amd64_edac.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. static const struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. * F16h: has only 1 DCT
  88. */
  89. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  90. const char *func)
  91. {
  92. if (addr >= 0x100)
  93. return -EINVAL;
  94. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  95. }
  96. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  97. const char *func)
  98. {
  99. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  100. }
  101. /*
  102. * Select DCT to which PCI cfg accesses are routed
  103. */
  104. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  105. {
  106. u32 reg = 0;
  107. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  108. reg &= (pvt->model >= 0x30) ? ~3 : ~1;
  109. reg |= dct;
  110. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  111. }
  112. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  113. const char *func)
  114. {
  115. u8 dct = 0;
  116. /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
  117. if (addr >= 0x140 && addr <= 0x1a0) {
  118. dct = (pvt->model >= 0x30) ? 3 : 1;
  119. addr -= 0x100;
  120. }
  121. f15h_select_dct(pvt, dct);
  122. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  123. }
  124. /*
  125. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  126. * hardware and can involve L2 cache, dcache as well as the main memory. With
  127. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  128. * functionality.
  129. *
  130. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  131. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  132. * bytes/sec for the setting.
  133. *
  134. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  135. * other archs, we might not have access to the caches directly.
  136. */
  137. /*
  138. * scan the scrub rate mapping table for a close or matching bandwidth value to
  139. * issue. If requested is too big, then use last maximum value found.
  140. */
  141. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  142. {
  143. u32 scrubval;
  144. int i;
  145. /*
  146. * map the configured rate (new_bw) to a value specific to the AMD64
  147. * memory controller and apply to register. Search for the first
  148. * bandwidth entry that is greater or equal than the setting requested
  149. * and program that. If at last entry, turn off DRAM scrubbing.
  150. *
  151. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  152. * by falling back to the last element in scrubrates[].
  153. */
  154. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  155. /*
  156. * skip scrub rates which aren't recommended
  157. * (see F10 BKDG, F3x58)
  158. */
  159. if (scrubrates[i].scrubval < min_rate)
  160. continue;
  161. if (scrubrates[i].bandwidth <= new_bw)
  162. break;
  163. }
  164. scrubval = scrubrates[i].scrubval;
  165. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  166. if (scrubval)
  167. return scrubrates[i].bandwidth;
  168. return 0;
  169. }
  170. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  171. {
  172. struct amd64_pvt *pvt = mci->pvt_info;
  173. u32 min_scrubrate = 0x5;
  174. if (pvt->fam == 0xf)
  175. min_scrubrate = 0x0;
  176. /* Erratum #505 */
  177. if (pvt->fam == 0x15 && pvt->model < 0x10)
  178. f15h_select_dct(pvt, 0);
  179. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  180. }
  181. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  182. {
  183. struct amd64_pvt *pvt = mci->pvt_info;
  184. u32 scrubval = 0;
  185. int i, retval = -EINVAL;
  186. /* Erratum #505 */
  187. if (pvt->fam == 0x15 && pvt->model < 0x10)
  188. f15h_select_dct(pvt, 0);
  189. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  190. scrubval = scrubval & 0x001F;
  191. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  192. if (scrubrates[i].scrubval == scrubval) {
  193. retval = scrubrates[i].bandwidth;
  194. break;
  195. }
  196. }
  197. return retval;
  198. }
  199. /*
  200. * returns true if the SysAddr given by sys_addr matches the
  201. * DRAM base/limit associated with node_id
  202. */
  203. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  204. u8 nid)
  205. {
  206. u64 addr;
  207. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  208. * all ones if the most significant implemented address bit is 1.
  209. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  210. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  211. * Application Programming.
  212. */
  213. addr = sys_addr & 0x000000ffffffffffull;
  214. return ((addr >= get_dram_base(pvt, nid)) &&
  215. (addr <= get_dram_limit(pvt, nid)));
  216. }
  217. /*
  218. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  219. * mem_ctl_info structure for the node that the SysAddr maps to.
  220. *
  221. * On failure, return NULL.
  222. */
  223. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  224. u64 sys_addr)
  225. {
  226. struct amd64_pvt *pvt;
  227. u8 node_id;
  228. u32 intlv_en, bits;
  229. /*
  230. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  231. * 3.4.4.2) registers to map the SysAddr to a node ID.
  232. */
  233. pvt = mci->pvt_info;
  234. /*
  235. * The value of this field should be the same for all DRAM Base
  236. * registers. Therefore we arbitrarily choose to read it from the
  237. * register for node 0.
  238. */
  239. intlv_en = dram_intlv_en(pvt, 0);
  240. if (intlv_en == 0) {
  241. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  242. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  243. goto found;
  244. }
  245. goto err_no_match;
  246. }
  247. if (unlikely((intlv_en != 0x01) &&
  248. (intlv_en != 0x03) &&
  249. (intlv_en != 0x07))) {
  250. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  251. return NULL;
  252. }
  253. bits = (((u32) sys_addr) >> 12) & intlv_en;
  254. for (node_id = 0; ; ) {
  255. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  256. break; /* intlv_sel field matches */
  257. if (++node_id >= DRAM_RANGES)
  258. goto err_no_match;
  259. }
  260. /* sanity test for sys_addr */
  261. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  262. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  263. "range for node %d with node interleaving enabled.\n",
  264. __func__, sys_addr, node_id);
  265. return NULL;
  266. }
  267. found:
  268. return edac_mc_find((int)node_id);
  269. err_no_match:
  270. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  271. (unsigned long)sys_addr);
  272. return NULL;
  273. }
  274. /*
  275. * compute the CS base address of the @csrow on the DRAM controller @dct.
  276. * For details see F2x[5C:40] in the processor's BKDG
  277. */
  278. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  279. u64 *base, u64 *mask)
  280. {
  281. u64 csbase, csmask, base_bits, mask_bits;
  282. u8 addr_shift;
  283. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  284. csbase = pvt->csels[dct].csbases[csrow];
  285. csmask = pvt->csels[dct].csmasks[csrow];
  286. base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
  287. mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
  288. addr_shift = 4;
  289. /*
  290. * F16h and F15h, models 30h and later need two addr_shift values:
  291. * 8 for high and 6 for low (cf. F16h BKDG).
  292. */
  293. } else if (pvt->fam == 0x16 ||
  294. (pvt->fam == 0x15 && pvt->model >= 0x30)) {
  295. csbase = pvt->csels[dct].csbases[csrow];
  296. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  297. *base = (csbase & GENMASK_ULL(15, 5)) << 6;
  298. *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
  299. *mask = ~0ULL;
  300. /* poke holes for the csmask */
  301. *mask &= ~((GENMASK_ULL(15, 5) << 6) |
  302. (GENMASK_ULL(30, 19) << 8));
  303. *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
  304. *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
  305. return;
  306. } else {
  307. csbase = pvt->csels[dct].csbases[csrow];
  308. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  309. addr_shift = 8;
  310. if (pvt->fam == 0x15)
  311. base_bits = mask_bits =
  312. GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
  313. else
  314. base_bits = mask_bits =
  315. GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
  316. }
  317. *base = (csbase & base_bits) << addr_shift;
  318. *mask = ~0ULL;
  319. /* poke holes for the csmask */
  320. *mask &= ~(mask_bits << addr_shift);
  321. /* OR them in */
  322. *mask |= (csmask & mask_bits) << addr_shift;
  323. }
  324. #define for_each_chip_select(i, dct, pvt) \
  325. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  326. #define chip_select_base(i, dct, pvt) \
  327. pvt->csels[dct].csbases[i]
  328. #define for_each_chip_select_mask(i, dct, pvt) \
  329. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  330. /*
  331. * @input_addr is an InputAddr associated with the node given by mci. Return the
  332. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  333. */
  334. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  335. {
  336. struct amd64_pvt *pvt;
  337. int csrow;
  338. u64 base, mask;
  339. pvt = mci->pvt_info;
  340. for_each_chip_select(csrow, 0, pvt) {
  341. if (!csrow_enabled(csrow, 0, pvt))
  342. continue;
  343. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  344. mask = ~mask;
  345. if ((input_addr & mask) == (base & mask)) {
  346. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  347. (unsigned long)input_addr, csrow,
  348. pvt->mc_node_id);
  349. return csrow;
  350. }
  351. }
  352. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  353. (unsigned long)input_addr, pvt->mc_node_id);
  354. return -1;
  355. }
  356. /*
  357. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  358. * for the node represented by mci. Info is passed back in *hole_base,
  359. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  360. * info is invalid. Info may be invalid for either of the following reasons:
  361. *
  362. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  363. * Address Register does not exist.
  364. *
  365. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  366. * indicating that its contents are not valid.
  367. *
  368. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  369. * complete 32-bit values despite the fact that the bitfields in the DHAR
  370. * only represent bits 31-24 of the base and offset values.
  371. */
  372. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  373. u64 *hole_offset, u64 *hole_size)
  374. {
  375. struct amd64_pvt *pvt = mci->pvt_info;
  376. /* only revE and later have the DRAM Hole Address Register */
  377. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
  378. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  379. pvt->ext_model, pvt->mc_node_id);
  380. return 1;
  381. }
  382. /* valid for Fam10h and above */
  383. if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  384. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  385. return 1;
  386. }
  387. if (!dhar_valid(pvt)) {
  388. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  389. pvt->mc_node_id);
  390. return 1;
  391. }
  392. /* This node has Memory Hoisting */
  393. /* +------------------+--------------------+--------------------+-----
  394. * | memory | DRAM hole | relocated |
  395. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  396. * | | | DRAM hole |
  397. * | | | [0x100000000, |
  398. * | | | (0x100000000+ |
  399. * | | | (0xffffffff-x))] |
  400. * +------------------+--------------------+--------------------+-----
  401. *
  402. * Above is a diagram of physical memory showing the DRAM hole and the
  403. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  404. * starts at address x (the base address) and extends through address
  405. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  406. * addresses in the hole so that they start at 0x100000000.
  407. */
  408. *hole_base = dhar_base(pvt);
  409. *hole_size = (1ULL << 32) - *hole_base;
  410. *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
  411. : k8_dhar_offset(pvt);
  412. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  413. pvt->mc_node_id, (unsigned long)*hole_base,
  414. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  415. return 0;
  416. }
  417. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  418. /*
  419. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  420. * assumed that sys_addr maps to the node given by mci.
  421. *
  422. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  423. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  424. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  425. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  426. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  427. * These parts of the documentation are unclear. I interpret them as follows:
  428. *
  429. * When node n receives a SysAddr, it processes the SysAddr as follows:
  430. *
  431. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  432. * Limit registers for node n. If the SysAddr is not within the range
  433. * specified by the base and limit values, then node n ignores the Sysaddr
  434. * (since it does not map to node n). Otherwise continue to step 2 below.
  435. *
  436. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  437. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  438. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  439. * hole. If not, skip to step 3 below. Else get the value of the
  440. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  441. * offset defined by this value from the SysAddr.
  442. *
  443. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  444. * Base register for node n. To obtain the DramAddr, subtract the base
  445. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  446. */
  447. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  448. {
  449. struct amd64_pvt *pvt = mci->pvt_info;
  450. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  451. int ret;
  452. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  453. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  454. &hole_size);
  455. if (!ret) {
  456. if ((sys_addr >= (1ULL << 32)) &&
  457. (sys_addr < ((1ULL << 32) + hole_size))) {
  458. /* use DHAR to translate SysAddr to DramAddr */
  459. dram_addr = sys_addr - hole_offset;
  460. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  461. (unsigned long)sys_addr,
  462. (unsigned long)dram_addr);
  463. return dram_addr;
  464. }
  465. }
  466. /*
  467. * Translate the SysAddr to a DramAddr as shown near the start of
  468. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  469. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  470. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  471. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  472. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  473. * Programmer's Manual Volume 1 Application Programming.
  474. */
  475. dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
  476. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  477. (unsigned long)sys_addr, (unsigned long)dram_addr);
  478. return dram_addr;
  479. }
  480. /*
  481. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  482. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  483. * for node interleaving.
  484. */
  485. static int num_node_interleave_bits(unsigned intlv_en)
  486. {
  487. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  488. int n;
  489. BUG_ON(intlv_en > 7);
  490. n = intlv_shift_table[intlv_en];
  491. return n;
  492. }
  493. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  494. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  495. {
  496. struct amd64_pvt *pvt;
  497. int intlv_shift;
  498. u64 input_addr;
  499. pvt = mci->pvt_info;
  500. /*
  501. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  502. * concerning translating a DramAddr to an InputAddr.
  503. */
  504. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  505. input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
  506. (dram_addr & 0xfff);
  507. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  508. intlv_shift, (unsigned long)dram_addr,
  509. (unsigned long)input_addr);
  510. return input_addr;
  511. }
  512. /*
  513. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  514. * assumed that @sys_addr maps to the node given by mci.
  515. */
  516. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  517. {
  518. u64 input_addr;
  519. input_addr =
  520. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  521. edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  522. (unsigned long)sys_addr, (unsigned long)input_addr);
  523. return input_addr;
  524. }
  525. /* Map the Error address to a PAGE and PAGE OFFSET. */
  526. static inline void error_address_to_page_and_offset(u64 error_address,
  527. struct err_info *err)
  528. {
  529. err->page = (u32) (error_address >> PAGE_SHIFT);
  530. err->offset = ((u32) error_address) & ~PAGE_MASK;
  531. }
  532. /*
  533. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  534. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  535. * of a node that detected an ECC memory error. mci represents the node that
  536. * the error address maps to (possibly different from the node that detected
  537. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  538. * error.
  539. */
  540. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  541. {
  542. int csrow;
  543. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  544. if (csrow == -1)
  545. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  546. "address 0x%lx\n", (unsigned long)sys_addr);
  547. return csrow;
  548. }
  549. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  550. /*
  551. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  552. * are ECC capable.
  553. */
  554. static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
  555. {
  556. u8 bit;
  557. unsigned long edac_cap = EDAC_FLAG_NONE;
  558. bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
  559. ? 19
  560. : 17;
  561. if (pvt->dclr0 & BIT(bit))
  562. edac_cap = EDAC_FLAG_SECDED;
  563. return edac_cap;
  564. }
  565. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  566. static void amd64_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
  567. {
  568. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  569. edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  570. (dclr & BIT(16)) ? "un" : "",
  571. (dclr & BIT(19)) ? "yes" : "no");
  572. edac_dbg(1, " PAR/ERR parity: %s\n",
  573. (dclr & BIT(8)) ? "enabled" : "disabled");
  574. if (pvt->fam == 0x10)
  575. edac_dbg(1, " DCT 128bit mode width: %s\n",
  576. (dclr & BIT(11)) ? "128b" : "64b");
  577. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  578. (dclr & BIT(12)) ? "yes" : "no",
  579. (dclr & BIT(13)) ? "yes" : "no",
  580. (dclr & BIT(14)) ? "yes" : "no",
  581. (dclr & BIT(15)) ? "yes" : "no");
  582. }
  583. /* Display and decode various NB registers for debug purposes. */
  584. static void dump_misc_regs(struct amd64_pvt *pvt)
  585. {
  586. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  587. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  588. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  589. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  590. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  591. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  592. amd64_dump_dramcfg_low(pvt, pvt->dclr0, 0);
  593. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  594. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  595. pvt->dhar, dhar_base(pvt),
  596. (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
  597. : f10_dhar_offset(pvt));
  598. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  599. amd64_debug_display_dimm_sizes(pvt, 0);
  600. /* everything below this point is Fam10h and above */
  601. if (pvt->fam == 0xf)
  602. return;
  603. amd64_debug_display_dimm_sizes(pvt, 1);
  604. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  605. /* Only if NOT ganged does dclr1 have valid info */
  606. if (!dct_ganging_enabled(pvt))
  607. amd64_dump_dramcfg_low(pvt, pvt->dclr1, 1);
  608. }
  609. /*
  610. * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  611. */
  612. static void prep_chip_selects(struct amd64_pvt *pvt)
  613. {
  614. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  615. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  616. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  617. } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  618. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
  619. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
  620. } else {
  621. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  622. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  623. }
  624. }
  625. /*
  626. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  627. */
  628. static void read_dct_base_mask(struct amd64_pvt *pvt)
  629. {
  630. int cs;
  631. prep_chip_selects(pvt);
  632. for_each_chip_select(cs, 0, pvt) {
  633. int reg0 = DCSB0 + (cs * 4);
  634. int reg1 = DCSB1 + (cs * 4);
  635. u32 *base0 = &pvt->csels[0].csbases[cs];
  636. u32 *base1 = &pvt->csels[1].csbases[cs];
  637. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  638. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  639. cs, *base0, reg0);
  640. if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
  641. continue;
  642. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  643. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  644. cs, *base1, reg1);
  645. }
  646. for_each_chip_select_mask(cs, 0, pvt) {
  647. int reg0 = DCSM0 + (cs * 4);
  648. int reg1 = DCSM1 + (cs * 4);
  649. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  650. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  651. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  652. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  653. cs, *mask0, reg0);
  654. if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
  655. continue;
  656. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  657. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  658. cs, *mask1, reg1);
  659. }
  660. }
  661. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  662. {
  663. enum mem_type type;
  664. /* F15h supports only DDR3 */
  665. if (pvt->fam >= 0x15)
  666. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  667. else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
  668. if (pvt->dchr0 & DDR3_MODE)
  669. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  670. else
  671. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  672. } else {
  673. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  674. }
  675. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  676. return type;
  677. }
  678. /* Get the number of DCT channels the memory controller is using. */
  679. static int k8_early_channel_count(struct amd64_pvt *pvt)
  680. {
  681. int flag;
  682. if (pvt->ext_model >= K8_REV_F)
  683. /* RevF (NPT) and later */
  684. flag = pvt->dclr0 & WIDTH_128;
  685. else
  686. /* RevE and earlier */
  687. flag = pvt->dclr0 & REVE_WIDTH_128;
  688. /* not used */
  689. pvt->dclr1 = 0;
  690. return (flag) ? 2 : 1;
  691. }
  692. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  693. static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
  694. {
  695. u64 addr;
  696. u8 start_bit = 1;
  697. u8 end_bit = 47;
  698. if (pvt->fam == 0xf) {
  699. start_bit = 3;
  700. end_bit = 39;
  701. }
  702. addr = m->addr & GENMASK_ULL(end_bit, start_bit);
  703. /*
  704. * Erratum 637 workaround
  705. */
  706. if (pvt->fam == 0x15) {
  707. struct amd64_pvt *pvt;
  708. u64 cc6_base, tmp_addr;
  709. u32 tmp;
  710. u16 mce_nid;
  711. u8 intlv_en;
  712. if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
  713. return addr;
  714. mce_nid = amd_get_nb_id(m->extcpu);
  715. pvt = mcis[mce_nid]->pvt_info;
  716. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  717. intlv_en = tmp >> 21 & 0x7;
  718. /* add [47:27] + 3 trailing bits */
  719. cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
  720. /* reverse and add DramIntlvEn */
  721. cc6_base |= intlv_en ^ 0x7;
  722. /* pin at [47:24] */
  723. cc6_base <<= 24;
  724. if (!intlv_en)
  725. return cc6_base | (addr & GENMASK_ULL(23, 0));
  726. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  727. /* faster log2 */
  728. tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
  729. /* OR DramIntlvSel into bits [14:12] */
  730. tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
  731. /* add remaining [11:0] bits from original MC4_ADDR */
  732. tmp_addr |= addr & GENMASK_ULL(11, 0);
  733. return cc6_base | tmp_addr;
  734. }
  735. return addr;
  736. }
  737. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  738. unsigned int device,
  739. struct pci_dev *related)
  740. {
  741. struct pci_dev *dev = NULL;
  742. while ((dev = pci_get_device(vendor, device, dev))) {
  743. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  744. (dev->bus->number == related->bus->number) &&
  745. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  746. break;
  747. }
  748. return dev;
  749. }
  750. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  751. {
  752. struct amd_northbridge *nb;
  753. struct pci_dev *f1 = NULL;
  754. unsigned int pci_func;
  755. int off = range << 3;
  756. u32 llim;
  757. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  758. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  759. if (pvt->fam == 0xf)
  760. return;
  761. if (!dram_rw(pvt, range))
  762. return;
  763. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  764. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  765. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  766. if (pvt->fam != 0x15)
  767. return;
  768. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  769. if (WARN_ON(!nb))
  770. return;
  771. pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
  772. : PCI_DEVICE_ID_AMD_15H_NB_F1;
  773. f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
  774. if (WARN_ON(!f1))
  775. return;
  776. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  777. pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
  778. /* {[39:27],111b} */
  779. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  780. pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
  781. /* [47:40] */
  782. pvt->ranges[range].lim.hi |= llim >> 13;
  783. pci_dev_put(f1);
  784. }
  785. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  786. struct err_info *err)
  787. {
  788. struct amd64_pvt *pvt = mci->pvt_info;
  789. error_address_to_page_and_offset(sys_addr, err);
  790. /*
  791. * Find out which node the error address belongs to. This may be
  792. * different from the node that detected the error.
  793. */
  794. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  795. if (!err->src_mci) {
  796. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  797. (unsigned long)sys_addr);
  798. err->err_code = ERR_NODE;
  799. return;
  800. }
  801. /* Now map the sys_addr to a CSROW */
  802. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  803. if (err->csrow < 0) {
  804. err->err_code = ERR_CSROW;
  805. return;
  806. }
  807. /* CHIPKILL enabled */
  808. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  809. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  810. if (err->channel < 0) {
  811. /*
  812. * Syndrome didn't map, so we don't know which of the
  813. * 2 DIMMs is in error. So we need to ID 'both' of them
  814. * as suspect.
  815. */
  816. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  817. "possible error reporting race\n",
  818. err->syndrome);
  819. err->err_code = ERR_CHANNEL;
  820. return;
  821. }
  822. } else {
  823. /*
  824. * non-chipkill ecc mode
  825. *
  826. * The k8 documentation is unclear about how to determine the
  827. * channel number when using non-chipkill memory. This method
  828. * was obtained from email communication with someone at AMD.
  829. * (Wish the email was placed in this comment - norsk)
  830. */
  831. err->channel = ((sys_addr & BIT(3)) != 0);
  832. }
  833. }
  834. static int ddr2_cs_size(unsigned i, bool dct_width)
  835. {
  836. unsigned shift = 0;
  837. if (i <= 2)
  838. shift = i;
  839. else if (!(i & 0x1))
  840. shift = i >> 1;
  841. else
  842. shift = (i + 1) >> 1;
  843. return 128 << (shift + !!dct_width);
  844. }
  845. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  846. unsigned cs_mode)
  847. {
  848. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  849. if (pvt->ext_model >= K8_REV_F) {
  850. WARN_ON(cs_mode > 11);
  851. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  852. }
  853. else if (pvt->ext_model >= K8_REV_D) {
  854. unsigned diff;
  855. WARN_ON(cs_mode > 10);
  856. /*
  857. * the below calculation, besides trying to win an obfuscated C
  858. * contest, maps cs_mode values to DIMM chip select sizes. The
  859. * mappings are:
  860. *
  861. * cs_mode CS size (mb)
  862. * ======= ============
  863. * 0 32
  864. * 1 64
  865. * 2 128
  866. * 3 128
  867. * 4 256
  868. * 5 512
  869. * 6 256
  870. * 7 512
  871. * 8 1024
  872. * 9 1024
  873. * 10 2048
  874. *
  875. * Basically, it calculates a value with which to shift the
  876. * smallest CS size of 32MB.
  877. *
  878. * ddr[23]_cs_size have a similar purpose.
  879. */
  880. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  881. return 32 << (cs_mode - diff);
  882. }
  883. else {
  884. WARN_ON(cs_mode > 6);
  885. return 32 << cs_mode;
  886. }
  887. }
  888. /*
  889. * Get the number of DCT channels in use.
  890. *
  891. * Return:
  892. * number of Memory Channels in operation
  893. * Pass back:
  894. * contents of the DCL0_LOW register
  895. */
  896. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  897. {
  898. int i, j, channels = 0;
  899. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  900. if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
  901. return 2;
  902. /*
  903. * Need to check if in unganged mode: In such, there are 2 channels,
  904. * but they are not in 128 bit mode and thus the above 'dclr0' status
  905. * bit will be OFF.
  906. *
  907. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  908. * their CSEnable bit on. If so, then SINGLE DIMM case.
  909. */
  910. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  911. /*
  912. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  913. * is more than just one DIMM present in unganged mode. Need to check
  914. * both controllers since DIMMs can be placed in either one.
  915. */
  916. for (i = 0; i < 2; i++) {
  917. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  918. for (j = 0; j < 4; j++) {
  919. if (DBAM_DIMM(j, dbam) > 0) {
  920. channels++;
  921. break;
  922. }
  923. }
  924. }
  925. if (channels > 2)
  926. channels = 2;
  927. amd64_info("MCT channel count: %d\n", channels);
  928. return channels;
  929. }
  930. static int ddr3_cs_size(unsigned i, bool dct_width)
  931. {
  932. unsigned shift = 0;
  933. int cs_size = 0;
  934. if (i == 0 || i == 3 || i == 4)
  935. cs_size = -1;
  936. else if (i <= 2)
  937. shift = i;
  938. else if (i == 12)
  939. shift = 7;
  940. else if (!(i & 0x1))
  941. shift = i >> 1;
  942. else
  943. shift = (i + 1) >> 1;
  944. if (cs_size != -1)
  945. cs_size = (128 * (1 << !!dct_width)) << shift;
  946. return cs_size;
  947. }
  948. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  949. unsigned cs_mode)
  950. {
  951. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  952. WARN_ON(cs_mode > 11);
  953. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  954. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  955. else
  956. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  957. }
  958. /*
  959. * F15h supports only 64bit DCT interfaces
  960. */
  961. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  962. unsigned cs_mode)
  963. {
  964. WARN_ON(cs_mode > 12);
  965. return ddr3_cs_size(cs_mode, false);
  966. }
  967. /*
  968. * F16h and F15h model 30h have only limited cs_modes.
  969. */
  970. static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  971. unsigned cs_mode)
  972. {
  973. WARN_ON(cs_mode > 12);
  974. if (cs_mode == 6 || cs_mode == 8 ||
  975. cs_mode == 9 || cs_mode == 12)
  976. return -1;
  977. else
  978. return ddr3_cs_size(cs_mode, false);
  979. }
  980. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  981. {
  982. if (pvt->fam == 0xf)
  983. return;
  984. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  985. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  986. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  987. edac_dbg(0, " DCTs operate in %s mode\n",
  988. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  989. if (!dct_ganging_enabled(pvt))
  990. edac_dbg(0, " Address range split per DCT: %s\n",
  991. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  992. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  993. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  994. (dct_memory_cleared(pvt) ? "yes" : "no"));
  995. edac_dbg(0, " channel interleave: %s, "
  996. "interleave bits selector: 0x%x\n",
  997. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  998. dct_sel_interleave_addr(pvt));
  999. }
  1000. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  1001. }
  1002. /*
  1003. * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
  1004. * 2.10.12 Memory Interleaving Modes).
  1005. */
  1006. static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1007. u8 intlv_en, int num_dcts_intlv,
  1008. u32 dct_sel)
  1009. {
  1010. u8 channel = 0;
  1011. u8 select;
  1012. if (!(intlv_en))
  1013. return (u8)(dct_sel);
  1014. if (num_dcts_intlv == 2) {
  1015. select = (sys_addr >> 8) & 0x3;
  1016. channel = select ? 0x3 : 0;
  1017. } else if (num_dcts_intlv == 4)
  1018. channel = (sys_addr >> 8) & 0x7;
  1019. return channel;
  1020. }
  1021. /*
  1022. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1023. * Interleaving Modes.
  1024. */
  1025. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1026. bool hi_range_sel, u8 intlv_en)
  1027. {
  1028. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1029. if (dct_ganging_enabled(pvt))
  1030. return 0;
  1031. if (hi_range_sel)
  1032. return dct_sel_high;
  1033. /*
  1034. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1035. */
  1036. if (dct_interleave_enabled(pvt)) {
  1037. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1038. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1039. if (!intlv_addr)
  1040. return sys_addr >> 6 & 1;
  1041. if (intlv_addr & 0x2) {
  1042. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1043. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1044. return ((sys_addr >> shift) & 1) ^ temp;
  1045. }
  1046. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1047. }
  1048. if (dct_high_range_enabled(pvt))
  1049. return ~dct_sel_high & 1;
  1050. return 0;
  1051. }
  1052. /* Convert the sys_addr to the normalized DCT address */
  1053. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1054. u64 sys_addr, bool hi_rng,
  1055. u32 dct_sel_base_addr)
  1056. {
  1057. u64 chan_off;
  1058. u64 dram_base = get_dram_base(pvt, range);
  1059. u64 hole_off = f10_dhar_offset(pvt);
  1060. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1061. if (hi_rng) {
  1062. /*
  1063. * if
  1064. * base address of high range is below 4Gb
  1065. * (bits [47:27] at [31:11])
  1066. * DRAM address space on this DCT is hoisted above 4Gb &&
  1067. * sys_addr > 4Gb
  1068. *
  1069. * remove hole offset from sys_addr
  1070. * else
  1071. * remove high range offset from sys_addr
  1072. */
  1073. if ((!(dct_sel_base_addr >> 16) ||
  1074. dct_sel_base_addr < dhar_base(pvt)) &&
  1075. dhar_valid(pvt) &&
  1076. (sys_addr >= BIT_64(32)))
  1077. chan_off = hole_off;
  1078. else
  1079. chan_off = dct_sel_base_off;
  1080. } else {
  1081. /*
  1082. * if
  1083. * we have a valid hole &&
  1084. * sys_addr > 4Gb
  1085. *
  1086. * remove hole
  1087. * else
  1088. * remove dram base to normalize to DCT address
  1089. */
  1090. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1091. chan_off = hole_off;
  1092. else
  1093. chan_off = dram_base;
  1094. }
  1095. return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
  1096. }
  1097. /*
  1098. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1099. * spare row
  1100. */
  1101. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1102. {
  1103. int tmp_cs;
  1104. if (online_spare_swap_done(pvt, dct) &&
  1105. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1106. for_each_chip_select(tmp_cs, dct, pvt) {
  1107. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1108. csrow = tmp_cs;
  1109. break;
  1110. }
  1111. }
  1112. }
  1113. return csrow;
  1114. }
  1115. /*
  1116. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1117. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1118. *
  1119. * Return:
  1120. * -EINVAL: NOT FOUND
  1121. * 0..csrow = Chip-Select Row
  1122. */
  1123. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1124. {
  1125. struct mem_ctl_info *mci;
  1126. struct amd64_pvt *pvt;
  1127. u64 cs_base, cs_mask;
  1128. int cs_found = -EINVAL;
  1129. int csrow;
  1130. mci = mcis[nid];
  1131. if (!mci)
  1132. return cs_found;
  1133. pvt = mci->pvt_info;
  1134. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1135. for_each_chip_select(csrow, dct, pvt) {
  1136. if (!csrow_enabled(csrow, dct, pvt))
  1137. continue;
  1138. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1139. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1140. csrow, cs_base, cs_mask);
  1141. cs_mask = ~cs_mask;
  1142. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1143. (in_addr & cs_mask), (cs_base & cs_mask));
  1144. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1145. if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  1146. cs_found = csrow;
  1147. break;
  1148. }
  1149. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1150. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1151. break;
  1152. }
  1153. }
  1154. return cs_found;
  1155. }
  1156. /*
  1157. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1158. * swapped with a region located at the bottom of memory so that the GPU can use
  1159. * the interleaved region and thus two channels.
  1160. */
  1161. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1162. {
  1163. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1164. if (pvt->fam == 0x10) {
  1165. /* only revC3 and revE have that feature */
  1166. if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
  1167. return sys_addr;
  1168. }
  1169. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1170. if (!(swap_reg & 0x1))
  1171. return sys_addr;
  1172. swap_base = (swap_reg >> 3) & 0x7f;
  1173. swap_limit = (swap_reg >> 11) & 0x7f;
  1174. rgn_size = (swap_reg >> 20) & 0x7f;
  1175. tmp_addr = sys_addr >> 27;
  1176. if (!(sys_addr >> 34) &&
  1177. (((tmp_addr >= swap_base) &&
  1178. (tmp_addr <= swap_limit)) ||
  1179. (tmp_addr < rgn_size)))
  1180. return sys_addr ^ (u64)swap_base << 27;
  1181. return sys_addr;
  1182. }
  1183. /* For a given @dram_range, check if @sys_addr falls within it. */
  1184. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1185. u64 sys_addr, int *chan_sel)
  1186. {
  1187. int cs_found = -EINVAL;
  1188. u64 chan_addr;
  1189. u32 dct_sel_base;
  1190. u8 channel;
  1191. bool high_range = false;
  1192. u8 node_id = dram_dst_node(pvt, range);
  1193. u8 intlv_en = dram_intlv_en(pvt, range);
  1194. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1195. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1196. range, sys_addr, get_dram_limit(pvt, range));
  1197. if (dhar_valid(pvt) &&
  1198. dhar_base(pvt) <= sys_addr &&
  1199. sys_addr < BIT_64(32)) {
  1200. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1201. sys_addr);
  1202. return -EINVAL;
  1203. }
  1204. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1205. return -EINVAL;
  1206. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1207. dct_sel_base = dct_sel_baseaddr(pvt);
  1208. /*
  1209. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1210. * select between DCT0 and DCT1.
  1211. */
  1212. if (dct_high_range_enabled(pvt) &&
  1213. !dct_ganging_enabled(pvt) &&
  1214. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1215. high_range = true;
  1216. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1217. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1218. high_range, dct_sel_base);
  1219. /* Remove node interleaving, see F1x120 */
  1220. if (intlv_en)
  1221. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1222. (chan_addr & 0xfff);
  1223. /* remove channel interleave */
  1224. if (dct_interleave_enabled(pvt) &&
  1225. !dct_high_range_enabled(pvt) &&
  1226. !dct_ganging_enabled(pvt)) {
  1227. if (dct_sel_interleave_addr(pvt) != 1) {
  1228. if (dct_sel_interleave_addr(pvt) == 0x3)
  1229. /* hash 9 */
  1230. chan_addr = ((chan_addr >> 10) << 9) |
  1231. (chan_addr & 0x1ff);
  1232. else
  1233. /* A[6] or hash 6 */
  1234. chan_addr = ((chan_addr >> 7) << 6) |
  1235. (chan_addr & 0x3f);
  1236. } else
  1237. /* A[12] */
  1238. chan_addr = ((chan_addr >> 13) << 12) |
  1239. (chan_addr & 0xfff);
  1240. }
  1241. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1242. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1243. if (cs_found >= 0)
  1244. *chan_sel = channel;
  1245. return cs_found;
  1246. }
  1247. static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1248. u64 sys_addr, int *chan_sel)
  1249. {
  1250. int cs_found = -EINVAL;
  1251. int num_dcts_intlv = 0;
  1252. u64 chan_addr, chan_offset;
  1253. u64 dct_base, dct_limit;
  1254. u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
  1255. u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
  1256. u64 dhar_offset = f10_dhar_offset(pvt);
  1257. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1258. u8 node_id = dram_dst_node(pvt, range);
  1259. u8 intlv_en = dram_intlv_en(pvt, range);
  1260. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
  1261. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
  1262. dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
  1263. dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
  1264. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1265. range, sys_addr, get_dram_limit(pvt, range));
  1266. if (!(get_dram_base(pvt, range) <= sys_addr) &&
  1267. !(get_dram_limit(pvt, range) >= sys_addr))
  1268. return -EINVAL;
  1269. if (dhar_valid(pvt) &&
  1270. dhar_base(pvt) <= sys_addr &&
  1271. sys_addr < BIT_64(32)) {
  1272. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1273. sys_addr);
  1274. return -EINVAL;
  1275. }
  1276. /* Verify sys_addr is within DCT Range. */
  1277. dct_base = (u64) dct_sel_baseaddr(pvt);
  1278. dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
  1279. if (!(dct_cont_base_reg & BIT(0)) &&
  1280. !(dct_base <= (sys_addr >> 27) &&
  1281. dct_limit >= (sys_addr >> 27)))
  1282. return -EINVAL;
  1283. /* Verify number of dct's that participate in channel interleaving. */
  1284. num_dcts_intlv = (int) hweight8(intlv_en);
  1285. if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
  1286. return -EINVAL;
  1287. channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
  1288. num_dcts_intlv, dct_sel);
  1289. /* Verify we stay within the MAX number of channels allowed */
  1290. if (channel > 4 || channel < 0)
  1291. return -EINVAL;
  1292. leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
  1293. /* Get normalized DCT addr */
  1294. if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
  1295. chan_offset = dhar_offset;
  1296. else
  1297. chan_offset = dct_base << 27;
  1298. chan_addr = sys_addr - chan_offset;
  1299. /* remove channel interleave */
  1300. if (num_dcts_intlv == 2) {
  1301. if (intlv_addr == 0x4)
  1302. chan_addr = ((chan_addr >> 9) << 8) |
  1303. (chan_addr & 0xff);
  1304. else if (intlv_addr == 0x5)
  1305. chan_addr = ((chan_addr >> 10) << 9) |
  1306. (chan_addr & 0x1ff);
  1307. else
  1308. return -EINVAL;
  1309. } else if (num_dcts_intlv == 4) {
  1310. if (intlv_addr == 0x4)
  1311. chan_addr = ((chan_addr >> 10) << 8) |
  1312. (chan_addr & 0xff);
  1313. else if (intlv_addr == 0x5)
  1314. chan_addr = ((chan_addr >> 11) << 9) |
  1315. (chan_addr & 0x1ff);
  1316. else
  1317. return -EINVAL;
  1318. }
  1319. if (dct_offset_en) {
  1320. amd64_read_pci_cfg(pvt->F1,
  1321. DRAM_CONT_HIGH_OFF + (int) channel * 4,
  1322. &tmp);
  1323. chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
  1324. }
  1325. f15h_select_dct(pvt, channel);
  1326. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1327. /*
  1328. * Find Chip select:
  1329. * if channel = 3, then alias it to 1. This is because, in F15 M30h,
  1330. * there is support for 4 DCT's, but only 2 are currently functional.
  1331. * They are DCT0 and DCT3. But we have read all registers of DCT3 into
  1332. * pvt->csels[1]. So we need to use '1' here to get correct info.
  1333. * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
  1334. */
  1335. alias_channel = (channel == 3) ? 1 : channel;
  1336. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
  1337. if (cs_found >= 0)
  1338. *chan_sel = alias_channel;
  1339. return cs_found;
  1340. }
  1341. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
  1342. u64 sys_addr,
  1343. int *chan_sel)
  1344. {
  1345. int cs_found = -EINVAL;
  1346. unsigned range;
  1347. for (range = 0; range < DRAM_RANGES; range++) {
  1348. if (!dram_rw(pvt, range))
  1349. continue;
  1350. if (pvt->fam == 0x15 && pvt->model >= 0x30)
  1351. cs_found = f15_m30h_match_to_this_node(pvt, range,
  1352. sys_addr,
  1353. chan_sel);
  1354. else if ((get_dram_base(pvt, range) <= sys_addr) &&
  1355. (get_dram_limit(pvt, range) >= sys_addr)) {
  1356. cs_found = f1x_match_to_this_node(pvt, range,
  1357. sys_addr, chan_sel);
  1358. if (cs_found >= 0)
  1359. break;
  1360. }
  1361. }
  1362. return cs_found;
  1363. }
  1364. /*
  1365. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1366. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1367. *
  1368. * The @sys_addr is usually an error address received from the hardware
  1369. * (MCX_ADDR).
  1370. */
  1371. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1372. struct err_info *err)
  1373. {
  1374. struct amd64_pvt *pvt = mci->pvt_info;
  1375. error_address_to_page_and_offset(sys_addr, err);
  1376. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1377. if (err->csrow < 0) {
  1378. err->err_code = ERR_CSROW;
  1379. return;
  1380. }
  1381. /*
  1382. * We need the syndromes for channel detection only when we're
  1383. * ganged. Otherwise @chan should already contain the channel at
  1384. * this point.
  1385. */
  1386. if (dct_ganging_enabled(pvt))
  1387. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1388. }
  1389. /*
  1390. * debug routine to display the memory sizes of all logical DIMMs and its
  1391. * CSROWs
  1392. */
  1393. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1394. {
  1395. int dimm, size0, size1;
  1396. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1397. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1398. if (pvt->fam == 0xf) {
  1399. /* K8 families < revF not supported yet */
  1400. if (pvt->ext_model < K8_REV_F)
  1401. return;
  1402. else
  1403. WARN_ON(ctrl != 0);
  1404. }
  1405. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1406. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1407. : pvt->csels[0].csbases;
  1408. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1409. ctrl, dbam);
  1410. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1411. /* Dump memory sizes for DIMM and its CSROWs */
  1412. for (dimm = 0; dimm < 4; dimm++) {
  1413. size0 = 0;
  1414. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1415. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1416. DBAM_DIMM(dimm, dbam));
  1417. size1 = 0;
  1418. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1419. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1420. DBAM_DIMM(dimm, dbam));
  1421. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1422. dimm * 2, size0,
  1423. dimm * 2 + 1, size1);
  1424. }
  1425. }
  1426. static struct amd64_family_type amd64_family_types[] = {
  1427. [K8_CPUS] = {
  1428. .ctl_name = "K8",
  1429. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1430. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1431. .ops = {
  1432. .early_channel_count = k8_early_channel_count,
  1433. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1434. .dbam_to_cs = k8_dbam_to_chip_select,
  1435. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1436. }
  1437. },
  1438. [F10_CPUS] = {
  1439. .ctl_name = "F10h",
  1440. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1441. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1442. .ops = {
  1443. .early_channel_count = f1x_early_channel_count,
  1444. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1445. .dbam_to_cs = f10_dbam_to_chip_select,
  1446. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1447. }
  1448. },
  1449. [F15_CPUS] = {
  1450. .ctl_name = "F15h",
  1451. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1452. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1453. .ops = {
  1454. .early_channel_count = f1x_early_channel_count,
  1455. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1456. .dbam_to_cs = f15_dbam_to_chip_select,
  1457. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1458. }
  1459. },
  1460. [F15_M30H_CPUS] = {
  1461. .ctl_name = "F15h_M30h",
  1462. .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
  1463. .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
  1464. .ops = {
  1465. .early_channel_count = f1x_early_channel_count,
  1466. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1467. .dbam_to_cs = f16_dbam_to_chip_select,
  1468. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1469. }
  1470. },
  1471. [F16_CPUS] = {
  1472. .ctl_name = "F16h",
  1473. .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
  1474. .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
  1475. .ops = {
  1476. .early_channel_count = f1x_early_channel_count,
  1477. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1478. .dbam_to_cs = f16_dbam_to_chip_select,
  1479. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1480. }
  1481. },
  1482. };
  1483. /*
  1484. * These are tables of eigenvectors (one per line) which can be used for the
  1485. * construction of the syndrome tables. The modified syndrome search algorithm
  1486. * uses those to find the symbol in error and thus the DIMM.
  1487. *
  1488. * Algorithm courtesy of Ross LaFetra from AMD.
  1489. */
  1490. static const u16 x4_vectors[] = {
  1491. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1492. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1493. 0x0001, 0x0002, 0x0004, 0x0008,
  1494. 0x1013, 0x3032, 0x4044, 0x8088,
  1495. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1496. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1497. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1498. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1499. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1500. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1501. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1502. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1503. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1504. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1505. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1506. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1507. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1508. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1509. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1510. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1511. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1512. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1513. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1514. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1515. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1516. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1517. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1518. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1519. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1520. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1521. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1522. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1523. 0x4807, 0xc40e, 0x130c, 0x3208,
  1524. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1525. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1526. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1527. };
  1528. static const u16 x8_vectors[] = {
  1529. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1530. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1531. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1532. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1533. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1534. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1535. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1536. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1537. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1538. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1539. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1540. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1541. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1542. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1543. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1544. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1545. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1546. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1547. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1548. };
  1549. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1550. unsigned v_dim)
  1551. {
  1552. unsigned int i, err_sym;
  1553. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1554. u16 s = syndrome;
  1555. unsigned v_idx = err_sym * v_dim;
  1556. unsigned v_end = (err_sym + 1) * v_dim;
  1557. /* walk over all 16 bits of the syndrome */
  1558. for (i = 1; i < (1U << 16); i <<= 1) {
  1559. /* if bit is set in that eigenvector... */
  1560. if (v_idx < v_end && vectors[v_idx] & i) {
  1561. u16 ev_comp = vectors[v_idx++];
  1562. /* ... and bit set in the modified syndrome, */
  1563. if (s & i) {
  1564. /* remove it. */
  1565. s ^= ev_comp;
  1566. if (!s)
  1567. return err_sym;
  1568. }
  1569. } else if (s & i)
  1570. /* can't get to zero, move to next symbol */
  1571. break;
  1572. }
  1573. }
  1574. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1575. return -1;
  1576. }
  1577. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1578. {
  1579. if (sym_size == 4)
  1580. switch (err_sym) {
  1581. case 0x20:
  1582. case 0x21:
  1583. return 0;
  1584. break;
  1585. case 0x22:
  1586. case 0x23:
  1587. return 1;
  1588. break;
  1589. default:
  1590. return err_sym >> 4;
  1591. break;
  1592. }
  1593. /* x8 symbols */
  1594. else
  1595. switch (err_sym) {
  1596. /* imaginary bits not in a DIMM */
  1597. case 0x10:
  1598. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1599. err_sym);
  1600. return -1;
  1601. break;
  1602. case 0x11:
  1603. return 0;
  1604. break;
  1605. case 0x12:
  1606. return 1;
  1607. break;
  1608. default:
  1609. return err_sym >> 3;
  1610. break;
  1611. }
  1612. return -1;
  1613. }
  1614. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1615. {
  1616. struct amd64_pvt *pvt = mci->pvt_info;
  1617. int err_sym = -1;
  1618. if (pvt->ecc_sym_sz == 8)
  1619. err_sym = decode_syndrome(syndrome, x8_vectors,
  1620. ARRAY_SIZE(x8_vectors),
  1621. pvt->ecc_sym_sz);
  1622. else if (pvt->ecc_sym_sz == 4)
  1623. err_sym = decode_syndrome(syndrome, x4_vectors,
  1624. ARRAY_SIZE(x4_vectors),
  1625. pvt->ecc_sym_sz);
  1626. else {
  1627. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1628. return err_sym;
  1629. }
  1630. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1631. }
  1632. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1633. u8 ecc_type)
  1634. {
  1635. enum hw_event_mc_err_type err_type;
  1636. const char *string;
  1637. if (ecc_type == 2)
  1638. err_type = HW_EVENT_ERR_CORRECTED;
  1639. else if (ecc_type == 1)
  1640. err_type = HW_EVENT_ERR_UNCORRECTED;
  1641. else {
  1642. WARN(1, "Something is rotten in the state of Denmark.\n");
  1643. return;
  1644. }
  1645. switch (err->err_code) {
  1646. case DECODE_OK:
  1647. string = "";
  1648. break;
  1649. case ERR_NODE:
  1650. string = "Failed to map error addr to a node";
  1651. break;
  1652. case ERR_CSROW:
  1653. string = "Failed to map error addr to a csrow";
  1654. break;
  1655. case ERR_CHANNEL:
  1656. string = "unknown syndrome - possible error reporting race";
  1657. break;
  1658. default:
  1659. string = "WTF error";
  1660. break;
  1661. }
  1662. edac_mc_handle_error(err_type, mci, 1,
  1663. err->page, err->offset, err->syndrome,
  1664. err->csrow, err->channel, -1,
  1665. string, "");
  1666. }
  1667. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1668. struct mce *m)
  1669. {
  1670. struct amd64_pvt *pvt = mci->pvt_info;
  1671. u8 ecc_type = (m->status >> 45) & 0x3;
  1672. u8 xec = XEC(m->status, 0x1f);
  1673. u16 ec = EC(m->status);
  1674. u64 sys_addr;
  1675. struct err_info err;
  1676. /* Bail out early if this was an 'observed' error */
  1677. if (PP(ec) == NBSL_PP_OBS)
  1678. return;
  1679. /* Do only ECC errors */
  1680. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1681. return;
  1682. memset(&err, 0, sizeof(err));
  1683. sys_addr = get_error_address(pvt, m);
  1684. if (ecc_type == 2)
  1685. err.syndrome = extract_syndrome(m->status);
  1686. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1687. __log_bus_error(mci, &err, ecc_type);
  1688. }
  1689. void amd64_decode_bus_error(int node_id, struct mce *m)
  1690. {
  1691. __amd64_decode_bus_error(mcis[node_id], m);
  1692. }
  1693. /*
  1694. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1695. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1696. */
  1697. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1698. {
  1699. /* Reserve the ADDRESS MAP Device */
  1700. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1701. if (!pvt->F1) {
  1702. amd64_err("error address map device not found: "
  1703. "vendor %x device 0x%x (broken BIOS?)\n",
  1704. PCI_VENDOR_ID_AMD, f1_id);
  1705. return -ENODEV;
  1706. }
  1707. /* Reserve the MISC Device */
  1708. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1709. if (!pvt->F3) {
  1710. pci_dev_put(pvt->F1);
  1711. pvt->F1 = NULL;
  1712. amd64_err("error F3 device not found: "
  1713. "vendor %x device 0x%x (broken BIOS?)\n",
  1714. PCI_VENDOR_ID_AMD, f3_id);
  1715. return -ENODEV;
  1716. }
  1717. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1718. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1719. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1720. return 0;
  1721. }
  1722. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1723. {
  1724. pci_dev_put(pvt->F1);
  1725. pci_dev_put(pvt->F3);
  1726. }
  1727. /*
  1728. * Retrieve the hardware registers of the memory controller (this includes the
  1729. * 'Address Map' and 'Misc' device regs)
  1730. */
  1731. static void read_mc_regs(struct amd64_pvt *pvt)
  1732. {
  1733. unsigned range;
  1734. u64 msr_val;
  1735. u32 tmp;
  1736. /*
  1737. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1738. * those are Read-As-Zero
  1739. */
  1740. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1741. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1742. /* check first whether TOP_MEM2 is enabled */
  1743. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1744. if (msr_val & (1U << 21)) {
  1745. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1746. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1747. } else
  1748. edac_dbg(0, " TOP_MEM2 disabled\n");
  1749. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1750. read_dram_ctl_register(pvt);
  1751. for (range = 0; range < DRAM_RANGES; range++) {
  1752. u8 rw;
  1753. /* read settings for this DRAM range */
  1754. read_dram_base_limit_regs(pvt, range);
  1755. rw = dram_rw(pvt, range);
  1756. if (!rw)
  1757. continue;
  1758. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1759. range,
  1760. get_dram_base(pvt, range),
  1761. get_dram_limit(pvt, range));
  1762. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1763. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1764. (rw & 0x1) ? "R" : "-",
  1765. (rw & 0x2) ? "W" : "-",
  1766. dram_intlv_sel(pvt, range),
  1767. dram_dst_node(pvt, range));
  1768. }
  1769. read_dct_base_mask(pvt);
  1770. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1771. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1772. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1773. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1774. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1775. if (!dct_ganging_enabled(pvt)) {
  1776. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1777. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1778. }
  1779. pvt->ecc_sym_sz = 4;
  1780. if (pvt->fam >= 0x10) {
  1781. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1782. if (pvt->fam != 0x16)
  1783. /* F16h has only DCT0 */
  1784. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1785. /* F10h, revD and later can do x8 ECC too */
  1786. if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
  1787. pvt->ecc_sym_sz = 8;
  1788. }
  1789. dump_misc_regs(pvt);
  1790. }
  1791. /*
  1792. * NOTE: CPU Revision Dependent code
  1793. *
  1794. * Input:
  1795. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1796. * k8 private pointer to -->
  1797. * DRAM Bank Address mapping register
  1798. * node_id
  1799. * DCL register where dual_channel_active is
  1800. *
  1801. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1802. *
  1803. * Bits: CSROWs
  1804. * 0-3 CSROWs 0 and 1
  1805. * 4-7 CSROWs 2 and 3
  1806. * 8-11 CSROWs 4 and 5
  1807. * 12-15 CSROWs 6 and 7
  1808. *
  1809. * Values range from: 0 to 15
  1810. * The meaning of the values depends on CPU revision and dual-channel state,
  1811. * see relevant BKDG more info.
  1812. *
  1813. * The memory controller provides for total of only 8 CSROWs in its current
  1814. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1815. * single channel or two (2) DIMMs in dual channel mode.
  1816. *
  1817. * The following code logic collapses the various tables for CSROW based on CPU
  1818. * revision.
  1819. *
  1820. * Returns:
  1821. * The number of PAGE_SIZE pages on the specified CSROW number it
  1822. * encompasses
  1823. *
  1824. */
  1825. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1826. {
  1827. u32 cs_mode, nr_pages;
  1828. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1829. /*
  1830. * The math on this doesn't look right on the surface because x/2*4 can
  1831. * be simplified to x*2 but this expression makes use of the fact that
  1832. * it is integral math where 1/2=0. This intermediate value becomes the
  1833. * number of bits to shift the DBAM register to extract the proper CSROW
  1834. * field.
  1835. */
  1836. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  1837. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1838. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  1839. csrow_nr, dct, cs_mode);
  1840. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  1841. return nr_pages;
  1842. }
  1843. /*
  1844. * Initialize the array of csrow attribute instances, based on the values
  1845. * from pci config hardware registers.
  1846. */
  1847. static int init_csrows(struct mem_ctl_info *mci)
  1848. {
  1849. struct amd64_pvt *pvt = mci->pvt_info;
  1850. struct csrow_info *csrow;
  1851. struct dimm_info *dimm;
  1852. enum edac_type edac_mode;
  1853. enum mem_type mtype;
  1854. int i, j, empty = 1;
  1855. int nr_pages = 0;
  1856. u32 val;
  1857. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1858. pvt->nbcfg = val;
  1859. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1860. pvt->mc_node_id, val,
  1861. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1862. /*
  1863. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  1864. */
  1865. for_each_chip_select(i, 0, pvt) {
  1866. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  1867. bool row_dct1 = false;
  1868. if (pvt->fam != 0xf)
  1869. row_dct1 = !!csrow_enabled(i, 1, pvt);
  1870. if (!row_dct0 && !row_dct1)
  1871. continue;
  1872. csrow = mci->csrows[i];
  1873. empty = 0;
  1874. edac_dbg(1, "MC node: %d, csrow: %d\n",
  1875. pvt->mc_node_id, i);
  1876. if (row_dct0) {
  1877. nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1878. csrow->channels[0]->dimm->nr_pages = nr_pages;
  1879. }
  1880. /* K8 has only one DCT */
  1881. if (pvt->fam != 0xf && row_dct1) {
  1882. int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
  1883. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  1884. nr_pages += row_dct1_pages;
  1885. }
  1886. mtype = amd64_determine_memory_type(pvt, i);
  1887. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  1888. /*
  1889. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1890. */
  1891. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1892. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1893. EDAC_S4ECD4ED : EDAC_SECDED;
  1894. else
  1895. edac_mode = EDAC_NONE;
  1896. for (j = 0; j < pvt->channel_count; j++) {
  1897. dimm = csrow->channels[j]->dimm;
  1898. dimm->mtype = mtype;
  1899. dimm->edac_mode = edac_mode;
  1900. }
  1901. }
  1902. return empty;
  1903. }
  1904. /* get all cores on this DCT */
  1905. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  1906. {
  1907. int cpu;
  1908. for_each_online_cpu(cpu)
  1909. if (amd_get_nb_id(cpu) == nid)
  1910. cpumask_set_cpu(cpu, mask);
  1911. }
  1912. /* check MCG_CTL on all the cpus on this node */
  1913. static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
  1914. {
  1915. cpumask_var_t mask;
  1916. int cpu, nbe;
  1917. bool ret = false;
  1918. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1919. amd64_warn("%s: Error allocating mask\n", __func__);
  1920. return false;
  1921. }
  1922. get_cpus_on_this_dct_cpumask(mask, nid);
  1923. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1924. for_each_cpu(cpu, mask) {
  1925. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1926. nbe = reg->l & MSR_MCGCTL_NBE;
  1927. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1928. cpu, reg->q,
  1929. (nbe ? "enabled" : "disabled"));
  1930. if (!nbe)
  1931. goto out;
  1932. }
  1933. ret = true;
  1934. out:
  1935. free_cpumask_var(mask);
  1936. return ret;
  1937. }
  1938. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  1939. {
  1940. cpumask_var_t cmask;
  1941. int cpu;
  1942. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1943. amd64_warn("%s: error allocating mask\n", __func__);
  1944. return false;
  1945. }
  1946. get_cpus_on_this_dct_cpumask(cmask, nid);
  1947. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1948. for_each_cpu(cpu, cmask) {
  1949. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1950. if (on) {
  1951. if (reg->l & MSR_MCGCTL_NBE)
  1952. s->flags.nb_mce_enable = 1;
  1953. reg->l |= MSR_MCGCTL_NBE;
  1954. } else {
  1955. /*
  1956. * Turn off NB MCE reporting only when it was off before
  1957. */
  1958. if (!s->flags.nb_mce_enable)
  1959. reg->l &= ~MSR_MCGCTL_NBE;
  1960. }
  1961. }
  1962. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1963. free_cpumask_var(cmask);
  1964. return 0;
  1965. }
  1966. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  1967. struct pci_dev *F3)
  1968. {
  1969. bool ret = true;
  1970. u32 value, mask = 0x3; /* UECC/CECC enable */
  1971. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1972. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1973. return false;
  1974. }
  1975. amd64_read_pci_cfg(F3, NBCTL, &value);
  1976. s->old_nbctl = value & mask;
  1977. s->nbctl_valid = true;
  1978. value |= mask;
  1979. amd64_write_pci_cfg(F3, NBCTL, value);
  1980. amd64_read_pci_cfg(F3, NBCFG, &value);
  1981. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1982. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1983. if (!(value & NBCFG_ECC_ENABLE)) {
  1984. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1985. s->flags.nb_ecc_prev = 0;
  1986. /* Attempt to turn on DRAM ECC Enable */
  1987. value |= NBCFG_ECC_ENABLE;
  1988. amd64_write_pci_cfg(F3, NBCFG, value);
  1989. amd64_read_pci_cfg(F3, NBCFG, &value);
  1990. if (!(value & NBCFG_ECC_ENABLE)) {
  1991. amd64_warn("Hardware rejected DRAM ECC enable,"
  1992. "check memory DIMM configuration.\n");
  1993. ret = false;
  1994. } else {
  1995. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1996. }
  1997. } else {
  1998. s->flags.nb_ecc_prev = 1;
  1999. }
  2000. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  2001. nid, value, !!(value & NBCFG_ECC_ENABLE));
  2002. return ret;
  2003. }
  2004. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2005. struct pci_dev *F3)
  2006. {
  2007. u32 value, mask = 0x3; /* UECC/CECC enable */
  2008. if (!s->nbctl_valid)
  2009. return;
  2010. amd64_read_pci_cfg(F3, NBCTL, &value);
  2011. value &= ~mask;
  2012. value |= s->old_nbctl;
  2013. amd64_write_pci_cfg(F3, NBCTL, value);
  2014. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2015. if (!s->flags.nb_ecc_prev) {
  2016. amd64_read_pci_cfg(F3, NBCFG, &value);
  2017. value &= ~NBCFG_ECC_ENABLE;
  2018. amd64_write_pci_cfg(F3, NBCFG, value);
  2019. }
  2020. /* restore the NB Enable MCGCTL bit */
  2021. if (toggle_ecc_err_reporting(s, nid, OFF))
  2022. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2023. }
  2024. /*
  2025. * EDAC requires that the BIOS have ECC enabled before
  2026. * taking over the processing of ECC errors. A command line
  2027. * option allows to force-enable hardware ECC later in
  2028. * enable_ecc_error_reporting().
  2029. */
  2030. static const char *ecc_msg =
  2031. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2032. " Either enable ECC checking or force module loading by setting "
  2033. "'ecc_enable_override'.\n"
  2034. " (Note that use of the override may cause unknown side effects.)\n";
  2035. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  2036. {
  2037. u32 value;
  2038. u8 ecc_en = 0;
  2039. bool nb_mce_en = false;
  2040. amd64_read_pci_cfg(F3, NBCFG, &value);
  2041. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2042. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  2043. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  2044. if (!nb_mce_en)
  2045. amd64_notice("NB MCE bank disabled, set MSR "
  2046. "0x%08x[4] on node %d to enable.\n",
  2047. MSR_IA32_MCG_CTL, nid);
  2048. if (!ecc_en || !nb_mce_en) {
  2049. amd64_notice("%s", ecc_msg);
  2050. return false;
  2051. }
  2052. return true;
  2053. }
  2054. static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2055. {
  2056. struct amd64_pvt *pvt = mci->pvt_info;
  2057. int rc;
  2058. rc = amd64_create_sysfs_dbg_files(mci);
  2059. if (rc < 0)
  2060. return rc;
  2061. if (pvt->fam >= 0x10) {
  2062. rc = amd64_create_sysfs_inject_files(mci);
  2063. if (rc < 0)
  2064. return rc;
  2065. }
  2066. return 0;
  2067. }
  2068. static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2069. {
  2070. struct amd64_pvt *pvt = mci->pvt_info;
  2071. amd64_remove_sysfs_dbg_files(mci);
  2072. if (pvt->fam >= 0x10)
  2073. amd64_remove_sysfs_inject_files(mci);
  2074. }
  2075. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2076. struct amd64_family_type *fam)
  2077. {
  2078. struct amd64_pvt *pvt = mci->pvt_info;
  2079. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2080. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2081. if (pvt->nbcap & NBCAP_SECDED)
  2082. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2083. if (pvt->nbcap & NBCAP_CHIPKILL)
  2084. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2085. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2086. mci->mod_name = EDAC_MOD_STR;
  2087. mci->mod_ver = EDAC_AMD64_VERSION;
  2088. mci->ctl_name = fam->ctl_name;
  2089. mci->dev_name = pci_name(pvt->F2);
  2090. mci->ctl_page_to_phys = NULL;
  2091. /* memory scrubber interface */
  2092. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2093. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2094. }
  2095. /*
  2096. * returns a pointer to the family descriptor on success, NULL otherwise.
  2097. */
  2098. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  2099. {
  2100. struct amd64_family_type *fam_type = NULL;
  2101. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2102. pvt->stepping = boot_cpu_data.x86_mask;
  2103. pvt->model = boot_cpu_data.x86_model;
  2104. pvt->fam = boot_cpu_data.x86;
  2105. switch (pvt->fam) {
  2106. case 0xf:
  2107. fam_type = &amd64_family_types[K8_CPUS];
  2108. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2109. break;
  2110. case 0x10:
  2111. fam_type = &amd64_family_types[F10_CPUS];
  2112. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2113. break;
  2114. case 0x15:
  2115. if (pvt->model == 0x30) {
  2116. fam_type = &amd64_family_types[F15_M30H_CPUS];
  2117. pvt->ops = &amd64_family_types[F15_M30H_CPUS].ops;
  2118. break;
  2119. }
  2120. fam_type = &amd64_family_types[F15_CPUS];
  2121. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  2122. break;
  2123. case 0x16:
  2124. fam_type = &amd64_family_types[F16_CPUS];
  2125. pvt->ops = &amd64_family_types[F16_CPUS].ops;
  2126. break;
  2127. default:
  2128. amd64_err("Unsupported family!\n");
  2129. return NULL;
  2130. }
  2131. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2132. (pvt->fam == 0xf ?
  2133. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2134. : "revE or earlier ")
  2135. : ""), pvt->mc_node_id);
  2136. return fam_type;
  2137. }
  2138. static int amd64_init_one_instance(struct pci_dev *F2)
  2139. {
  2140. struct amd64_pvt *pvt = NULL;
  2141. struct amd64_family_type *fam_type = NULL;
  2142. struct mem_ctl_info *mci = NULL;
  2143. struct edac_mc_layer layers[2];
  2144. int err = 0, ret;
  2145. u16 nid = amd_get_node_id(F2);
  2146. ret = -ENOMEM;
  2147. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2148. if (!pvt)
  2149. goto err_ret;
  2150. pvt->mc_node_id = nid;
  2151. pvt->F2 = F2;
  2152. ret = -EINVAL;
  2153. fam_type = amd64_per_family_init(pvt);
  2154. if (!fam_type)
  2155. goto err_free;
  2156. ret = -ENODEV;
  2157. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2158. if (err)
  2159. goto err_free;
  2160. read_mc_regs(pvt);
  2161. /*
  2162. * We need to determine how many memory channels there are. Then use
  2163. * that information for calculating the size of the dynamic instance
  2164. * tables in the 'mci' structure.
  2165. */
  2166. ret = -EINVAL;
  2167. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2168. if (pvt->channel_count < 0)
  2169. goto err_siblings;
  2170. ret = -ENOMEM;
  2171. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2172. layers[0].size = pvt->csels[0].b_cnt;
  2173. layers[0].is_virt_csrow = true;
  2174. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2175. /*
  2176. * Always allocate two channels since we can have setups with DIMMs on
  2177. * only one channel. Also, this simplifies handling later for the price
  2178. * of a couple of KBs tops.
  2179. */
  2180. layers[1].size = 2;
  2181. layers[1].is_virt_csrow = false;
  2182. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2183. if (!mci)
  2184. goto err_siblings;
  2185. mci->pvt_info = pvt;
  2186. mci->pdev = &pvt->F2->dev;
  2187. setup_mci_misc_attrs(mci, fam_type);
  2188. if (init_csrows(mci))
  2189. mci->edac_cap = EDAC_FLAG_NONE;
  2190. ret = -ENODEV;
  2191. if (edac_mc_add_mc(mci)) {
  2192. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2193. goto err_add_mc;
  2194. }
  2195. if (set_mc_sysfs_attrs(mci)) {
  2196. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2197. goto err_add_sysfs;
  2198. }
  2199. /* register stuff with EDAC MCE */
  2200. if (report_gart_errors)
  2201. amd_report_gart_errors(true);
  2202. amd_register_ecc_decoder(amd64_decode_bus_error);
  2203. mcis[nid] = mci;
  2204. atomic_inc(&drv_instances);
  2205. return 0;
  2206. err_add_sysfs:
  2207. edac_mc_del_mc(mci->pdev);
  2208. err_add_mc:
  2209. edac_mc_free(mci);
  2210. err_siblings:
  2211. free_mc_sibling_devs(pvt);
  2212. err_free:
  2213. kfree(pvt);
  2214. err_ret:
  2215. return ret;
  2216. }
  2217. static int amd64_probe_one_instance(struct pci_dev *pdev,
  2218. const struct pci_device_id *mc_type)
  2219. {
  2220. u16 nid = amd_get_node_id(pdev);
  2221. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2222. struct ecc_settings *s;
  2223. int ret = 0;
  2224. ret = pci_enable_device(pdev);
  2225. if (ret < 0) {
  2226. edac_dbg(0, "ret=%d\n", ret);
  2227. return -EIO;
  2228. }
  2229. ret = -ENOMEM;
  2230. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2231. if (!s)
  2232. goto err_out;
  2233. ecc_stngs[nid] = s;
  2234. if (!ecc_enabled(F3, nid)) {
  2235. ret = -ENODEV;
  2236. if (!ecc_enable_override)
  2237. goto err_enable;
  2238. amd64_warn("Forcing ECC on!\n");
  2239. if (!enable_ecc_error_reporting(s, nid, F3))
  2240. goto err_enable;
  2241. }
  2242. ret = amd64_init_one_instance(pdev);
  2243. if (ret < 0) {
  2244. amd64_err("Error probing instance: %d\n", nid);
  2245. restore_ecc_error_reporting(s, nid, F3);
  2246. }
  2247. return ret;
  2248. err_enable:
  2249. kfree(s);
  2250. ecc_stngs[nid] = NULL;
  2251. err_out:
  2252. return ret;
  2253. }
  2254. static void amd64_remove_one_instance(struct pci_dev *pdev)
  2255. {
  2256. struct mem_ctl_info *mci;
  2257. struct amd64_pvt *pvt;
  2258. u16 nid = amd_get_node_id(pdev);
  2259. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2260. struct ecc_settings *s = ecc_stngs[nid];
  2261. mci = find_mci_by_dev(&pdev->dev);
  2262. WARN_ON(!mci);
  2263. del_mc_sysfs_attrs(mci);
  2264. /* Remove from EDAC CORE tracking list */
  2265. mci = edac_mc_del_mc(&pdev->dev);
  2266. if (!mci)
  2267. return;
  2268. pvt = mci->pvt_info;
  2269. restore_ecc_error_reporting(s, nid, F3);
  2270. free_mc_sibling_devs(pvt);
  2271. /* unregister from EDAC MCE */
  2272. amd_report_gart_errors(false);
  2273. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2274. kfree(ecc_stngs[nid]);
  2275. ecc_stngs[nid] = NULL;
  2276. /* Free the EDAC CORE resources */
  2277. mci->pvt_info = NULL;
  2278. mcis[nid] = NULL;
  2279. kfree(pvt);
  2280. edac_mc_free(mci);
  2281. }
  2282. /*
  2283. * This table is part of the interface for loading drivers for PCI devices. The
  2284. * PCI core identifies what devices are on a system during boot, and then
  2285. * inquiry this table to see if this driver is for a given device found.
  2286. */
  2287. static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
  2288. {
  2289. .vendor = PCI_VENDOR_ID_AMD,
  2290. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2291. .subvendor = PCI_ANY_ID,
  2292. .subdevice = PCI_ANY_ID,
  2293. .class = 0,
  2294. .class_mask = 0,
  2295. },
  2296. {
  2297. .vendor = PCI_VENDOR_ID_AMD,
  2298. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2299. .subvendor = PCI_ANY_ID,
  2300. .subdevice = PCI_ANY_ID,
  2301. .class = 0,
  2302. .class_mask = 0,
  2303. },
  2304. {
  2305. .vendor = PCI_VENDOR_ID_AMD,
  2306. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2307. .subvendor = PCI_ANY_ID,
  2308. .subdevice = PCI_ANY_ID,
  2309. .class = 0,
  2310. .class_mask = 0,
  2311. },
  2312. {
  2313. .vendor = PCI_VENDOR_ID_AMD,
  2314. .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
  2315. .subvendor = PCI_ANY_ID,
  2316. .subdevice = PCI_ANY_ID,
  2317. .class = 0,
  2318. .class_mask = 0,
  2319. },
  2320. {
  2321. .vendor = PCI_VENDOR_ID_AMD,
  2322. .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
  2323. .subvendor = PCI_ANY_ID,
  2324. .subdevice = PCI_ANY_ID,
  2325. .class = 0,
  2326. .class_mask = 0,
  2327. },
  2328. {0, }
  2329. };
  2330. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2331. static struct pci_driver amd64_pci_driver = {
  2332. .name = EDAC_MOD_STR,
  2333. .probe = amd64_probe_one_instance,
  2334. .remove = amd64_remove_one_instance,
  2335. .id_table = amd64_pci_table,
  2336. };
  2337. static void setup_pci_device(void)
  2338. {
  2339. struct mem_ctl_info *mci;
  2340. struct amd64_pvt *pvt;
  2341. if (amd64_ctl_pci)
  2342. return;
  2343. mci = mcis[0];
  2344. if (mci) {
  2345. pvt = mci->pvt_info;
  2346. amd64_ctl_pci =
  2347. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2348. if (!amd64_ctl_pci) {
  2349. pr_warning("%s(): Unable to create PCI control\n",
  2350. __func__);
  2351. pr_warning("%s(): PCI error report via EDAC not set\n",
  2352. __func__);
  2353. }
  2354. }
  2355. }
  2356. static int __init amd64_edac_init(void)
  2357. {
  2358. int err = -ENODEV;
  2359. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2360. opstate_init();
  2361. if (amd_cache_northbridges() < 0)
  2362. goto err_ret;
  2363. err = -ENOMEM;
  2364. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2365. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2366. if (!(mcis && ecc_stngs))
  2367. goto err_free;
  2368. msrs = msrs_alloc();
  2369. if (!msrs)
  2370. goto err_free;
  2371. err = pci_register_driver(&amd64_pci_driver);
  2372. if (err)
  2373. goto err_pci;
  2374. err = -ENODEV;
  2375. if (!atomic_read(&drv_instances))
  2376. goto err_no_instances;
  2377. setup_pci_device();
  2378. return 0;
  2379. err_no_instances:
  2380. pci_unregister_driver(&amd64_pci_driver);
  2381. err_pci:
  2382. msrs_free(msrs);
  2383. msrs = NULL;
  2384. err_free:
  2385. kfree(mcis);
  2386. mcis = NULL;
  2387. kfree(ecc_stngs);
  2388. ecc_stngs = NULL;
  2389. err_ret:
  2390. return err;
  2391. }
  2392. static void __exit amd64_edac_exit(void)
  2393. {
  2394. if (amd64_ctl_pci)
  2395. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2396. pci_unregister_driver(&amd64_pci_driver);
  2397. kfree(ecc_stngs);
  2398. ecc_stngs = NULL;
  2399. kfree(mcis);
  2400. mcis = NULL;
  2401. msrs_free(msrs);
  2402. msrs = NULL;
  2403. }
  2404. module_init(amd64_edac_init);
  2405. module_exit(amd64_edac_exit);
  2406. MODULE_LICENSE("GPL");
  2407. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2408. "Dave Peterson, Thayne Harbaugh");
  2409. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2410. EDAC_AMD64_VERSION);
  2411. module_param(edac_op_state, int, 0444);
  2412. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");