vmx.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, 0);
  37. static int enable_vpid = 1;
  38. module_param(enable_vpid, bool, 0);
  39. static int flexpriority_enabled = 1;
  40. module_param(flexpriority_enabled, bool, 0);
  41. static int enable_ept = 1;
  42. module_param(enable_ept, bool, 0);
  43. static int emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, 0);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. /* Support for vnmi-less CPUs */
  83. int soft_vnmi_blocked;
  84. ktime_t entry_time;
  85. s64 vnmi_blocked_time;
  86. };
  87. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  88. {
  89. return container_of(vcpu, struct vcpu_vmx, vcpu);
  90. }
  91. static int init_rmode(struct kvm *kvm);
  92. static u64 construct_eptp(unsigned long root_hpa);
  93. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  94. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  95. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  96. static struct page *vmx_io_bitmap_a;
  97. static struct page *vmx_io_bitmap_b;
  98. static struct page *vmx_msr_bitmap;
  99. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  100. static DEFINE_SPINLOCK(vmx_vpid_lock);
  101. static struct vmcs_config {
  102. int size;
  103. int order;
  104. u32 revision_id;
  105. u32 pin_based_exec_ctrl;
  106. u32 cpu_based_exec_ctrl;
  107. u32 cpu_based_2nd_exec_ctrl;
  108. u32 vmexit_ctrl;
  109. u32 vmentry_ctrl;
  110. } vmcs_config;
  111. static struct vmx_capability {
  112. u32 ept;
  113. u32 vpid;
  114. } vmx_capability;
  115. #define VMX_SEGMENT_FIELD(seg) \
  116. [VCPU_SREG_##seg] = { \
  117. .selector = GUEST_##seg##_SELECTOR, \
  118. .base = GUEST_##seg##_BASE, \
  119. .limit = GUEST_##seg##_LIMIT, \
  120. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  121. }
  122. static struct kvm_vmx_segment_field {
  123. unsigned selector;
  124. unsigned base;
  125. unsigned limit;
  126. unsigned ar_bytes;
  127. } kvm_vmx_segment_fields[] = {
  128. VMX_SEGMENT_FIELD(CS),
  129. VMX_SEGMENT_FIELD(DS),
  130. VMX_SEGMENT_FIELD(ES),
  131. VMX_SEGMENT_FIELD(FS),
  132. VMX_SEGMENT_FIELD(GS),
  133. VMX_SEGMENT_FIELD(SS),
  134. VMX_SEGMENT_FIELD(TR),
  135. VMX_SEGMENT_FIELD(LDTR),
  136. };
  137. /*
  138. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  139. * away by decrementing the array size.
  140. */
  141. static const u32 vmx_msr_index[] = {
  142. #ifdef CONFIG_X86_64
  143. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  144. #endif
  145. MSR_EFER, MSR_K6_STAR,
  146. };
  147. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  148. static void load_msrs(struct kvm_msr_entry *e, int n)
  149. {
  150. int i;
  151. for (i = 0; i < n; ++i)
  152. wrmsrl(e[i].index, e[i].data);
  153. }
  154. static void save_msrs(struct kvm_msr_entry *e, int n)
  155. {
  156. int i;
  157. for (i = 0; i < n; ++i)
  158. rdmsrl(e[i].index, e[i].data);
  159. }
  160. static inline int is_page_fault(u32 intr_info)
  161. {
  162. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  163. INTR_INFO_VALID_MASK)) ==
  164. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  165. }
  166. static inline int is_no_device(u32 intr_info)
  167. {
  168. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  169. INTR_INFO_VALID_MASK)) ==
  170. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  171. }
  172. static inline int is_invalid_opcode(u32 intr_info)
  173. {
  174. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  175. INTR_INFO_VALID_MASK)) ==
  176. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  177. }
  178. static inline int is_external_interrupt(u32 intr_info)
  179. {
  180. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  181. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  182. }
  183. static inline int cpu_has_vmx_msr_bitmap(void)
  184. {
  185. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  186. }
  187. static inline int cpu_has_vmx_tpr_shadow(void)
  188. {
  189. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  190. }
  191. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  192. {
  193. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  194. }
  195. static inline int cpu_has_secondary_exec_ctrls(void)
  196. {
  197. return (vmcs_config.cpu_based_exec_ctrl &
  198. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  199. }
  200. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  201. {
  202. return flexpriority_enabled
  203. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  204. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  205. }
  206. static inline int cpu_has_vmx_invept_individual_addr(void)
  207. {
  208. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  209. }
  210. static inline int cpu_has_vmx_invept_context(void)
  211. {
  212. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  213. }
  214. static inline int cpu_has_vmx_invept_global(void)
  215. {
  216. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  217. }
  218. static inline int cpu_has_vmx_ept(void)
  219. {
  220. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  221. SECONDARY_EXEC_ENABLE_EPT);
  222. }
  223. static inline int vm_need_ept(void)
  224. {
  225. return (cpu_has_vmx_ept() && enable_ept);
  226. }
  227. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  228. {
  229. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  230. (irqchip_in_kernel(kvm)));
  231. }
  232. static inline int cpu_has_vmx_vpid(void)
  233. {
  234. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  235. SECONDARY_EXEC_ENABLE_VPID);
  236. }
  237. static inline int cpu_has_virtual_nmis(void)
  238. {
  239. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  240. }
  241. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  242. {
  243. int i;
  244. for (i = 0; i < vmx->nmsrs; ++i)
  245. if (vmx->guest_msrs[i].index == msr)
  246. return i;
  247. return -1;
  248. }
  249. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  250. {
  251. struct {
  252. u64 vpid : 16;
  253. u64 rsvd : 48;
  254. u64 gva;
  255. } operand = { vpid, 0, gva };
  256. asm volatile (__ex(ASM_VMX_INVVPID)
  257. /* CF==1 or ZF==1 --> rc = -1 */
  258. "; ja 1f ; ud2 ; 1:"
  259. : : "a"(&operand), "c"(ext) : "cc", "memory");
  260. }
  261. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  262. {
  263. struct {
  264. u64 eptp, gpa;
  265. } operand = {eptp, gpa};
  266. asm volatile (__ex(ASM_VMX_INVEPT)
  267. /* CF==1 or ZF==1 --> rc = -1 */
  268. "; ja 1f ; ud2 ; 1:\n"
  269. : : "a" (&operand), "c" (ext) : "cc", "memory");
  270. }
  271. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  272. {
  273. int i;
  274. i = __find_msr_index(vmx, msr);
  275. if (i >= 0)
  276. return &vmx->guest_msrs[i];
  277. return NULL;
  278. }
  279. static void vmcs_clear(struct vmcs *vmcs)
  280. {
  281. u64 phys_addr = __pa(vmcs);
  282. u8 error;
  283. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  284. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  285. : "cc", "memory");
  286. if (error)
  287. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  288. vmcs, phys_addr);
  289. }
  290. static void __vcpu_clear(void *arg)
  291. {
  292. struct vcpu_vmx *vmx = arg;
  293. int cpu = raw_smp_processor_id();
  294. if (vmx->vcpu.cpu == cpu)
  295. vmcs_clear(vmx->vmcs);
  296. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  297. per_cpu(current_vmcs, cpu) = NULL;
  298. rdtscll(vmx->vcpu.arch.host_tsc);
  299. list_del(&vmx->local_vcpus_link);
  300. vmx->vcpu.cpu = -1;
  301. vmx->launched = 0;
  302. }
  303. static void vcpu_clear(struct vcpu_vmx *vmx)
  304. {
  305. if (vmx->vcpu.cpu == -1)
  306. return;
  307. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  308. }
  309. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  310. {
  311. if (vmx->vpid == 0)
  312. return;
  313. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  314. }
  315. static inline void ept_sync_global(void)
  316. {
  317. if (cpu_has_vmx_invept_global())
  318. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  319. }
  320. static inline void ept_sync_context(u64 eptp)
  321. {
  322. if (vm_need_ept()) {
  323. if (cpu_has_vmx_invept_context())
  324. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  325. else
  326. ept_sync_global();
  327. }
  328. }
  329. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  330. {
  331. if (vm_need_ept()) {
  332. if (cpu_has_vmx_invept_individual_addr())
  333. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  334. eptp, gpa);
  335. else
  336. ept_sync_context(eptp);
  337. }
  338. }
  339. static unsigned long vmcs_readl(unsigned long field)
  340. {
  341. unsigned long value;
  342. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  343. : "=a"(value) : "d"(field) : "cc");
  344. return value;
  345. }
  346. static u16 vmcs_read16(unsigned long field)
  347. {
  348. return vmcs_readl(field);
  349. }
  350. static u32 vmcs_read32(unsigned long field)
  351. {
  352. return vmcs_readl(field);
  353. }
  354. static u64 vmcs_read64(unsigned long field)
  355. {
  356. #ifdef CONFIG_X86_64
  357. return vmcs_readl(field);
  358. #else
  359. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  360. #endif
  361. }
  362. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  363. {
  364. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  365. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  366. dump_stack();
  367. }
  368. static void vmcs_writel(unsigned long field, unsigned long value)
  369. {
  370. u8 error;
  371. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  372. : "=q"(error) : "a"(value), "d"(field) : "cc");
  373. if (unlikely(error))
  374. vmwrite_error(field, value);
  375. }
  376. static void vmcs_write16(unsigned long field, u16 value)
  377. {
  378. vmcs_writel(field, value);
  379. }
  380. static void vmcs_write32(unsigned long field, u32 value)
  381. {
  382. vmcs_writel(field, value);
  383. }
  384. static void vmcs_write64(unsigned long field, u64 value)
  385. {
  386. vmcs_writel(field, value);
  387. #ifndef CONFIG_X86_64
  388. asm volatile ("");
  389. vmcs_writel(field+1, value >> 32);
  390. #endif
  391. }
  392. static void vmcs_clear_bits(unsigned long field, u32 mask)
  393. {
  394. vmcs_writel(field, vmcs_readl(field) & ~mask);
  395. }
  396. static void vmcs_set_bits(unsigned long field, u32 mask)
  397. {
  398. vmcs_writel(field, vmcs_readl(field) | mask);
  399. }
  400. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  401. {
  402. u32 eb;
  403. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  404. if (!vcpu->fpu_active)
  405. eb |= 1u << NM_VECTOR;
  406. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  407. if (vcpu->guest_debug &
  408. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  409. eb |= 1u << DB_VECTOR;
  410. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  411. eb |= 1u << BP_VECTOR;
  412. }
  413. if (vcpu->arch.rmode.active)
  414. eb = ~0;
  415. if (vm_need_ept())
  416. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  417. vmcs_write32(EXCEPTION_BITMAP, eb);
  418. }
  419. static void reload_tss(void)
  420. {
  421. /*
  422. * VT restores TR but not its size. Useless.
  423. */
  424. struct descriptor_table gdt;
  425. struct desc_struct *descs;
  426. kvm_get_gdt(&gdt);
  427. descs = (void *)gdt.base;
  428. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  429. load_TR_desc();
  430. }
  431. static void load_transition_efer(struct vcpu_vmx *vmx)
  432. {
  433. int efer_offset = vmx->msr_offset_efer;
  434. u64 host_efer = vmx->host_msrs[efer_offset].data;
  435. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  436. u64 ignore_bits;
  437. if (efer_offset < 0)
  438. return;
  439. /*
  440. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  441. * outside long mode
  442. */
  443. ignore_bits = EFER_NX | EFER_SCE;
  444. #ifdef CONFIG_X86_64
  445. ignore_bits |= EFER_LMA | EFER_LME;
  446. /* SCE is meaningful only in long mode on Intel */
  447. if (guest_efer & EFER_LMA)
  448. ignore_bits &= ~(u64)EFER_SCE;
  449. #endif
  450. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  451. return;
  452. vmx->host_state.guest_efer_loaded = 1;
  453. guest_efer &= ~ignore_bits;
  454. guest_efer |= host_efer & ignore_bits;
  455. wrmsrl(MSR_EFER, guest_efer);
  456. vmx->vcpu.stat.efer_reload++;
  457. }
  458. static void reload_host_efer(struct vcpu_vmx *vmx)
  459. {
  460. if (vmx->host_state.guest_efer_loaded) {
  461. vmx->host_state.guest_efer_loaded = 0;
  462. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  463. }
  464. }
  465. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  466. {
  467. struct vcpu_vmx *vmx = to_vmx(vcpu);
  468. if (vmx->host_state.loaded)
  469. return;
  470. vmx->host_state.loaded = 1;
  471. /*
  472. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  473. * allow segment selectors with cpl > 0 or ti == 1.
  474. */
  475. vmx->host_state.ldt_sel = kvm_read_ldt();
  476. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  477. vmx->host_state.fs_sel = kvm_read_fs();
  478. if (!(vmx->host_state.fs_sel & 7)) {
  479. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  480. vmx->host_state.fs_reload_needed = 0;
  481. } else {
  482. vmcs_write16(HOST_FS_SELECTOR, 0);
  483. vmx->host_state.fs_reload_needed = 1;
  484. }
  485. vmx->host_state.gs_sel = kvm_read_gs();
  486. if (!(vmx->host_state.gs_sel & 7))
  487. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  488. else {
  489. vmcs_write16(HOST_GS_SELECTOR, 0);
  490. vmx->host_state.gs_ldt_reload_needed = 1;
  491. }
  492. #ifdef CONFIG_X86_64
  493. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  494. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  495. #else
  496. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  497. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  498. #endif
  499. #ifdef CONFIG_X86_64
  500. if (is_long_mode(&vmx->vcpu))
  501. save_msrs(vmx->host_msrs +
  502. vmx->msr_offset_kernel_gs_base, 1);
  503. #endif
  504. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  505. load_transition_efer(vmx);
  506. }
  507. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  508. {
  509. unsigned long flags;
  510. if (!vmx->host_state.loaded)
  511. return;
  512. ++vmx->vcpu.stat.host_state_reload;
  513. vmx->host_state.loaded = 0;
  514. if (vmx->host_state.fs_reload_needed)
  515. kvm_load_fs(vmx->host_state.fs_sel);
  516. if (vmx->host_state.gs_ldt_reload_needed) {
  517. kvm_load_ldt(vmx->host_state.ldt_sel);
  518. /*
  519. * If we have to reload gs, we must take care to
  520. * preserve our gs base.
  521. */
  522. local_irq_save(flags);
  523. kvm_load_gs(vmx->host_state.gs_sel);
  524. #ifdef CONFIG_X86_64
  525. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  526. #endif
  527. local_irq_restore(flags);
  528. }
  529. reload_tss();
  530. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  531. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  532. reload_host_efer(vmx);
  533. }
  534. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  535. {
  536. preempt_disable();
  537. __vmx_load_host_state(vmx);
  538. preempt_enable();
  539. }
  540. /*
  541. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  542. * vcpu mutex is already taken.
  543. */
  544. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  545. {
  546. struct vcpu_vmx *vmx = to_vmx(vcpu);
  547. u64 phys_addr = __pa(vmx->vmcs);
  548. u64 tsc_this, delta, new_offset;
  549. if (vcpu->cpu != cpu) {
  550. vcpu_clear(vmx);
  551. kvm_migrate_timers(vcpu);
  552. vpid_sync_vcpu_all(vmx);
  553. local_irq_disable();
  554. list_add(&vmx->local_vcpus_link,
  555. &per_cpu(vcpus_on_cpu, cpu));
  556. local_irq_enable();
  557. }
  558. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  559. u8 error;
  560. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  561. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  562. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  563. : "cc");
  564. if (error)
  565. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  566. vmx->vmcs, phys_addr);
  567. }
  568. if (vcpu->cpu != cpu) {
  569. struct descriptor_table dt;
  570. unsigned long sysenter_esp;
  571. vcpu->cpu = cpu;
  572. /*
  573. * Linux uses per-cpu TSS and GDT, so set these when switching
  574. * processors.
  575. */
  576. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  577. kvm_get_gdt(&dt);
  578. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  579. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  580. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  581. /*
  582. * Make sure the time stamp counter is monotonous.
  583. */
  584. rdtscll(tsc_this);
  585. if (tsc_this < vcpu->arch.host_tsc) {
  586. delta = vcpu->arch.host_tsc - tsc_this;
  587. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  588. vmcs_write64(TSC_OFFSET, new_offset);
  589. }
  590. }
  591. }
  592. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  593. {
  594. __vmx_load_host_state(to_vmx(vcpu));
  595. }
  596. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  597. {
  598. if (vcpu->fpu_active)
  599. return;
  600. vcpu->fpu_active = 1;
  601. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  602. if (vcpu->arch.cr0 & X86_CR0_TS)
  603. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  604. update_exception_bitmap(vcpu);
  605. }
  606. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  607. {
  608. if (!vcpu->fpu_active)
  609. return;
  610. vcpu->fpu_active = 0;
  611. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  612. update_exception_bitmap(vcpu);
  613. }
  614. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  615. {
  616. return vmcs_readl(GUEST_RFLAGS);
  617. }
  618. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  619. {
  620. if (vcpu->arch.rmode.active)
  621. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  622. vmcs_writel(GUEST_RFLAGS, rflags);
  623. }
  624. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  625. {
  626. unsigned long rip;
  627. u32 interruptibility;
  628. rip = kvm_rip_read(vcpu);
  629. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  630. kvm_rip_write(vcpu, rip);
  631. /*
  632. * We emulated an instruction, so temporary interrupt blocking
  633. * should be removed, if set.
  634. */
  635. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  636. if (interruptibility & 3)
  637. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  638. interruptibility & ~3);
  639. vcpu->arch.interrupt_window_open = 1;
  640. }
  641. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  642. bool has_error_code, u32 error_code)
  643. {
  644. struct vcpu_vmx *vmx = to_vmx(vcpu);
  645. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  646. if (has_error_code) {
  647. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  648. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  649. }
  650. if (vcpu->arch.rmode.active) {
  651. vmx->rmode.irq.pending = true;
  652. vmx->rmode.irq.vector = nr;
  653. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  654. if (nr == BP_VECTOR || nr == OF_VECTOR)
  655. vmx->rmode.irq.rip++;
  656. intr_info |= INTR_TYPE_SOFT_INTR;
  657. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  658. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  659. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  660. return;
  661. }
  662. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  663. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  664. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  665. } else
  666. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  667. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  668. }
  669. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  670. {
  671. return false;
  672. }
  673. /*
  674. * Swap MSR entry in host/guest MSR entry array.
  675. */
  676. #ifdef CONFIG_X86_64
  677. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  678. {
  679. struct kvm_msr_entry tmp;
  680. tmp = vmx->guest_msrs[to];
  681. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  682. vmx->guest_msrs[from] = tmp;
  683. tmp = vmx->host_msrs[to];
  684. vmx->host_msrs[to] = vmx->host_msrs[from];
  685. vmx->host_msrs[from] = tmp;
  686. }
  687. #endif
  688. /*
  689. * Set up the vmcs to automatically save and restore system
  690. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  691. * mode, as fiddling with msrs is very expensive.
  692. */
  693. static void setup_msrs(struct vcpu_vmx *vmx)
  694. {
  695. int save_nmsrs;
  696. vmx_load_host_state(vmx);
  697. save_nmsrs = 0;
  698. #ifdef CONFIG_X86_64
  699. if (is_long_mode(&vmx->vcpu)) {
  700. int index;
  701. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  702. if (index >= 0)
  703. move_msr_up(vmx, index, save_nmsrs++);
  704. index = __find_msr_index(vmx, MSR_LSTAR);
  705. if (index >= 0)
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. index = __find_msr_index(vmx, MSR_CSTAR);
  708. if (index >= 0)
  709. move_msr_up(vmx, index, save_nmsrs++);
  710. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  711. if (index >= 0)
  712. move_msr_up(vmx, index, save_nmsrs++);
  713. /*
  714. * MSR_K6_STAR is only needed on long mode guests, and only
  715. * if efer.sce is enabled.
  716. */
  717. index = __find_msr_index(vmx, MSR_K6_STAR);
  718. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  719. move_msr_up(vmx, index, save_nmsrs++);
  720. }
  721. #endif
  722. vmx->save_nmsrs = save_nmsrs;
  723. #ifdef CONFIG_X86_64
  724. vmx->msr_offset_kernel_gs_base =
  725. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  726. #endif
  727. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  728. }
  729. /*
  730. * reads and returns guest's timestamp counter "register"
  731. * guest_tsc = host_tsc + tsc_offset -- 21.3
  732. */
  733. static u64 guest_read_tsc(void)
  734. {
  735. u64 host_tsc, tsc_offset;
  736. rdtscll(host_tsc);
  737. tsc_offset = vmcs_read64(TSC_OFFSET);
  738. return host_tsc + tsc_offset;
  739. }
  740. /*
  741. * writes 'guest_tsc' into guest's timestamp counter "register"
  742. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  743. */
  744. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  745. {
  746. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  747. }
  748. /*
  749. * Reads an msr value (of 'msr_index') into 'pdata'.
  750. * Returns 0 on success, non-0 otherwise.
  751. * Assumes vcpu_load() was already called.
  752. */
  753. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  754. {
  755. u64 data;
  756. struct kvm_msr_entry *msr;
  757. if (!pdata) {
  758. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  759. return -EINVAL;
  760. }
  761. switch (msr_index) {
  762. #ifdef CONFIG_X86_64
  763. case MSR_FS_BASE:
  764. data = vmcs_readl(GUEST_FS_BASE);
  765. break;
  766. case MSR_GS_BASE:
  767. data = vmcs_readl(GUEST_GS_BASE);
  768. break;
  769. case MSR_EFER:
  770. return kvm_get_msr_common(vcpu, msr_index, pdata);
  771. #endif
  772. case MSR_IA32_TIME_STAMP_COUNTER:
  773. data = guest_read_tsc();
  774. break;
  775. case MSR_IA32_SYSENTER_CS:
  776. data = vmcs_read32(GUEST_SYSENTER_CS);
  777. break;
  778. case MSR_IA32_SYSENTER_EIP:
  779. data = vmcs_readl(GUEST_SYSENTER_EIP);
  780. break;
  781. case MSR_IA32_SYSENTER_ESP:
  782. data = vmcs_readl(GUEST_SYSENTER_ESP);
  783. break;
  784. default:
  785. vmx_load_host_state(to_vmx(vcpu));
  786. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  787. if (msr) {
  788. data = msr->data;
  789. break;
  790. }
  791. return kvm_get_msr_common(vcpu, msr_index, pdata);
  792. }
  793. *pdata = data;
  794. return 0;
  795. }
  796. /*
  797. * Writes msr value into into the appropriate "register".
  798. * Returns 0 on success, non-0 otherwise.
  799. * Assumes vcpu_load() was already called.
  800. */
  801. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  802. {
  803. struct vcpu_vmx *vmx = to_vmx(vcpu);
  804. struct kvm_msr_entry *msr;
  805. u64 host_tsc;
  806. int ret = 0;
  807. switch (msr_index) {
  808. #ifdef CONFIG_X86_64
  809. case MSR_EFER:
  810. vmx_load_host_state(vmx);
  811. ret = kvm_set_msr_common(vcpu, msr_index, data);
  812. break;
  813. case MSR_FS_BASE:
  814. vmcs_writel(GUEST_FS_BASE, data);
  815. break;
  816. case MSR_GS_BASE:
  817. vmcs_writel(GUEST_GS_BASE, data);
  818. break;
  819. #endif
  820. case MSR_IA32_SYSENTER_CS:
  821. vmcs_write32(GUEST_SYSENTER_CS, data);
  822. break;
  823. case MSR_IA32_SYSENTER_EIP:
  824. vmcs_writel(GUEST_SYSENTER_EIP, data);
  825. break;
  826. case MSR_IA32_SYSENTER_ESP:
  827. vmcs_writel(GUEST_SYSENTER_ESP, data);
  828. break;
  829. case MSR_IA32_TIME_STAMP_COUNTER:
  830. rdtscll(host_tsc);
  831. guest_write_tsc(data, host_tsc);
  832. break;
  833. case MSR_P6_PERFCTR0:
  834. case MSR_P6_PERFCTR1:
  835. case MSR_P6_EVNTSEL0:
  836. case MSR_P6_EVNTSEL1:
  837. /*
  838. * Just discard all writes to the performance counters; this
  839. * should keep both older linux and windows 64-bit guests
  840. * happy
  841. */
  842. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  843. break;
  844. case MSR_IA32_CR_PAT:
  845. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  846. vmcs_write64(GUEST_IA32_PAT, data);
  847. vcpu->arch.pat = data;
  848. break;
  849. }
  850. /* Otherwise falls through to kvm_set_msr_common */
  851. default:
  852. vmx_load_host_state(vmx);
  853. msr = find_msr_entry(vmx, msr_index);
  854. if (msr) {
  855. msr->data = data;
  856. break;
  857. }
  858. ret = kvm_set_msr_common(vcpu, msr_index, data);
  859. }
  860. return ret;
  861. }
  862. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  863. {
  864. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  865. switch (reg) {
  866. case VCPU_REGS_RSP:
  867. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  868. break;
  869. case VCPU_REGS_RIP:
  870. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  871. break;
  872. default:
  873. break;
  874. }
  875. }
  876. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  877. {
  878. int old_debug = vcpu->guest_debug;
  879. unsigned long flags;
  880. vcpu->guest_debug = dbg->control;
  881. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  882. vcpu->guest_debug = 0;
  883. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  884. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  885. else
  886. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  887. flags = vmcs_readl(GUEST_RFLAGS);
  888. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  889. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  890. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  891. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  892. vmcs_writel(GUEST_RFLAGS, flags);
  893. update_exception_bitmap(vcpu);
  894. return 0;
  895. }
  896. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  897. {
  898. if (!vcpu->arch.interrupt.pending)
  899. return -1;
  900. return vcpu->arch.interrupt.nr;
  901. }
  902. static __init int cpu_has_kvm_support(void)
  903. {
  904. return cpu_has_vmx();
  905. }
  906. static __init int vmx_disabled_by_bios(void)
  907. {
  908. u64 msr;
  909. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  910. return (msr & (FEATURE_CONTROL_LOCKED |
  911. FEATURE_CONTROL_VMXON_ENABLED))
  912. == FEATURE_CONTROL_LOCKED;
  913. /* locked but not enabled */
  914. }
  915. static void hardware_enable(void *garbage)
  916. {
  917. int cpu = raw_smp_processor_id();
  918. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  919. u64 old;
  920. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  921. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  922. if ((old & (FEATURE_CONTROL_LOCKED |
  923. FEATURE_CONTROL_VMXON_ENABLED))
  924. != (FEATURE_CONTROL_LOCKED |
  925. FEATURE_CONTROL_VMXON_ENABLED))
  926. /* enable and lock */
  927. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  928. FEATURE_CONTROL_LOCKED |
  929. FEATURE_CONTROL_VMXON_ENABLED);
  930. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  931. asm volatile (ASM_VMX_VMXON_RAX
  932. : : "a"(&phys_addr), "m"(phys_addr)
  933. : "memory", "cc");
  934. }
  935. static void vmclear_local_vcpus(void)
  936. {
  937. int cpu = raw_smp_processor_id();
  938. struct vcpu_vmx *vmx, *n;
  939. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  940. local_vcpus_link)
  941. __vcpu_clear(vmx);
  942. }
  943. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  944. * tricks.
  945. */
  946. static void kvm_cpu_vmxoff(void)
  947. {
  948. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  949. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  950. }
  951. static void hardware_disable(void *garbage)
  952. {
  953. vmclear_local_vcpus();
  954. kvm_cpu_vmxoff();
  955. }
  956. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  957. u32 msr, u32 *result)
  958. {
  959. u32 vmx_msr_low, vmx_msr_high;
  960. u32 ctl = ctl_min | ctl_opt;
  961. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  962. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  963. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  964. /* Ensure minimum (required) set of control bits are supported. */
  965. if (ctl_min & ~ctl)
  966. return -EIO;
  967. *result = ctl;
  968. return 0;
  969. }
  970. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  971. {
  972. u32 vmx_msr_low, vmx_msr_high;
  973. u32 min, opt, min2, opt2;
  974. u32 _pin_based_exec_control = 0;
  975. u32 _cpu_based_exec_control = 0;
  976. u32 _cpu_based_2nd_exec_control = 0;
  977. u32 _vmexit_control = 0;
  978. u32 _vmentry_control = 0;
  979. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  980. opt = PIN_BASED_VIRTUAL_NMIS;
  981. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  982. &_pin_based_exec_control) < 0)
  983. return -EIO;
  984. min = CPU_BASED_HLT_EXITING |
  985. #ifdef CONFIG_X86_64
  986. CPU_BASED_CR8_LOAD_EXITING |
  987. CPU_BASED_CR8_STORE_EXITING |
  988. #endif
  989. CPU_BASED_CR3_LOAD_EXITING |
  990. CPU_BASED_CR3_STORE_EXITING |
  991. CPU_BASED_USE_IO_BITMAPS |
  992. CPU_BASED_MOV_DR_EXITING |
  993. CPU_BASED_USE_TSC_OFFSETING |
  994. CPU_BASED_INVLPG_EXITING;
  995. opt = CPU_BASED_TPR_SHADOW |
  996. CPU_BASED_USE_MSR_BITMAPS |
  997. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  998. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  999. &_cpu_based_exec_control) < 0)
  1000. return -EIO;
  1001. #ifdef CONFIG_X86_64
  1002. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1003. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1004. ~CPU_BASED_CR8_STORE_EXITING;
  1005. #endif
  1006. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1007. min2 = 0;
  1008. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1009. SECONDARY_EXEC_WBINVD_EXITING |
  1010. SECONDARY_EXEC_ENABLE_VPID |
  1011. SECONDARY_EXEC_ENABLE_EPT;
  1012. if (adjust_vmx_controls(min2, opt2,
  1013. MSR_IA32_VMX_PROCBASED_CTLS2,
  1014. &_cpu_based_2nd_exec_control) < 0)
  1015. return -EIO;
  1016. }
  1017. #ifndef CONFIG_X86_64
  1018. if (!(_cpu_based_2nd_exec_control &
  1019. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1020. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1021. #endif
  1022. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1023. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1024. enabled */
  1025. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1026. CPU_BASED_CR3_STORE_EXITING |
  1027. CPU_BASED_INVLPG_EXITING);
  1028. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1029. &_cpu_based_exec_control) < 0)
  1030. return -EIO;
  1031. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1032. vmx_capability.ept, vmx_capability.vpid);
  1033. }
  1034. min = 0;
  1035. #ifdef CONFIG_X86_64
  1036. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1037. #endif
  1038. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1039. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1040. &_vmexit_control) < 0)
  1041. return -EIO;
  1042. min = 0;
  1043. opt = VM_ENTRY_LOAD_IA32_PAT;
  1044. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1045. &_vmentry_control) < 0)
  1046. return -EIO;
  1047. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1048. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1049. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1050. return -EIO;
  1051. #ifdef CONFIG_X86_64
  1052. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1053. if (vmx_msr_high & (1u<<16))
  1054. return -EIO;
  1055. #endif
  1056. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1057. if (((vmx_msr_high >> 18) & 15) != 6)
  1058. return -EIO;
  1059. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1060. vmcs_conf->order = get_order(vmcs_config.size);
  1061. vmcs_conf->revision_id = vmx_msr_low;
  1062. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1063. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1064. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1065. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1066. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1067. return 0;
  1068. }
  1069. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1070. {
  1071. int node = cpu_to_node(cpu);
  1072. struct page *pages;
  1073. struct vmcs *vmcs;
  1074. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1075. if (!pages)
  1076. return NULL;
  1077. vmcs = page_address(pages);
  1078. memset(vmcs, 0, vmcs_config.size);
  1079. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1080. return vmcs;
  1081. }
  1082. static struct vmcs *alloc_vmcs(void)
  1083. {
  1084. return alloc_vmcs_cpu(raw_smp_processor_id());
  1085. }
  1086. static void free_vmcs(struct vmcs *vmcs)
  1087. {
  1088. free_pages((unsigned long)vmcs, vmcs_config.order);
  1089. }
  1090. static void free_kvm_area(void)
  1091. {
  1092. int cpu;
  1093. for_each_online_cpu(cpu)
  1094. free_vmcs(per_cpu(vmxarea, cpu));
  1095. }
  1096. static __init int alloc_kvm_area(void)
  1097. {
  1098. int cpu;
  1099. for_each_online_cpu(cpu) {
  1100. struct vmcs *vmcs;
  1101. vmcs = alloc_vmcs_cpu(cpu);
  1102. if (!vmcs) {
  1103. free_kvm_area();
  1104. return -ENOMEM;
  1105. }
  1106. per_cpu(vmxarea, cpu) = vmcs;
  1107. }
  1108. return 0;
  1109. }
  1110. static __init int hardware_setup(void)
  1111. {
  1112. if (setup_vmcs_config(&vmcs_config) < 0)
  1113. return -EIO;
  1114. if (boot_cpu_has(X86_FEATURE_NX))
  1115. kvm_enable_efer_bits(EFER_NX);
  1116. return alloc_kvm_area();
  1117. }
  1118. static __exit void hardware_unsetup(void)
  1119. {
  1120. free_kvm_area();
  1121. }
  1122. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1123. {
  1124. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1125. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1126. vmcs_write16(sf->selector, save->selector);
  1127. vmcs_writel(sf->base, save->base);
  1128. vmcs_write32(sf->limit, save->limit);
  1129. vmcs_write32(sf->ar_bytes, save->ar);
  1130. } else {
  1131. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1132. << AR_DPL_SHIFT;
  1133. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1134. }
  1135. }
  1136. static void enter_pmode(struct kvm_vcpu *vcpu)
  1137. {
  1138. unsigned long flags;
  1139. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1140. vmx->emulation_required = 1;
  1141. vcpu->arch.rmode.active = 0;
  1142. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1143. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1144. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1145. flags = vmcs_readl(GUEST_RFLAGS);
  1146. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1147. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1148. vmcs_writel(GUEST_RFLAGS, flags);
  1149. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1150. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1151. update_exception_bitmap(vcpu);
  1152. if (emulate_invalid_guest_state)
  1153. return;
  1154. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1155. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1156. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1157. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1158. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1159. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1160. vmcs_write16(GUEST_CS_SELECTOR,
  1161. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1162. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1163. }
  1164. static gva_t rmode_tss_base(struct kvm *kvm)
  1165. {
  1166. if (!kvm->arch.tss_addr) {
  1167. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1168. kvm->memslots[0].npages - 3;
  1169. return base_gfn << PAGE_SHIFT;
  1170. }
  1171. return kvm->arch.tss_addr;
  1172. }
  1173. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1174. {
  1175. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1176. save->selector = vmcs_read16(sf->selector);
  1177. save->base = vmcs_readl(sf->base);
  1178. save->limit = vmcs_read32(sf->limit);
  1179. save->ar = vmcs_read32(sf->ar_bytes);
  1180. vmcs_write16(sf->selector, save->base >> 4);
  1181. vmcs_write32(sf->base, save->base & 0xfffff);
  1182. vmcs_write32(sf->limit, 0xffff);
  1183. vmcs_write32(sf->ar_bytes, 0xf3);
  1184. }
  1185. static void enter_rmode(struct kvm_vcpu *vcpu)
  1186. {
  1187. unsigned long flags;
  1188. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1189. vmx->emulation_required = 1;
  1190. vcpu->arch.rmode.active = 1;
  1191. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1192. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1193. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1194. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1195. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1196. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1197. flags = vmcs_readl(GUEST_RFLAGS);
  1198. vcpu->arch.rmode.save_iopl
  1199. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1200. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1201. vmcs_writel(GUEST_RFLAGS, flags);
  1202. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1203. update_exception_bitmap(vcpu);
  1204. if (emulate_invalid_guest_state)
  1205. goto continue_rmode;
  1206. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1207. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1208. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1209. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1210. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1211. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1212. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1213. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1214. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1215. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1216. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1217. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1218. continue_rmode:
  1219. kvm_mmu_reset_context(vcpu);
  1220. init_rmode(vcpu->kvm);
  1221. }
  1222. #ifdef CONFIG_X86_64
  1223. static void enter_lmode(struct kvm_vcpu *vcpu)
  1224. {
  1225. u32 guest_tr_ar;
  1226. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1227. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1228. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1229. __func__);
  1230. vmcs_write32(GUEST_TR_AR_BYTES,
  1231. (guest_tr_ar & ~AR_TYPE_MASK)
  1232. | AR_TYPE_BUSY_64_TSS);
  1233. }
  1234. vcpu->arch.shadow_efer |= EFER_LMA;
  1235. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1236. vmcs_write32(VM_ENTRY_CONTROLS,
  1237. vmcs_read32(VM_ENTRY_CONTROLS)
  1238. | VM_ENTRY_IA32E_MODE);
  1239. }
  1240. static void exit_lmode(struct kvm_vcpu *vcpu)
  1241. {
  1242. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1243. vmcs_write32(VM_ENTRY_CONTROLS,
  1244. vmcs_read32(VM_ENTRY_CONTROLS)
  1245. & ~VM_ENTRY_IA32E_MODE);
  1246. }
  1247. #endif
  1248. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1249. {
  1250. vpid_sync_vcpu_all(to_vmx(vcpu));
  1251. if (vm_need_ept())
  1252. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1253. }
  1254. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1255. {
  1256. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1257. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1258. }
  1259. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1260. {
  1261. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1262. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1263. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1264. return;
  1265. }
  1266. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1267. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1268. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1269. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1270. }
  1271. }
  1272. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1273. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1274. unsigned long cr0,
  1275. struct kvm_vcpu *vcpu)
  1276. {
  1277. if (!(cr0 & X86_CR0_PG)) {
  1278. /* From paging/starting to nonpaging */
  1279. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1280. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1281. (CPU_BASED_CR3_LOAD_EXITING |
  1282. CPU_BASED_CR3_STORE_EXITING));
  1283. vcpu->arch.cr0 = cr0;
  1284. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1285. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1286. *hw_cr0 &= ~X86_CR0_WP;
  1287. } else if (!is_paging(vcpu)) {
  1288. /* From nonpaging to paging */
  1289. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1290. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1291. ~(CPU_BASED_CR3_LOAD_EXITING |
  1292. CPU_BASED_CR3_STORE_EXITING));
  1293. vcpu->arch.cr0 = cr0;
  1294. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1295. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1296. *hw_cr0 &= ~X86_CR0_WP;
  1297. }
  1298. }
  1299. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1300. struct kvm_vcpu *vcpu)
  1301. {
  1302. if (!is_paging(vcpu)) {
  1303. *hw_cr4 &= ~X86_CR4_PAE;
  1304. *hw_cr4 |= X86_CR4_PSE;
  1305. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1306. *hw_cr4 &= ~X86_CR4_PAE;
  1307. }
  1308. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1309. {
  1310. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1311. KVM_VM_CR0_ALWAYS_ON;
  1312. vmx_fpu_deactivate(vcpu);
  1313. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1314. enter_pmode(vcpu);
  1315. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1316. enter_rmode(vcpu);
  1317. #ifdef CONFIG_X86_64
  1318. if (vcpu->arch.shadow_efer & EFER_LME) {
  1319. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1320. enter_lmode(vcpu);
  1321. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1322. exit_lmode(vcpu);
  1323. }
  1324. #endif
  1325. if (vm_need_ept())
  1326. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1327. vmcs_writel(CR0_READ_SHADOW, cr0);
  1328. vmcs_writel(GUEST_CR0, hw_cr0);
  1329. vcpu->arch.cr0 = cr0;
  1330. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1331. vmx_fpu_activate(vcpu);
  1332. }
  1333. static u64 construct_eptp(unsigned long root_hpa)
  1334. {
  1335. u64 eptp;
  1336. /* TODO write the value reading from MSR */
  1337. eptp = VMX_EPT_DEFAULT_MT |
  1338. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1339. eptp |= (root_hpa & PAGE_MASK);
  1340. return eptp;
  1341. }
  1342. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1343. {
  1344. unsigned long guest_cr3;
  1345. u64 eptp;
  1346. guest_cr3 = cr3;
  1347. if (vm_need_ept()) {
  1348. eptp = construct_eptp(cr3);
  1349. vmcs_write64(EPT_POINTER, eptp);
  1350. ept_sync_context(eptp);
  1351. ept_load_pdptrs(vcpu);
  1352. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1353. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1354. }
  1355. vmx_flush_tlb(vcpu);
  1356. vmcs_writel(GUEST_CR3, guest_cr3);
  1357. if (vcpu->arch.cr0 & X86_CR0_PE)
  1358. vmx_fpu_deactivate(vcpu);
  1359. }
  1360. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1361. {
  1362. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1363. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1364. vcpu->arch.cr4 = cr4;
  1365. if (vm_need_ept())
  1366. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1367. vmcs_writel(CR4_READ_SHADOW, cr4);
  1368. vmcs_writel(GUEST_CR4, hw_cr4);
  1369. }
  1370. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1371. {
  1372. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1373. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1374. vcpu->arch.shadow_efer = efer;
  1375. if (!msr)
  1376. return;
  1377. if (efer & EFER_LMA) {
  1378. vmcs_write32(VM_ENTRY_CONTROLS,
  1379. vmcs_read32(VM_ENTRY_CONTROLS) |
  1380. VM_ENTRY_IA32E_MODE);
  1381. msr->data = efer;
  1382. } else {
  1383. vmcs_write32(VM_ENTRY_CONTROLS,
  1384. vmcs_read32(VM_ENTRY_CONTROLS) &
  1385. ~VM_ENTRY_IA32E_MODE);
  1386. msr->data = efer & ~EFER_LME;
  1387. }
  1388. setup_msrs(vmx);
  1389. }
  1390. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1391. {
  1392. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1393. return vmcs_readl(sf->base);
  1394. }
  1395. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1396. struct kvm_segment *var, int seg)
  1397. {
  1398. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1399. u32 ar;
  1400. var->base = vmcs_readl(sf->base);
  1401. var->limit = vmcs_read32(sf->limit);
  1402. var->selector = vmcs_read16(sf->selector);
  1403. ar = vmcs_read32(sf->ar_bytes);
  1404. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1405. ar = 0;
  1406. var->type = ar & 15;
  1407. var->s = (ar >> 4) & 1;
  1408. var->dpl = (ar >> 5) & 3;
  1409. var->present = (ar >> 7) & 1;
  1410. var->avl = (ar >> 12) & 1;
  1411. var->l = (ar >> 13) & 1;
  1412. var->db = (ar >> 14) & 1;
  1413. var->g = (ar >> 15) & 1;
  1414. var->unusable = (ar >> 16) & 1;
  1415. }
  1416. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1417. {
  1418. struct kvm_segment kvm_seg;
  1419. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1420. return 0;
  1421. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1422. return 3;
  1423. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1424. return kvm_seg.selector & 3;
  1425. }
  1426. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1427. {
  1428. u32 ar;
  1429. if (var->unusable)
  1430. ar = 1 << 16;
  1431. else {
  1432. ar = var->type & 15;
  1433. ar |= (var->s & 1) << 4;
  1434. ar |= (var->dpl & 3) << 5;
  1435. ar |= (var->present & 1) << 7;
  1436. ar |= (var->avl & 1) << 12;
  1437. ar |= (var->l & 1) << 13;
  1438. ar |= (var->db & 1) << 14;
  1439. ar |= (var->g & 1) << 15;
  1440. }
  1441. if (ar == 0) /* a 0 value means unusable */
  1442. ar = AR_UNUSABLE_MASK;
  1443. return ar;
  1444. }
  1445. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1446. struct kvm_segment *var, int seg)
  1447. {
  1448. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1449. u32 ar;
  1450. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1451. vcpu->arch.rmode.tr.selector = var->selector;
  1452. vcpu->arch.rmode.tr.base = var->base;
  1453. vcpu->arch.rmode.tr.limit = var->limit;
  1454. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1455. return;
  1456. }
  1457. vmcs_writel(sf->base, var->base);
  1458. vmcs_write32(sf->limit, var->limit);
  1459. vmcs_write16(sf->selector, var->selector);
  1460. if (vcpu->arch.rmode.active && var->s) {
  1461. /*
  1462. * Hack real-mode segments into vm86 compatibility.
  1463. */
  1464. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1465. vmcs_writel(sf->base, 0xf0000);
  1466. ar = 0xf3;
  1467. } else
  1468. ar = vmx_segment_access_rights(var);
  1469. vmcs_write32(sf->ar_bytes, ar);
  1470. }
  1471. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1472. {
  1473. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1474. *db = (ar >> 14) & 1;
  1475. *l = (ar >> 13) & 1;
  1476. }
  1477. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1478. {
  1479. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1480. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1481. }
  1482. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1483. {
  1484. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1485. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1486. }
  1487. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1488. {
  1489. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1490. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1491. }
  1492. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1493. {
  1494. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1495. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1496. }
  1497. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1498. {
  1499. struct kvm_segment var;
  1500. u32 ar;
  1501. vmx_get_segment(vcpu, &var, seg);
  1502. ar = vmx_segment_access_rights(&var);
  1503. if (var.base != (var.selector << 4))
  1504. return false;
  1505. if (var.limit != 0xffff)
  1506. return false;
  1507. if (ar != 0xf3)
  1508. return false;
  1509. return true;
  1510. }
  1511. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1512. {
  1513. struct kvm_segment cs;
  1514. unsigned int cs_rpl;
  1515. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1516. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1517. if (cs.unusable)
  1518. return false;
  1519. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1520. return false;
  1521. if (!cs.s)
  1522. return false;
  1523. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1524. if (cs.dpl > cs_rpl)
  1525. return false;
  1526. } else {
  1527. if (cs.dpl != cs_rpl)
  1528. return false;
  1529. }
  1530. if (!cs.present)
  1531. return false;
  1532. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1533. return true;
  1534. }
  1535. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1536. {
  1537. struct kvm_segment ss;
  1538. unsigned int ss_rpl;
  1539. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1540. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1541. if (ss.unusable)
  1542. return true;
  1543. if (ss.type != 3 && ss.type != 7)
  1544. return false;
  1545. if (!ss.s)
  1546. return false;
  1547. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1548. return false;
  1549. if (!ss.present)
  1550. return false;
  1551. return true;
  1552. }
  1553. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1554. {
  1555. struct kvm_segment var;
  1556. unsigned int rpl;
  1557. vmx_get_segment(vcpu, &var, seg);
  1558. rpl = var.selector & SELECTOR_RPL_MASK;
  1559. if (var.unusable)
  1560. return true;
  1561. if (!var.s)
  1562. return false;
  1563. if (!var.present)
  1564. return false;
  1565. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1566. if (var.dpl < rpl) /* DPL < RPL */
  1567. return false;
  1568. }
  1569. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1570. * rights flags
  1571. */
  1572. return true;
  1573. }
  1574. static bool tr_valid(struct kvm_vcpu *vcpu)
  1575. {
  1576. struct kvm_segment tr;
  1577. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1578. if (tr.unusable)
  1579. return false;
  1580. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1581. return false;
  1582. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1583. return false;
  1584. if (!tr.present)
  1585. return false;
  1586. return true;
  1587. }
  1588. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1589. {
  1590. struct kvm_segment ldtr;
  1591. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1592. if (ldtr.unusable)
  1593. return true;
  1594. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1595. return false;
  1596. if (ldtr.type != 2)
  1597. return false;
  1598. if (!ldtr.present)
  1599. return false;
  1600. return true;
  1601. }
  1602. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1603. {
  1604. struct kvm_segment cs, ss;
  1605. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1606. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1607. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1608. (ss.selector & SELECTOR_RPL_MASK));
  1609. }
  1610. /*
  1611. * Check if guest state is valid. Returns true if valid, false if
  1612. * not.
  1613. * We assume that registers are always usable
  1614. */
  1615. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1616. {
  1617. /* real mode guest state checks */
  1618. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1619. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1620. return false;
  1621. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1622. return false;
  1623. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1624. return false;
  1625. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1626. return false;
  1627. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1628. return false;
  1629. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1630. return false;
  1631. } else {
  1632. /* protected mode guest state checks */
  1633. if (!cs_ss_rpl_check(vcpu))
  1634. return false;
  1635. if (!code_segment_valid(vcpu))
  1636. return false;
  1637. if (!stack_segment_valid(vcpu))
  1638. return false;
  1639. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1640. return false;
  1641. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1642. return false;
  1643. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1644. return false;
  1645. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1646. return false;
  1647. if (!tr_valid(vcpu))
  1648. return false;
  1649. if (!ldtr_valid(vcpu))
  1650. return false;
  1651. }
  1652. /* TODO:
  1653. * - Add checks on RIP
  1654. * - Add checks on RFLAGS
  1655. */
  1656. return true;
  1657. }
  1658. static int init_rmode_tss(struct kvm *kvm)
  1659. {
  1660. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1661. u16 data = 0;
  1662. int ret = 0;
  1663. int r;
  1664. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1665. if (r < 0)
  1666. goto out;
  1667. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1668. r = kvm_write_guest_page(kvm, fn++, &data,
  1669. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1670. if (r < 0)
  1671. goto out;
  1672. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1673. if (r < 0)
  1674. goto out;
  1675. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1676. if (r < 0)
  1677. goto out;
  1678. data = ~0;
  1679. r = kvm_write_guest_page(kvm, fn, &data,
  1680. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1681. sizeof(u8));
  1682. if (r < 0)
  1683. goto out;
  1684. ret = 1;
  1685. out:
  1686. return ret;
  1687. }
  1688. static int init_rmode_identity_map(struct kvm *kvm)
  1689. {
  1690. int i, r, ret;
  1691. pfn_t identity_map_pfn;
  1692. u32 tmp;
  1693. if (!vm_need_ept())
  1694. return 1;
  1695. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1696. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1697. "haven't been allocated!\n");
  1698. return 0;
  1699. }
  1700. if (likely(kvm->arch.ept_identity_pagetable_done))
  1701. return 1;
  1702. ret = 0;
  1703. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1704. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1705. if (r < 0)
  1706. goto out;
  1707. /* Set up identity-mapping pagetable for EPT in real mode */
  1708. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1709. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1710. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1711. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1712. &tmp, i * sizeof(tmp), sizeof(tmp));
  1713. if (r < 0)
  1714. goto out;
  1715. }
  1716. kvm->arch.ept_identity_pagetable_done = true;
  1717. ret = 1;
  1718. out:
  1719. return ret;
  1720. }
  1721. static void seg_setup(int seg)
  1722. {
  1723. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1724. vmcs_write16(sf->selector, 0);
  1725. vmcs_writel(sf->base, 0);
  1726. vmcs_write32(sf->limit, 0xffff);
  1727. vmcs_write32(sf->ar_bytes, 0xf3);
  1728. }
  1729. static int alloc_apic_access_page(struct kvm *kvm)
  1730. {
  1731. struct kvm_userspace_memory_region kvm_userspace_mem;
  1732. int r = 0;
  1733. down_write(&kvm->slots_lock);
  1734. if (kvm->arch.apic_access_page)
  1735. goto out;
  1736. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1737. kvm_userspace_mem.flags = 0;
  1738. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1739. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1740. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1741. if (r)
  1742. goto out;
  1743. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1744. out:
  1745. up_write(&kvm->slots_lock);
  1746. return r;
  1747. }
  1748. static int alloc_identity_pagetable(struct kvm *kvm)
  1749. {
  1750. struct kvm_userspace_memory_region kvm_userspace_mem;
  1751. int r = 0;
  1752. down_write(&kvm->slots_lock);
  1753. if (kvm->arch.ept_identity_pagetable)
  1754. goto out;
  1755. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1756. kvm_userspace_mem.flags = 0;
  1757. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1758. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1759. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1760. if (r)
  1761. goto out;
  1762. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1763. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1764. out:
  1765. up_write(&kvm->slots_lock);
  1766. return r;
  1767. }
  1768. static void allocate_vpid(struct vcpu_vmx *vmx)
  1769. {
  1770. int vpid;
  1771. vmx->vpid = 0;
  1772. if (!enable_vpid || !cpu_has_vmx_vpid())
  1773. return;
  1774. spin_lock(&vmx_vpid_lock);
  1775. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1776. if (vpid < VMX_NR_VPIDS) {
  1777. vmx->vpid = vpid;
  1778. __set_bit(vpid, vmx_vpid_bitmap);
  1779. }
  1780. spin_unlock(&vmx_vpid_lock);
  1781. }
  1782. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1783. {
  1784. void *va;
  1785. if (!cpu_has_vmx_msr_bitmap())
  1786. return;
  1787. /*
  1788. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1789. * have the write-low and read-high bitmap offsets the wrong way round.
  1790. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1791. */
  1792. va = kmap(msr_bitmap);
  1793. if (msr <= 0x1fff) {
  1794. __clear_bit(msr, va + 0x000); /* read-low */
  1795. __clear_bit(msr, va + 0x800); /* write-low */
  1796. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1797. msr &= 0x1fff;
  1798. __clear_bit(msr, va + 0x400); /* read-high */
  1799. __clear_bit(msr, va + 0xc00); /* write-high */
  1800. }
  1801. kunmap(msr_bitmap);
  1802. }
  1803. /*
  1804. * Sets up the vmcs for emulated real mode.
  1805. */
  1806. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1807. {
  1808. u32 host_sysenter_cs, msr_low, msr_high;
  1809. u32 junk;
  1810. u64 host_pat, tsc_this, tsc_base;
  1811. unsigned long a;
  1812. struct descriptor_table dt;
  1813. int i;
  1814. unsigned long kvm_vmx_return;
  1815. u32 exec_control;
  1816. /* I/O */
  1817. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1818. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1819. if (cpu_has_vmx_msr_bitmap())
  1820. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1821. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1822. /* Control */
  1823. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1824. vmcs_config.pin_based_exec_ctrl);
  1825. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1826. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1827. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1828. #ifdef CONFIG_X86_64
  1829. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1830. CPU_BASED_CR8_LOAD_EXITING;
  1831. #endif
  1832. }
  1833. if (!vm_need_ept())
  1834. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1835. CPU_BASED_CR3_LOAD_EXITING |
  1836. CPU_BASED_INVLPG_EXITING;
  1837. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1838. if (cpu_has_secondary_exec_ctrls()) {
  1839. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1840. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1841. exec_control &=
  1842. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1843. if (vmx->vpid == 0)
  1844. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1845. if (!vm_need_ept())
  1846. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1847. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1848. }
  1849. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1850. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1851. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1852. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1853. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1854. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1855. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1856. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1857. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1858. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1859. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1860. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1861. #ifdef CONFIG_X86_64
  1862. rdmsrl(MSR_FS_BASE, a);
  1863. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1864. rdmsrl(MSR_GS_BASE, a);
  1865. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1866. #else
  1867. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1868. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1869. #endif
  1870. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1871. kvm_get_idt(&dt);
  1872. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1873. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1874. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1875. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1876. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1877. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1878. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1879. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1880. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1881. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1882. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1883. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1884. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1885. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1886. host_pat = msr_low | ((u64) msr_high << 32);
  1887. vmcs_write64(HOST_IA32_PAT, host_pat);
  1888. }
  1889. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1890. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1891. host_pat = msr_low | ((u64) msr_high << 32);
  1892. /* Write the default value follow host pat */
  1893. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1894. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1895. vmx->vcpu.arch.pat = host_pat;
  1896. }
  1897. for (i = 0; i < NR_VMX_MSR; ++i) {
  1898. u32 index = vmx_msr_index[i];
  1899. u32 data_low, data_high;
  1900. u64 data;
  1901. int j = vmx->nmsrs;
  1902. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1903. continue;
  1904. if (wrmsr_safe(index, data_low, data_high) < 0)
  1905. continue;
  1906. data = data_low | ((u64)data_high << 32);
  1907. vmx->host_msrs[j].index = index;
  1908. vmx->host_msrs[j].reserved = 0;
  1909. vmx->host_msrs[j].data = data;
  1910. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1911. ++vmx->nmsrs;
  1912. }
  1913. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1914. /* 22.2.1, 20.8.1 */
  1915. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1916. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1917. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1918. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1919. rdtscll(tsc_this);
  1920. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1921. tsc_base = tsc_this;
  1922. guest_write_tsc(0, tsc_base);
  1923. return 0;
  1924. }
  1925. static int init_rmode(struct kvm *kvm)
  1926. {
  1927. if (!init_rmode_tss(kvm))
  1928. return 0;
  1929. if (!init_rmode_identity_map(kvm))
  1930. return 0;
  1931. return 1;
  1932. }
  1933. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1934. {
  1935. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1936. u64 msr;
  1937. int ret;
  1938. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1939. down_read(&vcpu->kvm->slots_lock);
  1940. if (!init_rmode(vmx->vcpu.kvm)) {
  1941. ret = -ENOMEM;
  1942. goto out;
  1943. }
  1944. vmx->vcpu.arch.rmode.active = 0;
  1945. vmx->soft_vnmi_blocked = 0;
  1946. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1947. kvm_set_cr8(&vmx->vcpu, 0);
  1948. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1949. if (vmx->vcpu.vcpu_id == 0)
  1950. msr |= MSR_IA32_APICBASE_BSP;
  1951. kvm_set_apic_base(&vmx->vcpu, msr);
  1952. fx_init(&vmx->vcpu);
  1953. seg_setup(VCPU_SREG_CS);
  1954. /*
  1955. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1956. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1957. */
  1958. if (vmx->vcpu.vcpu_id == 0) {
  1959. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1960. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1961. } else {
  1962. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1963. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1964. }
  1965. seg_setup(VCPU_SREG_DS);
  1966. seg_setup(VCPU_SREG_ES);
  1967. seg_setup(VCPU_SREG_FS);
  1968. seg_setup(VCPU_SREG_GS);
  1969. seg_setup(VCPU_SREG_SS);
  1970. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1971. vmcs_writel(GUEST_TR_BASE, 0);
  1972. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1973. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1974. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1975. vmcs_writel(GUEST_LDTR_BASE, 0);
  1976. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1977. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1978. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1979. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1980. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1981. vmcs_writel(GUEST_RFLAGS, 0x02);
  1982. if (vmx->vcpu.vcpu_id == 0)
  1983. kvm_rip_write(vcpu, 0xfff0);
  1984. else
  1985. kvm_rip_write(vcpu, 0);
  1986. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1987. vmcs_writel(GUEST_DR7, 0x400);
  1988. vmcs_writel(GUEST_GDTR_BASE, 0);
  1989. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1990. vmcs_writel(GUEST_IDTR_BASE, 0);
  1991. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1992. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1993. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1994. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1995. /* Special registers */
  1996. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1997. setup_msrs(vmx);
  1998. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1999. if (cpu_has_vmx_tpr_shadow()) {
  2000. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2001. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2002. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2003. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2004. vmcs_write32(TPR_THRESHOLD, 0);
  2005. }
  2006. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2007. vmcs_write64(APIC_ACCESS_ADDR,
  2008. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2009. if (vmx->vpid != 0)
  2010. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2011. vmx->vcpu.arch.cr0 = 0x60000010;
  2012. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2013. vmx_set_cr4(&vmx->vcpu, 0);
  2014. vmx_set_efer(&vmx->vcpu, 0);
  2015. vmx_fpu_activate(&vmx->vcpu);
  2016. update_exception_bitmap(&vmx->vcpu);
  2017. vpid_sync_vcpu_all(vmx);
  2018. ret = 0;
  2019. /* HACK: Don't enable emulation on guest boot/reset */
  2020. vmx->emulation_required = 0;
  2021. out:
  2022. up_read(&vcpu->kvm->slots_lock);
  2023. return ret;
  2024. }
  2025. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2026. {
  2027. u32 cpu_based_vm_exec_control;
  2028. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2029. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2030. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2031. }
  2032. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2033. {
  2034. u32 cpu_based_vm_exec_control;
  2035. if (!cpu_has_virtual_nmis()) {
  2036. enable_irq_window(vcpu);
  2037. return;
  2038. }
  2039. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2040. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2041. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2042. }
  2043. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2044. {
  2045. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2046. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2047. ++vcpu->stat.irq_injections;
  2048. if (vcpu->arch.rmode.active) {
  2049. vmx->rmode.irq.pending = true;
  2050. vmx->rmode.irq.vector = irq;
  2051. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2052. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2053. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2054. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2055. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2056. return;
  2057. }
  2058. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2059. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2060. }
  2061. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2062. {
  2063. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2064. if (!cpu_has_virtual_nmis()) {
  2065. /*
  2066. * Tracking the NMI-blocked state in software is built upon
  2067. * finding the next open IRQ window. This, in turn, depends on
  2068. * well-behaving guests: They have to keep IRQs disabled at
  2069. * least as long as the NMI handler runs. Otherwise we may
  2070. * cause NMI nesting, maybe breaking the guest. But as this is
  2071. * highly unlikely, we can live with the residual risk.
  2072. */
  2073. vmx->soft_vnmi_blocked = 1;
  2074. vmx->vnmi_blocked_time = 0;
  2075. }
  2076. ++vcpu->stat.nmi_injections;
  2077. if (vcpu->arch.rmode.active) {
  2078. vmx->rmode.irq.pending = true;
  2079. vmx->rmode.irq.vector = NMI_VECTOR;
  2080. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2081. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2082. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2083. INTR_INFO_VALID_MASK);
  2084. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2085. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2086. return;
  2087. }
  2088. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2089. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2090. }
  2091. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2092. {
  2093. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2094. vcpu->arch.nmi_window_open =
  2095. !(guest_intr & (GUEST_INTR_STATE_STI |
  2096. GUEST_INTR_STATE_MOV_SS |
  2097. GUEST_INTR_STATE_NMI));
  2098. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2099. vcpu->arch.nmi_window_open = 0;
  2100. vcpu->arch.interrupt_window_open =
  2101. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2102. !(guest_intr & (GUEST_INTR_STATE_STI |
  2103. GUEST_INTR_STATE_MOV_SS)));
  2104. }
  2105. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  2106. {
  2107. int word_index = __ffs(vcpu->arch.irq_summary);
  2108. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  2109. int irq = word_index * BITS_PER_LONG + bit_index;
  2110. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  2111. if (!vcpu->arch.irq_pending[word_index])
  2112. clear_bit(word_index, &vcpu->arch.irq_summary);
  2113. kvm_queue_interrupt(vcpu, irq);
  2114. }
  2115. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2116. struct kvm_run *kvm_run)
  2117. {
  2118. vmx_update_window_states(vcpu);
  2119. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2120. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2121. GUEST_INTR_STATE_STI |
  2122. GUEST_INTR_STATE_MOV_SS);
  2123. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2124. if (vcpu->arch.interrupt.pending) {
  2125. enable_nmi_window(vcpu);
  2126. } else if (vcpu->arch.nmi_window_open) {
  2127. vcpu->arch.nmi_pending = false;
  2128. vcpu->arch.nmi_injected = true;
  2129. } else {
  2130. enable_nmi_window(vcpu);
  2131. return;
  2132. }
  2133. }
  2134. if (vcpu->arch.nmi_injected) {
  2135. vmx_inject_nmi(vcpu);
  2136. if (vcpu->arch.nmi_pending)
  2137. enable_nmi_window(vcpu);
  2138. else if (vcpu->arch.irq_summary
  2139. || kvm_run->request_interrupt_window)
  2140. enable_irq_window(vcpu);
  2141. return;
  2142. }
  2143. if (vcpu->arch.interrupt_window_open) {
  2144. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2145. kvm_do_inject_irq(vcpu);
  2146. if (vcpu->arch.interrupt.pending)
  2147. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2148. }
  2149. if (!vcpu->arch.interrupt_window_open &&
  2150. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2151. enable_irq_window(vcpu);
  2152. }
  2153. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2154. {
  2155. int ret;
  2156. struct kvm_userspace_memory_region tss_mem = {
  2157. .slot = TSS_PRIVATE_MEMSLOT,
  2158. .guest_phys_addr = addr,
  2159. .memory_size = PAGE_SIZE * 3,
  2160. .flags = 0,
  2161. };
  2162. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2163. if (ret)
  2164. return ret;
  2165. kvm->arch.tss_addr = addr;
  2166. return 0;
  2167. }
  2168. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2169. int vec, u32 err_code)
  2170. {
  2171. /*
  2172. * Instruction with address size override prefix opcode 0x67
  2173. * Cause the #SS fault with 0 error code in VM86 mode.
  2174. */
  2175. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2176. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2177. return 1;
  2178. /*
  2179. * Forward all other exceptions that are valid in real mode.
  2180. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2181. * the required debugging infrastructure rework.
  2182. */
  2183. switch (vec) {
  2184. case DB_VECTOR:
  2185. if (vcpu->guest_debug &
  2186. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2187. return 0;
  2188. kvm_queue_exception(vcpu, vec);
  2189. return 1;
  2190. case BP_VECTOR:
  2191. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2192. return 0;
  2193. /* fall through */
  2194. case DE_VECTOR:
  2195. case OF_VECTOR:
  2196. case BR_VECTOR:
  2197. case UD_VECTOR:
  2198. case DF_VECTOR:
  2199. case SS_VECTOR:
  2200. case GP_VECTOR:
  2201. case MF_VECTOR:
  2202. kvm_queue_exception(vcpu, vec);
  2203. return 1;
  2204. }
  2205. return 0;
  2206. }
  2207. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2208. {
  2209. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2210. u32 intr_info, ex_no, error_code;
  2211. unsigned long cr2, rip, dr6;
  2212. u32 vect_info;
  2213. enum emulation_result er;
  2214. vect_info = vmx->idt_vectoring_info;
  2215. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2216. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2217. !is_page_fault(intr_info))
  2218. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2219. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2220. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2221. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2222. set_bit(irq, vcpu->arch.irq_pending);
  2223. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  2224. }
  2225. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2226. return 1; /* already handled by vmx_vcpu_run() */
  2227. if (is_no_device(intr_info)) {
  2228. vmx_fpu_activate(vcpu);
  2229. return 1;
  2230. }
  2231. if (is_invalid_opcode(intr_info)) {
  2232. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2233. if (er != EMULATE_DONE)
  2234. kvm_queue_exception(vcpu, UD_VECTOR);
  2235. return 1;
  2236. }
  2237. error_code = 0;
  2238. rip = kvm_rip_read(vcpu);
  2239. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2240. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2241. if (is_page_fault(intr_info)) {
  2242. /* EPT won't cause page fault directly */
  2243. if (vm_need_ept())
  2244. BUG();
  2245. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2246. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2247. (u32)((u64)cr2 >> 32), handler);
  2248. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2249. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2250. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2251. }
  2252. if (vcpu->arch.rmode.active &&
  2253. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2254. error_code)) {
  2255. if (vcpu->arch.halt_request) {
  2256. vcpu->arch.halt_request = 0;
  2257. return kvm_emulate_halt(vcpu);
  2258. }
  2259. return 1;
  2260. }
  2261. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2262. switch (ex_no) {
  2263. case DB_VECTOR:
  2264. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2265. if (!(vcpu->guest_debug &
  2266. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2267. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2268. kvm_queue_exception(vcpu, DB_VECTOR);
  2269. return 1;
  2270. }
  2271. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2272. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2273. /* fall through */
  2274. case BP_VECTOR:
  2275. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2276. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2277. kvm_run->debug.arch.exception = ex_no;
  2278. break;
  2279. default:
  2280. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2281. kvm_run->ex.exception = ex_no;
  2282. kvm_run->ex.error_code = error_code;
  2283. break;
  2284. }
  2285. return 0;
  2286. }
  2287. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2288. struct kvm_run *kvm_run)
  2289. {
  2290. ++vcpu->stat.irq_exits;
  2291. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2292. return 1;
  2293. }
  2294. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2295. {
  2296. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2297. return 0;
  2298. }
  2299. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2300. {
  2301. unsigned long exit_qualification;
  2302. int size, down, in, string, rep;
  2303. unsigned port;
  2304. ++vcpu->stat.io_exits;
  2305. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2306. string = (exit_qualification & 16) != 0;
  2307. if (string) {
  2308. if (emulate_instruction(vcpu,
  2309. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2310. return 0;
  2311. return 1;
  2312. }
  2313. size = (exit_qualification & 7) + 1;
  2314. in = (exit_qualification & 8) != 0;
  2315. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  2316. rep = (exit_qualification & 32) != 0;
  2317. port = exit_qualification >> 16;
  2318. skip_emulated_instruction(vcpu);
  2319. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2320. }
  2321. static void
  2322. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2323. {
  2324. /*
  2325. * Patch in the VMCALL instruction:
  2326. */
  2327. hypercall[0] = 0x0f;
  2328. hypercall[1] = 0x01;
  2329. hypercall[2] = 0xc1;
  2330. }
  2331. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2332. {
  2333. unsigned long exit_qualification;
  2334. int cr;
  2335. int reg;
  2336. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2337. cr = exit_qualification & 15;
  2338. reg = (exit_qualification >> 8) & 15;
  2339. switch ((exit_qualification >> 4) & 3) {
  2340. case 0: /* mov to cr */
  2341. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2342. (u32)kvm_register_read(vcpu, reg),
  2343. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2344. handler);
  2345. switch (cr) {
  2346. case 0:
  2347. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2348. skip_emulated_instruction(vcpu);
  2349. return 1;
  2350. case 3:
  2351. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2352. skip_emulated_instruction(vcpu);
  2353. return 1;
  2354. case 4:
  2355. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2356. skip_emulated_instruction(vcpu);
  2357. return 1;
  2358. case 8:
  2359. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2360. skip_emulated_instruction(vcpu);
  2361. if (irqchip_in_kernel(vcpu->kvm))
  2362. return 1;
  2363. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2364. return 0;
  2365. };
  2366. break;
  2367. case 2: /* clts */
  2368. vmx_fpu_deactivate(vcpu);
  2369. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2370. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2371. vmx_fpu_activate(vcpu);
  2372. KVMTRACE_0D(CLTS, vcpu, handler);
  2373. skip_emulated_instruction(vcpu);
  2374. return 1;
  2375. case 1: /*mov from cr*/
  2376. switch (cr) {
  2377. case 3:
  2378. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2379. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2380. (u32)kvm_register_read(vcpu, reg),
  2381. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2382. handler);
  2383. skip_emulated_instruction(vcpu);
  2384. return 1;
  2385. case 8:
  2386. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2387. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2388. (u32)kvm_register_read(vcpu, reg), handler);
  2389. skip_emulated_instruction(vcpu);
  2390. return 1;
  2391. }
  2392. break;
  2393. case 3: /* lmsw */
  2394. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2395. skip_emulated_instruction(vcpu);
  2396. return 1;
  2397. default:
  2398. break;
  2399. }
  2400. kvm_run->exit_reason = 0;
  2401. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2402. (int)(exit_qualification >> 4) & 3, cr);
  2403. return 0;
  2404. }
  2405. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2406. {
  2407. unsigned long exit_qualification;
  2408. unsigned long val;
  2409. int dr, reg;
  2410. dr = vmcs_readl(GUEST_DR7);
  2411. if (dr & DR7_GD) {
  2412. /*
  2413. * As the vm-exit takes precedence over the debug trap, we
  2414. * need to emulate the latter, either for the host or the
  2415. * guest debugging itself.
  2416. */
  2417. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2418. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2419. kvm_run->debug.arch.dr7 = dr;
  2420. kvm_run->debug.arch.pc =
  2421. vmcs_readl(GUEST_CS_BASE) +
  2422. vmcs_readl(GUEST_RIP);
  2423. kvm_run->debug.arch.exception = DB_VECTOR;
  2424. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2425. return 0;
  2426. } else {
  2427. vcpu->arch.dr7 &= ~DR7_GD;
  2428. vcpu->arch.dr6 |= DR6_BD;
  2429. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2430. kvm_queue_exception(vcpu, DB_VECTOR);
  2431. return 1;
  2432. }
  2433. }
  2434. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2435. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2436. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2437. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2438. switch (dr) {
  2439. case 0 ... 3:
  2440. val = vcpu->arch.db[dr];
  2441. break;
  2442. case 6:
  2443. val = vcpu->arch.dr6;
  2444. break;
  2445. case 7:
  2446. val = vcpu->arch.dr7;
  2447. break;
  2448. default:
  2449. val = 0;
  2450. }
  2451. kvm_register_write(vcpu, reg, val);
  2452. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2453. } else {
  2454. val = vcpu->arch.regs[reg];
  2455. switch (dr) {
  2456. case 0 ... 3:
  2457. vcpu->arch.db[dr] = val;
  2458. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2459. vcpu->arch.eff_db[dr] = val;
  2460. break;
  2461. case 4 ... 5:
  2462. if (vcpu->arch.cr4 & X86_CR4_DE)
  2463. kvm_queue_exception(vcpu, UD_VECTOR);
  2464. break;
  2465. case 6:
  2466. if (val & 0xffffffff00000000ULL) {
  2467. kvm_queue_exception(vcpu, GP_VECTOR);
  2468. break;
  2469. }
  2470. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2471. break;
  2472. case 7:
  2473. if (val & 0xffffffff00000000ULL) {
  2474. kvm_queue_exception(vcpu, GP_VECTOR);
  2475. break;
  2476. }
  2477. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2478. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2479. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2480. vcpu->arch.switch_db_regs =
  2481. (val & DR7_BP_EN_MASK);
  2482. }
  2483. break;
  2484. }
  2485. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2486. }
  2487. skip_emulated_instruction(vcpu);
  2488. return 1;
  2489. }
  2490. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2491. {
  2492. kvm_emulate_cpuid(vcpu);
  2493. return 1;
  2494. }
  2495. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2496. {
  2497. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2498. u64 data;
  2499. if (vmx_get_msr(vcpu, ecx, &data)) {
  2500. kvm_inject_gp(vcpu, 0);
  2501. return 1;
  2502. }
  2503. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2504. handler);
  2505. /* FIXME: handling of bits 32:63 of rax, rdx */
  2506. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2507. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2508. skip_emulated_instruction(vcpu);
  2509. return 1;
  2510. }
  2511. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2512. {
  2513. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2514. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2515. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2516. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2517. handler);
  2518. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2519. kvm_inject_gp(vcpu, 0);
  2520. return 1;
  2521. }
  2522. skip_emulated_instruction(vcpu);
  2523. return 1;
  2524. }
  2525. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2526. struct kvm_run *kvm_run)
  2527. {
  2528. return 1;
  2529. }
  2530. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2531. struct kvm_run *kvm_run)
  2532. {
  2533. u32 cpu_based_vm_exec_control;
  2534. /* clear pending irq */
  2535. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2536. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2537. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2538. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2539. ++vcpu->stat.irq_window_exits;
  2540. /*
  2541. * If the user space waits to inject interrupts, exit as soon as
  2542. * possible
  2543. */
  2544. if (kvm_run->request_interrupt_window &&
  2545. !vcpu->arch.irq_summary) {
  2546. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2547. return 0;
  2548. }
  2549. return 1;
  2550. }
  2551. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2552. {
  2553. skip_emulated_instruction(vcpu);
  2554. return kvm_emulate_halt(vcpu);
  2555. }
  2556. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2557. {
  2558. skip_emulated_instruction(vcpu);
  2559. kvm_emulate_hypercall(vcpu);
  2560. return 1;
  2561. }
  2562. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2563. {
  2564. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2565. kvm_mmu_invlpg(vcpu, exit_qualification);
  2566. skip_emulated_instruction(vcpu);
  2567. return 1;
  2568. }
  2569. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2570. {
  2571. skip_emulated_instruction(vcpu);
  2572. /* TODO: Add support for VT-d/pass-through device */
  2573. return 1;
  2574. }
  2575. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2576. {
  2577. u64 exit_qualification;
  2578. enum emulation_result er;
  2579. unsigned long offset;
  2580. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2581. offset = exit_qualification & 0xffful;
  2582. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2583. if (er != EMULATE_DONE) {
  2584. printk(KERN_ERR
  2585. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2586. offset);
  2587. return -ENOTSUPP;
  2588. }
  2589. return 1;
  2590. }
  2591. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2592. {
  2593. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2594. unsigned long exit_qualification;
  2595. u16 tss_selector;
  2596. int reason;
  2597. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2598. reason = (u32)exit_qualification >> 30;
  2599. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2600. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2601. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2602. == INTR_TYPE_NMI_INTR) {
  2603. vcpu->arch.nmi_injected = false;
  2604. if (cpu_has_virtual_nmis())
  2605. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2606. GUEST_INTR_STATE_NMI);
  2607. }
  2608. tss_selector = exit_qualification;
  2609. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2610. return 0;
  2611. /* clear all local breakpoint enable flags */
  2612. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2613. /*
  2614. * TODO: What about debug traps on tss switch?
  2615. * Are we supposed to inject them and update dr6?
  2616. */
  2617. return 1;
  2618. }
  2619. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2620. {
  2621. u64 exit_qualification;
  2622. enum emulation_result er;
  2623. gpa_t gpa;
  2624. unsigned long hva;
  2625. int gla_validity;
  2626. int r;
  2627. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2628. if (exit_qualification & (1 << 6)) {
  2629. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2630. return -ENOTSUPP;
  2631. }
  2632. gla_validity = (exit_qualification >> 7) & 0x3;
  2633. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2634. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2635. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2636. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2637. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2638. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2639. (long unsigned int)exit_qualification);
  2640. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2641. kvm_run->hw.hardware_exit_reason = 0;
  2642. return -ENOTSUPP;
  2643. }
  2644. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2645. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2646. if (!kvm_is_error_hva(hva)) {
  2647. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2648. if (r < 0) {
  2649. printk(KERN_ERR "EPT: Not enough memory!\n");
  2650. return -ENOMEM;
  2651. }
  2652. return 1;
  2653. } else {
  2654. /* must be MMIO */
  2655. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2656. if (er == EMULATE_FAIL) {
  2657. printk(KERN_ERR
  2658. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2659. er);
  2660. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2661. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2662. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2663. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2664. (long unsigned int)exit_qualification);
  2665. return -ENOTSUPP;
  2666. } else if (er == EMULATE_DO_MMIO)
  2667. return 0;
  2668. }
  2669. return 1;
  2670. }
  2671. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2672. {
  2673. u32 cpu_based_vm_exec_control;
  2674. /* clear pending NMI */
  2675. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2676. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2677. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2678. ++vcpu->stat.nmi_window_exits;
  2679. return 1;
  2680. }
  2681. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2682. struct kvm_run *kvm_run)
  2683. {
  2684. int err;
  2685. preempt_enable();
  2686. local_irq_enable();
  2687. while (!guest_state_valid(vcpu)) {
  2688. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2689. if (err == EMULATE_DO_MMIO)
  2690. break;
  2691. if (err != EMULATE_DONE) {
  2692. kvm_report_emulation_failure(vcpu, "emulation failure");
  2693. return;
  2694. }
  2695. if (signal_pending(current))
  2696. break;
  2697. if (need_resched())
  2698. schedule();
  2699. }
  2700. local_irq_disable();
  2701. preempt_disable();
  2702. }
  2703. /*
  2704. * The exit handlers return 1 if the exit was handled fully and guest execution
  2705. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2706. * to be done to userspace and return 0.
  2707. */
  2708. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2709. struct kvm_run *kvm_run) = {
  2710. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2711. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2712. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2713. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2714. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2715. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2716. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2717. [EXIT_REASON_CPUID] = handle_cpuid,
  2718. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2719. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2720. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2721. [EXIT_REASON_HLT] = handle_halt,
  2722. [EXIT_REASON_INVLPG] = handle_invlpg,
  2723. [EXIT_REASON_VMCALL] = handle_vmcall,
  2724. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2725. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2726. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2727. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2728. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2729. };
  2730. static const int kvm_vmx_max_exit_handlers =
  2731. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2732. /*
  2733. * The guest has exited. See if we can fix it or if we need userspace
  2734. * assistance.
  2735. */
  2736. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2737. {
  2738. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2739. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2740. u32 vectoring_info = vmx->idt_vectoring_info;
  2741. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2742. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2743. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2744. * we just return 0 */
  2745. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2746. if (guest_state_valid(vcpu))
  2747. vmx->emulation_required = 0;
  2748. return 0;
  2749. }
  2750. /* Access CR3 don't cause VMExit in paging mode, so we need
  2751. * to sync with guest real CR3. */
  2752. if (vm_need_ept() && is_paging(vcpu)) {
  2753. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2754. ept_load_pdptrs(vcpu);
  2755. }
  2756. if (unlikely(vmx->fail)) {
  2757. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2758. kvm_run->fail_entry.hardware_entry_failure_reason
  2759. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2760. return 0;
  2761. }
  2762. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2763. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2764. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2765. exit_reason != EXIT_REASON_TASK_SWITCH))
  2766. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2767. "(0x%x) and exit reason is 0x%x\n",
  2768. __func__, vectoring_info, exit_reason);
  2769. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2770. if (vcpu->arch.interrupt_window_open) {
  2771. vmx->soft_vnmi_blocked = 0;
  2772. vcpu->arch.nmi_window_open = 1;
  2773. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2774. vcpu->arch.nmi_pending) {
  2775. /*
  2776. * This CPU don't support us in finding the end of an
  2777. * NMI-blocked window if the guest runs with IRQs
  2778. * disabled. So we pull the trigger after 1 s of
  2779. * futile waiting, but inform the user about this.
  2780. */
  2781. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2782. "state on VCPU %d after 1 s timeout\n",
  2783. __func__, vcpu->vcpu_id);
  2784. vmx->soft_vnmi_blocked = 0;
  2785. vmx->vcpu.arch.nmi_window_open = 1;
  2786. }
  2787. }
  2788. if (exit_reason < kvm_vmx_max_exit_handlers
  2789. && kvm_vmx_exit_handlers[exit_reason])
  2790. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2791. else {
  2792. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2793. kvm_run->hw.hardware_exit_reason = exit_reason;
  2794. }
  2795. return 0;
  2796. }
  2797. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2798. {
  2799. int max_irr, tpr;
  2800. if (!vm_need_tpr_shadow(vcpu->kvm))
  2801. return;
  2802. if (!kvm_lapic_enabled(vcpu) ||
  2803. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2804. vmcs_write32(TPR_THRESHOLD, 0);
  2805. return;
  2806. }
  2807. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2808. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2809. }
  2810. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2811. {
  2812. u32 exit_intr_info;
  2813. u32 idt_vectoring_info;
  2814. bool unblock_nmi;
  2815. u8 vector;
  2816. int type;
  2817. bool idtv_info_valid;
  2818. u32 error;
  2819. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2820. if (cpu_has_virtual_nmis()) {
  2821. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2822. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2823. /*
  2824. * SDM 3: 25.7.1.2
  2825. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2826. * a guest IRET fault.
  2827. */
  2828. if (unblock_nmi && vector != DF_VECTOR)
  2829. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2830. GUEST_INTR_STATE_NMI);
  2831. } else if (unlikely(vmx->soft_vnmi_blocked))
  2832. vmx->vnmi_blocked_time +=
  2833. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2834. idt_vectoring_info = vmx->idt_vectoring_info;
  2835. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2836. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2837. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2838. if (vmx->vcpu.arch.nmi_injected) {
  2839. /*
  2840. * SDM 3: 25.7.1.2
  2841. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2842. * faulted.
  2843. */
  2844. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2845. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2846. GUEST_INTR_STATE_NMI);
  2847. else
  2848. vmx->vcpu.arch.nmi_injected = false;
  2849. }
  2850. kvm_clear_exception_queue(&vmx->vcpu);
  2851. if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
  2852. type == INTR_TYPE_SOFT_EXCEPTION)) {
  2853. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2854. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2855. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2856. } else
  2857. kvm_queue_exception(&vmx->vcpu, vector);
  2858. vmx->idt_vectoring_info = 0;
  2859. }
  2860. kvm_clear_interrupt_queue(&vmx->vcpu);
  2861. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2862. kvm_queue_interrupt(&vmx->vcpu, vector);
  2863. vmx->idt_vectoring_info = 0;
  2864. }
  2865. }
  2866. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2867. {
  2868. update_tpr_threshold(vcpu);
  2869. vmx_update_window_states(vcpu);
  2870. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2871. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2872. GUEST_INTR_STATE_STI |
  2873. GUEST_INTR_STATE_MOV_SS);
  2874. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2875. if (vcpu->arch.interrupt.pending) {
  2876. enable_nmi_window(vcpu);
  2877. } else if (vcpu->arch.nmi_window_open) {
  2878. vcpu->arch.nmi_pending = false;
  2879. vcpu->arch.nmi_injected = true;
  2880. } else {
  2881. enable_nmi_window(vcpu);
  2882. return;
  2883. }
  2884. }
  2885. if (vcpu->arch.nmi_injected) {
  2886. vmx_inject_nmi(vcpu);
  2887. if (vcpu->arch.nmi_pending)
  2888. enable_nmi_window(vcpu);
  2889. else if (kvm_cpu_has_interrupt(vcpu))
  2890. enable_irq_window(vcpu);
  2891. return;
  2892. }
  2893. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2894. if (vcpu->arch.interrupt_window_open)
  2895. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2896. else
  2897. enable_irq_window(vcpu);
  2898. }
  2899. if (vcpu->arch.interrupt.pending) {
  2900. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2901. if (kvm_cpu_has_interrupt(vcpu))
  2902. enable_irq_window(vcpu);
  2903. }
  2904. }
  2905. /*
  2906. * Failure to inject an interrupt should give us the information
  2907. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2908. * when fetching the interrupt redirection bitmap in the real-mode
  2909. * tss, this doesn't happen. So we do it ourselves.
  2910. */
  2911. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2912. {
  2913. vmx->rmode.irq.pending = 0;
  2914. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2915. return;
  2916. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2917. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2918. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2919. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2920. return;
  2921. }
  2922. vmx->idt_vectoring_info =
  2923. VECTORING_INFO_VALID_MASK
  2924. | INTR_TYPE_EXT_INTR
  2925. | vmx->rmode.irq.vector;
  2926. }
  2927. #ifdef CONFIG_X86_64
  2928. #define R "r"
  2929. #define Q "q"
  2930. #else
  2931. #define R "e"
  2932. #define Q "l"
  2933. #endif
  2934. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2935. {
  2936. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2937. u32 intr_info;
  2938. /* Record the guest's net vcpu time for enforced NMI injections. */
  2939. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2940. vmx->entry_time = ktime_get();
  2941. /* Handle invalid guest state instead of entering VMX */
  2942. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2943. handle_invalid_guest_state(vcpu, kvm_run);
  2944. return;
  2945. }
  2946. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2947. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2948. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2949. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2950. /*
  2951. * Loading guest fpu may have cleared host cr0.ts
  2952. */
  2953. vmcs_writel(HOST_CR0, read_cr0());
  2954. set_debugreg(vcpu->arch.dr6, 6);
  2955. asm(
  2956. /* Store host registers */
  2957. "push %%"R"dx; push %%"R"bp;"
  2958. "push %%"R"cx \n\t"
  2959. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2960. "je 1f \n\t"
  2961. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2962. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2963. "1: \n\t"
  2964. /* Check if vmlaunch of vmresume is needed */
  2965. "cmpl $0, %c[launched](%0) \n\t"
  2966. /* Load guest registers. Don't clobber flags. */
  2967. "mov %c[cr2](%0), %%"R"ax \n\t"
  2968. "mov %%"R"ax, %%cr2 \n\t"
  2969. "mov %c[rax](%0), %%"R"ax \n\t"
  2970. "mov %c[rbx](%0), %%"R"bx \n\t"
  2971. "mov %c[rdx](%0), %%"R"dx \n\t"
  2972. "mov %c[rsi](%0), %%"R"si \n\t"
  2973. "mov %c[rdi](%0), %%"R"di \n\t"
  2974. "mov %c[rbp](%0), %%"R"bp \n\t"
  2975. #ifdef CONFIG_X86_64
  2976. "mov %c[r8](%0), %%r8 \n\t"
  2977. "mov %c[r9](%0), %%r9 \n\t"
  2978. "mov %c[r10](%0), %%r10 \n\t"
  2979. "mov %c[r11](%0), %%r11 \n\t"
  2980. "mov %c[r12](%0), %%r12 \n\t"
  2981. "mov %c[r13](%0), %%r13 \n\t"
  2982. "mov %c[r14](%0), %%r14 \n\t"
  2983. "mov %c[r15](%0), %%r15 \n\t"
  2984. #endif
  2985. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2986. /* Enter guest mode */
  2987. "jne .Llaunched \n\t"
  2988. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2989. "jmp .Lkvm_vmx_return \n\t"
  2990. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2991. ".Lkvm_vmx_return: "
  2992. /* Save guest registers, load host registers, keep flags */
  2993. "xchg %0, (%%"R"sp) \n\t"
  2994. "mov %%"R"ax, %c[rax](%0) \n\t"
  2995. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2996. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2997. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2998. "mov %%"R"si, %c[rsi](%0) \n\t"
  2999. "mov %%"R"di, %c[rdi](%0) \n\t"
  3000. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3001. #ifdef CONFIG_X86_64
  3002. "mov %%r8, %c[r8](%0) \n\t"
  3003. "mov %%r9, %c[r9](%0) \n\t"
  3004. "mov %%r10, %c[r10](%0) \n\t"
  3005. "mov %%r11, %c[r11](%0) \n\t"
  3006. "mov %%r12, %c[r12](%0) \n\t"
  3007. "mov %%r13, %c[r13](%0) \n\t"
  3008. "mov %%r14, %c[r14](%0) \n\t"
  3009. "mov %%r15, %c[r15](%0) \n\t"
  3010. #endif
  3011. "mov %%cr2, %%"R"ax \n\t"
  3012. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3013. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3014. "setbe %c[fail](%0) \n\t"
  3015. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3016. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3017. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3018. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3019. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3020. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3021. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3022. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3023. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3024. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3025. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3026. #ifdef CONFIG_X86_64
  3027. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3028. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3029. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3030. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3031. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3032. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3033. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3034. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3035. #endif
  3036. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3037. : "cc", "memory"
  3038. , R"bx", R"di", R"si"
  3039. #ifdef CONFIG_X86_64
  3040. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3041. #endif
  3042. );
  3043. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3044. vcpu->arch.regs_dirty = 0;
  3045. get_debugreg(vcpu->arch.dr6, 6);
  3046. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3047. if (vmx->rmode.irq.pending)
  3048. fixup_rmode_irq(vmx);
  3049. vmx_update_window_states(vcpu);
  3050. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3051. vmx->launched = 1;
  3052. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3053. /* We need to handle NMIs before interrupts are enabled */
  3054. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3055. (intr_info & INTR_INFO_VALID_MASK)) {
  3056. KVMTRACE_0D(NMI, vcpu, handler);
  3057. asm("int $2");
  3058. }
  3059. vmx_complete_interrupts(vmx);
  3060. }
  3061. #undef R
  3062. #undef Q
  3063. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3064. {
  3065. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3066. if (vmx->vmcs) {
  3067. vcpu_clear(vmx);
  3068. free_vmcs(vmx->vmcs);
  3069. vmx->vmcs = NULL;
  3070. }
  3071. }
  3072. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3073. {
  3074. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3075. spin_lock(&vmx_vpid_lock);
  3076. if (vmx->vpid != 0)
  3077. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3078. spin_unlock(&vmx_vpid_lock);
  3079. vmx_free_vmcs(vcpu);
  3080. kfree(vmx->host_msrs);
  3081. kfree(vmx->guest_msrs);
  3082. kvm_vcpu_uninit(vcpu);
  3083. kmem_cache_free(kvm_vcpu_cache, vmx);
  3084. }
  3085. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3086. {
  3087. int err;
  3088. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3089. int cpu;
  3090. if (!vmx)
  3091. return ERR_PTR(-ENOMEM);
  3092. allocate_vpid(vmx);
  3093. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3094. if (err)
  3095. goto free_vcpu;
  3096. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3097. if (!vmx->guest_msrs) {
  3098. err = -ENOMEM;
  3099. goto uninit_vcpu;
  3100. }
  3101. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3102. if (!vmx->host_msrs)
  3103. goto free_guest_msrs;
  3104. vmx->vmcs = alloc_vmcs();
  3105. if (!vmx->vmcs)
  3106. goto free_msrs;
  3107. vmcs_clear(vmx->vmcs);
  3108. cpu = get_cpu();
  3109. vmx_vcpu_load(&vmx->vcpu, cpu);
  3110. err = vmx_vcpu_setup(vmx);
  3111. vmx_vcpu_put(&vmx->vcpu);
  3112. put_cpu();
  3113. if (err)
  3114. goto free_vmcs;
  3115. if (vm_need_virtualize_apic_accesses(kvm))
  3116. if (alloc_apic_access_page(kvm) != 0)
  3117. goto free_vmcs;
  3118. if (vm_need_ept())
  3119. if (alloc_identity_pagetable(kvm) != 0)
  3120. goto free_vmcs;
  3121. return &vmx->vcpu;
  3122. free_vmcs:
  3123. free_vmcs(vmx->vmcs);
  3124. free_msrs:
  3125. kfree(vmx->host_msrs);
  3126. free_guest_msrs:
  3127. kfree(vmx->guest_msrs);
  3128. uninit_vcpu:
  3129. kvm_vcpu_uninit(&vmx->vcpu);
  3130. free_vcpu:
  3131. kmem_cache_free(kvm_vcpu_cache, vmx);
  3132. return ERR_PTR(err);
  3133. }
  3134. static void __init vmx_check_processor_compat(void *rtn)
  3135. {
  3136. struct vmcs_config vmcs_conf;
  3137. *(int *)rtn = 0;
  3138. if (setup_vmcs_config(&vmcs_conf) < 0)
  3139. *(int *)rtn = -EIO;
  3140. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3141. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3142. smp_processor_id());
  3143. *(int *)rtn = -EIO;
  3144. }
  3145. }
  3146. static int get_ept_level(void)
  3147. {
  3148. return VMX_EPT_DEFAULT_GAW + 1;
  3149. }
  3150. static int vmx_get_mt_mask_shift(void)
  3151. {
  3152. return VMX_EPT_MT_EPTE_SHIFT;
  3153. }
  3154. static struct kvm_x86_ops vmx_x86_ops = {
  3155. .cpu_has_kvm_support = cpu_has_kvm_support,
  3156. .disabled_by_bios = vmx_disabled_by_bios,
  3157. .hardware_setup = hardware_setup,
  3158. .hardware_unsetup = hardware_unsetup,
  3159. .check_processor_compatibility = vmx_check_processor_compat,
  3160. .hardware_enable = hardware_enable,
  3161. .hardware_disable = hardware_disable,
  3162. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3163. .vcpu_create = vmx_create_vcpu,
  3164. .vcpu_free = vmx_free_vcpu,
  3165. .vcpu_reset = vmx_vcpu_reset,
  3166. .prepare_guest_switch = vmx_save_host_state,
  3167. .vcpu_load = vmx_vcpu_load,
  3168. .vcpu_put = vmx_vcpu_put,
  3169. .set_guest_debug = set_guest_debug,
  3170. .get_msr = vmx_get_msr,
  3171. .set_msr = vmx_set_msr,
  3172. .get_segment_base = vmx_get_segment_base,
  3173. .get_segment = vmx_get_segment,
  3174. .set_segment = vmx_set_segment,
  3175. .get_cpl = vmx_get_cpl,
  3176. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3177. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3178. .set_cr0 = vmx_set_cr0,
  3179. .set_cr3 = vmx_set_cr3,
  3180. .set_cr4 = vmx_set_cr4,
  3181. .set_efer = vmx_set_efer,
  3182. .get_idt = vmx_get_idt,
  3183. .set_idt = vmx_set_idt,
  3184. .get_gdt = vmx_get_gdt,
  3185. .set_gdt = vmx_set_gdt,
  3186. .cache_reg = vmx_cache_reg,
  3187. .get_rflags = vmx_get_rflags,
  3188. .set_rflags = vmx_set_rflags,
  3189. .tlb_flush = vmx_flush_tlb,
  3190. .run = vmx_vcpu_run,
  3191. .handle_exit = kvm_handle_exit,
  3192. .skip_emulated_instruction = skip_emulated_instruction,
  3193. .patch_hypercall = vmx_patch_hypercall,
  3194. .get_irq = vmx_get_irq,
  3195. .set_irq = vmx_inject_irq,
  3196. .queue_exception = vmx_queue_exception,
  3197. .exception_injected = vmx_exception_injected,
  3198. .inject_pending_irq = vmx_intr_assist,
  3199. .inject_pending_vectors = do_interrupt_requests,
  3200. .set_tss_addr = vmx_set_tss_addr,
  3201. .get_tdp_level = get_ept_level,
  3202. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3203. };
  3204. static int __init vmx_init(void)
  3205. {
  3206. void *va;
  3207. int r;
  3208. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3209. if (!vmx_io_bitmap_a)
  3210. return -ENOMEM;
  3211. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3212. if (!vmx_io_bitmap_b) {
  3213. r = -ENOMEM;
  3214. goto out;
  3215. }
  3216. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3217. if (!vmx_msr_bitmap) {
  3218. r = -ENOMEM;
  3219. goto out1;
  3220. }
  3221. /*
  3222. * Allow direct access to the PC debug port (it is often used for I/O
  3223. * delays, but the vmexits simply slow things down).
  3224. */
  3225. va = kmap(vmx_io_bitmap_a);
  3226. memset(va, 0xff, PAGE_SIZE);
  3227. clear_bit(0x80, va);
  3228. kunmap(vmx_io_bitmap_a);
  3229. va = kmap(vmx_io_bitmap_b);
  3230. memset(va, 0xff, PAGE_SIZE);
  3231. kunmap(vmx_io_bitmap_b);
  3232. va = kmap(vmx_msr_bitmap);
  3233. memset(va, 0xff, PAGE_SIZE);
  3234. kunmap(vmx_msr_bitmap);
  3235. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3236. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3237. if (r)
  3238. goto out2;
  3239. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  3240. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  3241. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  3242. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  3243. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  3244. if (vm_need_ept()) {
  3245. bypass_guest_pf = 0;
  3246. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3247. VMX_EPT_WRITABLE_MASK);
  3248. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3249. VMX_EPT_EXECUTABLE_MASK,
  3250. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3251. kvm_enable_tdp();
  3252. } else
  3253. kvm_disable_tdp();
  3254. if (bypass_guest_pf)
  3255. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3256. ept_sync_global();
  3257. return 0;
  3258. out2:
  3259. __free_page(vmx_msr_bitmap);
  3260. out1:
  3261. __free_page(vmx_io_bitmap_b);
  3262. out:
  3263. __free_page(vmx_io_bitmap_a);
  3264. return r;
  3265. }
  3266. static void __exit vmx_exit(void)
  3267. {
  3268. __free_page(vmx_msr_bitmap);
  3269. __free_page(vmx_io_bitmap_b);
  3270. __free_page(vmx_io_bitmap_a);
  3271. kvm_exit();
  3272. }
  3273. module_init(vmx_init)
  3274. module_exit(vmx_exit)