intelfbhw.c 49 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, //I8xx
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } //I9xx
  58. };
  59. int
  60. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  61. {
  62. u32 tmp;
  63. if (!pdev || !dinfo)
  64. return 1;
  65. switch (pdev->device) {
  66. case PCI_DEVICE_ID_INTEL_830M:
  67. dinfo->name = "Intel(R) 830M";
  68. dinfo->chipset = INTEL_830M;
  69. dinfo->mobile = 1;
  70. dinfo->pll_index = PLLS_I8xx;
  71. return 0;
  72. case PCI_DEVICE_ID_INTEL_845G:
  73. dinfo->name = "Intel(R) 845G";
  74. dinfo->chipset = INTEL_845G;
  75. dinfo->mobile = 0;
  76. dinfo->pll_index = PLLS_I8xx;
  77. return 0;
  78. case PCI_DEVICE_ID_INTEL_85XGM:
  79. tmp = 0;
  80. dinfo->mobile = 1;
  81. dinfo->pll_index = PLLS_I8xx;
  82. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  83. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  84. INTEL_85X_VARIANT_MASK) {
  85. case INTEL_VAR_855GME:
  86. dinfo->name = "Intel(R) 855GME";
  87. dinfo->chipset = INTEL_855GME;
  88. return 0;
  89. case INTEL_VAR_855GM:
  90. dinfo->name = "Intel(R) 855GM";
  91. dinfo->chipset = INTEL_855GM;
  92. return 0;
  93. case INTEL_VAR_852GME:
  94. dinfo->name = "Intel(R) 852GME";
  95. dinfo->chipset = INTEL_852GME;
  96. return 0;
  97. case INTEL_VAR_852GM:
  98. dinfo->name = "Intel(R) 852GM";
  99. dinfo->chipset = INTEL_852GM;
  100. return 0;
  101. default:
  102. dinfo->name = "Intel(R) 852GM/855GM";
  103. dinfo->chipset = INTEL_85XGM;
  104. return 0;
  105. }
  106. break;
  107. case PCI_DEVICE_ID_INTEL_865G:
  108. dinfo->name = "Intel(R) 865G";
  109. dinfo->chipset = INTEL_865G;
  110. dinfo->mobile = 0;
  111. dinfo->pll_index = PLLS_I8xx;
  112. return 0;
  113. case PCI_DEVICE_ID_INTEL_915G:
  114. dinfo->name = "Intel(R) 915G";
  115. dinfo->chipset = INTEL_915G;
  116. dinfo->mobile = 0;
  117. dinfo->pll_index = PLLS_I9xx;
  118. return 0;
  119. case PCI_DEVICE_ID_INTEL_915GM:
  120. dinfo->name = "Intel(R) 915GM";
  121. dinfo->chipset = INTEL_915GM;
  122. dinfo->mobile = 1;
  123. dinfo->pll_index = PLLS_I9xx;
  124. return 0;
  125. case PCI_DEVICE_ID_INTEL_945G:
  126. dinfo->name = "Intel(R) 945G";
  127. dinfo->chipset = INTEL_945G;
  128. dinfo->mobile = 0;
  129. dinfo->pll_index = PLLS_I9xx;
  130. return 0;
  131. case PCI_DEVICE_ID_INTEL_945GM:
  132. dinfo->name = "Intel(R) 945GM";
  133. dinfo->chipset = INTEL_945GM;
  134. dinfo->mobile = 1;
  135. dinfo->pll_index = PLLS_I9xx;
  136. return 0;
  137. default:
  138. return 1;
  139. }
  140. }
  141. int
  142. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  143. int *stolen_size)
  144. {
  145. struct pci_dev *bridge_dev;
  146. u16 tmp;
  147. int stolen_overhead;
  148. if (!pdev || !aperture_size || !stolen_size)
  149. return 1;
  150. /* Find the bridge device. It is always 0:0.0 */
  151. if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
  152. ERR_MSG("cannot find bridge device\n");
  153. return 1;
  154. }
  155. /* Get the fb aperture size and "stolen" memory amount. */
  156. tmp = 0;
  157. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  158. pci_dev_put(bridge_dev);
  159. switch (pdev->device) {
  160. case PCI_DEVICE_ID_INTEL_915G:
  161. case PCI_DEVICE_ID_INTEL_915GM:
  162. case PCI_DEVICE_ID_INTEL_945G:
  163. case PCI_DEVICE_ID_INTEL_945GM:
  164. /* 915 and 945 chipsets support a 256MB aperture.
  165. Aperture size is determined by inspected the
  166. base address of the aperture. */
  167. if (pci_resource_start(pdev, 2) & 0x08000000)
  168. *aperture_size = MB(128);
  169. else
  170. *aperture_size = MB(256);
  171. break;
  172. default:
  173. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  174. *aperture_size = MB(64);
  175. else
  176. *aperture_size = MB(128);
  177. break;
  178. }
  179. /* Stolen memory size is reduced by the GTT and the popup.
  180. GTT is 1K per MB of aperture size, and popup is 4K. */
  181. stolen_overhead = (*aperture_size / MB(1)) + 4;
  182. switch(pdev->device) {
  183. case PCI_DEVICE_ID_INTEL_830M:
  184. case PCI_DEVICE_ID_INTEL_845G:
  185. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  186. case INTEL_830_GMCH_GMS_STOLEN_512:
  187. *stolen_size = KB(512) - KB(stolen_overhead);
  188. return 0;
  189. case INTEL_830_GMCH_GMS_STOLEN_1024:
  190. *stolen_size = MB(1) - KB(stolen_overhead);
  191. return 0;
  192. case INTEL_830_GMCH_GMS_STOLEN_8192:
  193. *stolen_size = MB(8) - KB(stolen_overhead);
  194. return 0;
  195. case INTEL_830_GMCH_GMS_LOCAL:
  196. ERR_MSG("only local memory found\n");
  197. return 1;
  198. case INTEL_830_GMCH_GMS_DISABLED:
  199. ERR_MSG("video memory is disabled\n");
  200. return 1;
  201. default:
  202. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  203. tmp & INTEL_830_GMCH_GMS_MASK);
  204. return 1;
  205. }
  206. break;
  207. default:
  208. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  209. case INTEL_855_GMCH_GMS_STOLEN_1M:
  210. *stolen_size = MB(1) - KB(stolen_overhead);
  211. return 0;
  212. case INTEL_855_GMCH_GMS_STOLEN_4M:
  213. *stolen_size = MB(4) - KB(stolen_overhead);
  214. return 0;
  215. case INTEL_855_GMCH_GMS_STOLEN_8M:
  216. *stolen_size = MB(8) - KB(stolen_overhead);
  217. return 0;
  218. case INTEL_855_GMCH_GMS_STOLEN_16M:
  219. *stolen_size = MB(16) - KB(stolen_overhead);
  220. return 0;
  221. case INTEL_855_GMCH_GMS_STOLEN_32M:
  222. *stolen_size = MB(32) - KB(stolen_overhead);
  223. return 0;
  224. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  225. *stolen_size = MB(48) - KB(stolen_overhead);
  226. return 0;
  227. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  228. *stolen_size = MB(64) - KB(stolen_overhead);
  229. return 0;
  230. case INTEL_855_GMCH_GMS_DISABLED:
  231. ERR_MSG("video memory is disabled\n");
  232. return 0;
  233. default:
  234. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  235. tmp & INTEL_855_GMCH_GMS_MASK);
  236. return 1;
  237. }
  238. }
  239. }
  240. int
  241. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  242. {
  243. int dvo = 0;
  244. if (INREG(LVDS) & PORT_ENABLE)
  245. dvo |= LVDS_PORT;
  246. if (INREG(DVOA) & PORT_ENABLE)
  247. dvo |= DVOA_PORT;
  248. if (INREG(DVOB) & PORT_ENABLE)
  249. dvo |= DVOB_PORT;
  250. if (INREG(DVOC) & PORT_ENABLE)
  251. dvo |= DVOC_PORT;
  252. return dvo;
  253. }
  254. const char *
  255. intelfbhw_dvo_to_string(int dvo)
  256. {
  257. if (dvo & DVOA_PORT)
  258. return "DVO port A";
  259. else if (dvo & DVOB_PORT)
  260. return "DVO port B";
  261. else if (dvo & DVOC_PORT)
  262. return "DVO port C";
  263. else if (dvo & LVDS_PORT)
  264. return "LVDS port";
  265. else
  266. return NULL;
  267. }
  268. int
  269. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  270. struct fb_var_screeninfo *var)
  271. {
  272. int bytes_per_pixel;
  273. int tmp;
  274. #if VERBOSE > 0
  275. DBG_MSG("intelfbhw_validate_mode\n");
  276. #endif
  277. bytes_per_pixel = var->bits_per_pixel / 8;
  278. if (bytes_per_pixel == 3)
  279. bytes_per_pixel = 4;
  280. /* Check if enough video memory. */
  281. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  282. if (tmp > dinfo->fb.size) {
  283. WRN_MSG("Not enough video ram for mode "
  284. "(%d KByte vs %d KByte).\n",
  285. BtoKB(tmp), BtoKB(dinfo->fb.size));
  286. return 1;
  287. }
  288. /* Check if x/y limits are OK. */
  289. if (var->xres - 1 > HACTIVE_MASK) {
  290. WRN_MSG("X resolution too large (%d vs %d).\n",
  291. var->xres, HACTIVE_MASK + 1);
  292. return 1;
  293. }
  294. if (var->yres - 1 > VACTIVE_MASK) {
  295. WRN_MSG("Y resolution too large (%d vs %d).\n",
  296. var->yres, VACTIVE_MASK + 1);
  297. return 1;
  298. }
  299. /* Check for doublescan modes. */
  300. if (var->vmode & FB_VMODE_DOUBLE) {
  301. WRN_MSG("Mode is double-scan.\n");
  302. return 1;
  303. }
  304. /* Check if clock is OK. */
  305. tmp = 1000000000 / var->pixclock;
  306. if (tmp < MIN_CLOCK) {
  307. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  308. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  309. return 1;
  310. }
  311. if (tmp > MAX_CLOCK) {
  312. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  313. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  314. return 1;
  315. }
  316. return 0;
  317. }
  318. int
  319. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  320. {
  321. struct intelfb_info *dinfo = GET_DINFO(info);
  322. u32 offset, xoffset, yoffset;
  323. #if VERBOSE > 0
  324. DBG_MSG("intelfbhw_pan_display\n");
  325. #endif
  326. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  327. yoffset = var->yoffset;
  328. if ((xoffset + var->xres > var->xres_virtual) ||
  329. (yoffset + var->yres > var->yres_virtual))
  330. return -EINVAL;
  331. offset = (yoffset * dinfo->pitch) +
  332. (xoffset * var->bits_per_pixel) / 8;
  333. offset += dinfo->fb.offset << 12;
  334. dinfo->vsync.pan_offset = offset;
  335. if ((var->activate & FB_ACTIVATE_VBL) && !intelfbhw_enable_irq(dinfo, 0)) {
  336. dinfo->vsync.pan_display = 1;
  337. } else {
  338. dinfo->vsync.pan_display = 0;
  339. OUTREG(DSPABASE, offset);
  340. }
  341. return 0;
  342. }
  343. /* Blank the screen. */
  344. void
  345. intelfbhw_do_blank(int blank, struct fb_info *info)
  346. {
  347. struct intelfb_info *dinfo = GET_DINFO(info);
  348. u32 tmp;
  349. #if VERBOSE > 0
  350. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  351. #endif
  352. /* Turn plane A on or off */
  353. tmp = INREG(DSPACNTR);
  354. if (blank)
  355. tmp &= ~DISPPLANE_PLANE_ENABLE;
  356. else
  357. tmp |= DISPPLANE_PLANE_ENABLE;
  358. OUTREG(DSPACNTR, tmp);
  359. /* Flush */
  360. tmp = INREG(DSPABASE);
  361. OUTREG(DSPABASE, tmp);
  362. /* Turn off/on the HW cursor */
  363. #if VERBOSE > 0
  364. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  365. #endif
  366. if (dinfo->cursor_on) {
  367. if (blank) {
  368. intelfbhw_cursor_hide(dinfo);
  369. } else {
  370. intelfbhw_cursor_show(dinfo);
  371. }
  372. dinfo->cursor_on = 1;
  373. }
  374. dinfo->cursor_blanked = blank;
  375. /* Set DPMS level */
  376. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  377. switch (blank) {
  378. case FB_BLANK_UNBLANK:
  379. case FB_BLANK_NORMAL:
  380. tmp |= ADPA_DPMS_D0;
  381. break;
  382. case FB_BLANK_VSYNC_SUSPEND:
  383. tmp |= ADPA_DPMS_D1;
  384. break;
  385. case FB_BLANK_HSYNC_SUSPEND:
  386. tmp |= ADPA_DPMS_D2;
  387. break;
  388. case FB_BLANK_POWERDOWN:
  389. tmp |= ADPA_DPMS_D3;
  390. break;
  391. }
  392. OUTREG(ADPA, tmp);
  393. return;
  394. }
  395. void
  396. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  397. unsigned red, unsigned green, unsigned blue,
  398. unsigned transp)
  399. {
  400. #if VERBOSE > 0
  401. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  402. regno, red, green, blue);
  403. #endif
  404. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  405. PALETTE_A : PALETTE_B;
  406. OUTREG(palette_reg + (regno << 2),
  407. (red << PALETTE_8_RED_SHIFT) |
  408. (green << PALETTE_8_GREEN_SHIFT) |
  409. (blue << PALETTE_8_BLUE_SHIFT));
  410. }
  411. int
  412. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  413. int flag)
  414. {
  415. int i;
  416. #if VERBOSE > 0
  417. DBG_MSG("intelfbhw_read_hw_state\n");
  418. #endif
  419. if (!hw || !dinfo)
  420. return -1;
  421. /* Read in as much of the HW state as possible. */
  422. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  423. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  424. hw->vga_pd = INREG(VGAPD);
  425. hw->dpll_a = INREG(DPLL_A);
  426. hw->dpll_b = INREG(DPLL_B);
  427. hw->fpa0 = INREG(FPA0);
  428. hw->fpa1 = INREG(FPA1);
  429. hw->fpb0 = INREG(FPB0);
  430. hw->fpb1 = INREG(FPB1);
  431. if (flag == 1)
  432. return flag;
  433. #if 0
  434. /* This seems to be a problem with the 852GM/855GM */
  435. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  436. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  437. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  438. }
  439. #endif
  440. if (flag == 2)
  441. return flag;
  442. hw->htotal_a = INREG(HTOTAL_A);
  443. hw->hblank_a = INREG(HBLANK_A);
  444. hw->hsync_a = INREG(HSYNC_A);
  445. hw->vtotal_a = INREG(VTOTAL_A);
  446. hw->vblank_a = INREG(VBLANK_A);
  447. hw->vsync_a = INREG(VSYNC_A);
  448. hw->src_size_a = INREG(SRC_SIZE_A);
  449. hw->bclrpat_a = INREG(BCLRPAT_A);
  450. hw->htotal_b = INREG(HTOTAL_B);
  451. hw->hblank_b = INREG(HBLANK_B);
  452. hw->hsync_b = INREG(HSYNC_B);
  453. hw->vtotal_b = INREG(VTOTAL_B);
  454. hw->vblank_b = INREG(VBLANK_B);
  455. hw->vsync_b = INREG(VSYNC_B);
  456. hw->src_size_b = INREG(SRC_SIZE_B);
  457. hw->bclrpat_b = INREG(BCLRPAT_B);
  458. if (flag == 3)
  459. return flag;
  460. hw->adpa = INREG(ADPA);
  461. hw->dvoa = INREG(DVOA);
  462. hw->dvob = INREG(DVOB);
  463. hw->dvoc = INREG(DVOC);
  464. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  465. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  466. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  467. hw->lvds = INREG(LVDS);
  468. if (flag == 4)
  469. return flag;
  470. hw->pipe_a_conf = INREG(PIPEACONF);
  471. hw->pipe_b_conf = INREG(PIPEBCONF);
  472. hw->disp_arb = INREG(DISPARB);
  473. if (flag == 5)
  474. return flag;
  475. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  476. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  477. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  478. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  479. if (flag == 6)
  480. return flag;
  481. for (i = 0; i < 4; i++) {
  482. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  483. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  484. }
  485. if (flag == 7)
  486. return flag;
  487. hw->cursor_size = INREG(CURSOR_SIZE);
  488. if (flag == 8)
  489. return flag;
  490. hw->disp_a_ctrl = INREG(DSPACNTR);
  491. hw->disp_b_ctrl = INREG(DSPBCNTR);
  492. hw->disp_a_base = INREG(DSPABASE);
  493. hw->disp_b_base = INREG(DSPBBASE);
  494. hw->disp_a_stride = INREG(DSPASTRIDE);
  495. hw->disp_b_stride = INREG(DSPBSTRIDE);
  496. if (flag == 9)
  497. return flag;
  498. hw->vgacntrl = INREG(VGACNTRL);
  499. if (flag == 10)
  500. return flag;
  501. hw->add_id = INREG(ADD_ID);
  502. if (flag == 11)
  503. return flag;
  504. for (i = 0; i < 7; i++) {
  505. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  506. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  507. if (i < 3)
  508. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  509. }
  510. for (i = 0; i < 8; i++)
  511. hw->fence[i] = INREG(FENCE + (i << 2));
  512. hw->instpm = INREG(INSTPM);
  513. hw->mem_mode = INREG(MEM_MODE);
  514. hw->fw_blc_0 = INREG(FW_BLC_0);
  515. hw->fw_blc_1 = INREG(FW_BLC_1);
  516. hw->hwstam = INREG16(HWSTAM);
  517. hw->ier = INREG16(IER);
  518. hw->iir = INREG16(IIR);
  519. hw->imr = INREG16(IMR);
  520. return 0;
  521. }
  522. static int calc_vclock3(int index, int m, int n, int p)
  523. {
  524. if (p == 0 || n == 0)
  525. return 0;
  526. return plls[index].ref_clk * m / n / p;
  527. }
  528. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  529. {
  530. struct pll_min_max *pll = &plls[index];
  531. u32 m, vco, p;
  532. m = (5 * (m1 + 2)) + (m2 + 2);
  533. n += 2;
  534. vco = pll->ref_clk * m / n;
  535. if (index == PLLS_I8xx) {
  536. p = ((p1 + 2) * (1 << (p2 + 1)));
  537. } else {
  538. p = ((p1) * (p2 ? 5 : 10));
  539. }
  540. return vco / p;
  541. }
  542. #if REGDUMP
  543. static void
  544. intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
  545. {
  546. int p1, p2;
  547. if (IS_I9XX(dinfo)) {
  548. if (dpll & DPLL_P1_FORCE_DIV2)
  549. p1 = 1;
  550. else
  551. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  552. p1 = ffs(p1);
  553. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  554. } else {
  555. if (dpll & DPLL_P1_FORCE_DIV2)
  556. p1 = 0;
  557. else
  558. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  559. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  560. }
  561. *o_p1 = p1;
  562. *o_p2 = p2;
  563. }
  564. #endif
  565. void
  566. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  567. {
  568. #if REGDUMP
  569. int i, m1, m2, n, p1, p2;
  570. int index = dinfo->pll_index;
  571. DBG_MSG("intelfbhw_print_hw_state\n");
  572. if (!hw)
  573. return;
  574. /* Read in as much of the HW state as possible. */
  575. printk("hw state dump start\n");
  576. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  577. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  578. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  579. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  580. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  581. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  582. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  583. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  584. m1, m2, n, p1, p2);
  585. printk(" VGA0: clock is %d\n",
  586. calc_vclock(index, m1, m2, n, p1, p2, 0));
  587. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  588. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  589. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  590. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  591. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  592. m1, m2, n, p1, p2);
  593. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  594. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  595. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  596. printk(" FPA0: 0x%08x\n", hw->fpa0);
  597. printk(" FPA1: 0x%08x\n", hw->fpa1);
  598. printk(" FPB0: 0x%08x\n", hw->fpb0);
  599. printk(" FPB1: 0x%08x\n", hw->fpb1);
  600. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  601. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  602. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  603. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  604. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  605. m1, m2, n, p1, p2);
  606. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  607. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  608. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  609. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  610. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  611. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  612. m1, m2, n, p1, p2);
  613. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  614. #if 0
  615. printk(" PALETTE_A:\n");
  616. for (i = 0; i < PALETTE_8_ENTRIES)
  617. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  618. printk(" PALETTE_B:\n");
  619. for (i = 0; i < PALETTE_8_ENTRIES)
  620. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  621. #endif
  622. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  623. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  624. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  625. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  626. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  627. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  628. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  629. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  630. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  631. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  632. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  633. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  634. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  635. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  636. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  637. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  638. printk(" ADPA: 0x%08x\n", hw->adpa);
  639. printk(" DVOA: 0x%08x\n", hw->dvoa);
  640. printk(" DVOB: 0x%08x\n", hw->dvob);
  641. printk(" DVOC: 0x%08x\n", hw->dvoc);
  642. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  643. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  644. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  645. printk(" LVDS: 0x%08x\n", hw->lvds);
  646. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  647. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  648. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  649. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  650. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  651. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  652. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  653. printk(" CURSOR_A_PALETTE: ");
  654. for (i = 0; i < 4; i++) {
  655. printk("0x%08x", hw->cursor_a_palette[i]);
  656. if (i < 3)
  657. printk(", ");
  658. }
  659. printk("\n");
  660. printk(" CURSOR_B_PALETTE: ");
  661. for (i = 0; i < 4; i++) {
  662. printk("0x%08x", hw->cursor_b_palette[i]);
  663. if (i < 3)
  664. printk(", ");
  665. }
  666. printk("\n");
  667. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  668. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  669. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  670. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  671. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  672. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  673. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  674. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  675. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  676. for (i = 0; i < 7; i++) {
  677. printk(" SWF0%d 0x%08x\n", i,
  678. hw->swf0x[i]);
  679. }
  680. for (i = 0; i < 7; i++) {
  681. printk(" SWF1%d 0x%08x\n", i,
  682. hw->swf1x[i]);
  683. }
  684. for (i = 0; i < 3; i++) {
  685. printk(" SWF3%d 0x%08x\n", i,
  686. hw->swf3x[i]);
  687. }
  688. for (i = 0; i < 8; i++)
  689. printk(" FENCE%d 0x%08x\n", i,
  690. hw->fence[i]);
  691. printk(" INSTPM 0x%08x\n", hw->instpm);
  692. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  693. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  694. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  695. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  696. printk(" IER 0x%04x\n", hw->ier);
  697. printk(" IIR 0x%04x\n", hw->iir);
  698. printk(" IMR 0x%04x\n", hw->imr);
  699. printk("hw state dump end\n");
  700. #endif
  701. }
  702. /* Split the M parameter into M1 and M2. */
  703. static int
  704. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  705. {
  706. int m1, m2;
  707. int testm;
  708. struct pll_min_max *pll = &plls[index];
  709. /* no point optimising too much - brute force m */
  710. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  711. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  712. testm = (5 * (m1 + 2)) + (m2 + 2);
  713. if (testm == m) {
  714. *retm1 = (unsigned int)m1;
  715. *retm2 = (unsigned int)m2;
  716. return 0;
  717. }
  718. }
  719. }
  720. return 1;
  721. }
  722. /* Split the P parameter into P1 and P2. */
  723. static int
  724. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  725. {
  726. int p1, p2;
  727. struct pll_min_max *pll = &plls[index];
  728. if (index == PLLS_I9xx) {
  729. p2 = (p % 10) ? 1 : 0;
  730. p1 = p / (p2 ? 5 : 10);
  731. *retp1 = (unsigned int)p1;
  732. *retp2 = (unsigned int)p2;
  733. return 0;
  734. }
  735. if (p % 4 == 0)
  736. p2 = 1;
  737. else
  738. p2 = 0;
  739. p1 = (p / (1 << (p2 + 1))) - 2;
  740. if (p % 4 == 0 && p1 < pll->min_p1) {
  741. p2 = 0;
  742. p1 = (p / (1 << (p2 + 1))) - 2;
  743. }
  744. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  745. (p1 + 2) * (1 << (p2 + 1)) != p) {
  746. return 1;
  747. } else {
  748. *retp1 = (unsigned int)p1;
  749. *retp2 = (unsigned int)p2;
  750. return 0;
  751. }
  752. }
  753. static int
  754. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  755. u32 *retp2, u32 *retclock)
  756. {
  757. u32 m1, m2, n, p1, p2, n1, testm;
  758. u32 f_vco, p, p_best = 0, m, f_out = 0;
  759. u32 err_max, err_target, err_best = 10000000;
  760. u32 n_best = 0, m_best = 0, f_best, f_err;
  761. u32 p_min, p_max, p_inc, div_max;
  762. struct pll_min_max *pll = &plls[index];
  763. /* Accept 0.5% difference, but aim for 0.1% */
  764. err_max = 5 * clock / 1000;
  765. err_target = clock / 1000;
  766. DBG_MSG("Clock is %d\n", clock);
  767. div_max = pll->max_vco / clock;
  768. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  769. p_min = p_inc;
  770. p_max = ROUND_DOWN_TO(div_max, p_inc);
  771. if (p_min < pll->min_p)
  772. p_min = pll->min_p;
  773. if (p_max > pll->max_p)
  774. p_max = pll->max_p;
  775. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  776. p = p_min;
  777. do {
  778. if (splitp(index, p, &p1, &p2)) {
  779. WRN_MSG("cannot split p = %d\n", p);
  780. p += p_inc;
  781. continue;
  782. }
  783. n = pll->min_n;
  784. f_vco = clock * p;
  785. do {
  786. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  787. if (m < pll->min_m)
  788. m = pll->min_m + 1;
  789. if (m > pll->max_m)
  790. m = pll->max_m - 1;
  791. for (testm = m - 1; testm <= m; testm++) {
  792. f_out = calc_vclock3(index, testm, n, p);
  793. if (splitm(index, testm, &m1, &m2)) {
  794. WRN_MSG("cannot split m = %d\n",
  795. testm);
  796. continue;
  797. }
  798. if (clock > f_out)
  799. f_err = clock - f_out;
  800. else/* slightly bias the error for bigger clocks */
  801. f_err = f_out - clock + 1;
  802. if (f_err < err_best) {
  803. m_best = testm;
  804. n_best = n;
  805. p_best = p;
  806. f_best = f_out;
  807. err_best = f_err;
  808. }
  809. }
  810. n++;
  811. } while ((n <= pll->max_n) && (f_out >= clock));
  812. p += p_inc;
  813. } while ((p <= p_max));
  814. if (!m_best) {
  815. WRN_MSG("cannot find parameters for clock %d\n", clock);
  816. return 1;
  817. }
  818. m = m_best;
  819. n = n_best;
  820. p = p_best;
  821. splitm(index, m, &m1, &m2);
  822. splitp(index, p, &p1, &p2);
  823. n1 = n - 2;
  824. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  825. "f: %d (%d), VCO: %d\n",
  826. m, m1, m2, n, n1, p, p1, p2,
  827. calc_vclock3(index, m, n, p),
  828. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  829. calc_vclock3(index, m, n, p) * p);
  830. *retm1 = m1;
  831. *retm2 = m2;
  832. *retn = n1;
  833. *retp1 = p1;
  834. *retp2 = p2;
  835. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  836. return 0;
  837. }
  838. static __inline__ int
  839. check_overflow(u32 value, u32 limit, const char *description)
  840. {
  841. if (value > limit) {
  842. WRN_MSG("%s value %d exceeds limit %d\n",
  843. description, value, limit);
  844. return 1;
  845. }
  846. return 0;
  847. }
  848. /* It is assumed that hw is filled in with the initial state information. */
  849. int
  850. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  851. struct fb_var_screeninfo *var)
  852. {
  853. int pipe = PIPE_A;
  854. u32 *dpll, *fp0, *fp1;
  855. u32 m1, m2, n, p1, p2, clock_target, clock;
  856. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  857. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  858. u32 vsync_pol, hsync_pol;
  859. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  860. u32 stride_alignment;
  861. DBG_MSG("intelfbhw_mode_to_hw\n");
  862. /* Disable VGA */
  863. hw->vgacntrl |= VGA_DISABLE;
  864. /* Check whether pipe A or pipe B is enabled. */
  865. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  866. pipe = PIPE_A;
  867. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  868. pipe = PIPE_B;
  869. /* Set which pipe's registers will be set. */
  870. if (pipe == PIPE_B) {
  871. dpll = &hw->dpll_b;
  872. fp0 = &hw->fpb0;
  873. fp1 = &hw->fpb1;
  874. hs = &hw->hsync_b;
  875. hb = &hw->hblank_b;
  876. ht = &hw->htotal_b;
  877. vs = &hw->vsync_b;
  878. vb = &hw->vblank_b;
  879. vt = &hw->vtotal_b;
  880. ss = &hw->src_size_b;
  881. pipe_conf = &hw->pipe_b_conf;
  882. } else {
  883. dpll = &hw->dpll_a;
  884. fp0 = &hw->fpa0;
  885. fp1 = &hw->fpa1;
  886. hs = &hw->hsync_a;
  887. hb = &hw->hblank_a;
  888. ht = &hw->htotal_a;
  889. vs = &hw->vsync_a;
  890. vb = &hw->vblank_a;
  891. vt = &hw->vtotal_a;
  892. ss = &hw->src_size_a;
  893. pipe_conf = &hw->pipe_a_conf;
  894. }
  895. /* Use ADPA register for sync control. */
  896. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  897. /* sync polarity */
  898. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  899. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  900. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  901. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  902. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  903. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  904. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  905. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  906. /* Connect correct pipe to the analog port DAC */
  907. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  908. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  909. /* Set DPMS state to D0 (on) */
  910. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  911. hw->adpa |= ADPA_DPMS_D0;
  912. hw->adpa |= ADPA_DAC_ENABLE;
  913. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  914. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  915. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  916. /* Desired clock in kHz */
  917. clock_target = 1000000000 / var->pixclock;
  918. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  919. &n, &p1, &p2, &clock)) {
  920. WRN_MSG("calc_pll_params failed\n");
  921. return 1;
  922. }
  923. /* Check for overflow. */
  924. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  925. return 1;
  926. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  927. return 1;
  928. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  929. return 1;
  930. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  931. return 1;
  932. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  933. return 1;
  934. *dpll &= ~DPLL_P1_FORCE_DIV2;
  935. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  936. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  937. if (IS_I9XX(dinfo)) {
  938. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  939. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  940. } else {
  941. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  942. }
  943. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  944. (m1 << FP_M1_DIVISOR_SHIFT) |
  945. (m2 << FP_M2_DIVISOR_SHIFT);
  946. *fp1 = *fp0;
  947. hw->dvob &= ~PORT_ENABLE;
  948. hw->dvoc &= ~PORT_ENABLE;
  949. /* Use display plane A. */
  950. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  951. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  952. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  953. switch (intelfb_var_to_depth(var)) {
  954. case 8:
  955. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  956. break;
  957. case 15:
  958. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  959. break;
  960. case 16:
  961. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  962. break;
  963. case 24:
  964. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  965. break;
  966. }
  967. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  968. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  969. /* Set CRTC registers. */
  970. hactive = var->xres;
  971. hsync_start = hactive + var->right_margin;
  972. hsync_end = hsync_start + var->hsync_len;
  973. htotal = hsync_end + var->left_margin;
  974. hblank_start = hactive;
  975. hblank_end = htotal;
  976. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  977. hactive, hsync_start, hsync_end, htotal, hblank_start,
  978. hblank_end);
  979. vactive = var->yres;
  980. vsync_start = vactive + var->lower_margin;
  981. vsync_end = vsync_start + var->vsync_len;
  982. vtotal = vsync_end + var->upper_margin;
  983. vblank_start = vactive;
  984. vblank_end = vtotal;
  985. vblank_end = vsync_end + 1;
  986. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  987. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  988. vblank_end);
  989. /* Adjust for register values, and check for overflow. */
  990. hactive--;
  991. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  992. return 1;
  993. hsync_start--;
  994. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  995. return 1;
  996. hsync_end--;
  997. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  998. return 1;
  999. htotal--;
  1000. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1001. return 1;
  1002. hblank_start--;
  1003. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1004. return 1;
  1005. hblank_end--;
  1006. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1007. return 1;
  1008. vactive--;
  1009. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1010. return 1;
  1011. vsync_start--;
  1012. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1013. return 1;
  1014. vsync_end--;
  1015. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1016. return 1;
  1017. vtotal--;
  1018. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1019. return 1;
  1020. vblank_start--;
  1021. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1022. return 1;
  1023. vblank_end--;
  1024. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1025. return 1;
  1026. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1027. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1028. (hblank_end << HSYNCEND_SHIFT);
  1029. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1030. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1031. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1032. (vblank_end << VSYNCEND_SHIFT);
  1033. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1034. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1035. (vactive << SRC_SIZE_VERT_SHIFT);
  1036. hw->disp_a_stride = dinfo->pitch;
  1037. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1038. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1039. var->xoffset * var->bits_per_pixel / 8;
  1040. hw->disp_a_base += dinfo->fb.offset << 12;
  1041. /* Check stride alignment. */
  1042. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1043. STRIDE_ALIGNMENT;
  1044. if (hw->disp_a_stride % stride_alignment != 0) {
  1045. WRN_MSG("display stride %d has bad alignment %d\n",
  1046. hw->disp_a_stride, stride_alignment);
  1047. return 1;
  1048. }
  1049. /* Set the palette to 8-bit mode. */
  1050. *pipe_conf &= ~PIPECONF_GAMMA;
  1051. if (var->vmode & FB_VMODE_INTERLACED)
  1052. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1053. else
  1054. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1055. return 0;
  1056. }
  1057. /* Program a (non-VGA) video mode. */
  1058. int
  1059. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1060. const struct intelfb_hwstate *hw, int blank)
  1061. {
  1062. int pipe = PIPE_A;
  1063. u32 tmp;
  1064. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1065. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1066. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1067. u32 hsync_reg, htotal_reg, hblank_reg;
  1068. u32 vsync_reg, vtotal_reg, vblank_reg;
  1069. u32 src_size_reg;
  1070. u32 count, tmp_val[3];
  1071. /* Assume single pipe, display plane A, analog CRT. */
  1072. #if VERBOSE > 0
  1073. DBG_MSG("intelfbhw_program_mode\n");
  1074. #endif
  1075. /* Disable VGA */
  1076. tmp = INREG(VGACNTRL);
  1077. tmp |= VGA_DISABLE;
  1078. OUTREG(VGACNTRL, tmp);
  1079. /* Check whether pipe A or pipe B is enabled. */
  1080. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1081. pipe = PIPE_A;
  1082. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1083. pipe = PIPE_B;
  1084. dinfo->pipe = pipe;
  1085. if (pipe == PIPE_B) {
  1086. dpll = &hw->dpll_b;
  1087. fp0 = &hw->fpb0;
  1088. fp1 = &hw->fpb1;
  1089. pipe_conf = &hw->pipe_b_conf;
  1090. hs = &hw->hsync_b;
  1091. hb = &hw->hblank_b;
  1092. ht = &hw->htotal_b;
  1093. vs = &hw->vsync_b;
  1094. vb = &hw->vblank_b;
  1095. vt = &hw->vtotal_b;
  1096. ss = &hw->src_size_b;
  1097. dpll_reg = DPLL_B;
  1098. fp0_reg = FPB0;
  1099. fp1_reg = FPB1;
  1100. pipe_conf_reg = PIPEBCONF;
  1101. hsync_reg = HSYNC_B;
  1102. htotal_reg = HTOTAL_B;
  1103. hblank_reg = HBLANK_B;
  1104. vsync_reg = VSYNC_B;
  1105. vtotal_reg = VTOTAL_B;
  1106. vblank_reg = VBLANK_B;
  1107. src_size_reg = SRC_SIZE_B;
  1108. } else {
  1109. dpll = &hw->dpll_a;
  1110. fp0 = &hw->fpa0;
  1111. fp1 = &hw->fpa1;
  1112. pipe_conf = &hw->pipe_a_conf;
  1113. hs = &hw->hsync_a;
  1114. hb = &hw->hblank_a;
  1115. ht = &hw->htotal_a;
  1116. vs = &hw->vsync_a;
  1117. vb = &hw->vblank_a;
  1118. vt = &hw->vtotal_a;
  1119. ss = &hw->src_size_a;
  1120. dpll_reg = DPLL_A;
  1121. fp0_reg = FPA0;
  1122. fp1_reg = FPA1;
  1123. pipe_conf_reg = PIPEACONF;
  1124. hsync_reg = HSYNC_A;
  1125. htotal_reg = HTOTAL_A;
  1126. hblank_reg = HBLANK_A;
  1127. vsync_reg = VSYNC_A;
  1128. vtotal_reg = VTOTAL_A;
  1129. vblank_reg = VBLANK_A;
  1130. src_size_reg = SRC_SIZE_A;
  1131. }
  1132. /* turn off pipe */
  1133. tmp = INREG(pipe_conf_reg);
  1134. tmp &= ~PIPECONF_ENABLE;
  1135. OUTREG(pipe_conf_reg, tmp);
  1136. count = 0;
  1137. do {
  1138. tmp_val[count%3] = INREG(0x70000);
  1139. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1140. break;
  1141. count++;
  1142. udelay(1);
  1143. if (count % 200 == 0) {
  1144. tmp = INREG(pipe_conf_reg);
  1145. tmp &= ~PIPECONF_ENABLE;
  1146. OUTREG(pipe_conf_reg, tmp);
  1147. }
  1148. } while(count < 2000);
  1149. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1150. /* Disable planes A and B. */
  1151. tmp = INREG(DSPACNTR);
  1152. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1153. OUTREG(DSPACNTR, tmp);
  1154. tmp = INREG(DSPBCNTR);
  1155. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1156. OUTREG(DSPBCNTR, tmp);
  1157. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1158. mdelay(20);
  1159. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1160. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1161. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1162. /* Disable Sync */
  1163. tmp = INREG(ADPA);
  1164. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1165. tmp |= ADPA_DPMS_D3;
  1166. OUTREG(ADPA, tmp);
  1167. /* do some funky magic - xyzzy */
  1168. OUTREG(0x61204, 0xabcd0000);
  1169. /* turn off PLL */
  1170. tmp = INREG(dpll_reg);
  1171. tmp &= ~DPLL_VCO_ENABLE;
  1172. OUTREG(dpll_reg, tmp);
  1173. /* Set PLL parameters */
  1174. OUTREG(fp0_reg, *fp0);
  1175. OUTREG(fp1_reg, *fp1);
  1176. /* Enable PLL */
  1177. OUTREG(dpll_reg, *dpll);
  1178. /* Set DVOs B/C */
  1179. OUTREG(DVOB, hw->dvob);
  1180. OUTREG(DVOC, hw->dvoc);
  1181. /* undo funky magic */
  1182. OUTREG(0x61204, 0x00000000);
  1183. /* Set ADPA */
  1184. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1185. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1186. /* Set pipe parameters */
  1187. OUTREG(hsync_reg, *hs);
  1188. OUTREG(hblank_reg, *hb);
  1189. OUTREG(htotal_reg, *ht);
  1190. OUTREG(vsync_reg, *vs);
  1191. OUTREG(vblank_reg, *vb);
  1192. OUTREG(vtotal_reg, *vt);
  1193. OUTREG(src_size_reg, *ss);
  1194. /* Enable pipe */
  1195. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1196. /* Enable sync */
  1197. tmp = INREG(ADPA);
  1198. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1199. tmp |= ADPA_DPMS_D0;
  1200. OUTREG(ADPA, tmp);
  1201. /* setup display plane */
  1202. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1203. /*
  1204. * i830M errata: the display plane must be enabled
  1205. * to allow writes to the other bits in the plane
  1206. * control register.
  1207. */
  1208. tmp = INREG(DSPACNTR);
  1209. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1210. tmp |= DISPPLANE_PLANE_ENABLE;
  1211. OUTREG(DSPACNTR, tmp);
  1212. OUTREG(DSPACNTR,
  1213. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1214. mdelay(1);
  1215. }
  1216. }
  1217. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1218. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1219. OUTREG(DSPABASE, hw->disp_a_base);
  1220. /* Enable plane */
  1221. if (!blank) {
  1222. tmp = INREG(DSPACNTR);
  1223. tmp |= DISPPLANE_PLANE_ENABLE;
  1224. OUTREG(DSPACNTR, tmp);
  1225. OUTREG(DSPABASE, hw->disp_a_base);
  1226. }
  1227. return 0;
  1228. }
  1229. /* forward declarations */
  1230. static void refresh_ring(struct intelfb_info *dinfo);
  1231. static void reset_state(struct intelfb_info *dinfo);
  1232. static void do_flush(struct intelfb_info *dinfo);
  1233. static u32 get_ring_space(struct intelfb_info *dinfo)
  1234. {
  1235. u32 ring_space;
  1236. if (dinfo->ring_tail >= dinfo->ring_head)
  1237. ring_space = dinfo->ring.size -
  1238. (dinfo->ring_tail - dinfo->ring_head);
  1239. else
  1240. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1241. if (ring_space > RING_MIN_FREE)
  1242. ring_space -= RING_MIN_FREE;
  1243. else
  1244. ring_space = 0;
  1245. return ring_space;
  1246. }
  1247. static int
  1248. wait_ring(struct intelfb_info *dinfo, int n)
  1249. {
  1250. int i = 0;
  1251. unsigned long end;
  1252. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1253. #if VERBOSE > 0
  1254. DBG_MSG("wait_ring: %d\n", n);
  1255. #endif
  1256. end = jiffies + (HZ * 3);
  1257. while (dinfo->ring_space < n) {
  1258. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1259. dinfo->ring_space = get_ring_space(dinfo);
  1260. if (dinfo->ring_head != last_head) {
  1261. end = jiffies + (HZ * 3);
  1262. last_head = dinfo->ring_head;
  1263. }
  1264. i++;
  1265. if (time_before(end, jiffies)) {
  1266. if (!i) {
  1267. /* Try again */
  1268. reset_state(dinfo);
  1269. refresh_ring(dinfo);
  1270. do_flush(dinfo);
  1271. end = jiffies + (HZ * 3);
  1272. i = 1;
  1273. } else {
  1274. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1275. dinfo->ring_space, n);
  1276. WRN_MSG("lockup - turning off hardware "
  1277. "acceleration\n");
  1278. dinfo->ring_lockup = 1;
  1279. break;
  1280. }
  1281. }
  1282. udelay(1);
  1283. }
  1284. return i;
  1285. }
  1286. static void
  1287. do_flush(struct intelfb_info *dinfo) {
  1288. START_RING(2);
  1289. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1290. OUT_RING(MI_NOOP);
  1291. ADVANCE_RING();
  1292. }
  1293. void
  1294. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1295. {
  1296. #if VERBOSE > 0
  1297. DBG_MSG("intelfbhw_do_sync\n");
  1298. #endif
  1299. if (!dinfo->accel)
  1300. return;
  1301. /*
  1302. * Send a flush, then wait until the ring is empty. This is what
  1303. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1304. * than the recommended method (both have problems).
  1305. */
  1306. do_flush(dinfo);
  1307. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1308. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1309. }
  1310. static void
  1311. refresh_ring(struct intelfb_info *dinfo)
  1312. {
  1313. #if VERBOSE > 0
  1314. DBG_MSG("refresh_ring\n");
  1315. #endif
  1316. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1317. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1318. dinfo->ring_space = get_ring_space(dinfo);
  1319. }
  1320. static void
  1321. reset_state(struct intelfb_info *dinfo)
  1322. {
  1323. int i;
  1324. u32 tmp;
  1325. #if VERBOSE > 0
  1326. DBG_MSG("reset_state\n");
  1327. #endif
  1328. for (i = 0; i < FENCE_NUM; i++)
  1329. OUTREG(FENCE + (i << 2), 0);
  1330. /* Flush the ring buffer if it's enabled. */
  1331. tmp = INREG(PRI_RING_LENGTH);
  1332. if (tmp & RING_ENABLE) {
  1333. #if VERBOSE > 0
  1334. DBG_MSG("reset_state: ring was enabled\n");
  1335. #endif
  1336. refresh_ring(dinfo);
  1337. intelfbhw_do_sync(dinfo);
  1338. DO_RING_IDLE();
  1339. }
  1340. OUTREG(PRI_RING_LENGTH, 0);
  1341. OUTREG(PRI_RING_HEAD, 0);
  1342. OUTREG(PRI_RING_TAIL, 0);
  1343. OUTREG(PRI_RING_START, 0);
  1344. }
  1345. /* Stop the 2D engine, and turn off the ring buffer. */
  1346. void
  1347. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1348. {
  1349. #if VERBOSE > 0
  1350. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1351. dinfo->ring_active);
  1352. #endif
  1353. if (!dinfo->accel)
  1354. return;
  1355. dinfo->ring_active = 0;
  1356. reset_state(dinfo);
  1357. }
  1358. /*
  1359. * Enable the ring buffer, and initialise the 2D engine.
  1360. * It is assumed that the graphics engine has been stopped by previously
  1361. * calling intelfb_2d_stop().
  1362. */
  1363. void
  1364. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1365. {
  1366. #if VERBOSE > 0
  1367. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1368. dinfo->accel, dinfo->ring_active);
  1369. #endif
  1370. if (!dinfo->accel)
  1371. return;
  1372. /* Initialise the primary ring buffer. */
  1373. OUTREG(PRI_RING_LENGTH, 0);
  1374. OUTREG(PRI_RING_TAIL, 0);
  1375. OUTREG(PRI_RING_HEAD, 0);
  1376. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1377. OUTREG(PRI_RING_LENGTH,
  1378. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1379. RING_NO_REPORT | RING_ENABLE);
  1380. refresh_ring(dinfo);
  1381. dinfo->ring_active = 1;
  1382. }
  1383. /* 2D fillrect (solid fill or invert) */
  1384. void
  1385. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1386. u32 color, u32 pitch, u32 bpp, u32 rop)
  1387. {
  1388. u32 br00, br09, br13, br14, br16;
  1389. #if VERBOSE > 0
  1390. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1391. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1392. #endif
  1393. br00 = COLOR_BLT_CMD;
  1394. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1395. br13 = (rop << ROP_SHIFT) | pitch;
  1396. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1397. br16 = color;
  1398. switch (bpp) {
  1399. case 8:
  1400. br13 |= COLOR_DEPTH_8;
  1401. break;
  1402. case 16:
  1403. br13 |= COLOR_DEPTH_16;
  1404. break;
  1405. case 32:
  1406. br13 |= COLOR_DEPTH_32;
  1407. br00 |= WRITE_ALPHA | WRITE_RGB;
  1408. break;
  1409. }
  1410. START_RING(6);
  1411. OUT_RING(br00);
  1412. OUT_RING(br13);
  1413. OUT_RING(br14);
  1414. OUT_RING(br09);
  1415. OUT_RING(br16);
  1416. OUT_RING(MI_NOOP);
  1417. ADVANCE_RING();
  1418. #if VERBOSE > 0
  1419. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1420. dinfo->ring_tail, dinfo->ring_space);
  1421. #endif
  1422. }
  1423. void
  1424. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1425. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1426. {
  1427. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1428. #if VERBOSE > 0
  1429. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1430. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1431. #endif
  1432. br00 = XY_SRC_COPY_BLT_CMD;
  1433. br09 = dinfo->fb_start;
  1434. br11 = (pitch << PITCH_SHIFT);
  1435. br12 = dinfo->fb_start;
  1436. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1437. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1438. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1439. ((dsty + h) << HEIGHT_SHIFT);
  1440. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1441. switch (bpp) {
  1442. case 8:
  1443. br13 |= COLOR_DEPTH_8;
  1444. break;
  1445. case 16:
  1446. br13 |= COLOR_DEPTH_16;
  1447. break;
  1448. case 32:
  1449. br13 |= COLOR_DEPTH_32;
  1450. br00 |= WRITE_ALPHA | WRITE_RGB;
  1451. break;
  1452. }
  1453. START_RING(8);
  1454. OUT_RING(br00);
  1455. OUT_RING(br13);
  1456. OUT_RING(br22);
  1457. OUT_RING(br23);
  1458. OUT_RING(br09);
  1459. OUT_RING(br26);
  1460. OUT_RING(br11);
  1461. OUT_RING(br12);
  1462. ADVANCE_RING();
  1463. }
  1464. int
  1465. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1466. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1467. {
  1468. int nbytes, ndwords, pad, tmp;
  1469. u32 br00, br09, br13, br18, br19, br22, br23;
  1470. int dat, ix, iy, iw;
  1471. int i, j;
  1472. #if VERBOSE > 0
  1473. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1474. #endif
  1475. /* size in bytes of a padded scanline */
  1476. nbytes = ROUND_UP_TO(w, 16) / 8;
  1477. /* Total bytes of padded scanline data to write out. */
  1478. nbytes = nbytes * h;
  1479. /*
  1480. * Check if the glyph data exceeds the immediate mode limit.
  1481. * It would take a large font (1K pixels) to hit this limit.
  1482. */
  1483. if (nbytes > MAX_MONO_IMM_SIZE)
  1484. return 0;
  1485. /* Src data is packaged a dword (32-bit) at a time. */
  1486. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1487. /*
  1488. * Ring has to be padded to a quad word. But because the command starts
  1489. with 7 bytes, pad only if there is an even number of ndwords
  1490. */
  1491. pad = !(ndwords % 2);
  1492. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1493. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1494. br09 = dinfo->fb_start;
  1495. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1496. br18 = bg;
  1497. br19 = fg;
  1498. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1499. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1500. switch (bpp) {
  1501. case 8:
  1502. br13 |= COLOR_DEPTH_8;
  1503. break;
  1504. case 16:
  1505. br13 |= COLOR_DEPTH_16;
  1506. break;
  1507. case 32:
  1508. br13 |= COLOR_DEPTH_32;
  1509. br00 |= WRITE_ALPHA | WRITE_RGB;
  1510. break;
  1511. }
  1512. START_RING(8 + ndwords);
  1513. OUT_RING(br00);
  1514. OUT_RING(br13);
  1515. OUT_RING(br22);
  1516. OUT_RING(br23);
  1517. OUT_RING(br09);
  1518. OUT_RING(br18);
  1519. OUT_RING(br19);
  1520. ix = iy = 0;
  1521. iw = ROUND_UP_TO(w, 8) / 8;
  1522. while (ndwords--) {
  1523. dat = 0;
  1524. for (j = 0; j < 2; ++j) {
  1525. for (i = 0; i < 2; ++i) {
  1526. if (ix != iw || i == 0)
  1527. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1528. }
  1529. if (ix == iw && iy != (h-1)) {
  1530. ix = 0;
  1531. ++iy;
  1532. }
  1533. }
  1534. OUT_RING(dat);
  1535. }
  1536. if (pad)
  1537. OUT_RING(MI_NOOP);
  1538. ADVANCE_RING();
  1539. return 1;
  1540. }
  1541. /* HW cursor functions. */
  1542. void
  1543. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1544. {
  1545. u32 tmp;
  1546. #if VERBOSE > 0
  1547. DBG_MSG("intelfbhw_cursor_init\n");
  1548. #endif
  1549. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1550. if (!dinfo->cursor.physical)
  1551. return;
  1552. tmp = INREG(CURSOR_A_CONTROL);
  1553. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1554. CURSOR_MEM_TYPE_LOCAL |
  1555. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1556. tmp |= CURSOR_MODE_DISABLE;
  1557. OUTREG(CURSOR_A_CONTROL, tmp);
  1558. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1559. } else {
  1560. tmp = INREG(CURSOR_CONTROL);
  1561. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1562. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1563. tmp = CURSOR_FORMAT_3C;
  1564. OUTREG(CURSOR_CONTROL, tmp);
  1565. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1566. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1567. (64 << CURSOR_SIZE_V_SHIFT);
  1568. OUTREG(CURSOR_SIZE, tmp);
  1569. }
  1570. }
  1571. void
  1572. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1573. {
  1574. u32 tmp;
  1575. #if VERBOSE > 0
  1576. DBG_MSG("intelfbhw_cursor_hide\n");
  1577. #endif
  1578. dinfo->cursor_on = 0;
  1579. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1580. if (!dinfo->cursor.physical)
  1581. return;
  1582. tmp = INREG(CURSOR_A_CONTROL);
  1583. tmp &= ~CURSOR_MODE_MASK;
  1584. tmp |= CURSOR_MODE_DISABLE;
  1585. OUTREG(CURSOR_A_CONTROL, tmp);
  1586. /* Flush changes */
  1587. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1588. } else {
  1589. tmp = INREG(CURSOR_CONTROL);
  1590. tmp &= ~CURSOR_ENABLE;
  1591. OUTREG(CURSOR_CONTROL, tmp);
  1592. }
  1593. }
  1594. void
  1595. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1596. {
  1597. u32 tmp;
  1598. #if VERBOSE > 0
  1599. DBG_MSG("intelfbhw_cursor_show\n");
  1600. #endif
  1601. dinfo->cursor_on = 1;
  1602. if (dinfo->cursor_blanked)
  1603. return;
  1604. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1605. if (!dinfo->cursor.physical)
  1606. return;
  1607. tmp = INREG(CURSOR_A_CONTROL);
  1608. tmp &= ~CURSOR_MODE_MASK;
  1609. tmp |= CURSOR_MODE_64_4C_AX;
  1610. OUTREG(CURSOR_A_CONTROL, tmp);
  1611. /* Flush changes */
  1612. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1613. } else {
  1614. tmp = INREG(CURSOR_CONTROL);
  1615. tmp |= CURSOR_ENABLE;
  1616. OUTREG(CURSOR_CONTROL, tmp);
  1617. }
  1618. }
  1619. void
  1620. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1621. {
  1622. u32 tmp;
  1623. #if VERBOSE > 0
  1624. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1625. #endif
  1626. /*
  1627. * Sets the position. The coordinates are assumed to already
  1628. * have any offset adjusted. Assume that the cursor is never
  1629. * completely off-screen, and that x, y are always >= 0.
  1630. */
  1631. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1632. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1633. OUTREG(CURSOR_A_POSITION, tmp);
  1634. if (IS_I9XX(dinfo)) {
  1635. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1636. }
  1637. }
  1638. void
  1639. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1640. {
  1641. #if VERBOSE > 0
  1642. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1643. #endif
  1644. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1645. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1646. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1647. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1648. }
  1649. void
  1650. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1651. u8 *data)
  1652. {
  1653. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1654. int i, j, w = width / 8;
  1655. int mod = width % 8, t_mask, d_mask;
  1656. #if VERBOSE > 0
  1657. DBG_MSG("intelfbhw_cursor_load\n");
  1658. #endif
  1659. if (!dinfo->cursor.virtual)
  1660. return;
  1661. t_mask = 0xff >> mod;
  1662. d_mask = ~(0xff >> mod);
  1663. for (i = height; i--; ) {
  1664. for (j = 0; j < w; j++) {
  1665. writeb(0x00, addr + j);
  1666. writeb(*(data++), addr + j+8);
  1667. }
  1668. if (mod) {
  1669. writeb(t_mask, addr + j);
  1670. writeb(*(data++) & d_mask, addr + j+8);
  1671. }
  1672. addr += 16;
  1673. }
  1674. }
  1675. void
  1676. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1677. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1678. int i, j;
  1679. #if VERBOSE > 0
  1680. DBG_MSG("intelfbhw_cursor_reset\n");
  1681. #endif
  1682. if (!dinfo->cursor.virtual)
  1683. return;
  1684. for (i = 64; i--; ) {
  1685. for (j = 0; j < 8; j++) {
  1686. writeb(0xff, addr + j+0);
  1687. writeb(0x00, addr + j+8);
  1688. }
  1689. addr += 16;
  1690. }
  1691. }
  1692. static irqreturn_t
  1693. intelfbhw_irq(int irq, void *dev_id) {
  1694. int handled = 0;
  1695. u16 tmp;
  1696. struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
  1697. spin_lock(&dinfo->int_lock);
  1698. tmp = INREG16(IIR);
  1699. tmp &= VSYNC_PIPE_A_INTERRUPT;
  1700. if (tmp == 0) {
  1701. spin_unlock(&dinfo->int_lock);
  1702. return IRQ_RETVAL(handled);
  1703. }
  1704. OUTREG16(IIR, tmp);
  1705. if (tmp & VSYNC_PIPE_A_INTERRUPT) {
  1706. dinfo->vsync.count++;
  1707. if (dinfo->vsync.pan_display) {
  1708. dinfo->vsync.pan_display = 0;
  1709. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1710. }
  1711. wake_up_interruptible(&dinfo->vsync.wait);
  1712. handled = 1;
  1713. }
  1714. spin_unlock(&dinfo->int_lock);
  1715. return IRQ_RETVAL(handled);
  1716. }
  1717. int
  1718. intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
  1719. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1720. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1721. "intelfb", dinfo)) {
  1722. clear_bit(0, &dinfo->irq_flags);
  1723. return -EINVAL;
  1724. }
  1725. spin_lock_irq(&dinfo->int_lock);
  1726. OUTREG16(HWSTAM, 0xfffe);
  1727. OUTREG16(IMR, 0x0);
  1728. OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
  1729. spin_unlock_irq(&dinfo->int_lock);
  1730. } else if (reenable) {
  1731. u16 ier;
  1732. spin_lock_irq(&dinfo->int_lock);
  1733. ier = INREG16(IER);
  1734. if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
  1735. DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
  1736. OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
  1737. }
  1738. spin_unlock_irq(&dinfo->int_lock);
  1739. }
  1740. return 0;
  1741. }
  1742. void
  1743. intelfbhw_disable_irq(struct intelfb_info *dinfo) {
  1744. u16 tmp;
  1745. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1746. if (dinfo->vsync.pan_display) {
  1747. dinfo->vsync.pan_display = 0;
  1748. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1749. }
  1750. spin_lock_irq(&dinfo->int_lock);
  1751. OUTREG16(HWSTAM, 0xffff);
  1752. OUTREG16(IMR, 0xffff);
  1753. OUTREG16(IER, 0x0);
  1754. tmp = INREG16(IIR);
  1755. OUTREG16(IIR, tmp);
  1756. spin_unlock_irq(&dinfo->int_lock);
  1757. free_irq(dinfo->pdev->irq, dinfo);
  1758. }
  1759. }
  1760. int
  1761. intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) {
  1762. struct intelfb_vsync *vsync;
  1763. unsigned int count;
  1764. int ret;
  1765. switch (pipe) {
  1766. case 0:
  1767. vsync = &dinfo->vsync;
  1768. break;
  1769. default:
  1770. return -ENODEV;
  1771. }
  1772. ret = intelfbhw_enable_irq(dinfo, 0);
  1773. if (ret) {
  1774. return ret;
  1775. }
  1776. count = vsync->count;
  1777. ret = wait_event_interruptible_timeout(vsync->wait, count != vsync->count, HZ/10);
  1778. if (ret < 0) {
  1779. return ret;
  1780. }
  1781. if (ret == 0) {
  1782. intelfbhw_enable_irq(dinfo, 1);
  1783. DBG_MSG("wait_for_vsync timed out!\n");
  1784. return -ETIMEDOUT;
  1785. }
  1786. return 0;
  1787. }