hw.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. /*
  2. * Copyright 2006 Dave Airlie
  3. * Copyright 2007 Maarten Maathuis
  4. * Copyright 2007-2009 Stuart Bennett
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the "Software"),
  8. * to deal in the Software without restriction, including without limitation
  9. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10. * and/or sell copies of the Software, and to permit persons to whom the
  11. * Software is furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
  20. * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
  21. * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  22. * SOFTWARE.
  23. */
  24. #include <drm/drmP.h>
  25. #include "nouveau_drm.h"
  26. #include "hw.h"
  27. #include <subdev/bios/pll.h>
  28. #include <subdev/fb.h>
  29. #include <subdev/clock.h>
  30. #include <subdev/timer.h>
  31. #define CHIPSET_NFORCE 0x01a0
  32. #define CHIPSET_NFORCE2 0x01f0
  33. /*
  34. * misc hw access wrappers/control functions
  35. */
  36. void
  37. NVWriteVgaSeq(struct drm_device *dev, int head, uint8_t index, uint8_t value)
  38. {
  39. NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
  40. NVWritePRMVIO(dev, head, NV_PRMVIO_SR, value);
  41. }
  42. uint8_t
  43. NVReadVgaSeq(struct drm_device *dev, int head, uint8_t index)
  44. {
  45. NVWritePRMVIO(dev, head, NV_PRMVIO_SRX, index);
  46. return NVReadPRMVIO(dev, head, NV_PRMVIO_SR);
  47. }
  48. void
  49. NVWriteVgaGr(struct drm_device *dev, int head, uint8_t index, uint8_t value)
  50. {
  51. NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
  52. NVWritePRMVIO(dev, head, NV_PRMVIO_GX, value);
  53. }
  54. uint8_t
  55. NVReadVgaGr(struct drm_device *dev, int head, uint8_t index)
  56. {
  57. NVWritePRMVIO(dev, head, NV_PRMVIO_GRX, index);
  58. return NVReadPRMVIO(dev, head, NV_PRMVIO_GX);
  59. }
  60. /* CR44 takes values 0 (head A), 3 (head B) and 4 (heads tied)
  61. * it affects only the 8 bit vga io regs, which we access using mmio at
  62. * 0xc{0,2}3c*, 0x60{1,3}3*, and 0x68{1,3}3d*
  63. * in general, the set value of cr44 does not matter: reg access works as
  64. * expected and values can be set for the appropriate head by using a 0x2000
  65. * offset as required
  66. * however:
  67. * a) pre nv40, the head B range of PRMVIO regs at 0xc23c* was not exposed and
  68. * cr44 must be set to 0 or 3 for accessing values on the correct head
  69. * through the common 0xc03c* addresses
  70. * b) in tied mode (4) head B is programmed to the values set on head A, and
  71. * access using the head B addresses can have strange results, ergo we leave
  72. * tied mode in init once we know to what cr44 should be restored on exit
  73. *
  74. * the owner parameter is slightly abused:
  75. * 0 and 1 are treated as head values and so the set value is (owner * 3)
  76. * other values are treated as literal values to set
  77. */
  78. void
  79. NVSetOwner(struct drm_device *dev, int owner)
  80. {
  81. struct nouveau_drm *drm = nouveau_drm(dev);
  82. if (owner == 1)
  83. owner *= 3;
  84. if (nv_device(drm->device)->chipset == 0x11) {
  85. /* This might seem stupid, but the blob does it and
  86. * omitting it often locks the system up.
  87. */
  88. NVReadVgaCrtc(dev, 0, NV_CIO_SR_LOCK_INDEX);
  89. NVReadVgaCrtc(dev, 1, NV_CIO_SR_LOCK_INDEX);
  90. }
  91. /* CR44 is always changed on CRTC0 */
  92. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_44, owner);
  93. if (nv_device(drm->device)->chipset == 0x11) { /* set me harder */
  94. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
  95. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_2E, owner);
  96. }
  97. }
  98. void
  99. NVBlankScreen(struct drm_device *dev, int head, bool blank)
  100. {
  101. unsigned char seq1;
  102. if (nv_two_heads(dev))
  103. NVSetOwner(dev, head);
  104. seq1 = NVReadVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX);
  105. NVVgaSeqReset(dev, head, true);
  106. if (blank)
  107. NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 | 0x20);
  108. else
  109. NVWriteVgaSeq(dev, head, NV_VIO_SR_CLOCK_INDEX, seq1 & ~0x20);
  110. NVVgaSeqReset(dev, head, false);
  111. }
  112. /*
  113. * PLL getting
  114. */
  115. static void
  116. nouveau_hw_decode_pll(struct drm_device *dev, uint32_t reg1, uint32_t pll1,
  117. uint32_t pll2, struct nouveau_pll_vals *pllvals)
  118. {
  119. struct nouveau_drm *drm = nouveau_drm(dev);
  120. /* to force parsing as single stage (i.e. nv40 vplls) pass pll2 as 0 */
  121. /* log2P is & 0x7 as never more than 7, and nv30/35 only uses 3 bits */
  122. pllvals->log2P = (pll1 >> 16) & 0x7;
  123. pllvals->N2 = pllvals->M2 = 1;
  124. if (reg1 <= 0x405c) {
  125. pllvals->NM1 = pll2 & 0xffff;
  126. /* single stage NVPLL and VPLLs use 1 << 8, MPLL uses 1 << 12 */
  127. if (!(pll1 & 0x1100))
  128. pllvals->NM2 = pll2 >> 16;
  129. } else {
  130. pllvals->NM1 = pll1 & 0xffff;
  131. if (nv_two_reg_pll(dev) && pll2 & NV31_RAMDAC_ENABLE_VCO2)
  132. pllvals->NM2 = pll2 & 0xffff;
  133. else if (nv_device(drm->device)->chipset == 0x30 || nv_device(drm->device)->chipset == 0x35) {
  134. pllvals->M1 &= 0xf; /* only 4 bits */
  135. if (pll1 & NV30_RAMDAC_ENABLE_VCO2) {
  136. pllvals->M2 = (pll1 >> 4) & 0x7;
  137. pllvals->N2 = ((pll1 >> 21) & 0x18) |
  138. ((pll1 >> 19) & 0x7);
  139. }
  140. }
  141. }
  142. }
  143. int
  144. nouveau_hw_get_pllvals(struct drm_device *dev, enum nvbios_pll_type plltype,
  145. struct nouveau_pll_vals *pllvals)
  146. {
  147. struct nouveau_drm *drm = nouveau_drm(dev);
  148. struct nouveau_device *device = nv_device(drm->device);
  149. struct nouveau_bios *bios = nouveau_bios(device);
  150. uint32_t reg1, pll1, pll2 = 0;
  151. struct nvbios_pll pll_lim;
  152. int ret;
  153. ret = nvbios_pll_parse(bios, plltype, &pll_lim);
  154. if (ret || !(reg1 = pll_lim.reg))
  155. return -ENOENT;
  156. pll1 = nv_rd32(device, reg1);
  157. if (reg1 <= 0x405c)
  158. pll2 = nv_rd32(device, reg1 + 4);
  159. else if (nv_two_reg_pll(dev)) {
  160. uint32_t reg2 = reg1 + (reg1 == NV_RAMDAC_VPLL2 ? 0x5c : 0x70);
  161. pll2 = nv_rd32(device, reg2);
  162. }
  163. if (nv_device(drm->device)->card_type == 0x40 && reg1 >= NV_PRAMDAC_VPLL_COEFF) {
  164. uint32_t ramdac580 = NVReadRAMDAC(dev, 0, NV_PRAMDAC_580);
  165. /* check whether vpll has been forced into single stage mode */
  166. if (reg1 == NV_PRAMDAC_VPLL_COEFF) {
  167. if (ramdac580 & NV_RAMDAC_580_VPLL1_ACTIVE)
  168. pll2 = 0;
  169. } else
  170. if (ramdac580 & NV_RAMDAC_580_VPLL2_ACTIVE)
  171. pll2 = 0;
  172. }
  173. nouveau_hw_decode_pll(dev, reg1, pll1, pll2, pllvals);
  174. pllvals->refclk = pll_lim.refclk;
  175. return 0;
  176. }
  177. int
  178. nouveau_hw_pllvals_to_clk(struct nouveau_pll_vals *pv)
  179. {
  180. /* Avoid divide by zero if called at an inappropriate time */
  181. if (!pv->M1 || !pv->M2)
  182. return 0;
  183. return pv->N1 * pv->N2 * pv->refclk / (pv->M1 * pv->M2) >> pv->log2P;
  184. }
  185. int
  186. nouveau_hw_get_clock(struct drm_device *dev, enum nvbios_pll_type plltype)
  187. {
  188. struct nouveau_pll_vals pllvals;
  189. int ret;
  190. if (plltype == PLL_MEMORY &&
  191. (dev->pdev->device & 0x0ff0) == CHIPSET_NFORCE) {
  192. uint32_t mpllP;
  193. pci_read_config_dword(pci_get_bus_and_slot(0, 3), 0x6c, &mpllP);
  194. if (!mpllP)
  195. mpllP = 4;
  196. return 400000 / mpllP;
  197. } else
  198. if (plltype == PLL_MEMORY &&
  199. (dev->pdev->device & 0xff0) == CHIPSET_NFORCE2) {
  200. uint32_t clock;
  201. pci_read_config_dword(pci_get_bus_and_slot(0, 5), 0x4c, &clock);
  202. return clock;
  203. }
  204. ret = nouveau_hw_get_pllvals(dev, plltype, &pllvals);
  205. if (ret)
  206. return ret;
  207. return nouveau_hw_pllvals_to_clk(&pllvals);
  208. }
  209. static void
  210. nouveau_hw_fix_bad_vpll(struct drm_device *dev, int head)
  211. {
  212. /* the vpll on an unused head can come up with a random value, way
  213. * beyond the pll limits. for some reason this causes the chip to
  214. * lock up when reading the dac palette regs, so set a valid pll here
  215. * when such a condition detected. only seen on nv11 to date
  216. */
  217. struct nouveau_drm *drm = nouveau_drm(dev);
  218. struct nouveau_device *device = nv_device(drm->device);
  219. struct nouveau_clock *clk = nouveau_clock(device);
  220. struct nouveau_bios *bios = nouveau_bios(device);
  221. struct nvbios_pll pll_lim;
  222. struct nouveau_pll_vals pv;
  223. enum nvbios_pll_type pll = head ? PLL_VPLL1 : PLL_VPLL0;
  224. if (nvbios_pll_parse(bios, pll, &pll_lim))
  225. return;
  226. nouveau_hw_get_pllvals(dev, pll, &pv);
  227. if (pv.M1 >= pll_lim.vco1.min_m && pv.M1 <= pll_lim.vco1.max_m &&
  228. pv.N1 >= pll_lim.vco1.min_n && pv.N1 <= pll_lim.vco1.max_n &&
  229. pv.log2P <= pll_lim.max_p)
  230. return;
  231. NV_WARN(drm, "VPLL %d outwith limits, attempting to fix\n", head + 1);
  232. /* set lowest clock within static limits */
  233. pv.M1 = pll_lim.vco1.max_m;
  234. pv.N1 = pll_lim.vco1.min_n;
  235. pv.log2P = pll_lim.max_p_usable;
  236. clk->pll_prog(clk, pll_lim.reg, &pv);
  237. }
  238. /*
  239. * vga font save/restore
  240. */
  241. static void nouveau_vga_font_io(struct drm_device *dev,
  242. void __iomem *iovram,
  243. bool save, unsigned plane)
  244. {
  245. unsigned i;
  246. NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, 1 << plane);
  247. NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, plane);
  248. for (i = 0; i < 16384; i++) {
  249. if (save) {
  250. nv04_display(dev)->saved_vga_font[plane][i] =
  251. ioread32_native(iovram + i * 4);
  252. } else {
  253. iowrite32_native(nv04_display(dev)->saved_vga_font[plane][i],
  254. iovram + i * 4);
  255. }
  256. }
  257. }
  258. void
  259. nouveau_hw_save_vga_fonts(struct drm_device *dev, bool save)
  260. {
  261. struct nouveau_drm *drm = nouveau_drm(dev);
  262. uint8_t misc, gr4, gr5, gr6, seq2, seq4;
  263. bool graphicsmode;
  264. unsigned plane;
  265. void __iomem *iovram;
  266. if (nv_two_heads(dev))
  267. NVSetOwner(dev, 0);
  268. NVSetEnablePalette(dev, 0, true);
  269. graphicsmode = NVReadVgaAttr(dev, 0, NV_CIO_AR_MODE_INDEX) & 1;
  270. NVSetEnablePalette(dev, 0, false);
  271. if (graphicsmode) /* graphics mode => framebuffer => no need to save */
  272. return;
  273. NV_INFO(drm, "%sing VGA fonts\n", save ? "Sav" : "Restor");
  274. /* map first 64KiB of VRAM, holds VGA fonts etc */
  275. iovram = ioremap(pci_resource_start(dev->pdev, 1), 65536);
  276. if (!iovram) {
  277. NV_ERROR(drm, "Failed to map VRAM, "
  278. "cannot save/restore VGA fonts.\n");
  279. return;
  280. }
  281. if (nv_two_heads(dev))
  282. NVBlankScreen(dev, 1, true);
  283. NVBlankScreen(dev, 0, true);
  284. /* save control regs */
  285. misc = NVReadPRMVIO(dev, 0, NV_PRMVIO_MISC__READ);
  286. seq2 = NVReadVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX);
  287. seq4 = NVReadVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX);
  288. gr4 = NVReadVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX);
  289. gr5 = NVReadVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX);
  290. gr6 = NVReadVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX);
  291. NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, 0x67);
  292. NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, 0x6);
  293. NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, 0x0);
  294. NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, 0x5);
  295. /* store font in planes 0..3 */
  296. for (plane = 0; plane < 4; plane++)
  297. nouveau_vga_font_io(dev, iovram, save, plane);
  298. /* restore control regs */
  299. NVWritePRMVIO(dev, 0, NV_PRMVIO_MISC__WRITE, misc);
  300. NVWriteVgaGr(dev, 0, NV_VIO_GX_READ_MAP_INDEX, gr4);
  301. NVWriteVgaGr(dev, 0, NV_VIO_GX_MODE_INDEX, gr5);
  302. NVWriteVgaGr(dev, 0, NV_VIO_GX_MISC_INDEX, gr6);
  303. NVWriteVgaSeq(dev, 0, NV_VIO_SR_PLANE_MASK_INDEX, seq2);
  304. NVWriteVgaSeq(dev, 0, NV_VIO_SR_MEM_MODE_INDEX, seq4);
  305. if (nv_two_heads(dev))
  306. NVBlankScreen(dev, 1, false);
  307. NVBlankScreen(dev, 0, false);
  308. iounmap(iovram);
  309. }
  310. /*
  311. * mode state save/load
  312. */
  313. static void
  314. rd_cio_state(struct drm_device *dev, int head,
  315. struct nv04_crtc_reg *crtcstate, int index)
  316. {
  317. crtcstate->CRTC[index] = NVReadVgaCrtc(dev, head, index);
  318. }
  319. static void
  320. wr_cio_state(struct drm_device *dev, int head,
  321. struct nv04_crtc_reg *crtcstate, int index)
  322. {
  323. NVWriteVgaCrtc(dev, head, index, crtcstate->CRTC[index]);
  324. }
  325. static void
  326. nv_save_state_ramdac(struct drm_device *dev, int head,
  327. struct nv04_mode_state *state)
  328. {
  329. struct nouveau_drm *drm = nouveau_drm(dev);
  330. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  331. int i;
  332. if (nv_device(drm->device)->card_type >= NV_10)
  333. regp->nv10_cursync = NVReadRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC);
  334. nouveau_hw_get_pllvals(dev, head ? PLL_VPLL1 : PLL_VPLL0, &regp->pllvals);
  335. state->pllsel = NVReadRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT);
  336. if (nv_two_heads(dev))
  337. state->sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
  338. if (nv_device(drm->device)->chipset == 0x11)
  339. regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11);
  340. regp->ramdac_gen_ctrl = NVReadRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL);
  341. if (nv_gf4_disp_arch(dev))
  342. regp->ramdac_630 = NVReadRAMDAC(dev, head, NV_PRAMDAC_630);
  343. if (nv_device(drm->device)->chipset >= 0x30)
  344. regp->ramdac_634 = NVReadRAMDAC(dev, head, NV_PRAMDAC_634);
  345. regp->tv_setup = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP);
  346. regp->tv_vtotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL);
  347. regp->tv_vskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW);
  348. regp->tv_vsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY);
  349. regp->tv_htotal = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL);
  350. regp->tv_hskew = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW);
  351. regp->tv_hsync_delay = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY);
  352. regp->tv_hsync_delay2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2);
  353. for (i = 0; i < 7; i++) {
  354. uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
  355. regp->fp_vert_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg);
  356. regp->fp_horiz_regs[i] = NVReadRAMDAC(dev, head, ramdac_reg + 0x20);
  357. }
  358. if (nv_gf4_disp_arch(dev)) {
  359. regp->dither = NVReadRAMDAC(dev, head, NV_RAMDAC_FP_DITHER);
  360. for (i = 0; i < 3; i++) {
  361. regp->dither_regs[i] = NVReadRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4);
  362. regp->dither_regs[i + 3] = NVReadRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4);
  363. }
  364. }
  365. regp->fp_control = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
  366. regp->fp_debug_0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0);
  367. if (!nv_gf4_disp_arch(dev) && head == 0) {
  368. /* early chips don't allow access to PRAMDAC_TMDS_* without
  369. * the head A FPCLK on (nv11 even locks up) */
  370. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0 &
  371. ~NV_PRAMDAC_FP_DEBUG_0_PWRDOWN_FPCLK);
  372. }
  373. regp->fp_debug_1 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1);
  374. regp->fp_debug_2 = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2);
  375. regp->fp_margin_color = NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR);
  376. if (nv_gf4_disp_arch(dev))
  377. regp->ramdac_8c0 = NVReadRAMDAC(dev, head, NV_PRAMDAC_8C0);
  378. if (nv_device(drm->device)->card_type == NV_40) {
  379. regp->ramdac_a20 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A20);
  380. regp->ramdac_a24 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A24);
  381. regp->ramdac_a34 = NVReadRAMDAC(dev, head, NV_PRAMDAC_A34);
  382. for (i = 0; i < 38; i++)
  383. regp->ctv_regs[i] = NVReadRAMDAC(dev, head,
  384. NV_PRAMDAC_CTV + 4*i);
  385. }
  386. }
  387. static void
  388. nv_load_state_ramdac(struct drm_device *dev, int head,
  389. struct nv04_mode_state *state)
  390. {
  391. struct nouveau_drm *drm = nouveau_drm(dev);
  392. struct nouveau_clock *clk = nouveau_clock(drm->device);
  393. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  394. uint32_t pllreg = head ? NV_RAMDAC_VPLL2 : NV_PRAMDAC_VPLL_COEFF;
  395. int i;
  396. if (nv_device(drm->device)->card_type >= NV_10)
  397. NVWriteRAMDAC(dev, head, NV_RAMDAC_NV10_CURSYNC, regp->nv10_cursync);
  398. clk->pll_prog(clk, pllreg, &regp->pllvals);
  399. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_PLL_COEFF_SELECT, state->pllsel);
  400. if (nv_two_heads(dev))
  401. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, state->sel_clk);
  402. if (nv_device(drm->device)->chipset == 0x11)
  403. NVWriteRAMDAC(dev, head, NV_RAMDAC_DITHER_NV11, regp->dither);
  404. NVWriteRAMDAC(dev, head, NV_PRAMDAC_GENERAL_CONTROL, regp->ramdac_gen_ctrl);
  405. if (nv_gf4_disp_arch(dev))
  406. NVWriteRAMDAC(dev, head, NV_PRAMDAC_630, regp->ramdac_630);
  407. if (nv_device(drm->device)->chipset >= 0x30)
  408. NVWriteRAMDAC(dev, head, NV_PRAMDAC_634, regp->ramdac_634);
  409. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_SETUP, regp->tv_setup);
  410. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VTOTAL, regp->tv_vtotal);
  411. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSKEW, regp->tv_vskew);
  412. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_VSYNC_DELAY, regp->tv_vsync_delay);
  413. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HTOTAL, regp->tv_htotal);
  414. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSKEW, regp->tv_hskew);
  415. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY, regp->tv_hsync_delay);
  416. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TV_HSYNC_DELAY2, regp->tv_hsync_delay2);
  417. for (i = 0; i < 7; i++) {
  418. uint32_t ramdac_reg = NV_PRAMDAC_FP_VDISPLAY_END + (i * 4);
  419. NVWriteRAMDAC(dev, head, ramdac_reg, regp->fp_vert_regs[i]);
  420. NVWriteRAMDAC(dev, head, ramdac_reg + 0x20, regp->fp_horiz_regs[i]);
  421. }
  422. if (nv_gf4_disp_arch(dev)) {
  423. NVWriteRAMDAC(dev, head, NV_RAMDAC_FP_DITHER, regp->dither);
  424. for (i = 0; i < 3; i++) {
  425. NVWriteRAMDAC(dev, head, NV_PRAMDAC_850 + i * 4, regp->dither_regs[i]);
  426. NVWriteRAMDAC(dev, head, NV_PRAMDAC_85C + i * 4, regp->dither_regs[i + 3]);
  427. }
  428. }
  429. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, regp->fp_control);
  430. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_0, regp->fp_debug_0);
  431. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_1, regp->fp_debug_1);
  432. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_DEBUG_2, regp->fp_debug_2);
  433. NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_MARGIN_COLOR, regp->fp_margin_color);
  434. if (nv_gf4_disp_arch(dev))
  435. NVWriteRAMDAC(dev, head, NV_PRAMDAC_8C0, regp->ramdac_8c0);
  436. if (nv_device(drm->device)->card_type == NV_40) {
  437. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A20, regp->ramdac_a20);
  438. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A24, regp->ramdac_a24);
  439. NVWriteRAMDAC(dev, head, NV_PRAMDAC_A34, regp->ramdac_a34);
  440. for (i = 0; i < 38; i++)
  441. NVWriteRAMDAC(dev, head,
  442. NV_PRAMDAC_CTV + 4*i, regp->ctv_regs[i]);
  443. }
  444. }
  445. static void
  446. nv_save_state_vga(struct drm_device *dev, int head,
  447. struct nv04_mode_state *state)
  448. {
  449. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  450. int i;
  451. regp->MiscOutReg = NVReadPRMVIO(dev, head, NV_PRMVIO_MISC__READ);
  452. for (i = 0; i < 25; i++)
  453. rd_cio_state(dev, head, regp, i);
  454. NVSetEnablePalette(dev, head, true);
  455. for (i = 0; i < 21; i++)
  456. regp->Attribute[i] = NVReadVgaAttr(dev, head, i);
  457. NVSetEnablePalette(dev, head, false);
  458. for (i = 0; i < 9; i++)
  459. regp->Graphics[i] = NVReadVgaGr(dev, head, i);
  460. for (i = 0; i < 5; i++)
  461. regp->Sequencer[i] = NVReadVgaSeq(dev, head, i);
  462. }
  463. static void
  464. nv_load_state_vga(struct drm_device *dev, int head,
  465. struct nv04_mode_state *state)
  466. {
  467. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  468. int i;
  469. NVWritePRMVIO(dev, head, NV_PRMVIO_MISC__WRITE, regp->MiscOutReg);
  470. for (i = 0; i < 5; i++)
  471. NVWriteVgaSeq(dev, head, i, regp->Sequencer[i]);
  472. nv_lock_vga_crtc_base(dev, head, false);
  473. for (i = 0; i < 25; i++)
  474. wr_cio_state(dev, head, regp, i);
  475. nv_lock_vga_crtc_base(dev, head, true);
  476. for (i = 0; i < 9; i++)
  477. NVWriteVgaGr(dev, head, i, regp->Graphics[i]);
  478. NVSetEnablePalette(dev, head, true);
  479. for (i = 0; i < 21; i++)
  480. NVWriteVgaAttr(dev, head, i, regp->Attribute[i]);
  481. NVSetEnablePalette(dev, head, false);
  482. }
  483. static void
  484. nv_save_state_ext(struct drm_device *dev, int head,
  485. struct nv04_mode_state *state)
  486. {
  487. struct nouveau_drm *drm = nouveau_drm(dev);
  488. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  489. int i;
  490. rd_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
  491. rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
  492. rd_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
  493. rd_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
  494. rd_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
  495. rd_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
  496. rd_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
  497. rd_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
  498. rd_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
  499. rd_cio_state(dev, head, regp, NV_CIO_CRE_21);
  500. if (nv_device(drm->device)->card_type >= NV_20)
  501. rd_cio_state(dev, head, regp, NV_CIO_CRE_47);
  502. if (nv_device(drm->device)->card_type >= NV_30)
  503. rd_cio_state(dev, head, regp, 0x9f);
  504. rd_cio_state(dev, head, regp, NV_CIO_CRE_49);
  505. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
  506. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
  507. rd_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
  508. rd_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
  509. if (nv_device(drm->device)->card_type >= NV_10) {
  510. regp->crtc_830 = NVReadCRTC(dev, head, NV_PCRTC_830);
  511. regp->crtc_834 = NVReadCRTC(dev, head, NV_PCRTC_834);
  512. if (nv_device(drm->device)->card_type >= NV_30)
  513. regp->gpio_ext = NVReadCRTC(dev, head, NV_PCRTC_GPIO_EXT);
  514. if (nv_device(drm->device)->card_type == NV_40)
  515. regp->crtc_850 = NVReadCRTC(dev, head, NV_PCRTC_850);
  516. if (nv_two_heads(dev))
  517. regp->crtc_eng_ctrl = NVReadCRTC(dev, head, NV_PCRTC_ENGINE_CTRL);
  518. regp->cursor_cfg = NVReadCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG);
  519. }
  520. regp->crtc_cfg = NVReadCRTC(dev, head, NV_PCRTC_CONFIG);
  521. rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
  522. rd_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
  523. if (nv_device(drm->device)->card_type >= NV_10) {
  524. rd_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
  525. rd_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
  526. rd_cio_state(dev, head, regp, NV_CIO_CRE_4B);
  527. rd_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
  528. }
  529. /* NV11 and NV20 don't have this, they stop at 0x52. */
  530. if (nv_gf4_disp_arch(dev)) {
  531. rd_cio_state(dev, head, regp, NV_CIO_CRE_42);
  532. rd_cio_state(dev, head, regp, NV_CIO_CRE_53);
  533. rd_cio_state(dev, head, regp, NV_CIO_CRE_54);
  534. for (i = 0; i < 0x10; i++)
  535. regp->CR58[i] = NVReadVgaCrtc5758(dev, head, i);
  536. rd_cio_state(dev, head, regp, NV_CIO_CRE_59);
  537. rd_cio_state(dev, head, regp, NV_CIO_CRE_5B);
  538. rd_cio_state(dev, head, regp, NV_CIO_CRE_85);
  539. rd_cio_state(dev, head, regp, NV_CIO_CRE_86);
  540. }
  541. regp->fb_start = NVReadCRTC(dev, head, NV_PCRTC_START);
  542. }
  543. static void
  544. nv_load_state_ext(struct drm_device *dev, int head,
  545. struct nv04_mode_state *state)
  546. {
  547. struct nouveau_drm *drm = nouveau_drm(dev);
  548. struct nouveau_device *device = nv_device(drm->device);
  549. struct nouveau_timer *ptimer = nouveau_timer(device);
  550. struct nouveau_fb *pfb = nouveau_fb(device);
  551. struct nv04_crtc_reg *regp = &state->crtc_reg[head];
  552. uint32_t reg900;
  553. int i;
  554. if (nv_device(drm->device)->card_type >= NV_10) {
  555. if (nv_two_heads(dev))
  556. /* setting ENGINE_CTRL (EC) *must* come before
  557. * CIO_CRE_LCD, as writing CRE_LCD sets bits 16 & 17 in
  558. * EC that should not be overwritten by writing stale EC
  559. */
  560. NVWriteCRTC(dev, head, NV_PCRTC_ENGINE_CTRL, regp->crtc_eng_ctrl);
  561. nv_wr32(device, NV_PVIDEO_STOP, 1);
  562. nv_wr32(device, NV_PVIDEO_INTR_EN, 0);
  563. nv_wr32(device, NV_PVIDEO_OFFSET_BUFF(0), 0);
  564. nv_wr32(device, NV_PVIDEO_OFFSET_BUFF(1), 0);
  565. nv_wr32(device, NV_PVIDEO_LIMIT(0), pfb->ram->size - 1);
  566. nv_wr32(device, NV_PVIDEO_LIMIT(1), pfb->ram->size - 1);
  567. nv_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(0), pfb->ram->size - 1);
  568. nv_wr32(device, NV_PVIDEO_UVPLANE_LIMIT(1), pfb->ram->size - 1);
  569. nv_wr32(device, NV_PBUS_POWERCTRL_2, 0);
  570. NVWriteCRTC(dev, head, NV_PCRTC_CURSOR_CONFIG, regp->cursor_cfg);
  571. NVWriteCRTC(dev, head, NV_PCRTC_830, regp->crtc_830);
  572. NVWriteCRTC(dev, head, NV_PCRTC_834, regp->crtc_834);
  573. if (nv_device(drm->device)->card_type >= NV_30)
  574. NVWriteCRTC(dev, head, NV_PCRTC_GPIO_EXT, regp->gpio_ext);
  575. if (nv_device(drm->device)->card_type == NV_40) {
  576. NVWriteCRTC(dev, head, NV_PCRTC_850, regp->crtc_850);
  577. reg900 = NVReadRAMDAC(dev, head, NV_PRAMDAC_900);
  578. if (regp->crtc_cfg == NV10_PCRTC_CONFIG_START_ADDRESS_HSYNC)
  579. NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 | 0x10000);
  580. else
  581. NVWriteRAMDAC(dev, head, NV_PRAMDAC_900, reg900 & ~0x10000);
  582. }
  583. }
  584. NVWriteCRTC(dev, head, NV_PCRTC_CONFIG, regp->crtc_cfg);
  585. wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC0_INDEX);
  586. wr_cio_state(dev, head, regp, NV_CIO_CRE_RPC1_INDEX);
  587. wr_cio_state(dev, head, regp, NV_CIO_CRE_LSR_INDEX);
  588. wr_cio_state(dev, head, regp, NV_CIO_CRE_PIXEL_INDEX);
  589. wr_cio_state(dev, head, regp, NV_CIO_CRE_LCD__INDEX);
  590. wr_cio_state(dev, head, regp, NV_CIO_CRE_HEB__INDEX);
  591. wr_cio_state(dev, head, regp, NV_CIO_CRE_ENH_INDEX);
  592. wr_cio_state(dev, head, regp, NV_CIO_CRE_FF_INDEX);
  593. wr_cio_state(dev, head, regp, NV_CIO_CRE_FFLWM__INDEX);
  594. if (nv_device(drm->device)->card_type >= NV_20)
  595. wr_cio_state(dev, head, regp, NV_CIO_CRE_47);
  596. if (nv_device(drm->device)->card_type >= NV_30)
  597. wr_cio_state(dev, head, regp, 0x9f);
  598. wr_cio_state(dev, head, regp, NV_CIO_CRE_49);
  599. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR0_INDEX);
  600. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR1_INDEX);
  601. wr_cio_state(dev, head, regp, NV_CIO_CRE_HCUR_ADDR2_INDEX);
  602. if (nv_device(drm->device)->card_type == NV_40)
  603. nv_fix_nv40_hw_cursor(dev, head);
  604. wr_cio_state(dev, head, regp, NV_CIO_CRE_ILACE__INDEX);
  605. wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH3__INDEX);
  606. wr_cio_state(dev, head, regp, NV_CIO_CRE_SCRATCH4__INDEX);
  607. if (nv_device(drm->device)->card_type >= NV_10) {
  608. wr_cio_state(dev, head, regp, NV_CIO_CRE_EBR_INDEX);
  609. wr_cio_state(dev, head, regp, NV_CIO_CRE_CSB);
  610. wr_cio_state(dev, head, regp, NV_CIO_CRE_4B);
  611. wr_cio_state(dev, head, regp, NV_CIO_CRE_TVOUT_LATENCY);
  612. }
  613. /* NV11 and NV20 stop at 0x52. */
  614. if (nv_gf4_disp_arch(dev)) {
  615. if (nv_device(drm->device)->card_type < NV_20) {
  616. /* Not waiting for vertical retrace before modifying
  617. CRE_53/CRE_54 causes lockups. */
  618. nouveau_timer_wait_eq(ptimer, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x8);
  619. nouveau_timer_wait_eq(ptimer, 650000000, NV_PRMCIO_INP0__COLOR, 0x8, 0x0);
  620. }
  621. wr_cio_state(dev, head, regp, NV_CIO_CRE_42);
  622. wr_cio_state(dev, head, regp, NV_CIO_CRE_53);
  623. wr_cio_state(dev, head, regp, NV_CIO_CRE_54);
  624. for (i = 0; i < 0x10; i++)
  625. NVWriteVgaCrtc5758(dev, head, i, regp->CR58[i]);
  626. wr_cio_state(dev, head, regp, NV_CIO_CRE_59);
  627. wr_cio_state(dev, head, regp, NV_CIO_CRE_5B);
  628. wr_cio_state(dev, head, regp, NV_CIO_CRE_85);
  629. wr_cio_state(dev, head, regp, NV_CIO_CRE_86);
  630. }
  631. NVWriteCRTC(dev, head, NV_PCRTC_START, regp->fb_start);
  632. }
  633. static void
  634. nv_save_state_palette(struct drm_device *dev, int head,
  635. struct nv04_mode_state *state)
  636. {
  637. struct nouveau_device *device = nouveau_dev(dev);
  638. int head_offset = head * NV_PRMDIO_SIZE, i;
  639. nv_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset,
  640. NV_PRMDIO_PIXEL_MASK_MASK);
  641. nv_wr08(device, NV_PRMDIO_READ_MODE_ADDRESS + head_offset, 0x0);
  642. for (i = 0; i < 768; i++) {
  643. state->crtc_reg[head].DAC[i] = nv_rd08(device,
  644. NV_PRMDIO_PALETTE_DATA + head_offset);
  645. }
  646. NVSetEnablePalette(dev, head, false);
  647. }
  648. void
  649. nouveau_hw_load_state_palette(struct drm_device *dev, int head,
  650. struct nv04_mode_state *state)
  651. {
  652. struct nouveau_device *device = nouveau_dev(dev);
  653. int head_offset = head * NV_PRMDIO_SIZE, i;
  654. nv_wr08(device, NV_PRMDIO_PIXEL_MASK + head_offset,
  655. NV_PRMDIO_PIXEL_MASK_MASK);
  656. nv_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS + head_offset, 0x0);
  657. for (i = 0; i < 768; i++) {
  658. nv_wr08(device, NV_PRMDIO_PALETTE_DATA + head_offset,
  659. state->crtc_reg[head].DAC[i]);
  660. }
  661. NVSetEnablePalette(dev, head, false);
  662. }
  663. void nouveau_hw_save_state(struct drm_device *dev, int head,
  664. struct nv04_mode_state *state)
  665. {
  666. struct nouveau_drm *drm = nouveau_drm(dev);
  667. if (nv_device(drm->device)->chipset == 0x11)
  668. /* NB: no attempt is made to restore the bad pll later on */
  669. nouveau_hw_fix_bad_vpll(dev, head);
  670. nv_save_state_ramdac(dev, head, state);
  671. nv_save_state_vga(dev, head, state);
  672. nv_save_state_palette(dev, head, state);
  673. nv_save_state_ext(dev, head, state);
  674. }
  675. void nouveau_hw_load_state(struct drm_device *dev, int head,
  676. struct nv04_mode_state *state)
  677. {
  678. NVVgaProtect(dev, head, true);
  679. nv_load_state_ramdac(dev, head, state);
  680. nv_load_state_ext(dev, head, state);
  681. nouveau_hw_load_state_palette(dev, head, state);
  682. nv_load_state_vga(dev, head, state);
  683. NVVgaProtect(dev, head, false);
  684. }