2801. * If we've begun active balancing, start to back off. This
  2802. * case may not be covered by the all_pinned logic if there
  2803. * is only 1 task on the busy runqueue (because we don't call
  2804. * move_tasks).
  2805. */
  2806. if (sd->balance_interval < sd->max_interval)
  2807. sd->balance_interval *= 2;
  2808. }
  2809. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2810. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2811. return -1;
  2812. return ld_moved;
  2813. out_balanced:
  2814. schedstat_inc(sd, lb_balanced[idle]);
  2815. sd->nr_balance_failed = 0;
  2816. out_one_pinned:
  2817. /* tune up the balancing interval */
  2818. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2819. (sd->balance_interval < sd->max_interval))
  2820. sd->balance_interval *= 2;
  2821. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2822. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2823. return -1;
  2824. return 0;
  2825. }
  2826. /*
  2827. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2828. * tasks if there is an imbalance.
  2829. *
  2830. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2831. * this_rq is locked.
  2832. */
  2833. static int
  2834. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2835. cpumask_t *cpus)
  2836. {
  2837. struct sched_group *group;
  2838. struct rq *busiest = NULL;
  2839. unsigned long imbalance;
  2840. int ld_moved = 0;
  2841. int sd_idle = 0;
  2842. int all_pinned = 0;
  2843. cpus_setall(*cpus);
  2844. /*
  2845. * When power savings policy is enabled for the parent domain, idle
  2846. * sibling can pick up load irrespective of busy siblings. In this case,
  2847. * let the state of idle sibling percolate up as IDLE, instead of
  2848. * portraying it as CPU_NOT_IDLE.
  2849. */
  2850. if (sd->flags & SD_SHARE_CPUPOWER &&
  2851. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2852. sd_idle = 1;
  2853. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2854. redo:
  2855. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2856. &sd_idle, cpus, NULL);
  2857. if (!group) {
  2858. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2859. goto out_balanced;
  2860. }
  2861. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2862. if (!busiest) {
  2863. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2864. goto out_balanced;
  2865. }
  2866. BUG_ON(busiest == this_rq);
  2867. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2868. ld_moved = 0;
  2869. if (busiest->nr_running > 1) {
  2870. /* Attempt to move tasks */
  2871. double_lock_balance(this_rq, busiest);
  2872. /* this_rq->clock is already updated */
  2873. update_rq_clock(busiest);
  2874. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2875. imbalance, sd, CPU_NEWLY_IDLE,
  2876. &all_pinned);
  2877. spin_unlock(&busiest->lock);
  2878. if (unlikely(all_pinned)) {
  2879. cpu_clear(cpu_of(busiest), *cpus);
  2880. if (!cpus_empty(*cpus))
  2881. goto redo;
  2882. }
  2883. }
  2884. if (!ld_moved) {
  2885. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2886. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2887. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2888. return -1;
  2889. } else
  2890. sd->nr_balance_failed = 0;
  2891. return ld_moved;
  2892. out_balanced:
  2893. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2894. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2895. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2896. return -1;
  2897. sd->nr_balance_failed = 0;
  2898. return 0;
  2899. }
  2900. /*
  2901. * idle_balance is called by schedule() if this_cpu is about to become
  2902. * idle. Attempts to pull tasks from other CPUs.
  2903. */
  2904. static void idle_balance(int this_cpu, struct rq *this_rq)
  2905. {
  2906. struct sched_domain *sd;
  2907. int pulled_task = -1;
  2908. unsigned long next_balance = jiffies + HZ;
  2909. cpumask_t tmpmask;
  2910. for_each_domain(this_cpu, sd) {
  2911. unsigned long interval;
  2912. if (!(sd->flags & SD_LOAD_BALANCE))
  2913. continue;
  2914. if (sd->flags & SD_BALANCE_NEWIDLE)
  2915. /* If we've pulled tasks over stop searching: */
  2916. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2917. sd, &tmpmask);
  2918. interval = msecs_to_jiffies(sd->balance_interval);
  2919. if (time_after(next_balance, sd->last_balance + interval))
  2920. next_balance = sd->last_balance + interval;
  2921. if (pulled_task)
  2922. break;
  2923. }
  2924. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2925. /*
  2926. * We are going idle. next_balance may be set based on
  2927. * a busy processor. So reset next_balance.
  2928. */
  2929. this_rq->next_balance = next_balance;
  2930. }
  2931. }
  2932. /*
  2933. * active_load_balance is run by migration threads. It pushes running tasks
  2934. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2935. * running on each physical CPU where possible, and avoids physical /
  2936. * logical imbalances.
  2937. *
  2938. * Called with busiest_rq locked.
  2939. */
  2940. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2941. {
  2942. int target_cpu = busiest_rq->push_cpu;
  2943. struct sched_domain *sd;
  2944. struct rq *target_rq;
  2945. /* Is there any task to move? */
  2946. if (busiest_rq->nr_running <= 1)
  2947. return;
  2948. target_rq = cpu_rq(target_cpu);
  2949. /*
  2950. * This condition is "impossible", if it occurs
  2951. * we need to fix it. Originally reported by
  2952. * Bjorn Helgaas on a 128-cpu setup.
  2953. */
  2954. BUG_ON(busiest_rq == target_rq);
  2955. /* move a task from busiest_rq to target_rq */
  2956. double_lock_balance(busiest_rq, target_rq);
  2957. update_rq_clock(busiest_rq);
  2958. update_rq_clock(target_rq);
  2959. /* Search for an sd spanning us and the target CPU. */
  2960. for_each_domain(target_cpu, sd) {
  2961. if ((sd->flags & SD_LOAD_BALANCE) &&
  2962. cpu_isset(busiest_cpu, sd->span))
  2963. break;
  2964. }
  2965. if (likely(sd)) {
  2966. schedstat_inc(sd, alb_count);
  2967. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2968. sd, CPU_IDLE))
  2969. schedstat_inc(sd, alb_pushed);
  2970. else
  2971. schedstat_inc(sd, alb_failed);
  2972. }
  2973. spin_unlock(&target_rq->lock);
  2974. }
  2975. #ifdef CONFIG_NO_HZ
  2976. static struct {
  2977. atomic_t load_balancer;
  2978. cpumask_t cpu_mask;
  2979. } nohz ____cacheline_aligned = {
  2980. .load_balancer = ATOMIC_INIT(-1),
  2981. .cpu_mask = CPU_MASK_NONE,
  2982. };
  2983. /*
  2984. * This routine will try to nominate the ilb (idle load balancing)
  2985. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2986. * load balancing on behalf of all those cpus. If all the cpus in the system
  2987. * go into this tickless mode, then there will be no ilb owner (as there is
  2988. * no need for one) and all the cpus will sleep till the next wakeup event
  2989. * arrives...
  2990. *
  2991. * For the ilb owner, tick is not stopped. And this tick will be used
  2992. * for idle load balancing. ilb owner will still be part of
  2993. * nohz.cpu_mask..
  2994. *
  2995. * While stopping the tick, this cpu will become the ilb owner if there
  2996. * is no other owner. And will be the owner till that cpu becomes busy
  2997. * or if all cpus in the system stop their ticks at which point
  2998. * there is no need for ilb owner.
  2999. *
  3000. * When the ilb owner becomes busy, it nominates another owner, during the
  3001. * next busy scheduler_tick()
  3002. */
  3003. int select_nohz_load_balancer(int stop_tick)
  3004. {
  3005. int cpu = smp_processor_id();
  3006. if (stop_tick) {
  3007. cpu_set(cpu, nohz.cpu_mask);
  3008. cpu_rq(cpu)->in_nohz_recently = 1;
  3009. /*
  3010. * If we are going offline and still the leader, give up!
  3011. */
  3012. if (cpu_is_offline(cpu) &&
  3013. atomic_read(&nohz.load_balancer) == cpu) {
  3014. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3015. BUG();
  3016. return 0;
  3017. }
  3018. /* time for ilb owner also to sleep */
  3019. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3020. if (atomic_read(&nohz.load_balancer) == cpu)
  3021. atomic_set(&nohz.load_balancer, -1);
  3022. return 0;
  3023. }
  3024. if (atomic_read(&nohz.load_balancer) == -1) {
  3025. /* make me the ilb owner */
  3026. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3027. return 1;
  3028. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3029. return 1;
  3030. } else {
  3031. if (!cpu_isset(cpu, nohz.cpu_mask))
  3032. return 0;
  3033. cpu_clear(cpu, nohz.cpu_mask);
  3034. if (atomic_read(&nohz.load_balancer) == cpu)
  3035. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3036. BUG();
  3037. }
  3038. return 0;
  3039. }
  3040. #endif
  3041. static DEFINE_SPINLOCK(balancing);
  3042. /*
  3043. * It checks each scheduling domain to see if it is due to be balanced,
  3044. * and initiates a balancing operation if so.
  3045. *
  3046. * Balancing parameters are set up in arch_init_sched_domains.
  3047. */
  3048. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3049. {
  3050. int balance = 1;
  3051. struct rq *rq = cpu_rq(cpu);
  3052. unsigned long interval;
  3053. struct sched_domain *sd;
  3054. /* Earliest time when we have to do rebalance again */
  3055. unsigned long next_balance = jiffies + 60*HZ;
  3056. int update_next_balance = 0;
  3057. cpumask_t tmp;
  3058. for_each_domain(cpu, sd) {
  3059. if (!(sd->flags & SD_LOAD_BALANCE))
  3060. continue;
  3061. interval = sd->balance_interval;
  3062. if (idle != CPU_IDLE)
  3063. interval *= sd->busy_factor;
  3064. /* scale ms to jiffies */
  3065. interval = msecs_to_jiffies(interval);
  3066. if (unlikely(!interval))
  3067. interval = 1;
  3068. if (interval > HZ*NR_CPUS/10)
  3069. interval = HZ*NR_CPUS/10;
  3070. if (sd->flags & SD_SERIALIZE) {
  3071. if (!spin_trylock(&balancing))
  3072. goto out;
  3073. }
  3074. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3075. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3076. /*
  3077. * We've pulled tasks over so either we're no
  3078. * longer idle, or one of our SMT siblings is
  3079. * not idle.
  3080. */
  3081. idle = CPU_NOT_IDLE;
  3082. }
  3083. sd->last_balance = jiffies;
  3084. }
  3085. if (sd->flags & SD_SERIALIZE)
  3086. spin_unlock(&balancing);
  3087. out:
  3088. if (time_after(next_balance, sd->last_balance + interval)) {
  3089. next_balance = sd->last_balance + interval;
  3090. update_next_balance = 1;
  3091. }
  3092. /*
  3093. * Stop the load balance at this level. There is another
  3094. * CPU in our sched group which is doing load balancing more
  3095. * actively.
  3096. */
  3097. if (!balance)
  3098. break;
  3099. }
  3100. /*
  3101. * next_balance will be updated only when there is a need.
  3102. * When the cpu is attached to null domain for ex, it will not be
  3103. * updated.
  3104. */
  3105. if (likely(update_next_balance))
  3106. rq->next_balance = next_balance;
  3107. }
  3108. /*
  3109. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3110. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3111. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3112. */
  3113. static void run_rebalance_domains(struct softirq_action *h)
  3114. {
  3115. int this_cpu = smp_processor_id();
  3116. struct rq *this_rq = cpu_rq(this_cpu);
  3117. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3118. CPU_IDLE : CPU_NOT_IDLE;
  3119. rebalance_domains(this_cpu, idle);
  3120. #ifdef CONFIG_NO_HZ
  3121. /*
  3122. * If this cpu is the owner for idle load balancing, then do the
  3123. * balancing on behalf of the other idle cpus whose ticks are
  3124. * stopped.
  3125. */
  3126. if (this_rq->idle_at_tick &&
  3127. atomic_read(&nohz.load_balancer) == this_cpu) {
  3128. cpumask_t cpus = nohz.cpu_mask;
  3129. struct rq *rq;
  3130. int balance_cpu;
  3131. cpu_clear(this_cpu, cpus);
  3132. for_each_cpu_mask(balance_cpu, cpus) {
  3133. /*
  3134. * If this cpu gets work to do, stop the load balancing
  3135. * work being done for other cpus. Next load
  3136. * balancing owner will pick it up.
  3137. */
  3138. if (need_resched())
  3139. break;
  3140. rebalance_domains(balance_cpu, CPU_IDLE);
  3141. rq = cpu_rq(balance_cpu);
  3142. if (time_after(this_rq->next_balance, rq->next_balance))
  3143. this_rq->next_balance = rq->next_balance;
  3144. }
  3145. }
  3146. #endif
  3147. }
  3148. /*
  3149. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3150. *
  3151. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3152. * idle load balancing owner or decide to stop the periodic load balancing,
  3153. * if the whole system is idle.
  3154. */
  3155. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3156. {
  3157. #ifdef CONFIG_NO_HZ
  3158. /*
  3159. * If we were in the nohz mode recently and busy at the current
  3160. * scheduler tick, then check if we need to nominate new idle
  3161. * load balancer.
  3162. */
  3163. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3164. rq->in_nohz_recently = 0;
  3165. if (atomic_read(&nohz.load_balancer) == cpu) {
  3166. cpu_clear(cpu, nohz.cpu_mask);
  3167. atomic_set(&nohz.load_balancer, -1);
  3168. }
  3169. if (atomic_read(&nohz.load_balancer) == -1) {
  3170. /*
  3171. * simple selection for now: Nominate the
  3172. * first cpu in the nohz list to be the next
  3173. * ilb owner.
  3174. *
  3175. * TBD: Traverse the sched domains and nominate
  3176. * the nearest cpu in the nohz.cpu_mask.
  3177. */
  3178. int ilb = first_cpu(nohz.cpu_mask);
  3179. if (ilb < nr_cpu_ids)
  3180. resched_cpu(ilb);
  3181. }
  3182. }
  3183. /*
  3184. * If this cpu is idle and doing idle load balancing for all the
  3185. * cpus with ticks stopped, is it time for that to stop?
  3186. */
  3187. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3188. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3189. resched_cpu(cpu);
  3190. return;
  3191. }
  3192. /*
  3193. * If this cpu is idle and the idle load balancing is done by
  3194. * someone else, then no need raise the SCHED_SOFTIRQ
  3195. */
  3196. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3197. cpu_isset(cpu, nohz.cpu_mask))
  3198. return;
  3199. #endif
  3200. if (time_after_eq(jiffies, rq->next_balance))
  3201. raise_softirq(SCHED_SOFTIRQ);
  3202. }
  3203. #else /* CONFIG_SMP */
  3204. /*
  3205. * on UP we do not need to balance between CPUs:
  3206. */
  3207. static inline void idle_balance(int cpu, struct rq *rq)
  3208. {
  3209. }
  3210. #endif
  3211. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3212. EXPORT_PER_CPU_SYMBOL(kstat);
  3213. /*
  3214. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3215. * that have not yet been banked in case the task is currently running.
  3216. */
  3217. unsigned long long task_sched_runtime(struct task_struct *p)
  3218. {
  3219. unsigned long flags;
  3220. u64 ns, delta_exec;
  3221. struct rq *rq;
  3222. rq = task_rq_lock(p, &flags);
  3223. ns = p->se.sum_exec_runtime;
  3224. if (task_current(rq, p)) {
  3225. update_rq_clock(rq);
  3226. delta_exec = rq->clock - p->se.exec_start;
  3227. if ((s64)delta_exec > 0)
  3228. ns += delta_exec;
  3229. }
  3230. task_rq_unlock(rq, &flags);
  3231. return ns;
  3232. }
  3233. /*
  3234. * Account user cpu time to a process.
  3235. * @p: the process that the cpu time gets accounted to
  3236. * @cputime: the cpu time spent in user space since the last update
  3237. */
  3238. void account_user_time(struct task_struct *p, cputime_t cputime)
  3239. {
  3240. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3241. cputime64_t tmp;
  3242. p->utime = cputime_add(p->utime, cputime);
  3243. /* Add user time to cpustat. */
  3244. tmp = cputime_to_cputime64(cputime);
  3245. if (TASK_NICE(p) > 0)
  3246. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3247. else
  3248. cpustat->user = cputime64_add(cpustat->user, tmp);
  3249. }
  3250. /*
  3251. * Account guest cpu time to a process.
  3252. * @p: the process that the cpu time gets accounted to
  3253. * @cputime: the cpu time spent in virtual machine since the last update
  3254. */
  3255. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3256. {
  3257. cputime64_t tmp;
  3258. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3259. tmp = cputime_to_cputime64(cputime);
  3260. p->utime = cputime_add(p->utime, cputime);
  3261. p->gtime = cputime_add(p->gtime, cputime);
  3262. cpustat->user = cputime64_add(cpustat->user, tmp);
  3263. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3264. }
  3265. /*
  3266. * Account scaled user cpu time to a process.
  3267. * @p: the process that the cpu time gets accounted to
  3268. * @cputime: the cpu time spent in user space since the last update
  3269. */
  3270. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3271. {
  3272. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3273. }
  3274. /*
  3275. * Account system cpu time to a process.
  3276. * @p: the process that the cpu time gets accounted to
  3277. * @hardirq_offset: the offset to subtract from hardirq_count()
  3278. * @cputime: the cpu time spent in kernel space since the last update
  3279. */
  3280. void account_system_time(struct task_struct *p, int hardirq_offset,
  3281. cputime_t cputime)
  3282. {
  3283. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3284. struct rq *rq = this_rq();
  3285. cputime64_t tmp;
  3286. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3287. return account_guest_time(p, cputime);
  3288. p->stime = cputime_add(p->stime, cputime);
  3289. /* Add system time to cpustat. */
  3290. tmp = cputime_to_cputime64(cputime);
  3291. if (hardirq_count() - hardirq_offset)
  3292. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3293. else if (softirq_count())
  3294. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3295. else if (p != rq->idle)
  3296. cpustat->system = cputime64_add(cpustat->system, tmp);
  3297. else if (atomic_read(&rq->nr_iowait) > 0)
  3298. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3299. else
  3300. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3301. /* Account for system time used */
  3302. acct_update_integrals(p);
  3303. }
  3304. /*
  3305. * Account scaled system cpu time to a process.
  3306. * @p: the process that the cpu time gets accounted to
  3307. * @hardirq_offset: the offset to subtract from hardirq_count()
  3308. * @cputime: the cpu time spent in kernel space since the last update
  3309. */
  3310. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3311. {
  3312. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3313. }
  3314. /*
  3315. * Account for involuntary wait time.
  3316. * @p: the process from which the cpu time has been stolen
  3317. * @steal: the cpu time spent in involuntary wait
  3318. */
  3319. void account_steal_time(struct task_struct *p, cputime_t steal)
  3320. {
  3321. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3322. cputime64_t tmp = cputime_to_cputime64(steal);
  3323. struct rq *rq = this_rq();
  3324. if (p == rq->idle) {
  3325. p->stime = cputime_add(p->stime, steal);
  3326. if (atomic_read(&rq->nr_iowait) > 0)
  3327. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3328. else
  3329. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3330. } else
  3331. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3332. }
  3333. /*
  3334. * This function gets called by the timer code, with HZ frequency.
  3335. * We call it with interrupts disabled.
  3336. *
  3337. * It also gets called by the fork code, when changing the parent's
  3338. * timeslices.
  3339. */
  3340. void scheduler_tick(void)
  3341. {
  3342. int cpu = smp_processor_id();
  3343. struct rq *rq = cpu_rq(cpu);
  3344. struct task_struct *curr = rq->curr;
  3345. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3346. spin_lock(&rq->lock);
  3347. __update_rq_clock(rq);
  3348. /*
  3349. * Let rq->clock advance by at least TICK_NSEC:
  3350. */
  3351. if (unlikely(rq->clock < next_tick)) {
  3352. rq->clock = next_tick;
  3353. rq->clock_underflows++;
  3354. }
  3355. rq->tick_timestamp = rq->clock;
  3356. update_last_tick_seen(rq);
  3357. update_cpu_load(rq);
  3358. curr->sched_class->task_tick(rq, curr, 0);
  3359. spin_unlock(&rq->lock);
  3360. #ifdef CONFIG_SMP
  3361. rq->idle_at_tick = idle_cpu(cpu);
  3362. trigger_load_balance(rq, cpu);
  3363. #endif
  3364. }
  3365. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3366. void __kprobes add_preempt_count(int val)
  3367. {
  3368. /*
  3369. * Underflow?
  3370. */
  3371. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3372. return;
  3373. preempt_count() += val;
  3374. /*
  3375. * Spinlock count overflowing soon?
  3376. */
  3377. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3378. PREEMPT_MASK - 10);
  3379. }
  3380. EXPORT_SYMBOL(add_preempt_count);
  3381. void __kprobes sub_preempt_count(int val)
  3382. {
  3383. /*
  3384. * Underflow?
  3385. */
  3386. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3387. return;
  3388. /*
  3389. * Is the spinlock portion underflowing?
  3390. */
  3391. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3392. !(preempt_count() & PREEMPT_MASK)))
  3393. return;
  3394. preempt_count() -= val;
  3395. }
  3396. EXPORT_SYMBOL(sub_preempt_count);
  3397. #endif
  3398. /*
  3399. * Print scheduling while atomic bug:
  3400. */
  3401. static noinline void __schedule_bug(struct task_struct *prev)
  3402. {
  3403. struct pt_regs *regs = get_irq_regs();
  3404. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3405. prev->comm, prev->pid, preempt_count());
  3406. debug_show_held_locks(prev);
  3407. if (irqs_disabled())
  3408. print_irqtrace_events(prev);
  3409. if (regs)
  3410. show_regs(regs);
  3411. else
  3412. dump_stack();
  3413. }
  3414. /*
  3415. * Various schedule()-time debugging checks and statistics:
  3416. */
  3417. static inline void schedule_debug(struct task_struct *prev)
  3418. {
  3419. /*
  3420. * Test if we are atomic. Since do_exit() needs to call into
  3421. * schedule() atomically, we ignore that path for now.
  3422. * Otherwise, whine if we are scheduling when we should not be.
  3423. */
  3424. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3425. __schedule_bug(prev);
  3426. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3427. schedstat_inc(this_rq(), sched_count);
  3428. #ifdef CONFIG_SCHEDSTATS
  3429. if (unlikely(prev->lock_depth >= 0)) {
  3430. schedstat_inc(this_rq(), bkl_count);
  3431. schedstat_inc(prev, sched_info.bkl_count);
  3432. }
  3433. #endif
  3434. }
  3435. /*
  3436. * Pick up the highest-prio task:
  3437. */
  3438. static inline struct task_struct *
  3439. pick_next_task(struct rq *rq, struct task_struct *prev)
  3440. {
  3441. const struct sched_class *class;
  3442. struct task_struct *p;
  3443. /*
  3444. * Optimization: we know that if all tasks are in
  3445. * the fair class we can call that function directly:
  3446. */
  3447. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3448. p = fair_sched_class.pick_next_task(rq);
  3449. if (likely(p))
  3450. return p;
  3451. }
  3452. class = sched_class_highest;
  3453. for ( ; ; ) {
  3454. p = class->pick_next_task(rq);
  3455. if (p)
  3456. return p;
  3457. /*
  3458. * Will never be NULL as the idle class always
  3459. * returns a non-NULL p:
  3460. */
  3461. class = class->next;
  3462. }
  3463. }
  3464. /*
  3465. * schedule() is the main scheduler function.
  3466. */
  3467. asmlinkage void __sched schedule(void)
  3468. {
  3469. struct task_struct *prev, *next;
  3470. unsigned long *switch_count;
  3471. struct rq *rq;
  3472. int cpu;
  3473. need_resched:
  3474. preempt_disable();
  3475. cpu = smp_processor_id();
  3476. rq = cpu_rq(cpu);
  3477. rcu_qsctr_inc(cpu);
  3478. prev = rq->curr;
  3479. switch_count = &prev->nivcsw;
  3480. release_kernel_lock(prev);
  3481. need_resched_nonpreemptible:
  3482. schedule_debug(prev);
  3483. hrtick_clear(rq);
  3484. /*
  3485. * Do the rq-clock update outside the rq lock:
  3486. */
  3487. local_irq_disable();
  3488. __update_rq_clock(rq);
  3489. spin_lock(&rq->lock);
  3490. clear_tsk_need_resched(prev);
  3491. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3492. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3493. signal_pending(prev))) {
  3494. prev->state = TASK_RUNNING;
  3495. } else {
  3496. deactivate_task(rq, prev, 1);
  3497. }
  3498. switch_count = &prev->nvcsw;
  3499. }
  3500. #ifdef CONFIG_SMP
  3501. if (prev->sched_class->pre_schedule)
  3502. prev->sched_class->pre_schedule(rq, prev);
  3503. #endif
  3504. if (unlikely(!rq->nr_running))
  3505. idle_balance(cpu, rq);
  3506. prev->sched_class->put_prev_task(rq, prev);
  3507. next = pick_next_task(rq, prev);
  3508. sched_info_switch(prev, next);
  3509. if (likely(prev != next)) {
  3510. rq->nr_switches++;
  3511. rq->curr = next;
  3512. ++*switch_count;
  3513. context_switch(rq, prev, next); /* unlocks the rq */
  3514. /*
  3515. * the context switch might have flipped the stack from under
  3516. * us, hence refresh the local variables.
  3517. */
  3518. cpu = smp_processor_id();
  3519. rq = cpu_rq(cpu);
  3520. } else
  3521. spin_unlock_irq(&rq->lock);
  3522. hrtick_set(rq);
  3523. if (unlikely(reacquire_kernel_lock(current) < 0))
  3524. goto need_resched_nonpreemptible;
  3525. preempt_enable_no_resched();
  3526. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3527. goto need_resched;
  3528. }
  3529. EXPORT_SYMBOL(schedule);
  3530. #ifdef CONFIG_PREEMPT
  3531. /*
  3532. * this is the entry point to schedule() from in-kernel preemption
  3533. * off of preempt_enable. Kernel preemptions off return from interrupt
  3534. * occur there and call schedule directly.
  3535. */
  3536. asmlinkage void __sched preempt_schedule(void)
  3537. {
  3538. struct thread_info *ti = current_thread_info();
  3539. struct task_struct *task = current;
  3540. int saved_lock_depth;
  3541. /*
  3542. * If there is a non-zero preempt_count or interrupts are disabled,
  3543. * we do not want to preempt the current task. Just return..
  3544. */
  3545. if (likely(ti->preempt_count || irqs_disabled()))
  3546. return;
  3547. do {
  3548. add_preempt_count(PREEMPT_ACTIVE);
  3549. /*
  3550. * We keep the big kernel semaphore locked, but we
  3551. * clear ->lock_depth so that schedule() doesnt
  3552. * auto-release the semaphore:
  3553. */
  3554. saved_lock_depth = task->lock_depth;
  3555. task->lock_depth = -1;
  3556. schedule();
  3557. task->lock_depth = saved_lock_depth;
  3558. sub_preempt_count(PREEMPT_ACTIVE);
  3559. /*
  3560. * Check again in case we missed a preemption opportunity
  3561. * between schedule and now.
  3562. */
  3563. barrier();
  3564. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3565. }
  3566. EXPORT_SYMBOL(preempt_schedule);
  3567. /*
  3568. * this is the entry point to schedule() from kernel preemption
  3569. * off of irq context.
  3570. * Note, that this is called and return with irqs disabled. This will
  3571. * protect us against recursive calling from irq.
  3572. */
  3573. asmlinkage void __sched preempt_schedule_irq(void)
  3574. {
  3575. struct thread_info *ti = current_thread_info();
  3576. struct task_struct *task = current;
  3577. int saved_lock_depth;
  3578. /* Catch callers which need to be fixed */
  3579. BUG_ON(ti->preempt_count || !irqs_disabled());
  3580. do {
  3581. add_preempt_count(PREEMPT_ACTIVE);
  3582. /*
  3583. * We keep the big kernel semaphore locked, but we
  3584. * clear ->lock_depth so that schedule() doesnt
  3585. * auto-release the semaphore:
  3586. */
  3587. saved_lock_depth = task->lock_depth;
  3588. task->lock_depth = -1;
  3589. local_irq_enable();
  3590. schedule();
  3591. local_irq_disable();
  3592. task->lock_depth = saved_lock_depth;
  3593. sub_preempt_count(PREEMPT_ACTIVE);
  3594. /*
  3595. * Check again in case we missed a preemption opportunity
  3596. * between schedule and now.
  3597. */
  3598. barrier();
  3599. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3600. }
  3601. #endif /* CONFIG_PREEMPT */
  3602. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3603. void *key)
  3604. {
  3605. return try_to_wake_up(curr->private, mode, sync);
  3606. }
  3607. EXPORT_SYMBOL(default_wake_function);
  3608. /*
  3609. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3610. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3611. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3612. *
  3613. * There are circumstances in which we can try to wake a task which has already
  3614. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3615. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3616. */
  3617. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3618. int nr_exclusive, int sync, void *key)
  3619. {
  3620. wait_queue_t *curr, *next;
  3621. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3622. unsigned flags = curr->flags;
  3623. if (curr->func(curr, mode, sync, key) &&
  3624. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3625. break;
  3626. }
  3627. }
  3628. /**
  3629. * __wake_up - wake up threads blocked on a waitqueue.
  3630. * @q: the waitqueue
  3631. * @mode: which threads
  3632. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3633. * @key: is directly passed to the wakeup function
  3634. */
  3635. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3636. int nr_exclusive, void *key)
  3637. {
  3638. unsigned long flags;
  3639. spin_lock_irqsave(&q->lock, flags);
  3640. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3641. spin_unlock_irqrestore(&q->lock, flags);
  3642. }
  3643. EXPORT_SYMBOL(__wake_up);
  3644. /*
  3645. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3646. */
  3647. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3648. {
  3649. __wake_up_common(q, mode, 1, 0, NULL);
  3650. }
  3651. /**
  3652. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3653. * @q: the waitqueue
  3654. * @mode: which threads
  3655. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3656. *
  3657. * The sync wakeup differs that the waker knows that it will schedule
  3658. * away soon, so while the target thread will be woken up, it will not
  3659. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3660. * with each other. This can prevent needless bouncing between CPUs.
  3661. *
  3662. * On UP it can prevent extra preemption.
  3663. */
  3664. void
  3665. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3666. {
  3667. unsigned long flags;
  3668. int sync = 1;
  3669. if (unlikely(!q))
  3670. return;
  3671. if (unlikely(!nr_exclusive))
  3672. sync = 0;
  3673. spin_lock_irqsave(&q->lock, flags);
  3674. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3675. spin_unlock_irqrestore(&q->lock, flags);
  3676. }
  3677. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3678. void complete(struct completion *x)
  3679. {
  3680. unsigned long flags;
  3681. spin_lock_irqsave(&x->wait.lock, flags);
  3682. x->done++;
  3683. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3684. spin_unlock_irqrestore(&x->wait.lock, flags);
  3685. }
  3686. EXPORT_SYMBOL(complete);
  3687. void complete_all(struct completion *x)
  3688. {
  3689. unsigned long flags;
  3690. spin_lock_irqsave(&x->wait.lock, flags);
  3691. x->done += UINT_MAX/2;
  3692. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3693. spin_unlock_irqrestore(&x->wait.lock, flags);
  3694. }
  3695. EXPORT_SYMBOL(complete_all);
  3696. static inline long __sched
  3697. do_wait_for_common(struct completion *x, long timeout, int state)
  3698. {
  3699. if (!x->done) {
  3700. DECLARE_WAITQUEUE(wait, current);
  3701. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3702. __add_wait_queue_tail(&x->wait, &wait);
  3703. do {
  3704. if ((state == TASK_INTERRUPTIBLE &&
  3705. signal_pending(current)) ||
  3706. (state == TASK_KILLABLE &&
  3707. fatal_signal_pending(current))) {
  3708. __remove_wait_queue(&x->wait, &wait);
  3709. return -ERESTARTSYS;
  3710. }
  3711. __set_current_state(state);
  3712. spin_unlock_irq(&x->wait.lock);
  3713. timeout = schedule_timeout(timeout);
  3714. spin_lock_irq(&x->wait.lock);
  3715. if (!timeout) {
  3716. __remove_wait_queue(&x->wait, &wait);
  3717. return timeout;
  3718. }
  3719. } while (!x->done);
  3720. __remove_wait_queue(&x->wait, &wait);
  3721. }
  3722. x->done--;
  3723. return timeout;
  3724. }
  3725. static long __sched
  3726. wait_for_common(struct completion *x, long timeout, int state)
  3727. {
  3728. might_sleep();
  3729. spin_lock_irq(&x->wait.lock);
  3730. timeout = do_wait_for_common(x, timeout, state);
  3731. spin_unlock_irq(&x->wait.lock);
  3732. return timeout;
  3733. }
  3734. void __sched wait_for_completion(struct completion *x)
  3735. {
  3736. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3737. }
  3738. EXPORT_SYMBOL(wait_for_completion);
  3739. unsigned long __sched
  3740. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3741. {
  3742. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3743. }
  3744. EXPORT_SYMBOL(wait_for_completion_timeout);
  3745. int __sched wait_for_completion_interruptible(struct completion *x)
  3746. {
  3747. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3748. if (t == -ERESTARTSYS)
  3749. return t;
  3750. return 0;
  3751. }
  3752. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3753. unsigned long __sched
  3754. wait_for_completion_interruptible_timeout(struct completion *x,
  3755. unsigned long timeout)
  3756. {
  3757. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3758. }
  3759. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3760. int __sched wait_for_completion_killable(struct completion *x)
  3761. {
  3762. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3763. if (t == -ERESTARTSYS)
  3764. return t;
  3765. return 0;
  3766. }
  3767. EXPORT_SYMBOL(wait_for_completion_killable);
  3768. static long __sched
  3769. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3770. {
  3771. unsigned long flags;
  3772. wait_queue_t wait;
  3773. init_waitqueue_entry(&wait, current);
  3774. __set_current_state(state);
  3775. spin_lock_irqsave(&q->lock, flags);
  3776. __add_wait_queue(q, &wait);
  3777. spin_unlock(&q->lock);
  3778. timeout = schedule_timeout(timeout);
  3779. spin_lock_irq(&q->lock);
  3780. __remove_wait_queue(q, &wait);
  3781. spin_unlock_irqrestore(&q->lock, flags);
  3782. return timeout;
  3783. }
  3784. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3785. {
  3786. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3787. }
  3788. EXPORT_SYMBOL(interruptible_sleep_on);
  3789. long __sched
  3790. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3791. {
  3792. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3793. }
  3794. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3795. void __sched sleep_on(wait_queue_head_t *q)
  3796. {
  3797. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3798. }
  3799. EXPORT_SYMBOL(sleep_on);
  3800. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3801. {
  3802. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3803. }
  3804. EXPORT_SYMBOL(sleep_on_timeout);
  3805. #ifdef CONFIG_RT_MUTEXES
  3806. /*
  3807. * rt_mutex_setprio - set the current priority of a task
  3808. * @p: task
  3809. * @prio: prio value (kernel-internal form)
  3810. *
  3811. * This function changes the 'effective' priority of a task. It does
  3812. * not touch ->normal_prio like __setscheduler().
  3813. *
  3814. * Used by the rt_mutex code to implement priority inheritance logic.
  3815. */
  3816. void rt_mutex_setprio(struct task_struct *p, int prio)
  3817. {
  3818. unsigned long flags;
  3819. int oldprio, on_rq, running;
  3820. struct rq *rq;
  3821. const struct sched_class *prev_class = p->sched_class;
  3822. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3823. rq = task_rq_lock(p, &flags);
  3824. update_rq_clock(rq);
  3825. oldprio = p->prio;
  3826. on_rq = p->se.on_rq;
  3827. running = task_current(rq, p);
  3828. if (on_rq)
  3829. dequeue_task(rq, p, 0);
  3830. if (running)
  3831. p->sched_class->put_prev_task(rq, p);
  3832. if (rt_prio(prio))
  3833. p->sched_class = &rt_sched_class;
  3834. else
  3835. p->sched_class = &fair_sched_class;
  3836. p->prio = prio;
  3837. if (running)
  3838. p->sched_class->set_curr_task(rq);
  3839. if (on_rq) {
  3840. enqueue_task(rq, p, 0);
  3841. check_class_changed(rq, p, prev_class, oldprio, running);
  3842. }
  3843. task_rq_unlock(rq, &flags);
  3844. }
  3845. #endif
  3846. void set_user_nice(struct task_struct *p, long nice)
  3847. {
  3848. int old_prio, delta, on_rq;
  3849. unsigned long flags;
  3850. struct rq *rq;
  3851. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3852. return;
  3853. /*
  3854. * We have to be careful, if called from sys_setpriority(),
  3855. * the task might be in the middle of scheduling on another CPU.
  3856. */
  3857. rq = task_rq_lock(p, &flags);
  3858. update_rq_clock(rq);
  3859. /*
  3860. * The RT priorities are set via sched_setscheduler(), but we still
  3861. * allow the 'normal' nice value to be set - but as expected
  3862. * it wont have any effect on scheduling until the task is
  3863. * SCHED_FIFO/SCHED_RR:
  3864. */
  3865. if (task_has_rt_policy(p)) {
  3866. p->static_prio = NICE_TO_PRIO(nice);
  3867. goto out_unlock;
  3868. }
  3869. on_rq = p->se.on_rq;
  3870. if (on_rq) {
  3871. dequeue_task(rq, p, 0);
  3872. dec_load(rq, p);
  3873. }
  3874. p->static_prio = NICE_TO_PRIO(nice);
  3875. set_load_weight(p);
  3876. old_prio = p->prio;
  3877. p->prio = effective_prio(p);
  3878. delta = p->prio - old_prio;
  3879. if (on_rq) {
  3880. enqueue_task(rq, p, 0);
  3881. inc_load(rq, p);
  3882. /*
  3883. * If the task increased its priority or is running and
  3884. * lowered its priority, then reschedule its CPU:
  3885. */
  3886. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3887. resched_task(rq->curr);
  3888. }
  3889. out_unlock:
  3890. task_rq_unlock(rq, &flags);
  3891. }
  3892. EXPORT_SYMBOL(set_user_nice);
  3893. /*
  3894. * can_nice - check if a task can reduce its nice value
  3895. * @p: task
  3896. * @nice: nice value
  3897. */
  3898. int can_nice(const struct task_struct *p, const int nice)
  3899. {
  3900. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3901. int nice_rlim = 20 - nice;
  3902. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3903. capable(CAP_SYS_NICE));
  3904. }
  3905. #ifdef __ARCH_WANT_SYS_NICE
  3906. /*
  3907. * sys_nice - change the priority of the current process.
  3908. * @increment: priority increment
  3909. *
  3910. * sys_setpriority is a more generic, but much slower function that
  3911. * does similar things.
  3912. */
  3913. asmlinkage long sys_nice(int increment)
  3914. {
  3915. long nice, retval;
  3916. /*
  3917. * Setpriority might change our priority at the same moment.
  3918. * We don't have to worry. Conceptually one call occurs first
  3919. * and we have a single winner.
  3920. */
  3921. if (increment < -40)
  3922. increment = -40;
  3923. if (increment > 40)
  3924. increment = 40;
  3925. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3926. if (nice < -20)
  3927. nice = -20;
  3928. if (nice > 19)
  3929. nice = 19;
  3930. if (increment < 0 && !can_nice(current, nice))
  3931. return -EPERM;
  3932. retval = security_task_setnice(current, nice);
  3933. if (retval)
  3934. return retval;
  3935. set_user_nice(current, nice);
  3936. return 0;
  3937. }
  3938. #endif
  3939. /**
  3940. * task_prio - return the priority value of a given task.
  3941. * @p: the task in question.
  3942. *
  3943. * This is the priority value as seen by users in /proc.
  3944. * RT tasks are offset by -200. Normal tasks are centered
  3945. * around 0, value goes from -16 to +15.
  3946. */
  3947. int task_prio(const struct task_struct *p)
  3948. {
  3949. return p->prio - MAX_RT_PRIO;
  3950. }
  3951. /**
  3952. * task_nice - return the nice value of a given task.
  3953. * @p: the task in question.
  3954. */
  3955. int task_nice(const struct task_struct *p)
  3956. {
  3957. return TASK_NICE(p);
  3958. }
  3959. EXPORT_SYMBOL(task_nice);
  3960. /**
  3961. * idle_cpu - is a given cpu idle currently?
  3962. * @cpu: the processor in question.
  3963. */
  3964. int idle_cpu(int cpu)
  3965. {
  3966. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3967. }
  3968. /**
  3969. * idle_task - return the idle task for a given cpu.
  3970. * @cpu: the processor in question.
  3971. */
  3972. struct task_struct *idle_task(int cpu)
  3973. {
  3974. return cpu_rq(cpu)->idle;
  3975. }
  3976. /**
  3977. * find_process_by_pid - find a process with a matching PID value.
  3978. * @pid: the pid in question.
  3979. */
  3980. static struct task_struct *find_process_by_pid(pid_t pid)
  3981. {
  3982. return pid ? find_task_by_vpid(pid) : current;
  3983. }
  3984. /* Actually do priority change: must hold rq lock. */
  3985. static void
  3986. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3987. {
  3988. BUG_ON(p->se.on_rq);
  3989. p->policy = policy;
  3990. switch (p->policy) {
  3991. case SCHED_NORMAL:
  3992. case SCHED_BATCH:
  3993. case SCHED_IDLE:
  3994. p->sched_class = &fair_sched_class;
  3995. break;
  3996. case SCHED_FIFO:
  3997. case SCHED_RR:
  3998. p->sched_class = &rt_sched_class;
  3999. break;
  4000. }
  4001. p->rt_priority = prio;
  4002. p->normal_prio = normal_prio(p);
  4003. /* we are holding p->pi_lock already */
  4004. p->prio = rt_mutex_getprio(p);
  4005. set_load_weight(p);
  4006. }
  4007. /**
  4008. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4009. * @p: the task in question.
  4010. * @policy: new policy.
  4011. * @param: structure containing the new RT priority.
  4012. *
  4013. * NOTE that the task may be already dead.
  4014. */
  4015. int sched_setscheduler(struct task_struct *p, int policy,
  4016. struct sched_param *param)
  4017. {
  4018. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4019. unsigned long flags;
  4020. const struct sched_class *prev_class = p->sched_class;
  4021. struct rq *rq;
  4022. /* may grab non-irq protected spin_locks */
  4023. BUG_ON(in_interrupt());
  4024. recheck:
  4025. /* double check policy once rq lock held */
  4026. if (policy < 0)
  4027. policy = oldpolicy = p->policy;
  4028. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4029. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4030. policy != SCHED_IDLE)
  4031. return -EINVAL;
  4032. /*
  4033. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4034. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4035. * SCHED_BATCH and SCHED_IDLE is 0.
  4036. */
  4037. if (param->sched_priority < 0 ||
  4038. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4039. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4040. return -EINVAL;
  4041. if (rt_policy(policy) != (param->sched_priority != 0))
  4042. return -EINVAL;
  4043. /*
  4044. * Allow unprivileged RT tasks to decrease priority:
  4045. */
  4046. if (!capable(CAP_SYS_NICE)) {
  4047. if (rt_policy(policy)) {
  4048. unsigned long rlim_rtprio;
  4049. if (!lock_task_sighand(p, &flags))
  4050. return -ESRCH;
  4051. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4052. unlock_task_sighand(p, &flags);
  4053. /* can't set/change the rt policy */
  4054. if (policy != p->policy && !rlim_rtprio)
  4055. return -EPERM;
  4056. /* can't increase priority */
  4057. if (param->sched_priority > p->rt_priority &&
  4058. param->sched_priority > rlim_rtprio)
  4059. return -EPERM;
  4060. }
  4061. /*
  4062. * Like positive nice levels, dont allow tasks to
  4063. * move out of SCHED_IDLE either:
  4064. */
  4065. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4066. return -EPERM;
  4067. /* can't change other user's priorities */
  4068. if ((current->euid != p->euid) &&
  4069. (current->euid != p->uid))
  4070. return -EPERM;
  4071. }
  4072. #ifdef CONFIG_RT_GROUP_SCHED
  4073. /*
  4074. * Do not allow realtime tasks into groups that have no runtime
  4075. * assigned.
  4076. */
  4077. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4078. return -EPERM;
  4079. #endif
  4080. retval = security_task_setscheduler(p, policy, param);
  4081. if (retval)
  4082. return retval;
  4083. /*
  4084. * make sure no PI-waiters arrive (or leave) while we are
  4085. * changing the priority of the task:
  4086. */
  4087. spin_lock_irqsave(&p->pi_lock, flags);
  4088. /*
  4089. * To be able to change p->policy safely, the apropriate
  4090. * runqueue lock must be held.
  4091. */
  4092. rq = __task_rq_lock(p);
  4093. /* recheck policy now with rq lock held */
  4094. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4095. policy = oldpolicy = -1;
  4096. __task_rq_unlock(rq);
  4097. spin_unlock_irqrestore(&p->pi_lock, flags);
  4098. goto recheck;
  4099. }
  4100. update_rq_clock(rq);
  4101. on_rq = p->se.on_rq;
  4102. running = task_current(rq, p);
  4103. if (on_rq)
  4104. deactivate_task(rq, p, 0);
  4105. if (running)
  4106. p->sched_class->put_prev_task(rq, p);
  4107. oldprio = p->prio;
  4108. __setscheduler(rq, p, policy, param->sched_priority);
  4109. if (running)
  4110. p->sched_class->set_curr_task(rq);
  4111. if (on_rq) {
  4112. activate_task(rq, p, 0);
  4113. check_class_changed(rq, p, prev_class, oldprio, running);
  4114. }
  4115. __task_rq_unlock(rq);
  4116. spin_unlock_irqrestore(&p->pi_lock, flags);
  4117. rt_mutex_adjust_pi(p);
  4118. return 0;
  4119. }
  4120. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4121. static int
  4122. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4123. {
  4124. struct sched_param lparam;
  4125. struct task_struct *p;
  4126. int retval;
  4127. if (!param || pid < 0)
  4128. return -EINVAL;
  4129. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4130. return -EFAULT;
  4131. rcu_read_lock();
  4132. retval = -ESRCH;
  4133. p = find_process_by_pid(pid);
  4134. if (p != NULL)
  4135. retval = sched_setscheduler(p, policy, &lparam);
  4136. rcu_read_unlock();
  4137. return retval;
  4138. }
  4139. /**
  4140. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4141. * @pid: the pid in question.
  4142. * @policy: new policy.
  4143. * @param: structure containing the new RT priority.
  4144. */
  4145. asmlinkage long
  4146. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4147. {
  4148. /* negative values for policy are not valid */
  4149. if (policy < 0)
  4150. return -EINVAL;
  4151. return do_sched_setscheduler(pid, policy, param);
  4152. }
  4153. /**
  4154. * sys_sched_setparam - set/change the RT priority of a thread
  4155. * @pid: the pid in question.
  4156. * @param: structure containing the new RT priority.
  4157. */
  4158. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4159. {
  4160. return do_sched_setscheduler(pid, -1, param);
  4161. }
  4162. /**
  4163. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4164. * @pid: the pid in question.
  4165. */
  4166. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4167. {
  4168. struct task_struct *p;
  4169. int retval;
  4170. if (pid < 0)
  4171. return -EINVAL;
  4172. retval = -ESRCH;
  4173. read_lock(&tasklist_lock);
  4174. p = find_process_by_pid(pid);
  4175. if (p) {
  4176. retval = security_task_getscheduler(p);
  4177. if (!retval)
  4178. retval = p->policy;
  4179. }
  4180. read_unlock(&tasklist_lock);
  4181. return retval;
  4182. }
  4183. /**
  4184. * sys_sched_getscheduler - get the RT priority of a thread
  4185. * @pid: the pid in question.
  4186. * @param: structure containing the RT priority.
  4187. */
  4188. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4189. {
  4190. struct sched_param lp;
  4191. struct task_struct *p;
  4192. int retval;
  4193. if (!param || pid < 0)
  4194. return -EINVAL;
  4195. read_lock(&tasklist_lock);
  4196. p = find_process_by_pid(pid);
  4197. retval = -ESRCH;
  4198. if (!p)
  4199. goto out_unlock;
  4200. retval = security_task_getscheduler(p);
  4201. if (retval)
  4202. goto out_unlock;
  4203. lp.sched_priority = p->rt_priority;
  4204. read_unlock(&tasklist_lock);
  4205. /*
  4206. * This one might sleep, we cannot do it with a spinlock held ...
  4207. */
  4208. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4209. return retval;
  4210. out_unlock:
  4211. read_unlock(&tasklist_lock);
  4212. return retval;
  4213. }
  4214. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4215. {
  4216. cpumask_t cpus_allowed;
  4217. cpumask_t new_mask = *in_mask;
  4218. struct task_struct *p;
  4219. int retval;
  4220. get_online_cpus();
  4221. read_lock(&tasklist_lock);
  4222. p = find_process_by_pid(pid);
  4223. if (!p) {
  4224. read_unlock(&tasklist_lock);
  4225. put_online_cpus();
  4226. return -ESRCH;
  4227. }
  4228. /*
  4229. * It is not safe to call set_cpus_allowed with the
  4230. * tasklist_lock held. We will bump the task_struct's
  4231. * usage count and then drop tasklist_lock.
  4232. */
  4233. get_task_struct(p);
  4234. read_unlock(&tasklist_lock);
  4235. retval = -EPERM;
  4236. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4237. !capable(CAP_SYS_NICE))
  4238. goto out_unlock;
  4239. retval = security_task_setscheduler(p, 0, NULL);
  4240. if (retval)
  4241. goto out_unlock;
  4242. cpuset_cpus_allowed(p, &cpus_allowed);
  4243. cpus_and(new_mask, new_mask, cpus_allowed);
  4244. again:
  4245. retval = set_cpus_allowed_ptr(p, &new_mask);
  4246. if (!retval) {
  4247. cpuset_cpus_allowed(p, &cpus_allowed);
  4248. if (!cpus_subset(new_mask, cpus_allowed)) {
  4249. /*
  4250. * We must have raced with a concurrent cpuset
  4251. * update. Just reset the cpus_allowed to the
  4252. * cpuset's cpus_allowed
  4253. */
  4254. new_mask = cpus_allowed;
  4255. goto again;
  4256. }
  4257. }
  4258. out_unlock:
  4259. put_task_struct(p);
  4260. put_online_cpus();
  4261. return retval;
  4262. }
  4263. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4264. cpumask_t *new_mask)
  4265. {
  4266. if (len < sizeof(cpumask_t)) {
  4267. memset(new_mask, 0, sizeof(cpumask_t));
  4268. } else if (len > sizeof(cpumask_t)) {
  4269. len = sizeof(cpumask_t);
  4270. }
  4271. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4272. }
  4273. /**
  4274. * sys_sched_setaffinity - set the cpu affinity of a process
  4275. * @pid: pid of the process
  4276. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4277. * @user_mask_ptr: user-space pointer to the new cpu mask
  4278. */
  4279. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4280. unsigned long __user *user_mask_ptr)
  4281. {
  4282. cpumask_t new_mask;
  4283. int retval;
  4284. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4285. if (retval)
  4286. return retval;
  4287. return sched_setaffinity(pid, &new_mask);
  4288. }
  4289. /*
  4290. * Represents all cpu's present in the system
  4291. * In systems capable of hotplug, this map could dynamically grow
  4292. * as new cpu's are detected in the system via any platform specific
  4293. * method, such as ACPI for e.g.
  4294. */
  4295. cpumask_t cpu_present_map __read_mostly;
  4296. EXPORT_SYMBOL(cpu_present_map);
  4297. #ifndef CONFIG_SMP
  4298. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4299. EXPORT_SYMBOL(cpu_online_map);
  4300. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4301. EXPORT_SYMBOL(cpu_possible_map);
  4302. #endif
  4303. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4304. {
  4305. struct task_struct *p;
  4306. int retval;
  4307. get_online_cpus();
  4308. read_lock(&tasklist_lock);
  4309. retval = -ESRCH;
  4310. p = find_process_by_pid(pid);
  4311. if (!p)
  4312. goto out_unlock;
  4313. retval = security_task_getscheduler(p);
  4314. if (retval)
  4315. goto out_unlock;
  4316. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4317. out_unlock:
  4318. read_unlock(&tasklist_lock);
  4319. put_online_cpus();
  4320. return retval;
  4321. }
  4322. /**
  4323. * sys_sched_getaffinity - get the cpu affinity of a process
  4324. * @pid: pid of the process
  4325. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4326. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4327. */
  4328. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4329. unsigned long __user *user_mask_ptr)
  4330. {
  4331. int ret;
  4332. cpumask_t mask;
  4333. if (len < sizeof(cpumask_t))
  4334. return -EINVAL;
  4335. ret = sched_getaffinity(pid, &mask);
  4336. if (ret < 0)
  4337. return ret;
  4338. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4339. return -EFAULT;
  4340. return sizeof(cpumask_t);
  4341. }
  4342. /**
  4343. * sys_sched_yield - yield the current processor to other threads.
  4344. *
  4345. * This function yields the current CPU to other tasks. If there are no
  4346. * other threads running on this CPU then this function will return.
  4347. */
  4348. asmlinkage long sys_sched_yield(void)
  4349. {
  4350. struct rq *rq = this_rq_lock();
  4351. schedstat_inc(rq, yld_count);
  4352. current->sched_class->yield_task(rq);
  4353. /*
  4354. * Since we are going to call schedule() anyway, there's
  4355. * no need to preempt or enable interrupts:
  4356. */
  4357. __release(rq->lock);
  4358. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4359. _raw_spin_unlock(&rq->lock);
  4360. preempt_enable_no_resched();
  4361. schedule();
  4362. return 0;
  4363. }
  4364. static void __cond_resched(void)
  4365. {
  4366. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4367. __might_sleep(__FILE__, __LINE__);
  4368. #endif
  4369. /*
  4370. * The BKS might be reacquired before we have dropped
  4371. * PREEMPT_ACTIVE, which could trigger a second
  4372. * cond_resched() call.
  4373. */
  4374. do {
  4375. add_preempt_count(PREEMPT_ACTIVE);
  4376. schedule();
  4377. sub_preempt_count(PREEMPT_ACTIVE);
  4378. } while (need_resched());
  4379. }
  4380. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4381. int __sched _cond_resched(void)
  4382. {
  4383. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4384. system_state == SYSTEM_RUNNING) {
  4385. __cond_resched();
  4386. return 1;
  4387. }
  4388. return 0;
  4389. }
  4390. EXPORT_SYMBOL(_cond_resched);
  4391. #endif
  4392. /*
  4393. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4394. * call schedule, and on return reacquire the lock.
  4395. *
  4396. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4397. * operations here to prevent schedule() from being called twice (once via
  4398. * spin_unlock(), once by hand).
  4399. */
  4400. int cond_resched_lock(spinlock_t *lock)
  4401. {
  4402. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4403. int ret = 0;
  4404. if (spin_needbreak(lock) || resched) {
  4405. spin_unlock(lock);
  4406. if (resched && need_resched())
  4407. __cond_resched();
  4408. else
  4409. cpu_relax();
  4410. ret = 1;
  4411. spin_lock(lock);
  4412. }
  4413. return ret;
  4414. }
  4415. EXPORT_SYMBOL(cond_resched_lock);
  4416. int __sched cond_resched_softirq(void)
  4417. {
  4418. BUG_ON(!in_softirq());
  4419. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4420. local_bh_enable();
  4421. __cond_resched();
  4422. local_bh_disable();
  4423. return 1;
  4424. }
  4425. return 0;
  4426. }
  4427. EXPORT_SYMBOL(cond_resched_softirq);
  4428. /**
  4429. * yield - yield the current processor to other threads.
  4430. *
  4431. * This is a shortcut for kernel-space yielding - it marks the
  4432. * thread runnable and calls sys_sched_yield().
  4433. */
  4434. void __sched yield(void)
  4435. {
  4436. set_current_state(TASK_RUNNING);
  4437. sys_sched_yield();
  4438. }
  4439. EXPORT_SYMBOL(yield);
  4440. /*
  4441. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4442. * that process accounting knows that this is a task in IO wait state.
  4443. *
  4444. * But don't do that if it is a deliberate, throttling IO wait (this task
  4445. * has set its backing_dev_info: the queue against which it should throttle)
  4446. */
  4447. void __sched io_schedule(void)
  4448. {
  4449. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4450. delayacct_blkio_start();
  4451. atomic_inc(&rq->nr_iowait);
  4452. schedule();
  4453. atomic_dec(&rq->nr_iowait);
  4454. delayacct_blkio_end();
  4455. }
  4456. EXPORT_SYMBOL(io_schedule);
  4457. long __sched io_schedule_timeout(long timeout)
  4458. {
  4459. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4460. long ret;
  4461. delayacct_blkio_start();
  4462. atomic_inc(&rq->nr_iowait);
  4463. ret = schedule_timeout(timeout);
  4464. atomic_dec(&rq->nr_iowait);
  4465. delayacct_blkio_end();
  4466. return ret;
  4467. }
  4468. /**
  4469. * sys_sched_get_priority_max - return maximum RT priority.
  4470. * @policy: scheduling class.
  4471. *
  4472. * this syscall returns the maximum rt_priority that can be used
  4473. * by a given scheduling class.
  4474. */
  4475. asmlinkage long sys_sched_get_priority_max(int policy)
  4476. {
  4477. int ret = -EINVAL;
  4478. switch (policy) {
  4479. case SCHED_FIFO:
  4480. case SCHED_RR:
  4481. ret = MAX_USER_RT_PRIO-1;
  4482. break;
  4483. case SCHED_NORMAL:
  4484. case SCHED_BATCH:
  4485. case SCHED_IDLE:
  4486. ret = 0;
  4487. break;
  4488. }
  4489. return ret;
  4490. }
  4491. /**
  4492. * sys_sched_get_priority_min - return minimum RT priority.
  4493. * @policy: scheduling class.
  4494. *
  4495. * this syscall returns the minimum rt_priority that can be used
  4496. * by a given scheduling class.
  4497. */
  4498. asmlinkage long sys_sched_get_priority_min(int policy)
  4499. {
  4500. int ret = -EINVAL;
  4501. switch (policy) {
  4502. case SCHED_FIFO:
  4503. case SCHED_RR:
  4504. ret = 1;
  4505. break;
  4506. case SCHED_NORMAL:
  4507. case SCHED_BATCH:
  4508. case SCHED_IDLE:
  4509. ret = 0;
  4510. }
  4511. return ret;
  4512. }
  4513. /**
  4514. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4515. * @pid: pid of the process.
  4516. * @interval: userspace pointer to the timeslice value.
  4517. *
  4518. * this syscall writes the default timeslice value of a given process
  4519. * into the user-space timespec buffer. A value of '0' means infinity.
  4520. */
  4521. asmlinkage
  4522. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4523. {
  4524. struct task_struct *p;
  4525. unsigned int time_slice;
  4526. int retval;
  4527. struct timespec t;
  4528. if (pid < 0)
  4529. return -EINVAL;
  4530. retval = -ESRCH;
  4531. read_lock(&tasklist_lock);
  4532. p = find_process_by_pid(pid);
  4533. if (!p)
  4534. goto out_unlock;
  4535. retval = security_task_getscheduler(p);
  4536. if (retval)
  4537. goto out_unlock;
  4538. /*
  4539. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4540. * tasks that are on an otherwise idle runqueue:
  4541. */
  4542. time_slice = 0;
  4543. if (p->policy == SCHED_RR) {
  4544. time_slice = DEF_TIMESLICE;
  4545. } else if (p->policy != SCHED_FIFO) {
  4546. struct sched_entity *se = &p->se;
  4547. unsigned long flags;
  4548. struct rq *rq;
  4549. rq = task_rq_lock(p, &flags);
  4550. if (rq->cfs.load.weight)
  4551. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4552. task_rq_unlock(rq, &flags);
  4553. }
  4554. read_unlock(&tasklist_lock);
  4555. jiffies_to_timespec(time_slice, &t);
  4556. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4557. return retval;
  4558. out_unlock:
  4559. read_unlock(&tasklist_lock);
  4560. return retval;
  4561. }
  4562. static const char stat_nam[] = "RSDTtZX";
  4563. void sched_show_task(struct task_struct *p)
  4564. {
  4565. unsigned long free = 0;
  4566. unsigned state;
  4567. state = p->state ? __ffs(p->state) + 1 : 0;
  4568. printk(KERN_INFO "%-13.13s %c", p->comm,
  4569. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4570. #if BITS_PER_LONG == 32
  4571. if (state == TASK_RUNNING)
  4572. printk(KERN_CONT " running ");
  4573. else
  4574. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4575. #else
  4576. if (state == TASK_RUNNING)
  4577. printk(KERN_CONT " running task ");
  4578. else
  4579. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4580. #endif
  4581. #ifdef CONFIG_DEBUG_STACK_USAGE
  4582. {
  4583. unsigned long *n = end_of_stack(p);
  4584. while (!*n)
  4585. n++;
  4586. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4587. }
  4588. #endif
  4589. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4590. task_pid_nr(p), task_pid_nr(p->real_parent));
  4591. show_stack(p, NULL);
  4592. }
  4593. void show_state_filter(unsigned long state_filter)
  4594. {
  4595. struct task_struct *g, *p;
  4596. #if BITS_PER_LONG == 32
  4597. printk(KERN_INFO
  4598. " task PC stack pid father\n");
  4599. #else
  4600. printk(KERN_INFO
  4601. " task PC stack pid father\n");
  4602. #endif
  4603. read_lock(&tasklist_lock);
  4604. do_each_thread(g, p) {
  4605. /*
  4606. * reset the NMI-timeout, listing all files on a slow
  4607. * console might take alot of time:
  4608. */
  4609. touch_nmi_watchdog();
  4610. if (!state_filter || (p->state & state_filter))
  4611. sched_show_task(p);
  4612. } while_each_thread(g, p);
  4613. touch_all_softlockup_watchdogs();
  4614. #ifdef CONFIG_SCHED_DEBUG
  4615. sysrq_sched_debug_show();
  4616. #endif
  4617. read_unlock(&tasklist_lock);
  4618. /*
  4619. * Only show locks if all tasks are dumped:
  4620. */
  4621. if (state_filter == -1)
  4622. debug_show_all_locks();
  4623. }
  4624. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4625. {
  4626. idle->sched_class = &idle_sched_class;
  4627. }
  4628. /**
  4629. * init_idle - set up an idle thread for a given CPU
  4630. * @idle: task in question
  4631. * @cpu: cpu the idle task belongs to
  4632. *
  4633. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4634. * flag, to make booting more robust.
  4635. */
  4636. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4637. {
  4638. struct rq *rq = cpu_rq(cpu);
  4639. unsigned long flags;
  4640. __sched_fork(idle);
  4641. idle->se.exec_start = sched_clock();
  4642. idle->prio = idle->normal_prio = MAX_PRIO;
  4643. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4644. __set_task_cpu(idle, cpu);
  4645. spin_lock_irqsave(&rq->lock, flags);
  4646. rq->curr = rq->idle = idle;
  4647. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4648. idle->oncpu = 1;
  4649. #endif
  4650. spin_unlock_irqrestore(&rq->lock, flags);
  4651. /* Set the preempt count _outside_ the spinlocks! */
  4652. task_thread_info(idle)->preempt_count = 0;
  4653. /*
  4654. * The idle tasks have their own, simple scheduling class:
  4655. */
  4656. idle->sched_class = &idle_sched_class;
  4657. }
  4658. /*
  4659. * In a system that switches off the HZ timer nohz_cpu_mask
  4660. * indicates which cpus entered this state. This is used
  4661. * in the rcu update to wait only for active cpus. For system
  4662. * which do not switch off the HZ timer nohz_cpu_mask should
  4663. * always be CPU_MASK_NONE.
  4664. */
  4665. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4666. /*
  4667. * Increase the granularity value when there are more CPUs,
  4668. * because with more CPUs the 'effective latency' as visible
  4669. * to users decreases. But the relationship is not linear,
  4670. * so pick a second-best guess by going with the log2 of the
  4671. * number of CPUs.
  4672. *
  4673. * This idea comes from the SD scheduler of Con Kolivas:
  4674. */
  4675. static inline void sched_init_granularity(void)
  4676. {
  4677. unsigned int factor = 1 + ilog2(num_online_cpus());
  4678. const unsigned long limit = 200000000;
  4679. sysctl_sched_min_granularity *= factor;
  4680. if (sysctl_sched_min_granularity > limit)
  4681. sysctl_sched_min_granularity = limit;
  4682. sysctl_sched_latency *= factor;
  4683. if (sysctl_sched_latency > limit)
  4684. sysctl_sched_latency = limit;
  4685. sysctl_sched_wakeup_granularity *= factor;
  4686. }
  4687. #ifdef CONFIG_SMP
  4688. /*
  4689. * This is how migration works:
  4690. *
  4691. * 1) we queue a struct migration_req structure in the source CPU's
  4692. * runqueue and wake up that CPU's migration thread.
  4693. * 2) we down() the locked semaphore => thread blocks.
  4694. * 3) migration thread wakes up (implicitly it forces the migrated
  4695. * thread off the CPU)
  4696. * 4) it gets the migration request and checks whether the migrated
  4697. * task is still in the wrong runqueue.
  4698. * 5) if it's in the wrong runqueue then the migration thread removes
  4699. * it and puts it into the right queue.
  4700. * 6) migration thread up()s the semaphore.
  4701. * 7) we wake up and the migration is done.
  4702. */
  4703. /*
  4704. * Change a given task's CPU affinity. Migrate the thread to a
  4705. * proper CPU and schedule it away if the CPU it's executing on
  4706. * is removed from the allowed bitmask.
  4707. *
  4708. * NOTE: the caller must have a valid reference to the task, the
  4709. * task must not exit() & deallocate itself prematurely. The
  4710. * call is not atomic; no spinlocks may be held.
  4711. */
  4712. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4713. {
  4714. struct migration_req req;
  4715. unsigned long flags;
  4716. struct rq *rq;
  4717. int ret = 0;
  4718. rq = task_rq_lock(p, &flags);
  4719. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4720. ret = -EINVAL;
  4721. goto out;
  4722. }
  4723. if (p->sched_class->set_cpus_allowed)
  4724. p->sched_class->set_cpus_allowed(p, new_mask);
  4725. else {
  4726. p->cpus_allowed = *new_mask;
  4727. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4728. }
  4729. /* Can the task run on the task's current CPU? If so, we're done */
  4730. if (cpu_isset(task_cpu(p), *new_mask))
  4731. goto out;
  4732. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4733. /* Need help from migration thread: drop lock and wait. */
  4734. task_rq_unlock(rq, &flags);
  4735. wake_up_process(rq->migration_thread);
  4736. wait_for_completion(&req.done);
  4737. tlb_migrate_finish(p->mm);
  4738. return 0;
  4739. }
  4740. out:
  4741. task_rq_unlock(rq, &flags);
  4742. return ret;
  4743. }
  4744. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4745. /*
  4746. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4747. * this because either it can't run here any more (set_cpus_allowed()
  4748. * away from this CPU, or CPU going down), or because we're
  4749. * attempting to rebalance this task on exec (sched_exec).
  4750. *
  4751. * So we race with normal scheduler movements, but that's OK, as long
  4752. * as the task is no longer on this CPU.
  4753. *
  4754. * Returns non-zero if task was successfully migrated.
  4755. */
  4756. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4757. {
  4758. struct rq *rq_dest, *rq_src;
  4759. int ret = 0, on_rq;
  4760. if (unlikely(cpu_is_offline(dest_cpu)))
  4761. return ret;
  4762. rq_src = cpu_rq(src_cpu);
  4763. rq_dest = cpu_rq(dest_cpu);
  4764. double_rq_lock(rq_src, rq_dest);
  4765. /* Already moved. */
  4766. if (task_cpu(p) != src_cpu)
  4767. goto out;
  4768. /* Affinity changed (again). */
  4769. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4770. goto out;
  4771. on_rq = p->se.on_rq;
  4772. if (on_rq)
  4773. deactivate_task(rq_src, p, 0);
  4774. set_task_cpu(p, dest_cpu);
  4775. if (on_rq) {
  4776. activate_task(rq_dest, p, 0);
  4777. check_preempt_curr(rq_dest, p);
  4778. }
  4779. ret = 1;
  4780. out:
  4781. double_rq_unlock(rq_src, rq_dest);
  4782. return ret;
  4783. }
  4784. /*
  4785. * migration_thread - this is a highprio system thread that performs
  4786. * thread migration by bumping thread off CPU then 'pushing' onto
  4787. * another runqueue.
  4788. */
  4789. static int migration_thread(void *data)
  4790. {
  4791. int cpu = (long)data;
  4792. struct rq *rq;
  4793. rq = cpu_rq(cpu);
  4794. BUG_ON(rq->migration_thread != current);
  4795. set_current_state(TASK_INTERRUPTIBLE);
  4796. while (!kthread_should_stop()) {
  4797. struct migration_req *req;
  4798. struct list_head *head;
  4799. spin_lock_irq(&rq->lock);
  4800. if (cpu_is_offline(cpu)) {
  4801. spin_unlock_irq(&rq->lock);
  4802. goto wait_to_die;
  4803. }
  4804. if (rq->active_balance) {
  4805. active_load_balance(rq, cpu);
  4806. rq->active_balance = 0;
  4807. }
  4808. head = &rq->migration_queue;
  4809. if (list_empty(head)) {
  4810. spin_unlock_irq(&rq->lock);
  4811. schedule();
  4812. set_current_state(TASK_INTERRUPTIBLE);
  4813. continue;
  4814. }
  4815. req = list_entry(head->next, struct migration_req, list);
  4816. list_del_init(head->next);
  4817. spin_unlock(&rq->lock);
  4818. __migrate_task(req->task, cpu, req->dest_cpu);
  4819. local_irq_enable();
  4820. complete(&req->done);
  4821. }
  4822. __set_current_state(TASK_RUNNING);
  4823. return 0;
  4824. wait_to_die:
  4825. /* Wait for kthread_stop */
  4826. set_current_state(TASK_INTERRUPTIBLE);
  4827. while (!kthread_should_stop()) {
  4828. schedule();
  4829. set_current_state(TASK_INTERRUPTIBLE);
  4830. }
  4831. __set_current_state(TASK_RUNNING);
  4832. return 0;
  4833. }
  4834. #ifdef CONFIG_HOTPLUG_CPU
  4835. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4836. {
  4837. int ret;
  4838. local_irq_disable();
  4839. ret = __migrate_task(p, src_cpu, dest_cpu);
  4840. local_irq_enable();
  4841. return ret;
  4842. }
  4843. /*
  4844. * Figure out where task on dead CPU should go, use force if necessary.
  4845. * NOTE: interrupts should be disabled by the caller
  4846. */
  4847. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4848. {
  4849. unsigned long flags;
  4850. cpumask_t mask;
  4851. struct rq *rq;
  4852. int dest_cpu;
  4853. do {
  4854. /* On same node? */
  4855. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4856. cpus_and(mask, mask, p->cpus_allowed);
  4857. dest_cpu = any_online_cpu(mask);
  4858. /* On any allowed CPU? */
  4859. if (dest_cpu >= nr_cpu_ids)
  4860. dest_cpu = any_online_cpu(p->cpus_allowed);
  4861. /* No more Mr. Nice Guy. */
  4862. if (dest_cpu >= nr_cpu_ids) {
  4863. cpumask_t cpus_allowed;
  4864. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4865. /*
  4866. * Try to stay on the same cpuset, where the
  4867. * current cpuset may be a subset of all cpus.
  4868. * The cpuset_cpus_allowed_locked() variant of
  4869. * cpuset_cpus_allowed() will not block. It must be
  4870. * called within calls to cpuset_lock/cpuset_unlock.
  4871. */
  4872. rq = task_rq_lock(p, &flags);
  4873. p->cpus_allowed = cpus_allowed;
  4874. dest_cpu = any_online_cpu(p->cpus_allowed);
  4875. task_rq_unlock(rq, &flags);
  4876. /*
  4877. * Don't tell them about moving exiting tasks or
  4878. * kernel threads (both mm NULL), since they never
  4879. * leave kernel.
  4880. */
  4881. if (p->mm && printk_ratelimit()) {
  4882. printk(KERN_INFO "process %d (%s) no "
  4883. "longer affine to cpu%d\n",
  4884. task_pid_nr(p), p->comm, dead_cpu);
  4885. }
  4886. }
  4887. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4888. }
  4889. /*
  4890. * While a dead CPU has no uninterruptible tasks queued at this point,
  4891. * it might still have a nonzero ->nr_uninterruptible counter, because
  4892. * for performance reasons the counter is not stricly tracking tasks to
  4893. * their home CPUs. So we just add the counter to another CPU's counter,
  4894. * to keep the global sum constant after CPU-down:
  4895. */
  4896. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4897. {
  4898. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4899. unsigned long flags;
  4900. local_irq_save(flags);
  4901. double_rq_lock(rq_src, rq_dest);
  4902. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4903. rq_src->nr_uninterruptible = 0;
  4904. double_rq_unlock(rq_src, rq_dest);
  4905. local_irq_restore(flags);
  4906. }
  4907. /* Run through task list and migrate tasks from the dead cpu. */
  4908. static void migrate_live_tasks(int src_cpu)
  4909. {
  4910. struct task_struct *p, *t;
  4911. read_lock(&tasklist_lock);
  4912. do_each_thread(t, p) {
  4913. if (p == current)
  4914. continue;
  4915. if (task_cpu(p) == src_cpu)
  4916. move_task_off_dead_cpu(src_cpu, p);
  4917. } while_each_thread(t, p);
  4918. read_unlock(&tasklist_lock);
  4919. }
  4920. /*
  4921. * Schedules idle task to be the next runnable task on current CPU.
  4922. * It does so by boosting its priority to highest possible.
  4923. * Used by CPU offline code.
  4924. */
  4925. void sched_idle_next(void)
  4926. {
  4927. int this_cpu = smp_processor_id();
  4928. struct rq *rq = cpu_rq(this_cpu);
  4929. struct task_struct *p = rq->idle;
  4930. unsigned long flags;
  4931. /* cpu has to be offline */
  4932. BUG_ON(cpu_online(this_cpu));
  4933. /*
  4934. * Strictly not necessary since rest of the CPUs are stopped by now
  4935. * and interrupts disabled on the current cpu.
  4936. */
  4937. spin_lock_irqsave(&rq->lock, flags);
  4938. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4939. update_rq_clock(rq);
  4940. activate_task(rq, p, 0);
  4941. spin_unlock_irqrestore(&rq->lock, flags);
  4942. }
  4943. /*
  4944. * Ensures that the idle task is using init_mm right before its cpu goes
  4945. * offline.
  4946. */
  4947. void idle_task_exit(void)
  4948. {
  4949. struct mm_struct *mm = current->active_mm;
  4950. BUG_ON(cpu_online(smp_processor_id()));
  4951. if (mm != &init_mm)
  4952. switch_mm(mm, &init_mm, current);
  4953. mmdrop(mm);
  4954. }
  4955. /* called under rq->lock with disabled interrupts */
  4956. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4957. {
  4958. struct rq *rq = cpu_rq(dead_cpu);
  4959. /* Must be exiting, otherwise would be on tasklist. */
  4960. BUG_ON(!p->exit_state);
  4961. /* Cannot have done final schedule yet: would have vanished. */
  4962. BUG_ON(p->state == TASK_DEAD);
  4963. get_task_struct(p);
  4964. /*
  4965. * Drop lock around migration; if someone else moves it,
  4966. * that's OK. No task can be added to this CPU, so iteration is
  4967. * fine.
  4968. */
  4969. spin_unlock_irq(&rq->lock);
  4970. move_task_off_dead_cpu(dead_cpu, p);
  4971. spin_lock_irq(&rq->lock);
  4972. put_task_struct(p);
  4973. }
  4974. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4975. static void migrate_dead_tasks(unsigned int dead_cpu)
  4976. {
  4977. struct rq *rq = cpu_rq(dead_cpu);
  4978. struct task_struct *next;
  4979. for ( ; ; ) {
  4980. if (!rq->nr_running)
  4981. break;
  4982. update_rq_clock(rq);
  4983. next = pick_next_task(rq, rq->curr);
  4984. if (!next)
  4985. break;
  4986. migrate_dead(dead_cpu, next);
  4987. }
  4988. }
  4989. #endif /* CONFIG_HOTPLUG_CPU */
  4990. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4991. static struct ctl_table sd_ctl_dir[] = {
  4992. {
  4993. .procname = "sched_domain",
  4994. .mode = 0555,
  4995. },
  4996. {0, },
  4997. };
  4998. static struct ctl_table sd_ctl_root[] = {
  4999. {
  5000. .ctl_name = CTL_KERN,
  5001. .procname = "kernel",
  5002. .mode = 0555,
  5003. .child = sd_ctl_dir,
  5004. },
  5005. {0, },
  5006. };
  5007. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5008. {
  5009. struct ctl_table *entry =
  5010. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5011. return entry;
  5012. }
  5013. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5014. {
  5015. struct ctl_table *entry;
  5016. /*
  5017. * In the intermediate directories, both the child directory and
  5018. * procname are dynamically allocated and could fail but the mode
  5019. * will always be set. In the lowest directory the names are
  5020. * static strings and all have proc handlers.
  5021. */
  5022. for (entry = *tablep; entry->mode; entry++) {
  5023. if (entry->child)
  5024. sd_free_ctl_entry(&entry->child);
  5025. if (entry->proc_handler == NULL)
  5026. kfree(entry->procname);
  5027. }
  5028. kfree(*tablep);
  5029. *tablep = NULL;
  5030. }
  5031. static void
  5032. set_table_entry(struct ctl_table *entry,
  5033. const char *procname, void *data, int maxlen,
  5034. mode_t mode, proc_handler *proc_handler)
  5035. {
  5036. entry->procname = procname;
  5037. entry->data = data;
  5038. entry->maxlen = maxlen;
  5039. entry->mode = mode;
  5040. entry->proc_handler = proc_handler;
  5041. }
  5042. static struct ctl_table *
  5043. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5044. {
  5045. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5046. if (table == NULL)
  5047. return NULL;
  5048. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5049. sizeof(long), 0644, proc_doulongvec_minmax);
  5050. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5051. sizeof(long), 0644, proc_doulongvec_minmax);
  5052. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5053. sizeof(int), 0644, proc_dointvec_minmax);
  5054. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5055. sizeof(int), 0644, proc_dointvec_minmax);
  5056. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5057. sizeof(int), 0644, proc_dointvec_minmax);
  5058. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5059. sizeof(int), 0644, proc_dointvec_minmax);
  5060. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5061. sizeof(int), 0644, proc_dointvec_minmax);
  5062. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5063. sizeof(int), 0644, proc_dointvec_minmax);
  5064. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5065. sizeof(int), 0644, proc_dointvec_minmax);
  5066. set_table_entry(&table[9], "cache_nice_tries",
  5067. &sd->cache_nice_tries,
  5068. sizeof(int), 0644, proc_dointvec_minmax);
  5069. set_table_entry(&table[10], "flags", &sd->flags,
  5070. sizeof(int), 0644, proc_dointvec_minmax);
  5071. /* &table[11] is terminator */
  5072. return table;
  5073. }
  5074. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5075. {
  5076. struct ctl_table *entry, *table;
  5077. struct sched_domain *sd;
  5078. int domain_num = 0, i;
  5079. char buf[32];
  5080. for_each_domain(cpu, sd)
  5081. domain_num++;
  5082. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5083. if (table == NULL)
  5084. return NULL;
  5085. i = 0;
  5086. for_each_domain(cpu, sd) {
  5087. snprintf(buf, 32, "domain%d", i);
  5088. entry->procname = kstrdup(buf, GFP_KERNEL);
  5089. entry->mode = 0555;
  5090. entry->child = sd_alloc_ctl_domain_table(sd);
  5091. entry++;
  5092. i++;
  5093. }
  5094. return table;
  5095. }
  5096. static struct ctl_table_header *sd_sysctl_header;
  5097. static void register_sched_domain_sysctl(void)
  5098. {
  5099. int i, cpu_num = num_online_cpus();
  5100. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5101. char buf[32];
  5102. WARN_ON(sd_ctl_dir[0].child);
  5103. sd_ctl_dir[0].child = entry;
  5104. if (entry == NULL)
  5105. return;
  5106. for_each_online_cpu(i) {
  5107. snprintf(buf, 32, "cpu%d", i);
  5108. entry->procname = kstrdup(buf, GFP_KERNEL);
  5109. entry->mode = 0555;
  5110. entry->child = sd_alloc_ctl_cpu_table(i);
  5111. entry++;
  5112. }
  5113. WARN_ON(sd_sysctl_header);
  5114. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5115. }
  5116. /* may be called multiple times per register */
  5117. static void unregister_sched_domain_sysctl(void)
  5118. {
  5119. if (sd_sysctl_header)
  5120. unregister_sysctl_table(sd_sysctl_header);
  5121. sd_sysctl_header = NULL;
  5122. if (sd_ctl_dir[0].child)
  5123. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5124. }
  5125. #else
  5126. static void register_sched_domain_sysctl(void)
  5127. {
  5128. }
  5129. static void unregister_sched_domain_sysctl(void)
  5130. {
  5131. }
  5132. #endif
  5133. /*
  5134. * migration_call - callback that gets triggered when a CPU is added.
  5135. * Here we can start up the necessary migration thread for the new CPU.
  5136. */
  5137. static int __cpuinit
  5138. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5139. {
  5140. struct task_struct *p;
  5141. int cpu = (long)hcpu;
  5142. unsigned long flags;
  5143. struct rq *rq;
  5144. switch (action) {
  5145. case CPU_UP_PREPARE:
  5146. case CPU_UP_PREPARE_FROZEN:
  5147. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5148. if (IS_ERR(p))
  5149. return NOTIFY_BAD;
  5150. kthread_bind(p, cpu);
  5151. /* Must be high prio: stop_machine expects to yield to it. */
  5152. rq = task_rq_lock(p, &flags);
  5153. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5154. task_rq_unlock(rq, &flags);
  5155. cpu_rq(cpu)->migration_thread = p;
  5156. break;
  5157. case CPU_ONLINE:
  5158. case CPU_ONLINE_FROZEN:
  5159. /* Strictly unnecessary, as first user will wake it. */
  5160. wake_up_process(cpu_rq(cpu)->migration_thread);
  5161. /* Update our root-domain */
  5162. rq = cpu_rq(cpu);
  5163. spin_lock_irqsave(&rq->lock, flags);
  5164. if (rq->rd) {
  5165. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5166. cpu_set(cpu, rq->rd->online);
  5167. }
  5168. spin_unlock_irqrestore(&rq->lock, flags);
  5169. break;
  5170. #ifdef CONFIG_HOTPLUG_CPU
  5171. case CPU_UP_CANCELED:
  5172. case CPU_UP_CANCELED_FROZEN:
  5173. if (!cpu_rq(cpu)->migration_thread)
  5174. break;
  5175. /* Unbind it from offline cpu so it can run. Fall thru. */
  5176. kthread_bind(cpu_rq(cpu)->migration_thread,
  5177. any_online_cpu(cpu_online_map));
  5178. kthread_stop(cpu_rq(cpu)->migration_thread);
  5179. cpu_rq(cpu)->migration_thread = NULL;
  5180. break;
  5181. case CPU_DEAD:
  5182. case CPU_DEAD_FROZEN:
  5183. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5184. migrate_live_tasks(cpu);
  5185. rq = cpu_rq(cpu);
  5186. kthread_stop(rq->migration_thread);
  5187. rq->migration_thread = NULL;
  5188. /* Idle task back to normal (off runqueue, low prio) */
  5189. spin_lock_irq(&rq->lock);
  5190. update_rq_clock(rq);
  5191. deactivate_task(rq, rq->idle, 0);
  5192. rq->idle->static_prio = MAX_PRIO;
  5193. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5194. rq->idle->sched_class = &idle_sched_class;
  5195. migrate_dead_tasks(cpu);
  5196. spin_unlock_irq(&rq->lock);
  5197. cpuset_unlock();
  5198. migrate_nr_uninterruptible(rq);
  5199. BUG_ON(rq->nr_running != 0);
  5200. /*
  5201. * No need to migrate the tasks: it was best-effort if
  5202. * they didn't take sched_hotcpu_mutex. Just wake up
  5203. * the requestors.
  5204. */
  5205. spin_lock_irq(&rq->lock);
  5206. while (!list_empty(&rq->migration_queue)) {
  5207. struct migration_req *req;
  5208. req = list_entry(rq->migration_queue.next,
  5209. struct migration_req, list);
  5210. list_del_init(&req->list);
  5211. complete(&req->done);
  5212. }
  5213. spin_unlock_irq(&rq->lock);
  5214. break;
  5215. case CPU_DYING:
  5216. case CPU_DYING_FROZEN:
  5217. /* Update our root-domain */
  5218. rq = cpu_rq(cpu);
  5219. spin_lock_irqsave(&rq->lock, flags);
  5220. if (rq->rd) {
  5221. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5222. cpu_clear(cpu, rq->rd->online);
  5223. }
  5224. spin_unlock_irqrestore(&rq->lock, flags);
  5225. break;
  5226. #endif
  5227. }
  5228. return NOTIFY_OK;
  5229. }
  5230. /* Register at highest priority so that task migration (migrate_all_tasks)
  5231. * happens before everything else.
  5232. */
  5233. static struct notifier_block __cpuinitdata migration_notifier = {
  5234. .notifier_call = migration_call,
  5235. .priority = 10
  5236. };
  5237. void __init migration_init(void)
  5238. {
  5239. void *cpu = (void *)(long)smp_processor_id();
  5240. int err;
  5241. /* Start one for the boot CPU: */
  5242. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5243. BUG_ON(err == NOTIFY_BAD);
  5244. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5245. register_cpu_notifier(&migration_notifier);
  5246. }
  5247. #endif
  5248. #ifdef CONFIG_SMP
  5249. #ifdef CONFIG_SCHED_DEBUG
  5250. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5251. cpumask_t *groupmask)
  5252. {
  5253. struct sched_group *group = sd->groups;
  5254. char str[256];
  5255. cpulist_scnprintf(str, sizeof(str), sd->span);
  5256. cpus_clear(*groupmask);
  5257. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5258. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5259. printk("does not load-balance\n");
  5260. if (sd->parent)
  5261. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5262. " has parent");
  5263. return -1;
  5264. }
  5265. printk(KERN_CONT "span %s\n", str);
  5266. if (!cpu_isset(cpu, sd->span)) {
  5267. printk(KERN_ERR "ERROR: domain->span does not contain "
  5268. "CPU%d\n", cpu);
  5269. }
  5270. if (!cpu_isset(cpu, group->cpumask)) {
  5271. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5272. " CPU%d\n", cpu);
  5273. }
  5274. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5275. do {
  5276. if (!group) {
  5277. printk("\n");
  5278. printk(KERN_ERR "ERROR: group is NULL\n");
  5279. break;
  5280. }
  5281. if (!group->__cpu_power) {
  5282. printk(KERN_CONT "\n");
  5283. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5284. "set\n");
  5285. break;
  5286. }
  5287. if (!cpus_weight(group->cpumask)) {
  5288. printk(KERN_CONT "\n");
  5289. printk(KERN_ERR "ERROR: empty group\n");
  5290. break;
  5291. }
  5292. if (cpus_intersects(*groupmask, group->cpumask)) {
  5293. printk(KERN_CONT "\n");
  5294. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5295. break;
  5296. }
  5297. cpus_or(*groupmask, *groupmask, group->cpumask);
  5298. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5299. printk(KERN_CONT " %s", str);
  5300. group = group->next;
  5301. } while (group != sd->groups);
  5302. printk(KERN_CONT "\n");
  5303. if (!cpus_equal(sd->span, *groupmask))
  5304. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5305. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5306. printk(KERN_ERR "ERROR: parent span is not a superset "
  5307. "of domain->span\n");
  5308. return 0;
  5309. }
  5310. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5311. {
  5312. cpumask_t *groupmask;
  5313. int level = 0;
  5314. if (!sd) {
  5315. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5316. return;
  5317. }
  5318. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5319. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5320. if (!groupmask) {
  5321. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5322. return;
  5323. }
  5324. for (;;) {
  5325. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5326. break;
  5327. level++;
  5328. sd = sd->parent;
  5329. if (!sd)
  5330. break;
  5331. }
  5332. kfree(groupmask);
  5333. }
  5334. #else
  5335. # define sched_domain_debug(sd, cpu) do { } while (0)
  5336. #endif
  5337. static int sd_degenerate(struct sched_domain *sd)
  5338. {
  5339. if (cpus_weight(sd->span) == 1)
  5340. return 1;
  5341. /* Following flags need at least 2 groups */
  5342. if (sd->flags & (SD_LOAD_BALANCE |
  5343. SD_BALANCE_NEWIDLE |
  5344. SD_BALANCE_FORK |
  5345. SD_BALANCE_EXEC |
  5346. SD_SHARE_CPUPOWER |
  5347. SD_SHARE_PKG_RESOURCES)) {
  5348. if (sd->groups != sd->groups->next)
  5349. return 0;
  5350. }
  5351. /* Following flags don't use groups */
  5352. if (sd->flags & (SD_WAKE_IDLE |
  5353. SD_WAKE_AFFINE |
  5354. SD_WAKE_BALANCE))
  5355. return 0;
  5356. return 1;
  5357. }
  5358. static int
  5359. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5360. {
  5361. unsigned long cflags = sd->flags, pflags = parent->flags;
  5362. if (sd_degenerate(parent))
  5363. return 1;
  5364. if (!cpus_equal(sd->span, parent->span))
  5365. return 0;
  5366. /* Does parent contain flags not in child? */
  5367. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5368. if (cflags & SD_WAKE_AFFINE)
  5369. pflags &= ~SD_WAKE_BALANCE;
  5370. /* Flags needing groups don't count if only 1 group in parent */
  5371. if (parent->groups == parent->groups->next) {
  5372. pflags &= ~(SD_LOAD_BALANCE |
  5373. SD_BALANCE_NEWIDLE |
  5374. SD_BALANCE_FORK |
  5375. SD_BALANCE_EXEC |
  5376. SD_SHARE_CPUPOWER |
  5377. SD_SHARE_PKG_RESOURCES);
  5378. }
  5379. if (~cflags & pflags)
  5380. return 0;
  5381. return 1;
  5382. }
  5383. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5384. {
  5385. unsigned long flags;
  5386. const struct sched_class *class;
  5387. spin_lock_irqsave(&rq->lock, flags);
  5388. if (rq->rd) {
  5389. struct root_domain *old_rd = rq->rd;
  5390. for (class = sched_class_highest; class; class = class->next) {
  5391. if (class->leave_domain)
  5392. class->leave_domain(rq);
  5393. }
  5394. cpu_clear(rq->cpu, old_rd->span);
  5395. cpu_clear(rq->cpu, old_rd->online);
  5396. if (atomic_dec_and_test(&old_rd->refcount))
  5397. kfree(old_rd);
  5398. }
  5399. atomic_inc(&rd->refcount);
  5400. rq->rd = rd;
  5401. cpu_set(rq->cpu, rd->span);
  5402. if (cpu_isset(rq->cpu, cpu_online_map))
  5403. cpu_set(rq->cpu, rd->online);
  5404. for (class = sched_class_highest; class; class = class->next) {
  5405. if (class->join_domain)
  5406. class->join_domain(rq);
  5407. }
  5408. spin_unlock_irqrestore(&rq->lock, flags);
  5409. }
  5410. static void init_rootdomain(struct root_domain *rd)
  5411. {
  5412. memset(rd, 0, sizeof(*rd));
  5413. cpus_clear(rd->span);
  5414. cpus_clear(rd->online);
  5415. }
  5416. static void init_defrootdomain(void)
  5417. {
  5418. init_rootdomain(&def_root_domain);
  5419. atomic_set(&def_root_domain.refcount, 1);
  5420. }
  5421. static struct root_domain *alloc_rootdomain(void)
  5422. {
  5423. struct root_domain *rd;
  5424. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5425. if (!rd)
  5426. return NULL;
  5427. init_rootdomain(rd);
  5428. return rd;
  5429. }
  5430. /*
  5431. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5432. * hold the hotplug lock.
  5433. */
  5434. static void
  5435. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5436. {
  5437. struct rq *rq = cpu_rq(cpu);
  5438. struct sched_domain *tmp;
  5439. /* Remove the sched domains which do not contribute to scheduling. */
  5440. for (tmp = sd; tmp; tmp = tmp->parent) {
  5441. struct sched_domain *parent = tmp->parent;
  5442. if (!parent)
  5443. break;
  5444. if (sd_parent_degenerate(tmp, parent)) {
  5445. tmp->parent = parent->parent;
  5446. if (parent->parent)
  5447. parent->parent->child = tmp;
  5448. }
  5449. }
  5450. if (sd && sd_degenerate(sd)) {
  5451. sd = sd->parent;
  5452. if (sd)
  5453. sd->child = NULL;
  5454. }
  5455. sched_domain_debug(sd, cpu);
  5456. rq_attach_root(rq, rd);
  5457. rcu_assign_pointer(rq->sd, sd);
  5458. }
  5459. /* cpus with isolated domains */
  5460. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5461. /* Setup the mask of cpus configured for isolated domains */
  5462. static int __init isolated_cpu_setup(char *str)
  5463. {
  5464. int ints[NR_CPUS], i;
  5465. str = get_options(str, ARRAY_SIZE(ints), ints);
  5466. cpus_clear(cpu_isolated_map);
  5467. for (i = 1; i <= ints[0]; i++)
  5468. if (ints[i] < NR_CPUS)
  5469. cpu_set(ints[i], cpu_isolated_map);
  5470. return 1;
  5471. }
  5472. __setup("isolcpus=", isolated_cpu_setup);
  5473. /*
  5474. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5475. * to a function which identifies what group(along with sched group) a CPU
  5476. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5477. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5478. *
  5479. * init_sched_build_groups will build a circular linked list of the groups
  5480. * covered by the given span, and will set each group's ->cpumask correctly,
  5481. * and ->cpu_power to 0.
  5482. */
  5483. static void
  5484. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5485. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5486. struct sched_group **sg,
  5487. cpumask_t *tmpmask),
  5488. cpumask_t *covered, cpumask_t *tmpmask)
  5489. {
  5490. struct sched_group *first = NULL, *last = NULL;
  5491. int i;
  5492. cpus_clear(*covered);
  5493. for_each_cpu_mask(i, *span) {
  5494. struct sched_group *sg;
  5495. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5496. int j;
  5497. if (cpu_isset(i, *covered))
  5498. continue;
  5499. cpus_clear(sg->cpumask);
  5500. sg->__cpu_power = 0;
  5501. for_each_cpu_mask(j, *span) {
  5502. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5503. continue;
  5504. cpu_set(j, *covered);
  5505. cpu_set(j, sg->cpumask);
  5506. }
  5507. if (!first)
  5508. first = sg;
  5509. if (last)
  5510. last->next = sg;
  5511. last = sg;
  5512. }
  5513. last->next = first;
  5514. }
  5515. #define SD_NODES_PER_DOMAIN 16
  5516. #ifdef CONFIG_NUMA
  5517. /**
  5518. * find_next_best_node - find the next node to include in a sched_domain
  5519. * @node: node whose sched_domain we're building
  5520. * @used_nodes: nodes already in the sched_domain
  5521. *
  5522. * Find the next node to include in a given scheduling domain. Simply
  5523. * finds the closest node not already in the @used_nodes map.
  5524. *
  5525. * Should use nodemask_t.
  5526. */
  5527. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5528. {
  5529. int i, n, val, min_val, best_node = 0;
  5530. min_val = INT_MAX;
  5531. for (i = 0; i < MAX_NUMNODES; i++) {
  5532. /* Start at @node */
  5533. n = (node + i) % MAX_NUMNODES;
  5534. if (!nr_cpus_node(n))
  5535. continue;
  5536. /* Skip already used nodes */
  5537. if (node_isset(n, *used_nodes))
  5538. continue;
  5539. /* Simple min distance search */
  5540. val = node_distance(node, n);
  5541. if (val < min_val) {
  5542. min_val = val;
  5543. best_node = n;
  5544. }
  5545. }
  5546. node_set(best_node, *used_nodes);
  5547. return best_node;
  5548. }
  5549. /**
  5550. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5551. * @node: node whose cpumask we're constructing
  5552. *
  5553. * Given a node, construct a good cpumask for its sched_domain to span. It
  5554. * should be one that prevents unnecessary balancing, but also spreads tasks
  5555. * out optimally.
  5556. */
  5557. static void sched_domain_node_span(int node, cpumask_t *span)
  5558. {
  5559. nodemask_t used_nodes;
  5560. node_to_cpumask_ptr(nodemask, node);
  5561. int i;
  5562. cpus_clear(*span);
  5563. nodes_clear(used_nodes);
  5564. cpus_or(*span, *span, *nodemask);
  5565. node_set(node, used_nodes);
  5566. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5567. int next_node = find_next_best_node(node, &used_nodes);
  5568. node_to_cpumask_ptr_next(nodemask, next_node);
  5569. cpus_or(*span, *span, *nodemask);
  5570. }
  5571. }
  5572. #endif
  5573. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5574. /*
  5575. * SMT sched-domains:
  5576. */
  5577. #ifdef CONFIG_SCHED_SMT
  5578. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5579. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5580. static int
  5581. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5582. cpumask_t *unused)
  5583. {
  5584. if (sg)
  5585. *sg = &per_cpu(sched_group_cpus, cpu);
  5586. return cpu;
  5587. }
  5588. #endif
  5589. /*
  5590. * multi-core sched-domains:
  5591. */
  5592. #ifdef CONFIG_SCHED_MC
  5593. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5594. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5595. #endif
  5596. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5597. static int
  5598. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5599. cpumask_t *mask)
  5600. {
  5601. int group;
  5602. *mask = per_cpu(cpu_sibling_map, cpu);
  5603. cpus_and(*mask, *mask, *cpu_map);
  5604. group = first_cpu(*mask);
  5605. if (sg)
  5606. *sg = &per_cpu(sched_group_core, group);
  5607. return group;
  5608. }
  5609. #elif defined(CONFIG_SCHED_MC)
  5610. static int
  5611. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5612. cpumask_t *unused)
  5613. {
  5614. if (sg)
  5615. *sg = &per_cpu(sched_group_core, cpu);
  5616. return cpu;
  5617. }
  5618. #endif
  5619. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5620. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5621. static int
  5622. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5623. cpumask_t *mask)
  5624. {
  5625. int group;
  5626. #ifdef CONFIG_SCHED_MC
  5627. *mask = cpu_coregroup_map(cpu);
  5628. cpus_and(*mask, *mask, *cpu_map);
  5629. group = first_cpu(*mask);
  5630. #elif defined(CONFIG_SCHED_SMT)
  5631. *mask = per_cpu(cpu_sibling_map, cpu);
  5632. cpus_and(*mask, *mask, *cpu_map);
  5633. group = first_cpu(*mask);
  5634. #else
  5635. group = cpu;
  5636. #endif
  5637. if (sg)
  5638. *sg = &per_cpu(sched_group_phys, group);
  5639. return group;
  5640. }
  5641. #ifdef CONFIG_NUMA
  5642. /*
  5643. * The init_sched_build_groups can't handle what we want to do with node
  5644. * groups, so roll our own. Now each node has its own list of groups which
  5645. * gets dynamically allocated.
  5646. */
  5647. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5648. static struct sched_group ***sched_group_nodes_bycpu;
  5649. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5650. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5651. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5652. struct sched_group **sg, cpumask_t *nodemask)
  5653. {
  5654. int group;
  5655. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5656. cpus_and(*nodemask, *nodemask, *cpu_map);
  5657. group = first_cpu(*nodemask);
  5658. if (sg)
  5659. *sg = &per_cpu(sched_group_allnodes, group);
  5660. return group;
  5661. }
  5662. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5663. {
  5664. struct sched_group *sg = group_head;
  5665. int j;
  5666. if (!sg)
  5667. return;
  5668. do {
  5669. for_each_cpu_mask(j, sg->cpumask) {
  5670. struct sched_domain *sd;
  5671. sd = &per_cpu(phys_domains, j);
  5672. if (j != first_cpu(sd->groups->cpumask)) {
  5673. /*
  5674. * Only add "power" once for each
  5675. * physical package.
  5676. */
  5677. continue;
  5678. }
  5679. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5680. }
  5681. sg = sg->next;
  5682. } while (sg != group_head);
  5683. }
  5684. #endif
  5685. #ifdef CONFIG_NUMA
  5686. /* Free memory allocated for various sched_group structures */
  5687. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5688. {
  5689. int cpu, i;
  5690. for_each_cpu_mask(cpu, *cpu_map) {
  5691. struct sched_group **sched_group_nodes
  5692. = sched_group_nodes_bycpu[cpu];
  5693. if (!sched_group_nodes)
  5694. continue;
  5695. for (i = 0; i < MAX_NUMNODES; i++) {
  5696. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5697. *nodemask = node_to_cpumask(i);
  5698. cpus_and(*nodemask, *nodemask, *cpu_map);
  5699. if (cpus_empty(*nodemask))
  5700. continue;
  5701. if (sg == NULL)
  5702. continue;
  5703. sg = sg->next;
  5704. next_sg:
  5705. oldsg = sg;
  5706. sg = sg->next;
  5707. kfree(oldsg);
  5708. if (oldsg != sched_group_nodes[i])
  5709. goto next_sg;
  5710. }
  5711. kfree(sched_group_nodes);
  5712. sched_group_nodes_bycpu[cpu] = NULL;
  5713. }
  5714. }
  5715. #else
  5716. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5717. {
  5718. }
  5719. #endif
  5720. /*
  5721. * Initialize sched groups cpu_power.
  5722. *
  5723. * cpu_power indicates the capacity of sched group, which is used while
  5724. * distributing the load between different sched groups in a sched domain.
  5725. * Typically cpu_power for all the groups in a sched domain will be same unless
  5726. * there are asymmetries in the topology. If there are asymmetries, group
  5727. * having more cpu_power will pickup more load compared to the group having
  5728. * less cpu_power.
  5729. *
  5730. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5731. * the maximum number of tasks a group can handle in the presence of other idle
  5732. * or lightly loaded groups in the same sched domain.
  5733. */
  5734. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5735. {
  5736. struct sched_domain *child;
  5737. struct sched_group *group;
  5738. WARN_ON(!sd || !sd->groups);
  5739. if (cpu != first_cpu(sd->groups->cpumask))
  5740. return;
  5741. child = sd->child;
  5742. sd->groups->__cpu_power = 0;
  5743. /*
  5744. * For perf policy, if the groups in child domain share resources
  5745. * (for example cores sharing some portions of the cache hierarchy
  5746. * or SMT), then set this domain groups cpu_power such that each group
  5747. * can handle only one task, when there are other idle groups in the
  5748. * same sched domain.
  5749. */
  5750. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5751. (child->flags &
  5752. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5753. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5754. return;
  5755. }
  5756. /*
  5757. * add cpu_power of each child group to this groups cpu_power
  5758. */
  5759. group = child->groups;
  5760. do {
  5761. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5762. group = group->next;
  5763. } while (group != child->groups);
  5764. }
  5765. /*
  5766. * Initializers for schedule domains
  5767. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5768. */
  5769. #define SD_INIT(sd, type) sd_init_##type(sd)
  5770. #define SD_INIT_FUNC(type) \
  5771. static noinline void sd_init_##type(struct sched_domain *sd) \
  5772. { \
  5773. memset(sd, 0, sizeof(*sd)); \
  5774. *sd = SD_##type##_INIT; \
  5775. }
  5776. SD_INIT_FUNC(CPU)
  5777. #ifdef CONFIG_NUMA
  5778. SD_INIT_FUNC(ALLNODES)
  5779. SD_INIT_FUNC(NODE)
  5780. #endif
  5781. #ifdef CONFIG_SCHED_SMT
  5782. SD_INIT_FUNC(SIBLING)
  5783. #endif
  5784. #ifdef CONFIG_SCHED_MC
  5785. SD_INIT_FUNC(MC)
  5786. #endif
  5787. /*
  5788. * To minimize stack usage kmalloc room for cpumasks and share the
  5789. * space as the usage in build_sched_domains() dictates. Used only
  5790. * if the amount of space is significant.
  5791. */
  5792. struct allmasks {
  5793. cpumask_t tmpmask; /* make this one first */
  5794. union {
  5795. cpumask_t nodemask;
  5796. cpumask_t this_sibling_map;
  5797. cpumask_t this_core_map;
  5798. };
  5799. cpumask_t send_covered;
  5800. #ifdef CONFIG_NUMA
  5801. cpumask_t domainspan;
  5802. cpumask_t covered;
  5803. cpumask_t notcovered;
  5804. #endif
  5805. };
  5806. #if NR_CPUS > 128
  5807. #define SCHED_CPUMASK_ALLOC 1
  5808. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5809. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5810. #else
  5811. #define SCHED_CPUMASK_ALLOC 0
  5812. #define SCHED_CPUMASK_FREE(v)
  5813. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5814. #endif
  5815. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5816. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5817. /*
  5818. * Build sched domains for a given set of cpus and attach the sched domains
  5819. * to the individual cpus
  5820. */
  5821. static int build_sched_domains(const cpumask_t *cpu_map)
  5822. {
  5823. int i;
  5824. struct root_domain *rd;
  5825. SCHED_CPUMASK_DECLARE(allmasks);
  5826. cpumask_t *tmpmask;
  5827. #ifdef CONFIG_NUMA
  5828. struct sched_group **sched_group_nodes = NULL;
  5829. int sd_allnodes = 0;
  5830. /*
  5831. * Allocate the per-node list of sched groups
  5832. */
  5833. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5834. GFP_KERNEL);
  5835. if (!sched_group_nodes) {
  5836. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5837. return -ENOMEM;
  5838. }
  5839. #endif
  5840. rd = alloc_rootdomain();
  5841. if (!rd) {
  5842. printk(KERN_WARNING "Cannot alloc root domain\n");
  5843. #ifdef CONFIG_NUMA
  5844. kfree(sched_group_nodes);
  5845. #endif
  5846. return -ENOMEM;
  5847. }
  5848. #if SCHED_CPUMASK_ALLOC
  5849. /* get space for all scratch cpumask variables */
  5850. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5851. if (!allmasks) {
  5852. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5853. kfree(rd);
  5854. #ifdef CONFIG_NUMA
  5855. kfree(sched_group_nodes);
  5856. #endif
  5857. return -ENOMEM;
  5858. }
  5859. #endif
  5860. tmpmask = (cpumask_t *)allmasks;
  5861. #ifdef CONFIG_NUMA
  5862. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5863. #endif
  5864. /*
  5865. * Set up domains for cpus specified by the cpu_map.
  5866. */
  5867. for_each_cpu_mask(i, *cpu_map) {
  5868. struct sched_domain *sd = NULL, *p;
  5869. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5870. *nodemask = node_to_cpumask(cpu_to_node(i));
  5871. cpus_and(*nodemask, *nodemask, *cpu_map);
  5872. #ifdef CONFIG_NUMA
  5873. if (cpus_weight(*cpu_map) >
  5874. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5875. sd = &per_cpu(allnodes_domains, i);
  5876. SD_INIT(sd, ALLNODES);
  5877. sd->span = *cpu_map;
  5878. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5879. p = sd;
  5880. sd_allnodes = 1;
  5881. } else
  5882. p = NULL;
  5883. sd = &per_cpu(node_domains, i);
  5884. SD_INIT(sd, NODE);
  5885. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5886. sd->parent = p;
  5887. if (p)
  5888. p->child = sd;
  5889. cpus_and(sd->span, sd->span, *cpu_map);
  5890. #endif
  5891. p = sd;
  5892. sd = &per_cpu(phys_domains, i);
  5893. SD_INIT(sd, CPU);
  5894. sd->span = *nodemask;
  5895. sd->parent = p;
  5896. if (p)
  5897. p->child = sd;
  5898. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5899. #ifdef CONFIG_SCHED_MC
  5900. p = sd;
  5901. sd = &per_cpu(core_domains, i);
  5902. SD_INIT(sd, MC);
  5903. sd->span = cpu_coregroup_map(i);
  5904. cpus_and(sd->span, sd->span, *cpu_map);
  5905. sd->parent = p;
  5906. p->child = sd;
  5907. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5908. #endif
  5909. #ifdef CONFIG_SCHED_SMT
  5910. p = sd;
  5911. sd = &per_cpu(cpu_domains, i);
  5912. SD_INIT(sd, SIBLING);
  5913. sd->span = per_cpu(cpu_sibling_map, i);
  5914. cpus_and(sd->span, sd->span, *cpu_map);
  5915. sd->parent = p;
  5916. p->child = sd;
  5917. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5918. #endif
  5919. }
  5920. #ifdef CONFIG_SCHED_SMT
  5921. /* Set up CPU (sibling) groups */
  5922. for_each_cpu_mask(i, *cpu_map) {
  5923. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  5924. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5925. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  5926. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  5927. if (i != first_cpu(*this_sibling_map))
  5928. continue;
  5929. init_sched_build_groups(this_sibling_map, cpu_map,
  5930. &cpu_to_cpu_group,
  5931. send_covered, tmpmask);
  5932. }
  5933. #endif
  5934. #ifdef CONFIG_SCHED_MC
  5935. /* Set up multi-core groups */
  5936. for_each_cpu_mask(i, *cpu_map) {
  5937. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  5938. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5939. *this_core_map = cpu_coregroup_map(i);
  5940. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  5941. if (i != first_cpu(*this_core_map))
  5942. continue;
  5943. init_sched_build_groups(this_core_map, cpu_map,
  5944. &cpu_to_core_group,
  5945. send_covered, tmpmask);
  5946. }
  5947. #endif
  5948. /* Set up physical groups */
  5949. for (i = 0; i < MAX_NUMNODES; i++) {
  5950. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5951. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5952. *nodemask = node_to_cpumask(i);
  5953. cpus_and(*nodemask, *nodemask, *cpu_map);
  5954. if (cpus_empty(*nodemask))
  5955. continue;
  5956. init_sched_build_groups(nodemask, cpu_map,
  5957. &cpu_to_phys_group,
  5958. send_covered, tmpmask);
  5959. }
  5960. #ifdef CONFIG_NUMA
  5961. /* Set up node groups */
  5962. if (sd_allnodes) {
  5963. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5964. init_sched_build_groups(cpu_map, cpu_map,
  5965. &cpu_to_allnodes_group,
  5966. send_covered, tmpmask);
  5967. }
  5968. for (i = 0; i < MAX_NUMNODES; i++) {
  5969. /* Set up node groups */
  5970. struct sched_group *sg, *prev;
  5971. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5972. SCHED_CPUMASK_VAR(domainspan, allmasks);
  5973. SCHED_CPUMASK_VAR(covered, allmasks);
  5974. int j;
  5975. *nodemask = node_to_cpumask(i);
  5976. cpus_clear(*covered);
  5977. cpus_and(*nodemask, *nodemask, *cpu_map);
  5978. if (cpus_empty(*nodemask)) {
  5979. sched_group_nodes[i] = NULL;
  5980. continue;
  5981. }
  5982. sched_domain_node_span(i, domainspan);
  5983. cpus_and(*domainspan, *domainspan, *cpu_map);
  5984. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5985. if (!sg) {
  5986. printk(KERN_WARNING "Can not alloc domain group for "
  5987. "node %d\n", i);
  5988. goto error;
  5989. }
  5990. sched_group_nodes[i] = sg;
  5991. for_each_cpu_mask(j, *nodemask) {
  5992. struct sched_domain *sd;
  5993. sd = &per_cpu(node_domains, j);
  5994. sd->groups = sg;
  5995. }
  5996. sg->__cpu_power = 0;
  5997. sg->cpumask = *nodemask;
  5998. sg->next = sg;
  5999. cpus_or(*covered, *covered, *nodemask);
  6000. prev = sg;
  6001. for (j = 0; j < MAX_NUMNODES; j++) {
  6002. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6003. int n = (i + j) % MAX_NUMNODES;
  6004. node_to_cpumask_ptr(pnodemask, n);
  6005. cpus_complement(*notcovered, *covered);
  6006. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6007. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6008. if (cpus_empty(*tmpmask))
  6009. break;
  6010. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6011. if (cpus_empty(*tmpmask))
  6012. continue;
  6013. sg = kmalloc_node(sizeof(struct sched_group),
  6014. GFP_KERNEL, i);
  6015. if (!sg) {
  6016. printk(KERN_WARNING
  6017. "Can not alloc domain group for node %d\n", j);
  6018. goto error;
  6019. }
  6020. sg->__cpu_power = 0;
  6021. sg->cpumask = *tmpmask;
  6022. sg->next = prev->next;
  6023. cpus_or(*covered, *covered, *tmpmask);
  6024. prev->next = sg;
  6025. prev = sg;
  6026. }
  6027. }
  6028. #endif
  6029. /* Calculate CPU power for physical packages and nodes */
  6030. #ifdef CONFIG_SCHED_SMT
  6031. for_each_cpu_mask(i, *cpu_map) {
  6032. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6033. init_sched_groups_power(i, sd);
  6034. }
  6035. #endif
  6036. #ifdef CONFIG_SCHED_MC
  6037. for_each_cpu_mask(i, *cpu_map) {
  6038. struct sched_domain *sd = &per_cpu(core_domains, i);
  6039. init_sched_groups_power(i, sd);
  6040. }
  6041. #endif
  6042. for_each_cpu_mask(i, *cpu_map) {
  6043. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6044. init_sched_groups_power(i, sd);
  6045. }
  6046. #ifdef CONFIG_NUMA
  6047. for (i = 0; i < MAX_NUMNODES; i++)
  6048. init_numa_sched_groups_power(sched_group_nodes[i]);
  6049. if (sd_allnodes) {
  6050. struct sched_group *sg;
  6051. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6052. tmpmask);
  6053. init_numa_sched_groups_power(sg);
  6054. }
  6055. #endif
  6056. /* Attach the domains */
  6057. for_each_cpu_mask(i, *cpu_map) {
  6058. struct sched_domain *sd;
  6059. #ifdef CONFIG_SCHED_SMT
  6060. sd = &per_cpu(cpu_domains, i);
  6061. #elif defined(CONFIG_SCHED_MC)
  6062. sd = &per_cpu(core_domains, i);
  6063. #else
  6064. sd = &per_cpu(phys_domains, i);
  6065. #endif
  6066. cpu_attach_domain(sd, rd, i);
  6067. }
  6068. SCHED_CPUMASK_FREE((void *)allmasks);
  6069. return 0;
  6070. #ifdef CONFIG_NUMA
  6071. error:
  6072. free_sched_groups(cpu_map, tmpmask);
  6073. SCHED_CPUMASK_FREE((void *)allmasks);
  6074. return -ENOMEM;
  6075. #endif
  6076. }
  6077. static cpumask_t *doms_cur; /* current sched domains */
  6078. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6079. /*
  6080. * Special case: If a kmalloc of a doms_cur partition (array of
  6081. * cpumask_t) fails, then fallback to a single sched domain,
  6082. * as determined by the single cpumask_t fallback_doms.
  6083. */
  6084. static cpumask_t fallback_doms;
  6085. void __attribute__((weak)) arch_update_cpu_topology(void)
  6086. {
  6087. }
  6088. /*
  6089. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6090. * For now this just excludes isolated cpus, but could be used to
  6091. * exclude other special cases in the future.
  6092. */
  6093. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6094. {
  6095. int err;
  6096. arch_update_cpu_topology();
  6097. ndoms_cur = 1;
  6098. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6099. if (!doms_cur)
  6100. doms_cur = &fallback_doms;
  6101. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6102. err = build_sched_domains(doms_cur);
  6103. register_sched_domain_sysctl();
  6104. return err;
  6105. }
  6106. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6107. cpumask_t *tmpmask)
  6108. {
  6109. free_sched_groups(cpu_map, tmpmask);
  6110. }
  6111. /*
  6112. * Detach sched domains from a group of cpus specified in cpu_map
  6113. * These cpus will now be attached to the NULL domain
  6114. */
  6115. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6116. {
  6117. cpumask_t tmpmask;
  6118. int i;
  6119. unregister_sched_domain_sysctl();
  6120. for_each_cpu_mask(i, *cpu_map)
  6121. cpu_attach_domain(NULL, &def_root_domain, i);
  6122. synchronize_sched();
  6123. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6124. }
  6125. /*
  6126. * Partition sched domains as specified by the 'ndoms_new'
  6127. * cpumasks in the array doms_new[] of cpumasks. This compares
  6128. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6129. * It destroys each deleted domain and builds each new domain.
  6130. *
  6131. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6132. * The masks don't intersect (don't overlap.) We should setup one
  6133. * sched domain for each mask. CPUs not in any of the cpumasks will
  6134. * not be load balanced. If the same cpumask appears both in the
  6135. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6136. * it as it is.
  6137. *
  6138. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6139. * ownership of it and will kfree it when done with it. If the caller
  6140. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6141. * and partition_sched_domains() will fallback to the single partition
  6142. * 'fallback_doms'.
  6143. *
  6144. * Call with hotplug lock held
  6145. */
  6146. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  6147. {
  6148. int i, j;
  6149. lock_doms_cur();
  6150. /* always unregister in case we don't destroy any domains */
  6151. unregister_sched_domain_sysctl();
  6152. if (doms_new == NULL) {
  6153. ndoms_new = 1;
  6154. doms_new = &fallback_doms;
  6155. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6156. }
  6157. /* Destroy deleted domains */
  6158. for (i = 0; i < ndoms_cur; i++) {
  6159. for (j = 0; j < ndoms_new; j++) {
  6160. if (cpus_equal(doms_cur[i], doms_new[j]))
  6161. goto match1;
  6162. }
  6163. /* no match - a current sched domain not in new doms_new[] */
  6164. detach_destroy_domains(doms_cur + i);
  6165. match1:
  6166. ;
  6167. }
  6168. /* Build new domains */
  6169. for (i = 0; i < ndoms_new; i++) {
  6170. for (j = 0; j < ndoms_cur; j++) {
  6171. if (cpus_equal(doms_new[i], doms_cur[j]))
  6172. goto match2;
  6173. }
  6174. /* no match - add a new doms_new */
  6175. build_sched_domains(doms_new + i);
  6176. match2:
  6177. ;
  6178. }
  6179. /* Remember the new sched domains */
  6180. if (doms_cur != &fallback_doms)
  6181. kfree(doms_cur);
  6182. doms_cur = doms_new;
  6183. ndoms_cur = ndoms_new;
  6184. register_sched_domain_sysctl();
  6185. unlock_doms_cur();
  6186. }
  6187. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6188. int arch_reinit_sched_domains(void)
  6189. {
  6190. int err;
  6191. get_online_cpus();
  6192. detach_destroy_domains(&cpu_online_map);
  6193. err = arch_init_sched_domains(&cpu_online_map);
  6194. put_online_cpus();
  6195. return err;
  6196. }
  6197. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6198. {
  6199. int ret;
  6200. if (buf[0] != '0' && buf[0] != '1')
  6201. return -EINVAL;
  6202. if (smt)
  6203. sched_smt_power_savings = (buf[0] == '1');
  6204. else
  6205. sched_mc_power_savings = (buf[0] == '1');
  6206. ret = arch_reinit_sched_domains();
  6207. return ret ? ret : count;
  6208. }
  6209. #ifdef CONFIG_SCHED_MC
  6210. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6211. {
  6212. return sprintf(page, "%u\n", sched_mc_power_savings);
  6213. }
  6214. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6215. const char *buf, size_t count)
  6216. {
  6217. return sched_power_savings_store(buf, count, 0);
  6218. }
  6219. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6220. sched_mc_power_savings_store);
  6221. #endif
  6222. #ifdef CONFIG_SCHED_SMT
  6223. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6224. {
  6225. return sprintf(page, "%u\n", sched_smt_power_savings);
  6226. }
  6227. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6228. const char *buf, size_t count)
  6229. {
  6230. return sched_power_savings_store(buf, count, 1);
  6231. }
  6232. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6233. sched_smt_power_savings_store);
  6234. #endif
  6235. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6236. {
  6237. int err = 0;
  6238. #ifdef CONFIG_SCHED_SMT
  6239. if (smt_capable())
  6240. err = sysfs_create_file(&cls->kset.kobj,
  6241. &attr_sched_smt_power_savings.attr);
  6242. #endif
  6243. #ifdef CONFIG_SCHED_MC
  6244. if (!err && mc_capable())
  6245. err = sysfs_create_file(&cls->kset.kobj,
  6246. &attr_sched_mc_power_savings.attr);
  6247. #endif
  6248. return err;
  6249. }
  6250. #endif
  6251. /*
  6252. * Force a reinitialization of the sched domains hierarchy. The domains
  6253. * and groups cannot be updated in place without racing with the balancing
  6254. * code, so we temporarily attach all running cpus to the NULL domain
  6255. * which will prevent rebalancing while the sched domains are recalculated.
  6256. */
  6257. static int update_sched_domains(struct notifier_block *nfb,
  6258. unsigned long action, void *hcpu)
  6259. {
  6260. switch (action) {
  6261. case CPU_UP_PREPARE:
  6262. case CPU_UP_PREPARE_FROZEN:
  6263. case CPU_DOWN_PREPARE:
  6264. case CPU_DOWN_PREPARE_FROZEN:
  6265. detach_destroy_domains(&cpu_online_map);
  6266. return NOTIFY_OK;
  6267. case CPU_UP_CANCELED:
  6268. case CPU_UP_CANCELED_FROZEN:
  6269. case CPU_DOWN_FAILED:
  6270. case CPU_DOWN_FAILED_FROZEN:
  6271. case CPU_ONLINE:
  6272. case CPU_ONLINE_FROZEN:
  6273. case CPU_DEAD:
  6274. case CPU_DEAD_FROZEN:
  6275. /*
  6276. * Fall through and re-initialise the domains.
  6277. */
  6278. break;
  6279. default:
  6280. return NOTIFY_DONE;
  6281. }
  6282. /* The hotplug lock is already held by cpu_up/cpu_down */
  6283. arch_init_sched_domains(&cpu_online_map);
  6284. return NOTIFY_OK;
  6285. }
  6286. void __init sched_init_smp(void)
  6287. {
  6288. cpumask_t non_isolated_cpus;
  6289. #if defined(CONFIG_NUMA)
  6290. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6291. GFP_KERNEL);
  6292. BUG_ON(sched_group_nodes_bycpu == NULL);
  6293. #endif
  6294. get_online_cpus();
  6295. arch_init_sched_domains(&cpu_online_map);
  6296. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6297. if (cpus_empty(non_isolated_cpus))
  6298. cpu_set(smp_processor_id(), non_isolated_cpus);
  6299. put_online_cpus();
  6300. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6301. hotcpu_notifier(update_sched_domains, 0);
  6302. /* Move init over to a non-isolated CPU */
  6303. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6304. BUG();
  6305. sched_init_granularity();
  6306. }
  6307. #else
  6308. void __init sched_init_smp(void)
  6309. {
  6310. #if defined(CONFIG_NUMA)
  6311. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6312. GFP_KERNEL);
  6313. BUG_ON(sched_group_nodes_bycpu == NULL);
  6314. #endif
  6315. sched_init_granularity();
  6316. }
  6317. #endif /* CONFIG_SMP */
  6318. int in_sched_functions(unsigned long addr)
  6319. {
  6320. return in_lock_functions(addr) ||
  6321. (addr >= (unsigned long)__sched_text_start
  6322. && addr < (unsigned long)__sched_text_end);
  6323. }
  6324. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6325. {
  6326. cfs_rq->tasks_timeline = RB_ROOT;
  6327. #ifdef CONFIG_FAIR_GROUP_SCHED
  6328. cfs_rq->rq = rq;
  6329. #endif
  6330. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6331. }
  6332. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6333. {
  6334. struct rt_prio_array *array;
  6335. int i;
  6336. array = &rt_rq->active;
  6337. for (i = 0; i < MAX_RT_PRIO; i++) {
  6338. INIT_LIST_HEAD(array->queue + i);
  6339. __clear_bit(i, array->bitmap);
  6340. }
  6341. /* delimiter for bitsearch: */
  6342. __set_bit(MAX_RT_PRIO, array->bitmap);
  6343. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6344. rt_rq->highest_prio = MAX_RT_PRIO;
  6345. #endif
  6346. #ifdef CONFIG_SMP
  6347. rt_rq->rt_nr_migratory = 0;
  6348. rt_rq->overloaded = 0;
  6349. #endif
  6350. rt_rq->rt_time = 0;
  6351. rt_rq->rt_throttled = 0;
  6352. rt_rq->rt_runtime = 0;
  6353. spin_lock_init(&rt_rq->rt_runtime_lock);
  6354. #ifdef CONFIG_RT_GROUP_SCHED
  6355. rt_rq->rt_nr_boosted = 0;
  6356. rt_rq->rq = rq;
  6357. #endif
  6358. }
  6359. #ifdef CONFIG_FAIR_GROUP_SCHED
  6360. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6361. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6362. int cpu, int add)
  6363. {
  6364. tg->cfs_rq[cpu] = cfs_rq;
  6365. init_cfs_rq(cfs_rq, rq);
  6366. cfs_rq->tg = tg;
  6367. if (add)
  6368. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6369. tg->se[cpu] = se;
  6370. se->cfs_rq = &rq->cfs;
  6371. se->my_q = cfs_rq;
  6372. se->load.weight = tg->shares;
  6373. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6374. se->parent = NULL;
  6375. }
  6376. #endif
  6377. #ifdef CONFIG_RT_GROUP_SCHED
  6378. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6379. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6380. int cpu, int add)
  6381. {
  6382. tg->rt_rq[cpu] = rt_rq;
  6383. init_rt_rq(rt_rq, rq);
  6384. rt_rq->tg = tg;
  6385. rt_rq->rt_se = rt_se;
  6386. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6387. if (add)
  6388. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6389. tg->rt_se[cpu] = rt_se;
  6390. rt_se->rt_rq = &rq->rt;
  6391. rt_se->my_q = rt_rq;
  6392. rt_se->parent = NULL;
  6393. INIT_LIST_HEAD(&rt_se->run_list);
  6394. }
  6395. #endif
  6396. void __init sched_init(void)
  6397. {
  6398. int i, j;
  6399. unsigned long alloc_size = 0, ptr;
  6400. #ifdef CONFIG_FAIR_GROUP_SCHED
  6401. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6402. #endif
  6403. #ifdef CONFIG_RT_GROUP_SCHED
  6404. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6405. #endif
  6406. /*
  6407. * As sched_init() is called before page_alloc is setup,
  6408. * we use alloc_bootmem().
  6409. */
  6410. if (alloc_size) {
  6411. ptr = (unsigned long)alloc_bootmem_low(alloc_size);
  6412. #ifdef CONFIG_FAIR_GROUP_SCHED
  6413. init_task_group.se = (struct sched_entity **)ptr;
  6414. ptr += nr_cpu_ids * sizeof(void **);
  6415. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6416. ptr += nr_cpu_ids * sizeof(void **);
  6417. #endif
  6418. #ifdef CONFIG_RT_GROUP_SCHED
  6419. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6420. ptr += nr_cpu_ids * sizeof(void **);
  6421. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6422. #endif
  6423. }
  6424. #ifdef CONFIG_SMP
  6425. init_defrootdomain();
  6426. #endif
  6427. init_rt_bandwidth(&def_rt_bandwidth,
  6428. global_rt_period(), global_rt_runtime());
  6429. #ifdef CONFIG_RT_GROUP_SCHED
  6430. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6431. global_rt_period(), global_rt_runtime());
  6432. #endif
  6433. #ifdef CONFIG_GROUP_SCHED
  6434. list_add(&init_task_group.list, &task_groups);
  6435. #endif
  6436. for_each_possible_cpu(i) {
  6437. struct rq *rq;
  6438. rq = cpu_rq(i);
  6439. spin_lock_init(&rq->lock);
  6440. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6441. rq->nr_running = 0;
  6442. rq->clock = 1;
  6443. update_last_tick_seen(rq);
  6444. init_cfs_rq(&rq->cfs, rq);
  6445. init_rt_rq(&rq->rt, rq);
  6446. #ifdef CONFIG_FAIR_GROUP_SCHED
  6447. init_task_group.shares = init_task_group_load;
  6448. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6449. init_tg_cfs_entry(rq, &init_task_group,
  6450. &per_cpu(init_cfs_rq, i),
  6451. &per_cpu(init_sched_entity, i), i, 1);
  6452. #endif
  6453. #ifdef CONFIG_RT_GROUP_SCHED
  6454. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6455. init_tg_rt_entry(rq, &init_task_group,
  6456. &per_cpu(init_rt_rq, i),
  6457. &per_cpu(init_sched_rt_entity, i), i, 1);
  6458. #else
  6459. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6460. #endif
  6461. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6462. rq->cpu_load[j] = 0;
  6463. #ifdef CONFIG_SMP
  6464. rq->sd = NULL;
  6465. rq->rd = NULL;
  6466. rq->active_balance = 0;
  6467. rq->next_balance = jiffies;
  6468. rq->push_cpu = 0;
  6469. rq->cpu = i;
  6470. rq->migration_thread = NULL;
  6471. INIT_LIST_HEAD(&rq->migration_queue);
  6472. rq_attach_root(rq, &def_root_domain);
  6473. #endif
  6474. init_rq_hrtick(rq);
  6475. atomic_set(&rq->nr_iowait, 0);
  6476. }
  6477. set_load_weight(&init_task);
  6478. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6479. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6480. #endif
  6481. #ifdef CONFIG_SMP
  6482. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6483. #endif
  6484. #ifdef CONFIG_RT_MUTEXES
  6485. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6486. #endif
  6487. /*
  6488. * The boot idle thread does lazy MMU switching as well:
  6489. */
  6490. atomic_inc(&init_mm.mm_count);
  6491. enter_lazy_tlb(&init_mm, current);
  6492. /*
  6493. * Make us the idle thread. Technically, schedule() should not be
  6494. * called from this thread, however somewhere below it might be,
  6495. * but because we are the idle thread, we just pick up running again
  6496. * when this runqueue becomes "idle".
  6497. */
  6498. init_idle(current, smp_processor_id());
  6499. /*
  6500. * During early bootup we pretend to be a normal task:
  6501. */
  6502. current->sched_class = &fair_sched_class;
  6503. scheduler_running = 1;
  6504. }
  6505. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6506. void __might_sleep(char *file, int line)
  6507. {
  6508. #ifdef in_atomic
  6509. static unsigned long prev_jiffy; /* ratelimiting */
  6510. if ((in_atomic() || irqs_disabled()) &&
  6511. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6512. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6513. return;
  6514. prev_jiffy = jiffies;
  6515. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6516. " context at %s:%d\n", file, line);
  6517. printk("in_atomic():%d, irqs_disabled():%d\n",
  6518. in_atomic(), irqs_disabled());
  6519. debug_show_held_locks(current);
  6520. if (irqs_disabled())
  6521. print_irqtrace_events(current);
  6522. dump_stack();
  6523. }
  6524. #endif
  6525. }
  6526. EXPORT_SYMBOL(__might_sleep);
  6527. #endif
  6528. #ifdef CONFIG_MAGIC_SYSRQ
  6529. static void normalize_task(struct rq *rq, struct task_struct *p)
  6530. {
  6531. int on_rq;
  6532. update_rq_clock(rq);
  6533. on_rq = p->se.on_rq;
  6534. if (on_rq)
  6535. deactivate_task(rq, p, 0);
  6536. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6537. if (on_rq) {
  6538. activate_task(rq, p, 0);
  6539. resched_task(rq->curr);
  6540. }
  6541. }
  6542. void normalize_rt_tasks(void)
  6543. {
  6544. struct task_struct *g, *p;
  6545. unsigned long flags;
  6546. struct rq *rq;
  6547. read_lock_irqsave(&tasklist_lock, flags);
  6548. do_each_thread(g, p) {
  6549. /*
  6550. * Only normalize user tasks:
  6551. */
  6552. if (!p->mm)
  6553. continue;
  6554. p->se.exec_start = 0;
  6555. #ifdef CONFIG_SCHEDSTATS
  6556. p->se.wait_start = 0;
  6557. p->se.sleep_start = 0;
  6558. p->se.block_start = 0;
  6559. #endif
  6560. task_rq(p)->clock = 0;
  6561. if (!rt_task(p)) {
  6562. /*
  6563. * Renice negative nice level userspace
  6564. * tasks back to 0:
  6565. */
  6566. if (TASK_NICE(p) < 0 && p->mm)
  6567. set_user_nice(p, 0);
  6568. continue;
  6569. }
  6570. spin_lock(&p->pi_lock);
  6571. rq = __task_rq_lock(p);
  6572. normalize_task(rq, p);
  6573. __task_rq_unlock(rq);
  6574. spin_unlock(&p->pi_lock);
  6575. } while_each_thread(g, p);
  6576. read_unlock_irqrestore(&tasklist_lock, flags);
  6577. }
  6578. #endif /* CONFIG_MAGIC_SYSRQ */
  6579. #ifdef CONFIG_IA64
  6580. /*
  6581. * These functions are only useful for the IA64 MCA handling.
  6582. *
  6583. * They can only be called when the whole system has been
  6584. * stopped - every CPU needs to be quiescent, and no scheduling
  6585. * activity can take place. Using them for anything else would
  6586. * be a serious bug, and as a result, they aren't even visible
  6587. * under any other configuration.
  6588. */
  6589. /**
  6590. * curr_task - return the current task for a given cpu.
  6591. * @cpu: the processor in question.
  6592. *
  6593. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6594. */
  6595. struct task_struct *curr_task(int cpu)
  6596. {
  6597. return cpu_curr(cpu);
  6598. }
  6599. /**
  6600. * set_curr_task - set the current task for a given cpu.
  6601. * @cpu: the processor in question.
  6602. * @p: the task pointer to set.
  6603. *
  6604. * Description: This function must only be used when non-maskable interrupts
  6605. * are serviced on a separate stack. It allows the architecture to switch the
  6606. * notion of the current task on a cpu in a non-blocking manner. This function
  6607. * must be called with all CPU's synchronized, and interrupts disabled, the
  6608. * and caller must save the original value of the current task (see
  6609. * curr_task() above) and restore that value before reenabling interrupts and
  6610. * re-starting the system.
  6611. *
  6612. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6613. */
  6614. void set_curr_task(int cpu, struct task_struct *p)
  6615. {
  6616. cpu_curr(cpu) = p;
  6617. }
  6618. #endif
  6619. #ifdef CONFIG_FAIR_GROUP_SCHED
  6620. static void free_fair_sched_group(struct task_group *tg)
  6621. {
  6622. int i;
  6623. for_each_possible_cpu(i) {
  6624. if (tg->cfs_rq)
  6625. kfree(tg->cfs_rq[i]);
  6626. if (tg->se)
  6627. kfree(tg->se[i]);
  6628. }
  6629. kfree(tg->cfs_rq);
  6630. kfree(tg->se);
  6631. }
  6632. static int alloc_fair_sched_group(struct task_group *tg)
  6633. {
  6634. struct cfs_rq *cfs_rq;
  6635. struct sched_entity *se;
  6636. struct rq *rq;
  6637. int i;
  6638. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6639. if (!tg->cfs_rq)
  6640. goto err;
  6641. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6642. if (!tg->se)
  6643. goto err;
  6644. tg->shares = NICE_0_LOAD;
  6645. for_each_possible_cpu(i) {
  6646. rq = cpu_rq(i);
  6647. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6648. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6649. if (!cfs_rq)
  6650. goto err;
  6651. se = kmalloc_node(sizeof(struct sched_entity),
  6652. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6653. if (!se)
  6654. goto err;
  6655. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6656. }
  6657. return 1;
  6658. err:
  6659. return 0;
  6660. }
  6661. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6662. {
  6663. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6664. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6665. }
  6666. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6667. {
  6668. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6669. }
  6670. #else
  6671. static inline void free_fair_sched_group(struct task_group *tg)
  6672. {
  6673. }
  6674. static inline int alloc_fair_sched_group(struct task_group *tg)
  6675. {
  6676. return 1;
  6677. }
  6678. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6679. {
  6680. }
  6681. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6682. {
  6683. }
  6684. #endif
  6685. #ifdef CONFIG_RT_GROUP_SCHED
  6686. static void free_rt_sched_group(struct task_group *tg)
  6687. {
  6688. int i;
  6689. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6690. for_each_possible_cpu(i) {
  6691. if (tg->rt_rq)
  6692. kfree(tg->rt_rq[i]);
  6693. if (tg->rt_se)
  6694. kfree(tg->rt_se[i]);
  6695. }
  6696. kfree(tg->rt_rq);
  6697. kfree(tg->rt_se);
  6698. }
  6699. static int alloc_rt_sched_group(struct task_group *tg)
  6700. {
  6701. struct rt_rq *rt_rq;
  6702. struct sched_rt_entity *rt_se;
  6703. struct rq *rq;
  6704. int i;
  6705. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6706. if (!tg->rt_rq)
  6707. goto err;
  6708. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6709. if (!tg->rt_se)
  6710. goto err;
  6711. init_rt_bandwidth(&tg->rt_bandwidth,
  6712. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6713. for_each_possible_cpu(i) {
  6714. rq = cpu_rq(i);
  6715. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6716. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6717. if (!rt_rq)
  6718. goto err;
  6719. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6720. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6721. if (!rt_se)
  6722. goto err;
  6723. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6724. }
  6725. return 1;
  6726. err:
  6727. return 0;
  6728. }
  6729. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6730. {
  6731. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6732. &cpu_rq(cpu)->leaf_rt_rq_list);
  6733. }
  6734. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6735. {
  6736. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6737. }
  6738. #else
  6739. static inline void free_rt_sched_group(struct task_group *tg)
  6740. {
  6741. }
  6742. static inline int alloc_rt_sched_group(struct task_group *tg)
  6743. {
  6744. return 1;
  6745. }
  6746. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6747. {
  6748. }
  6749. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6750. {
  6751. }
  6752. #endif
  6753. #ifdef CONFIG_GROUP_SCHED
  6754. static void free_sched_group(struct task_group *tg)
  6755. {
  6756. free_fair_sched_group(tg);
  6757. free_rt_sched_group(tg);
  6758. kfree(tg);
  6759. }
  6760. /* allocate runqueue etc for a new task group */
  6761. struct task_group *sched_create_group(void)
  6762. {
  6763. struct task_group *tg;
  6764. unsigned long flags;
  6765. int i;
  6766. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6767. if (!tg)
  6768. return ERR_PTR(-ENOMEM);
  6769. if (!alloc_fair_sched_group(tg))
  6770. goto err;
  6771. if (!alloc_rt_sched_group(tg))
  6772. goto err;
  6773. spin_lock_irqsave(&task_group_lock, flags);
  6774. for_each_possible_cpu(i) {
  6775. register_fair_sched_group(tg, i);
  6776. register_rt_sched_group(tg, i);
  6777. }
  6778. list_add_rcu(&tg->list, &task_groups);
  6779. spin_unlock_irqrestore(&task_group_lock, flags);
  6780. return tg;
  6781. err:
  6782. free_sched_group(tg);
  6783. return ERR_PTR(-ENOMEM);
  6784. }
  6785. /* rcu callback to free various structures associated with a task group */
  6786. static void free_sched_group_rcu(struct rcu_head *rhp)
  6787. {
  6788. /* now it should be safe to free those cfs_rqs */
  6789. free_sched_group(container_of(rhp, struct task_group, rcu));
  6790. }
  6791. /* Destroy runqueue etc associated with a task group */
  6792. void sched_destroy_group(struct task_group *tg)
  6793. {
  6794. unsigned long flags;
  6795. int i;
  6796. spin_lock_irqsave(&task_group_lock, flags);
  6797. for_each_possible_cpu(i) {
  6798. unregister_fair_sched_group(tg, i);
  6799. unregister_rt_sched_group(tg, i);
  6800. }
  6801. list_del_rcu(&tg->list);
  6802. spin_unlock_irqrestore(&task_group_lock, flags);
  6803. /* wait for possible concurrent references to cfs_rqs complete */
  6804. call_rcu(&tg->rcu, free_sched_group_rcu);
  6805. }
  6806. /* change task's runqueue when it moves between groups.
  6807. * The caller of this function should have put the task in its new group
  6808. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6809. * reflect its new group.
  6810. */
  6811. void sched_move_task(struct task_struct *tsk)
  6812. {
  6813. int on_rq, running;
  6814. unsigned long flags;
  6815. struct rq *rq;
  6816. rq = task_rq_lock(tsk, &flags);
  6817. update_rq_clock(rq);
  6818. running = task_current(rq, tsk);
  6819. on_rq = tsk->se.on_rq;
  6820. if (on_rq)
  6821. dequeue_task(rq, tsk, 0);
  6822. if (unlikely(running))
  6823. tsk->sched_class->put_prev_task(rq, tsk);
  6824. set_task_rq(tsk, task_cpu(tsk));
  6825. #ifdef CONFIG_FAIR_GROUP_SCHED
  6826. if (tsk->sched_class->moved_group)
  6827. tsk->sched_class->moved_group(tsk);
  6828. #endif
  6829. if (unlikely(running))
  6830. tsk->sched_class->set_curr_task(rq);
  6831. if (on_rq)
  6832. enqueue_task(rq, tsk, 0);
  6833. task_rq_unlock(rq, &flags);
  6834. }
  6835. #endif
  6836. #ifdef CONFIG_FAIR_GROUP_SCHED
  6837. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6838. {
  6839. struct cfs_rq *cfs_rq = se->cfs_rq;
  6840. struct rq *rq = cfs_rq->rq;
  6841. int on_rq;
  6842. spin_lock_irq(&rq->lock);
  6843. on_rq = se->on_rq;
  6844. if (on_rq)
  6845. dequeue_entity(cfs_rq, se, 0);
  6846. se->load.weight = shares;
  6847. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6848. if (on_rq)
  6849. enqueue_entity(cfs_rq, se, 0);
  6850. spin_unlock_irq(&rq->lock);
  6851. }
  6852. static DEFINE_MUTEX(shares_mutex);
  6853. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6854. {
  6855. int i;
  6856. unsigned long flags;
  6857. /*
  6858. * A weight of 0 or 1 can cause arithmetics problems.
  6859. * (The default weight is 1024 - so there's no practical
  6860. * limitation from this.)
  6861. */
  6862. if (shares < 2)
  6863. shares = 2;
  6864. mutex_lock(&shares_mutex);
  6865. if (tg->shares == shares)
  6866. goto done;
  6867. spin_lock_irqsave(&task_group_lock, flags);
  6868. for_each_possible_cpu(i)
  6869. unregister_fair_sched_group(tg, i);
  6870. spin_unlock_irqrestore(&task_group_lock, flags);
  6871. /* wait for any ongoing reference to this group to finish */
  6872. synchronize_sched();
  6873. /*
  6874. * Now we are free to modify the group's share on each cpu
  6875. * w/o tripping rebalance_share or load_balance_fair.
  6876. */
  6877. tg->shares = shares;
  6878. for_each_possible_cpu(i)
  6879. set_se_shares(tg->se[i], shares);
  6880. /*
  6881. * Enable load balance activity on this group, by inserting it back on
  6882. * each cpu's rq->leaf_cfs_rq_list.
  6883. */
  6884. spin_lock_irqsave(&task_group_lock, flags);
  6885. for_each_possible_cpu(i)
  6886. register_fair_sched_group(tg, i);
  6887. spin_unlock_irqrestore(&task_group_lock, flags);
  6888. done:
  6889. mutex_unlock(&shares_mutex);
  6890. return 0;
  6891. }
  6892. unsigned long sched_group_shares(struct task_group *tg)
  6893. {
  6894. return tg->shares;
  6895. }
  6896. #endif
  6897. #ifdef CONFIG_RT_GROUP_SCHED
  6898. /*
  6899. * Ensure that the real time constraints are schedulable.
  6900. */
  6901. static DEFINE_MUTEX(rt_constraints_mutex);
  6902. static unsigned long to_ratio(u64 period, u64 runtime)
  6903. {
  6904. if (runtime == RUNTIME_INF)
  6905. return 1ULL << 16;
  6906. return div64_64(runtime << 16, period);
  6907. }
  6908. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6909. {
  6910. struct task_group *tgi;
  6911. unsigned long total = 0;
  6912. unsigned long global_ratio =
  6913. to_ratio(global_rt_period(), global_rt_runtime());
  6914. rcu_read_lock();
  6915. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6916. if (tgi == tg)
  6917. continue;
  6918. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  6919. tgi->rt_bandwidth.rt_runtime);
  6920. }
  6921. rcu_read_unlock();
  6922. return total + to_ratio(period, runtime) < global_ratio;
  6923. }
  6924. /* Must be called with tasklist_lock held */
  6925. static inline int tg_has_rt_tasks(struct task_group *tg)
  6926. {
  6927. struct task_struct *g, *p;
  6928. do_each_thread(g, p) {
  6929. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6930. return 1;
  6931. } while_each_thread(g, p);
  6932. return 0;
  6933. }
  6934. static int tg_set_bandwidth(struct task_group *tg,
  6935. u64 rt_period, u64 rt_runtime)
  6936. {
  6937. int i, err = 0;
  6938. mutex_lock(&rt_constraints_mutex);
  6939. read_lock(&tasklist_lock);
  6940. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  6941. err = -EBUSY;
  6942. goto unlock;
  6943. }
  6944. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6945. err = -EINVAL;
  6946. goto unlock;
  6947. }
  6948. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6949. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6950. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6951. for_each_possible_cpu(i) {
  6952. struct rt_rq *rt_rq = tg->rt_rq[i];
  6953. spin_lock(&rt_rq->rt_runtime_lock);
  6954. rt_rq->rt_runtime = rt_runtime;
  6955. spin_unlock(&rt_rq->rt_runtime_lock);
  6956. }
  6957. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6958. unlock:
  6959. read_unlock(&tasklist_lock);
  6960. mutex_unlock(&rt_constraints_mutex);
  6961. return err;
  6962. }
  6963. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6964. {
  6965. u64 rt_runtime, rt_period;
  6966. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6967. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6968. if (rt_runtime_us < 0)
  6969. rt_runtime = RUNTIME_INF;
  6970. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6971. }
  6972. long sched_group_rt_runtime(struct task_group *tg)
  6973. {
  6974. u64 rt_runtime_us;
  6975. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6976. return -1;
  6977. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6978. do_div(rt_runtime_us, NSEC_PER_USEC);
  6979. return rt_runtime_us;
  6980. }
  6981. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6982. {
  6983. u64 rt_runtime, rt_period;
  6984. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6985. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6986. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6987. }
  6988. long sched_group_rt_period(struct task_group *tg)
  6989. {
  6990. u64 rt_period_us;
  6991. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6992. do_div(rt_period_us, NSEC_PER_USEC);
  6993. return rt_period_us;
  6994. }
  6995. static int sched_rt_global_constraints(void)
  6996. {
  6997. int ret = 0;
  6998. mutex_lock(&rt_constraints_mutex);
  6999. if (!__rt_schedulable(NULL, 1, 0))
  7000. ret = -EINVAL;
  7001. mutex_unlock(&rt_constraints_mutex);
  7002. return ret;
  7003. }
  7004. #else
  7005. static int sched_rt_global_constraints(void)
  7006. {
  7007. unsigned long flags;
  7008. int i;
  7009. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7010. for_each_possible_cpu(i) {
  7011. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7012. spin_lock(&rt_rq->rt_runtime_lock);
  7013. rt_rq->rt_runtime = global_rt_runtime();
  7014. spin_unlock(&rt_rq->rt_runtime_lock);
  7015. }
  7016. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7017. return 0;
  7018. }
  7019. #endif
  7020. int sched_rt_handler(struct ctl_table *table, int write,
  7021. struct file *filp, void __user *buffer, size_t *lenp,
  7022. loff_t *ppos)
  7023. {
  7024. int ret;
  7025. int old_period, old_runtime;
  7026. static DEFINE_MUTEX(mutex);
  7027. mutex_lock(&mutex);
  7028. old_period = sysctl_sched_rt_period;
  7029. old_runtime = sysctl_sched_rt_runtime;
  7030. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7031. if (!ret && write) {
  7032. ret = sched_rt_global_constraints();
  7033. if (ret) {
  7034. sysctl_sched_rt_period = old_period;
  7035. sysctl_sched_rt_runtime = old_runtime;
  7036. } else {
  7037. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7038. def_rt_bandwidth.rt_period =
  7039. ns_to_ktime(global_rt_period());
  7040. }
  7041. }
  7042. mutex_unlock(&mutex);
  7043. return ret;
  7044. }
  7045. #ifdef CONFIG_CGROUP_SCHED
  7046. /* return corresponding task_group object of a cgroup */
  7047. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7048. {
  7049. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7050. struct task_group, css);
  7051. }
  7052. static struct cgroup_subsys_state *
  7053. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7054. {
  7055. struct task_group *tg;
  7056. if (!cgrp->parent) {
  7057. /* This is early initialization for the top cgroup */
  7058. init_task_group.css.cgroup = cgrp;
  7059. return &init_task_group.css;
  7060. }
  7061. /* we support only 1-level deep hierarchical scheduler atm */
  7062. if (cgrp->parent->parent)
  7063. return ERR_PTR(-EINVAL);
  7064. tg = sched_create_group();
  7065. if (IS_ERR(tg))
  7066. return ERR_PTR(-ENOMEM);
  7067. /* Bind the cgroup to task_group object we just created */
  7068. tg->css.cgroup = cgrp;
  7069. return &tg->css;
  7070. }
  7071. static void
  7072. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7073. {
  7074. struct task_group *tg = cgroup_tg(cgrp);
  7075. sched_destroy_group(tg);
  7076. }
  7077. static int
  7078. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7079. struct task_struct *tsk)
  7080. {
  7081. #ifdef CONFIG_RT_GROUP_SCHED
  7082. /* Don't accept realtime tasks when there is no way for them to run */
  7083. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7084. return -EINVAL;
  7085. #else
  7086. /* We don't support RT-tasks being in separate groups */
  7087. if (tsk->sched_class != &fair_sched_class)
  7088. return -EINVAL;
  7089. #endif
  7090. return 0;
  7091. }
  7092. static void
  7093. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7094. struct cgroup *old_cont, struct task_struct *tsk)
  7095. {
  7096. sched_move_task(tsk);
  7097. }
  7098. #ifdef CONFIG_FAIR_GROUP_SCHED
  7099. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7100. u64 shareval)
  7101. {
  7102. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7103. }
  7104. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7105. {
  7106. struct task_group *tg = cgroup_tg(cgrp);
  7107. return (u64) tg->shares;
  7108. }
  7109. #endif
  7110. #ifdef CONFIG_RT_GROUP_SCHED
  7111. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7112. struct file *file,
  7113. const char __user *userbuf,
  7114. size_t nbytes, loff_t *unused_ppos)
  7115. {
  7116. char buffer[64];
  7117. int retval = 0;
  7118. s64 val;
  7119. char *end;
  7120. if (!nbytes)
  7121. return -EINVAL;
  7122. if (nbytes >= sizeof(buffer))
  7123. return -E2BIG;
  7124. if (copy_from_user(buffer, userbuf, nbytes))
  7125. return -EFAULT;
  7126. buffer[nbytes] = 0; /* nul-terminate */
  7127. /* strip newline if necessary */
  7128. if (nbytes && (buffer[nbytes-1] == '\n'))
  7129. buffer[nbytes-1] = 0;
  7130. val = simple_strtoll(buffer, &end, 0);
  7131. if (*end)
  7132. return -EINVAL;
  7133. /* Pass to subsystem */
  7134. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7135. if (!retval)
  7136. retval = nbytes;
  7137. return retval;
  7138. }
  7139. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7140. struct file *file,
  7141. char __user *buf, size_t nbytes,
  7142. loff_t *ppos)
  7143. {
  7144. char tmp[64];
  7145. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7146. int len = sprintf(tmp, "%ld\n", val);
  7147. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7148. }
  7149. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7150. u64 rt_period_us)
  7151. {
  7152. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7153. }
  7154. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7155. {
  7156. return sched_group_rt_period(cgroup_tg(cgrp));
  7157. }
  7158. #endif
  7159. static struct cftype cpu_files[] = {
  7160. #ifdef CONFIG_FAIR_GROUP_SCHED
  7161. {
  7162. .name = "shares",
  7163. .read_uint = cpu_shares_read_uint,
  7164. .write_uint = cpu_shares_write_uint,
  7165. },
  7166. #endif
  7167. #ifdef CONFIG_RT_GROUP_SCHED
  7168. {
  7169. .name = "rt_runtime_us",
  7170. .read = cpu_rt_runtime_read,
  7171. .write = cpu_rt_runtime_write,
  7172. },
  7173. {
  7174. .name = "rt_period_us",
  7175. .read_uint = cpu_rt_period_read_uint,
  7176. .write_uint = cpu_rt_period_write_uint,
  7177. },
  7178. #endif
  7179. };
  7180. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7181. {
  7182. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7183. }
  7184. struct cgroup_subsys cpu_cgroup_subsys = {
  7185. .name = "cpu",
  7186. .create = cpu_cgroup_create,
  7187. .destroy = cpu_cgroup_destroy,
  7188. .can_attach = cpu_cgroup_can_attach,
  7189. .attach = cpu_cgroup_attach,
  7190. .populate = cpu_cgroup_populate,
  7191. .subsys_id = cpu_cgroup_subsys_id,
  7192. .early_init = 1,
  7193. };
  7194. #endif /* CONFIG_CGROUP_SCHED */
  7195. #ifdef CONFIG_CGROUP_CPUACCT
  7196. /*
  7197. * CPU accounting code for task groups.
  7198. *
  7199. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7200. * (balbir@in.ibm.com).
  7201. */
  7202. /* track cpu usage of a group of tasks */
  7203. struct cpuacct {
  7204. struct cgroup_subsys_state css;
  7205. /* cpuusage holds pointer to a u64-type object on every cpu */
  7206. u64 *cpuusage;
  7207. };
  7208. struct cgroup_subsys cpuacct_subsys;
  7209. /* return cpu accounting group corresponding to this container */
  7210. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7211. {
  7212. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7213. struct cpuacct, css);
  7214. }
  7215. /* return cpu accounting group to which this task belongs */
  7216. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7217. {
  7218. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7219. struct cpuacct, css);
  7220. }
  7221. /* create a new cpu accounting group */
  7222. static struct cgroup_subsys_state *cpuacct_create(
  7223. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7224. {
  7225. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7226. if (!ca)
  7227. return ERR_PTR(-ENOMEM);
  7228. ca->cpuusage = alloc_percpu(u64);
  7229. if (!ca->cpuusage) {
  7230. kfree(ca);
  7231. return ERR_PTR(-ENOMEM);
  7232. }
  7233. return &ca->css;
  7234. }
  7235. /* destroy an existing cpu accounting group */
  7236. static void
  7237. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7238. {
  7239. struct cpuacct *ca = cgroup_ca(cgrp);
  7240. free_percpu(ca->cpuusage);
  7241. kfree(ca);
  7242. }
  7243. /* return total cpu usage (in nanoseconds) of a group */
  7244. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7245. {
  7246. struct cpuacct *ca = cgroup_ca(cgrp);
  7247. u64 totalcpuusage = 0;
  7248. int i;
  7249. for_each_possible_cpu(i) {
  7250. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7251. /*
  7252. * Take rq->lock to make 64-bit addition safe on 32-bit
  7253. * platforms.
  7254. */
  7255. spin_lock_irq(&cpu_rq(i)->lock);
  7256. totalcpuusage += *cpuusage;
  7257. spin_unlock_irq(&cpu_rq(i)->lock);
  7258. }
  7259. return totalcpuusage;
  7260. }
  7261. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7262. u64 reset)
  7263. {
  7264. struct cpuacct *ca = cgroup_ca(cgrp);
  7265. int err = 0;
  7266. int i;
  7267. if (reset) {
  7268. err = -EINVAL;
  7269. goto out;
  7270. }
  7271. for_each_possible_cpu(i) {
  7272. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7273. spin_lock_irq(&cpu_rq(i)->lock);
  7274. *cpuusage = 0;
  7275. spin_unlock_irq(&cpu_rq(i)->lock);
  7276. }
  7277. out:
  7278. return err;
  7279. }
  7280. static struct cftype files[] = {
  7281. {
  7282. .name = "usage",
  7283. .read_uint = cpuusage_read,
  7284. .write_uint = cpuusage_write,
  7285. },
  7286. };
  7287. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7288. {
  7289. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7290. }
  7291. /*
  7292. * charge this task's execution time to its accounting group.
  7293. *
  7294. * called with rq->lock held.
  7295. */
  7296. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7297. {
  7298. struct cpuacct *ca;
  7299. if (!cpuacct_subsys.active)
  7300. return;
  7301. ca = task_ca(tsk);
  7302. if (ca) {
  7303. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7304. *cpuusage += cputime;
  7305. }
  7306. }
  7307. struct cgroup_subsys cpuacct_subsys = {
  7308. .name = "cpuacct",
  7309. .create = cpuacct_create,
  7310. .destroy = cpuacct_destroy,
  7311. .populate = cpuacct_populate,
  7312. .subsys_id = cpuacct_subsys_id,
  7313. };
  7314. #endif /* CONFIG_CGROUP_CPUACCT */