fm801.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
  1. /*
  2. * The driver for the ForteMedia FM801 based soundcards
  3. * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4. *
  5. * Support FM only card by Andy Shevchenko <andy@smile.org.ua>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/pci.h>
  26. #include <linux/slab.h>
  27. #include <linux/moduleparam.h>
  28. #include <sound/core.h>
  29. #include <sound/pcm.h>
  30. #include <sound/tlv.h>
  31. #include <sound/ac97_codec.h>
  32. #include <sound/mpu401.h>
  33. #include <sound/opl3.h>
  34. #include <sound/initval.h>
  35. #include <asm/io.h>
  36. #ifdef CONFIG_SND_FM801_TEA575X_BOOL
  37. #include <sound/tea575x-tuner.h>
  38. #define TEA575X_RADIO 1
  39. #endif
  40. MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
  41. MODULE_DESCRIPTION("ForteMedia FM801");
  42. MODULE_LICENSE("GPL");
  43. MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
  44. "{Genius,SoundMaker Live 5.1}}");
  45. static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
  46. static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
  47. static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
  48. /*
  49. * Enable TEA575x tuner
  50. * 1 = MediaForte 256-PCS
  51. * 2 = MediaForte 256-PCP
  52. * 3 = MediaForte 64-PCR
  53. * 16 = setup tuner only (this is additional bit), i.e. SF64-PCR FM card
  54. * High 16-bits are video (radio) device number + 1
  55. */
  56. static int tea575x_tuner[SNDRV_CARDS];
  57. module_param_array(index, int, NULL, 0444);
  58. MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
  59. module_param_array(id, charp, NULL, 0444);
  60. MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
  61. module_param_array(enable, bool, NULL, 0444);
  62. MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
  63. module_param_array(tea575x_tuner, int, NULL, 0444);
  64. MODULE_PARM_DESC(tea575x_tuner, "TEA575x tuner access method (0 = auto, 1 = SF256-PCS, 2=SF256-PCP, 3=SF64-PCR, 8=disable, +16=tuner-only).");
  65. #define TUNER_ONLY (1<<4)
  66. #define TUNER_TYPE_MASK (~TUNER_ONLY & 0xFFFF)
  67. /*
  68. * Direct registers
  69. */
  70. #define FM801_REG(chip, reg) (chip->port + FM801_##reg)
  71. #define FM801_PCM_VOL 0x00 /* PCM Output Volume */
  72. #define FM801_FM_VOL 0x02 /* FM Output Volume */
  73. #define FM801_I2S_VOL 0x04 /* I2S Volume */
  74. #define FM801_REC_SRC 0x06 /* Record Source */
  75. #define FM801_PLY_CTRL 0x08 /* Playback Control */
  76. #define FM801_PLY_COUNT 0x0a /* Playback Count */
  77. #define FM801_PLY_BUF1 0x0c /* Playback Bufer I */
  78. #define FM801_PLY_BUF2 0x10 /* Playback Buffer II */
  79. #define FM801_CAP_CTRL 0x14 /* Capture Control */
  80. #define FM801_CAP_COUNT 0x16 /* Capture Count */
  81. #define FM801_CAP_BUF1 0x18 /* Capture Buffer I */
  82. #define FM801_CAP_BUF2 0x1c /* Capture Buffer II */
  83. #define FM801_CODEC_CTRL 0x22 /* Codec Control */
  84. #define FM801_I2S_MODE 0x24 /* I2S Mode Control */
  85. #define FM801_VOLUME 0x26 /* Volume Up/Down/Mute Status */
  86. #define FM801_I2C_CTRL 0x29 /* I2C Control */
  87. #define FM801_AC97_CMD 0x2a /* AC'97 Command */
  88. #define FM801_AC97_DATA 0x2c /* AC'97 Data */
  89. #define FM801_MPU401_DATA 0x30 /* MPU401 Data */
  90. #define FM801_MPU401_CMD 0x31 /* MPU401 Command */
  91. #define FM801_GPIO_CTRL 0x52 /* General Purpose I/O Control */
  92. #define FM801_GEN_CTRL 0x54 /* General Control */
  93. #define FM801_IRQ_MASK 0x56 /* Interrupt Mask */
  94. #define FM801_IRQ_STATUS 0x5a /* Interrupt Status */
  95. #define FM801_OPL3_BANK0 0x68 /* OPL3 Status Read / Bank 0 Write */
  96. #define FM801_OPL3_DATA0 0x69 /* OPL3 Data 0 Write */
  97. #define FM801_OPL3_BANK1 0x6a /* OPL3 Bank 1 Write */
  98. #define FM801_OPL3_DATA1 0x6b /* OPL3 Bank 1 Write */
  99. #define FM801_POWERDOWN 0x70 /* Blocks Power Down Control */
  100. /* codec access */
  101. #define FM801_AC97_READ (1<<7) /* read=1, write=0 */
  102. #define FM801_AC97_VALID (1<<8) /* port valid=1 */
  103. #define FM801_AC97_BUSY (1<<9) /* busy=1 */
  104. #define FM801_AC97_ADDR_SHIFT 10 /* codec id (2bit) */
  105. /* playback and record control register bits */
  106. #define FM801_BUF1_LAST (1<<1)
  107. #define FM801_BUF2_LAST (1<<2)
  108. #define FM801_START (1<<5)
  109. #define FM801_PAUSE (1<<6)
  110. #define FM801_IMMED_STOP (1<<7)
  111. #define FM801_RATE_SHIFT 8
  112. #define FM801_RATE_MASK (15 << FM801_RATE_SHIFT)
  113. #define FM801_CHANNELS_4 (1<<12) /* playback only */
  114. #define FM801_CHANNELS_6 (2<<12) /* playback only */
  115. #define FM801_CHANNELS_6MS (3<<12) /* playback only */
  116. #define FM801_CHANNELS_MASK (3<<12)
  117. #define FM801_16BIT (1<<14)
  118. #define FM801_STEREO (1<<15)
  119. /* IRQ status bits */
  120. #define FM801_IRQ_PLAYBACK (1<<8)
  121. #define FM801_IRQ_CAPTURE (1<<9)
  122. #define FM801_IRQ_VOLUME (1<<14)
  123. #define FM801_IRQ_MPU (1<<15)
  124. /* GPIO control register */
  125. #define FM801_GPIO_GP0 (1<<0) /* read/write */
  126. #define FM801_GPIO_GP1 (1<<1)
  127. #define FM801_GPIO_GP2 (1<<2)
  128. #define FM801_GPIO_GP3 (1<<3)
  129. #define FM801_GPIO_GP(x) (1<<(0+(x)))
  130. #define FM801_GPIO_GD0 (1<<8) /* directions: 1 = input, 0 = output*/
  131. #define FM801_GPIO_GD1 (1<<9)
  132. #define FM801_GPIO_GD2 (1<<10)
  133. #define FM801_GPIO_GD3 (1<<11)
  134. #define FM801_GPIO_GD(x) (1<<(8+(x)))
  135. #define FM801_GPIO_GS0 (1<<12) /* function select: */
  136. #define FM801_GPIO_GS1 (1<<13) /* 1 = GPIO */
  137. #define FM801_GPIO_GS2 (1<<14) /* 0 = other (S/PDIF, VOL) */
  138. #define FM801_GPIO_GS3 (1<<15)
  139. #define FM801_GPIO_GS(x) (1<<(12+(x)))
  140. /*
  141. */
  142. struct fm801 {
  143. int irq;
  144. unsigned long port; /* I/O port number */
  145. unsigned int multichannel: 1, /* multichannel support */
  146. secondary: 1; /* secondary codec */
  147. unsigned char secondary_addr; /* address of the secondary codec */
  148. unsigned int tea575x_tuner; /* tuner access method & flags */
  149. unsigned short ply_ctrl; /* playback control */
  150. unsigned short cap_ctrl; /* capture control */
  151. unsigned long ply_buffer;
  152. unsigned int ply_buf;
  153. unsigned int ply_count;
  154. unsigned int ply_size;
  155. unsigned int ply_pos;
  156. unsigned long cap_buffer;
  157. unsigned int cap_buf;
  158. unsigned int cap_count;
  159. unsigned int cap_size;
  160. unsigned int cap_pos;
  161. struct snd_ac97_bus *ac97_bus;
  162. struct snd_ac97 *ac97;
  163. struct snd_ac97 *ac97_sec;
  164. struct pci_dev *pci;
  165. struct snd_card *card;
  166. struct snd_pcm *pcm;
  167. struct snd_rawmidi *rmidi;
  168. struct snd_pcm_substream *playback_substream;
  169. struct snd_pcm_substream *capture_substream;
  170. unsigned int p_dma_size;
  171. unsigned int c_dma_size;
  172. spinlock_t reg_lock;
  173. struct snd_info_entry *proc_entry;
  174. #ifdef TEA575X_RADIO
  175. struct snd_tea575x tea;
  176. #endif
  177. #ifdef CONFIG_PM
  178. u16 saved_regs[0x20];
  179. #endif
  180. };
  181. static DEFINE_PCI_DEVICE_TABLE(snd_fm801_ids) = {
  182. { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* FM801 */
  183. { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, }, /* Gallant Odyssey Sound 4 */
  184. { 0, }
  185. };
  186. MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
  187. /*
  188. * common I/O routines
  189. */
  190. static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
  191. unsigned short mask, unsigned short value)
  192. {
  193. int change;
  194. unsigned long flags;
  195. unsigned short old, new;
  196. spin_lock_irqsave(&chip->reg_lock, flags);
  197. old = inw(chip->port + reg);
  198. new = (old & ~mask) | value;
  199. change = old != new;
  200. if (change)
  201. outw(new, chip->port + reg);
  202. spin_unlock_irqrestore(&chip->reg_lock, flags);
  203. return change;
  204. }
  205. static void snd_fm801_codec_write(struct snd_ac97 *ac97,
  206. unsigned short reg,
  207. unsigned short val)
  208. {
  209. struct fm801 *chip = ac97->private_data;
  210. int idx;
  211. /*
  212. * Wait until the codec interface is not ready..
  213. */
  214. for (idx = 0; idx < 100; idx++) {
  215. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  216. goto ok1;
  217. udelay(10);
  218. }
  219. snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
  220. return;
  221. ok1:
  222. /* write data and address */
  223. outw(val, FM801_REG(chip, AC97_DATA));
  224. outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
  225. /*
  226. * Wait until the write command is not completed..
  227. */
  228. for (idx = 0; idx < 1000; idx++) {
  229. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  230. return;
  231. udelay(10);
  232. }
  233. snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
  234. }
  235. static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
  236. {
  237. struct fm801 *chip = ac97->private_data;
  238. int idx;
  239. /*
  240. * Wait until the codec interface is not ready..
  241. */
  242. for (idx = 0; idx < 100; idx++) {
  243. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  244. goto ok1;
  245. udelay(10);
  246. }
  247. snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
  248. return 0;
  249. ok1:
  250. /* read command */
  251. outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
  252. FM801_REG(chip, AC97_CMD));
  253. for (idx = 0; idx < 100; idx++) {
  254. if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
  255. goto ok2;
  256. udelay(10);
  257. }
  258. snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
  259. return 0;
  260. ok2:
  261. for (idx = 0; idx < 1000; idx++) {
  262. if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
  263. goto ok3;
  264. udelay(10);
  265. }
  266. snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
  267. return 0;
  268. ok3:
  269. return inw(FM801_REG(chip, AC97_DATA));
  270. }
  271. static unsigned int rates[] = {
  272. 5500, 8000, 9600, 11025,
  273. 16000, 19200, 22050, 32000,
  274. 38400, 44100, 48000
  275. };
  276. static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
  277. .count = ARRAY_SIZE(rates),
  278. .list = rates,
  279. .mask = 0,
  280. };
  281. static unsigned int channels[] = {
  282. 2, 4, 6
  283. };
  284. static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
  285. .count = ARRAY_SIZE(channels),
  286. .list = channels,
  287. .mask = 0,
  288. };
  289. /*
  290. * Sample rate routines
  291. */
  292. static unsigned short snd_fm801_rate_bits(unsigned int rate)
  293. {
  294. unsigned int idx;
  295. for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
  296. if (rates[idx] == rate)
  297. return idx;
  298. snd_BUG();
  299. return ARRAY_SIZE(rates) - 1;
  300. }
  301. /*
  302. * PCM part
  303. */
  304. static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
  305. int cmd)
  306. {
  307. struct fm801 *chip = snd_pcm_substream_chip(substream);
  308. spin_lock(&chip->reg_lock);
  309. switch (cmd) {
  310. case SNDRV_PCM_TRIGGER_START:
  311. chip->ply_ctrl &= ~(FM801_BUF1_LAST |
  312. FM801_BUF2_LAST |
  313. FM801_PAUSE);
  314. chip->ply_ctrl |= FM801_START |
  315. FM801_IMMED_STOP;
  316. break;
  317. case SNDRV_PCM_TRIGGER_STOP:
  318. chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
  319. break;
  320. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  321. case SNDRV_PCM_TRIGGER_SUSPEND:
  322. chip->ply_ctrl |= FM801_PAUSE;
  323. break;
  324. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  325. case SNDRV_PCM_TRIGGER_RESUME:
  326. chip->ply_ctrl &= ~FM801_PAUSE;
  327. break;
  328. default:
  329. spin_unlock(&chip->reg_lock);
  330. snd_BUG();
  331. return -EINVAL;
  332. }
  333. outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
  334. spin_unlock(&chip->reg_lock);
  335. return 0;
  336. }
  337. static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
  338. int cmd)
  339. {
  340. struct fm801 *chip = snd_pcm_substream_chip(substream);
  341. spin_lock(&chip->reg_lock);
  342. switch (cmd) {
  343. case SNDRV_PCM_TRIGGER_START:
  344. chip->cap_ctrl &= ~(FM801_BUF1_LAST |
  345. FM801_BUF2_LAST |
  346. FM801_PAUSE);
  347. chip->cap_ctrl |= FM801_START |
  348. FM801_IMMED_STOP;
  349. break;
  350. case SNDRV_PCM_TRIGGER_STOP:
  351. chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
  352. break;
  353. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  354. case SNDRV_PCM_TRIGGER_SUSPEND:
  355. chip->cap_ctrl |= FM801_PAUSE;
  356. break;
  357. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  358. case SNDRV_PCM_TRIGGER_RESUME:
  359. chip->cap_ctrl &= ~FM801_PAUSE;
  360. break;
  361. default:
  362. spin_unlock(&chip->reg_lock);
  363. snd_BUG();
  364. return -EINVAL;
  365. }
  366. outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
  367. spin_unlock(&chip->reg_lock);
  368. return 0;
  369. }
  370. static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
  371. struct snd_pcm_hw_params *hw_params)
  372. {
  373. return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
  374. }
  375. static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
  376. {
  377. return snd_pcm_lib_free_pages(substream);
  378. }
  379. static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
  380. {
  381. struct fm801 *chip = snd_pcm_substream_chip(substream);
  382. struct snd_pcm_runtime *runtime = substream->runtime;
  383. chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
  384. chip->ply_count = snd_pcm_lib_period_bytes(substream);
  385. spin_lock_irq(&chip->reg_lock);
  386. chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
  387. FM801_STEREO | FM801_RATE_MASK |
  388. FM801_CHANNELS_MASK);
  389. if (snd_pcm_format_width(runtime->format) == 16)
  390. chip->ply_ctrl |= FM801_16BIT;
  391. if (runtime->channels > 1) {
  392. chip->ply_ctrl |= FM801_STEREO;
  393. if (runtime->channels == 4)
  394. chip->ply_ctrl |= FM801_CHANNELS_4;
  395. else if (runtime->channels == 6)
  396. chip->ply_ctrl |= FM801_CHANNELS_6;
  397. }
  398. chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
  399. chip->ply_buf = 0;
  400. outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
  401. outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
  402. chip->ply_buffer = runtime->dma_addr;
  403. chip->ply_pos = 0;
  404. outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
  405. outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
  406. spin_unlock_irq(&chip->reg_lock);
  407. return 0;
  408. }
  409. static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
  410. {
  411. struct fm801 *chip = snd_pcm_substream_chip(substream);
  412. struct snd_pcm_runtime *runtime = substream->runtime;
  413. chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
  414. chip->cap_count = snd_pcm_lib_period_bytes(substream);
  415. spin_lock_irq(&chip->reg_lock);
  416. chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
  417. FM801_STEREO | FM801_RATE_MASK);
  418. if (snd_pcm_format_width(runtime->format) == 16)
  419. chip->cap_ctrl |= FM801_16BIT;
  420. if (runtime->channels > 1)
  421. chip->cap_ctrl |= FM801_STEREO;
  422. chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
  423. chip->cap_buf = 0;
  424. outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
  425. outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
  426. chip->cap_buffer = runtime->dma_addr;
  427. chip->cap_pos = 0;
  428. outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
  429. outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
  430. spin_unlock_irq(&chip->reg_lock);
  431. return 0;
  432. }
  433. static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
  434. {
  435. struct fm801 *chip = snd_pcm_substream_chip(substream);
  436. size_t ptr;
  437. if (!(chip->ply_ctrl & FM801_START))
  438. return 0;
  439. spin_lock(&chip->reg_lock);
  440. ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
  441. if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
  442. ptr += chip->ply_count;
  443. ptr %= chip->ply_size;
  444. }
  445. spin_unlock(&chip->reg_lock);
  446. return bytes_to_frames(substream->runtime, ptr);
  447. }
  448. static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
  449. {
  450. struct fm801 *chip = snd_pcm_substream_chip(substream);
  451. size_t ptr;
  452. if (!(chip->cap_ctrl & FM801_START))
  453. return 0;
  454. spin_lock(&chip->reg_lock);
  455. ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
  456. if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
  457. ptr += chip->cap_count;
  458. ptr %= chip->cap_size;
  459. }
  460. spin_unlock(&chip->reg_lock);
  461. return bytes_to_frames(substream->runtime, ptr);
  462. }
  463. static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
  464. {
  465. struct fm801 *chip = dev_id;
  466. unsigned short status;
  467. unsigned int tmp;
  468. status = inw(FM801_REG(chip, IRQ_STATUS));
  469. status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
  470. if (! status)
  471. return IRQ_NONE;
  472. /* ack first */
  473. outw(status, FM801_REG(chip, IRQ_STATUS));
  474. if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
  475. spin_lock(&chip->reg_lock);
  476. chip->ply_buf++;
  477. chip->ply_pos += chip->ply_count;
  478. chip->ply_pos %= chip->ply_size;
  479. tmp = chip->ply_pos + chip->ply_count;
  480. tmp %= chip->ply_size;
  481. outl(chip->ply_buffer + tmp,
  482. (chip->ply_buf & 1) ?
  483. FM801_REG(chip, PLY_BUF1) :
  484. FM801_REG(chip, PLY_BUF2));
  485. spin_unlock(&chip->reg_lock);
  486. snd_pcm_period_elapsed(chip->playback_substream);
  487. }
  488. if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
  489. spin_lock(&chip->reg_lock);
  490. chip->cap_buf++;
  491. chip->cap_pos += chip->cap_count;
  492. chip->cap_pos %= chip->cap_size;
  493. tmp = chip->cap_pos + chip->cap_count;
  494. tmp %= chip->cap_size;
  495. outl(chip->cap_buffer + tmp,
  496. (chip->cap_buf & 1) ?
  497. FM801_REG(chip, CAP_BUF1) :
  498. FM801_REG(chip, CAP_BUF2));
  499. spin_unlock(&chip->reg_lock);
  500. snd_pcm_period_elapsed(chip->capture_substream);
  501. }
  502. if (chip->rmidi && (status & FM801_IRQ_MPU))
  503. snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
  504. if (status & FM801_IRQ_VOLUME)
  505. ;/* TODO */
  506. return IRQ_HANDLED;
  507. }
  508. static struct snd_pcm_hardware snd_fm801_playback =
  509. {
  510. .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
  511. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  512. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
  513. SNDRV_PCM_INFO_MMAP_VALID),
  514. .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
  515. .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
  516. .rate_min = 5500,
  517. .rate_max = 48000,
  518. .channels_min = 1,
  519. .channels_max = 2,
  520. .buffer_bytes_max = (128*1024),
  521. .period_bytes_min = 64,
  522. .period_bytes_max = (128*1024),
  523. .periods_min = 1,
  524. .periods_max = 1024,
  525. .fifo_size = 0,
  526. };
  527. static struct snd_pcm_hardware snd_fm801_capture =
  528. {
  529. .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
  530. SNDRV_PCM_INFO_BLOCK_TRANSFER |
  531. SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
  532. SNDRV_PCM_INFO_MMAP_VALID),
  533. .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
  534. .rates = SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
  535. .rate_min = 5500,
  536. .rate_max = 48000,
  537. .channels_min = 1,
  538. .channels_max = 2,
  539. .buffer_bytes_max = (128*1024),
  540. .period_bytes_min = 64,
  541. .period_bytes_max = (128*1024),
  542. .periods_min = 1,
  543. .periods_max = 1024,
  544. .fifo_size = 0,
  545. };
  546. static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
  547. {
  548. struct fm801 *chip = snd_pcm_substream_chip(substream);
  549. struct snd_pcm_runtime *runtime = substream->runtime;
  550. int err;
  551. chip->playback_substream = substream;
  552. runtime->hw = snd_fm801_playback;
  553. snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  554. &hw_constraints_rates);
  555. if (chip->multichannel) {
  556. runtime->hw.channels_max = 6;
  557. snd_pcm_hw_constraint_list(runtime, 0,
  558. SNDRV_PCM_HW_PARAM_CHANNELS,
  559. &hw_constraints_channels);
  560. }
  561. if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
  562. return err;
  563. return 0;
  564. }
  565. static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
  566. {
  567. struct fm801 *chip = snd_pcm_substream_chip(substream);
  568. struct snd_pcm_runtime *runtime = substream->runtime;
  569. int err;
  570. chip->capture_substream = substream;
  571. runtime->hw = snd_fm801_capture;
  572. snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  573. &hw_constraints_rates);
  574. if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
  575. return err;
  576. return 0;
  577. }
  578. static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
  579. {
  580. struct fm801 *chip = snd_pcm_substream_chip(substream);
  581. chip->playback_substream = NULL;
  582. return 0;
  583. }
  584. static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
  585. {
  586. struct fm801 *chip = snd_pcm_substream_chip(substream);
  587. chip->capture_substream = NULL;
  588. return 0;
  589. }
  590. static struct snd_pcm_ops snd_fm801_playback_ops = {
  591. .open = snd_fm801_playback_open,
  592. .close = snd_fm801_playback_close,
  593. .ioctl = snd_pcm_lib_ioctl,
  594. .hw_params = snd_fm801_hw_params,
  595. .hw_free = snd_fm801_hw_free,
  596. .prepare = snd_fm801_playback_prepare,
  597. .trigger = snd_fm801_playback_trigger,
  598. .pointer = snd_fm801_playback_pointer,
  599. };
  600. static struct snd_pcm_ops snd_fm801_capture_ops = {
  601. .open = snd_fm801_capture_open,
  602. .close = snd_fm801_capture_close,
  603. .ioctl = snd_pcm_lib_ioctl,
  604. .hw_params = snd_fm801_hw_params,
  605. .hw_free = snd_fm801_hw_free,
  606. .prepare = snd_fm801_capture_prepare,
  607. .trigger = snd_fm801_capture_trigger,
  608. .pointer = snd_fm801_capture_pointer,
  609. };
  610. static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
  611. {
  612. struct snd_pcm *pcm;
  613. int err;
  614. if (rpcm)
  615. *rpcm = NULL;
  616. if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
  617. return err;
  618. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
  619. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
  620. pcm->private_data = chip;
  621. pcm->info_flags = 0;
  622. strcpy(pcm->name, "FM801");
  623. chip->pcm = pcm;
  624. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
  625. snd_dma_pci_data(chip->pci),
  626. chip->multichannel ? 128*1024 : 64*1024, 128*1024);
  627. if (rpcm)
  628. *rpcm = pcm;
  629. return 0;
  630. }
  631. /*
  632. * TEA5757 radio
  633. */
  634. #ifdef TEA575X_RADIO
  635. /* GPIO to TEA575x maps */
  636. struct snd_fm801_tea575x_gpio {
  637. u8 data, clk, wren, most;
  638. char *name;
  639. };
  640. static struct snd_fm801_tea575x_gpio snd_fm801_tea575x_gpios[] = {
  641. { .data = 1, .clk = 3, .wren = 2, .most = 0, .name = "SF256-PCS" },
  642. { .data = 1, .clk = 0, .wren = 2, .most = 3, .name = "SF256-PCP" },
  643. { .data = 2, .clk = 0, .wren = 1, .most = 3, .name = "SF64-PCR" },
  644. };
  645. static void snd_fm801_tea575x_set_pins(struct snd_tea575x *tea, u8 pins)
  646. {
  647. struct fm801 *chip = tea->private_data;
  648. unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
  649. struct snd_fm801_tea575x_gpio gpio = snd_fm801_tea575x_gpios[(chip->tea575x_tuner & TUNER_TYPE_MASK) - 1];
  650. reg &= ~(FM801_GPIO_GP(gpio.data) |
  651. FM801_GPIO_GP(gpio.clk) |
  652. FM801_GPIO_GP(gpio.wren));
  653. reg |= (pins & TEA575X_DATA) ? FM801_GPIO_GP(gpio.data) : 0;
  654. reg |= (pins & TEA575X_CLK) ? FM801_GPIO_GP(gpio.clk) : 0;
  655. /* WRITE_ENABLE is inverted */
  656. reg |= (pins & TEA575X_WREN) ? 0 : FM801_GPIO_GP(gpio.wren);
  657. outw(reg, FM801_REG(chip, GPIO_CTRL));
  658. }
  659. static u8 snd_fm801_tea575x_get_pins(struct snd_tea575x *tea)
  660. {
  661. struct fm801 *chip = tea->private_data;
  662. unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
  663. struct snd_fm801_tea575x_gpio gpio = snd_fm801_tea575x_gpios[(chip->tea575x_tuner & TUNER_TYPE_MASK) - 1];
  664. return (reg & FM801_GPIO_GP(gpio.data)) ? TEA575X_DATA : 0 |
  665. (reg & FM801_GPIO_GP(gpio.most)) ? TEA575X_MOST : 0;
  666. }
  667. static void snd_fm801_tea575x_set_direction(struct snd_tea575x *tea, bool output)
  668. {
  669. struct fm801 *chip = tea->private_data;
  670. unsigned short reg = inw(FM801_REG(chip, GPIO_CTRL));
  671. struct snd_fm801_tea575x_gpio gpio = snd_fm801_tea575x_gpios[(chip->tea575x_tuner & TUNER_TYPE_MASK) - 1];
  672. /* use GPIO lines and set write enable bit */
  673. reg |= FM801_GPIO_GS(gpio.data) |
  674. FM801_GPIO_GS(gpio.wren) |
  675. FM801_GPIO_GS(gpio.clk) |
  676. FM801_GPIO_GS(gpio.most);
  677. if (output) {
  678. /* all of lines are in the write direction */
  679. /* clear data and clock lines */
  680. reg &= ~(FM801_GPIO_GD(gpio.data) |
  681. FM801_GPIO_GD(gpio.wren) |
  682. FM801_GPIO_GD(gpio.clk) |
  683. FM801_GPIO_GP(gpio.data) |
  684. FM801_GPIO_GP(gpio.clk) |
  685. FM801_GPIO_GP(gpio.wren));
  686. } else {
  687. /* use GPIO lines, set data direction to input */
  688. reg |= FM801_GPIO_GD(gpio.data) |
  689. FM801_GPIO_GD(gpio.most) |
  690. FM801_GPIO_GP(gpio.data) |
  691. FM801_GPIO_GP(gpio.most) |
  692. FM801_GPIO_GP(gpio.wren);
  693. /* all of lines are in the write direction, except data */
  694. /* clear data, write enable and clock lines */
  695. reg &= ~(FM801_GPIO_GD(gpio.wren) |
  696. FM801_GPIO_GD(gpio.clk) |
  697. FM801_GPIO_GP(gpio.clk));
  698. }
  699. outw(reg, FM801_REG(chip, GPIO_CTRL));
  700. }
  701. static struct snd_tea575x_ops snd_fm801_tea_ops = {
  702. .set_pins = snd_fm801_tea575x_set_pins,
  703. .get_pins = snd_fm801_tea575x_get_pins,
  704. .set_direction = snd_fm801_tea575x_set_direction,
  705. };
  706. #endif
  707. /*
  708. * Mixer routines
  709. */
  710. #define FM801_SINGLE(xname, reg, shift, mask, invert) \
  711. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
  712. .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
  713. .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
  714. static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
  715. struct snd_ctl_elem_info *uinfo)
  716. {
  717. int mask = (kcontrol->private_value >> 16) & 0xff;
  718. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  719. uinfo->count = 1;
  720. uinfo->value.integer.min = 0;
  721. uinfo->value.integer.max = mask;
  722. return 0;
  723. }
  724. static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
  725. struct snd_ctl_elem_value *ucontrol)
  726. {
  727. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  728. int reg = kcontrol->private_value & 0xff;
  729. int shift = (kcontrol->private_value >> 8) & 0xff;
  730. int mask = (kcontrol->private_value >> 16) & 0xff;
  731. int invert = (kcontrol->private_value >> 24) & 0xff;
  732. ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
  733. if (invert)
  734. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  735. return 0;
  736. }
  737. static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
  738. struct snd_ctl_elem_value *ucontrol)
  739. {
  740. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  741. int reg = kcontrol->private_value & 0xff;
  742. int shift = (kcontrol->private_value >> 8) & 0xff;
  743. int mask = (kcontrol->private_value >> 16) & 0xff;
  744. int invert = (kcontrol->private_value >> 24) & 0xff;
  745. unsigned short val;
  746. val = (ucontrol->value.integer.value[0] & mask);
  747. if (invert)
  748. val = mask - val;
  749. return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
  750. }
  751. #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
  752. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
  753. .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  754. .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
  755. #define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
  756. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  757. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  758. .name = xname, .info = snd_fm801_info_double, \
  759. .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  760. .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
  761. .tlv = { .p = (xtlv) } }
  762. static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
  763. struct snd_ctl_elem_info *uinfo)
  764. {
  765. int mask = (kcontrol->private_value >> 16) & 0xff;
  766. uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
  767. uinfo->count = 2;
  768. uinfo->value.integer.min = 0;
  769. uinfo->value.integer.max = mask;
  770. return 0;
  771. }
  772. static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
  773. struct snd_ctl_elem_value *ucontrol)
  774. {
  775. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  776. int reg = kcontrol->private_value & 0xff;
  777. int shift_left = (kcontrol->private_value >> 8) & 0x0f;
  778. int shift_right = (kcontrol->private_value >> 12) & 0x0f;
  779. int mask = (kcontrol->private_value >> 16) & 0xff;
  780. int invert = (kcontrol->private_value >> 24) & 0xff;
  781. spin_lock_irq(&chip->reg_lock);
  782. ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
  783. ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
  784. spin_unlock_irq(&chip->reg_lock);
  785. if (invert) {
  786. ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
  787. ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
  788. }
  789. return 0;
  790. }
  791. static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
  792. struct snd_ctl_elem_value *ucontrol)
  793. {
  794. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  795. int reg = kcontrol->private_value & 0xff;
  796. int shift_left = (kcontrol->private_value >> 8) & 0x0f;
  797. int shift_right = (kcontrol->private_value >> 12) & 0x0f;
  798. int mask = (kcontrol->private_value >> 16) & 0xff;
  799. int invert = (kcontrol->private_value >> 24) & 0xff;
  800. unsigned short val1, val2;
  801. val1 = ucontrol->value.integer.value[0] & mask;
  802. val2 = ucontrol->value.integer.value[1] & mask;
  803. if (invert) {
  804. val1 = mask - val1;
  805. val2 = mask - val2;
  806. }
  807. return snd_fm801_update_bits(chip, reg,
  808. (mask << shift_left) | (mask << shift_right),
  809. (val1 << shift_left ) | (val2 << shift_right));
  810. }
  811. static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
  812. struct snd_ctl_elem_info *uinfo)
  813. {
  814. static char *texts[5] = {
  815. "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
  816. };
  817. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  818. uinfo->count = 1;
  819. uinfo->value.enumerated.items = 5;
  820. if (uinfo->value.enumerated.item > 4)
  821. uinfo->value.enumerated.item = 4;
  822. strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
  823. return 0;
  824. }
  825. static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
  826. struct snd_ctl_elem_value *ucontrol)
  827. {
  828. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  829. unsigned short val;
  830. val = inw(FM801_REG(chip, REC_SRC)) & 7;
  831. if (val > 4)
  832. val = 4;
  833. ucontrol->value.enumerated.item[0] = val;
  834. return 0;
  835. }
  836. static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
  837. struct snd_ctl_elem_value *ucontrol)
  838. {
  839. struct fm801 *chip = snd_kcontrol_chip(kcontrol);
  840. unsigned short val;
  841. if ((val = ucontrol->value.enumerated.item[0]) > 4)
  842. return -EINVAL;
  843. return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
  844. }
  845. static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);
  846. #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
  847. static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
  848. FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
  849. db_scale_dsp),
  850. FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
  851. FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
  852. db_scale_dsp),
  853. FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
  854. FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
  855. db_scale_dsp),
  856. FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
  857. {
  858. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  859. .name = "Digital Capture Source",
  860. .info = snd_fm801_info_mux,
  861. .get = snd_fm801_get_mux,
  862. .put = snd_fm801_put_mux,
  863. }
  864. };
  865. #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
  866. static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
  867. FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
  868. FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
  869. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
  870. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
  871. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
  872. FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
  873. };
  874. static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
  875. {
  876. struct fm801 *chip = bus->private_data;
  877. chip->ac97_bus = NULL;
  878. }
  879. static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
  880. {
  881. struct fm801 *chip = ac97->private_data;
  882. if (ac97->num == 0) {
  883. chip->ac97 = NULL;
  884. } else {
  885. chip->ac97_sec = NULL;
  886. }
  887. }
  888. static int __devinit snd_fm801_mixer(struct fm801 *chip)
  889. {
  890. struct snd_ac97_template ac97;
  891. unsigned int i;
  892. int err;
  893. static struct snd_ac97_bus_ops ops = {
  894. .write = snd_fm801_codec_write,
  895. .read = snd_fm801_codec_read,
  896. };
  897. if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
  898. return err;
  899. chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
  900. memset(&ac97, 0, sizeof(ac97));
  901. ac97.private_data = chip;
  902. ac97.private_free = snd_fm801_mixer_free_ac97;
  903. if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
  904. return err;
  905. if (chip->secondary) {
  906. ac97.num = 1;
  907. ac97.addr = chip->secondary_addr;
  908. if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
  909. return err;
  910. }
  911. for (i = 0; i < FM801_CONTROLS; i++)
  912. snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
  913. if (chip->multichannel) {
  914. for (i = 0; i < FM801_CONTROLS_MULTI; i++)
  915. snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
  916. }
  917. return 0;
  918. }
  919. /*
  920. * initialization routines
  921. */
  922. static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
  923. unsigned short reg, unsigned long waits)
  924. {
  925. unsigned long timeout = jiffies + waits;
  926. outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
  927. FM801_REG(chip, AC97_CMD));
  928. udelay(5);
  929. do {
  930. if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
  931. == FM801_AC97_VALID)
  932. return 0;
  933. schedule_timeout_uninterruptible(1);
  934. } while (time_after(timeout, jiffies));
  935. return -EIO;
  936. }
  937. static int snd_fm801_chip_init(struct fm801 *chip, int resume)
  938. {
  939. unsigned short cmdw;
  940. if (chip->tea575x_tuner & TUNER_ONLY)
  941. goto __ac97_ok;
  942. /* codec cold reset + AC'97 warm reset */
  943. outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
  944. inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
  945. udelay(100);
  946. outw(0, FM801_REG(chip, CODEC_CTRL));
  947. if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0)
  948. if (!resume) {
  949. snd_printk(KERN_INFO "Primary AC'97 codec not found, "
  950. "assume SF64-PCR (tuner-only)\n");
  951. chip->tea575x_tuner = 3 | TUNER_ONLY;
  952. goto __ac97_ok;
  953. }
  954. if (chip->multichannel) {
  955. if (chip->secondary_addr) {
  956. wait_for_codec(chip, chip->secondary_addr,
  957. AC97_VENDOR_ID1, msecs_to_jiffies(50));
  958. } else {
  959. /* my card has the secondary codec */
  960. /* at address #3, so the loop is inverted */
  961. int i;
  962. for (i = 3; i > 0; i--) {
  963. if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
  964. msecs_to_jiffies(50))) {
  965. cmdw = inw(FM801_REG(chip, AC97_DATA));
  966. if (cmdw != 0xffff && cmdw != 0) {
  967. chip->secondary = 1;
  968. chip->secondary_addr = i;
  969. break;
  970. }
  971. }
  972. }
  973. }
  974. /* the recovery phase, it seems that probing for non-existing codec might */
  975. /* cause timeout problems */
  976. wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
  977. }
  978. __ac97_ok:
  979. /* init volume */
  980. outw(0x0808, FM801_REG(chip, PCM_VOL));
  981. outw(0x9f1f, FM801_REG(chip, FM_VOL));
  982. outw(0x8808, FM801_REG(chip, I2S_VOL));
  983. /* I2S control - I2S mode */
  984. outw(0x0003, FM801_REG(chip, I2S_MODE));
  985. /* interrupt setup */
  986. cmdw = inw(FM801_REG(chip, IRQ_MASK));
  987. if (chip->irq < 0)
  988. cmdw |= 0x00c3; /* mask everything, no PCM nor MPU */
  989. else
  990. cmdw &= ~0x0083; /* unmask MPU, PLAYBACK & CAPTURE */
  991. outw(cmdw, FM801_REG(chip, IRQ_MASK));
  992. /* interrupt clear */
  993. outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
  994. return 0;
  995. }
  996. static int snd_fm801_free(struct fm801 *chip)
  997. {
  998. unsigned short cmdw;
  999. if (chip->irq < 0)
  1000. goto __end_hw;
  1001. /* interrupt setup - mask everything */
  1002. cmdw = inw(FM801_REG(chip, IRQ_MASK));
  1003. cmdw |= 0x00c3;
  1004. outw(cmdw, FM801_REG(chip, IRQ_MASK));
  1005. __end_hw:
  1006. #ifdef TEA575X_RADIO
  1007. snd_tea575x_exit(&chip->tea);
  1008. #endif
  1009. if (chip->irq >= 0)
  1010. free_irq(chip->irq, chip);
  1011. pci_release_regions(chip->pci);
  1012. pci_disable_device(chip->pci);
  1013. kfree(chip);
  1014. return 0;
  1015. }
  1016. static int snd_fm801_dev_free(struct snd_device *device)
  1017. {
  1018. struct fm801 *chip = device->device_data;
  1019. return snd_fm801_free(chip);
  1020. }
  1021. static int __devinit snd_fm801_create(struct snd_card *card,
  1022. struct pci_dev * pci,
  1023. int tea575x_tuner,
  1024. struct fm801 ** rchip)
  1025. {
  1026. struct fm801 *chip;
  1027. int err;
  1028. static struct snd_device_ops ops = {
  1029. .dev_free = snd_fm801_dev_free,
  1030. };
  1031. *rchip = NULL;
  1032. if ((err = pci_enable_device(pci)) < 0)
  1033. return err;
  1034. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  1035. if (chip == NULL) {
  1036. pci_disable_device(pci);
  1037. return -ENOMEM;
  1038. }
  1039. spin_lock_init(&chip->reg_lock);
  1040. chip->card = card;
  1041. chip->pci = pci;
  1042. chip->irq = -1;
  1043. chip->tea575x_tuner = tea575x_tuner;
  1044. if ((err = pci_request_regions(pci, "FM801")) < 0) {
  1045. kfree(chip);
  1046. pci_disable_device(pci);
  1047. return err;
  1048. }
  1049. chip->port = pci_resource_start(pci, 0);
  1050. if ((tea575x_tuner & TUNER_ONLY) == 0) {
  1051. if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
  1052. "FM801", chip)) {
  1053. snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
  1054. snd_fm801_free(chip);
  1055. return -EBUSY;
  1056. }
  1057. chip->irq = pci->irq;
  1058. pci_set_master(pci);
  1059. }
  1060. if (pci->revision >= 0xb1) /* FM801-AU */
  1061. chip->multichannel = 1;
  1062. snd_fm801_chip_init(chip, 0);
  1063. /* init might set tuner access method */
  1064. tea575x_tuner = chip->tea575x_tuner;
  1065. if (chip->irq >= 0 && (tea575x_tuner & TUNER_ONLY)) {
  1066. pci_clear_master(pci);
  1067. free_irq(chip->irq, chip);
  1068. chip->irq = -1;
  1069. }
  1070. if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
  1071. snd_fm801_free(chip);
  1072. return err;
  1073. }
  1074. snd_card_set_dev(card, &pci->dev);
  1075. #ifdef TEA575X_RADIO
  1076. chip->tea.private_data = chip;
  1077. chip->tea.ops = &snd_fm801_tea_ops;
  1078. sprintf(chip->tea.bus_info, "PCI:%s", pci_name(pci));
  1079. if ((tea575x_tuner & TUNER_TYPE_MASK) > 0 &&
  1080. (tea575x_tuner & TUNER_TYPE_MASK) < 4) {
  1081. if (snd_tea575x_init(&chip->tea))
  1082. snd_printk(KERN_ERR "TEA575x radio not found\n");
  1083. } else if ((tea575x_tuner & TUNER_TYPE_MASK) == 0)
  1084. /* autodetect tuner connection */
  1085. for (tea575x_tuner = 1; tea575x_tuner <= 3; tea575x_tuner++) {
  1086. chip->tea575x_tuner = tea575x_tuner;
  1087. if (!snd_tea575x_init(&chip->tea)) {
  1088. snd_printk(KERN_INFO "detected TEA575x radio type %s\n",
  1089. snd_fm801_tea575x_gpios[tea575x_tuner - 1].name);
  1090. break;
  1091. }
  1092. }
  1093. strlcpy(chip->tea.card, snd_fm801_tea575x_gpios[(tea575x_tuner & TUNER_TYPE_MASK) - 1].name, sizeof(chip->tea.card));
  1094. #endif
  1095. *rchip = chip;
  1096. return 0;
  1097. }
  1098. static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
  1099. const struct pci_device_id *pci_id)
  1100. {
  1101. static int dev;
  1102. struct snd_card *card;
  1103. struct fm801 *chip;
  1104. struct snd_opl3 *opl3;
  1105. int err;
  1106. if (dev >= SNDRV_CARDS)
  1107. return -ENODEV;
  1108. if (!enable[dev]) {
  1109. dev++;
  1110. return -ENOENT;
  1111. }
  1112. err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
  1113. if (err < 0)
  1114. return err;
  1115. if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
  1116. snd_card_free(card);
  1117. return err;
  1118. }
  1119. card->private_data = chip;
  1120. strcpy(card->driver, "FM801");
  1121. strcpy(card->shortname, "ForteMedia FM801-");
  1122. strcat(card->shortname, chip->multichannel ? "AU" : "AS");
  1123. sprintf(card->longname, "%s at 0x%lx, irq %i",
  1124. card->shortname, chip->port, chip->irq);
  1125. if (chip->tea575x_tuner & TUNER_ONLY)
  1126. goto __fm801_tuner_only;
  1127. if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
  1128. snd_card_free(card);
  1129. return err;
  1130. }
  1131. if ((err = snd_fm801_mixer(chip)) < 0) {
  1132. snd_card_free(card);
  1133. return err;
  1134. }
  1135. if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
  1136. FM801_REG(chip, MPU401_DATA),
  1137. MPU401_INFO_INTEGRATED,
  1138. chip->irq, 0, &chip->rmidi)) < 0) {
  1139. snd_card_free(card);
  1140. return err;
  1141. }
  1142. if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
  1143. FM801_REG(chip, OPL3_BANK1),
  1144. OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
  1145. snd_card_free(card);
  1146. return err;
  1147. }
  1148. if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
  1149. snd_card_free(card);
  1150. return err;
  1151. }
  1152. __fm801_tuner_only:
  1153. if ((err = snd_card_register(card)) < 0) {
  1154. snd_card_free(card);
  1155. return err;
  1156. }
  1157. pci_set_drvdata(pci, card);
  1158. dev++;
  1159. return 0;
  1160. }
  1161. static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
  1162. {
  1163. snd_card_free(pci_get_drvdata(pci));
  1164. pci_set_drvdata(pci, NULL);
  1165. }
  1166. #ifdef CONFIG_PM
  1167. static unsigned char saved_regs[] = {
  1168. FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
  1169. FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
  1170. FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
  1171. FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
  1172. };
  1173. static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
  1174. {
  1175. struct snd_card *card = pci_get_drvdata(pci);
  1176. struct fm801 *chip = card->private_data;
  1177. int i;
  1178. snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
  1179. snd_pcm_suspend_all(chip->pcm);
  1180. snd_ac97_suspend(chip->ac97);
  1181. snd_ac97_suspend(chip->ac97_sec);
  1182. for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
  1183. chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
  1184. /* FIXME: tea575x suspend */
  1185. pci_disable_device(pci);
  1186. pci_save_state(pci);
  1187. pci_set_power_state(pci, pci_choose_state(pci, state));
  1188. return 0;
  1189. }
  1190. static int snd_fm801_resume(struct pci_dev *pci)
  1191. {
  1192. struct snd_card *card = pci_get_drvdata(pci);
  1193. struct fm801 *chip = card->private_data;
  1194. int i;
  1195. pci_set_power_state(pci, PCI_D0);
  1196. pci_restore_state(pci);
  1197. if (pci_enable_device(pci) < 0) {
  1198. printk(KERN_ERR "fm801: pci_enable_device failed, "
  1199. "disabling device\n");
  1200. snd_card_disconnect(card);
  1201. return -EIO;
  1202. }
  1203. pci_set_master(pci);
  1204. snd_fm801_chip_init(chip, 1);
  1205. snd_ac97_resume(chip->ac97);
  1206. snd_ac97_resume(chip->ac97_sec);
  1207. for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
  1208. outw(chip->saved_regs[i], chip->port + saved_regs[i]);
  1209. snd_power_change_state(card, SNDRV_CTL_POWER_D0);
  1210. return 0;
  1211. }
  1212. #endif
  1213. static struct pci_driver driver = {
  1214. .name = "FM801",
  1215. .id_table = snd_fm801_ids,
  1216. .probe = snd_card_fm801_probe,
  1217. .remove = __devexit_p(snd_card_fm801_remove),
  1218. #ifdef CONFIG_PM
  1219. .suspend = snd_fm801_suspend,
  1220. .resume = snd_fm801_resume,
  1221. #endif
  1222. };
  1223. static int __init alsa_card_fm801_init(void)
  1224. {
  1225. return pci_register_driver(&driver);
  1226. }
  1227. static void __exit alsa_card_fm801_exit(void)
  1228. {
  1229. pci_unregister_driver(&driver);
  1230. }
  1231. module_init(alsa_card_fm801_init)
  1232. module_exit(alsa_card_fm801_exit)