sched.c 226 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  187. }
  188. static inline int rt_bandwidth_enabled(void)
  189. {
  190. return sysctl_sched_rt_runtime >= 0;
  191. }
  192. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. ktime_t now;
  195. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  196. return;
  197. if (hrtimer_active(&rt_b->rt_period_timer))
  198. return;
  199. spin_lock(&rt_b->rt_runtime_lock);
  200. for (;;) {
  201. if (hrtimer_active(&rt_b->rt_period_timer))
  202. break;
  203. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  204. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  205. hrtimer_start_expires(&rt_b->rt_period_timer,
  206. HRTIMER_MODE_ABS);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. #ifdef CONFIG_USER_SCHED
  282. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  283. #else /* !CONFIG_USER_SCHED */
  284. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  285. #endif /* CONFIG_USER_SCHED */
  286. /*
  287. * A weight of 0 or 1 can cause arithmetics problems.
  288. * A weight of a cfs_rq is the sum of weights of which entities
  289. * are queued on this cfs_rq, so a weight of a entity should not be
  290. * too large, so as the shares value of a task group.
  291. * (The default weight is 1024 - so there's no practical
  292. * limitation from this.)
  293. */
  294. #define MIN_SHARES 2
  295. #define MAX_SHARES (1UL << 18)
  296. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  297. #endif
  298. /* Default task group.
  299. * Every task in system belong to this group at bootup.
  300. */
  301. struct task_group init_task_group;
  302. /* return group to which a task belongs */
  303. static inline struct task_group *task_group(struct task_struct *p)
  304. {
  305. struct task_group *tg;
  306. #ifdef CONFIG_USER_SCHED
  307. rcu_read_lock();
  308. tg = __task_cred(p)->user->tg;
  309. rcu_read_unlock();
  310. #elif defined(CONFIG_CGROUP_SCHED)
  311. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  312. struct task_group, css);
  313. #else
  314. tg = &init_task_group;
  315. #endif
  316. return tg;
  317. }
  318. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  319. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  320. {
  321. #ifdef CONFIG_FAIR_GROUP_SCHED
  322. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  323. p->se.parent = task_group(p)->se[cpu];
  324. #endif
  325. #ifdef CONFIG_RT_GROUP_SCHED
  326. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  327. p->rt.parent = task_group(p)->rt_se[cpu];
  328. #endif
  329. }
  330. #else
  331. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  332. static inline struct task_group *task_group(struct task_struct *p)
  333. {
  334. return NULL;
  335. }
  336. #endif /* CONFIG_GROUP_SCHED */
  337. /* CFS-related fields in a runqueue */
  338. struct cfs_rq {
  339. struct load_weight load;
  340. unsigned long nr_running;
  341. u64 exec_clock;
  342. u64 min_vruntime;
  343. struct rb_root tasks_timeline;
  344. struct rb_node *rb_leftmost;
  345. struct list_head tasks;
  346. struct list_head *balance_iterator;
  347. /*
  348. * 'curr' points to currently running entity on this cfs_rq.
  349. * It is set to NULL otherwise (i.e when none are currently running).
  350. */
  351. struct sched_entity *curr, *next, *last;
  352. unsigned int nr_spread_over;
  353. #ifdef CONFIG_FAIR_GROUP_SCHED
  354. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  355. /*
  356. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  357. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  358. * (like users, containers etc.)
  359. *
  360. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  361. * list is used during load balance.
  362. */
  363. struct list_head leaf_cfs_rq_list;
  364. struct task_group *tg; /* group that "owns" this runqueue */
  365. #ifdef CONFIG_SMP
  366. /*
  367. * the part of load.weight contributed by tasks
  368. */
  369. unsigned long task_weight;
  370. /*
  371. * h_load = weight * f(tg)
  372. *
  373. * Where f(tg) is the recursive weight fraction assigned to
  374. * this group.
  375. */
  376. unsigned long h_load;
  377. /*
  378. * this cpu's part of tg->shares
  379. */
  380. unsigned long shares;
  381. /*
  382. * load.weight at the time we set shares
  383. */
  384. unsigned long rq_weight;
  385. #endif
  386. #endif
  387. };
  388. /* Real-Time classes' related field in a runqueue: */
  389. struct rt_rq {
  390. struct rt_prio_array active;
  391. unsigned long rt_nr_running;
  392. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  393. int highest_prio; /* highest queued rt task prio */
  394. #endif
  395. #ifdef CONFIG_SMP
  396. unsigned long rt_nr_migratory;
  397. int overloaded;
  398. #endif
  399. int rt_throttled;
  400. u64 rt_time;
  401. u64 rt_runtime;
  402. /* Nests inside the rq lock: */
  403. spinlock_t rt_runtime_lock;
  404. #ifdef CONFIG_RT_GROUP_SCHED
  405. unsigned long rt_nr_boosted;
  406. struct rq *rq;
  407. struct list_head leaf_rt_rq_list;
  408. struct task_group *tg;
  409. struct sched_rt_entity *rt_se;
  410. #endif
  411. };
  412. #ifdef CONFIG_SMP
  413. /*
  414. * We add the notion of a root-domain which will be used to define per-domain
  415. * variables. Each exclusive cpuset essentially defines an island domain by
  416. * fully partitioning the member cpus from any other cpuset. Whenever a new
  417. * exclusive cpuset is created, we also create and attach a new root-domain
  418. * object.
  419. *
  420. */
  421. struct root_domain {
  422. atomic_t refcount;
  423. cpumask_t span;
  424. cpumask_t online;
  425. /*
  426. * The "RT overload" flag: it gets set if a CPU has more than
  427. * one runnable RT task.
  428. */
  429. cpumask_t rto_mask;
  430. atomic_t rto_count;
  431. #ifdef CONFIG_SMP
  432. struct cpupri cpupri;
  433. #endif
  434. };
  435. /*
  436. * By default the system creates a single root-domain with all cpus as
  437. * members (mimicking the global state we have today).
  438. */
  439. static struct root_domain def_root_domain;
  440. #endif
  441. /*
  442. * This is the main, per-CPU runqueue data structure.
  443. *
  444. * Locking rule: those places that want to lock multiple runqueues
  445. * (such as the load balancing or the thread migration code), lock
  446. * acquire operations must be ordered by ascending &runqueue.
  447. */
  448. struct rq {
  449. /* runqueue lock: */
  450. spinlock_t lock;
  451. /*
  452. * nr_running and cpu_load should be in the same cacheline because
  453. * remote CPUs use both these fields when doing load calculation.
  454. */
  455. unsigned long nr_running;
  456. #define CPU_LOAD_IDX_MAX 5
  457. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  458. unsigned char idle_at_tick;
  459. #ifdef CONFIG_NO_HZ
  460. unsigned long last_tick_seen;
  461. unsigned char in_nohz_recently;
  462. #endif
  463. /* capture load from *all* tasks on this cpu: */
  464. struct load_weight load;
  465. unsigned long nr_load_updates;
  466. u64 nr_switches;
  467. struct cfs_rq cfs;
  468. struct rt_rq rt;
  469. #ifdef CONFIG_FAIR_GROUP_SCHED
  470. /* list of leaf cfs_rq on this cpu: */
  471. struct list_head leaf_cfs_rq_list;
  472. #endif
  473. #ifdef CONFIG_RT_GROUP_SCHED
  474. struct list_head leaf_rt_rq_list;
  475. #endif
  476. /*
  477. * This is part of a global counter where only the total sum
  478. * over all CPUs matters. A task can increase this counter on
  479. * one CPU and if it got migrated afterwards it may decrease
  480. * it on another CPU. Always updated under the runqueue lock:
  481. */
  482. unsigned long nr_uninterruptible;
  483. struct task_struct *curr, *idle;
  484. unsigned long next_balance;
  485. struct mm_struct *prev_mm;
  486. u64 clock;
  487. atomic_t nr_iowait;
  488. #ifdef CONFIG_SMP
  489. struct root_domain *rd;
  490. struct sched_domain *sd;
  491. /* For active balancing */
  492. int active_balance;
  493. int push_cpu;
  494. /* cpu of this runqueue: */
  495. int cpu;
  496. int online;
  497. unsigned long avg_load_per_task;
  498. struct task_struct *migration_thread;
  499. struct list_head migration_queue;
  500. #endif
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_exp_empty;
  515. unsigned int yld_act_empty;
  516. unsigned int yld_both_empty;
  517. unsigned int yld_count;
  518. /* schedule() stats */
  519. unsigned int sched_switch;
  520. unsigned int sched_count;
  521. unsigned int sched_goidle;
  522. /* try_to_wake_up() stats */
  523. unsigned int ttwu_count;
  524. unsigned int ttwu_local;
  525. /* BKL stats */
  526. unsigned int bkl_count;
  527. #endif
  528. };
  529. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  530. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  531. {
  532. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  533. }
  534. static inline int cpu_of(struct rq *rq)
  535. {
  536. #ifdef CONFIG_SMP
  537. return rq->cpu;
  538. #else
  539. return 0;
  540. #endif
  541. }
  542. /*
  543. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  544. * See detach_destroy_domains: synchronize_sched for details.
  545. *
  546. * The domain tree of any CPU may only be accessed from within
  547. * preempt-disabled sections.
  548. */
  549. #define for_each_domain(cpu, __sd) \
  550. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  551. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  552. #define this_rq() (&__get_cpu_var(runqueues))
  553. #define task_rq(p) cpu_rq(task_cpu(p))
  554. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  555. static inline void update_rq_clock(struct rq *rq)
  556. {
  557. rq->clock = sched_clock_cpu(cpu_of(rq));
  558. }
  559. /*
  560. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  561. */
  562. #ifdef CONFIG_SCHED_DEBUG
  563. # define const_debug __read_mostly
  564. #else
  565. # define const_debug static const
  566. #endif
  567. /**
  568. * runqueue_is_locked
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(void)
  575. {
  576. int cpu = get_cpu();
  577. struct rq *rq = cpu_rq(cpu);
  578. int ret;
  579. ret = spin_is_locked(&rq->lock);
  580. put_cpu();
  581. return ret;
  582. }
  583. /*
  584. * Debugging: various feature bits
  585. */
  586. #define SCHED_FEAT(name, enabled) \
  587. __SCHED_FEAT_##name ,
  588. enum {
  589. #include "sched_features.h"
  590. };
  591. #undef SCHED_FEAT
  592. #define SCHED_FEAT(name, enabled) \
  593. (1UL << __SCHED_FEAT_##name) * enabled |
  594. const_debug unsigned int sysctl_sched_features =
  595. #include "sched_features.h"
  596. 0;
  597. #undef SCHED_FEAT
  598. #ifdef CONFIG_SCHED_DEBUG
  599. #define SCHED_FEAT(name, enabled) \
  600. #name ,
  601. static __read_mostly char *sched_feat_names[] = {
  602. #include "sched_features.h"
  603. NULL
  604. };
  605. #undef SCHED_FEAT
  606. static int sched_feat_show(struct seq_file *m, void *v)
  607. {
  608. int i;
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (!(sysctl_sched_features & (1UL << i)))
  611. seq_puts(m, "NO_");
  612. seq_printf(m, "%s ", sched_feat_names[i]);
  613. }
  614. seq_puts(m, "\n");
  615. return 0;
  616. }
  617. static ssize_t
  618. sched_feat_write(struct file *filp, const char __user *ubuf,
  619. size_t cnt, loff_t *ppos)
  620. {
  621. char buf[64];
  622. char *cmp = buf;
  623. int neg = 0;
  624. int i;
  625. if (cnt > 63)
  626. cnt = 63;
  627. if (copy_from_user(&buf, ubuf, cnt))
  628. return -EFAULT;
  629. buf[cnt] = 0;
  630. if (strncmp(buf, "NO_", 3) == 0) {
  631. neg = 1;
  632. cmp += 3;
  633. }
  634. for (i = 0; sched_feat_names[i]; i++) {
  635. int len = strlen(sched_feat_names[i]);
  636. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  637. if (neg)
  638. sysctl_sched_features &= ~(1UL << i);
  639. else
  640. sysctl_sched_features |= (1UL << i);
  641. break;
  642. }
  643. }
  644. if (!sched_feat_names[i])
  645. return -EINVAL;
  646. filp->f_pos += cnt;
  647. return cnt;
  648. }
  649. static int sched_feat_open(struct inode *inode, struct file *filp)
  650. {
  651. return single_open(filp, sched_feat_show, NULL);
  652. }
  653. static struct file_operations sched_feat_fops = {
  654. .open = sched_feat_open,
  655. .write = sched_feat_write,
  656. .read = seq_read,
  657. .llseek = seq_lseek,
  658. .release = single_release,
  659. };
  660. static __init int sched_init_debug(void)
  661. {
  662. debugfs_create_file("sched_features", 0644, NULL, NULL,
  663. &sched_feat_fops);
  664. return 0;
  665. }
  666. late_initcall(sched_init_debug);
  667. #endif
  668. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  669. /*
  670. * Number of tasks to iterate in a single balance run.
  671. * Limited because this is done with IRQs disabled.
  672. */
  673. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  674. /*
  675. * ratelimit for updating the group shares.
  676. * default: 0.25ms
  677. */
  678. unsigned int sysctl_sched_shares_ratelimit = 250000;
  679. /*
  680. * Inject some fuzzyness into changing the per-cpu group shares
  681. * this avoids remote rq-locks at the expense of fairness.
  682. * default: 4
  683. */
  684. unsigned int sysctl_sched_shares_thresh = 4;
  685. /*
  686. * period over which we measure -rt task cpu usage in us.
  687. * default: 1s
  688. */
  689. unsigned int sysctl_sched_rt_period = 1000000;
  690. static __read_mostly int scheduler_running;
  691. /*
  692. * part of the period that we allow rt tasks to run in us.
  693. * default: 0.95s
  694. */
  695. int sysctl_sched_rt_runtime = 950000;
  696. static inline u64 global_rt_period(void)
  697. {
  698. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  699. }
  700. static inline u64 global_rt_runtime(void)
  701. {
  702. if (sysctl_sched_rt_runtime < 0)
  703. return RUNTIME_INF;
  704. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  705. }
  706. #ifndef prepare_arch_switch
  707. # define prepare_arch_switch(next) do { } while (0)
  708. #endif
  709. #ifndef finish_arch_switch
  710. # define finish_arch_switch(prev) do { } while (0)
  711. #endif
  712. static inline int task_current(struct rq *rq, struct task_struct *p)
  713. {
  714. return rq->curr == p;
  715. }
  716. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  717. static inline int task_running(struct rq *rq, struct task_struct *p)
  718. {
  719. return task_current(rq, p);
  720. }
  721. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  722. {
  723. }
  724. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  725. {
  726. #ifdef CONFIG_DEBUG_SPINLOCK
  727. /* this is a valid case when another task releases the spinlock */
  728. rq->lock.owner = current;
  729. #endif
  730. /*
  731. * If we are tracking spinlock dependencies then we have to
  732. * fix up the runqueue lock - which gets 'carried over' from
  733. * prev into current:
  734. */
  735. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  736. spin_unlock_irq(&rq->lock);
  737. }
  738. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  739. static inline int task_running(struct rq *rq, struct task_struct *p)
  740. {
  741. #ifdef CONFIG_SMP
  742. return p->oncpu;
  743. #else
  744. return task_current(rq, p);
  745. #endif
  746. }
  747. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  748. {
  749. #ifdef CONFIG_SMP
  750. /*
  751. * We can optimise this out completely for !SMP, because the
  752. * SMP rebalancing from interrupt is the only thing that cares
  753. * here.
  754. */
  755. next->oncpu = 1;
  756. #endif
  757. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  758. spin_unlock_irq(&rq->lock);
  759. #else
  760. spin_unlock(&rq->lock);
  761. #endif
  762. }
  763. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  764. {
  765. #ifdef CONFIG_SMP
  766. /*
  767. * After ->oncpu is cleared, the task can be moved to a different CPU.
  768. * We must ensure this doesn't happen until the switch is completely
  769. * finished.
  770. */
  771. smp_wmb();
  772. prev->oncpu = 0;
  773. #endif
  774. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  775. local_irq_enable();
  776. #endif
  777. }
  778. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  779. /*
  780. * __task_rq_lock - lock the runqueue a given task resides on.
  781. * Must be called interrupts disabled.
  782. */
  783. static inline struct rq *__task_rq_lock(struct task_struct *p)
  784. __acquires(rq->lock)
  785. {
  786. for (;;) {
  787. struct rq *rq = task_rq(p);
  788. spin_lock(&rq->lock);
  789. if (likely(rq == task_rq(p)))
  790. return rq;
  791. spin_unlock(&rq->lock);
  792. }
  793. }
  794. /*
  795. * task_rq_lock - lock the runqueue a given task resides on and disable
  796. * interrupts. Note the ordering: we can safely lookup the task_rq without
  797. * explicitly disabling preemption.
  798. */
  799. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  800. __acquires(rq->lock)
  801. {
  802. struct rq *rq;
  803. for (;;) {
  804. local_irq_save(*flags);
  805. rq = task_rq(p);
  806. spin_lock(&rq->lock);
  807. if (likely(rq == task_rq(p)))
  808. return rq;
  809. spin_unlock_irqrestore(&rq->lock, *flags);
  810. }
  811. }
  812. void task_rq_unlock_wait(struct task_struct *p)
  813. {
  814. struct rq *rq = task_rq(p);
  815. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  816. spin_unlock_wait(&rq->lock);
  817. }
  818. static void __task_rq_unlock(struct rq *rq)
  819. __releases(rq->lock)
  820. {
  821. spin_unlock(&rq->lock);
  822. }
  823. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  824. __releases(rq->lock)
  825. {
  826. spin_unlock_irqrestore(&rq->lock, *flags);
  827. }
  828. /*
  829. * this_rq_lock - lock this runqueue and disable interrupts.
  830. */
  831. static struct rq *this_rq_lock(void)
  832. __acquires(rq->lock)
  833. {
  834. struct rq *rq;
  835. local_irq_disable();
  836. rq = this_rq();
  837. spin_lock(&rq->lock);
  838. return rq;
  839. }
  840. #ifdef CONFIG_SCHED_HRTICK
  841. /*
  842. * Use HR-timers to deliver accurate preemption points.
  843. *
  844. * Its all a bit involved since we cannot program an hrt while holding the
  845. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  846. * reschedule event.
  847. *
  848. * When we get rescheduled we reprogram the hrtick_timer outside of the
  849. * rq->lock.
  850. */
  851. /*
  852. * Use hrtick when:
  853. * - enabled by features
  854. * - hrtimer is actually high res
  855. */
  856. static inline int hrtick_enabled(struct rq *rq)
  857. {
  858. if (!sched_feat(HRTICK))
  859. return 0;
  860. if (!cpu_active(cpu_of(rq)))
  861. return 0;
  862. return hrtimer_is_hres_active(&rq->hrtick_timer);
  863. }
  864. static void hrtick_clear(struct rq *rq)
  865. {
  866. if (hrtimer_active(&rq->hrtick_timer))
  867. hrtimer_cancel(&rq->hrtick_timer);
  868. }
  869. /*
  870. * High-resolution timer tick.
  871. * Runs from hardirq context with interrupts disabled.
  872. */
  873. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  874. {
  875. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  876. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  877. spin_lock(&rq->lock);
  878. update_rq_clock(rq);
  879. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  880. spin_unlock(&rq->lock);
  881. return HRTIMER_NORESTART;
  882. }
  883. #ifdef CONFIG_SMP
  884. /*
  885. * called from hardirq (IPI) context
  886. */
  887. static void __hrtick_start(void *arg)
  888. {
  889. struct rq *rq = arg;
  890. spin_lock(&rq->lock);
  891. hrtimer_restart(&rq->hrtick_timer);
  892. rq->hrtick_csd_pending = 0;
  893. spin_unlock(&rq->lock);
  894. }
  895. /*
  896. * Called to set the hrtick timer state.
  897. *
  898. * called with rq->lock held and irqs disabled
  899. */
  900. static void hrtick_start(struct rq *rq, u64 delay)
  901. {
  902. struct hrtimer *timer = &rq->hrtick_timer;
  903. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  904. hrtimer_set_expires(timer, time);
  905. if (rq == this_rq()) {
  906. hrtimer_restart(timer);
  907. } else if (!rq->hrtick_csd_pending) {
  908. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  909. rq->hrtick_csd_pending = 1;
  910. }
  911. }
  912. static int
  913. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  914. {
  915. int cpu = (int)(long)hcpu;
  916. switch (action) {
  917. case CPU_UP_CANCELED:
  918. case CPU_UP_CANCELED_FROZEN:
  919. case CPU_DOWN_PREPARE:
  920. case CPU_DOWN_PREPARE_FROZEN:
  921. case CPU_DEAD:
  922. case CPU_DEAD_FROZEN:
  923. hrtick_clear(cpu_rq(cpu));
  924. return NOTIFY_OK;
  925. }
  926. return NOTIFY_DONE;
  927. }
  928. static __init void init_hrtick(void)
  929. {
  930. hotcpu_notifier(hotplug_hrtick, 0);
  931. }
  932. #else
  933. /*
  934. * Called to set the hrtick timer state.
  935. *
  936. * called with rq->lock held and irqs disabled
  937. */
  938. static void hrtick_start(struct rq *rq, u64 delay)
  939. {
  940. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  941. }
  942. static inline void init_hrtick(void)
  943. {
  944. }
  945. #endif /* CONFIG_SMP */
  946. static void init_rq_hrtick(struct rq *rq)
  947. {
  948. #ifdef CONFIG_SMP
  949. rq->hrtick_csd_pending = 0;
  950. rq->hrtick_csd.flags = 0;
  951. rq->hrtick_csd.func = __hrtick_start;
  952. rq->hrtick_csd.info = rq;
  953. #endif
  954. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  955. rq->hrtick_timer.function = hrtick;
  956. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  957. }
  958. #else /* CONFIG_SCHED_HRTICK */
  959. static inline void hrtick_clear(struct rq *rq)
  960. {
  961. }
  962. static inline void init_rq_hrtick(struct rq *rq)
  963. {
  964. }
  965. static inline void init_hrtick(void)
  966. {
  967. }
  968. #endif /* CONFIG_SCHED_HRTICK */
  969. /*
  970. * resched_task - mark a task 'to be rescheduled now'.
  971. *
  972. * On UP this means the setting of the need_resched flag, on SMP it
  973. * might also involve a cross-CPU call to trigger the scheduler on
  974. * the target CPU.
  975. */
  976. #ifdef CONFIG_SMP
  977. #ifndef tsk_is_polling
  978. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  979. #endif
  980. static void resched_task(struct task_struct *p)
  981. {
  982. int cpu;
  983. assert_spin_locked(&task_rq(p)->lock);
  984. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  985. return;
  986. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  987. cpu = task_cpu(p);
  988. if (cpu == smp_processor_id())
  989. return;
  990. /* NEED_RESCHED must be visible before we test polling */
  991. smp_mb();
  992. if (!tsk_is_polling(p))
  993. smp_send_reschedule(cpu);
  994. }
  995. static void resched_cpu(int cpu)
  996. {
  997. struct rq *rq = cpu_rq(cpu);
  998. unsigned long flags;
  999. if (!spin_trylock_irqsave(&rq->lock, flags))
  1000. return;
  1001. resched_task(cpu_curr(cpu));
  1002. spin_unlock_irqrestore(&rq->lock, flags);
  1003. }
  1004. #ifdef CONFIG_NO_HZ
  1005. /*
  1006. * When add_timer_on() enqueues a timer into the timer wheel of an
  1007. * idle CPU then this timer might expire before the next timer event
  1008. * which is scheduled to wake up that CPU. In case of a completely
  1009. * idle system the next event might even be infinite time into the
  1010. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1011. * leaves the inner idle loop so the newly added timer is taken into
  1012. * account when the CPU goes back to idle and evaluates the timer
  1013. * wheel for the next timer event.
  1014. */
  1015. void wake_up_idle_cpu(int cpu)
  1016. {
  1017. struct rq *rq = cpu_rq(cpu);
  1018. if (cpu == smp_processor_id())
  1019. return;
  1020. /*
  1021. * This is safe, as this function is called with the timer
  1022. * wheel base lock of (cpu) held. When the CPU is on the way
  1023. * to idle and has not yet set rq->curr to idle then it will
  1024. * be serialized on the timer wheel base lock and take the new
  1025. * timer into account automatically.
  1026. */
  1027. if (rq->curr != rq->idle)
  1028. return;
  1029. /*
  1030. * We can set TIF_RESCHED on the idle task of the other CPU
  1031. * lockless. The worst case is that the other CPU runs the
  1032. * idle task through an additional NOOP schedule()
  1033. */
  1034. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1035. /* NEED_RESCHED must be visible before we test polling */
  1036. smp_mb();
  1037. if (!tsk_is_polling(rq->idle))
  1038. smp_send_reschedule(cpu);
  1039. }
  1040. #endif /* CONFIG_NO_HZ */
  1041. #else /* !CONFIG_SMP */
  1042. static void resched_task(struct task_struct *p)
  1043. {
  1044. assert_spin_locked(&task_rq(p)->lock);
  1045. set_tsk_need_resched(p);
  1046. }
  1047. #endif /* CONFIG_SMP */
  1048. #if BITS_PER_LONG == 32
  1049. # define WMULT_CONST (~0UL)
  1050. #else
  1051. # define WMULT_CONST (1UL << 32)
  1052. #endif
  1053. #define WMULT_SHIFT 32
  1054. /*
  1055. * Shift right and round:
  1056. */
  1057. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1058. /*
  1059. * delta *= weight / lw
  1060. */
  1061. static unsigned long
  1062. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1063. struct load_weight *lw)
  1064. {
  1065. u64 tmp;
  1066. if (!lw->inv_weight) {
  1067. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1068. lw->inv_weight = 1;
  1069. else
  1070. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1071. / (lw->weight+1);
  1072. }
  1073. tmp = (u64)delta_exec * weight;
  1074. /*
  1075. * Check whether we'd overflow the 64-bit multiplication:
  1076. */
  1077. if (unlikely(tmp > WMULT_CONST))
  1078. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1079. WMULT_SHIFT/2);
  1080. else
  1081. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1082. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1083. }
  1084. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1085. {
  1086. lw->weight += inc;
  1087. lw->inv_weight = 0;
  1088. }
  1089. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1090. {
  1091. lw->weight -= dec;
  1092. lw->inv_weight = 0;
  1093. }
  1094. /*
  1095. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1096. * of tasks with abnormal "nice" values across CPUs the contribution that
  1097. * each task makes to its run queue's load is weighted according to its
  1098. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1099. * scaled version of the new time slice allocation that they receive on time
  1100. * slice expiry etc.
  1101. */
  1102. #define WEIGHT_IDLEPRIO 2
  1103. #define WMULT_IDLEPRIO (1 << 31)
  1104. /*
  1105. * Nice levels are multiplicative, with a gentle 10% change for every
  1106. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1107. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1108. * that remained on nice 0.
  1109. *
  1110. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1111. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1112. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1113. * If a task goes up by ~10% and another task goes down by ~10% then
  1114. * the relative distance between them is ~25%.)
  1115. */
  1116. static const int prio_to_weight[40] = {
  1117. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1118. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1119. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1120. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1121. /* 0 */ 1024, 820, 655, 526, 423,
  1122. /* 5 */ 335, 272, 215, 172, 137,
  1123. /* 10 */ 110, 87, 70, 56, 45,
  1124. /* 15 */ 36, 29, 23, 18, 15,
  1125. };
  1126. /*
  1127. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1128. *
  1129. * In cases where the weight does not change often, we can use the
  1130. * precalculated inverse to speed up arithmetics by turning divisions
  1131. * into multiplications:
  1132. */
  1133. static const u32 prio_to_wmult[40] = {
  1134. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1135. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1136. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1137. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1138. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1139. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1140. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1141. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1142. };
  1143. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1144. /*
  1145. * runqueue iterator, to support SMP load-balancing between different
  1146. * scheduling classes, without having to expose their internal data
  1147. * structures to the load-balancing proper:
  1148. */
  1149. struct rq_iterator {
  1150. void *arg;
  1151. struct task_struct *(*start)(void *);
  1152. struct task_struct *(*next)(void *);
  1153. };
  1154. #ifdef CONFIG_SMP
  1155. static unsigned long
  1156. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1157. unsigned long max_load_move, struct sched_domain *sd,
  1158. enum cpu_idle_type idle, int *all_pinned,
  1159. int *this_best_prio, struct rq_iterator *iterator);
  1160. static int
  1161. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1162. struct sched_domain *sd, enum cpu_idle_type idle,
  1163. struct rq_iterator *iterator);
  1164. #endif
  1165. #ifdef CONFIG_CGROUP_CPUACCT
  1166. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1167. #else
  1168. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1169. #endif
  1170. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1171. {
  1172. update_load_add(&rq->load, load);
  1173. }
  1174. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1175. {
  1176. update_load_sub(&rq->load, load);
  1177. }
  1178. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1179. typedef int (*tg_visitor)(struct task_group *, void *);
  1180. /*
  1181. * Iterate the full tree, calling @down when first entering a node and @up when
  1182. * leaving it for the final time.
  1183. */
  1184. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1185. {
  1186. struct task_group *parent, *child;
  1187. int ret;
  1188. rcu_read_lock();
  1189. parent = &root_task_group;
  1190. down:
  1191. ret = (*down)(parent, data);
  1192. if (ret)
  1193. goto out_unlock;
  1194. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1195. parent = child;
  1196. goto down;
  1197. up:
  1198. continue;
  1199. }
  1200. ret = (*up)(parent, data);
  1201. if (ret)
  1202. goto out_unlock;
  1203. child = parent;
  1204. parent = parent->parent;
  1205. if (parent)
  1206. goto up;
  1207. out_unlock:
  1208. rcu_read_unlock();
  1209. return ret;
  1210. }
  1211. static int tg_nop(struct task_group *tg, void *data)
  1212. {
  1213. return 0;
  1214. }
  1215. #endif
  1216. #ifdef CONFIG_SMP
  1217. static unsigned long source_load(int cpu, int type);
  1218. static unsigned long target_load(int cpu, int type);
  1219. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1220. static unsigned long cpu_avg_load_per_task(int cpu)
  1221. {
  1222. struct rq *rq = cpu_rq(cpu);
  1223. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1224. if (nr_running)
  1225. rq->avg_load_per_task = rq->load.weight / nr_running;
  1226. else
  1227. rq->avg_load_per_task = 0;
  1228. return rq->avg_load_per_task;
  1229. }
  1230. #ifdef CONFIG_FAIR_GROUP_SCHED
  1231. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1232. /*
  1233. * Calculate and set the cpu's group shares.
  1234. */
  1235. static void
  1236. update_group_shares_cpu(struct task_group *tg, int cpu,
  1237. unsigned long sd_shares, unsigned long sd_rq_weight)
  1238. {
  1239. unsigned long shares;
  1240. unsigned long rq_weight;
  1241. if (!tg->se[cpu])
  1242. return;
  1243. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1244. /*
  1245. * \Sum shares * rq_weight
  1246. * shares = -----------------------
  1247. * \Sum rq_weight
  1248. *
  1249. */
  1250. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1251. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1252. if (abs(shares - tg->se[cpu]->load.weight) >
  1253. sysctl_sched_shares_thresh) {
  1254. struct rq *rq = cpu_rq(cpu);
  1255. unsigned long flags;
  1256. spin_lock_irqsave(&rq->lock, flags);
  1257. tg->cfs_rq[cpu]->shares = shares;
  1258. __set_se_shares(tg->se[cpu], shares);
  1259. spin_unlock_irqrestore(&rq->lock, flags);
  1260. }
  1261. }
  1262. /*
  1263. * Re-compute the task group their per cpu shares over the given domain.
  1264. * This needs to be done in a bottom-up fashion because the rq weight of a
  1265. * parent group depends on the shares of its child groups.
  1266. */
  1267. static int tg_shares_up(struct task_group *tg, void *data)
  1268. {
  1269. unsigned long weight, rq_weight = 0;
  1270. unsigned long shares = 0;
  1271. struct sched_domain *sd = data;
  1272. int i;
  1273. for_each_cpu_mask(i, sd->span) {
  1274. /*
  1275. * If there are currently no tasks on the cpu pretend there
  1276. * is one of average load so that when a new task gets to
  1277. * run here it will not get delayed by group starvation.
  1278. */
  1279. weight = tg->cfs_rq[i]->load.weight;
  1280. if (!weight)
  1281. weight = NICE_0_LOAD;
  1282. tg->cfs_rq[i]->rq_weight = weight;
  1283. rq_weight += weight;
  1284. shares += tg->cfs_rq[i]->shares;
  1285. }
  1286. if ((!shares && rq_weight) || shares > tg->shares)
  1287. shares = tg->shares;
  1288. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1289. shares = tg->shares;
  1290. for_each_cpu_mask(i, sd->span)
  1291. update_group_shares_cpu(tg, i, shares, rq_weight);
  1292. return 0;
  1293. }
  1294. /*
  1295. * Compute the cpu's hierarchical load factor for each task group.
  1296. * This needs to be done in a top-down fashion because the load of a child
  1297. * group is a fraction of its parents load.
  1298. */
  1299. static int tg_load_down(struct task_group *tg, void *data)
  1300. {
  1301. unsigned long load;
  1302. long cpu = (long)data;
  1303. if (!tg->parent) {
  1304. load = cpu_rq(cpu)->load.weight;
  1305. } else {
  1306. load = tg->parent->cfs_rq[cpu]->h_load;
  1307. load *= tg->cfs_rq[cpu]->shares;
  1308. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1309. }
  1310. tg->cfs_rq[cpu]->h_load = load;
  1311. return 0;
  1312. }
  1313. static void update_shares(struct sched_domain *sd)
  1314. {
  1315. u64 now = cpu_clock(raw_smp_processor_id());
  1316. s64 elapsed = now - sd->last_update;
  1317. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1318. sd->last_update = now;
  1319. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1320. }
  1321. }
  1322. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1323. {
  1324. spin_unlock(&rq->lock);
  1325. update_shares(sd);
  1326. spin_lock(&rq->lock);
  1327. }
  1328. static void update_h_load(long cpu)
  1329. {
  1330. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1331. }
  1332. #else
  1333. static inline void update_shares(struct sched_domain *sd)
  1334. {
  1335. }
  1336. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1337. {
  1338. }
  1339. #endif
  1340. /*
  1341. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1342. */
  1343. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1344. __releases(this_rq->lock)
  1345. __acquires(busiest->lock)
  1346. __acquires(this_rq->lock)
  1347. {
  1348. int ret = 0;
  1349. if (unlikely(!irqs_disabled())) {
  1350. /* printk() doesn't work good under rq->lock */
  1351. spin_unlock(&this_rq->lock);
  1352. BUG_ON(1);
  1353. }
  1354. if (unlikely(!spin_trylock(&busiest->lock))) {
  1355. if (busiest < this_rq) {
  1356. spin_unlock(&this_rq->lock);
  1357. spin_lock(&busiest->lock);
  1358. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1359. ret = 1;
  1360. } else
  1361. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1362. }
  1363. return ret;
  1364. }
  1365. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1366. __releases(busiest->lock)
  1367. {
  1368. spin_unlock(&busiest->lock);
  1369. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1370. }
  1371. #endif
  1372. #ifdef CONFIG_FAIR_GROUP_SCHED
  1373. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1374. {
  1375. #ifdef CONFIG_SMP
  1376. cfs_rq->shares = shares;
  1377. #endif
  1378. }
  1379. #endif
  1380. #include "sched_stats.h"
  1381. #include "sched_idletask.c"
  1382. #include "sched_fair.c"
  1383. #include "sched_rt.c"
  1384. #ifdef CONFIG_SCHED_DEBUG
  1385. # include "sched_debug.c"
  1386. #endif
  1387. #define sched_class_highest (&rt_sched_class)
  1388. #define for_each_class(class) \
  1389. for (class = sched_class_highest; class; class = class->next)
  1390. static void inc_nr_running(struct rq *rq)
  1391. {
  1392. rq->nr_running++;
  1393. }
  1394. static void dec_nr_running(struct rq *rq)
  1395. {
  1396. rq->nr_running--;
  1397. }
  1398. static void set_load_weight(struct task_struct *p)
  1399. {
  1400. if (task_has_rt_policy(p)) {
  1401. p->se.load.weight = prio_to_weight[0] * 2;
  1402. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1403. return;
  1404. }
  1405. /*
  1406. * SCHED_IDLE tasks get minimal weight:
  1407. */
  1408. if (p->policy == SCHED_IDLE) {
  1409. p->se.load.weight = WEIGHT_IDLEPRIO;
  1410. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1411. return;
  1412. }
  1413. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1414. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1415. }
  1416. static void update_avg(u64 *avg, u64 sample)
  1417. {
  1418. s64 diff = sample - *avg;
  1419. *avg += diff >> 3;
  1420. }
  1421. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1422. {
  1423. sched_info_queued(p);
  1424. p->sched_class->enqueue_task(rq, p, wakeup);
  1425. p->se.on_rq = 1;
  1426. }
  1427. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1428. {
  1429. if (sleep && p->se.last_wakeup) {
  1430. update_avg(&p->se.avg_overlap,
  1431. p->se.sum_exec_runtime - p->se.last_wakeup);
  1432. p->se.last_wakeup = 0;
  1433. }
  1434. sched_info_dequeued(p);
  1435. p->sched_class->dequeue_task(rq, p, sleep);
  1436. p->se.on_rq = 0;
  1437. }
  1438. /*
  1439. * __normal_prio - return the priority that is based on the static prio
  1440. */
  1441. static inline int __normal_prio(struct task_struct *p)
  1442. {
  1443. return p->static_prio;
  1444. }
  1445. /*
  1446. * Calculate the expected normal priority: i.e. priority
  1447. * without taking RT-inheritance into account. Might be
  1448. * boosted by interactivity modifiers. Changes upon fork,
  1449. * setprio syscalls, and whenever the interactivity
  1450. * estimator recalculates.
  1451. */
  1452. static inline int normal_prio(struct task_struct *p)
  1453. {
  1454. int prio;
  1455. if (task_has_rt_policy(p))
  1456. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1457. else
  1458. prio = __normal_prio(p);
  1459. return prio;
  1460. }
  1461. /*
  1462. * Calculate the current priority, i.e. the priority
  1463. * taken into account by the scheduler. This value might
  1464. * be boosted by RT tasks, or might be boosted by
  1465. * interactivity modifiers. Will be RT if the task got
  1466. * RT-boosted. If not then it returns p->normal_prio.
  1467. */
  1468. static int effective_prio(struct task_struct *p)
  1469. {
  1470. p->normal_prio = normal_prio(p);
  1471. /*
  1472. * If we are RT tasks or we were boosted to RT priority,
  1473. * keep the priority unchanged. Otherwise, update priority
  1474. * to the normal priority:
  1475. */
  1476. if (!rt_prio(p->prio))
  1477. return p->normal_prio;
  1478. return p->prio;
  1479. }
  1480. /*
  1481. * activate_task - move a task to the runqueue.
  1482. */
  1483. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1484. {
  1485. if (task_contributes_to_load(p))
  1486. rq->nr_uninterruptible--;
  1487. enqueue_task(rq, p, wakeup);
  1488. inc_nr_running(rq);
  1489. }
  1490. /*
  1491. * deactivate_task - remove a task from the runqueue.
  1492. */
  1493. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1494. {
  1495. if (task_contributes_to_load(p))
  1496. rq->nr_uninterruptible++;
  1497. dequeue_task(rq, p, sleep);
  1498. dec_nr_running(rq);
  1499. }
  1500. /**
  1501. * task_curr - is this task currently executing on a CPU?
  1502. * @p: the task in question.
  1503. */
  1504. inline int task_curr(const struct task_struct *p)
  1505. {
  1506. return cpu_curr(task_cpu(p)) == p;
  1507. }
  1508. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1509. {
  1510. set_task_rq(p, cpu);
  1511. #ifdef CONFIG_SMP
  1512. /*
  1513. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1514. * successfuly executed on another CPU. We must ensure that updates of
  1515. * per-task data have been completed by this moment.
  1516. */
  1517. smp_wmb();
  1518. task_thread_info(p)->cpu = cpu;
  1519. #endif
  1520. }
  1521. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1522. const struct sched_class *prev_class,
  1523. int oldprio, int running)
  1524. {
  1525. if (prev_class != p->sched_class) {
  1526. if (prev_class->switched_from)
  1527. prev_class->switched_from(rq, p, running);
  1528. p->sched_class->switched_to(rq, p, running);
  1529. } else
  1530. p->sched_class->prio_changed(rq, p, oldprio, running);
  1531. }
  1532. #ifdef CONFIG_SMP
  1533. /* Used instead of source_load when we know the type == 0 */
  1534. static unsigned long weighted_cpuload(const int cpu)
  1535. {
  1536. return cpu_rq(cpu)->load.weight;
  1537. }
  1538. /*
  1539. * Is this task likely cache-hot:
  1540. */
  1541. static int
  1542. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1543. {
  1544. s64 delta;
  1545. /*
  1546. * Buddy candidates are cache hot:
  1547. */
  1548. if (sched_feat(CACHE_HOT_BUDDY) &&
  1549. (&p->se == cfs_rq_of(&p->se)->next ||
  1550. &p->se == cfs_rq_of(&p->se)->last))
  1551. return 1;
  1552. if (p->sched_class != &fair_sched_class)
  1553. return 0;
  1554. if (sysctl_sched_migration_cost == -1)
  1555. return 1;
  1556. if (sysctl_sched_migration_cost == 0)
  1557. return 0;
  1558. delta = now - p->se.exec_start;
  1559. return delta < (s64)sysctl_sched_migration_cost;
  1560. }
  1561. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1562. {
  1563. int old_cpu = task_cpu(p);
  1564. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1565. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1566. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1567. u64 clock_offset;
  1568. clock_offset = old_rq->clock - new_rq->clock;
  1569. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1570. #ifdef CONFIG_SCHEDSTATS
  1571. if (p->se.wait_start)
  1572. p->se.wait_start -= clock_offset;
  1573. if (p->se.sleep_start)
  1574. p->se.sleep_start -= clock_offset;
  1575. if (p->se.block_start)
  1576. p->se.block_start -= clock_offset;
  1577. if (old_cpu != new_cpu) {
  1578. schedstat_inc(p, se.nr_migrations);
  1579. if (task_hot(p, old_rq->clock, NULL))
  1580. schedstat_inc(p, se.nr_forced2_migrations);
  1581. }
  1582. #endif
  1583. p->se.vruntime -= old_cfsrq->min_vruntime -
  1584. new_cfsrq->min_vruntime;
  1585. __set_task_cpu(p, new_cpu);
  1586. }
  1587. struct migration_req {
  1588. struct list_head list;
  1589. struct task_struct *task;
  1590. int dest_cpu;
  1591. struct completion done;
  1592. };
  1593. /*
  1594. * The task's runqueue lock must be held.
  1595. * Returns true if you have to wait for migration thread.
  1596. */
  1597. static int
  1598. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1599. {
  1600. struct rq *rq = task_rq(p);
  1601. /*
  1602. * If the task is not on a runqueue (and not running), then
  1603. * it is sufficient to simply update the task's cpu field.
  1604. */
  1605. if (!p->se.on_rq && !task_running(rq, p)) {
  1606. set_task_cpu(p, dest_cpu);
  1607. return 0;
  1608. }
  1609. init_completion(&req->done);
  1610. req->task = p;
  1611. req->dest_cpu = dest_cpu;
  1612. list_add(&req->list, &rq->migration_queue);
  1613. return 1;
  1614. }
  1615. /*
  1616. * wait_task_inactive - wait for a thread to unschedule.
  1617. *
  1618. * If @match_state is nonzero, it's the @p->state value just checked and
  1619. * not expected to change. If it changes, i.e. @p might have woken up,
  1620. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1621. * we return a positive number (its total switch count). If a second call
  1622. * a short while later returns the same number, the caller can be sure that
  1623. * @p has remained unscheduled the whole time.
  1624. *
  1625. * The caller must ensure that the task *will* unschedule sometime soon,
  1626. * else this function might spin for a *long* time. This function can't
  1627. * be called with interrupts off, or it may introduce deadlock with
  1628. * smp_call_function() if an IPI is sent by the same process we are
  1629. * waiting to become inactive.
  1630. */
  1631. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1632. {
  1633. unsigned long flags;
  1634. int running, on_rq;
  1635. unsigned long ncsw;
  1636. struct rq *rq;
  1637. for (;;) {
  1638. /*
  1639. * We do the initial early heuristics without holding
  1640. * any task-queue locks at all. We'll only try to get
  1641. * the runqueue lock when things look like they will
  1642. * work out!
  1643. */
  1644. rq = task_rq(p);
  1645. /*
  1646. * If the task is actively running on another CPU
  1647. * still, just relax and busy-wait without holding
  1648. * any locks.
  1649. *
  1650. * NOTE! Since we don't hold any locks, it's not
  1651. * even sure that "rq" stays as the right runqueue!
  1652. * But we don't care, since "task_running()" will
  1653. * return false if the runqueue has changed and p
  1654. * is actually now running somewhere else!
  1655. */
  1656. while (task_running(rq, p)) {
  1657. if (match_state && unlikely(p->state != match_state))
  1658. return 0;
  1659. cpu_relax();
  1660. }
  1661. /*
  1662. * Ok, time to look more closely! We need the rq
  1663. * lock now, to be *sure*. If we're wrong, we'll
  1664. * just go back and repeat.
  1665. */
  1666. rq = task_rq_lock(p, &flags);
  1667. trace_sched_wait_task(rq, p);
  1668. running = task_running(rq, p);
  1669. on_rq = p->se.on_rq;
  1670. ncsw = 0;
  1671. if (!match_state || p->state == match_state)
  1672. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1673. task_rq_unlock(rq, &flags);
  1674. /*
  1675. * If it changed from the expected state, bail out now.
  1676. */
  1677. if (unlikely(!ncsw))
  1678. break;
  1679. /*
  1680. * Was it really running after all now that we
  1681. * checked with the proper locks actually held?
  1682. *
  1683. * Oops. Go back and try again..
  1684. */
  1685. if (unlikely(running)) {
  1686. cpu_relax();
  1687. continue;
  1688. }
  1689. /*
  1690. * It's not enough that it's not actively running,
  1691. * it must be off the runqueue _entirely_, and not
  1692. * preempted!
  1693. *
  1694. * So if it wa still runnable (but just not actively
  1695. * running right now), it's preempted, and we should
  1696. * yield - it could be a while.
  1697. */
  1698. if (unlikely(on_rq)) {
  1699. schedule_timeout_uninterruptible(1);
  1700. continue;
  1701. }
  1702. /*
  1703. * Ahh, all good. It wasn't running, and it wasn't
  1704. * runnable, which means that it will never become
  1705. * running in the future either. We're all done!
  1706. */
  1707. break;
  1708. }
  1709. return ncsw;
  1710. }
  1711. /***
  1712. * kick_process - kick a running thread to enter/exit the kernel
  1713. * @p: the to-be-kicked thread
  1714. *
  1715. * Cause a process which is running on another CPU to enter
  1716. * kernel-mode, without any delay. (to get signals handled.)
  1717. *
  1718. * NOTE: this function doesnt have to take the runqueue lock,
  1719. * because all it wants to ensure is that the remote task enters
  1720. * the kernel. If the IPI races and the task has been migrated
  1721. * to another CPU then no harm is done and the purpose has been
  1722. * achieved as well.
  1723. */
  1724. void kick_process(struct task_struct *p)
  1725. {
  1726. int cpu;
  1727. preempt_disable();
  1728. cpu = task_cpu(p);
  1729. if ((cpu != smp_processor_id()) && task_curr(p))
  1730. smp_send_reschedule(cpu);
  1731. preempt_enable();
  1732. }
  1733. /*
  1734. * Return a low guess at the load of a migration-source cpu weighted
  1735. * according to the scheduling class and "nice" value.
  1736. *
  1737. * We want to under-estimate the load of migration sources, to
  1738. * balance conservatively.
  1739. */
  1740. static unsigned long source_load(int cpu, int type)
  1741. {
  1742. struct rq *rq = cpu_rq(cpu);
  1743. unsigned long total = weighted_cpuload(cpu);
  1744. if (type == 0 || !sched_feat(LB_BIAS))
  1745. return total;
  1746. return min(rq->cpu_load[type-1], total);
  1747. }
  1748. /*
  1749. * Return a high guess at the load of a migration-target cpu weighted
  1750. * according to the scheduling class and "nice" value.
  1751. */
  1752. static unsigned long target_load(int cpu, int type)
  1753. {
  1754. struct rq *rq = cpu_rq(cpu);
  1755. unsigned long total = weighted_cpuload(cpu);
  1756. if (type == 0 || !sched_feat(LB_BIAS))
  1757. return total;
  1758. return max(rq->cpu_load[type-1], total);
  1759. }
  1760. /*
  1761. * find_idlest_group finds and returns the least busy CPU group within the
  1762. * domain.
  1763. */
  1764. static struct sched_group *
  1765. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1766. {
  1767. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1768. unsigned long min_load = ULONG_MAX, this_load = 0;
  1769. int load_idx = sd->forkexec_idx;
  1770. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1771. do {
  1772. unsigned long load, avg_load;
  1773. int local_group;
  1774. int i;
  1775. /* Skip over this group if it has no CPUs allowed */
  1776. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1777. continue;
  1778. local_group = cpu_isset(this_cpu, group->cpumask);
  1779. /* Tally up the load of all CPUs in the group */
  1780. avg_load = 0;
  1781. for_each_cpu_mask_nr(i, group->cpumask) {
  1782. /* Bias balancing toward cpus of our domain */
  1783. if (local_group)
  1784. load = source_load(i, load_idx);
  1785. else
  1786. load = target_load(i, load_idx);
  1787. avg_load += load;
  1788. }
  1789. /* Adjust by relative CPU power of the group */
  1790. avg_load = sg_div_cpu_power(group,
  1791. avg_load * SCHED_LOAD_SCALE);
  1792. if (local_group) {
  1793. this_load = avg_load;
  1794. this = group;
  1795. } else if (avg_load < min_load) {
  1796. min_load = avg_load;
  1797. idlest = group;
  1798. }
  1799. } while (group = group->next, group != sd->groups);
  1800. if (!idlest || 100*this_load < imbalance*min_load)
  1801. return NULL;
  1802. return idlest;
  1803. }
  1804. /*
  1805. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1806. */
  1807. static int
  1808. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1809. cpumask_t *tmp)
  1810. {
  1811. unsigned long load, min_load = ULONG_MAX;
  1812. int idlest = -1;
  1813. int i;
  1814. /* Traverse only the allowed CPUs */
  1815. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1816. for_each_cpu_mask_nr(i, *tmp) {
  1817. load = weighted_cpuload(i);
  1818. if (load < min_load || (load == min_load && i == this_cpu)) {
  1819. min_load = load;
  1820. idlest = i;
  1821. }
  1822. }
  1823. return idlest;
  1824. }
  1825. /*
  1826. * sched_balance_self: balance the current task (running on cpu) in domains
  1827. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1828. * SD_BALANCE_EXEC.
  1829. *
  1830. * Balance, ie. select the least loaded group.
  1831. *
  1832. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1833. *
  1834. * preempt must be disabled.
  1835. */
  1836. static int sched_balance_self(int cpu, int flag)
  1837. {
  1838. struct task_struct *t = current;
  1839. struct sched_domain *tmp, *sd = NULL;
  1840. for_each_domain(cpu, tmp) {
  1841. /*
  1842. * If power savings logic is enabled for a domain, stop there.
  1843. */
  1844. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1845. break;
  1846. if (tmp->flags & flag)
  1847. sd = tmp;
  1848. }
  1849. if (sd)
  1850. update_shares(sd);
  1851. while (sd) {
  1852. cpumask_t span, tmpmask;
  1853. struct sched_group *group;
  1854. int new_cpu, weight;
  1855. if (!(sd->flags & flag)) {
  1856. sd = sd->child;
  1857. continue;
  1858. }
  1859. span = sd->span;
  1860. group = find_idlest_group(sd, t, cpu);
  1861. if (!group) {
  1862. sd = sd->child;
  1863. continue;
  1864. }
  1865. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1866. if (new_cpu == -1 || new_cpu == cpu) {
  1867. /* Now try balancing at a lower domain level of cpu */
  1868. sd = sd->child;
  1869. continue;
  1870. }
  1871. /* Now try balancing at a lower domain level of new_cpu */
  1872. cpu = new_cpu;
  1873. sd = NULL;
  1874. weight = cpus_weight(span);
  1875. for_each_domain(cpu, tmp) {
  1876. if (weight <= cpus_weight(tmp->span))
  1877. break;
  1878. if (tmp->flags & flag)
  1879. sd = tmp;
  1880. }
  1881. /* while loop will break here if sd == NULL */
  1882. }
  1883. return cpu;
  1884. }
  1885. #endif /* CONFIG_SMP */
  1886. /***
  1887. * try_to_wake_up - wake up a thread
  1888. * @p: the to-be-woken-up thread
  1889. * @state: the mask of task states that can be woken
  1890. * @sync: do a synchronous wakeup?
  1891. *
  1892. * Put it on the run-queue if it's not already there. The "current"
  1893. * thread is always on the run-queue (except when the actual
  1894. * re-schedule is in progress), and as such you're allowed to do
  1895. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1896. * runnable without the overhead of this.
  1897. *
  1898. * returns failure only if the task is already active.
  1899. */
  1900. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1901. {
  1902. int cpu, orig_cpu, this_cpu, success = 0;
  1903. unsigned long flags;
  1904. long old_state;
  1905. struct rq *rq;
  1906. if (!sched_feat(SYNC_WAKEUPS))
  1907. sync = 0;
  1908. #ifdef CONFIG_SMP
  1909. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1910. struct sched_domain *sd;
  1911. this_cpu = raw_smp_processor_id();
  1912. cpu = task_cpu(p);
  1913. for_each_domain(this_cpu, sd) {
  1914. if (cpu_isset(cpu, sd->span)) {
  1915. update_shares(sd);
  1916. break;
  1917. }
  1918. }
  1919. }
  1920. #endif
  1921. smp_wmb();
  1922. rq = task_rq_lock(p, &flags);
  1923. update_rq_clock(rq);
  1924. old_state = p->state;
  1925. if (!(old_state & state))
  1926. goto out;
  1927. if (p->se.on_rq)
  1928. goto out_running;
  1929. cpu = task_cpu(p);
  1930. orig_cpu = cpu;
  1931. this_cpu = smp_processor_id();
  1932. #ifdef CONFIG_SMP
  1933. if (unlikely(task_running(rq, p)))
  1934. goto out_activate;
  1935. cpu = p->sched_class->select_task_rq(p, sync);
  1936. if (cpu != orig_cpu) {
  1937. set_task_cpu(p, cpu);
  1938. task_rq_unlock(rq, &flags);
  1939. /* might preempt at this point */
  1940. rq = task_rq_lock(p, &flags);
  1941. old_state = p->state;
  1942. if (!(old_state & state))
  1943. goto out;
  1944. if (p->se.on_rq)
  1945. goto out_running;
  1946. this_cpu = smp_processor_id();
  1947. cpu = task_cpu(p);
  1948. }
  1949. #ifdef CONFIG_SCHEDSTATS
  1950. schedstat_inc(rq, ttwu_count);
  1951. if (cpu == this_cpu)
  1952. schedstat_inc(rq, ttwu_local);
  1953. else {
  1954. struct sched_domain *sd;
  1955. for_each_domain(this_cpu, sd) {
  1956. if (cpu_isset(cpu, sd->span)) {
  1957. schedstat_inc(sd, ttwu_wake_remote);
  1958. break;
  1959. }
  1960. }
  1961. }
  1962. #endif /* CONFIG_SCHEDSTATS */
  1963. out_activate:
  1964. #endif /* CONFIG_SMP */
  1965. schedstat_inc(p, se.nr_wakeups);
  1966. if (sync)
  1967. schedstat_inc(p, se.nr_wakeups_sync);
  1968. if (orig_cpu != cpu)
  1969. schedstat_inc(p, se.nr_wakeups_migrate);
  1970. if (cpu == this_cpu)
  1971. schedstat_inc(p, se.nr_wakeups_local);
  1972. else
  1973. schedstat_inc(p, se.nr_wakeups_remote);
  1974. activate_task(rq, p, 1);
  1975. success = 1;
  1976. out_running:
  1977. trace_sched_wakeup(rq, p, success);
  1978. check_preempt_curr(rq, p, sync);
  1979. p->state = TASK_RUNNING;
  1980. #ifdef CONFIG_SMP
  1981. if (p->sched_class->task_wake_up)
  1982. p->sched_class->task_wake_up(rq, p);
  1983. #endif
  1984. out:
  1985. current->se.last_wakeup = current->se.sum_exec_runtime;
  1986. task_rq_unlock(rq, &flags);
  1987. return success;
  1988. }
  1989. int wake_up_process(struct task_struct *p)
  1990. {
  1991. return try_to_wake_up(p, TASK_ALL, 0);
  1992. }
  1993. EXPORT_SYMBOL(wake_up_process);
  1994. int wake_up_state(struct task_struct *p, unsigned int state)
  1995. {
  1996. return try_to_wake_up(p, state, 0);
  1997. }
  1998. /*
  1999. * Perform scheduler related setup for a newly forked process p.
  2000. * p is forked by current.
  2001. *
  2002. * __sched_fork() is basic setup used by init_idle() too:
  2003. */
  2004. static void __sched_fork(struct task_struct *p)
  2005. {
  2006. p->se.exec_start = 0;
  2007. p->se.sum_exec_runtime = 0;
  2008. p->se.prev_sum_exec_runtime = 0;
  2009. p->se.last_wakeup = 0;
  2010. p->se.avg_overlap = 0;
  2011. #ifdef CONFIG_SCHEDSTATS
  2012. p->se.wait_start = 0;
  2013. p->se.sum_sleep_runtime = 0;
  2014. p->se.sleep_start = 0;
  2015. p->se.block_start = 0;
  2016. p->se.sleep_max = 0;
  2017. p->se.block_max = 0;
  2018. p->se.exec_max = 0;
  2019. p->se.slice_max = 0;
  2020. p->se.wait_max = 0;
  2021. #endif
  2022. INIT_LIST_HEAD(&p->rt.run_list);
  2023. p->se.on_rq = 0;
  2024. INIT_LIST_HEAD(&p->se.group_node);
  2025. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2026. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2027. #endif
  2028. /*
  2029. * We mark the process as running here, but have not actually
  2030. * inserted it onto the runqueue yet. This guarantees that
  2031. * nobody will actually run it, and a signal or other external
  2032. * event cannot wake it up and insert it on the runqueue either.
  2033. */
  2034. p->state = TASK_RUNNING;
  2035. }
  2036. /*
  2037. * fork()/clone()-time setup:
  2038. */
  2039. void sched_fork(struct task_struct *p, int clone_flags)
  2040. {
  2041. int cpu = get_cpu();
  2042. __sched_fork(p);
  2043. #ifdef CONFIG_SMP
  2044. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2045. #endif
  2046. set_task_cpu(p, cpu);
  2047. /*
  2048. * Make sure we do not leak PI boosting priority to the child:
  2049. */
  2050. p->prio = current->normal_prio;
  2051. if (!rt_prio(p->prio))
  2052. p->sched_class = &fair_sched_class;
  2053. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2054. if (likely(sched_info_on()))
  2055. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2056. #endif
  2057. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2058. p->oncpu = 0;
  2059. #endif
  2060. #ifdef CONFIG_PREEMPT
  2061. /* Want to start with kernel preemption disabled. */
  2062. task_thread_info(p)->preempt_count = 1;
  2063. #endif
  2064. put_cpu();
  2065. }
  2066. /*
  2067. * wake_up_new_task - wake up a newly created task for the first time.
  2068. *
  2069. * This function will do some initial scheduler statistics housekeeping
  2070. * that must be done for every newly created context, then puts the task
  2071. * on the runqueue and wakes it.
  2072. */
  2073. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2074. {
  2075. unsigned long flags;
  2076. struct rq *rq;
  2077. rq = task_rq_lock(p, &flags);
  2078. BUG_ON(p->state != TASK_RUNNING);
  2079. update_rq_clock(rq);
  2080. p->prio = effective_prio(p);
  2081. if (!p->sched_class->task_new || !current->se.on_rq) {
  2082. activate_task(rq, p, 0);
  2083. } else {
  2084. /*
  2085. * Let the scheduling class do new task startup
  2086. * management (if any):
  2087. */
  2088. p->sched_class->task_new(rq, p);
  2089. inc_nr_running(rq);
  2090. }
  2091. trace_sched_wakeup_new(rq, p, 1);
  2092. check_preempt_curr(rq, p, 0);
  2093. #ifdef CONFIG_SMP
  2094. if (p->sched_class->task_wake_up)
  2095. p->sched_class->task_wake_up(rq, p);
  2096. #endif
  2097. task_rq_unlock(rq, &flags);
  2098. }
  2099. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2100. /**
  2101. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2102. * @notifier: notifier struct to register
  2103. */
  2104. void preempt_notifier_register(struct preempt_notifier *notifier)
  2105. {
  2106. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2107. }
  2108. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2109. /**
  2110. * preempt_notifier_unregister - no longer interested in preemption notifications
  2111. * @notifier: notifier struct to unregister
  2112. *
  2113. * This is safe to call from within a preemption notifier.
  2114. */
  2115. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2116. {
  2117. hlist_del(&notifier->link);
  2118. }
  2119. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2120. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2121. {
  2122. struct preempt_notifier *notifier;
  2123. struct hlist_node *node;
  2124. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2125. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2126. }
  2127. static void
  2128. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2129. struct task_struct *next)
  2130. {
  2131. struct preempt_notifier *notifier;
  2132. struct hlist_node *node;
  2133. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2134. notifier->ops->sched_out(notifier, next);
  2135. }
  2136. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2137. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2138. {
  2139. }
  2140. static void
  2141. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2142. struct task_struct *next)
  2143. {
  2144. }
  2145. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2146. /**
  2147. * prepare_task_switch - prepare to switch tasks
  2148. * @rq: the runqueue preparing to switch
  2149. * @prev: the current task that is being switched out
  2150. * @next: the task we are going to switch to.
  2151. *
  2152. * This is called with the rq lock held and interrupts off. It must
  2153. * be paired with a subsequent finish_task_switch after the context
  2154. * switch.
  2155. *
  2156. * prepare_task_switch sets up locking and calls architecture specific
  2157. * hooks.
  2158. */
  2159. static inline void
  2160. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2161. struct task_struct *next)
  2162. {
  2163. fire_sched_out_preempt_notifiers(prev, next);
  2164. prepare_lock_switch(rq, next);
  2165. prepare_arch_switch(next);
  2166. }
  2167. /**
  2168. * finish_task_switch - clean up after a task-switch
  2169. * @rq: runqueue associated with task-switch
  2170. * @prev: the thread we just switched away from.
  2171. *
  2172. * finish_task_switch must be called after the context switch, paired
  2173. * with a prepare_task_switch call before the context switch.
  2174. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2175. * and do any other architecture-specific cleanup actions.
  2176. *
  2177. * Note that we may have delayed dropping an mm in context_switch(). If
  2178. * so, we finish that here outside of the runqueue lock. (Doing it
  2179. * with the lock held can cause deadlocks; see schedule() for
  2180. * details.)
  2181. */
  2182. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2183. __releases(rq->lock)
  2184. {
  2185. struct mm_struct *mm = rq->prev_mm;
  2186. long prev_state;
  2187. rq->prev_mm = NULL;
  2188. /*
  2189. * A task struct has one reference for the use as "current".
  2190. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2191. * schedule one last time. The schedule call will never return, and
  2192. * the scheduled task must drop that reference.
  2193. * The test for TASK_DEAD must occur while the runqueue locks are
  2194. * still held, otherwise prev could be scheduled on another cpu, die
  2195. * there before we look at prev->state, and then the reference would
  2196. * be dropped twice.
  2197. * Manfred Spraul <manfred@colorfullife.com>
  2198. */
  2199. prev_state = prev->state;
  2200. finish_arch_switch(prev);
  2201. finish_lock_switch(rq, prev);
  2202. #ifdef CONFIG_SMP
  2203. if (current->sched_class->post_schedule)
  2204. current->sched_class->post_schedule(rq);
  2205. #endif
  2206. fire_sched_in_preempt_notifiers(current);
  2207. if (mm)
  2208. mmdrop(mm);
  2209. if (unlikely(prev_state == TASK_DEAD)) {
  2210. /*
  2211. * Remove function-return probe instances associated with this
  2212. * task and put them back on the free list.
  2213. */
  2214. kprobe_flush_task(prev);
  2215. put_task_struct(prev);
  2216. }
  2217. }
  2218. /**
  2219. * schedule_tail - first thing a freshly forked thread must call.
  2220. * @prev: the thread we just switched away from.
  2221. */
  2222. asmlinkage void schedule_tail(struct task_struct *prev)
  2223. __releases(rq->lock)
  2224. {
  2225. struct rq *rq = this_rq();
  2226. finish_task_switch(rq, prev);
  2227. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2228. /* In this case, finish_task_switch does not reenable preemption */
  2229. preempt_enable();
  2230. #endif
  2231. if (current->set_child_tid)
  2232. put_user(task_pid_vnr(current), current->set_child_tid);
  2233. }
  2234. /*
  2235. * context_switch - switch to the new MM and the new
  2236. * thread's register state.
  2237. */
  2238. static inline void
  2239. context_switch(struct rq *rq, struct task_struct *prev,
  2240. struct task_struct *next)
  2241. {
  2242. struct mm_struct *mm, *oldmm;
  2243. prepare_task_switch(rq, prev, next);
  2244. trace_sched_switch(rq, prev, next);
  2245. mm = next->mm;
  2246. oldmm = prev->active_mm;
  2247. /*
  2248. * For paravirt, this is coupled with an exit in switch_to to
  2249. * combine the page table reload and the switch backend into
  2250. * one hypercall.
  2251. */
  2252. arch_enter_lazy_cpu_mode();
  2253. if (unlikely(!mm)) {
  2254. next->active_mm = oldmm;
  2255. atomic_inc(&oldmm->mm_count);
  2256. enter_lazy_tlb(oldmm, next);
  2257. } else
  2258. switch_mm(oldmm, mm, next);
  2259. if (unlikely(!prev->mm)) {
  2260. prev->active_mm = NULL;
  2261. rq->prev_mm = oldmm;
  2262. }
  2263. /*
  2264. * Since the runqueue lock will be released by the next
  2265. * task (which is an invalid locking op but in the case
  2266. * of the scheduler it's an obvious special-case), so we
  2267. * do an early lockdep release here:
  2268. */
  2269. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2270. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2271. #endif
  2272. /* Here we just switch the register state and the stack. */
  2273. switch_to(prev, next, prev);
  2274. barrier();
  2275. /*
  2276. * this_rq must be evaluated again because prev may have moved
  2277. * CPUs since it called schedule(), thus the 'rq' on its stack
  2278. * frame will be invalid.
  2279. */
  2280. finish_task_switch(this_rq(), prev);
  2281. }
  2282. /*
  2283. * nr_running, nr_uninterruptible and nr_context_switches:
  2284. *
  2285. * externally visible scheduler statistics: current number of runnable
  2286. * threads, current number of uninterruptible-sleeping threads, total
  2287. * number of context switches performed since bootup.
  2288. */
  2289. unsigned long nr_running(void)
  2290. {
  2291. unsigned long i, sum = 0;
  2292. for_each_online_cpu(i)
  2293. sum += cpu_rq(i)->nr_running;
  2294. return sum;
  2295. }
  2296. unsigned long nr_uninterruptible(void)
  2297. {
  2298. unsigned long i, sum = 0;
  2299. for_each_possible_cpu(i)
  2300. sum += cpu_rq(i)->nr_uninterruptible;
  2301. /*
  2302. * Since we read the counters lockless, it might be slightly
  2303. * inaccurate. Do not allow it to go below zero though:
  2304. */
  2305. if (unlikely((long)sum < 0))
  2306. sum = 0;
  2307. return sum;
  2308. }
  2309. unsigned long long nr_context_switches(void)
  2310. {
  2311. int i;
  2312. unsigned long long sum = 0;
  2313. for_each_possible_cpu(i)
  2314. sum += cpu_rq(i)->nr_switches;
  2315. return sum;
  2316. }
  2317. unsigned long nr_iowait(void)
  2318. {
  2319. unsigned long i, sum = 0;
  2320. for_each_possible_cpu(i)
  2321. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2322. return sum;
  2323. }
  2324. unsigned long nr_active(void)
  2325. {
  2326. unsigned long i, running = 0, uninterruptible = 0;
  2327. for_each_online_cpu(i) {
  2328. running += cpu_rq(i)->nr_running;
  2329. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2330. }
  2331. if (unlikely((long)uninterruptible < 0))
  2332. uninterruptible = 0;
  2333. return running + uninterruptible;
  2334. }
  2335. /*
  2336. * Update rq->cpu_load[] statistics. This function is usually called every
  2337. * scheduler tick (TICK_NSEC).
  2338. */
  2339. static void update_cpu_load(struct rq *this_rq)
  2340. {
  2341. unsigned long this_load = this_rq->load.weight;
  2342. int i, scale;
  2343. this_rq->nr_load_updates++;
  2344. /* Update our load: */
  2345. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2346. unsigned long old_load, new_load;
  2347. /* scale is effectively 1 << i now, and >> i divides by scale */
  2348. old_load = this_rq->cpu_load[i];
  2349. new_load = this_load;
  2350. /*
  2351. * Round up the averaging division if load is increasing. This
  2352. * prevents us from getting stuck on 9 if the load is 10, for
  2353. * example.
  2354. */
  2355. if (new_load > old_load)
  2356. new_load += scale-1;
  2357. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2358. }
  2359. }
  2360. #ifdef CONFIG_SMP
  2361. /*
  2362. * double_rq_lock - safely lock two runqueues
  2363. *
  2364. * Note this does not disable interrupts like task_rq_lock,
  2365. * you need to do so manually before calling.
  2366. */
  2367. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2368. __acquires(rq1->lock)
  2369. __acquires(rq2->lock)
  2370. {
  2371. BUG_ON(!irqs_disabled());
  2372. if (rq1 == rq2) {
  2373. spin_lock(&rq1->lock);
  2374. __acquire(rq2->lock); /* Fake it out ;) */
  2375. } else {
  2376. if (rq1 < rq2) {
  2377. spin_lock(&rq1->lock);
  2378. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2379. } else {
  2380. spin_lock(&rq2->lock);
  2381. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2382. }
  2383. }
  2384. update_rq_clock(rq1);
  2385. update_rq_clock(rq2);
  2386. }
  2387. /*
  2388. * double_rq_unlock - safely unlock two runqueues
  2389. *
  2390. * Note this does not restore interrupts like task_rq_unlock,
  2391. * you need to do so manually after calling.
  2392. */
  2393. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2394. __releases(rq1->lock)
  2395. __releases(rq2->lock)
  2396. {
  2397. spin_unlock(&rq1->lock);
  2398. if (rq1 != rq2)
  2399. spin_unlock(&rq2->lock);
  2400. else
  2401. __release(rq2->lock);
  2402. }
  2403. /*
  2404. * If dest_cpu is allowed for this process, migrate the task to it.
  2405. * This is accomplished by forcing the cpu_allowed mask to only
  2406. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2407. * the cpu_allowed mask is restored.
  2408. */
  2409. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2410. {
  2411. struct migration_req req;
  2412. unsigned long flags;
  2413. struct rq *rq;
  2414. rq = task_rq_lock(p, &flags);
  2415. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2416. || unlikely(!cpu_active(dest_cpu)))
  2417. goto out;
  2418. /* force the process onto the specified CPU */
  2419. if (migrate_task(p, dest_cpu, &req)) {
  2420. /* Need to wait for migration thread (might exit: take ref). */
  2421. struct task_struct *mt = rq->migration_thread;
  2422. get_task_struct(mt);
  2423. task_rq_unlock(rq, &flags);
  2424. wake_up_process(mt);
  2425. put_task_struct(mt);
  2426. wait_for_completion(&req.done);
  2427. return;
  2428. }
  2429. out:
  2430. task_rq_unlock(rq, &flags);
  2431. }
  2432. /*
  2433. * sched_exec - execve() is a valuable balancing opportunity, because at
  2434. * this point the task has the smallest effective memory and cache footprint.
  2435. */
  2436. void sched_exec(void)
  2437. {
  2438. int new_cpu, this_cpu = get_cpu();
  2439. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2440. put_cpu();
  2441. if (new_cpu != this_cpu)
  2442. sched_migrate_task(current, new_cpu);
  2443. }
  2444. /*
  2445. * pull_task - move a task from a remote runqueue to the local runqueue.
  2446. * Both runqueues must be locked.
  2447. */
  2448. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2449. struct rq *this_rq, int this_cpu)
  2450. {
  2451. deactivate_task(src_rq, p, 0);
  2452. set_task_cpu(p, this_cpu);
  2453. activate_task(this_rq, p, 0);
  2454. /*
  2455. * Note that idle threads have a prio of MAX_PRIO, for this test
  2456. * to be always true for them.
  2457. */
  2458. check_preempt_curr(this_rq, p, 0);
  2459. }
  2460. /*
  2461. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2462. */
  2463. static
  2464. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2465. struct sched_domain *sd, enum cpu_idle_type idle,
  2466. int *all_pinned)
  2467. {
  2468. /*
  2469. * We do not migrate tasks that are:
  2470. * 1) running (obviously), or
  2471. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2472. * 3) are cache-hot on their current CPU.
  2473. */
  2474. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2475. schedstat_inc(p, se.nr_failed_migrations_affine);
  2476. return 0;
  2477. }
  2478. *all_pinned = 0;
  2479. if (task_running(rq, p)) {
  2480. schedstat_inc(p, se.nr_failed_migrations_running);
  2481. return 0;
  2482. }
  2483. /*
  2484. * Aggressive migration if:
  2485. * 1) task is cache cold, or
  2486. * 2) too many balance attempts have failed.
  2487. */
  2488. if (!task_hot(p, rq->clock, sd) ||
  2489. sd->nr_balance_failed > sd->cache_nice_tries) {
  2490. #ifdef CONFIG_SCHEDSTATS
  2491. if (task_hot(p, rq->clock, sd)) {
  2492. schedstat_inc(sd, lb_hot_gained[idle]);
  2493. schedstat_inc(p, se.nr_forced_migrations);
  2494. }
  2495. #endif
  2496. return 1;
  2497. }
  2498. if (task_hot(p, rq->clock, sd)) {
  2499. schedstat_inc(p, se.nr_failed_migrations_hot);
  2500. return 0;
  2501. }
  2502. return 1;
  2503. }
  2504. static unsigned long
  2505. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2506. unsigned long max_load_move, struct sched_domain *sd,
  2507. enum cpu_idle_type idle, int *all_pinned,
  2508. int *this_best_prio, struct rq_iterator *iterator)
  2509. {
  2510. int loops = 0, pulled = 0, pinned = 0;
  2511. struct task_struct *p;
  2512. long rem_load_move = max_load_move;
  2513. if (max_load_move == 0)
  2514. goto out;
  2515. pinned = 1;
  2516. /*
  2517. * Start the load-balancing iterator:
  2518. */
  2519. p = iterator->start(iterator->arg);
  2520. next:
  2521. if (!p || loops++ > sysctl_sched_nr_migrate)
  2522. goto out;
  2523. if ((p->se.load.weight >> 1) > rem_load_move ||
  2524. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2525. p = iterator->next(iterator->arg);
  2526. goto next;
  2527. }
  2528. pull_task(busiest, p, this_rq, this_cpu);
  2529. pulled++;
  2530. rem_load_move -= p->se.load.weight;
  2531. /*
  2532. * We only want to steal up to the prescribed amount of weighted load.
  2533. */
  2534. if (rem_load_move > 0) {
  2535. if (p->prio < *this_best_prio)
  2536. *this_best_prio = p->prio;
  2537. p = iterator->next(iterator->arg);
  2538. goto next;
  2539. }
  2540. out:
  2541. /*
  2542. * Right now, this is one of only two places pull_task() is called,
  2543. * so we can safely collect pull_task() stats here rather than
  2544. * inside pull_task().
  2545. */
  2546. schedstat_add(sd, lb_gained[idle], pulled);
  2547. if (all_pinned)
  2548. *all_pinned = pinned;
  2549. return max_load_move - rem_load_move;
  2550. }
  2551. /*
  2552. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2553. * this_rq, as part of a balancing operation within domain "sd".
  2554. * Returns 1 if successful and 0 otherwise.
  2555. *
  2556. * Called with both runqueues locked.
  2557. */
  2558. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2559. unsigned long max_load_move,
  2560. struct sched_domain *sd, enum cpu_idle_type idle,
  2561. int *all_pinned)
  2562. {
  2563. const struct sched_class *class = sched_class_highest;
  2564. unsigned long total_load_moved = 0;
  2565. int this_best_prio = this_rq->curr->prio;
  2566. do {
  2567. total_load_moved +=
  2568. class->load_balance(this_rq, this_cpu, busiest,
  2569. max_load_move - total_load_moved,
  2570. sd, idle, all_pinned, &this_best_prio);
  2571. class = class->next;
  2572. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2573. break;
  2574. } while (class && max_load_move > total_load_moved);
  2575. return total_load_moved > 0;
  2576. }
  2577. static int
  2578. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2579. struct sched_domain *sd, enum cpu_idle_type idle,
  2580. struct rq_iterator *iterator)
  2581. {
  2582. struct task_struct *p = iterator->start(iterator->arg);
  2583. int pinned = 0;
  2584. while (p) {
  2585. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2586. pull_task(busiest, p, this_rq, this_cpu);
  2587. /*
  2588. * Right now, this is only the second place pull_task()
  2589. * is called, so we can safely collect pull_task()
  2590. * stats here rather than inside pull_task().
  2591. */
  2592. schedstat_inc(sd, lb_gained[idle]);
  2593. return 1;
  2594. }
  2595. p = iterator->next(iterator->arg);
  2596. }
  2597. return 0;
  2598. }
  2599. /*
  2600. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2601. * part of active balancing operations within "domain".
  2602. * Returns 1 if successful and 0 otherwise.
  2603. *
  2604. * Called with both runqueues locked.
  2605. */
  2606. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2607. struct sched_domain *sd, enum cpu_idle_type idle)
  2608. {
  2609. const struct sched_class *class;
  2610. for (class = sched_class_highest; class; class = class->next)
  2611. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2612. return 1;
  2613. return 0;
  2614. }
  2615. /*
  2616. * find_busiest_group finds and returns the busiest CPU group within the
  2617. * domain. It calculates and returns the amount of weighted load which
  2618. * should be moved to restore balance via the imbalance parameter.
  2619. */
  2620. static struct sched_group *
  2621. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2622. unsigned long *imbalance, enum cpu_idle_type idle,
  2623. int *sd_idle, const cpumask_t *cpus, int *balance)
  2624. {
  2625. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2626. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2627. unsigned long max_pull;
  2628. unsigned long busiest_load_per_task, busiest_nr_running;
  2629. unsigned long this_load_per_task, this_nr_running;
  2630. int load_idx, group_imb = 0;
  2631. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2632. int power_savings_balance = 1;
  2633. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2634. unsigned long min_nr_running = ULONG_MAX;
  2635. struct sched_group *group_min = NULL, *group_leader = NULL;
  2636. #endif
  2637. max_load = this_load = total_load = total_pwr = 0;
  2638. busiest_load_per_task = busiest_nr_running = 0;
  2639. this_load_per_task = this_nr_running = 0;
  2640. if (idle == CPU_NOT_IDLE)
  2641. load_idx = sd->busy_idx;
  2642. else if (idle == CPU_NEWLY_IDLE)
  2643. load_idx = sd->newidle_idx;
  2644. else
  2645. load_idx = sd->idle_idx;
  2646. do {
  2647. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2648. int local_group;
  2649. int i;
  2650. int __group_imb = 0;
  2651. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2652. unsigned long sum_nr_running, sum_weighted_load;
  2653. unsigned long sum_avg_load_per_task;
  2654. unsigned long avg_load_per_task;
  2655. local_group = cpu_isset(this_cpu, group->cpumask);
  2656. if (local_group)
  2657. balance_cpu = first_cpu(group->cpumask);
  2658. /* Tally up the load of all CPUs in the group */
  2659. sum_weighted_load = sum_nr_running = avg_load = 0;
  2660. sum_avg_load_per_task = avg_load_per_task = 0;
  2661. max_cpu_load = 0;
  2662. min_cpu_load = ~0UL;
  2663. for_each_cpu_mask_nr(i, group->cpumask) {
  2664. struct rq *rq;
  2665. if (!cpu_isset(i, *cpus))
  2666. continue;
  2667. rq = cpu_rq(i);
  2668. if (*sd_idle && rq->nr_running)
  2669. *sd_idle = 0;
  2670. /* Bias balancing toward cpus of our domain */
  2671. if (local_group) {
  2672. if (idle_cpu(i) && !first_idle_cpu) {
  2673. first_idle_cpu = 1;
  2674. balance_cpu = i;
  2675. }
  2676. load = target_load(i, load_idx);
  2677. } else {
  2678. load = source_load(i, load_idx);
  2679. if (load > max_cpu_load)
  2680. max_cpu_load = load;
  2681. if (min_cpu_load > load)
  2682. min_cpu_load = load;
  2683. }
  2684. avg_load += load;
  2685. sum_nr_running += rq->nr_running;
  2686. sum_weighted_load += weighted_cpuload(i);
  2687. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2688. }
  2689. /*
  2690. * First idle cpu or the first cpu(busiest) in this sched group
  2691. * is eligible for doing load balancing at this and above
  2692. * domains. In the newly idle case, we will allow all the cpu's
  2693. * to do the newly idle load balance.
  2694. */
  2695. if (idle != CPU_NEWLY_IDLE && local_group &&
  2696. balance_cpu != this_cpu && balance) {
  2697. *balance = 0;
  2698. goto ret;
  2699. }
  2700. total_load += avg_load;
  2701. total_pwr += group->__cpu_power;
  2702. /* Adjust by relative CPU power of the group */
  2703. avg_load = sg_div_cpu_power(group,
  2704. avg_load * SCHED_LOAD_SCALE);
  2705. /*
  2706. * Consider the group unbalanced when the imbalance is larger
  2707. * than the average weight of two tasks.
  2708. *
  2709. * APZ: with cgroup the avg task weight can vary wildly and
  2710. * might not be a suitable number - should we keep a
  2711. * normalized nr_running number somewhere that negates
  2712. * the hierarchy?
  2713. */
  2714. avg_load_per_task = sg_div_cpu_power(group,
  2715. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2716. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2717. __group_imb = 1;
  2718. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2719. if (local_group) {
  2720. this_load = avg_load;
  2721. this = group;
  2722. this_nr_running = sum_nr_running;
  2723. this_load_per_task = sum_weighted_load;
  2724. } else if (avg_load > max_load &&
  2725. (sum_nr_running > group_capacity || __group_imb)) {
  2726. max_load = avg_load;
  2727. busiest = group;
  2728. busiest_nr_running = sum_nr_running;
  2729. busiest_load_per_task = sum_weighted_load;
  2730. group_imb = __group_imb;
  2731. }
  2732. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2733. /*
  2734. * Busy processors will not participate in power savings
  2735. * balance.
  2736. */
  2737. if (idle == CPU_NOT_IDLE ||
  2738. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2739. goto group_next;
  2740. /*
  2741. * If the local group is idle or completely loaded
  2742. * no need to do power savings balance at this domain
  2743. */
  2744. if (local_group && (this_nr_running >= group_capacity ||
  2745. !this_nr_running))
  2746. power_savings_balance = 0;
  2747. /*
  2748. * If a group is already running at full capacity or idle,
  2749. * don't include that group in power savings calculations
  2750. */
  2751. if (!power_savings_balance || sum_nr_running >= group_capacity
  2752. || !sum_nr_running)
  2753. goto group_next;
  2754. /*
  2755. * Calculate the group which has the least non-idle load.
  2756. * This is the group from where we need to pick up the load
  2757. * for saving power
  2758. */
  2759. if ((sum_nr_running < min_nr_running) ||
  2760. (sum_nr_running == min_nr_running &&
  2761. first_cpu(group->cpumask) <
  2762. first_cpu(group_min->cpumask))) {
  2763. group_min = group;
  2764. min_nr_running = sum_nr_running;
  2765. min_load_per_task = sum_weighted_load /
  2766. sum_nr_running;
  2767. }
  2768. /*
  2769. * Calculate the group which is almost near its
  2770. * capacity but still has some space to pick up some load
  2771. * from other group and save more power
  2772. */
  2773. if (sum_nr_running <= group_capacity - 1) {
  2774. if (sum_nr_running > leader_nr_running ||
  2775. (sum_nr_running == leader_nr_running &&
  2776. first_cpu(group->cpumask) >
  2777. first_cpu(group_leader->cpumask))) {
  2778. group_leader = group;
  2779. leader_nr_running = sum_nr_running;
  2780. }
  2781. }
  2782. group_next:
  2783. #endif
  2784. group = group->next;
  2785. } while (group != sd->groups);
  2786. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2787. goto out_balanced;
  2788. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2789. if (this_load >= avg_load ||
  2790. 100*max_load <= sd->imbalance_pct*this_load)
  2791. goto out_balanced;
  2792. busiest_load_per_task /= busiest_nr_running;
  2793. if (group_imb)
  2794. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2795. /*
  2796. * We're trying to get all the cpus to the average_load, so we don't
  2797. * want to push ourselves above the average load, nor do we wish to
  2798. * reduce the max loaded cpu below the average load, as either of these
  2799. * actions would just result in more rebalancing later, and ping-pong
  2800. * tasks around. Thus we look for the minimum possible imbalance.
  2801. * Negative imbalances (*we* are more loaded than anyone else) will
  2802. * be counted as no imbalance for these purposes -- we can't fix that
  2803. * by pulling tasks to us. Be careful of negative numbers as they'll
  2804. * appear as very large values with unsigned longs.
  2805. */
  2806. if (max_load <= busiest_load_per_task)
  2807. goto out_balanced;
  2808. /*
  2809. * In the presence of smp nice balancing, certain scenarios can have
  2810. * max load less than avg load(as we skip the groups at or below
  2811. * its cpu_power, while calculating max_load..)
  2812. */
  2813. if (max_load < avg_load) {
  2814. *imbalance = 0;
  2815. goto small_imbalance;
  2816. }
  2817. /* Don't want to pull so many tasks that a group would go idle */
  2818. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2819. /* How much load to actually move to equalise the imbalance */
  2820. *imbalance = min(max_pull * busiest->__cpu_power,
  2821. (avg_load - this_load) * this->__cpu_power)
  2822. / SCHED_LOAD_SCALE;
  2823. /*
  2824. * if *imbalance is less than the average load per runnable task
  2825. * there is no gaurantee that any tasks will be moved so we'll have
  2826. * a think about bumping its value to force at least one task to be
  2827. * moved
  2828. */
  2829. if (*imbalance < busiest_load_per_task) {
  2830. unsigned long tmp, pwr_now, pwr_move;
  2831. unsigned int imbn;
  2832. small_imbalance:
  2833. pwr_move = pwr_now = 0;
  2834. imbn = 2;
  2835. if (this_nr_running) {
  2836. this_load_per_task /= this_nr_running;
  2837. if (busiest_load_per_task > this_load_per_task)
  2838. imbn = 1;
  2839. } else
  2840. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2841. if (max_load - this_load + busiest_load_per_task >=
  2842. busiest_load_per_task * imbn) {
  2843. *imbalance = busiest_load_per_task;
  2844. return busiest;
  2845. }
  2846. /*
  2847. * OK, we don't have enough imbalance to justify moving tasks,
  2848. * however we may be able to increase total CPU power used by
  2849. * moving them.
  2850. */
  2851. pwr_now += busiest->__cpu_power *
  2852. min(busiest_load_per_task, max_load);
  2853. pwr_now += this->__cpu_power *
  2854. min(this_load_per_task, this_load);
  2855. pwr_now /= SCHED_LOAD_SCALE;
  2856. /* Amount of load we'd subtract */
  2857. tmp = sg_div_cpu_power(busiest,
  2858. busiest_load_per_task * SCHED_LOAD_SCALE);
  2859. if (max_load > tmp)
  2860. pwr_move += busiest->__cpu_power *
  2861. min(busiest_load_per_task, max_load - tmp);
  2862. /* Amount of load we'd add */
  2863. if (max_load * busiest->__cpu_power <
  2864. busiest_load_per_task * SCHED_LOAD_SCALE)
  2865. tmp = sg_div_cpu_power(this,
  2866. max_load * busiest->__cpu_power);
  2867. else
  2868. tmp = sg_div_cpu_power(this,
  2869. busiest_load_per_task * SCHED_LOAD_SCALE);
  2870. pwr_move += this->__cpu_power *
  2871. min(this_load_per_task, this_load + tmp);
  2872. pwr_move /= SCHED_LOAD_SCALE;
  2873. /* Move if we gain throughput */
  2874. if (pwr_move > pwr_now)
  2875. *imbalance = busiest_load_per_task;
  2876. }
  2877. return busiest;
  2878. out_balanced:
  2879. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2880. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2881. goto ret;
  2882. if (this == group_leader && group_leader != group_min) {
  2883. *imbalance = min_load_per_task;
  2884. return group_min;
  2885. }
  2886. #endif
  2887. ret:
  2888. *imbalance = 0;
  2889. return NULL;
  2890. }
  2891. /*
  2892. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2893. */
  2894. static struct rq *
  2895. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2896. unsigned long imbalance, const cpumask_t *cpus)
  2897. {
  2898. struct rq *busiest = NULL, *rq;
  2899. unsigned long max_load = 0;
  2900. int i;
  2901. for_each_cpu_mask_nr(i, group->cpumask) {
  2902. unsigned long wl;
  2903. if (!cpu_isset(i, *cpus))
  2904. continue;
  2905. rq = cpu_rq(i);
  2906. wl = weighted_cpuload(i);
  2907. if (rq->nr_running == 1 && wl > imbalance)
  2908. continue;
  2909. if (wl > max_load) {
  2910. max_load = wl;
  2911. busiest = rq;
  2912. }
  2913. }
  2914. return busiest;
  2915. }
  2916. /*
  2917. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2918. * so long as it is large enough.
  2919. */
  2920. #define MAX_PINNED_INTERVAL 512
  2921. /*
  2922. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2923. * tasks if there is an imbalance.
  2924. */
  2925. static int load_balance(int this_cpu, struct rq *this_rq,
  2926. struct sched_domain *sd, enum cpu_idle_type idle,
  2927. int *balance, cpumask_t *cpus)
  2928. {
  2929. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2930. struct sched_group *group;
  2931. unsigned long imbalance;
  2932. struct rq *busiest;
  2933. unsigned long flags;
  2934. cpus_setall(*cpus);
  2935. /*
  2936. * When power savings policy is enabled for the parent domain, idle
  2937. * sibling can pick up load irrespective of busy siblings. In this case,
  2938. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2939. * portraying it as CPU_NOT_IDLE.
  2940. */
  2941. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2942. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2943. sd_idle = 1;
  2944. schedstat_inc(sd, lb_count[idle]);
  2945. redo:
  2946. update_shares(sd);
  2947. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2948. cpus, balance);
  2949. if (*balance == 0)
  2950. goto out_balanced;
  2951. if (!group) {
  2952. schedstat_inc(sd, lb_nobusyg[idle]);
  2953. goto out_balanced;
  2954. }
  2955. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2956. if (!busiest) {
  2957. schedstat_inc(sd, lb_nobusyq[idle]);
  2958. goto out_balanced;
  2959. }
  2960. BUG_ON(busiest == this_rq);
  2961. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2962. ld_moved = 0;
  2963. if (busiest->nr_running > 1) {
  2964. /*
  2965. * Attempt to move tasks. If find_busiest_group has found
  2966. * an imbalance but busiest->nr_running <= 1, the group is
  2967. * still unbalanced. ld_moved simply stays zero, so it is
  2968. * correctly treated as an imbalance.
  2969. */
  2970. local_irq_save(flags);
  2971. double_rq_lock(this_rq, busiest);
  2972. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2973. imbalance, sd, idle, &all_pinned);
  2974. double_rq_unlock(this_rq, busiest);
  2975. local_irq_restore(flags);
  2976. /*
  2977. * some other cpu did the load balance for us.
  2978. */
  2979. if (ld_moved && this_cpu != smp_processor_id())
  2980. resched_cpu(this_cpu);
  2981. /* All tasks on this runqueue were pinned by CPU affinity */
  2982. if (unlikely(all_pinned)) {
  2983. cpu_clear(cpu_of(busiest), *cpus);
  2984. if (!cpus_empty(*cpus))
  2985. goto redo;
  2986. goto out_balanced;
  2987. }
  2988. }
  2989. if (!ld_moved) {
  2990. schedstat_inc(sd, lb_failed[idle]);
  2991. sd->nr_balance_failed++;
  2992. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2993. spin_lock_irqsave(&busiest->lock, flags);
  2994. /* don't kick the migration_thread, if the curr
  2995. * task on busiest cpu can't be moved to this_cpu
  2996. */
  2997. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2998. spin_unlock_irqrestore(&busiest->lock, flags);
  2999. all_pinned = 1;
  3000. goto out_one_pinned;
  3001. }
  3002. if (!busiest->active_balance) {
  3003. busiest->active_balance = 1;
  3004. busiest->push_cpu = this_cpu;
  3005. active_balance = 1;
  3006. }
  3007. spin_unlock_irqrestore(&busiest->lock, flags);
  3008. if (active_balance)
  3009. wake_up_process(busiest->migration_thread);
  3010. /*
  3011. * We've kicked active balancing, reset the failure
  3012. * counter.
  3013. */
  3014. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3015. }
  3016. } else
  3017. sd->nr_balance_failed = 0;
  3018. if (likely(!active_balance)) {
  3019. /* We were unbalanced, so reset the balancing interval */
  3020. sd->balance_interval = sd->min_interval;
  3021. } else {
  3022. /*
  3023. * If we've begun active balancing, start to back off. This
  3024. * case may not be covered by the all_pinned logic if there
  3025. * is only 1 task on the busy runqueue (because we don't call
  3026. * move_tasks).
  3027. */
  3028. if (sd->balance_interval < sd->max_interval)
  3029. sd->balance_interval *= 2;
  3030. }
  3031. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3032. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3033. ld_moved = -1;
  3034. goto out;
  3035. out_balanced:
  3036. schedstat_inc(sd, lb_balanced[idle]);
  3037. sd->nr_balance_failed = 0;
  3038. out_one_pinned:
  3039. /* tune up the balancing interval */
  3040. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3041. (sd->balance_interval < sd->max_interval))
  3042. sd->balance_interval *= 2;
  3043. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3044. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3045. ld_moved = -1;
  3046. else
  3047. ld_moved = 0;
  3048. out:
  3049. if (ld_moved)
  3050. update_shares(sd);
  3051. return ld_moved;
  3052. }
  3053. /*
  3054. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3055. * tasks if there is an imbalance.
  3056. *
  3057. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3058. * this_rq is locked.
  3059. */
  3060. static int
  3061. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3062. cpumask_t *cpus)
  3063. {
  3064. struct sched_group *group;
  3065. struct rq *busiest = NULL;
  3066. unsigned long imbalance;
  3067. int ld_moved = 0;
  3068. int sd_idle = 0;
  3069. int all_pinned = 0;
  3070. cpus_setall(*cpus);
  3071. /*
  3072. * When power savings policy is enabled for the parent domain, idle
  3073. * sibling can pick up load irrespective of busy siblings. In this case,
  3074. * let the state of idle sibling percolate up as IDLE, instead of
  3075. * portraying it as CPU_NOT_IDLE.
  3076. */
  3077. if (sd->flags & SD_SHARE_CPUPOWER &&
  3078. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3079. sd_idle = 1;
  3080. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3081. redo:
  3082. update_shares_locked(this_rq, sd);
  3083. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3084. &sd_idle, cpus, NULL);
  3085. if (!group) {
  3086. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3087. goto out_balanced;
  3088. }
  3089. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3090. if (!busiest) {
  3091. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3092. goto out_balanced;
  3093. }
  3094. BUG_ON(busiest == this_rq);
  3095. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3096. ld_moved = 0;
  3097. if (busiest->nr_running > 1) {
  3098. /* Attempt to move tasks */
  3099. double_lock_balance(this_rq, busiest);
  3100. /* this_rq->clock is already updated */
  3101. update_rq_clock(busiest);
  3102. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3103. imbalance, sd, CPU_NEWLY_IDLE,
  3104. &all_pinned);
  3105. double_unlock_balance(this_rq, busiest);
  3106. if (unlikely(all_pinned)) {
  3107. cpu_clear(cpu_of(busiest), *cpus);
  3108. if (!cpus_empty(*cpus))
  3109. goto redo;
  3110. }
  3111. }
  3112. if (!ld_moved) {
  3113. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3114. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3115. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3116. return -1;
  3117. } else
  3118. sd->nr_balance_failed = 0;
  3119. update_shares_locked(this_rq, sd);
  3120. return ld_moved;
  3121. out_balanced:
  3122. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3123. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3124. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3125. return -1;
  3126. sd->nr_balance_failed = 0;
  3127. return 0;
  3128. }
  3129. /*
  3130. * idle_balance is called by schedule() if this_cpu is about to become
  3131. * idle. Attempts to pull tasks from other CPUs.
  3132. */
  3133. static void idle_balance(int this_cpu, struct rq *this_rq)
  3134. {
  3135. struct sched_domain *sd;
  3136. int pulled_task = 0;
  3137. unsigned long next_balance = jiffies + HZ;
  3138. cpumask_t tmpmask;
  3139. for_each_domain(this_cpu, sd) {
  3140. unsigned long interval;
  3141. if (!(sd->flags & SD_LOAD_BALANCE))
  3142. continue;
  3143. if (sd->flags & SD_BALANCE_NEWIDLE)
  3144. /* If we've pulled tasks over stop searching: */
  3145. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3146. sd, &tmpmask);
  3147. interval = msecs_to_jiffies(sd->balance_interval);
  3148. if (time_after(next_balance, sd->last_balance + interval))
  3149. next_balance = sd->last_balance + interval;
  3150. if (pulled_task)
  3151. break;
  3152. }
  3153. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3154. /*
  3155. * We are going idle. next_balance may be set based on
  3156. * a busy processor. So reset next_balance.
  3157. */
  3158. this_rq->next_balance = next_balance;
  3159. }
  3160. }
  3161. /*
  3162. * active_load_balance is run by migration threads. It pushes running tasks
  3163. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3164. * running on each physical CPU where possible, and avoids physical /
  3165. * logical imbalances.
  3166. *
  3167. * Called with busiest_rq locked.
  3168. */
  3169. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3170. {
  3171. int target_cpu = busiest_rq->push_cpu;
  3172. struct sched_domain *sd;
  3173. struct rq *target_rq;
  3174. /* Is there any task to move? */
  3175. if (busiest_rq->nr_running <= 1)
  3176. return;
  3177. target_rq = cpu_rq(target_cpu);
  3178. /*
  3179. * This condition is "impossible", if it occurs
  3180. * we need to fix it. Originally reported by
  3181. * Bjorn Helgaas on a 128-cpu setup.
  3182. */
  3183. BUG_ON(busiest_rq == target_rq);
  3184. /* move a task from busiest_rq to target_rq */
  3185. double_lock_balance(busiest_rq, target_rq);
  3186. update_rq_clock(busiest_rq);
  3187. update_rq_clock(target_rq);
  3188. /* Search for an sd spanning us and the target CPU. */
  3189. for_each_domain(target_cpu, sd) {
  3190. if ((sd->flags & SD_LOAD_BALANCE) &&
  3191. cpu_isset(busiest_cpu, sd->span))
  3192. break;
  3193. }
  3194. if (likely(sd)) {
  3195. schedstat_inc(sd, alb_count);
  3196. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3197. sd, CPU_IDLE))
  3198. schedstat_inc(sd, alb_pushed);
  3199. else
  3200. schedstat_inc(sd, alb_failed);
  3201. }
  3202. double_unlock_balance(busiest_rq, target_rq);
  3203. }
  3204. #ifdef CONFIG_NO_HZ
  3205. static struct {
  3206. atomic_t load_balancer;
  3207. cpumask_t cpu_mask;
  3208. } nohz ____cacheline_aligned = {
  3209. .load_balancer = ATOMIC_INIT(-1),
  3210. .cpu_mask = CPU_MASK_NONE,
  3211. };
  3212. /*
  3213. * This routine will try to nominate the ilb (idle load balancing)
  3214. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3215. * load balancing on behalf of all those cpus. If all the cpus in the system
  3216. * go into this tickless mode, then there will be no ilb owner (as there is
  3217. * no need for one) and all the cpus will sleep till the next wakeup event
  3218. * arrives...
  3219. *
  3220. * For the ilb owner, tick is not stopped. And this tick will be used
  3221. * for idle load balancing. ilb owner will still be part of
  3222. * nohz.cpu_mask..
  3223. *
  3224. * While stopping the tick, this cpu will become the ilb owner if there
  3225. * is no other owner. And will be the owner till that cpu becomes busy
  3226. * or if all cpus in the system stop their ticks at which point
  3227. * there is no need for ilb owner.
  3228. *
  3229. * When the ilb owner becomes busy, it nominates another owner, during the
  3230. * next busy scheduler_tick()
  3231. */
  3232. int select_nohz_load_balancer(int stop_tick)
  3233. {
  3234. int cpu = smp_processor_id();
  3235. if (stop_tick) {
  3236. cpu_set(cpu, nohz.cpu_mask);
  3237. cpu_rq(cpu)->in_nohz_recently = 1;
  3238. /*
  3239. * If we are going offline and still the leader, give up!
  3240. */
  3241. if (!cpu_active(cpu) &&
  3242. atomic_read(&nohz.load_balancer) == cpu) {
  3243. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3244. BUG();
  3245. return 0;
  3246. }
  3247. /* time for ilb owner also to sleep */
  3248. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3249. if (atomic_read(&nohz.load_balancer) == cpu)
  3250. atomic_set(&nohz.load_balancer, -1);
  3251. return 0;
  3252. }
  3253. if (atomic_read(&nohz.load_balancer) == -1) {
  3254. /* make me the ilb owner */
  3255. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3256. return 1;
  3257. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3258. return 1;
  3259. } else {
  3260. if (!cpu_isset(cpu, nohz.cpu_mask))
  3261. return 0;
  3262. cpu_clear(cpu, nohz.cpu_mask);
  3263. if (atomic_read(&nohz.load_balancer) == cpu)
  3264. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3265. BUG();
  3266. }
  3267. return 0;
  3268. }
  3269. #endif
  3270. static DEFINE_SPINLOCK(balancing);
  3271. /*
  3272. * It checks each scheduling domain to see if it is due to be balanced,
  3273. * and initiates a balancing operation if so.
  3274. *
  3275. * Balancing parameters are set up in arch_init_sched_domains.
  3276. */
  3277. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3278. {
  3279. int balance = 1;
  3280. struct rq *rq = cpu_rq(cpu);
  3281. unsigned long interval;
  3282. struct sched_domain *sd;
  3283. /* Earliest time when we have to do rebalance again */
  3284. unsigned long next_balance = jiffies + 60*HZ;
  3285. int update_next_balance = 0;
  3286. int need_serialize;
  3287. cpumask_t tmp;
  3288. for_each_domain(cpu, sd) {
  3289. if (!(sd->flags & SD_LOAD_BALANCE))
  3290. continue;
  3291. interval = sd->balance_interval;
  3292. if (idle != CPU_IDLE)
  3293. interval *= sd->busy_factor;
  3294. /* scale ms to jiffies */
  3295. interval = msecs_to_jiffies(interval);
  3296. if (unlikely(!interval))
  3297. interval = 1;
  3298. if (interval > HZ*NR_CPUS/10)
  3299. interval = HZ*NR_CPUS/10;
  3300. need_serialize = sd->flags & SD_SERIALIZE;
  3301. if (need_serialize) {
  3302. if (!spin_trylock(&balancing))
  3303. goto out;
  3304. }
  3305. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3306. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3307. /*
  3308. * We've pulled tasks over so either we're no
  3309. * longer idle, or one of our SMT siblings is
  3310. * not idle.
  3311. */
  3312. idle = CPU_NOT_IDLE;
  3313. }
  3314. sd->last_balance = jiffies;
  3315. }
  3316. if (need_serialize)
  3317. spin_unlock(&balancing);
  3318. out:
  3319. if (time_after(next_balance, sd->last_balance + interval)) {
  3320. next_balance = sd->last_balance + interval;
  3321. update_next_balance = 1;
  3322. }
  3323. /*
  3324. * Stop the load balance at this level. There is another
  3325. * CPU in our sched group which is doing load balancing more
  3326. * actively.
  3327. */
  3328. if (!balance)
  3329. break;
  3330. }
  3331. /*
  3332. * next_balance will be updated only when there is a need.
  3333. * When the cpu is attached to null domain for ex, it will not be
  3334. * updated.
  3335. */
  3336. if (likely(update_next_balance))
  3337. rq->next_balance = next_balance;
  3338. }
  3339. /*
  3340. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3341. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3342. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3343. */
  3344. static void run_rebalance_domains(struct softirq_action *h)
  3345. {
  3346. int this_cpu = smp_processor_id();
  3347. struct rq *this_rq = cpu_rq(this_cpu);
  3348. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3349. CPU_IDLE : CPU_NOT_IDLE;
  3350. rebalance_domains(this_cpu, idle);
  3351. #ifdef CONFIG_NO_HZ
  3352. /*
  3353. * If this cpu is the owner for idle load balancing, then do the
  3354. * balancing on behalf of the other idle cpus whose ticks are
  3355. * stopped.
  3356. */
  3357. if (this_rq->idle_at_tick &&
  3358. atomic_read(&nohz.load_balancer) == this_cpu) {
  3359. cpumask_t cpus = nohz.cpu_mask;
  3360. struct rq *rq;
  3361. int balance_cpu;
  3362. cpu_clear(this_cpu, cpus);
  3363. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3364. /*
  3365. * If this cpu gets work to do, stop the load balancing
  3366. * work being done for other cpus. Next load
  3367. * balancing owner will pick it up.
  3368. */
  3369. if (need_resched())
  3370. break;
  3371. rebalance_domains(balance_cpu, CPU_IDLE);
  3372. rq = cpu_rq(balance_cpu);
  3373. if (time_after(this_rq->next_balance, rq->next_balance))
  3374. this_rq->next_balance = rq->next_balance;
  3375. }
  3376. }
  3377. #endif
  3378. }
  3379. /*
  3380. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3381. *
  3382. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3383. * idle load balancing owner or decide to stop the periodic load balancing,
  3384. * if the whole system is idle.
  3385. */
  3386. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3387. {
  3388. #ifdef CONFIG_NO_HZ
  3389. /*
  3390. * If we were in the nohz mode recently and busy at the current
  3391. * scheduler tick, then check if we need to nominate new idle
  3392. * load balancer.
  3393. */
  3394. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3395. rq->in_nohz_recently = 0;
  3396. if (atomic_read(&nohz.load_balancer) == cpu) {
  3397. cpu_clear(cpu, nohz.cpu_mask);
  3398. atomic_set(&nohz.load_balancer, -1);
  3399. }
  3400. if (atomic_read(&nohz.load_balancer) == -1) {
  3401. /*
  3402. * simple selection for now: Nominate the
  3403. * first cpu in the nohz list to be the next
  3404. * ilb owner.
  3405. *
  3406. * TBD: Traverse the sched domains and nominate
  3407. * the nearest cpu in the nohz.cpu_mask.
  3408. */
  3409. int ilb = first_cpu(nohz.cpu_mask);
  3410. if (ilb < nr_cpu_ids)
  3411. resched_cpu(ilb);
  3412. }
  3413. }
  3414. /*
  3415. * If this cpu is idle and doing idle load balancing for all the
  3416. * cpus with ticks stopped, is it time for that to stop?
  3417. */
  3418. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3419. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3420. resched_cpu(cpu);
  3421. return;
  3422. }
  3423. /*
  3424. * If this cpu is idle and the idle load balancing is done by
  3425. * someone else, then no need raise the SCHED_SOFTIRQ
  3426. */
  3427. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3428. cpu_isset(cpu, nohz.cpu_mask))
  3429. return;
  3430. #endif
  3431. if (time_after_eq(jiffies, rq->next_balance))
  3432. raise_softirq(SCHED_SOFTIRQ);
  3433. }
  3434. #else /* CONFIG_SMP */
  3435. /*
  3436. * on UP we do not need to balance between CPUs:
  3437. */
  3438. static inline void idle_balance(int cpu, struct rq *rq)
  3439. {
  3440. }
  3441. #endif
  3442. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3443. EXPORT_PER_CPU_SYMBOL(kstat);
  3444. /*
  3445. * Return any ns on the sched_clock that have not yet been banked in
  3446. * @p in case that task is currently running.
  3447. */
  3448. unsigned long long task_delta_exec(struct task_struct *p)
  3449. {
  3450. unsigned long flags;
  3451. struct rq *rq;
  3452. u64 ns = 0;
  3453. rq = task_rq_lock(p, &flags);
  3454. if (task_current(rq, p)) {
  3455. u64 delta_exec;
  3456. update_rq_clock(rq);
  3457. delta_exec = rq->clock - p->se.exec_start;
  3458. if ((s64)delta_exec > 0)
  3459. ns = delta_exec;
  3460. }
  3461. task_rq_unlock(rq, &flags);
  3462. return ns;
  3463. }
  3464. /*
  3465. * Account user cpu time to a process.
  3466. * @p: the process that the cpu time gets accounted to
  3467. * @cputime: the cpu time spent in user space since the last update
  3468. */
  3469. void account_user_time(struct task_struct *p, cputime_t cputime)
  3470. {
  3471. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3472. cputime64_t tmp;
  3473. p->utime = cputime_add(p->utime, cputime);
  3474. account_group_user_time(p, cputime);
  3475. /* Add user time to cpustat. */
  3476. tmp = cputime_to_cputime64(cputime);
  3477. if (TASK_NICE(p) > 0)
  3478. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3479. else
  3480. cpustat->user = cputime64_add(cpustat->user, tmp);
  3481. /* Account for user time used */
  3482. acct_update_integrals(p);
  3483. }
  3484. /*
  3485. * Account guest cpu time to a process.
  3486. * @p: the process that the cpu time gets accounted to
  3487. * @cputime: the cpu time spent in virtual machine since the last update
  3488. */
  3489. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3490. {
  3491. cputime64_t tmp;
  3492. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3493. tmp = cputime_to_cputime64(cputime);
  3494. p->utime = cputime_add(p->utime, cputime);
  3495. account_group_user_time(p, cputime);
  3496. p->gtime = cputime_add(p->gtime, cputime);
  3497. cpustat->user = cputime64_add(cpustat->user, tmp);
  3498. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3499. }
  3500. /*
  3501. * Account scaled user cpu time to a process.
  3502. * @p: the process that the cpu time gets accounted to
  3503. * @cputime: the cpu time spent in user space since the last update
  3504. */
  3505. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3506. {
  3507. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3508. }
  3509. /*
  3510. * Account system cpu time to a process.
  3511. * @p: the process that the cpu time gets accounted to
  3512. * @hardirq_offset: the offset to subtract from hardirq_count()
  3513. * @cputime: the cpu time spent in kernel space since the last update
  3514. */
  3515. void account_system_time(struct task_struct *p, int hardirq_offset,
  3516. cputime_t cputime)
  3517. {
  3518. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3519. struct rq *rq = this_rq();
  3520. cputime64_t tmp;
  3521. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3522. account_guest_time(p, cputime);
  3523. return;
  3524. }
  3525. p->stime = cputime_add(p->stime, cputime);
  3526. account_group_system_time(p, cputime);
  3527. /* Add system time to cpustat. */
  3528. tmp = cputime_to_cputime64(cputime);
  3529. if (hardirq_count() - hardirq_offset)
  3530. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3531. else if (softirq_count())
  3532. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3533. else if (p != rq->idle)
  3534. cpustat->system = cputime64_add(cpustat->system, tmp);
  3535. else if (atomic_read(&rq->nr_iowait) > 0)
  3536. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3537. else
  3538. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3539. /* Account for system time used */
  3540. acct_update_integrals(p);
  3541. }
  3542. /*
  3543. * Account scaled system cpu time to a process.
  3544. * @p: the process that the cpu time gets accounted to
  3545. * @hardirq_offset: the offset to subtract from hardirq_count()
  3546. * @cputime: the cpu time spent in kernel space since the last update
  3547. */
  3548. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3549. {
  3550. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3551. }
  3552. /*
  3553. * Account for involuntary wait time.
  3554. * @p: the process from which the cpu time has been stolen
  3555. * @steal: the cpu time spent in involuntary wait
  3556. */
  3557. void account_steal_time(struct task_struct *p, cputime_t steal)
  3558. {
  3559. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3560. cputime64_t tmp = cputime_to_cputime64(steal);
  3561. struct rq *rq = this_rq();
  3562. if (p == rq->idle) {
  3563. p->stime = cputime_add(p->stime, steal);
  3564. account_group_system_time(p, steal);
  3565. if (atomic_read(&rq->nr_iowait) > 0)
  3566. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3567. else
  3568. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3569. } else
  3570. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3571. }
  3572. /*
  3573. * Use precise platform statistics if available:
  3574. */
  3575. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3576. cputime_t task_utime(struct task_struct *p)
  3577. {
  3578. return p->utime;
  3579. }
  3580. cputime_t task_stime(struct task_struct *p)
  3581. {
  3582. return p->stime;
  3583. }
  3584. #else
  3585. cputime_t task_utime(struct task_struct *p)
  3586. {
  3587. clock_t utime = cputime_to_clock_t(p->utime),
  3588. total = utime + cputime_to_clock_t(p->stime);
  3589. u64 temp;
  3590. /*
  3591. * Use CFS's precise accounting:
  3592. */
  3593. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3594. if (total) {
  3595. temp *= utime;
  3596. do_div(temp, total);
  3597. }
  3598. utime = (clock_t)temp;
  3599. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3600. return p->prev_utime;
  3601. }
  3602. cputime_t task_stime(struct task_struct *p)
  3603. {
  3604. clock_t stime;
  3605. /*
  3606. * Use CFS's precise accounting. (we subtract utime from
  3607. * the total, to make sure the total observed by userspace
  3608. * grows monotonically - apps rely on that):
  3609. */
  3610. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3611. cputime_to_clock_t(task_utime(p));
  3612. if (stime >= 0)
  3613. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3614. return p->prev_stime;
  3615. }
  3616. #endif
  3617. inline cputime_t task_gtime(struct task_struct *p)
  3618. {
  3619. return p->gtime;
  3620. }
  3621. /*
  3622. * This function gets called by the timer code, with HZ frequency.
  3623. * We call it with interrupts disabled.
  3624. *
  3625. * It also gets called by the fork code, when changing the parent's
  3626. * timeslices.
  3627. */
  3628. void scheduler_tick(void)
  3629. {
  3630. int cpu = smp_processor_id();
  3631. struct rq *rq = cpu_rq(cpu);
  3632. struct task_struct *curr = rq->curr;
  3633. sched_clock_tick();
  3634. spin_lock(&rq->lock);
  3635. update_rq_clock(rq);
  3636. update_cpu_load(rq);
  3637. curr->sched_class->task_tick(rq, curr, 0);
  3638. spin_unlock(&rq->lock);
  3639. #ifdef CONFIG_SMP
  3640. rq->idle_at_tick = idle_cpu(cpu);
  3641. trigger_load_balance(rq, cpu);
  3642. #endif
  3643. }
  3644. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3645. defined(CONFIG_PREEMPT_TRACER))
  3646. static inline unsigned long get_parent_ip(unsigned long addr)
  3647. {
  3648. if (in_lock_functions(addr)) {
  3649. addr = CALLER_ADDR2;
  3650. if (in_lock_functions(addr))
  3651. addr = CALLER_ADDR3;
  3652. }
  3653. return addr;
  3654. }
  3655. void __kprobes add_preempt_count(int val)
  3656. {
  3657. #ifdef CONFIG_DEBUG_PREEMPT
  3658. /*
  3659. * Underflow?
  3660. */
  3661. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3662. return;
  3663. #endif
  3664. preempt_count() += val;
  3665. #ifdef CONFIG_DEBUG_PREEMPT
  3666. /*
  3667. * Spinlock count overflowing soon?
  3668. */
  3669. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3670. PREEMPT_MASK - 10);
  3671. #endif
  3672. if (preempt_count() == val)
  3673. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3674. }
  3675. EXPORT_SYMBOL(add_preempt_count);
  3676. void __kprobes sub_preempt_count(int val)
  3677. {
  3678. #ifdef CONFIG_DEBUG_PREEMPT
  3679. /*
  3680. * Underflow?
  3681. */
  3682. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3683. return;
  3684. /*
  3685. * Is the spinlock portion underflowing?
  3686. */
  3687. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3688. !(preempt_count() & PREEMPT_MASK)))
  3689. return;
  3690. #endif
  3691. if (preempt_count() == val)
  3692. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3693. preempt_count() -= val;
  3694. }
  3695. EXPORT_SYMBOL(sub_preempt_count);
  3696. #endif
  3697. /*
  3698. * Print scheduling while atomic bug:
  3699. */
  3700. static noinline void __schedule_bug(struct task_struct *prev)
  3701. {
  3702. struct pt_regs *regs = get_irq_regs();
  3703. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3704. prev->comm, prev->pid, preempt_count());
  3705. debug_show_held_locks(prev);
  3706. print_modules();
  3707. if (irqs_disabled())
  3708. print_irqtrace_events(prev);
  3709. if (regs)
  3710. show_regs(regs);
  3711. else
  3712. dump_stack();
  3713. }
  3714. /*
  3715. * Various schedule()-time debugging checks and statistics:
  3716. */
  3717. static inline void schedule_debug(struct task_struct *prev)
  3718. {
  3719. /*
  3720. * Test if we are atomic. Since do_exit() needs to call into
  3721. * schedule() atomically, we ignore that path for now.
  3722. * Otherwise, whine if we are scheduling when we should not be.
  3723. */
  3724. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3725. __schedule_bug(prev);
  3726. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3727. schedstat_inc(this_rq(), sched_count);
  3728. #ifdef CONFIG_SCHEDSTATS
  3729. if (unlikely(prev->lock_depth >= 0)) {
  3730. schedstat_inc(this_rq(), bkl_count);
  3731. schedstat_inc(prev, sched_info.bkl_count);
  3732. }
  3733. #endif
  3734. }
  3735. /*
  3736. * Pick up the highest-prio task:
  3737. */
  3738. static inline struct task_struct *
  3739. pick_next_task(struct rq *rq, struct task_struct *prev)
  3740. {
  3741. const struct sched_class *class;
  3742. struct task_struct *p;
  3743. /*
  3744. * Optimization: we know that if all tasks are in
  3745. * the fair class we can call that function directly:
  3746. */
  3747. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3748. p = fair_sched_class.pick_next_task(rq);
  3749. if (likely(p))
  3750. return p;
  3751. }
  3752. class = sched_class_highest;
  3753. for ( ; ; ) {
  3754. p = class->pick_next_task(rq);
  3755. if (p)
  3756. return p;
  3757. /*
  3758. * Will never be NULL as the idle class always
  3759. * returns a non-NULL p:
  3760. */
  3761. class = class->next;
  3762. }
  3763. }
  3764. /*
  3765. * schedule() is the main scheduler function.
  3766. */
  3767. asmlinkage void __sched schedule(void)
  3768. {
  3769. struct task_struct *prev, *next;
  3770. unsigned long *switch_count;
  3771. struct rq *rq;
  3772. int cpu;
  3773. need_resched:
  3774. preempt_disable();
  3775. cpu = smp_processor_id();
  3776. rq = cpu_rq(cpu);
  3777. rcu_qsctr_inc(cpu);
  3778. prev = rq->curr;
  3779. switch_count = &prev->nivcsw;
  3780. release_kernel_lock(prev);
  3781. need_resched_nonpreemptible:
  3782. schedule_debug(prev);
  3783. if (sched_feat(HRTICK))
  3784. hrtick_clear(rq);
  3785. spin_lock_irq(&rq->lock);
  3786. update_rq_clock(rq);
  3787. clear_tsk_need_resched(prev);
  3788. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3789. if (unlikely(signal_pending_state(prev->state, prev)))
  3790. prev->state = TASK_RUNNING;
  3791. else
  3792. deactivate_task(rq, prev, 1);
  3793. switch_count = &prev->nvcsw;
  3794. }
  3795. #ifdef CONFIG_SMP
  3796. if (prev->sched_class->pre_schedule)
  3797. prev->sched_class->pre_schedule(rq, prev);
  3798. #endif
  3799. if (unlikely(!rq->nr_running))
  3800. idle_balance(cpu, rq);
  3801. prev->sched_class->put_prev_task(rq, prev);
  3802. next = pick_next_task(rq, prev);
  3803. if (likely(prev != next)) {
  3804. sched_info_switch(prev, next);
  3805. rq->nr_switches++;
  3806. rq->curr = next;
  3807. ++*switch_count;
  3808. context_switch(rq, prev, next); /* unlocks the rq */
  3809. /*
  3810. * the context switch might have flipped the stack from under
  3811. * us, hence refresh the local variables.
  3812. */
  3813. cpu = smp_processor_id();
  3814. rq = cpu_rq(cpu);
  3815. } else
  3816. spin_unlock_irq(&rq->lock);
  3817. if (unlikely(reacquire_kernel_lock(current) < 0))
  3818. goto need_resched_nonpreemptible;
  3819. preempt_enable_no_resched();
  3820. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3821. goto need_resched;
  3822. }
  3823. EXPORT_SYMBOL(schedule);
  3824. #ifdef CONFIG_PREEMPT
  3825. /*
  3826. * this is the entry point to schedule() from in-kernel preemption
  3827. * off of preempt_enable. Kernel preemptions off return from interrupt
  3828. * occur there and call schedule directly.
  3829. */
  3830. asmlinkage void __sched preempt_schedule(void)
  3831. {
  3832. struct thread_info *ti = current_thread_info();
  3833. /*
  3834. * If there is a non-zero preempt_count or interrupts are disabled,
  3835. * we do not want to preempt the current task. Just return..
  3836. */
  3837. if (likely(ti->preempt_count || irqs_disabled()))
  3838. return;
  3839. do {
  3840. add_preempt_count(PREEMPT_ACTIVE);
  3841. schedule();
  3842. sub_preempt_count(PREEMPT_ACTIVE);
  3843. /*
  3844. * Check again in case we missed a preemption opportunity
  3845. * between schedule and now.
  3846. */
  3847. barrier();
  3848. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3849. }
  3850. EXPORT_SYMBOL(preempt_schedule);
  3851. /*
  3852. * this is the entry point to schedule() from kernel preemption
  3853. * off of irq context.
  3854. * Note, that this is called and return with irqs disabled. This will
  3855. * protect us against recursive calling from irq.
  3856. */
  3857. asmlinkage void __sched preempt_schedule_irq(void)
  3858. {
  3859. struct thread_info *ti = current_thread_info();
  3860. /* Catch callers which need to be fixed */
  3861. BUG_ON(ti->preempt_count || !irqs_disabled());
  3862. do {
  3863. add_preempt_count(PREEMPT_ACTIVE);
  3864. local_irq_enable();
  3865. schedule();
  3866. local_irq_disable();
  3867. sub_preempt_count(PREEMPT_ACTIVE);
  3868. /*
  3869. * Check again in case we missed a preemption opportunity
  3870. * between schedule and now.
  3871. */
  3872. barrier();
  3873. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3874. }
  3875. #endif /* CONFIG_PREEMPT */
  3876. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3877. void *key)
  3878. {
  3879. return try_to_wake_up(curr->private, mode, sync);
  3880. }
  3881. EXPORT_SYMBOL(default_wake_function);
  3882. /*
  3883. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3884. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3885. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3886. *
  3887. * There are circumstances in which we can try to wake a task which has already
  3888. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3889. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3890. */
  3891. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3892. int nr_exclusive, int sync, void *key)
  3893. {
  3894. wait_queue_t *curr, *next;
  3895. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3896. unsigned flags = curr->flags;
  3897. if (curr->func(curr, mode, sync, key) &&
  3898. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3899. break;
  3900. }
  3901. }
  3902. /**
  3903. * __wake_up - wake up threads blocked on a waitqueue.
  3904. * @q: the waitqueue
  3905. * @mode: which threads
  3906. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3907. * @key: is directly passed to the wakeup function
  3908. */
  3909. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3910. int nr_exclusive, void *key)
  3911. {
  3912. unsigned long flags;
  3913. spin_lock_irqsave(&q->lock, flags);
  3914. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3915. spin_unlock_irqrestore(&q->lock, flags);
  3916. }
  3917. EXPORT_SYMBOL(__wake_up);
  3918. /*
  3919. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3920. */
  3921. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3922. {
  3923. __wake_up_common(q, mode, 1, 0, NULL);
  3924. }
  3925. /**
  3926. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3927. * @q: the waitqueue
  3928. * @mode: which threads
  3929. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3930. *
  3931. * The sync wakeup differs that the waker knows that it will schedule
  3932. * away soon, so while the target thread will be woken up, it will not
  3933. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3934. * with each other. This can prevent needless bouncing between CPUs.
  3935. *
  3936. * On UP it can prevent extra preemption.
  3937. */
  3938. void
  3939. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3940. {
  3941. unsigned long flags;
  3942. int sync = 1;
  3943. if (unlikely(!q))
  3944. return;
  3945. if (unlikely(!nr_exclusive))
  3946. sync = 0;
  3947. spin_lock_irqsave(&q->lock, flags);
  3948. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3949. spin_unlock_irqrestore(&q->lock, flags);
  3950. }
  3951. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3952. /**
  3953. * complete: - signals a single thread waiting on this completion
  3954. * @x: holds the state of this particular completion
  3955. *
  3956. * This will wake up a single thread waiting on this completion. Threads will be
  3957. * awakened in the same order in which they were queued.
  3958. *
  3959. * See also complete_all(), wait_for_completion() and related routines.
  3960. */
  3961. void complete(struct completion *x)
  3962. {
  3963. unsigned long flags;
  3964. spin_lock_irqsave(&x->wait.lock, flags);
  3965. x->done++;
  3966. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3967. spin_unlock_irqrestore(&x->wait.lock, flags);
  3968. }
  3969. EXPORT_SYMBOL(complete);
  3970. /**
  3971. * complete_all: - signals all threads waiting on this completion
  3972. * @x: holds the state of this particular completion
  3973. *
  3974. * This will wake up all threads waiting on this particular completion event.
  3975. */
  3976. void complete_all(struct completion *x)
  3977. {
  3978. unsigned long flags;
  3979. spin_lock_irqsave(&x->wait.lock, flags);
  3980. x->done += UINT_MAX/2;
  3981. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3982. spin_unlock_irqrestore(&x->wait.lock, flags);
  3983. }
  3984. EXPORT_SYMBOL(complete_all);
  3985. static inline long __sched
  3986. do_wait_for_common(struct completion *x, long timeout, int state)
  3987. {
  3988. if (!x->done) {
  3989. DECLARE_WAITQUEUE(wait, current);
  3990. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3991. __add_wait_queue_tail(&x->wait, &wait);
  3992. do {
  3993. if (signal_pending_state(state, current)) {
  3994. timeout = -ERESTARTSYS;
  3995. break;
  3996. }
  3997. __set_current_state(state);
  3998. spin_unlock_irq(&x->wait.lock);
  3999. timeout = schedule_timeout(timeout);
  4000. spin_lock_irq(&x->wait.lock);
  4001. } while (!x->done && timeout);
  4002. __remove_wait_queue(&x->wait, &wait);
  4003. if (!x->done)
  4004. return timeout;
  4005. }
  4006. x->done--;
  4007. return timeout ?: 1;
  4008. }
  4009. static long __sched
  4010. wait_for_common(struct completion *x, long timeout, int state)
  4011. {
  4012. might_sleep();
  4013. spin_lock_irq(&x->wait.lock);
  4014. timeout = do_wait_for_common(x, timeout, state);
  4015. spin_unlock_irq(&x->wait.lock);
  4016. return timeout;
  4017. }
  4018. /**
  4019. * wait_for_completion: - waits for completion of a task
  4020. * @x: holds the state of this particular completion
  4021. *
  4022. * This waits to be signaled for completion of a specific task. It is NOT
  4023. * interruptible and there is no timeout.
  4024. *
  4025. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4026. * and interrupt capability. Also see complete().
  4027. */
  4028. void __sched wait_for_completion(struct completion *x)
  4029. {
  4030. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4031. }
  4032. EXPORT_SYMBOL(wait_for_completion);
  4033. /**
  4034. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4035. * @x: holds the state of this particular completion
  4036. * @timeout: timeout value in jiffies
  4037. *
  4038. * This waits for either a completion of a specific task to be signaled or for a
  4039. * specified timeout to expire. The timeout is in jiffies. It is not
  4040. * interruptible.
  4041. */
  4042. unsigned long __sched
  4043. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4044. {
  4045. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4046. }
  4047. EXPORT_SYMBOL(wait_for_completion_timeout);
  4048. /**
  4049. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4050. * @x: holds the state of this particular completion
  4051. *
  4052. * This waits for completion of a specific task to be signaled. It is
  4053. * interruptible.
  4054. */
  4055. int __sched wait_for_completion_interruptible(struct completion *x)
  4056. {
  4057. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4058. if (t == -ERESTARTSYS)
  4059. return t;
  4060. return 0;
  4061. }
  4062. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4063. /**
  4064. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4065. * @x: holds the state of this particular completion
  4066. * @timeout: timeout value in jiffies
  4067. *
  4068. * This waits for either a completion of a specific task to be signaled or for a
  4069. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4070. */
  4071. unsigned long __sched
  4072. wait_for_completion_interruptible_timeout(struct completion *x,
  4073. unsigned long timeout)
  4074. {
  4075. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4076. }
  4077. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4078. /**
  4079. * wait_for_completion_killable: - waits for completion of a task (killable)
  4080. * @x: holds the state of this particular completion
  4081. *
  4082. * This waits to be signaled for completion of a specific task. It can be
  4083. * interrupted by a kill signal.
  4084. */
  4085. int __sched wait_for_completion_killable(struct completion *x)
  4086. {
  4087. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4088. if (t == -ERESTARTSYS)
  4089. return t;
  4090. return 0;
  4091. }
  4092. EXPORT_SYMBOL(wait_for_completion_killable);
  4093. /**
  4094. * try_wait_for_completion - try to decrement a completion without blocking
  4095. * @x: completion structure
  4096. *
  4097. * Returns: 0 if a decrement cannot be done without blocking
  4098. * 1 if a decrement succeeded.
  4099. *
  4100. * If a completion is being used as a counting completion,
  4101. * attempt to decrement the counter without blocking. This
  4102. * enables us to avoid waiting if the resource the completion
  4103. * is protecting is not available.
  4104. */
  4105. bool try_wait_for_completion(struct completion *x)
  4106. {
  4107. int ret = 1;
  4108. spin_lock_irq(&x->wait.lock);
  4109. if (!x->done)
  4110. ret = 0;
  4111. else
  4112. x->done--;
  4113. spin_unlock_irq(&x->wait.lock);
  4114. return ret;
  4115. }
  4116. EXPORT_SYMBOL(try_wait_for_completion);
  4117. /**
  4118. * completion_done - Test to see if a completion has any waiters
  4119. * @x: completion structure
  4120. *
  4121. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4122. * 1 if there are no waiters.
  4123. *
  4124. */
  4125. bool completion_done(struct completion *x)
  4126. {
  4127. int ret = 1;
  4128. spin_lock_irq(&x->wait.lock);
  4129. if (!x->done)
  4130. ret = 0;
  4131. spin_unlock_irq(&x->wait.lock);
  4132. return ret;
  4133. }
  4134. EXPORT_SYMBOL(completion_done);
  4135. static long __sched
  4136. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4137. {
  4138. unsigned long flags;
  4139. wait_queue_t wait;
  4140. init_waitqueue_entry(&wait, current);
  4141. __set_current_state(state);
  4142. spin_lock_irqsave(&q->lock, flags);
  4143. __add_wait_queue(q, &wait);
  4144. spin_unlock(&q->lock);
  4145. timeout = schedule_timeout(timeout);
  4146. spin_lock_irq(&q->lock);
  4147. __remove_wait_queue(q, &wait);
  4148. spin_unlock_irqrestore(&q->lock, flags);
  4149. return timeout;
  4150. }
  4151. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4152. {
  4153. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4154. }
  4155. EXPORT_SYMBOL(interruptible_sleep_on);
  4156. long __sched
  4157. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4158. {
  4159. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4160. }
  4161. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4162. void __sched sleep_on(wait_queue_head_t *q)
  4163. {
  4164. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4165. }
  4166. EXPORT_SYMBOL(sleep_on);
  4167. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4168. {
  4169. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4170. }
  4171. EXPORT_SYMBOL(sleep_on_timeout);
  4172. #ifdef CONFIG_RT_MUTEXES
  4173. /*
  4174. * rt_mutex_setprio - set the current priority of a task
  4175. * @p: task
  4176. * @prio: prio value (kernel-internal form)
  4177. *
  4178. * This function changes the 'effective' priority of a task. It does
  4179. * not touch ->normal_prio like __setscheduler().
  4180. *
  4181. * Used by the rt_mutex code to implement priority inheritance logic.
  4182. */
  4183. void rt_mutex_setprio(struct task_struct *p, int prio)
  4184. {
  4185. unsigned long flags;
  4186. int oldprio, on_rq, running;
  4187. struct rq *rq;
  4188. const struct sched_class *prev_class = p->sched_class;
  4189. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4190. rq = task_rq_lock(p, &flags);
  4191. update_rq_clock(rq);
  4192. oldprio = p->prio;
  4193. on_rq = p->se.on_rq;
  4194. running = task_current(rq, p);
  4195. if (on_rq)
  4196. dequeue_task(rq, p, 0);
  4197. if (running)
  4198. p->sched_class->put_prev_task(rq, p);
  4199. if (rt_prio(prio))
  4200. p->sched_class = &rt_sched_class;
  4201. else
  4202. p->sched_class = &fair_sched_class;
  4203. p->prio = prio;
  4204. if (running)
  4205. p->sched_class->set_curr_task(rq);
  4206. if (on_rq) {
  4207. enqueue_task(rq, p, 0);
  4208. check_class_changed(rq, p, prev_class, oldprio, running);
  4209. }
  4210. task_rq_unlock(rq, &flags);
  4211. }
  4212. #endif
  4213. void set_user_nice(struct task_struct *p, long nice)
  4214. {
  4215. int old_prio, delta, on_rq;
  4216. unsigned long flags;
  4217. struct rq *rq;
  4218. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4219. return;
  4220. /*
  4221. * We have to be careful, if called from sys_setpriority(),
  4222. * the task might be in the middle of scheduling on another CPU.
  4223. */
  4224. rq = task_rq_lock(p, &flags);
  4225. update_rq_clock(rq);
  4226. /*
  4227. * The RT priorities are set via sched_setscheduler(), but we still
  4228. * allow the 'normal' nice value to be set - but as expected
  4229. * it wont have any effect on scheduling until the task is
  4230. * SCHED_FIFO/SCHED_RR:
  4231. */
  4232. if (task_has_rt_policy(p)) {
  4233. p->static_prio = NICE_TO_PRIO(nice);
  4234. goto out_unlock;
  4235. }
  4236. on_rq = p->se.on_rq;
  4237. if (on_rq)
  4238. dequeue_task(rq, p, 0);
  4239. p->static_prio = NICE_TO_PRIO(nice);
  4240. set_load_weight(p);
  4241. old_prio = p->prio;
  4242. p->prio = effective_prio(p);
  4243. delta = p->prio - old_prio;
  4244. if (on_rq) {
  4245. enqueue_task(rq, p, 0);
  4246. /*
  4247. * If the task increased its priority or is running and
  4248. * lowered its priority, then reschedule its CPU:
  4249. */
  4250. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4251. resched_task(rq->curr);
  4252. }
  4253. out_unlock:
  4254. task_rq_unlock(rq, &flags);
  4255. }
  4256. EXPORT_SYMBOL(set_user_nice);
  4257. /*
  4258. * can_nice - check if a task can reduce its nice value
  4259. * @p: task
  4260. * @nice: nice value
  4261. */
  4262. int can_nice(const struct task_struct *p, const int nice)
  4263. {
  4264. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4265. int nice_rlim = 20 - nice;
  4266. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4267. capable(CAP_SYS_NICE));
  4268. }
  4269. #ifdef __ARCH_WANT_SYS_NICE
  4270. /*
  4271. * sys_nice - change the priority of the current process.
  4272. * @increment: priority increment
  4273. *
  4274. * sys_setpriority is a more generic, but much slower function that
  4275. * does similar things.
  4276. */
  4277. asmlinkage long sys_nice(int increment)
  4278. {
  4279. long nice, retval;
  4280. /*
  4281. * Setpriority might change our priority at the same moment.
  4282. * We don't have to worry. Conceptually one call occurs first
  4283. * and we have a single winner.
  4284. */
  4285. if (increment < -40)
  4286. increment = -40;
  4287. if (increment > 40)
  4288. increment = 40;
  4289. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4290. if (nice < -20)
  4291. nice = -20;
  4292. if (nice > 19)
  4293. nice = 19;
  4294. if (increment < 0 && !can_nice(current, nice))
  4295. return -EPERM;
  4296. retval = security_task_setnice(current, nice);
  4297. if (retval)
  4298. return retval;
  4299. set_user_nice(current, nice);
  4300. return 0;
  4301. }
  4302. #endif
  4303. /**
  4304. * task_prio - return the priority value of a given task.
  4305. * @p: the task in question.
  4306. *
  4307. * This is the priority value as seen by users in /proc.
  4308. * RT tasks are offset by -200. Normal tasks are centered
  4309. * around 0, value goes from -16 to +15.
  4310. */
  4311. int task_prio(const struct task_struct *p)
  4312. {
  4313. return p->prio - MAX_RT_PRIO;
  4314. }
  4315. /**
  4316. * task_nice - return the nice value of a given task.
  4317. * @p: the task in question.
  4318. */
  4319. int task_nice(const struct task_struct *p)
  4320. {
  4321. return TASK_NICE(p);
  4322. }
  4323. EXPORT_SYMBOL(task_nice);
  4324. /**
  4325. * idle_cpu - is a given cpu idle currently?
  4326. * @cpu: the processor in question.
  4327. */
  4328. int idle_cpu(int cpu)
  4329. {
  4330. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4331. }
  4332. /**
  4333. * idle_task - return the idle task for a given cpu.
  4334. * @cpu: the processor in question.
  4335. */
  4336. struct task_struct *idle_task(int cpu)
  4337. {
  4338. return cpu_rq(cpu)->idle;
  4339. }
  4340. /**
  4341. * find_process_by_pid - find a process with a matching PID value.
  4342. * @pid: the pid in question.
  4343. */
  4344. static struct task_struct *find_process_by_pid(pid_t pid)
  4345. {
  4346. return pid ? find_task_by_vpid(pid) : current;
  4347. }
  4348. /* Actually do priority change: must hold rq lock. */
  4349. static void
  4350. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4351. {
  4352. BUG_ON(p->se.on_rq);
  4353. p->policy = policy;
  4354. switch (p->policy) {
  4355. case SCHED_NORMAL:
  4356. case SCHED_BATCH:
  4357. case SCHED_IDLE:
  4358. p->sched_class = &fair_sched_class;
  4359. break;
  4360. case SCHED_FIFO:
  4361. case SCHED_RR:
  4362. p->sched_class = &rt_sched_class;
  4363. break;
  4364. }
  4365. p->rt_priority = prio;
  4366. p->normal_prio = normal_prio(p);
  4367. /* we are holding p->pi_lock already */
  4368. p->prio = rt_mutex_getprio(p);
  4369. set_load_weight(p);
  4370. }
  4371. /*
  4372. * check the target process has a UID that matches the current process's
  4373. */
  4374. static bool check_same_owner(struct task_struct *p)
  4375. {
  4376. const struct cred *cred = current_cred(), *pcred;
  4377. bool match;
  4378. rcu_read_lock();
  4379. pcred = __task_cred(p);
  4380. match = (cred->euid == pcred->euid ||
  4381. cred->euid == pcred->uid);
  4382. rcu_read_unlock();
  4383. return match;
  4384. }
  4385. static int __sched_setscheduler(struct task_struct *p, int policy,
  4386. struct sched_param *param, bool user)
  4387. {
  4388. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4389. unsigned long flags;
  4390. const struct sched_class *prev_class = p->sched_class;
  4391. struct rq *rq;
  4392. /* may grab non-irq protected spin_locks */
  4393. BUG_ON(in_interrupt());
  4394. recheck:
  4395. /* double check policy once rq lock held */
  4396. if (policy < 0)
  4397. policy = oldpolicy = p->policy;
  4398. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4399. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4400. policy != SCHED_IDLE)
  4401. return -EINVAL;
  4402. /*
  4403. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4404. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4405. * SCHED_BATCH and SCHED_IDLE is 0.
  4406. */
  4407. if (param->sched_priority < 0 ||
  4408. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4409. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4410. return -EINVAL;
  4411. if (rt_policy(policy) != (param->sched_priority != 0))
  4412. return -EINVAL;
  4413. /*
  4414. * Allow unprivileged RT tasks to decrease priority:
  4415. */
  4416. if (user && !capable(CAP_SYS_NICE)) {
  4417. if (rt_policy(policy)) {
  4418. unsigned long rlim_rtprio;
  4419. if (!lock_task_sighand(p, &flags))
  4420. return -ESRCH;
  4421. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4422. unlock_task_sighand(p, &flags);
  4423. /* can't set/change the rt policy */
  4424. if (policy != p->policy && !rlim_rtprio)
  4425. return -EPERM;
  4426. /* can't increase priority */
  4427. if (param->sched_priority > p->rt_priority &&
  4428. param->sched_priority > rlim_rtprio)
  4429. return -EPERM;
  4430. }
  4431. /*
  4432. * Like positive nice levels, dont allow tasks to
  4433. * move out of SCHED_IDLE either:
  4434. */
  4435. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4436. return -EPERM;
  4437. /* can't change other user's priorities */
  4438. if (!check_same_owner(p))
  4439. return -EPERM;
  4440. }
  4441. if (user) {
  4442. #ifdef CONFIG_RT_GROUP_SCHED
  4443. /*
  4444. * Do not allow realtime tasks into groups that have no runtime
  4445. * assigned.
  4446. */
  4447. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4448. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4449. return -EPERM;
  4450. #endif
  4451. retval = security_task_setscheduler(p, policy, param);
  4452. if (retval)
  4453. return retval;
  4454. }
  4455. /*
  4456. * make sure no PI-waiters arrive (or leave) while we are
  4457. * changing the priority of the task:
  4458. */
  4459. spin_lock_irqsave(&p->pi_lock, flags);
  4460. /*
  4461. * To be able to change p->policy safely, the apropriate
  4462. * runqueue lock must be held.
  4463. */
  4464. rq = __task_rq_lock(p);
  4465. /* recheck policy now with rq lock held */
  4466. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4467. policy = oldpolicy = -1;
  4468. __task_rq_unlock(rq);
  4469. spin_unlock_irqrestore(&p->pi_lock, flags);
  4470. goto recheck;
  4471. }
  4472. update_rq_clock(rq);
  4473. on_rq = p->se.on_rq;
  4474. running = task_current(rq, p);
  4475. if (on_rq)
  4476. deactivate_task(rq, p, 0);
  4477. if (running)
  4478. p->sched_class->put_prev_task(rq, p);
  4479. oldprio = p->prio;
  4480. __setscheduler(rq, p, policy, param->sched_priority);
  4481. if (running)
  4482. p->sched_class->set_curr_task(rq);
  4483. if (on_rq) {
  4484. activate_task(rq, p, 0);
  4485. check_class_changed(rq, p, prev_class, oldprio, running);
  4486. }
  4487. __task_rq_unlock(rq);
  4488. spin_unlock_irqrestore(&p->pi_lock, flags);
  4489. rt_mutex_adjust_pi(p);
  4490. return 0;
  4491. }
  4492. /**
  4493. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4494. * @p: the task in question.
  4495. * @policy: new policy.
  4496. * @param: structure containing the new RT priority.
  4497. *
  4498. * NOTE that the task may be already dead.
  4499. */
  4500. int sched_setscheduler(struct task_struct *p, int policy,
  4501. struct sched_param *param)
  4502. {
  4503. return __sched_setscheduler(p, policy, param, true);
  4504. }
  4505. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4506. /**
  4507. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4508. * @p: the task in question.
  4509. * @policy: new policy.
  4510. * @param: structure containing the new RT priority.
  4511. *
  4512. * Just like sched_setscheduler, only don't bother checking if the
  4513. * current context has permission. For example, this is needed in
  4514. * stop_machine(): we create temporary high priority worker threads,
  4515. * but our caller might not have that capability.
  4516. */
  4517. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4518. struct sched_param *param)
  4519. {
  4520. return __sched_setscheduler(p, policy, param, false);
  4521. }
  4522. static int
  4523. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4524. {
  4525. struct sched_param lparam;
  4526. struct task_struct *p;
  4527. int retval;
  4528. if (!param || pid < 0)
  4529. return -EINVAL;
  4530. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4531. return -EFAULT;
  4532. rcu_read_lock();
  4533. retval = -ESRCH;
  4534. p = find_process_by_pid(pid);
  4535. if (p != NULL)
  4536. retval = sched_setscheduler(p, policy, &lparam);
  4537. rcu_read_unlock();
  4538. return retval;
  4539. }
  4540. /**
  4541. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4542. * @pid: the pid in question.
  4543. * @policy: new policy.
  4544. * @param: structure containing the new RT priority.
  4545. */
  4546. asmlinkage long
  4547. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4548. {
  4549. /* negative values for policy are not valid */
  4550. if (policy < 0)
  4551. return -EINVAL;
  4552. return do_sched_setscheduler(pid, policy, param);
  4553. }
  4554. /**
  4555. * sys_sched_setparam - set/change the RT priority of a thread
  4556. * @pid: the pid in question.
  4557. * @param: structure containing the new RT priority.
  4558. */
  4559. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4560. {
  4561. return do_sched_setscheduler(pid, -1, param);
  4562. }
  4563. /**
  4564. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4565. * @pid: the pid in question.
  4566. */
  4567. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4568. {
  4569. struct task_struct *p;
  4570. int retval;
  4571. if (pid < 0)
  4572. return -EINVAL;
  4573. retval = -ESRCH;
  4574. read_lock(&tasklist_lock);
  4575. p = find_process_by_pid(pid);
  4576. if (p) {
  4577. retval = security_task_getscheduler(p);
  4578. if (!retval)
  4579. retval = p->policy;
  4580. }
  4581. read_unlock(&tasklist_lock);
  4582. return retval;
  4583. }
  4584. /**
  4585. * sys_sched_getscheduler - get the RT priority of a thread
  4586. * @pid: the pid in question.
  4587. * @param: structure containing the RT priority.
  4588. */
  4589. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4590. {
  4591. struct sched_param lp;
  4592. struct task_struct *p;
  4593. int retval;
  4594. if (!param || pid < 0)
  4595. return -EINVAL;
  4596. read_lock(&tasklist_lock);
  4597. p = find_process_by_pid(pid);
  4598. retval = -ESRCH;
  4599. if (!p)
  4600. goto out_unlock;
  4601. retval = security_task_getscheduler(p);
  4602. if (retval)
  4603. goto out_unlock;
  4604. lp.sched_priority = p->rt_priority;
  4605. read_unlock(&tasklist_lock);
  4606. /*
  4607. * This one might sleep, we cannot do it with a spinlock held ...
  4608. */
  4609. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4610. return retval;
  4611. out_unlock:
  4612. read_unlock(&tasklist_lock);
  4613. return retval;
  4614. }
  4615. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4616. {
  4617. cpumask_t cpus_allowed;
  4618. cpumask_t new_mask = *in_mask;
  4619. struct task_struct *p;
  4620. int retval;
  4621. get_online_cpus();
  4622. read_lock(&tasklist_lock);
  4623. p = find_process_by_pid(pid);
  4624. if (!p) {
  4625. read_unlock(&tasklist_lock);
  4626. put_online_cpus();
  4627. return -ESRCH;
  4628. }
  4629. /*
  4630. * It is not safe to call set_cpus_allowed with the
  4631. * tasklist_lock held. We will bump the task_struct's
  4632. * usage count and then drop tasklist_lock.
  4633. */
  4634. get_task_struct(p);
  4635. read_unlock(&tasklist_lock);
  4636. retval = -EPERM;
  4637. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4638. goto out_unlock;
  4639. retval = security_task_setscheduler(p, 0, NULL);
  4640. if (retval)
  4641. goto out_unlock;
  4642. cpuset_cpus_allowed(p, &cpus_allowed);
  4643. cpus_and(new_mask, new_mask, cpus_allowed);
  4644. again:
  4645. retval = set_cpus_allowed_ptr(p, &new_mask);
  4646. if (!retval) {
  4647. cpuset_cpus_allowed(p, &cpus_allowed);
  4648. if (!cpus_subset(new_mask, cpus_allowed)) {
  4649. /*
  4650. * We must have raced with a concurrent cpuset
  4651. * update. Just reset the cpus_allowed to the
  4652. * cpuset's cpus_allowed
  4653. */
  4654. new_mask = cpus_allowed;
  4655. goto again;
  4656. }
  4657. }
  4658. out_unlock:
  4659. put_task_struct(p);
  4660. put_online_cpus();
  4661. return retval;
  4662. }
  4663. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4664. cpumask_t *new_mask)
  4665. {
  4666. if (len < sizeof(cpumask_t)) {
  4667. memset(new_mask, 0, sizeof(cpumask_t));
  4668. } else if (len > sizeof(cpumask_t)) {
  4669. len = sizeof(cpumask_t);
  4670. }
  4671. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4672. }
  4673. /**
  4674. * sys_sched_setaffinity - set the cpu affinity of a process
  4675. * @pid: pid of the process
  4676. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4677. * @user_mask_ptr: user-space pointer to the new cpu mask
  4678. */
  4679. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4680. unsigned long __user *user_mask_ptr)
  4681. {
  4682. cpumask_t new_mask;
  4683. int retval;
  4684. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4685. if (retval)
  4686. return retval;
  4687. return sched_setaffinity(pid, &new_mask);
  4688. }
  4689. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4690. {
  4691. struct task_struct *p;
  4692. int retval;
  4693. get_online_cpus();
  4694. read_lock(&tasklist_lock);
  4695. retval = -ESRCH;
  4696. p = find_process_by_pid(pid);
  4697. if (!p)
  4698. goto out_unlock;
  4699. retval = security_task_getscheduler(p);
  4700. if (retval)
  4701. goto out_unlock;
  4702. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4703. out_unlock:
  4704. read_unlock(&tasklist_lock);
  4705. put_online_cpus();
  4706. return retval;
  4707. }
  4708. /**
  4709. * sys_sched_getaffinity - get the cpu affinity of a process
  4710. * @pid: pid of the process
  4711. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4712. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4713. */
  4714. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4715. unsigned long __user *user_mask_ptr)
  4716. {
  4717. int ret;
  4718. cpumask_t mask;
  4719. if (len < sizeof(cpumask_t))
  4720. return -EINVAL;
  4721. ret = sched_getaffinity(pid, &mask);
  4722. if (ret < 0)
  4723. return ret;
  4724. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4725. return -EFAULT;
  4726. return sizeof(cpumask_t);
  4727. }
  4728. /**
  4729. * sys_sched_yield - yield the current processor to other threads.
  4730. *
  4731. * This function yields the current CPU to other tasks. If there are no
  4732. * other threads running on this CPU then this function will return.
  4733. */
  4734. asmlinkage long sys_sched_yield(void)
  4735. {
  4736. struct rq *rq = this_rq_lock();
  4737. schedstat_inc(rq, yld_count);
  4738. current->sched_class->yield_task(rq);
  4739. /*
  4740. * Since we are going to call schedule() anyway, there's
  4741. * no need to preempt or enable interrupts:
  4742. */
  4743. __release(rq->lock);
  4744. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4745. _raw_spin_unlock(&rq->lock);
  4746. preempt_enable_no_resched();
  4747. schedule();
  4748. return 0;
  4749. }
  4750. static void __cond_resched(void)
  4751. {
  4752. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4753. __might_sleep(__FILE__, __LINE__);
  4754. #endif
  4755. /*
  4756. * The BKS might be reacquired before we have dropped
  4757. * PREEMPT_ACTIVE, which could trigger a second
  4758. * cond_resched() call.
  4759. */
  4760. do {
  4761. add_preempt_count(PREEMPT_ACTIVE);
  4762. schedule();
  4763. sub_preempt_count(PREEMPT_ACTIVE);
  4764. } while (need_resched());
  4765. }
  4766. int __sched _cond_resched(void)
  4767. {
  4768. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4769. system_state == SYSTEM_RUNNING) {
  4770. __cond_resched();
  4771. return 1;
  4772. }
  4773. return 0;
  4774. }
  4775. EXPORT_SYMBOL(_cond_resched);
  4776. /*
  4777. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4778. * call schedule, and on return reacquire the lock.
  4779. *
  4780. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4781. * operations here to prevent schedule() from being called twice (once via
  4782. * spin_unlock(), once by hand).
  4783. */
  4784. int cond_resched_lock(spinlock_t *lock)
  4785. {
  4786. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4787. int ret = 0;
  4788. if (spin_needbreak(lock) || resched) {
  4789. spin_unlock(lock);
  4790. if (resched && need_resched())
  4791. __cond_resched();
  4792. else
  4793. cpu_relax();
  4794. ret = 1;
  4795. spin_lock(lock);
  4796. }
  4797. return ret;
  4798. }
  4799. EXPORT_SYMBOL(cond_resched_lock);
  4800. int __sched cond_resched_softirq(void)
  4801. {
  4802. BUG_ON(!in_softirq());
  4803. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4804. local_bh_enable();
  4805. __cond_resched();
  4806. local_bh_disable();
  4807. return 1;
  4808. }
  4809. return 0;
  4810. }
  4811. EXPORT_SYMBOL(cond_resched_softirq);
  4812. /**
  4813. * yield - yield the current processor to other threads.
  4814. *
  4815. * This is a shortcut for kernel-space yielding - it marks the
  4816. * thread runnable and calls sys_sched_yield().
  4817. */
  4818. void __sched yield(void)
  4819. {
  4820. set_current_state(TASK_RUNNING);
  4821. sys_sched_yield();
  4822. }
  4823. EXPORT_SYMBOL(yield);
  4824. /*
  4825. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4826. * that process accounting knows that this is a task in IO wait state.
  4827. *
  4828. * But don't do that if it is a deliberate, throttling IO wait (this task
  4829. * has set its backing_dev_info: the queue against which it should throttle)
  4830. */
  4831. void __sched io_schedule(void)
  4832. {
  4833. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4834. delayacct_blkio_start();
  4835. atomic_inc(&rq->nr_iowait);
  4836. schedule();
  4837. atomic_dec(&rq->nr_iowait);
  4838. delayacct_blkio_end();
  4839. }
  4840. EXPORT_SYMBOL(io_schedule);
  4841. long __sched io_schedule_timeout(long timeout)
  4842. {
  4843. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4844. long ret;
  4845. delayacct_blkio_start();
  4846. atomic_inc(&rq->nr_iowait);
  4847. ret = schedule_timeout(timeout);
  4848. atomic_dec(&rq->nr_iowait);
  4849. delayacct_blkio_end();
  4850. return ret;
  4851. }
  4852. /**
  4853. * sys_sched_get_priority_max - return maximum RT priority.
  4854. * @policy: scheduling class.
  4855. *
  4856. * this syscall returns the maximum rt_priority that can be used
  4857. * by a given scheduling class.
  4858. */
  4859. asmlinkage long sys_sched_get_priority_max(int policy)
  4860. {
  4861. int ret = -EINVAL;
  4862. switch (policy) {
  4863. case SCHED_FIFO:
  4864. case SCHED_RR:
  4865. ret = MAX_USER_RT_PRIO-1;
  4866. break;
  4867. case SCHED_NORMAL:
  4868. case SCHED_BATCH:
  4869. case SCHED_IDLE:
  4870. ret = 0;
  4871. break;
  4872. }
  4873. return ret;
  4874. }
  4875. /**
  4876. * sys_sched_get_priority_min - return minimum RT priority.
  4877. * @policy: scheduling class.
  4878. *
  4879. * this syscall returns the minimum rt_priority that can be used
  4880. * by a given scheduling class.
  4881. */
  4882. asmlinkage long sys_sched_get_priority_min(int policy)
  4883. {
  4884. int ret = -EINVAL;
  4885. switch (policy) {
  4886. case SCHED_FIFO:
  4887. case SCHED_RR:
  4888. ret = 1;
  4889. break;
  4890. case SCHED_NORMAL:
  4891. case SCHED_BATCH:
  4892. case SCHED_IDLE:
  4893. ret = 0;
  4894. }
  4895. return ret;
  4896. }
  4897. /**
  4898. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4899. * @pid: pid of the process.
  4900. * @interval: userspace pointer to the timeslice value.
  4901. *
  4902. * this syscall writes the default timeslice value of a given process
  4903. * into the user-space timespec buffer. A value of '0' means infinity.
  4904. */
  4905. asmlinkage
  4906. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4907. {
  4908. struct task_struct *p;
  4909. unsigned int time_slice;
  4910. int retval;
  4911. struct timespec t;
  4912. if (pid < 0)
  4913. return -EINVAL;
  4914. retval = -ESRCH;
  4915. read_lock(&tasklist_lock);
  4916. p = find_process_by_pid(pid);
  4917. if (!p)
  4918. goto out_unlock;
  4919. retval = security_task_getscheduler(p);
  4920. if (retval)
  4921. goto out_unlock;
  4922. /*
  4923. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4924. * tasks that are on an otherwise idle runqueue:
  4925. */
  4926. time_slice = 0;
  4927. if (p->policy == SCHED_RR) {
  4928. time_slice = DEF_TIMESLICE;
  4929. } else if (p->policy != SCHED_FIFO) {
  4930. struct sched_entity *se = &p->se;
  4931. unsigned long flags;
  4932. struct rq *rq;
  4933. rq = task_rq_lock(p, &flags);
  4934. if (rq->cfs.load.weight)
  4935. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4936. task_rq_unlock(rq, &flags);
  4937. }
  4938. read_unlock(&tasklist_lock);
  4939. jiffies_to_timespec(time_slice, &t);
  4940. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4941. return retval;
  4942. out_unlock:
  4943. read_unlock(&tasklist_lock);
  4944. return retval;
  4945. }
  4946. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4947. void sched_show_task(struct task_struct *p)
  4948. {
  4949. unsigned long free = 0;
  4950. unsigned state;
  4951. state = p->state ? __ffs(p->state) + 1 : 0;
  4952. printk(KERN_INFO "%-13.13s %c", p->comm,
  4953. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4954. #if BITS_PER_LONG == 32
  4955. if (state == TASK_RUNNING)
  4956. printk(KERN_CONT " running ");
  4957. else
  4958. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4959. #else
  4960. if (state == TASK_RUNNING)
  4961. printk(KERN_CONT " running task ");
  4962. else
  4963. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4964. #endif
  4965. #ifdef CONFIG_DEBUG_STACK_USAGE
  4966. {
  4967. unsigned long *n = end_of_stack(p);
  4968. while (!*n)
  4969. n++;
  4970. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4971. }
  4972. #endif
  4973. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4974. task_pid_nr(p), task_pid_nr(p->real_parent));
  4975. show_stack(p, NULL);
  4976. }
  4977. void show_state_filter(unsigned long state_filter)
  4978. {
  4979. struct task_struct *g, *p;
  4980. #if BITS_PER_LONG == 32
  4981. printk(KERN_INFO
  4982. " task PC stack pid father\n");
  4983. #else
  4984. printk(KERN_INFO
  4985. " task PC stack pid father\n");
  4986. #endif
  4987. read_lock(&tasklist_lock);
  4988. do_each_thread(g, p) {
  4989. /*
  4990. * reset the NMI-timeout, listing all files on a slow
  4991. * console might take alot of time:
  4992. */
  4993. touch_nmi_watchdog();
  4994. if (!state_filter || (p->state & state_filter))
  4995. sched_show_task(p);
  4996. } while_each_thread(g, p);
  4997. touch_all_softlockup_watchdogs();
  4998. #ifdef CONFIG_SCHED_DEBUG
  4999. sysrq_sched_debug_show();
  5000. #endif
  5001. read_unlock(&tasklist_lock);
  5002. /*
  5003. * Only show locks if all tasks are dumped:
  5004. */
  5005. if (state_filter == -1)
  5006. debug_show_all_locks();
  5007. }
  5008. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5009. {
  5010. idle->sched_class = &idle_sched_class;
  5011. }
  5012. /**
  5013. * init_idle - set up an idle thread for a given CPU
  5014. * @idle: task in question
  5015. * @cpu: cpu the idle task belongs to
  5016. *
  5017. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5018. * flag, to make booting more robust.
  5019. */
  5020. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5021. {
  5022. struct rq *rq = cpu_rq(cpu);
  5023. unsigned long flags;
  5024. spin_lock_irqsave(&rq->lock, flags);
  5025. __sched_fork(idle);
  5026. idle->se.exec_start = sched_clock();
  5027. idle->prio = idle->normal_prio = MAX_PRIO;
  5028. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5029. __set_task_cpu(idle, cpu);
  5030. rq->curr = rq->idle = idle;
  5031. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5032. idle->oncpu = 1;
  5033. #endif
  5034. spin_unlock_irqrestore(&rq->lock, flags);
  5035. /* Set the preempt count _outside_ the spinlocks! */
  5036. #if defined(CONFIG_PREEMPT)
  5037. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5038. #else
  5039. task_thread_info(idle)->preempt_count = 0;
  5040. #endif
  5041. /*
  5042. * The idle tasks have their own, simple scheduling class:
  5043. */
  5044. idle->sched_class = &idle_sched_class;
  5045. ftrace_graph_init_task(idle);
  5046. }
  5047. /*
  5048. * In a system that switches off the HZ timer nohz_cpu_mask
  5049. * indicates which cpus entered this state. This is used
  5050. * in the rcu update to wait only for active cpus. For system
  5051. * which do not switch off the HZ timer nohz_cpu_mask should
  5052. * always be CPU_MASK_NONE.
  5053. */
  5054. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5055. /*
  5056. * Increase the granularity value when there are more CPUs,
  5057. * because with more CPUs the 'effective latency' as visible
  5058. * to users decreases. But the relationship is not linear,
  5059. * so pick a second-best guess by going with the log2 of the
  5060. * number of CPUs.
  5061. *
  5062. * This idea comes from the SD scheduler of Con Kolivas:
  5063. */
  5064. static inline void sched_init_granularity(void)
  5065. {
  5066. unsigned int factor = 1 + ilog2(num_online_cpus());
  5067. const unsigned long limit = 200000000;
  5068. sysctl_sched_min_granularity *= factor;
  5069. if (sysctl_sched_min_granularity > limit)
  5070. sysctl_sched_min_granularity = limit;
  5071. sysctl_sched_latency *= factor;
  5072. if (sysctl_sched_latency > limit)
  5073. sysctl_sched_latency = limit;
  5074. sysctl_sched_wakeup_granularity *= factor;
  5075. sysctl_sched_shares_ratelimit *= factor;
  5076. }
  5077. #ifdef CONFIG_SMP
  5078. /*
  5079. * This is how migration works:
  5080. *
  5081. * 1) we queue a struct migration_req structure in the source CPU's
  5082. * runqueue and wake up that CPU's migration thread.
  5083. * 2) we down() the locked semaphore => thread blocks.
  5084. * 3) migration thread wakes up (implicitly it forces the migrated
  5085. * thread off the CPU)
  5086. * 4) it gets the migration request and checks whether the migrated
  5087. * task is still in the wrong runqueue.
  5088. * 5) if it's in the wrong runqueue then the migration thread removes
  5089. * it and puts it into the right queue.
  5090. * 6) migration thread up()s the semaphore.
  5091. * 7) we wake up and the migration is done.
  5092. */
  5093. /*
  5094. * Change a given task's CPU affinity. Migrate the thread to a
  5095. * proper CPU and schedule it away if the CPU it's executing on
  5096. * is removed from the allowed bitmask.
  5097. *
  5098. * NOTE: the caller must have a valid reference to the task, the
  5099. * task must not exit() & deallocate itself prematurely. The
  5100. * call is not atomic; no spinlocks may be held.
  5101. */
  5102. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5103. {
  5104. struct migration_req req;
  5105. unsigned long flags;
  5106. struct rq *rq;
  5107. int ret = 0;
  5108. rq = task_rq_lock(p, &flags);
  5109. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5110. ret = -EINVAL;
  5111. goto out;
  5112. }
  5113. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5114. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5115. ret = -EINVAL;
  5116. goto out;
  5117. }
  5118. if (p->sched_class->set_cpus_allowed)
  5119. p->sched_class->set_cpus_allowed(p, new_mask);
  5120. else {
  5121. p->cpus_allowed = *new_mask;
  5122. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5123. }
  5124. /* Can the task run on the task's current CPU? If so, we're done */
  5125. if (cpu_isset(task_cpu(p), *new_mask))
  5126. goto out;
  5127. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5128. /* Need help from migration thread: drop lock and wait. */
  5129. task_rq_unlock(rq, &flags);
  5130. wake_up_process(rq->migration_thread);
  5131. wait_for_completion(&req.done);
  5132. tlb_migrate_finish(p->mm);
  5133. return 0;
  5134. }
  5135. out:
  5136. task_rq_unlock(rq, &flags);
  5137. return ret;
  5138. }
  5139. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5140. /*
  5141. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5142. * this because either it can't run here any more (set_cpus_allowed()
  5143. * away from this CPU, or CPU going down), or because we're
  5144. * attempting to rebalance this task on exec (sched_exec).
  5145. *
  5146. * So we race with normal scheduler movements, but that's OK, as long
  5147. * as the task is no longer on this CPU.
  5148. *
  5149. * Returns non-zero if task was successfully migrated.
  5150. */
  5151. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5152. {
  5153. struct rq *rq_dest, *rq_src;
  5154. int ret = 0, on_rq;
  5155. if (unlikely(!cpu_active(dest_cpu)))
  5156. return ret;
  5157. rq_src = cpu_rq(src_cpu);
  5158. rq_dest = cpu_rq(dest_cpu);
  5159. double_rq_lock(rq_src, rq_dest);
  5160. /* Already moved. */
  5161. if (task_cpu(p) != src_cpu)
  5162. goto done;
  5163. /* Affinity changed (again). */
  5164. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5165. goto fail;
  5166. on_rq = p->se.on_rq;
  5167. if (on_rq)
  5168. deactivate_task(rq_src, p, 0);
  5169. set_task_cpu(p, dest_cpu);
  5170. if (on_rq) {
  5171. activate_task(rq_dest, p, 0);
  5172. check_preempt_curr(rq_dest, p, 0);
  5173. }
  5174. done:
  5175. ret = 1;
  5176. fail:
  5177. double_rq_unlock(rq_src, rq_dest);
  5178. return ret;
  5179. }
  5180. /*
  5181. * migration_thread - this is a highprio system thread that performs
  5182. * thread migration by bumping thread off CPU then 'pushing' onto
  5183. * another runqueue.
  5184. */
  5185. static int migration_thread(void *data)
  5186. {
  5187. int cpu = (long)data;
  5188. struct rq *rq;
  5189. rq = cpu_rq(cpu);
  5190. BUG_ON(rq->migration_thread != current);
  5191. set_current_state(TASK_INTERRUPTIBLE);
  5192. while (!kthread_should_stop()) {
  5193. struct migration_req *req;
  5194. struct list_head *head;
  5195. spin_lock_irq(&rq->lock);
  5196. if (cpu_is_offline(cpu)) {
  5197. spin_unlock_irq(&rq->lock);
  5198. goto wait_to_die;
  5199. }
  5200. if (rq->active_balance) {
  5201. active_load_balance(rq, cpu);
  5202. rq->active_balance = 0;
  5203. }
  5204. head = &rq->migration_queue;
  5205. if (list_empty(head)) {
  5206. spin_unlock_irq(&rq->lock);
  5207. schedule();
  5208. set_current_state(TASK_INTERRUPTIBLE);
  5209. continue;
  5210. }
  5211. req = list_entry(head->next, struct migration_req, list);
  5212. list_del_init(head->next);
  5213. spin_unlock(&rq->lock);
  5214. __migrate_task(req->task, cpu, req->dest_cpu);
  5215. local_irq_enable();
  5216. complete(&req->done);
  5217. }
  5218. __set_current_state(TASK_RUNNING);
  5219. return 0;
  5220. wait_to_die:
  5221. /* Wait for kthread_stop */
  5222. set_current_state(TASK_INTERRUPTIBLE);
  5223. while (!kthread_should_stop()) {
  5224. schedule();
  5225. set_current_state(TASK_INTERRUPTIBLE);
  5226. }
  5227. __set_current_state(TASK_RUNNING);
  5228. return 0;
  5229. }
  5230. #ifdef CONFIG_HOTPLUG_CPU
  5231. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5232. {
  5233. int ret;
  5234. local_irq_disable();
  5235. ret = __migrate_task(p, src_cpu, dest_cpu);
  5236. local_irq_enable();
  5237. return ret;
  5238. }
  5239. /*
  5240. * Figure out where task on dead CPU should go, use force if necessary.
  5241. */
  5242. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5243. {
  5244. unsigned long flags;
  5245. cpumask_t mask;
  5246. struct rq *rq;
  5247. int dest_cpu;
  5248. do {
  5249. /* On same node? */
  5250. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5251. cpus_and(mask, mask, p->cpus_allowed);
  5252. dest_cpu = any_online_cpu(mask);
  5253. /* On any allowed CPU? */
  5254. if (dest_cpu >= nr_cpu_ids)
  5255. dest_cpu = any_online_cpu(p->cpus_allowed);
  5256. /* No more Mr. Nice Guy. */
  5257. if (dest_cpu >= nr_cpu_ids) {
  5258. cpumask_t cpus_allowed;
  5259. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5260. /*
  5261. * Try to stay on the same cpuset, where the
  5262. * current cpuset may be a subset of all cpus.
  5263. * The cpuset_cpus_allowed_locked() variant of
  5264. * cpuset_cpus_allowed() will not block. It must be
  5265. * called within calls to cpuset_lock/cpuset_unlock.
  5266. */
  5267. rq = task_rq_lock(p, &flags);
  5268. p->cpus_allowed = cpus_allowed;
  5269. dest_cpu = any_online_cpu(p->cpus_allowed);
  5270. task_rq_unlock(rq, &flags);
  5271. /*
  5272. * Don't tell them about moving exiting tasks or
  5273. * kernel threads (both mm NULL), since they never
  5274. * leave kernel.
  5275. */
  5276. if (p->mm && printk_ratelimit()) {
  5277. printk(KERN_INFO "process %d (%s) no "
  5278. "longer affine to cpu%d\n",
  5279. task_pid_nr(p), p->comm, dead_cpu);
  5280. }
  5281. }
  5282. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5283. }
  5284. /*
  5285. * While a dead CPU has no uninterruptible tasks queued at this point,
  5286. * it might still have a nonzero ->nr_uninterruptible counter, because
  5287. * for performance reasons the counter is not stricly tracking tasks to
  5288. * their home CPUs. So we just add the counter to another CPU's counter,
  5289. * to keep the global sum constant after CPU-down:
  5290. */
  5291. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5292. {
  5293. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5294. unsigned long flags;
  5295. local_irq_save(flags);
  5296. double_rq_lock(rq_src, rq_dest);
  5297. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5298. rq_src->nr_uninterruptible = 0;
  5299. double_rq_unlock(rq_src, rq_dest);
  5300. local_irq_restore(flags);
  5301. }
  5302. /* Run through task list and migrate tasks from the dead cpu. */
  5303. static void migrate_live_tasks(int src_cpu)
  5304. {
  5305. struct task_struct *p, *t;
  5306. read_lock(&tasklist_lock);
  5307. do_each_thread(t, p) {
  5308. if (p == current)
  5309. continue;
  5310. if (task_cpu(p) == src_cpu)
  5311. move_task_off_dead_cpu(src_cpu, p);
  5312. } while_each_thread(t, p);
  5313. read_unlock(&tasklist_lock);
  5314. }
  5315. /*
  5316. * Schedules idle task to be the next runnable task on current CPU.
  5317. * It does so by boosting its priority to highest possible.
  5318. * Used by CPU offline code.
  5319. */
  5320. void sched_idle_next(void)
  5321. {
  5322. int this_cpu = smp_processor_id();
  5323. struct rq *rq = cpu_rq(this_cpu);
  5324. struct task_struct *p = rq->idle;
  5325. unsigned long flags;
  5326. /* cpu has to be offline */
  5327. BUG_ON(cpu_online(this_cpu));
  5328. /*
  5329. * Strictly not necessary since rest of the CPUs are stopped by now
  5330. * and interrupts disabled on the current cpu.
  5331. */
  5332. spin_lock_irqsave(&rq->lock, flags);
  5333. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5334. update_rq_clock(rq);
  5335. activate_task(rq, p, 0);
  5336. spin_unlock_irqrestore(&rq->lock, flags);
  5337. }
  5338. /*
  5339. * Ensures that the idle task is using init_mm right before its cpu goes
  5340. * offline.
  5341. */
  5342. void idle_task_exit(void)
  5343. {
  5344. struct mm_struct *mm = current->active_mm;
  5345. BUG_ON(cpu_online(smp_processor_id()));
  5346. if (mm != &init_mm)
  5347. switch_mm(mm, &init_mm, current);
  5348. mmdrop(mm);
  5349. }
  5350. /* called under rq->lock with disabled interrupts */
  5351. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5352. {
  5353. struct rq *rq = cpu_rq(dead_cpu);
  5354. /* Must be exiting, otherwise would be on tasklist. */
  5355. BUG_ON(!p->exit_state);
  5356. /* Cannot have done final schedule yet: would have vanished. */
  5357. BUG_ON(p->state == TASK_DEAD);
  5358. get_task_struct(p);
  5359. /*
  5360. * Drop lock around migration; if someone else moves it,
  5361. * that's OK. No task can be added to this CPU, so iteration is
  5362. * fine.
  5363. */
  5364. spin_unlock_irq(&rq->lock);
  5365. move_task_off_dead_cpu(dead_cpu, p);
  5366. spin_lock_irq(&rq->lock);
  5367. put_task_struct(p);
  5368. }
  5369. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5370. static void migrate_dead_tasks(unsigned int dead_cpu)
  5371. {
  5372. struct rq *rq = cpu_rq(dead_cpu);
  5373. struct task_struct *next;
  5374. for ( ; ; ) {
  5375. if (!rq->nr_running)
  5376. break;
  5377. update_rq_clock(rq);
  5378. next = pick_next_task(rq, rq->curr);
  5379. if (!next)
  5380. break;
  5381. next->sched_class->put_prev_task(rq, next);
  5382. migrate_dead(dead_cpu, next);
  5383. }
  5384. }
  5385. #endif /* CONFIG_HOTPLUG_CPU */
  5386. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5387. static struct ctl_table sd_ctl_dir[] = {
  5388. {
  5389. .procname = "sched_domain",
  5390. .mode = 0555,
  5391. },
  5392. {0, },
  5393. };
  5394. static struct ctl_table sd_ctl_root[] = {
  5395. {
  5396. .ctl_name = CTL_KERN,
  5397. .procname = "kernel",
  5398. .mode = 0555,
  5399. .child = sd_ctl_dir,
  5400. },
  5401. {0, },
  5402. };
  5403. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5404. {
  5405. struct ctl_table *entry =
  5406. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5407. return entry;
  5408. }
  5409. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5410. {
  5411. struct ctl_table *entry;
  5412. /*
  5413. * In the intermediate directories, both the child directory and
  5414. * procname are dynamically allocated and could fail but the mode
  5415. * will always be set. In the lowest directory the names are
  5416. * static strings and all have proc handlers.
  5417. */
  5418. for (entry = *tablep; entry->mode; entry++) {
  5419. if (entry->child)
  5420. sd_free_ctl_entry(&entry->child);
  5421. if (entry->proc_handler == NULL)
  5422. kfree(entry->procname);
  5423. }
  5424. kfree(*tablep);
  5425. *tablep = NULL;
  5426. }
  5427. static void
  5428. set_table_entry(struct ctl_table *entry,
  5429. const char *procname, void *data, int maxlen,
  5430. mode_t mode, proc_handler *proc_handler)
  5431. {
  5432. entry->procname = procname;
  5433. entry->data = data;
  5434. entry->maxlen = maxlen;
  5435. entry->mode = mode;
  5436. entry->proc_handler = proc_handler;
  5437. }
  5438. static struct ctl_table *
  5439. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5440. {
  5441. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5442. if (table == NULL)
  5443. return NULL;
  5444. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5445. sizeof(long), 0644, proc_doulongvec_minmax);
  5446. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5447. sizeof(long), 0644, proc_doulongvec_minmax);
  5448. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5449. sizeof(int), 0644, proc_dointvec_minmax);
  5450. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5451. sizeof(int), 0644, proc_dointvec_minmax);
  5452. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5453. sizeof(int), 0644, proc_dointvec_minmax);
  5454. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5455. sizeof(int), 0644, proc_dointvec_minmax);
  5456. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5457. sizeof(int), 0644, proc_dointvec_minmax);
  5458. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5459. sizeof(int), 0644, proc_dointvec_minmax);
  5460. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5461. sizeof(int), 0644, proc_dointvec_minmax);
  5462. set_table_entry(&table[9], "cache_nice_tries",
  5463. &sd->cache_nice_tries,
  5464. sizeof(int), 0644, proc_dointvec_minmax);
  5465. set_table_entry(&table[10], "flags", &sd->flags,
  5466. sizeof(int), 0644, proc_dointvec_minmax);
  5467. set_table_entry(&table[11], "name", sd->name,
  5468. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5469. /* &table[12] is terminator */
  5470. return table;
  5471. }
  5472. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5473. {
  5474. struct ctl_table *entry, *table;
  5475. struct sched_domain *sd;
  5476. int domain_num = 0, i;
  5477. char buf[32];
  5478. for_each_domain(cpu, sd)
  5479. domain_num++;
  5480. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5481. if (table == NULL)
  5482. return NULL;
  5483. i = 0;
  5484. for_each_domain(cpu, sd) {
  5485. snprintf(buf, 32, "domain%d", i);
  5486. entry->procname = kstrdup(buf, GFP_KERNEL);
  5487. entry->mode = 0555;
  5488. entry->child = sd_alloc_ctl_domain_table(sd);
  5489. entry++;
  5490. i++;
  5491. }
  5492. return table;
  5493. }
  5494. static struct ctl_table_header *sd_sysctl_header;
  5495. static void register_sched_domain_sysctl(void)
  5496. {
  5497. int i, cpu_num = num_online_cpus();
  5498. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5499. char buf[32];
  5500. WARN_ON(sd_ctl_dir[0].child);
  5501. sd_ctl_dir[0].child = entry;
  5502. if (entry == NULL)
  5503. return;
  5504. for_each_online_cpu(i) {
  5505. snprintf(buf, 32, "cpu%d", i);
  5506. entry->procname = kstrdup(buf, GFP_KERNEL);
  5507. entry->mode = 0555;
  5508. entry->child = sd_alloc_ctl_cpu_table(i);
  5509. entry++;
  5510. }
  5511. WARN_ON(sd_sysctl_header);
  5512. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5513. }
  5514. /* may be called multiple times per register */
  5515. static void unregister_sched_domain_sysctl(void)
  5516. {
  5517. if (sd_sysctl_header)
  5518. unregister_sysctl_table(sd_sysctl_header);
  5519. sd_sysctl_header = NULL;
  5520. if (sd_ctl_dir[0].child)
  5521. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5522. }
  5523. #else
  5524. static void register_sched_domain_sysctl(void)
  5525. {
  5526. }
  5527. static void unregister_sched_domain_sysctl(void)
  5528. {
  5529. }
  5530. #endif
  5531. static void set_rq_online(struct rq *rq)
  5532. {
  5533. if (!rq->online) {
  5534. const struct sched_class *class;
  5535. cpu_set(rq->cpu, rq->rd->online);
  5536. rq->online = 1;
  5537. for_each_class(class) {
  5538. if (class->rq_online)
  5539. class->rq_online(rq);
  5540. }
  5541. }
  5542. }
  5543. static void set_rq_offline(struct rq *rq)
  5544. {
  5545. if (rq->online) {
  5546. const struct sched_class *class;
  5547. for_each_class(class) {
  5548. if (class->rq_offline)
  5549. class->rq_offline(rq);
  5550. }
  5551. cpu_clear(rq->cpu, rq->rd->online);
  5552. rq->online = 0;
  5553. }
  5554. }
  5555. /*
  5556. * migration_call - callback that gets triggered when a CPU is added.
  5557. * Here we can start up the necessary migration thread for the new CPU.
  5558. */
  5559. static int __cpuinit
  5560. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5561. {
  5562. struct task_struct *p;
  5563. int cpu = (long)hcpu;
  5564. unsigned long flags;
  5565. struct rq *rq;
  5566. switch (action) {
  5567. case CPU_UP_PREPARE:
  5568. case CPU_UP_PREPARE_FROZEN:
  5569. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5570. if (IS_ERR(p))
  5571. return NOTIFY_BAD;
  5572. kthread_bind(p, cpu);
  5573. /* Must be high prio: stop_machine expects to yield to it. */
  5574. rq = task_rq_lock(p, &flags);
  5575. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5576. task_rq_unlock(rq, &flags);
  5577. cpu_rq(cpu)->migration_thread = p;
  5578. break;
  5579. case CPU_ONLINE:
  5580. case CPU_ONLINE_FROZEN:
  5581. /* Strictly unnecessary, as first user will wake it. */
  5582. wake_up_process(cpu_rq(cpu)->migration_thread);
  5583. /* Update our root-domain */
  5584. rq = cpu_rq(cpu);
  5585. spin_lock_irqsave(&rq->lock, flags);
  5586. if (rq->rd) {
  5587. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5588. set_rq_online(rq);
  5589. }
  5590. spin_unlock_irqrestore(&rq->lock, flags);
  5591. break;
  5592. #ifdef CONFIG_HOTPLUG_CPU
  5593. case CPU_UP_CANCELED:
  5594. case CPU_UP_CANCELED_FROZEN:
  5595. if (!cpu_rq(cpu)->migration_thread)
  5596. break;
  5597. /* Unbind it from offline cpu so it can run. Fall thru. */
  5598. kthread_bind(cpu_rq(cpu)->migration_thread,
  5599. any_online_cpu(cpu_online_map));
  5600. kthread_stop(cpu_rq(cpu)->migration_thread);
  5601. cpu_rq(cpu)->migration_thread = NULL;
  5602. break;
  5603. case CPU_DEAD:
  5604. case CPU_DEAD_FROZEN:
  5605. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5606. migrate_live_tasks(cpu);
  5607. rq = cpu_rq(cpu);
  5608. kthread_stop(rq->migration_thread);
  5609. rq->migration_thread = NULL;
  5610. /* Idle task back to normal (off runqueue, low prio) */
  5611. spin_lock_irq(&rq->lock);
  5612. update_rq_clock(rq);
  5613. deactivate_task(rq, rq->idle, 0);
  5614. rq->idle->static_prio = MAX_PRIO;
  5615. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5616. rq->idle->sched_class = &idle_sched_class;
  5617. migrate_dead_tasks(cpu);
  5618. spin_unlock_irq(&rq->lock);
  5619. cpuset_unlock();
  5620. migrate_nr_uninterruptible(rq);
  5621. BUG_ON(rq->nr_running != 0);
  5622. /*
  5623. * No need to migrate the tasks: it was best-effort if
  5624. * they didn't take sched_hotcpu_mutex. Just wake up
  5625. * the requestors.
  5626. */
  5627. spin_lock_irq(&rq->lock);
  5628. while (!list_empty(&rq->migration_queue)) {
  5629. struct migration_req *req;
  5630. req = list_entry(rq->migration_queue.next,
  5631. struct migration_req, list);
  5632. list_del_init(&req->list);
  5633. spin_unlock_irq(&rq->lock);
  5634. complete(&req->done);
  5635. spin_lock_irq(&rq->lock);
  5636. }
  5637. spin_unlock_irq(&rq->lock);
  5638. break;
  5639. case CPU_DYING:
  5640. case CPU_DYING_FROZEN:
  5641. /* Update our root-domain */
  5642. rq = cpu_rq(cpu);
  5643. spin_lock_irqsave(&rq->lock, flags);
  5644. if (rq->rd) {
  5645. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5646. set_rq_offline(rq);
  5647. }
  5648. spin_unlock_irqrestore(&rq->lock, flags);
  5649. break;
  5650. #endif
  5651. }
  5652. return NOTIFY_OK;
  5653. }
  5654. /* Register at highest priority so that task migration (migrate_all_tasks)
  5655. * happens before everything else.
  5656. */
  5657. static struct notifier_block __cpuinitdata migration_notifier = {
  5658. .notifier_call = migration_call,
  5659. .priority = 10
  5660. };
  5661. static int __init migration_init(void)
  5662. {
  5663. void *cpu = (void *)(long)smp_processor_id();
  5664. int err;
  5665. /* Start one for the boot CPU: */
  5666. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5667. BUG_ON(err == NOTIFY_BAD);
  5668. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5669. register_cpu_notifier(&migration_notifier);
  5670. return err;
  5671. }
  5672. early_initcall(migration_init);
  5673. #endif
  5674. #ifdef CONFIG_SMP
  5675. #ifdef CONFIG_SCHED_DEBUG
  5676. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5677. cpumask_t *groupmask)
  5678. {
  5679. struct sched_group *group = sd->groups;
  5680. char str[256];
  5681. cpulist_scnprintf(str, sizeof(str), sd->span);
  5682. cpus_clear(*groupmask);
  5683. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5684. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5685. printk("does not load-balance\n");
  5686. if (sd->parent)
  5687. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5688. " has parent");
  5689. return -1;
  5690. }
  5691. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5692. if (!cpu_isset(cpu, sd->span)) {
  5693. printk(KERN_ERR "ERROR: domain->span does not contain "
  5694. "CPU%d\n", cpu);
  5695. }
  5696. if (!cpu_isset(cpu, group->cpumask)) {
  5697. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5698. " CPU%d\n", cpu);
  5699. }
  5700. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5701. do {
  5702. if (!group) {
  5703. printk("\n");
  5704. printk(KERN_ERR "ERROR: group is NULL\n");
  5705. break;
  5706. }
  5707. if (!group->__cpu_power) {
  5708. printk(KERN_CONT "\n");
  5709. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5710. "set\n");
  5711. break;
  5712. }
  5713. if (!cpus_weight(group->cpumask)) {
  5714. printk(KERN_CONT "\n");
  5715. printk(KERN_ERR "ERROR: empty group\n");
  5716. break;
  5717. }
  5718. if (cpus_intersects(*groupmask, group->cpumask)) {
  5719. printk(KERN_CONT "\n");
  5720. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5721. break;
  5722. }
  5723. cpus_or(*groupmask, *groupmask, group->cpumask);
  5724. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5725. printk(KERN_CONT " %s", str);
  5726. group = group->next;
  5727. } while (group != sd->groups);
  5728. printk(KERN_CONT "\n");
  5729. if (!cpus_equal(sd->span, *groupmask))
  5730. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5731. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5732. printk(KERN_ERR "ERROR: parent span is not a superset "
  5733. "of domain->span\n");
  5734. return 0;
  5735. }
  5736. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5737. {
  5738. cpumask_t *groupmask;
  5739. int level = 0;
  5740. if (!sd) {
  5741. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5742. return;
  5743. }
  5744. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5745. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5746. if (!groupmask) {
  5747. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5748. return;
  5749. }
  5750. for (;;) {
  5751. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5752. break;
  5753. level++;
  5754. sd = sd->parent;
  5755. if (!sd)
  5756. break;
  5757. }
  5758. kfree(groupmask);
  5759. }
  5760. #else /* !CONFIG_SCHED_DEBUG */
  5761. # define sched_domain_debug(sd, cpu) do { } while (0)
  5762. #endif /* CONFIG_SCHED_DEBUG */
  5763. static int sd_degenerate(struct sched_domain *sd)
  5764. {
  5765. if (cpus_weight(sd->span) == 1)
  5766. return 1;
  5767. /* Following flags need at least 2 groups */
  5768. if (sd->flags & (SD_LOAD_BALANCE |
  5769. SD_BALANCE_NEWIDLE |
  5770. SD_BALANCE_FORK |
  5771. SD_BALANCE_EXEC |
  5772. SD_SHARE_CPUPOWER |
  5773. SD_SHARE_PKG_RESOURCES)) {
  5774. if (sd->groups != sd->groups->next)
  5775. return 0;
  5776. }
  5777. /* Following flags don't use groups */
  5778. if (sd->flags & (SD_WAKE_IDLE |
  5779. SD_WAKE_AFFINE |
  5780. SD_WAKE_BALANCE))
  5781. return 0;
  5782. return 1;
  5783. }
  5784. static int
  5785. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5786. {
  5787. unsigned long cflags = sd->flags, pflags = parent->flags;
  5788. if (sd_degenerate(parent))
  5789. return 1;
  5790. if (!cpus_equal(sd->span, parent->span))
  5791. return 0;
  5792. /* Does parent contain flags not in child? */
  5793. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5794. if (cflags & SD_WAKE_AFFINE)
  5795. pflags &= ~SD_WAKE_BALANCE;
  5796. /* Flags needing groups don't count if only 1 group in parent */
  5797. if (parent->groups == parent->groups->next) {
  5798. pflags &= ~(SD_LOAD_BALANCE |
  5799. SD_BALANCE_NEWIDLE |
  5800. SD_BALANCE_FORK |
  5801. SD_BALANCE_EXEC |
  5802. SD_SHARE_CPUPOWER |
  5803. SD_SHARE_PKG_RESOURCES);
  5804. if (nr_node_ids == 1)
  5805. pflags &= ~SD_SERIALIZE;
  5806. }
  5807. if (~cflags & pflags)
  5808. return 0;
  5809. return 1;
  5810. }
  5811. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5812. {
  5813. unsigned long flags;
  5814. spin_lock_irqsave(&rq->lock, flags);
  5815. if (rq->rd) {
  5816. struct root_domain *old_rd = rq->rd;
  5817. if (cpu_isset(rq->cpu, old_rd->online))
  5818. set_rq_offline(rq);
  5819. cpu_clear(rq->cpu, old_rd->span);
  5820. if (atomic_dec_and_test(&old_rd->refcount))
  5821. kfree(old_rd);
  5822. }
  5823. atomic_inc(&rd->refcount);
  5824. rq->rd = rd;
  5825. cpu_set(rq->cpu, rd->span);
  5826. if (cpu_isset(rq->cpu, cpu_online_map))
  5827. set_rq_online(rq);
  5828. spin_unlock_irqrestore(&rq->lock, flags);
  5829. }
  5830. static void init_rootdomain(struct root_domain *rd)
  5831. {
  5832. memset(rd, 0, sizeof(*rd));
  5833. cpus_clear(rd->span);
  5834. cpus_clear(rd->online);
  5835. cpupri_init(&rd->cpupri);
  5836. }
  5837. static void init_defrootdomain(void)
  5838. {
  5839. init_rootdomain(&def_root_domain);
  5840. atomic_set(&def_root_domain.refcount, 1);
  5841. }
  5842. static struct root_domain *alloc_rootdomain(void)
  5843. {
  5844. struct root_domain *rd;
  5845. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5846. if (!rd)
  5847. return NULL;
  5848. init_rootdomain(rd);
  5849. return rd;
  5850. }
  5851. /*
  5852. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5853. * hold the hotplug lock.
  5854. */
  5855. static void
  5856. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5857. {
  5858. struct rq *rq = cpu_rq(cpu);
  5859. struct sched_domain *tmp;
  5860. /* Remove the sched domains which do not contribute to scheduling. */
  5861. for (tmp = sd; tmp; ) {
  5862. struct sched_domain *parent = tmp->parent;
  5863. if (!parent)
  5864. break;
  5865. if (sd_parent_degenerate(tmp, parent)) {
  5866. tmp->parent = parent->parent;
  5867. if (parent->parent)
  5868. parent->parent->child = tmp;
  5869. } else
  5870. tmp = tmp->parent;
  5871. }
  5872. if (sd && sd_degenerate(sd)) {
  5873. sd = sd->parent;
  5874. if (sd)
  5875. sd->child = NULL;
  5876. }
  5877. sched_domain_debug(sd, cpu);
  5878. rq_attach_root(rq, rd);
  5879. rcu_assign_pointer(rq->sd, sd);
  5880. }
  5881. /* cpus with isolated domains */
  5882. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5883. /* Setup the mask of cpus configured for isolated domains */
  5884. static int __init isolated_cpu_setup(char *str)
  5885. {
  5886. static int __initdata ints[NR_CPUS];
  5887. int i;
  5888. str = get_options(str, ARRAY_SIZE(ints), ints);
  5889. cpus_clear(cpu_isolated_map);
  5890. for (i = 1; i <= ints[0]; i++)
  5891. if (ints[i] < NR_CPUS)
  5892. cpu_set(ints[i], cpu_isolated_map);
  5893. return 1;
  5894. }
  5895. __setup("isolcpus=", isolated_cpu_setup);
  5896. /*
  5897. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5898. * to a function which identifies what group(along with sched group) a CPU
  5899. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5900. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5901. *
  5902. * init_sched_build_groups will build a circular linked list of the groups
  5903. * covered by the given span, and will set each group's ->cpumask correctly,
  5904. * and ->cpu_power to 0.
  5905. */
  5906. static void
  5907. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5908. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5909. struct sched_group **sg,
  5910. cpumask_t *tmpmask),
  5911. cpumask_t *covered, cpumask_t *tmpmask)
  5912. {
  5913. struct sched_group *first = NULL, *last = NULL;
  5914. int i;
  5915. cpus_clear(*covered);
  5916. for_each_cpu_mask_nr(i, *span) {
  5917. struct sched_group *sg;
  5918. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5919. int j;
  5920. if (cpu_isset(i, *covered))
  5921. continue;
  5922. cpus_clear(sg->cpumask);
  5923. sg->__cpu_power = 0;
  5924. for_each_cpu_mask_nr(j, *span) {
  5925. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5926. continue;
  5927. cpu_set(j, *covered);
  5928. cpu_set(j, sg->cpumask);
  5929. }
  5930. if (!first)
  5931. first = sg;
  5932. if (last)
  5933. last->next = sg;
  5934. last = sg;
  5935. }
  5936. last->next = first;
  5937. }
  5938. #define SD_NODES_PER_DOMAIN 16
  5939. #ifdef CONFIG_NUMA
  5940. /**
  5941. * find_next_best_node - find the next node to include in a sched_domain
  5942. * @node: node whose sched_domain we're building
  5943. * @used_nodes: nodes already in the sched_domain
  5944. *
  5945. * Find the next node to include in a given scheduling domain. Simply
  5946. * finds the closest node not already in the @used_nodes map.
  5947. *
  5948. * Should use nodemask_t.
  5949. */
  5950. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5951. {
  5952. int i, n, val, min_val, best_node = 0;
  5953. min_val = INT_MAX;
  5954. for (i = 0; i < nr_node_ids; i++) {
  5955. /* Start at @node */
  5956. n = (node + i) % nr_node_ids;
  5957. if (!nr_cpus_node(n))
  5958. continue;
  5959. /* Skip already used nodes */
  5960. if (node_isset(n, *used_nodes))
  5961. continue;
  5962. /* Simple min distance search */
  5963. val = node_distance(node, n);
  5964. if (val < min_val) {
  5965. min_val = val;
  5966. best_node = n;
  5967. }
  5968. }
  5969. node_set(best_node, *used_nodes);
  5970. return best_node;
  5971. }
  5972. /**
  5973. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5974. * @node: node whose cpumask we're constructing
  5975. * @span: resulting cpumask
  5976. *
  5977. * Given a node, construct a good cpumask for its sched_domain to span. It
  5978. * should be one that prevents unnecessary balancing, but also spreads tasks
  5979. * out optimally.
  5980. */
  5981. static void sched_domain_node_span(int node, cpumask_t *span)
  5982. {
  5983. nodemask_t used_nodes;
  5984. node_to_cpumask_ptr(nodemask, node);
  5985. int i;
  5986. cpus_clear(*span);
  5987. nodes_clear(used_nodes);
  5988. cpus_or(*span, *span, *nodemask);
  5989. node_set(node, used_nodes);
  5990. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5991. int next_node = find_next_best_node(node, &used_nodes);
  5992. node_to_cpumask_ptr_next(nodemask, next_node);
  5993. cpus_or(*span, *span, *nodemask);
  5994. }
  5995. }
  5996. #endif /* CONFIG_NUMA */
  5997. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5998. /*
  5999. * SMT sched-domains:
  6000. */
  6001. #ifdef CONFIG_SCHED_SMT
  6002. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6003. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6004. static int
  6005. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6006. cpumask_t *unused)
  6007. {
  6008. if (sg)
  6009. *sg = &per_cpu(sched_group_cpus, cpu);
  6010. return cpu;
  6011. }
  6012. #endif /* CONFIG_SCHED_SMT */
  6013. /*
  6014. * multi-core sched-domains:
  6015. */
  6016. #ifdef CONFIG_SCHED_MC
  6017. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6018. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6019. #endif /* CONFIG_SCHED_MC */
  6020. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6021. static int
  6022. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6023. cpumask_t *mask)
  6024. {
  6025. int group;
  6026. *mask = per_cpu(cpu_sibling_map, cpu);
  6027. cpus_and(*mask, *mask, *cpu_map);
  6028. group = first_cpu(*mask);
  6029. if (sg)
  6030. *sg = &per_cpu(sched_group_core, group);
  6031. return group;
  6032. }
  6033. #elif defined(CONFIG_SCHED_MC)
  6034. static int
  6035. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6036. cpumask_t *unused)
  6037. {
  6038. if (sg)
  6039. *sg = &per_cpu(sched_group_core, cpu);
  6040. return cpu;
  6041. }
  6042. #endif
  6043. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6044. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6045. static int
  6046. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6047. cpumask_t *mask)
  6048. {
  6049. int group;
  6050. #ifdef CONFIG_SCHED_MC
  6051. *mask = cpu_coregroup_map(cpu);
  6052. cpus_and(*mask, *mask, *cpu_map);
  6053. group = first_cpu(*mask);
  6054. #elif defined(CONFIG_SCHED_SMT)
  6055. *mask = per_cpu(cpu_sibling_map, cpu);
  6056. cpus_and(*mask, *mask, *cpu_map);
  6057. group = first_cpu(*mask);
  6058. #else
  6059. group = cpu;
  6060. #endif
  6061. if (sg)
  6062. *sg = &per_cpu(sched_group_phys, group);
  6063. return group;
  6064. }
  6065. #ifdef CONFIG_NUMA
  6066. /*
  6067. * The init_sched_build_groups can't handle what we want to do with node
  6068. * groups, so roll our own. Now each node has its own list of groups which
  6069. * gets dynamically allocated.
  6070. */
  6071. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6072. static struct sched_group ***sched_group_nodes_bycpu;
  6073. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6074. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6075. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6076. struct sched_group **sg, cpumask_t *nodemask)
  6077. {
  6078. int group;
  6079. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6080. cpus_and(*nodemask, *nodemask, *cpu_map);
  6081. group = first_cpu(*nodemask);
  6082. if (sg)
  6083. *sg = &per_cpu(sched_group_allnodes, group);
  6084. return group;
  6085. }
  6086. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6087. {
  6088. struct sched_group *sg = group_head;
  6089. int j;
  6090. if (!sg)
  6091. return;
  6092. do {
  6093. for_each_cpu_mask_nr(j, sg->cpumask) {
  6094. struct sched_domain *sd;
  6095. sd = &per_cpu(phys_domains, j);
  6096. if (j != first_cpu(sd->groups->cpumask)) {
  6097. /*
  6098. * Only add "power" once for each
  6099. * physical package.
  6100. */
  6101. continue;
  6102. }
  6103. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6104. }
  6105. sg = sg->next;
  6106. } while (sg != group_head);
  6107. }
  6108. #endif /* CONFIG_NUMA */
  6109. #ifdef CONFIG_NUMA
  6110. /* Free memory allocated for various sched_group structures */
  6111. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6112. {
  6113. int cpu, i;
  6114. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6115. struct sched_group **sched_group_nodes
  6116. = sched_group_nodes_bycpu[cpu];
  6117. if (!sched_group_nodes)
  6118. continue;
  6119. for (i = 0; i < nr_node_ids; i++) {
  6120. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6121. *nodemask = node_to_cpumask(i);
  6122. cpus_and(*nodemask, *nodemask, *cpu_map);
  6123. if (cpus_empty(*nodemask))
  6124. continue;
  6125. if (sg == NULL)
  6126. continue;
  6127. sg = sg->next;
  6128. next_sg:
  6129. oldsg = sg;
  6130. sg = sg->next;
  6131. kfree(oldsg);
  6132. if (oldsg != sched_group_nodes[i])
  6133. goto next_sg;
  6134. }
  6135. kfree(sched_group_nodes);
  6136. sched_group_nodes_bycpu[cpu] = NULL;
  6137. }
  6138. }
  6139. #else /* !CONFIG_NUMA */
  6140. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6141. {
  6142. }
  6143. #endif /* CONFIG_NUMA */
  6144. /*
  6145. * Initialize sched groups cpu_power.
  6146. *
  6147. * cpu_power indicates the capacity of sched group, which is used while
  6148. * distributing the load between different sched groups in a sched domain.
  6149. * Typically cpu_power for all the groups in a sched domain will be same unless
  6150. * there are asymmetries in the topology. If there are asymmetries, group
  6151. * having more cpu_power will pickup more load compared to the group having
  6152. * less cpu_power.
  6153. *
  6154. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6155. * the maximum number of tasks a group can handle in the presence of other idle
  6156. * or lightly loaded groups in the same sched domain.
  6157. */
  6158. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6159. {
  6160. struct sched_domain *child;
  6161. struct sched_group *group;
  6162. WARN_ON(!sd || !sd->groups);
  6163. if (cpu != first_cpu(sd->groups->cpumask))
  6164. return;
  6165. child = sd->child;
  6166. sd->groups->__cpu_power = 0;
  6167. /*
  6168. * For perf policy, if the groups in child domain share resources
  6169. * (for example cores sharing some portions of the cache hierarchy
  6170. * or SMT), then set this domain groups cpu_power such that each group
  6171. * can handle only one task, when there are other idle groups in the
  6172. * same sched domain.
  6173. */
  6174. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6175. (child->flags &
  6176. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6177. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6178. return;
  6179. }
  6180. /*
  6181. * add cpu_power of each child group to this groups cpu_power
  6182. */
  6183. group = child->groups;
  6184. do {
  6185. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6186. group = group->next;
  6187. } while (group != child->groups);
  6188. }
  6189. /*
  6190. * Initializers for schedule domains
  6191. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6192. */
  6193. #ifdef CONFIG_SCHED_DEBUG
  6194. # define SD_INIT_NAME(sd, type) sd->name = #type
  6195. #else
  6196. # define SD_INIT_NAME(sd, type) do { } while (0)
  6197. #endif
  6198. #define SD_INIT(sd, type) sd_init_##type(sd)
  6199. #define SD_INIT_FUNC(type) \
  6200. static noinline void sd_init_##type(struct sched_domain *sd) \
  6201. { \
  6202. memset(sd, 0, sizeof(*sd)); \
  6203. *sd = SD_##type##_INIT; \
  6204. sd->level = SD_LV_##type; \
  6205. SD_INIT_NAME(sd, type); \
  6206. }
  6207. SD_INIT_FUNC(CPU)
  6208. #ifdef CONFIG_NUMA
  6209. SD_INIT_FUNC(ALLNODES)
  6210. SD_INIT_FUNC(NODE)
  6211. #endif
  6212. #ifdef CONFIG_SCHED_SMT
  6213. SD_INIT_FUNC(SIBLING)
  6214. #endif
  6215. #ifdef CONFIG_SCHED_MC
  6216. SD_INIT_FUNC(MC)
  6217. #endif
  6218. /*
  6219. * To minimize stack usage kmalloc room for cpumasks and share the
  6220. * space as the usage in build_sched_domains() dictates. Used only
  6221. * if the amount of space is significant.
  6222. */
  6223. struct allmasks {
  6224. cpumask_t tmpmask; /* make this one first */
  6225. union {
  6226. cpumask_t nodemask;
  6227. cpumask_t this_sibling_map;
  6228. cpumask_t this_core_map;
  6229. };
  6230. cpumask_t send_covered;
  6231. #ifdef CONFIG_NUMA
  6232. cpumask_t domainspan;
  6233. cpumask_t covered;
  6234. cpumask_t notcovered;
  6235. #endif
  6236. };
  6237. #if NR_CPUS > 128
  6238. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6239. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6240. {
  6241. *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
  6242. }
  6243. static inline void sched_cpumask_free(struct allmasks *masks)
  6244. {
  6245. kfree(masks);
  6246. }
  6247. #else
  6248. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6249. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6250. { }
  6251. static inline void sched_cpumask_free(struct allmasks *masks)
  6252. { }
  6253. #endif
  6254. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6255. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6256. static int default_relax_domain_level = -1;
  6257. static int __init setup_relax_domain_level(char *str)
  6258. {
  6259. unsigned long val;
  6260. val = simple_strtoul(str, NULL, 0);
  6261. if (val < SD_LV_MAX)
  6262. default_relax_domain_level = val;
  6263. return 1;
  6264. }
  6265. __setup("relax_domain_level=", setup_relax_domain_level);
  6266. static void set_domain_attribute(struct sched_domain *sd,
  6267. struct sched_domain_attr *attr)
  6268. {
  6269. int request;
  6270. if (!attr || attr->relax_domain_level < 0) {
  6271. if (default_relax_domain_level < 0)
  6272. return;
  6273. else
  6274. request = default_relax_domain_level;
  6275. } else
  6276. request = attr->relax_domain_level;
  6277. if (request < sd->level) {
  6278. /* turn off idle balance on this domain */
  6279. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6280. } else {
  6281. /* turn on idle balance on this domain */
  6282. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6283. }
  6284. }
  6285. /*
  6286. * Build sched domains for a given set of cpus and attach the sched domains
  6287. * to the individual cpus
  6288. */
  6289. static int __build_sched_domains(const cpumask_t *cpu_map,
  6290. struct sched_domain_attr *attr)
  6291. {
  6292. int i;
  6293. struct root_domain *rd;
  6294. SCHED_CPUMASK_DECLARE(allmasks);
  6295. cpumask_t *tmpmask;
  6296. #ifdef CONFIG_NUMA
  6297. struct sched_group **sched_group_nodes = NULL;
  6298. int sd_allnodes = 0;
  6299. /*
  6300. * Allocate the per-node list of sched groups
  6301. */
  6302. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6303. GFP_KERNEL);
  6304. if (!sched_group_nodes) {
  6305. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6306. return -ENOMEM;
  6307. }
  6308. #endif
  6309. rd = alloc_rootdomain();
  6310. if (!rd) {
  6311. printk(KERN_WARNING "Cannot alloc root domain\n");
  6312. #ifdef CONFIG_NUMA
  6313. kfree(sched_group_nodes);
  6314. #endif
  6315. return -ENOMEM;
  6316. }
  6317. /* get space for all scratch cpumask variables */
  6318. sched_cpumask_alloc(&allmasks);
  6319. if (!allmasks) {
  6320. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6321. kfree(rd);
  6322. #ifdef CONFIG_NUMA
  6323. kfree(sched_group_nodes);
  6324. #endif
  6325. return -ENOMEM;
  6326. }
  6327. tmpmask = (cpumask_t *)allmasks;
  6328. #ifdef CONFIG_NUMA
  6329. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6330. #endif
  6331. /*
  6332. * Set up domains for cpus specified by the cpu_map.
  6333. */
  6334. for_each_cpu_mask_nr(i, *cpu_map) {
  6335. struct sched_domain *sd = NULL, *p;
  6336. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6337. *nodemask = node_to_cpumask(cpu_to_node(i));
  6338. cpus_and(*nodemask, *nodemask, *cpu_map);
  6339. #ifdef CONFIG_NUMA
  6340. if (cpus_weight(*cpu_map) >
  6341. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6342. sd = &per_cpu(allnodes_domains, i);
  6343. SD_INIT(sd, ALLNODES);
  6344. set_domain_attribute(sd, attr);
  6345. sd->span = *cpu_map;
  6346. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6347. p = sd;
  6348. sd_allnodes = 1;
  6349. } else
  6350. p = NULL;
  6351. sd = &per_cpu(node_domains, i);
  6352. SD_INIT(sd, NODE);
  6353. set_domain_attribute(sd, attr);
  6354. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6355. sd->parent = p;
  6356. if (p)
  6357. p->child = sd;
  6358. cpus_and(sd->span, sd->span, *cpu_map);
  6359. #endif
  6360. p = sd;
  6361. sd = &per_cpu(phys_domains, i);
  6362. SD_INIT(sd, CPU);
  6363. set_domain_attribute(sd, attr);
  6364. sd->span = *nodemask;
  6365. sd->parent = p;
  6366. if (p)
  6367. p->child = sd;
  6368. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6369. #ifdef CONFIG_SCHED_MC
  6370. p = sd;
  6371. sd = &per_cpu(core_domains, i);
  6372. SD_INIT(sd, MC);
  6373. set_domain_attribute(sd, attr);
  6374. sd->span = cpu_coregroup_map(i);
  6375. cpus_and(sd->span, sd->span, *cpu_map);
  6376. sd->parent = p;
  6377. p->child = sd;
  6378. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6379. #endif
  6380. #ifdef CONFIG_SCHED_SMT
  6381. p = sd;
  6382. sd = &per_cpu(cpu_domains, i);
  6383. SD_INIT(sd, SIBLING);
  6384. set_domain_attribute(sd, attr);
  6385. sd->span = per_cpu(cpu_sibling_map, i);
  6386. cpus_and(sd->span, sd->span, *cpu_map);
  6387. sd->parent = p;
  6388. p->child = sd;
  6389. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6390. #endif
  6391. }
  6392. #ifdef CONFIG_SCHED_SMT
  6393. /* Set up CPU (sibling) groups */
  6394. for_each_cpu_mask_nr(i, *cpu_map) {
  6395. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6396. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6397. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6398. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6399. if (i != first_cpu(*this_sibling_map))
  6400. continue;
  6401. init_sched_build_groups(this_sibling_map, cpu_map,
  6402. &cpu_to_cpu_group,
  6403. send_covered, tmpmask);
  6404. }
  6405. #endif
  6406. #ifdef CONFIG_SCHED_MC
  6407. /* Set up multi-core groups */
  6408. for_each_cpu_mask_nr(i, *cpu_map) {
  6409. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6410. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6411. *this_core_map = cpu_coregroup_map(i);
  6412. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6413. if (i != first_cpu(*this_core_map))
  6414. continue;
  6415. init_sched_build_groups(this_core_map, cpu_map,
  6416. &cpu_to_core_group,
  6417. send_covered, tmpmask);
  6418. }
  6419. #endif
  6420. /* Set up physical groups */
  6421. for (i = 0; i < nr_node_ids; i++) {
  6422. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6423. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6424. *nodemask = node_to_cpumask(i);
  6425. cpus_and(*nodemask, *nodemask, *cpu_map);
  6426. if (cpus_empty(*nodemask))
  6427. continue;
  6428. init_sched_build_groups(nodemask, cpu_map,
  6429. &cpu_to_phys_group,
  6430. send_covered, tmpmask);
  6431. }
  6432. #ifdef CONFIG_NUMA
  6433. /* Set up node groups */
  6434. if (sd_allnodes) {
  6435. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6436. init_sched_build_groups(cpu_map, cpu_map,
  6437. &cpu_to_allnodes_group,
  6438. send_covered, tmpmask);
  6439. }
  6440. for (i = 0; i < nr_node_ids; i++) {
  6441. /* Set up node groups */
  6442. struct sched_group *sg, *prev;
  6443. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6444. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6445. SCHED_CPUMASK_VAR(covered, allmasks);
  6446. int j;
  6447. *nodemask = node_to_cpumask(i);
  6448. cpus_clear(*covered);
  6449. cpus_and(*nodemask, *nodemask, *cpu_map);
  6450. if (cpus_empty(*nodemask)) {
  6451. sched_group_nodes[i] = NULL;
  6452. continue;
  6453. }
  6454. sched_domain_node_span(i, domainspan);
  6455. cpus_and(*domainspan, *domainspan, *cpu_map);
  6456. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6457. if (!sg) {
  6458. printk(KERN_WARNING "Can not alloc domain group for "
  6459. "node %d\n", i);
  6460. goto error;
  6461. }
  6462. sched_group_nodes[i] = sg;
  6463. for_each_cpu_mask_nr(j, *nodemask) {
  6464. struct sched_domain *sd;
  6465. sd = &per_cpu(node_domains, j);
  6466. sd->groups = sg;
  6467. }
  6468. sg->__cpu_power = 0;
  6469. sg->cpumask = *nodemask;
  6470. sg->next = sg;
  6471. cpus_or(*covered, *covered, *nodemask);
  6472. prev = sg;
  6473. for (j = 0; j < nr_node_ids; j++) {
  6474. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6475. int n = (i + j) % nr_node_ids;
  6476. node_to_cpumask_ptr(pnodemask, n);
  6477. cpus_complement(*notcovered, *covered);
  6478. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6479. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6480. if (cpus_empty(*tmpmask))
  6481. break;
  6482. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6483. if (cpus_empty(*tmpmask))
  6484. continue;
  6485. sg = kmalloc_node(sizeof(struct sched_group),
  6486. GFP_KERNEL, i);
  6487. if (!sg) {
  6488. printk(KERN_WARNING
  6489. "Can not alloc domain group for node %d\n", j);
  6490. goto error;
  6491. }
  6492. sg->__cpu_power = 0;
  6493. sg->cpumask = *tmpmask;
  6494. sg->next = prev->next;
  6495. cpus_or(*covered, *covered, *tmpmask);
  6496. prev->next = sg;
  6497. prev = sg;
  6498. }
  6499. }
  6500. #endif
  6501. /* Calculate CPU power for physical packages and nodes */
  6502. #ifdef CONFIG_SCHED_SMT
  6503. for_each_cpu_mask_nr(i, *cpu_map) {
  6504. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6505. init_sched_groups_power(i, sd);
  6506. }
  6507. #endif
  6508. #ifdef CONFIG_SCHED_MC
  6509. for_each_cpu_mask_nr(i, *cpu_map) {
  6510. struct sched_domain *sd = &per_cpu(core_domains, i);
  6511. init_sched_groups_power(i, sd);
  6512. }
  6513. #endif
  6514. for_each_cpu_mask_nr(i, *cpu_map) {
  6515. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6516. init_sched_groups_power(i, sd);
  6517. }
  6518. #ifdef CONFIG_NUMA
  6519. for (i = 0; i < nr_node_ids; i++)
  6520. init_numa_sched_groups_power(sched_group_nodes[i]);
  6521. if (sd_allnodes) {
  6522. struct sched_group *sg;
  6523. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6524. tmpmask);
  6525. init_numa_sched_groups_power(sg);
  6526. }
  6527. #endif
  6528. /* Attach the domains */
  6529. for_each_cpu_mask_nr(i, *cpu_map) {
  6530. struct sched_domain *sd;
  6531. #ifdef CONFIG_SCHED_SMT
  6532. sd = &per_cpu(cpu_domains, i);
  6533. #elif defined(CONFIG_SCHED_MC)
  6534. sd = &per_cpu(core_domains, i);
  6535. #else
  6536. sd = &per_cpu(phys_domains, i);
  6537. #endif
  6538. cpu_attach_domain(sd, rd, i);
  6539. }
  6540. sched_cpumask_free(allmasks);
  6541. return 0;
  6542. #ifdef CONFIG_NUMA
  6543. error:
  6544. free_sched_groups(cpu_map, tmpmask);
  6545. sched_cpumask_free(allmasks);
  6546. kfree(rd);
  6547. return -ENOMEM;
  6548. #endif
  6549. }
  6550. static int build_sched_domains(const cpumask_t *cpu_map)
  6551. {
  6552. return __build_sched_domains(cpu_map, NULL);
  6553. }
  6554. static cpumask_t *doms_cur; /* current sched domains */
  6555. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6556. static struct sched_domain_attr *dattr_cur;
  6557. /* attribues of custom domains in 'doms_cur' */
  6558. /*
  6559. * Special case: If a kmalloc of a doms_cur partition (array of
  6560. * cpumask_t) fails, then fallback to a single sched domain,
  6561. * as determined by the single cpumask_t fallback_doms.
  6562. */
  6563. static cpumask_t fallback_doms;
  6564. /*
  6565. * arch_update_cpu_topology lets virtualized architectures update the
  6566. * cpu core maps. It is supposed to return 1 if the topology changed
  6567. * or 0 if it stayed the same.
  6568. */
  6569. int __attribute__((weak)) arch_update_cpu_topology(void)
  6570. {
  6571. return 0;
  6572. }
  6573. /*
  6574. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6575. * For now this just excludes isolated cpus, but could be used to
  6576. * exclude other special cases in the future.
  6577. */
  6578. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6579. {
  6580. int err;
  6581. arch_update_cpu_topology();
  6582. ndoms_cur = 1;
  6583. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6584. if (!doms_cur)
  6585. doms_cur = &fallback_doms;
  6586. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6587. dattr_cur = NULL;
  6588. err = build_sched_domains(doms_cur);
  6589. register_sched_domain_sysctl();
  6590. return err;
  6591. }
  6592. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6593. cpumask_t *tmpmask)
  6594. {
  6595. free_sched_groups(cpu_map, tmpmask);
  6596. }
  6597. /*
  6598. * Detach sched domains from a group of cpus specified in cpu_map
  6599. * These cpus will now be attached to the NULL domain
  6600. */
  6601. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6602. {
  6603. cpumask_t tmpmask;
  6604. int i;
  6605. for_each_cpu_mask_nr(i, *cpu_map)
  6606. cpu_attach_domain(NULL, &def_root_domain, i);
  6607. synchronize_sched();
  6608. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6609. }
  6610. /* handle null as "default" */
  6611. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6612. struct sched_domain_attr *new, int idx_new)
  6613. {
  6614. struct sched_domain_attr tmp;
  6615. /* fast path */
  6616. if (!new && !cur)
  6617. return 1;
  6618. tmp = SD_ATTR_INIT;
  6619. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6620. new ? (new + idx_new) : &tmp,
  6621. sizeof(struct sched_domain_attr));
  6622. }
  6623. /*
  6624. * Partition sched domains as specified by the 'ndoms_new'
  6625. * cpumasks in the array doms_new[] of cpumasks. This compares
  6626. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6627. * It destroys each deleted domain and builds each new domain.
  6628. *
  6629. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6630. * The masks don't intersect (don't overlap.) We should setup one
  6631. * sched domain for each mask. CPUs not in any of the cpumasks will
  6632. * not be load balanced. If the same cpumask appears both in the
  6633. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6634. * it as it is.
  6635. *
  6636. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6637. * ownership of it and will kfree it when done with it. If the caller
  6638. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6639. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6640. * the single partition 'fallback_doms', it also forces the domains
  6641. * to be rebuilt.
  6642. *
  6643. * If doms_new == NULL it will be replaced with cpu_online_map.
  6644. * ndoms_new == 0 is a special case for destroying existing domains,
  6645. * and it will not create the default domain.
  6646. *
  6647. * Call with hotplug lock held
  6648. */
  6649. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6650. struct sched_domain_attr *dattr_new)
  6651. {
  6652. int i, j, n;
  6653. int new_topology;
  6654. mutex_lock(&sched_domains_mutex);
  6655. /* always unregister in case we don't destroy any domains */
  6656. unregister_sched_domain_sysctl();
  6657. /* Let architecture update cpu core mappings. */
  6658. new_topology = arch_update_cpu_topology();
  6659. n = doms_new ? ndoms_new : 0;
  6660. /* Destroy deleted domains */
  6661. for (i = 0; i < ndoms_cur; i++) {
  6662. for (j = 0; j < n && !new_topology; j++) {
  6663. if (cpus_equal(doms_cur[i], doms_new[j])
  6664. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6665. goto match1;
  6666. }
  6667. /* no match - a current sched domain not in new doms_new[] */
  6668. detach_destroy_domains(doms_cur + i);
  6669. match1:
  6670. ;
  6671. }
  6672. if (doms_new == NULL) {
  6673. ndoms_cur = 0;
  6674. doms_new = &fallback_doms;
  6675. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6676. WARN_ON_ONCE(dattr_new);
  6677. }
  6678. /* Build new domains */
  6679. for (i = 0; i < ndoms_new; i++) {
  6680. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6681. if (cpus_equal(doms_new[i], doms_cur[j])
  6682. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6683. goto match2;
  6684. }
  6685. /* no match - add a new doms_new */
  6686. __build_sched_domains(doms_new + i,
  6687. dattr_new ? dattr_new + i : NULL);
  6688. match2:
  6689. ;
  6690. }
  6691. /* Remember the new sched domains */
  6692. if (doms_cur != &fallback_doms)
  6693. kfree(doms_cur);
  6694. kfree(dattr_cur); /* kfree(NULL) is safe */
  6695. doms_cur = doms_new;
  6696. dattr_cur = dattr_new;
  6697. ndoms_cur = ndoms_new;
  6698. register_sched_domain_sysctl();
  6699. mutex_unlock(&sched_domains_mutex);
  6700. }
  6701. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6702. int arch_reinit_sched_domains(void)
  6703. {
  6704. get_online_cpus();
  6705. /* Destroy domains first to force the rebuild */
  6706. partition_sched_domains(0, NULL, NULL);
  6707. rebuild_sched_domains();
  6708. put_online_cpus();
  6709. return 0;
  6710. }
  6711. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6712. {
  6713. int ret;
  6714. if (buf[0] != '0' && buf[0] != '1')
  6715. return -EINVAL;
  6716. if (smt)
  6717. sched_smt_power_savings = (buf[0] == '1');
  6718. else
  6719. sched_mc_power_savings = (buf[0] == '1');
  6720. ret = arch_reinit_sched_domains();
  6721. return ret ? ret : count;
  6722. }
  6723. #ifdef CONFIG_SCHED_MC
  6724. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6725. char *page)
  6726. {
  6727. return sprintf(page, "%u\n", sched_mc_power_savings);
  6728. }
  6729. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6730. const char *buf, size_t count)
  6731. {
  6732. return sched_power_savings_store(buf, count, 0);
  6733. }
  6734. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6735. sched_mc_power_savings_show,
  6736. sched_mc_power_savings_store);
  6737. #endif
  6738. #ifdef CONFIG_SCHED_SMT
  6739. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6740. char *page)
  6741. {
  6742. return sprintf(page, "%u\n", sched_smt_power_savings);
  6743. }
  6744. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6745. const char *buf, size_t count)
  6746. {
  6747. return sched_power_savings_store(buf, count, 1);
  6748. }
  6749. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6750. sched_smt_power_savings_show,
  6751. sched_smt_power_savings_store);
  6752. #endif
  6753. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6754. {
  6755. int err = 0;
  6756. #ifdef CONFIG_SCHED_SMT
  6757. if (smt_capable())
  6758. err = sysfs_create_file(&cls->kset.kobj,
  6759. &attr_sched_smt_power_savings.attr);
  6760. #endif
  6761. #ifdef CONFIG_SCHED_MC
  6762. if (!err && mc_capable())
  6763. err = sysfs_create_file(&cls->kset.kobj,
  6764. &attr_sched_mc_power_savings.attr);
  6765. #endif
  6766. return err;
  6767. }
  6768. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6769. #ifndef CONFIG_CPUSETS
  6770. /*
  6771. * Add online and remove offline CPUs from the scheduler domains.
  6772. * When cpusets are enabled they take over this function.
  6773. */
  6774. static int update_sched_domains(struct notifier_block *nfb,
  6775. unsigned long action, void *hcpu)
  6776. {
  6777. switch (action) {
  6778. case CPU_ONLINE:
  6779. case CPU_ONLINE_FROZEN:
  6780. case CPU_DEAD:
  6781. case CPU_DEAD_FROZEN:
  6782. partition_sched_domains(1, NULL, NULL);
  6783. return NOTIFY_OK;
  6784. default:
  6785. return NOTIFY_DONE;
  6786. }
  6787. }
  6788. #endif
  6789. static int update_runtime(struct notifier_block *nfb,
  6790. unsigned long action, void *hcpu)
  6791. {
  6792. int cpu = (int)(long)hcpu;
  6793. switch (action) {
  6794. case CPU_DOWN_PREPARE:
  6795. case CPU_DOWN_PREPARE_FROZEN:
  6796. disable_runtime(cpu_rq(cpu));
  6797. return NOTIFY_OK;
  6798. case CPU_DOWN_FAILED:
  6799. case CPU_DOWN_FAILED_FROZEN:
  6800. case CPU_ONLINE:
  6801. case CPU_ONLINE_FROZEN:
  6802. enable_runtime(cpu_rq(cpu));
  6803. return NOTIFY_OK;
  6804. default:
  6805. return NOTIFY_DONE;
  6806. }
  6807. }
  6808. void __init sched_init_smp(void)
  6809. {
  6810. cpumask_t non_isolated_cpus;
  6811. #if defined(CONFIG_NUMA)
  6812. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6813. GFP_KERNEL);
  6814. BUG_ON(sched_group_nodes_bycpu == NULL);
  6815. #endif
  6816. get_online_cpus();
  6817. mutex_lock(&sched_domains_mutex);
  6818. arch_init_sched_domains(&cpu_online_map);
  6819. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6820. if (cpus_empty(non_isolated_cpus))
  6821. cpu_set(smp_processor_id(), non_isolated_cpus);
  6822. mutex_unlock(&sched_domains_mutex);
  6823. put_online_cpus();
  6824. #ifndef CONFIG_CPUSETS
  6825. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6826. hotcpu_notifier(update_sched_domains, 0);
  6827. #endif
  6828. /* RT runtime code needs to handle some hotplug events */
  6829. hotcpu_notifier(update_runtime, 0);
  6830. init_hrtick();
  6831. /* Move init over to a non-isolated CPU */
  6832. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6833. BUG();
  6834. sched_init_granularity();
  6835. }
  6836. #else
  6837. void __init sched_init_smp(void)
  6838. {
  6839. sched_init_granularity();
  6840. }
  6841. #endif /* CONFIG_SMP */
  6842. int in_sched_functions(unsigned long addr)
  6843. {
  6844. return in_lock_functions(addr) ||
  6845. (addr >= (unsigned long)__sched_text_start
  6846. && addr < (unsigned long)__sched_text_end);
  6847. }
  6848. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6849. {
  6850. cfs_rq->tasks_timeline = RB_ROOT;
  6851. INIT_LIST_HEAD(&cfs_rq->tasks);
  6852. #ifdef CONFIG_FAIR_GROUP_SCHED
  6853. cfs_rq->rq = rq;
  6854. #endif
  6855. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6856. }
  6857. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6858. {
  6859. struct rt_prio_array *array;
  6860. int i;
  6861. array = &rt_rq->active;
  6862. for (i = 0; i < MAX_RT_PRIO; i++) {
  6863. INIT_LIST_HEAD(array->queue + i);
  6864. __clear_bit(i, array->bitmap);
  6865. }
  6866. /* delimiter for bitsearch: */
  6867. __set_bit(MAX_RT_PRIO, array->bitmap);
  6868. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6869. rt_rq->highest_prio = MAX_RT_PRIO;
  6870. #endif
  6871. #ifdef CONFIG_SMP
  6872. rt_rq->rt_nr_migratory = 0;
  6873. rt_rq->overloaded = 0;
  6874. #endif
  6875. rt_rq->rt_time = 0;
  6876. rt_rq->rt_throttled = 0;
  6877. rt_rq->rt_runtime = 0;
  6878. spin_lock_init(&rt_rq->rt_runtime_lock);
  6879. #ifdef CONFIG_RT_GROUP_SCHED
  6880. rt_rq->rt_nr_boosted = 0;
  6881. rt_rq->rq = rq;
  6882. #endif
  6883. }
  6884. #ifdef CONFIG_FAIR_GROUP_SCHED
  6885. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6886. struct sched_entity *se, int cpu, int add,
  6887. struct sched_entity *parent)
  6888. {
  6889. struct rq *rq = cpu_rq(cpu);
  6890. tg->cfs_rq[cpu] = cfs_rq;
  6891. init_cfs_rq(cfs_rq, rq);
  6892. cfs_rq->tg = tg;
  6893. if (add)
  6894. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6895. tg->se[cpu] = se;
  6896. /* se could be NULL for init_task_group */
  6897. if (!se)
  6898. return;
  6899. if (!parent)
  6900. se->cfs_rq = &rq->cfs;
  6901. else
  6902. se->cfs_rq = parent->my_q;
  6903. se->my_q = cfs_rq;
  6904. se->load.weight = tg->shares;
  6905. se->load.inv_weight = 0;
  6906. se->parent = parent;
  6907. }
  6908. #endif
  6909. #ifdef CONFIG_RT_GROUP_SCHED
  6910. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6911. struct sched_rt_entity *rt_se, int cpu, int add,
  6912. struct sched_rt_entity *parent)
  6913. {
  6914. struct rq *rq = cpu_rq(cpu);
  6915. tg->rt_rq[cpu] = rt_rq;
  6916. init_rt_rq(rt_rq, rq);
  6917. rt_rq->tg = tg;
  6918. rt_rq->rt_se = rt_se;
  6919. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6920. if (add)
  6921. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6922. tg->rt_se[cpu] = rt_se;
  6923. if (!rt_se)
  6924. return;
  6925. if (!parent)
  6926. rt_se->rt_rq = &rq->rt;
  6927. else
  6928. rt_se->rt_rq = parent->my_q;
  6929. rt_se->my_q = rt_rq;
  6930. rt_se->parent = parent;
  6931. INIT_LIST_HEAD(&rt_se->run_list);
  6932. }
  6933. #endif
  6934. void __init sched_init(void)
  6935. {
  6936. int i, j;
  6937. unsigned long alloc_size = 0, ptr;
  6938. #ifdef CONFIG_FAIR_GROUP_SCHED
  6939. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6940. #endif
  6941. #ifdef CONFIG_RT_GROUP_SCHED
  6942. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6943. #endif
  6944. #ifdef CONFIG_USER_SCHED
  6945. alloc_size *= 2;
  6946. #endif
  6947. /*
  6948. * As sched_init() is called before page_alloc is setup,
  6949. * we use alloc_bootmem().
  6950. */
  6951. if (alloc_size) {
  6952. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6953. #ifdef CONFIG_FAIR_GROUP_SCHED
  6954. init_task_group.se = (struct sched_entity **)ptr;
  6955. ptr += nr_cpu_ids * sizeof(void **);
  6956. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6957. ptr += nr_cpu_ids * sizeof(void **);
  6958. #ifdef CONFIG_USER_SCHED
  6959. root_task_group.se = (struct sched_entity **)ptr;
  6960. ptr += nr_cpu_ids * sizeof(void **);
  6961. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6962. ptr += nr_cpu_ids * sizeof(void **);
  6963. #endif /* CONFIG_USER_SCHED */
  6964. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6965. #ifdef CONFIG_RT_GROUP_SCHED
  6966. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6967. ptr += nr_cpu_ids * sizeof(void **);
  6968. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6969. ptr += nr_cpu_ids * sizeof(void **);
  6970. #ifdef CONFIG_USER_SCHED
  6971. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6972. ptr += nr_cpu_ids * sizeof(void **);
  6973. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6974. ptr += nr_cpu_ids * sizeof(void **);
  6975. #endif /* CONFIG_USER_SCHED */
  6976. #endif /* CONFIG_RT_GROUP_SCHED */
  6977. }
  6978. #ifdef CONFIG_SMP
  6979. init_defrootdomain();
  6980. #endif
  6981. init_rt_bandwidth(&def_rt_bandwidth,
  6982. global_rt_period(), global_rt_runtime());
  6983. #ifdef CONFIG_RT_GROUP_SCHED
  6984. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6985. global_rt_period(), global_rt_runtime());
  6986. #ifdef CONFIG_USER_SCHED
  6987. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6988. global_rt_period(), RUNTIME_INF);
  6989. #endif /* CONFIG_USER_SCHED */
  6990. #endif /* CONFIG_RT_GROUP_SCHED */
  6991. #ifdef CONFIG_GROUP_SCHED
  6992. list_add(&init_task_group.list, &task_groups);
  6993. INIT_LIST_HEAD(&init_task_group.children);
  6994. #ifdef CONFIG_USER_SCHED
  6995. INIT_LIST_HEAD(&root_task_group.children);
  6996. init_task_group.parent = &root_task_group;
  6997. list_add(&init_task_group.siblings, &root_task_group.children);
  6998. #endif /* CONFIG_USER_SCHED */
  6999. #endif /* CONFIG_GROUP_SCHED */
  7000. for_each_possible_cpu(i) {
  7001. struct rq *rq;
  7002. rq = cpu_rq(i);
  7003. spin_lock_init(&rq->lock);
  7004. rq->nr_running = 0;
  7005. init_cfs_rq(&rq->cfs, rq);
  7006. init_rt_rq(&rq->rt, rq);
  7007. #ifdef CONFIG_FAIR_GROUP_SCHED
  7008. init_task_group.shares = init_task_group_load;
  7009. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7010. #ifdef CONFIG_CGROUP_SCHED
  7011. /*
  7012. * How much cpu bandwidth does init_task_group get?
  7013. *
  7014. * In case of task-groups formed thr' the cgroup filesystem, it
  7015. * gets 100% of the cpu resources in the system. This overall
  7016. * system cpu resource is divided among the tasks of
  7017. * init_task_group and its child task-groups in a fair manner,
  7018. * based on each entity's (task or task-group's) weight
  7019. * (se->load.weight).
  7020. *
  7021. * In other words, if init_task_group has 10 tasks of weight
  7022. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7023. * then A0's share of the cpu resource is:
  7024. *
  7025. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7026. *
  7027. * We achieve this by letting init_task_group's tasks sit
  7028. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7029. */
  7030. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7031. #elif defined CONFIG_USER_SCHED
  7032. root_task_group.shares = NICE_0_LOAD;
  7033. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7034. /*
  7035. * In case of task-groups formed thr' the user id of tasks,
  7036. * init_task_group represents tasks belonging to root user.
  7037. * Hence it forms a sibling of all subsequent groups formed.
  7038. * In this case, init_task_group gets only a fraction of overall
  7039. * system cpu resource, based on the weight assigned to root
  7040. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7041. * by letting tasks of init_task_group sit in a separate cfs_rq
  7042. * (init_cfs_rq) and having one entity represent this group of
  7043. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7044. */
  7045. init_tg_cfs_entry(&init_task_group,
  7046. &per_cpu(init_cfs_rq, i),
  7047. &per_cpu(init_sched_entity, i), i, 1,
  7048. root_task_group.se[i]);
  7049. #endif
  7050. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7051. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7052. #ifdef CONFIG_RT_GROUP_SCHED
  7053. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7054. #ifdef CONFIG_CGROUP_SCHED
  7055. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7056. #elif defined CONFIG_USER_SCHED
  7057. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7058. init_tg_rt_entry(&init_task_group,
  7059. &per_cpu(init_rt_rq, i),
  7060. &per_cpu(init_sched_rt_entity, i), i, 1,
  7061. root_task_group.rt_se[i]);
  7062. #endif
  7063. #endif
  7064. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7065. rq->cpu_load[j] = 0;
  7066. #ifdef CONFIG_SMP
  7067. rq->sd = NULL;
  7068. rq->rd = NULL;
  7069. rq->active_balance = 0;
  7070. rq->next_balance = jiffies;
  7071. rq->push_cpu = 0;
  7072. rq->cpu = i;
  7073. rq->online = 0;
  7074. rq->migration_thread = NULL;
  7075. INIT_LIST_HEAD(&rq->migration_queue);
  7076. rq_attach_root(rq, &def_root_domain);
  7077. #endif
  7078. init_rq_hrtick(rq);
  7079. atomic_set(&rq->nr_iowait, 0);
  7080. }
  7081. set_load_weight(&init_task);
  7082. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7083. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7084. #endif
  7085. #ifdef CONFIG_SMP
  7086. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7087. #endif
  7088. #ifdef CONFIG_RT_MUTEXES
  7089. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7090. #endif
  7091. /*
  7092. * The boot idle thread does lazy MMU switching as well:
  7093. */
  7094. atomic_inc(&init_mm.mm_count);
  7095. enter_lazy_tlb(&init_mm, current);
  7096. /*
  7097. * Make us the idle thread. Technically, schedule() should not be
  7098. * called from this thread, however somewhere below it might be,
  7099. * but because we are the idle thread, we just pick up running again
  7100. * when this runqueue becomes "idle".
  7101. */
  7102. init_idle(current, smp_processor_id());
  7103. /*
  7104. * During early bootup we pretend to be a normal task:
  7105. */
  7106. current->sched_class = &fair_sched_class;
  7107. scheduler_running = 1;
  7108. }
  7109. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7110. void __might_sleep(char *file, int line)
  7111. {
  7112. #ifdef in_atomic
  7113. static unsigned long prev_jiffy; /* ratelimiting */
  7114. if ((!in_atomic() && !irqs_disabled()) ||
  7115. system_state != SYSTEM_RUNNING || oops_in_progress)
  7116. return;
  7117. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7118. return;
  7119. prev_jiffy = jiffies;
  7120. printk(KERN_ERR
  7121. "BUG: sleeping function called from invalid context at %s:%d\n",
  7122. file, line);
  7123. printk(KERN_ERR
  7124. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7125. in_atomic(), irqs_disabled(),
  7126. current->pid, current->comm);
  7127. debug_show_held_locks(current);
  7128. if (irqs_disabled())
  7129. print_irqtrace_events(current);
  7130. dump_stack();
  7131. #endif
  7132. }
  7133. EXPORT_SYMBOL(__might_sleep);
  7134. #endif
  7135. #ifdef CONFIG_MAGIC_SYSRQ
  7136. static void normalize_task(struct rq *rq, struct task_struct *p)
  7137. {
  7138. int on_rq;
  7139. update_rq_clock(rq);
  7140. on_rq = p->se.on_rq;
  7141. if (on_rq)
  7142. deactivate_task(rq, p, 0);
  7143. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7144. if (on_rq) {
  7145. activate_task(rq, p, 0);
  7146. resched_task(rq->curr);
  7147. }
  7148. }
  7149. void normalize_rt_tasks(void)
  7150. {
  7151. struct task_struct *g, *p;
  7152. unsigned long flags;
  7153. struct rq *rq;
  7154. read_lock_irqsave(&tasklist_lock, flags);
  7155. do_each_thread(g, p) {
  7156. /*
  7157. * Only normalize user tasks:
  7158. */
  7159. if (!p->mm)
  7160. continue;
  7161. p->se.exec_start = 0;
  7162. #ifdef CONFIG_SCHEDSTATS
  7163. p->se.wait_start = 0;
  7164. p->se.sleep_start = 0;
  7165. p->se.block_start = 0;
  7166. #endif
  7167. if (!rt_task(p)) {
  7168. /*
  7169. * Renice negative nice level userspace
  7170. * tasks back to 0:
  7171. */
  7172. if (TASK_NICE(p) < 0 && p->mm)
  7173. set_user_nice(p, 0);
  7174. continue;
  7175. }
  7176. spin_lock(&p->pi_lock);
  7177. rq = __task_rq_lock(p);
  7178. normalize_task(rq, p);
  7179. __task_rq_unlock(rq);
  7180. spin_unlock(&p->pi_lock);
  7181. } while_each_thread(g, p);
  7182. read_unlock_irqrestore(&tasklist_lock, flags);
  7183. }
  7184. #endif /* CONFIG_MAGIC_SYSRQ */
  7185. #ifdef CONFIG_IA64
  7186. /*
  7187. * These functions are only useful for the IA64 MCA handling.
  7188. *
  7189. * They can only be called when the whole system has been
  7190. * stopped - every CPU needs to be quiescent, and no scheduling
  7191. * activity can take place. Using them for anything else would
  7192. * be a serious bug, and as a result, they aren't even visible
  7193. * under any other configuration.
  7194. */
  7195. /**
  7196. * curr_task - return the current task for a given cpu.
  7197. * @cpu: the processor in question.
  7198. *
  7199. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7200. */
  7201. struct task_struct *curr_task(int cpu)
  7202. {
  7203. return cpu_curr(cpu);
  7204. }
  7205. /**
  7206. * set_curr_task - set the current task for a given cpu.
  7207. * @cpu: the processor in question.
  7208. * @p: the task pointer to set.
  7209. *
  7210. * Description: This function must only be used when non-maskable interrupts
  7211. * are serviced on a separate stack. It allows the architecture to switch the
  7212. * notion of the current task on a cpu in a non-blocking manner. This function
  7213. * must be called with all CPU's synchronized, and interrupts disabled, the
  7214. * and caller must save the original value of the current task (see
  7215. * curr_task() above) and restore that value before reenabling interrupts and
  7216. * re-starting the system.
  7217. *
  7218. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7219. */
  7220. void set_curr_task(int cpu, struct task_struct *p)
  7221. {
  7222. cpu_curr(cpu) = p;
  7223. }
  7224. #endif
  7225. #ifdef CONFIG_FAIR_GROUP_SCHED
  7226. static void free_fair_sched_group(struct task_group *tg)
  7227. {
  7228. int i;
  7229. for_each_possible_cpu(i) {
  7230. if (tg->cfs_rq)
  7231. kfree(tg->cfs_rq[i]);
  7232. if (tg->se)
  7233. kfree(tg->se[i]);
  7234. }
  7235. kfree(tg->cfs_rq);
  7236. kfree(tg->se);
  7237. }
  7238. static
  7239. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7240. {
  7241. struct cfs_rq *cfs_rq;
  7242. struct sched_entity *se;
  7243. struct rq *rq;
  7244. int i;
  7245. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7246. if (!tg->cfs_rq)
  7247. goto err;
  7248. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7249. if (!tg->se)
  7250. goto err;
  7251. tg->shares = NICE_0_LOAD;
  7252. for_each_possible_cpu(i) {
  7253. rq = cpu_rq(i);
  7254. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7255. GFP_KERNEL, cpu_to_node(i));
  7256. if (!cfs_rq)
  7257. goto err;
  7258. se = kzalloc_node(sizeof(struct sched_entity),
  7259. GFP_KERNEL, cpu_to_node(i));
  7260. if (!se)
  7261. goto err;
  7262. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7263. }
  7264. return 1;
  7265. err:
  7266. return 0;
  7267. }
  7268. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7269. {
  7270. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7271. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7272. }
  7273. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7274. {
  7275. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7276. }
  7277. #else /* !CONFG_FAIR_GROUP_SCHED */
  7278. static inline void free_fair_sched_group(struct task_group *tg)
  7279. {
  7280. }
  7281. static inline
  7282. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7283. {
  7284. return 1;
  7285. }
  7286. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7287. {
  7288. }
  7289. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7290. {
  7291. }
  7292. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7293. #ifdef CONFIG_RT_GROUP_SCHED
  7294. static void free_rt_sched_group(struct task_group *tg)
  7295. {
  7296. int i;
  7297. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7298. for_each_possible_cpu(i) {
  7299. if (tg->rt_rq)
  7300. kfree(tg->rt_rq[i]);
  7301. if (tg->rt_se)
  7302. kfree(tg->rt_se[i]);
  7303. }
  7304. kfree(tg->rt_rq);
  7305. kfree(tg->rt_se);
  7306. }
  7307. static
  7308. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7309. {
  7310. struct rt_rq *rt_rq;
  7311. struct sched_rt_entity *rt_se;
  7312. struct rq *rq;
  7313. int i;
  7314. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7315. if (!tg->rt_rq)
  7316. goto err;
  7317. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7318. if (!tg->rt_se)
  7319. goto err;
  7320. init_rt_bandwidth(&tg->rt_bandwidth,
  7321. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7322. for_each_possible_cpu(i) {
  7323. rq = cpu_rq(i);
  7324. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7325. GFP_KERNEL, cpu_to_node(i));
  7326. if (!rt_rq)
  7327. goto err;
  7328. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7329. GFP_KERNEL, cpu_to_node(i));
  7330. if (!rt_se)
  7331. goto err;
  7332. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7333. }
  7334. return 1;
  7335. err:
  7336. return 0;
  7337. }
  7338. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7339. {
  7340. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7341. &cpu_rq(cpu)->leaf_rt_rq_list);
  7342. }
  7343. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7344. {
  7345. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7346. }
  7347. #else /* !CONFIG_RT_GROUP_SCHED */
  7348. static inline void free_rt_sched_group(struct task_group *tg)
  7349. {
  7350. }
  7351. static inline
  7352. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7353. {
  7354. return 1;
  7355. }
  7356. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7357. {
  7358. }
  7359. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7360. {
  7361. }
  7362. #endif /* CONFIG_RT_GROUP_SCHED */
  7363. #ifdef CONFIG_GROUP_SCHED
  7364. static void free_sched_group(struct task_group *tg)
  7365. {
  7366. free_fair_sched_group(tg);
  7367. free_rt_sched_group(tg);
  7368. kfree(tg);
  7369. }
  7370. /* allocate runqueue etc for a new task group */
  7371. struct task_group *sched_create_group(struct task_group *parent)
  7372. {
  7373. struct task_group *tg;
  7374. unsigned long flags;
  7375. int i;
  7376. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7377. if (!tg)
  7378. return ERR_PTR(-ENOMEM);
  7379. if (!alloc_fair_sched_group(tg, parent))
  7380. goto err;
  7381. if (!alloc_rt_sched_group(tg, parent))
  7382. goto err;
  7383. spin_lock_irqsave(&task_group_lock, flags);
  7384. for_each_possible_cpu(i) {
  7385. register_fair_sched_group(tg, i);
  7386. register_rt_sched_group(tg, i);
  7387. }
  7388. list_add_rcu(&tg->list, &task_groups);
  7389. WARN_ON(!parent); /* root should already exist */
  7390. tg->parent = parent;
  7391. INIT_LIST_HEAD(&tg->children);
  7392. list_add_rcu(&tg->siblings, &parent->children);
  7393. spin_unlock_irqrestore(&task_group_lock, flags);
  7394. return tg;
  7395. err:
  7396. free_sched_group(tg);
  7397. return ERR_PTR(-ENOMEM);
  7398. }
  7399. /* rcu callback to free various structures associated with a task group */
  7400. static void free_sched_group_rcu(struct rcu_head *rhp)
  7401. {
  7402. /* now it should be safe to free those cfs_rqs */
  7403. free_sched_group(container_of(rhp, struct task_group, rcu));
  7404. }
  7405. /* Destroy runqueue etc associated with a task group */
  7406. void sched_destroy_group(struct task_group *tg)
  7407. {
  7408. unsigned long flags;
  7409. int i;
  7410. spin_lock_irqsave(&task_group_lock, flags);
  7411. for_each_possible_cpu(i) {
  7412. unregister_fair_sched_group(tg, i);
  7413. unregister_rt_sched_group(tg, i);
  7414. }
  7415. list_del_rcu(&tg->list);
  7416. list_del_rcu(&tg->siblings);
  7417. spin_unlock_irqrestore(&task_group_lock, flags);
  7418. /* wait for possible concurrent references to cfs_rqs complete */
  7419. call_rcu(&tg->rcu, free_sched_group_rcu);
  7420. }
  7421. /* change task's runqueue when it moves between groups.
  7422. * The caller of this function should have put the task in its new group
  7423. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7424. * reflect its new group.
  7425. */
  7426. void sched_move_task(struct task_struct *tsk)
  7427. {
  7428. int on_rq, running;
  7429. unsigned long flags;
  7430. struct rq *rq;
  7431. rq = task_rq_lock(tsk, &flags);
  7432. update_rq_clock(rq);
  7433. running = task_current(rq, tsk);
  7434. on_rq = tsk->se.on_rq;
  7435. if (on_rq)
  7436. dequeue_task(rq, tsk, 0);
  7437. if (unlikely(running))
  7438. tsk->sched_class->put_prev_task(rq, tsk);
  7439. set_task_rq(tsk, task_cpu(tsk));
  7440. #ifdef CONFIG_FAIR_GROUP_SCHED
  7441. if (tsk->sched_class->moved_group)
  7442. tsk->sched_class->moved_group(tsk);
  7443. #endif
  7444. if (unlikely(running))
  7445. tsk->sched_class->set_curr_task(rq);
  7446. if (on_rq)
  7447. enqueue_task(rq, tsk, 0);
  7448. task_rq_unlock(rq, &flags);
  7449. }
  7450. #endif /* CONFIG_GROUP_SCHED */
  7451. #ifdef CONFIG_FAIR_GROUP_SCHED
  7452. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7453. {
  7454. struct cfs_rq *cfs_rq = se->cfs_rq;
  7455. int on_rq;
  7456. on_rq = se->on_rq;
  7457. if (on_rq)
  7458. dequeue_entity(cfs_rq, se, 0);
  7459. se->load.weight = shares;
  7460. se->load.inv_weight = 0;
  7461. if (on_rq)
  7462. enqueue_entity(cfs_rq, se, 0);
  7463. }
  7464. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7465. {
  7466. struct cfs_rq *cfs_rq = se->cfs_rq;
  7467. struct rq *rq = cfs_rq->rq;
  7468. unsigned long flags;
  7469. spin_lock_irqsave(&rq->lock, flags);
  7470. __set_se_shares(se, shares);
  7471. spin_unlock_irqrestore(&rq->lock, flags);
  7472. }
  7473. static DEFINE_MUTEX(shares_mutex);
  7474. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7475. {
  7476. int i;
  7477. unsigned long flags;
  7478. /*
  7479. * We can't change the weight of the root cgroup.
  7480. */
  7481. if (!tg->se[0])
  7482. return -EINVAL;
  7483. if (shares < MIN_SHARES)
  7484. shares = MIN_SHARES;
  7485. else if (shares > MAX_SHARES)
  7486. shares = MAX_SHARES;
  7487. mutex_lock(&shares_mutex);
  7488. if (tg->shares == shares)
  7489. goto done;
  7490. spin_lock_irqsave(&task_group_lock, flags);
  7491. for_each_possible_cpu(i)
  7492. unregister_fair_sched_group(tg, i);
  7493. list_del_rcu(&tg->siblings);
  7494. spin_unlock_irqrestore(&task_group_lock, flags);
  7495. /* wait for any ongoing reference to this group to finish */
  7496. synchronize_sched();
  7497. /*
  7498. * Now we are free to modify the group's share on each cpu
  7499. * w/o tripping rebalance_share or load_balance_fair.
  7500. */
  7501. tg->shares = shares;
  7502. for_each_possible_cpu(i) {
  7503. /*
  7504. * force a rebalance
  7505. */
  7506. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7507. set_se_shares(tg->se[i], shares);
  7508. }
  7509. /*
  7510. * Enable load balance activity on this group, by inserting it back on
  7511. * each cpu's rq->leaf_cfs_rq_list.
  7512. */
  7513. spin_lock_irqsave(&task_group_lock, flags);
  7514. for_each_possible_cpu(i)
  7515. register_fair_sched_group(tg, i);
  7516. list_add_rcu(&tg->siblings, &tg->parent->children);
  7517. spin_unlock_irqrestore(&task_group_lock, flags);
  7518. done:
  7519. mutex_unlock(&shares_mutex);
  7520. return 0;
  7521. }
  7522. unsigned long sched_group_shares(struct task_group *tg)
  7523. {
  7524. return tg->shares;
  7525. }
  7526. #endif
  7527. #ifdef CONFIG_RT_GROUP_SCHED
  7528. /*
  7529. * Ensure that the real time constraints are schedulable.
  7530. */
  7531. static DEFINE_MUTEX(rt_constraints_mutex);
  7532. static unsigned long to_ratio(u64 period, u64 runtime)
  7533. {
  7534. if (runtime == RUNTIME_INF)
  7535. return 1ULL << 20;
  7536. return div64_u64(runtime << 20, period);
  7537. }
  7538. /* Must be called with tasklist_lock held */
  7539. static inline int tg_has_rt_tasks(struct task_group *tg)
  7540. {
  7541. struct task_struct *g, *p;
  7542. do_each_thread(g, p) {
  7543. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7544. return 1;
  7545. } while_each_thread(g, p);
  7546. return 0;
  7547. }
  7548. struct rt_schedulable_data {
  7549. struct task_group *tg;
  7550. u64 rt_period;
  7551. u64 rt_runtime;
  7552. };
  7553. static int tg_schedulable(struct task_group *tg, void *data)
  7554. {
  7555. struct rt_schedulable_data *d = data;
  7556. struct task_group *child;
  7557. unsigned long total, sum = 0;
  7558. u64 period, runtime;
  7559. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7560. runtime = tg->rt_bandwidth.rt_runtime;
  7561. if (tg == d->tg) {
  7562. period = d->rt_period;
  7563. runtime = d->rt_runtime;
  7564. }
  7565. /*
  7566. * Cannot have more runtime than the period.
  7567. */
  7568. if (runtime > period && runtime != RUNTIME_INF)
  7569. return -EINVAL;
  7570. /*
  7571. * Ensure we don't starve existing RT tasks.
  7572. */
  7573. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7574. return -EBUSY;
  7575. total = to_ratio(period, runtime);
  7576. /*
  7577. * Nobody can have more than the global setting allows.
  7578. */
  7579. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7580. return -EINVAL;
  7581. /*
  7582. * The sum of our children's runtime should not exceed our own.
  7583. */
  7584. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7585. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7586. runtime = child->rt_bandwidth.rt_runtime;
  7587. if (child == d->tg) {
  7588. period = d->rt_period;
  7589. runtime = d->rt_runtime;
  7590. }
  7591. sum += to_ratio(period, runtime);
  7592. }
  7593. if (sum > total)
  7594. return -EINVAL;
  7595. return 0;
  7596. }
  7597. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7598. {
  7599. struct rt_schedulable_data data = {
  7600. .tg = tg,
  7601. .rt_period = period,
  7602. .rt_runtime = runtime,
  7603. };
  7604. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7605. }
  7606. static int tg_set_bandwidth(struct task_group *tg,
  7607. u64 rt_period, u64 rt_runtime)
  7608. {
  7609. int i, err = 0;
  7610. mutex_lock(&rt_constraints_mutex);
  7611. read_lock(&tasklist_lock);
  7612. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7613. if (err)
  7614. goto unlock;
  7615. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7616. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7617. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7618. for_each_possible_cpu(i) {
  7619. struct rt_rq *rt_rq = tg->rt_rq[i];
  7620. spin_lock(&rt_rq->rt_runtime_lock);
  7621. rt_rq->rt_runtime = rt_runtime;
  7622. spin_unlock(&rt_rq->rt_runtime_lock);
  7623. }
  7624. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7625. unlock:
  7626. read_unlock(&tasklist_lock);
  7627. mutex_unlock(&rt_constraints_mutex);
  7628. return err;
  7629. }
  7630. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7631. {
  7632. u64 rt_runtime, rt_period;
  7633. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7634. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7635. if (rt_runtime_us < 0)
  7636. rt_runtime = RUNTIME_INF;
  7637. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7638. }
  7639. long sched_group_rt_runtime(struct task_group *tg)
  7640. {
  7641. u64 rt_runtime_us;
  7642. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7643. return -1;
  7644. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7645. do_div(rt_runtime_us, NSEC_PER_USEC);
  7646. return rt_runtime_us;
  7647. }
  7648. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7649. {
  7650. u64 rt_runtime, rt_period;
  7651. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7652. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7653. if (rt_period == 0)
  7654. return -EINVAL;
  7655. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7656. }
  7657. long sched_group_rt_period(struct task_group *tg)
  7658. {
  7659. u64 rt_period_us;
  7660. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7661. do_div(rt_period_us, NSEC_PER_USEC);
  7662. return rt_period_us;
  7663. }
  7664. static int sched_rt_global_constraints(void)
  7665. {
  7666. u64 runtime, period;
  7667. int ret = 0;
  7668. if (sysctl_sched_rt_period <= 0)
  7669. return -EINVAL;
  7670. runtime = global_rt_runtime();
  7671. period = global_rt_period();
  7672. /*
  7673. * Sanity check on the sysctl variables.
  7674. */
  7675. if (runtime > period && runtime != RUNTIME_INF)
  7676. return -EINVAL;
  7677. mutex_lock(&rt_constraints_mutex);
  7678. read_lock(&tasklist_lock);
  7679. ret = __rt_schedulable(NULL, 0, 0);
  7680. read_unlock(&tasklist_lock);
  7681. mutex_unlock(&rt_constraints_mutex);
  7682. return ret;
  7683. }
  7684. #else /* !CONFIG_RT_GROUP_SCHED */
  7685. static int sched_rt_global_constraints(void)
  7686. {
  7687. unsigned long flags;
  7688. int i;
  7689. if (sysctl_sched_rt_period <= 0)
  7690. return -EINVAL;
  7691. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7692. for_each_possible_cpu(i) {
  7693. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7694. spin_lock(&rt_rq->rt_runtime_lock);
  7695. rt_rq->rt_runtime = global_rt_runtime();
  7696. spin_unlock(&rt_rq->rt_runtime_lock);
  7697. }
  7698. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7699. return 0;
  7700. }
  7701. #endif /* CONFIG_RT_GROUP_SCHED */
  7702. int sched_rt_handler(struct ctl_table *table, int write,
  7703. struct file *filp, void __user *buffer, size_t *lenp,
  7704. loff_t *ppos)
  7705. {
  7706. int ret;
  7707. int old_period, old_runtime;
  7708. static DEFINE_MUTEX(mutex);
  7709. mutex_lock(&mutex);
  7710. old_period = sysctl_sched_rt_period;
  7711. old_runtime = sysctl_sched_rt_runtime;
  7712. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7713. if (!ret && write) {
  7714. ret = sched_rt_global_constraints();
  7715. if (ret) {
  7716. sysctl_sched_rt_period = old_period;
  7717. sysctl_sched_rt_runtime = old_runtime;
  7718. } else {
  7719. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7720. def_rt_bandwidth.rt_period =
  7721. ns_to_ktime(global_rt_period());
  7722. }
  7723. }
  7724. mutex_unlock(&mutex);
  7725. return ret;
  7726. }
  7727. #ifdef CONFIG_CGROUP_SCHED
  7728. /* return corresponding task_group object of a cgroup */
  7729. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7730. {
  7731. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7732. struct task_group, css);
  7733. }
  7734. static struct cgroup_subsys_state *
  7735. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7736. {
  7737. struct task_group *tg, *parent;
  7738. if (!cgrp->parent) {
  7739. /* This is early initialization for the top cgroup */
  7740. return &init_task_group.css;
  7741. }
  7742. parent = cgroup_tg(cgrp->parent);
  7743. tg = sched_create_group(parent);
  7744. if (IS_ERR(tg))
  7745. return ERR_PTR(-ENOMEM);
  7746. return &tg->css;
  7747. }
  7748. static void
  7749. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7750. {
  7751. struct task_group *tg = cgroup_tg(cgrp);
  7752. sched_destroy_group(tg);
  7753. }
  7754. static int
  7755. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7756. struct task_struct *tsk)
  7757. {
  7758. #ifdef CONFIG_RT_GROUP_SCHED
  7759. /* Don't accept realtime tasks when there is no way for them to run */
  7760. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7761. return -EINVAL;
  7762. #else
  7763. /* We don't support RT-tasks being in separate groups */
  7764. if (tsk->sched_class != &fair_sched_class)
  7765. return -EINVAL;
  7766. #endif
  7767. return 0;
  7768. }
  7769. static void
  7770. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7771. struct cgroup *old_cont, struct task_struct *tsk)
  7772. {
  7773. sched_move_task(tsk);
  7774. }
  7775. #ifdef CONFIG_FAIR_GROUP_SCHED
  7776. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7777. u64 shareval)
  7778. {
  7779. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7780. }
  7781. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7782. {
  7783. struct task_group *tg = cgroup_tg(cgrp);
  7784. return (u64) tg->shares;
  7785. }
  7786. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7787. #ifdef CONFIG_RT_GROUP_SCHED
  7788. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7789. s64 val)
  7790. {
  7791. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7792. }
  7793. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7794. {
  7795. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7796. }
  7797. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7798. u64 rt_period_us)
  7799. {
  7800. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7801. }
  7802. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7803. {
  7804. return sched_group_rt_period(cgroup_tg(cgrp));
  7805. }
  7806. #endif /* CONFIG_RT_GROUP_SCHED */
  7807. static struct cftype cpu_files[] = {
  7808. #ifdef CONFIG_FAIR_GROUP_SCHED
  7809. {
  7810. .name = "shares",
  7811. .read_u64 = cpu_shares_read_u64,
  7812. .write_u64 = cpu_shares_write_u64,
  7813. },
  7814. #endif
  7815. #ifdef CONFIG_RT_GROUP_SCHED
  7816. {
  7817. .name = "rt_runtime_us",
  7818. .read_s64 = cpu_rt_runtime_read,
  7819. .write_s64 = cpu_rt_runtime_write,
  7820. },
  7821. {
  7822. .name = "rt_period_us",
  7823. .read_u64 = cpu_rt_period_read_uint,
  7824. .write_u64 = cpu_rt_period_write_uint,
  7825. },
  7826. #endif
  7827. };
  7828. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7829. {
  7830. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7831. }
  7832. struct cgroup_subsys cpu_cgroup_subsys = {
  7833. .name = "cpu",
  7834. .create = cpu_cgroup_create,
  7835. .destroy = cpu_cgroup_destroy,
  7836. .can_attach = cpu_cgroup_can_attach,
  7837. .attach = cpu_cgroup_attach,
  7838. .populate = cpu_cgroup_populate,
  7839. .subsys_id = cpu_cgroup_subsys_id,
  7840. .early_init = 1,
  7841. };
  7842. #endif /* CONFIG_CGROUP_SCHED */
  7843. #ifdef CONFIG_CGROUP_CPUACCT
  7844. /*
  7845. * CPU accounting code for task groups.
  7846. *
  7847. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7848. * (balbir@in.ibm.com).
  7849. */
  7850. /* track cpu usage of a group of tasks and its child groups */
  7851. struct cpuacct {
  7852. struct cgroup_subsys_state css;
  7853. /* cpuusage holds pointer to a u64-type object on every cpu */
  7854. u64 *cpuusage;
  7855. struct cpuacct *parent;
  7856. };
  7857. struct cgroup_subsys cpuacct_subsys;
  7858. /* return cpu accounting group corresponding to this container */
  7859. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7860. {
  7861. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7862. struct cpuacct, css);
  7863. }
  7864. /* return cpu accounting group to which this task belongs */
  7865. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7866. {
  7867. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7868. struct cpuacct, css);
  7869. }
  7870. /* create a new cpu accounting group */
  7871. static struct cgroup_subsys_state *cpuacct_create(
  7872. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7873. {
  7874. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7875. if (!ca)
  7876. return ERR_PTR(-ENOMEM);
  7877. ca->cpuusage = alloc_percpu(u64);
  7878. if (!ca->cpuusage) {
  7879. kfree(ca);
  7880. return ERR_PTR(-ENOMEM);
  7881. }
  7882. if (cgrp->parent)
  7883. ca->parent = cgroup_ca(cgrp->parent);
  7884. return &ca->css;
  7885. }
  7886. /* destroy an existing cpu accounting group */
  7887. static void
  7888. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7889. {
  7890. struct cpuacct *ca = cgroup_ca(cgrp);
  7891. free_percpu(ca->cpuusage);
  7892. kfree(ca);
  7893. }
  7894. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7895. {
  7896. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7897. u64 data;
  7898. #ifndef CONFIG_64BIT
  7899. /*
  7900. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7901. */
  7902. spin_lock_irq(&cpu_rq(cpu)->lock);
  7903. data = *cpuusage;
  7904. spin_unlock_irq(&cpu_rq(cpu)->lock);
  7905. #else
  7906. data = *cpuusage;
  7907. #endif
  7908. return data;
  7909. }
  7910. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7911. {
  7912. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7913. #ifndef CONFIG_64BIT
  7914. /*
  7915. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7916. */
  7917. spin_lock_irq(&cpu_rq(cpu)->lock);
  7918. *cpuusage = val;
  7919. spin_unlock_irq(&cpu_rq(cpu)->lock);
  7920. #else
  7921. *cpuusage = val;
  7922. #endif
  7923. }
  7924. /* return total cpu usage (in nanoseconds) of a group */
  7925. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7926. {
  7927. struct cpuacct *ca = cgroup_ca(cgrp);
  7928. u64 totalcpuusage = 0;
  7929. int i;
  7930. for_each_present_cpu(i)
  7931. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7932. return totalcpuusage;
  7933. }
  7934. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7935. u64 reset)
  7936. {
  7937. struct cpuacct *ca = cgroup_ca(cgrp);
  7938. int err = 0;
  7939. int i;
  7940. if (reset) {
  7941. err = -EINVAL;
  7942. goto out;
  7943. }
  7944. for_each_present_cpu(i)
  7945. cpuacct_cpuusage_write(ca, i, 0);
  7946. out:
  7947. return err;
  7948. }
  7949. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7950. struct seq_file *m)
  7951. {
  7952. struct cpuacct *ca = cgroup_ca(cgroup);
  7953. u64 percpu;
  7954. int i;
  7955. for_each_present_cpu(i) {
  7956. percpu = cpuacct_cpuusage_read(ca, i);
  7957. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7958. }
  7959. seq_printf(m, "\n");
  7960. return 0;
  7961. }
  7962. static struct cftype files[] = {
  7963. {
  7964. .name = "usage",
  7965. .read_u64 = cpuusage_read,
  7966. .write_u64 = cpuusage_write,
  7967. },
  7968. {
  7969. .name = "usage_percpu",
  7970. .read_seq_string = cpuacct_percpu_seq_read,
  7971. },
  7972. };
  7973. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7974. {
  7975. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7976. }
  7977. /*
  7978. * charge this task's execution time to its accounting group.
  7979. *
  7980. * called with rq->lock held.
  7981. */
  7982. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7983. {
  7984. struct cpuacct *ca;
  7985. int cpu;
  7986. if (!cpuacct_subsys.active)
  7987. return;
  7988. cpu = task_cpu(tsk);
  7989. ca = task_ca(tsk);
  7990. for (; ca; ca = ca->parent) {
  7991. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7992. *cpuusage += cputime;
  7993. }
  7994. }
  7995. struct cgroup_subsys cpuacct_subsys = {
  7996. .name = "cpuacct",
  7997. .create = cpuacct_create,
  7998. .destroy = cpuacct_destroy,
  7999. .populate = cpuacct_populate,
  8000. .subsys_id = cpuacct_subsys_id,
  8001. };
  8002. #endif /* CONFIG_CGROUP_CPUACCT */