sched.c 215 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. #endif /* CONFIG_GROUP_SCHED */
  312. /* CFS-related fields in a runqueue */
  313. struct cfs_rq {
  314. struct load_weight load;
  315. unsigned long nr_running;
  316. u64 exec_clock;
  317. u64 min_vruntime;
  318. struct rb_root tasks_timeline;
  319. struct rb_node *rb_leftmost;
  320. struct list_head tasks;
  321. struct list_head *balance_iterator;
  322. /*
  323. * 'curr' points to currently running entity on this cfs_rq.
  324. * It is set to NULL otherwise (i.e when none are currently running).
  325. */
  326. struct sched_entity *curr, *next;
  327. unsigned long nr_spread_over;
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  330. /*
  331. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  332. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  333. * (like users, containers etc.)
  334. *
  335. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  336. * list is used during load balance.
  337. */
  338. struct list_head leaf_cfs_rq_list;
  339. struct task_group *tg; /* group that "owns" this runqueue */
  340. #endif
  341. };
  342. /* Real-Time classes' related field in a runqueue: */
  343. struct rt_rq {
  344. struct rt_prio_array active;
  345. unsigned long rt_nr_running;
  346. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  347. int highest_prio; /* highest queued rt task prio */
  348. #endif
  349. #ifdef CONFIG_SMP
  350. unsigned long rt_nr_migratory;
  351. int overloaded;
  352. #endif
  353. int rt_throttled;
  354. u64 rt_time;
  355. u64 rt_runtime;
  356. /* Nests inside the rq lock: */
  357. spinlock_t rt_runtime_lock;
  358. #ifdef CONFIG_RT_GROUP_SCHED
  359. unsigned long rt_nr_boosted;
  360. struct rq *rq;
  361. struct list_head leaf_rt_rq_list;
  362. struct task_group *tg;
  363. struct sched_rt_entity *rt_se;
  364. #endif
  365. };
  366. #ifdef CONFIG_SMP
  367. /*
  368. * We add the notion of a root-domain which will be used to define per-domain
  369. * variables. Each exclusive cpuset essentially defines an island domain by
  370. * fully partitioning the member cpus from any other cpuset. Whenever a new
  371. * exclusive cpuset is created, we also create and attach a new root-domain
  372. * object.
  373. *
  374. */
  375. struct root_domain {
  376. atomic_t refcount;
  377. cpumask_t span;
  378. cpumask_t online;
  379. /*
  380. * The "RT overload" flag: it gets set if a CPU has more than
  381. * one runnable RT task.
  382. */
  383. cpumask_t rto_mask;
  384. atomic_t rto_count;
  385. #ifdef CONFIG_SMP
  386. struct cpupri cpupri;
  387. #endif
  388. };
  389. /*
  390. * By default the system creates a single root-domain with all cpus as
  391. * members (mimicking the global state we have today).
  392. */
  393. static struct root_domain def_root_domain;
  394. #endif
  395. /*
  396. * This is the main, per-CPU runqueue data structure.
  397. *
  398. * Locking rule: those places that want to lock multiple runqueues
  399. * (such as the load balancing or the thread migration code), lock
  400. * acquire operations must be ordered by ascending &runqueue.
  401. */
  402. struct rq {
  403. /* runqueue lock: */
  404. spinlock_t lock;
  405. /*
  406. * nr_running and cpu_load should be in the same cacheline because
  407. * remote CPUs use both these fields when doing load calculation.
  408. */
  409. unsigned long nr_running;
  410. #define CPU_LOAD_IDX_MAX 5
  411. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  412. unsigned char idle_at_tick;
  413. #ifdef CONFIG_NO_HZ
  414. unsigned long last_tick_seen;
  415. unsigned char in_nohz_recently;
  416. #endif
  417. /* capture load from *all* tasks on this cpu: */
  418. struct load_weight load;
  419. unsigned long nr_load_updates;
  420. u64 nr_switches;
  421. struct cfs_rq cfs;
  422. struct rt_rq rt;
  423. #ifdef CONFIG_FAIR_GROUP_SCHED
  424. /* list of leaf cfs_rq on this cpu: */
  425. struct list_head leaf_cfs_rq_list;
  426. #endif
  427. #ifdef CONFIG_RT_GROUP_SCHED
  428. struct list_head leaf_rt_rq_list;
  429. #endif
  430. /*
  431. * This is part of a global counter where only the total sum
  432. * over all CPUs matters. A task can increase this counter on
  433. * one CPU and if it got migrated afterwards it may decrease
  434. * it on another CPU. Always updated under the runqueue lock:
  435. */
  436. unsigned long nr_uninterruptible;
  437. struct task_struct *curr, *idle;
  438. unsigned long next_balance;
  439. struct mm_struct *prev_mm;
  440. u64 clock;
  441. atomic_t nr_iowait;
  442. #ifdef CONFIG_SMP
  443. struct root_domain *rd;
  444. struct sched_domain *sd;
  445. /* For active balancing */
  446. int active_balance;
  447. int push_cpu;
  448. /* cpu of this runqueue: */
  449. int cpu;
  450. int online;
  451. struct task_struct *migration_thread;
  452. struct list_head migration_queue;
  453. #endif
  454. #ifdef CONFIG_SCHED_HRTICK
  455. unsigned long hrtick_flags;
  456. ktime_t hrtick_expire;
  457. struct hrtimer hrtick_timer;
  458. #endif
  459. #ifdef CONFIG_SCHEDSTATS
  460. /* latency stats */
  461. struct sched_info rq_sched_info;
  462. /* sys_sched_yield() stats */
  463. unsigned int yld_exp_empty;
  464. unsigned int yld_act_empty;
  465. unsigned int yld_both_empty;
  466. unsigned int yld_count;
  467. /* schedule() stats */
  468. unsigned int sched_switch;
  469. unsigned int sched_count;
  470. unsigned int sched_goidle;
  471. /* try_to_wake_up() stats */
  472. unsigned int ttwu_count;
  473. unsigned int ttwu_local;
  474. /* BKL stats */
  475. unsigned int bkl_count;
  476. #endif
  477. struct lock_class_key rq_lock_key;
  478. };
  479. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  480. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  481. {
  482. rq->curr->sched_class->check_preempt_curr(rq, p);
  483. }
  484. static inline int cpu_of(struct rq *rq)
  485. {
  486. #ifdef CONFIG_SMP
  487. return rq->cpu;
  488. #else
  489. return 0;
  490. #endif
  491. }
  492. /*
  493. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  494. * See detach_destroy_domains: synchronize_sched for details.
  495. *
  496. * The domain tree of any CPU may only be accessed from within
  497. * preempt-disabled sections.
  498. */
  499. #define for_each_domain(cpu, __sd) \
  500. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  501. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  502. #define this_rq() (&__get_cpu_var(runqueues))
  503. #define task_rq(p) cpu_rq(task_cpu(p))
  504. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  505. static inline void update_rq_clock(struct rq *rq)
  506. {
  507. rq->clock = sched_clock_cpu(cpu_of(rq));
  508. }
  509. /*
  510. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  511. */
  512. #ifdef CONFIG_SCHED_DEBUG
  513. # define const_debug __read_mostly
  514. #else
  515. # define const_debug static const
  516. #endif
  517. /*
  518. * Debugging: various feature bits
  519. */
  520. #define SCHED_FEAT(name, enabled) \
  521. __SCHED_FEAT_##name ,
  522. enum {
  523. #include "sched_features.h"
  524. };
  525. #undef SCHED_FEAT
  526. #define SCHED_FEAT(name, enabled) \
  527. (1UL << __SCHED_FEAT_##name) * enabled |
  528. const_debug unsigned int sysctl_sched_features =
  529. #include "sched_features.h"
  530. 0;
  531. #undef SCHED_FEAT
  532. #ifdef CONFIG_SCHED_DEBUG
  533. #define SCHED_FEAT(name, enabled) \
  534. #name ,
  535. static __read_mostly char *sched_feat_names[] = {
  536. #include "sched_features.h"
  537. NULL
  538. };
  539. #undef SCHED_FEAT
  540. static int sched_feat_open(struct inode *inode, struct file *filp)
  541. {
  542. filp->private_data = inode->i_private;
  543. return 0;
  544. }
  545. static ssize_t
  546. sched_feat_read(struct file *filp, char __user *ubuf,
  547. size_t cnt, loff_t *ppos)
  548. {
  549. char *buf;
  550. int r = 0;
  551. int len = 0;
  552. int i;
  553. for (i = 0; sched_feat_names[i]; i++) {
  554. len += strlen(sched_feat_names[i]);
  555. len += 4;
  556. }
  557. buf = kmalloc(len + 2, GFP_KERNEL);
  558. if (!buf)
  559. return -ENOMEM;
  560. for (i = 0; sched_feat_names[i]; i++) {
  561. if (sysctl_sched_features & (1UL << i))
  562. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  563. else
  564. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  565. }
  566. r += sprintf(buf + r, "\n");
  567. WARN_ON(r >= len + 2);
  568. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  569. kfree(buf);
  570. return r;
  571. }
  572. static ssize_t
  573. sched_feat_write(struct file *filp, const char __user *ubuf,
  574. size_t cnt, loff_t *ppos)
  575. {
  576. char buf[64];
  577. char *cmp = buf;
  578. int neg = 0;
  579. int i;
  580. if (cnt > 63)
  581. cnt = 63;
  582. if (copy_from_user(&buf, ubuf, cnt))
  583. return -EFAULT;
  584. buf[cnt] = 0;
  585. if (strncmp(buf, "NO_", 3) == 0) {
  586. neg = 1;
  587. cmp += 3;
  588. }
  589. for (i = 0; sched_feat_names[i]; i++) {
  590. int len = strlen(sched_feat_names[i]);
  591. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  592. if (neg)
  593. sysctl_sched_features &= ~(1UL << i);
  594. else
  595. sysctl_sched_features |= (1UL << i);
  596. break;
  597. }
  598. }
  599. if (!sched_feat_names[i])
  600. return -EINVAL;
  601. filp->f_pos += cnt;
  602. return cnt;
  603. }
  604. static struct file_operations sched_feat_fops = {
  605. .open = sched_feat_open,
  606. .read = sched_feat_read,
  607. .write = sched_feat_write,
  608. };
  609. static __init int sched_init_debug(void)
  610. {
  611. debugfs_create_file("sched_features", 0644, NULL, NULL,
  612. &sched_feat_fops);
  613. return 0;
  614. }
  615. late_initcall(sched_init_debug);
  616. #endif
  617. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  618. /*
  619. * Number of tasks to iterate in a single balance run.
  620. * Limited because this is done with IRQs disabled.
  621. */
  622. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  623. /*
  624. * period over which we measure -rt task cpu usage in us.
  625. * default: 1s
  626. */
  627. unsigned int sysctl_sched_rt_period = 1000000;
  628. static __read_mostly int scheduler_running;
  629. /*
  630. * part of the period that we allow rt tasks to run in us.
  631. * default: 0.95s
  632. */
  633. int sysctl_sched_rt_runtime = 950000;
  634. static inline u64 global_rt_period(void)
  635. {
  636. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  637. }
  638. static inline u64 global_rt_runtime(void)
  639. {
  640. if (sysctl_sched_rt_period < 0)
  641. return RUNTIME_INF;
  642. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  643. }
  644. unsigned long long time_sync_thresh = 100000;
  645. static DEFINE_PER_CPU(unsigned long long, time_offset);
  646. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  647. /*
  648. * Global lock which we take every now and then to synchronize
  649. * the CPUs time. This method is not warp-safe, but it's good
  650. * enough to synchronize slowly diverging time sources and thus
  651. * it's good enough for tracing:
  652. */
  653. static DEFINE_SPINLOCK(time_sync_lock);
  654. static unsigned long long prev_global_time;
  655. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  656. {
  657. /*
  658. * We want this inlined, to not get tracer function calls
  659. * in this critical section:
  660. */
  661. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  662. __raw_spin_lock(&time_sync_lock.raw_lock);
  663. if (time < prev_global_time) {
  664. per_cpu(time_offset, cpu) += prev_global_time - time;
  665. time = prev_global_time;
  666. } else {
  667. prev_global_time = time;
  668. }
  669. __raw_spin_unlock(&time_sync_lock.raw_lock);
  670. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  671. return time;
  672. }
  673. static unsigned long long __cpu_clock(int cpu)
  674. {
  675. unsigned long long now;
  676. /*
  677. * Only call sched_clock() if the scheduler has already been
  678. * initialized (some code might call cpu_clock() very early):
  679. */
  680. if (unlikely(!scheduler_running))
  681. return 0;
  682. now = sched_clock_cpu(cpu);
  683. return now;
  684. }
  685. /*
  686. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  687. * clock constructed from sched_clock():
  688. */
  689. unsigned long long cpu_clock(int cpu)
  690. {
  691. unsigned long long prev_cpu_time, time, delta_time;
  692. unsigned long flags;
  693. local_irq_save(flags);
  694. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  695. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  696. delta_time = time-prev_cpu_time;
  697. if (unlikely(delta_time > time_sync_thresh)) {
  698. time = __sync_cpu_clock(time, cpu);
  699. per_cpu(prev_cpu_time, cpu) = time;
  700. }
  701. local_irq_restore(flags);
  702. return time;
  703. }
  704. EXPORT_SYMBOL_GPL(cpu_clock);
  705. #ifndef prepare_arch_switch
  706. # define prepare_arch_switch(next) do { } while (0)
  707. #endif
  708. #ifndef finish_arch_switch
  709. # define finish_arch_switch(prev) do { } while (0)
  710. #endif
  711. static inline int task_current(struct rq *rq, struct task_struct *p)
  712. {
  713. return rq->curr == p;
  714. }
  715. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  716. static inline int task_running(struct rq *rq, struct task_struct *p)
  717. {
  718. return task_current(rq, p);
  719. }
  720. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  721. {
  722. }
  723. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  724. {
  725. #ifdef CONFIG_DEBUG_SPINLOCK
  726. /* this is a valid case when another task releases the spinlock */
  727. rq->lock.owner = current;
  728. #endif
  729. /*
  730. * If we are tracking spinlock dependencies then we have to
  731. * fix up the runqueue lock - which gets 'carried over' from
  732. * prev into current:
  733. */
  734. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  735. spin_unlock_irq(&rq->lock);
  736. }
  737. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  738. static inline int task_running(struct rq *rq, struct task_struct *p)
  739. {
  740. #ifdef CONFIG_SMP
  741. return p->oncpu;
  742. #else
  743. return task_current(rq, p);
  744. #endif
  745. }
  746. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * We can optimise this out completely for !SMP, because the
  751. * SMP rebalancing from interrupt is the only thing that cares
  752. * here.
  753. */
  754. next->oncpu = 1;
  755. #endif
  756. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  757. spin_unlock_irq(&rq->lock);
  758. #else
  759. spin_unlock(&rq->lock);
  760. #endif
  761. }
  762. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  763. {
  764. #ifdef CONFIG_SMP
  765. /*
  766. * After ->oncpu is cleared, the task can be moved to a different CPU.
  767. * We must ensure this doesn't happen until the switch is completely
  768. * finished.
  769. */
  770. smp_wmb();
  771. prev->oncpu = 0;
  772. #endif
  773. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  774. local_irq_enable();
  775. #endif
  776. }
  777. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  778. /*
  779. * __task_rq_lock - lock the runqueue a given task resides on.
  780. * Must be called interrupts disabled.
  781. */
  782. static inline struct rq *__task_rq_lock(struct task_struct *p)
  783. __acquires(rq->lock)
  784. {
  785. for (;;) {
  786. struct rq *rq = task_rq(p);
  787. spin_lock(&rq->lock);
  788. if (likely(rq == task_rq(p)))
  789. return rq;
  790. spin_unlock(&rq->lock);
  791. }
  792. }
  793. /*
  794. * task_rq_lock - lock the runqueue a given task resides on and disable
  795. * interrupts. Note the ordering: we can safely lookup the task_rq without
  796. * explicitly disabling preemption.
  797. */
  798. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  799. __acquires(rq->lock)
  800. {
  801. struct rq *rq;
  802. for (;;) {
  803. local_irq_save(*flags);
  804. rq = task_rq(p);
  805. spin_lock(&rq->lock);
  806. if (likely(rq == task_rq(p)))
  807. return rq;
  808. spin_unlock_irqrestore(&rq->lock, *flags);
  809. }
  810. }
  811. static void __task_rq_unlock(struct rq *rq)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock(&rq->lock);
  815. }
  816. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  817. __releases(rq->lock)
  818. {
  819. spin_unlock_irqrestore(&rq->lock, *flags);
  820. }
  821. /*
  822. * this_rq_lock - lock this runqueue and disable interrupts.
  823. */
  824. static struct rq *this_rq_lock(void)
  825. __acquires(rq->lock)
  826. {
  827. struct rq *rq;
  828. local_irq_disable();
  829. rq = this_rq();
  830. spin_lock(&rq->lock);
  831. return rq;
  832. }
  833. static void __resched_task(struct task_struct *p, int tif_bit);
  834. static inline void resched_task(struct task_struct *p)
  835. {
  836. __resched_task(p, TIF_NEED_RESCHED);
  837. }
  838. #ifdef CONFIG_SCHED_HRTICK
  839. /*
  840. * Use HR-timers to deliver accurate preemption points.
  841. *
  842. * Its all a bit involved since we cannot program an hrt while holding the
  843. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  844. * reschedule event.
  845. *
  846. * When we get rescheduled we reprogram the hrtick_timer outside of the
  847. * rq->lock.
  848. */
  849. static inline void resched_hrt(struct task_struct *p)
  850. {
  851. __resched_task(p, TIF_HRTICK_RESCHED);
  852. }
  853. static inline void resched_rq(struct rq *rq)
  854. {
  855. unsigned long flags;
  856. spin_lock_irqsave(&rq->lock, flags);
  857. resched_task(rq->curr);
  858. spin_unlock_irqrestore(&rq->lock, flags);
  859. }
  860. enum {
  861. HRTICK_SET, /* re-programm hrtick_timer */
  862. HRTICK_RESET, /* not a new slice */
  863. HRTICK_BLOCK, /* stop hrtick operations */
  864. };
  865. /*
  866. * Use hrtick when:
  867. * - enabled by features
  868. * - hrtimer is actually high res
  869. */
  870. static inline int hrtick_enabled(struct rq *rq)
  871. {
  872. if (!sched_feat(HRTICK))
  873. return 0;
  874. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  875. return 0;
  876. return hrtimer_is_hres_active(&rq->hrtick_timer);
  877. }
  878. /*
  879. * Called to set the hrtick timer state.
  880. *
  881. * called with rq->lock held and irqs disabled
  882. */
  883. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  884. {
  885. assert_spin_locked(&rq->lock);
  886. /*
  887. * preempt at: now + delay
  888. */
  889. rq->hrtick_expire =
  890. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  891. /*
  892. * indicate we need to program the timer
  893. */
  894. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  895. if (reset)
  896. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  897. /*
  898. * New slices are called from the schedule path and don't need a
  899. * forced reschedule.
  900. */
  901. if (reset)
  902. resched_hrt(rq->curr);
  903. }
  904. static void hrtick_clear(struct rq *rq)
  905. {
  906. if (hrtimer_active(&rq->hrtick_timer))
  907. hrtimer_cancel(&rq->hrtick_timer);
  908. }
  909. /*
  910. * Update the timer from the possible pending state.
  911. */
  912. static void hrtick_set(struct rq *rq)
  913. {
  914. ktime_t time;
  915. int set, reset;
  916. unsigned long flags;
  917. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  918. spin_lock_irqsave(&rq->lock, flags);
  919. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  920. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  921. time = rq->hrtick_expire;
  922. clear_thread_flag(TIF_HRTICK_RESCHED);
  923. spin_unlock_irqrestore(&rq->lock, flags);
  924. if (set) {
  925. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  926. if (reset && !hrtimer_active(&rq->hrtick_timer))
  927. resched_rq(rq);
  928. } else
  929. hrtick_clear(rq);
  930. }
  931. /*
  932. * High-resolution timer tick.
  933. * Runs from hardirq context with interrupts disabled.
  934. */
  935. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  936. {
  937. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  938. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  939. spin_lock(&rq->lock);
  940. update_rq_clock(rq);
  941. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  942. spin_unlock(&rq->lock);
  943. return HRTIMER_NORESTART;
  944. }
  945. #ifdef CONFIG_SMP
  946. static void hotplug_hrtick_disable(int cpu)
  947. {
  948. struct rq *rq = cpu_rq(cpu);
  949. unsigned long flags;
  950. spin_lock_irqsave(&rq->lock, flags);
  951. rq->hrtick_flags = 0;
  952. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  953. spin_unlock_irqrestore(&rq->lock, flags);
  954. hrtick_clear(rq);
  955. }
  956. static void hotplug_hrtick_enable(int cpu)
  957. {
  958. struct rq *rq = cpu_rq(cpu);
  959. unsigned long flags;
  960. spin_lock_irqsave(&rq->lock, flags);
  961. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  962. spin_unlock_irqrestore(&rq->lock, flags);
  963. }
  964. static int
  965. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  966. {
  967. int cpu = (int)(long)hcpu;
  968. switch (action) {
  969. case CPU_UP_CANCELED:
  970. case CPU_UP_CANCELED_FROZEN:
  971. case CPU_DOWN_PREPARE:
  972. case CPU_DOWN_PREPARE_FROZEN:
  973. case CPU_DEAD:
  974. case CPU_DEAD_FROZEN:
  975. hotplug_hrtick_disable(cpu);
  976. return NOTIFY_OK;
  977. case CPU_UP_PREPARE:
  978. case CPU_UP_PREPARE_FROZEN:
  979. case CPU_DOWN_FAILED:
  980. case CPU_DOWN_FAILED_FROZEN:
  981. case CPU_ONLINE:
  982. case CPU_ONLINE_FROZEN:
  983. hotplug_hrtick_enable(cpu);
  984. return NOTIFY_OK;
  985. }
  986. return NOTIFY_DONE;
  987. }
  988. static void init_hrtick(void)
  989. {
  990. hotcpu_notifier(hotplug_hrtick, 0);
  991. }
  992. #endif /* CONFIG_SMP */
  993. static void init_rq_hrtick(struct rq *rq)
  994. {
  995. rq->hrtick_flags = 0;
  996. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  997. rq->hrtick_timer.function = hrtick;
  998. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  999. }
  1000. void hrtick_resched(void)
  1001. {
  1002. struct rq *rq;
  1003. unsigned long flags;
  1004. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1005. return;
  1006. local_irq_save(flags);
  1007. rq = cpu_rq(smp_processor_id());
  1008. hrtick_set(rq);
  1009. local_irq_restore(flags);
  1010. }
  1011. #else
  1012. static inline void hrtick_clear(struct rq *rq)
  1013. {
  1014. }
  1015. static inline void hrtick_set(struct rq *rq)
  1016. {
  1017. }
  1018. static inline void init_rq_hrtick(struct rq *rq)
  1019. {
  1020. }
  1021. void hrtick_resched(void)
  1022. {
  1023. }
  1024. static inline void init_hrtick(void)
  1025. {
  1026. }
  1027. #endif
  1028. /*
  1029. * resched_task - mark a task 'to be rescheduled now'.
  1030. *
  1031. * On UP this means the setting of the need_resched flag, on SMP it
  1032. * might also involve a cross-CPU call to trigger the scheduler on
  1033. * the target CPU.
  1034. */
  1035. #ifdef CONFIG_SMP
  1036. #ifndef tsk_is_polling
  1037. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1038. #endif
  1039. static void __resched_task(struct task_struct *p, int tif_bit)
  1040. {
  1041. int cpu;
  1042. assert_spin_locked(&task_rq(p)->lock);
  1043. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1044. return;
  1045. set_tsk_thread_flag(p, tif_bit);
  1046. cpu = task_cpu(p);
  1047. if (cpu == smp_processor_id())
  1048. return;
  1049. /* NEED_RESCHED must be visible before we test polling */
  1050. smp_mb();
  1051. if (!tsk_is_polling(p))
  1052. smp_send_reschedule(cpu);
  1053. }
  1054. static void resched_cpu(int cpu)
  1055. {
  1056. struct rq *rq = cpu_rq(cpu);
  1057. unsigned long flags;
  1058. if (!spin_trylock_irqsave(&rq->lock, flags))
  1059. return;
  1060. resched_task(cpu_curr(cpu));
  1061. spin_unlock_irqrestore(&rq->lock, flags);
  1062. }
  1063. #ifdef CONFIG_NO_HZ
  1064. /*
  1065. * When add_timer_on() enqueues a timer into the timer wheel of an
  1066. * idle CPU then this timer might expire before the next timer event
  1067. * which is scheduled to wake up that CPU. In case of a completely
  1068. * idle system the next event might even be infinite time into the
  1069. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1070. * leaves the inner idle loop so the newly added timer is taken into
  1071. * account when the CPU goes back to idle and evaluates the timer
  1072. * wheel for the next timer event.
  1073. */
  1074. void wake_up_idle_cpu(int cpu)
  1075. {
  1076. struct rq *rq = cpu_rq(cpu);
  1077. if (cpu == smp_processor_id())
  1078. return;
  1079. /*
  1080. * This is safe, as this function is called with the timer
  1081. * wheel base lock of (cpu) held. When the CPU is on the way
  1082. * to idle and has not yet set rq->curr to idle then it will
  1083. * be serialized on the timer wheel base lock and take the new
  1084. * timer into account automatically.
  1085. */
  1086. if (rq->curr != rq->idle)
  1087. return;
  1088. /*
  1089. * We can set TIF_RESCHED on the idle task of the other CPU
  1090. * lockless. The worst case is that the other CPU runs the
  1091. * idle task through an additional NOOP schedule()
  1092. */
  1093. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1094. /* NEED_RESCHED must be visible before we test polling */
  1095. smp_mb();
  1096. if (!tsk_is_polling(rq->idle))
  1097. smp_send_reschedule(cpu);
  1098. }
  1099. #endif /* CONFIG_NO_HZ */
  1100. #else /* !CONFIG_SMP */
  1101. static void __resched_task(struct task_struct *p, int tif_bit)
  1102. {
  1103. assert_spin_locked(&task_rq(p)->lock);
  1104. set_tsk_thread_flag(p, tif_bit);
  1105. }
  1106. #endif /* CONFIG_SMP */
  1107. #if BITS_PER_LONG == 32
  1108. # define WMULT_CONST (~0UL)
  1109. #else
  1110. # define WMULT_CONST (1UL << 32)
  1111. #endif
  1112. #define WMULT_SHIFT 32
  1113. /*
  1114. * Shift right and round:
  1115. */
  1116. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1117. static unsigned long
  1118. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1119. struct load_weight *lw)
  1120. {
  1121. u64 tmp;
  1122. if (!lw->inv_weight) {
  1123. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1124. lw->inv_weight = 1;
  1125. else
  1126. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1127. / (lw->weight+1);
  1128. }
  1129. tmp = (u64)delta_exec * weight;
  1130. /*
  1131. * Check whether we'd overflow the 64-bit multiplication:
  1132. */
  1133. if (unlikely(tmp > WMULT_CONST))
  1134. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1135. WMULT_SHIFT/2);
  1136. else
  1137. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1138. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1139. }
  1140. static inline unsigned long
  1141. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1142. {
  1143. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1144. }
  1145. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1146. {
  1147. lw->weight += inc;
  1148. lw->inv_weight = 0;
  1149. }
  1150. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1151. {
  1152. lw->weight -= dec;
  1153. lw->inv_weight = 0;
  1154. }
  1155. /*
  1156. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1157. * of tasks with abnormal "nice" values across CPUs the contribution that
  1158. * each task makes to its run queue's load is weighted according to its
  1159. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1160. * scaled version of the new time slice allocation that they receive on time
  1161. * slice expiry etc.
  1162. */
  1163. #define WEIGHT_IDLEPRIO 2
  1164. #define WMULT_IDLEPRIO (1 << 31)
  1165. /*
  1166. * Nice levels are multiplicative, with a gentle 10% change for every
  1167. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1168. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1169. * that remained on nice 0.
  1170. *
  1171. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1172. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1173. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1174. * If a task goes up by ~10% and another task goes down by ~10% then
  1175. * the relative distance between them is ~25%.)
  1176. */
  1177. static const int prio_to_weight[40] = {
  1178. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1179. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1180. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1181. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1182. /* 0 */ 1024, 820, 655, 526, 423,
  1183. /* 5 */ 335, 272, 215, 172, 137,
  1184. /* 10 */ 110, 87, 70, 56, 45,
  1185. /* 15 */ 36, 29, 23, 18, 15,
  1186. };
  1187. /*
  1188. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1189. *
  1190. * In cases where the weight does not change often, we can use the
  1191. * precalculated inverse to speed up arithmetics by turning divisions
  1192. * into multiplications:
  1193. */
  1194. static const u32 prio_to_wmult[40] = {
  1195. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1196. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1197. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1198. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1199. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1200. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1201. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1202. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1203. };
  1204. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1205. /*
  1206. * runqueue iterator, to support SMP load-balancing between different
  1207. * scheduling classes, without having to expose their internal data
  1208. * structures to the load-balancing proper:
  1209. */
  1210. struct rq_iterator {
  1211. void *arg;
  1212. struct task_struct *(*start)(void *);
  1213. struct task_struct *(*next)(void *);
  1214. };
  1215. #ifdef CONFIG_SMP
  1216. static unsigned long
  1217. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1218. unsigned long max_load_move, struct sched_domain *sd,
  1219. enum cpu_idle_type idle, int *all_pinned,
  1220. int *this_best_prio, struct rq_iterator *iterator);
  1221. static int
  1222. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1223. struct sched_domain *sd, enum cpu_idle_type idle,
  1224. struct rq_iterator *iterator);
  1225. #endif
  1226. #ifdef CONFIG_CGROUP_CPUACCT
  1227. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1228. #else
  1229. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1230. #endif
  1231. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1232. {
  1233. update_load_add(&rq->load, load);
  1234. }
  1235. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1236. {
  1237. update_load_sub(&rq->load, load);
  1238. }
  1239. #ifdef CONFIG_SMP
  1240. static unsigned long source_load(int cpu, int type);
  1241. static unsigned long target_load(int cpu, int type);
  1242. static unsigned long cpu_avg_load_per_task(int cpu);
  1243. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1244. #endif
  1245. #include "sched_stats.h"
  1246. #include "sched_idletask.c"
  1247. #include "sched_fair.c"
  1248. #include "sched_rt.c"
  1249. #ifdef CONFIG_SCHED_DEBUG
  1250. # include "sched_debug.c"
  1251. #endif
  1252. #define sched_class_highest (&rt_sched_class)
  1253. #define for_each_class(class) \
  1254. for (class = sched_class_highest; class; class = class->next)
  1255. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1256. {
  1257. update_load_add(&rq->load, p->se.load.weight);
  1258. }
  1259. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1260. {
  1261. update_load_sub(&rq->load, p->se.load.weight);
  1262. }
  1263. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1264. {
  1265. rq->nr_running++;
  1266. inc_load(rq, p);
  1267. }
  1268. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1269. {
  1270. rq->nr_running--;
  1271. dec_load(rq, p);
  1272. }
  1273. static void set_load_weight(struct task_struct *p)
  1274. {
  1275. if (task_has_rt_policy(p)) {
  1276. p->se.load.weight = prio_to_weight[0] * 2;
  1277. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1278. return;
  1279. }
  1280. /*
  1281. * SCHED_IDLE tasks get minimal weight:
  1282. */
  1283. if (p->policy == SCHED_IDLE) {
  1284. p->se.load.weight = WEIGHT_IDLEPRIO;
  1285. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1286. return;
  1287. }
  1288. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1289. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1290. }
  1291. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1292. {
  1293. sched_info_queued(p);
  1294. p->sched_class->enqueue_task(rq, p, wakeup);
  1295. p->se.on_rq = 1;
  1296. }
  1297. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1298. {
  1299. p->sched_class->dequeue_task(rq, p, sleep);
  1300. p->se.on_rq = 0;
  1301. }
  1302. /*
  1303. * __normal_prio - return the priority that is based on the static prio
  1304. */
  1305. static inline int __normal_prio(struct task_struct *p)
  1306. {
  1307. return p->static_prio;
  1308. }
  1309. /*
  1310. * Calculate the expected normal priority: i.e. priority
  1311. * without taking RT-inheritance into account. Might be
  1312. * boosted by interactivity modifiers. Changes upon fork,
  1313. * setprio syscalls, and whenever the interactivity
  1314. * estimator recalculates.
  1315. */
  1316. static inline int normal_prio(struct task_struct *p)
  1317. {
  1318. int prio;
  1319. if (task_has_rt_policy(p))
  1320. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1321. else
  1322. prio = __normal_prio(p);
  1323. return prio;
  1324. }
  1325. /*
  1326. * Calculate the current priority, i.e. the priority
  1327. * taken into account by the scheduler. This value might
  1328. * be boosted by RT tasks, or might be boosted by
  1329. * interactivity modifiers. Will be RT if the task got
  1330. * RT-boosted. If not then it returns p->normal_prio.
  1331. */
  1332. static int effective_prio(struct task_struct *p)
  1333. {
  1334. p->normal_prio = normal_prio(p);
  1335. /*
  1336. * If we are RT tasks or we were boosted to RT priority,
  1337. * keep the priority unchanged. Otherwise, update priority
  1338. * to the normal priority:
  1339. */
  1340. if (!rt_prio(p->prio))
  1341. return p->normal_prio;
  1342. return p->prio;
  1343. }
  1344. /*
  1345. * activate_task - move a task to the runqueue.
  1346. */
  1347. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1348. {
  1349. if (task_contributes_to_load(p))
  1350. rq->nr_uninterruptible--;
  1351. enqueue_task(rq, p, wakeup);
  1352. inc_nr_running(p, rq);
  1353. }
  1354. /*
  1355. * deactivate_task - remove a task from the runqueue.
  1356. */
  1357. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1358. {
  1359. if (task_contributes_to_load(p))
  1360. rq->nr_uninterruptible++;
  1361. dequeue_task(rq, p, sleep);
  1362. dec_nr_running(p, rq);
  1363. }
  1364. /**
  1365. * task_curr - is this task currently executing on a CPU?
  1366. * @p: the task in question.
  1367. */
  1368. inline int task_curr(const struct task_struct *p)
  1369. {
  1370. return cpu_curr(task_cpu(p)) == p;
  1371. }
  1372. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1373. {
  1374. set_task_rq(p, cpu);
  1375. #ifdef CONFIG_SMP
  1376. /*
  1377. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1378. * successfuly executed on another CPU. We must ensure that updates of
  1379. * per-task data have been completed by this moment.
  1380. */
  1381. smp_wmb();
  1382. task_thread_info(p)->cpu = cpu;
  1383. #endif
  1384. }
  1385. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1386. const struct sched_class *prev_class,
  1387. int oldprio, int running)
  1388. {
  1389. if (prev_class != p->sched_class) {
  1390. if (prev_class->switched_from)
  1391. prev_class->switched_from(rq, p, running);
  1392. p->sched_class->switched_to(rq, p, running);
  1393. } else
  1394. p->sched_class->prio_changed(rq, p, oldprio, running);
  1395. }
  1396. #ifdef CONFIG_SMP
  1397. /* Used instead of source_load when we know the type == 0 */
  1398. static unsigned long weighted_cpuload(const int cpu)
  1399. {
  1400. return cpu_rq(cpu)->load.weight;
  1401. }
  1402. /*
  1403. * Is this task likely cache-hot:
  1404. */
  1405. static int
  1406. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1407. {
  1408. s64 delta;
  1409. /*
  1410. * Buddy candidates are cache hot:
  1411. */
  1412. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1413. return 1;
  1414. if (p->sched_class != &fair_sched_class)
  1415. return 0;
  1416. if (sysctl_sched_migration_cost == -1)
  1417. return 1;
  1418. if (sysctl_sched_migration_cost == 0)
  1419. return 0;
  1420. delta = now - p->se.exec_start;
  1421. return delta < (s64)sysctl_sched_migration_cost;
  1422. }
  1423. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1424. {
  1425. int old_cpu = task_cpu(p);
  1426. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1427. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1428. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1429. u64 clock_offset;
  1430. clock_offset = old_rq->clock - new_rq->clock;
  1431. #ifdef CONFIG_SCHEDSTATS
  1432. if (p->se.wait_start)
  1433. p->se.wait_start -= clock_offset;
  1434. if (p->se.sleep_start)
  1435. p->se.sleep_start -= clock_offset;
  1436. if (p->se.block_start)
  1437. p->se.block_start -= clock_offset;
  1438. if (old_cpu != new_cpu) {
  1439. schedstat_inc(p, se.nr_migrations);
  1440. if (task_hot(p, old_rq->clock, NULL))
  1441. schedstat_inc(p, se.nr_forced2_migrations);
  1442. }
  1443. #endif
  1444. p->se.vruntime -= old_cfsrq->min_vruntime -
  1445. new_cfsrq->min_vruntime;
  1446. __set_task_cpu(p, new_cpu);
  1447. }
  1448. struct migration_req {
  1449. struct list_head list;
  1450. struct task_struct *task;
  1451. int dest_cpu;
  1452. struct completion done;
  1453. };
  1454. /*
  1455. * The task's runqueue lock must be held.
  1456. * Returns true if you have to wait for migration thread.
  1457. */
  1458. static int
  1459. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1460. {
  1461. struct rq *rq = task_rq(p);
  1462. /*
  1463. * If the task is not on a runqueue (and not running), then
  1464. * it is sufficient to simply update the task's cpu field.
  1465. */
  1466. if (!p->se.on_rq && !task_running(rq, p)) {
  1467. set_task_cpu(p, dest_cpu);
  1468. return 0;
  1469. }
  1470. init_completion(&req->done);
  1471. req->task = p;
  1472. req->dest_cpu = dest_cpu;
  1473. list_add(&req->list, &rq->migration_queue);
  1474. return 1;
  1475. }
  1476. /*
  1477. * wait_task_inactive - wait for a thread to unschedule.
  1478. *
  1479. * The caller must ensure that the task *will* unschedule sometime soon,
  1480. * else this function might spin for a *long* time. This function can't
  1481. * be called with interrupts off, or it may introduce deadlock with
  1482. * smp_call_function() if an IPI is sent by the same process we are
  1483. * waiting to become inactive.
  1484. */
  1485. void wait_task_inactive(struct task_struct *p)
  1486. {
  1487. unsigned long flags;
  1488. int running, on_rq;
  1489. struct rq *rq;
  1490. for (;;) {
  1491. /*
  1492. * We do the initial early heuristics without holding
  1493. * any task-queue locks at all. We'll only try to get
  1494. * the runqueue lock when things look like they will
  1495. * work out!
  1496. */
  1497. rq = task_rq(p);
  1498. /*
  1499. * If the task is actively running on another CPU
  1500. * still, just relax and busy-wait without holding
  1501. * any locks.
  1502. *
  1503. * NOTE! Since we don't hold any locks, it's not
  1504. * even sure that "rq" stays as the right runqueue!
  1505. * But we don't care, since "task_running()" will
  1506. * return false if the runqueue has changed and p
  1507. * is actually now running somewhere else!
  1508. */
  1509. while (task_running(rq, p))
  1510. cpu_relax();
  1511. /*
  1512. * Ok, time to look more closely! We need the rq
  1513. * lock now, to be *sure*. If we're wrong, we'll
  1514. * just go back and repeat.
  1515. */
  1516. rq = task_rq_lock(p, &flags);
  1517. running = task_running(rq, p);
  1518. on_rq = p->se.on_rq;
  1519. task_rq_unlock(rq, &flags);
  1520. /*
  1521. * Was it really running after all now that we
  1522. * checked with the proper locks actually held?
  1523. *
  1524. * Oops. Go back and try again..
  1525. */
  1526. if (unlikely(running)) {
  1527. cpu_relax();
  1528. continue;
  1529. }
  1530. /*
  1531. * It's not enough that it's not actively running,
  1532. * it must be off the runqueue _entirely_, and not
  1533. * preempted!
  1534. *
  1535. * So if it wa still runnable (but just not actively
  1536. * running right now), it's preempted, and we should
  1537. * yield - it could be a while.
  1538. */
  1539. if (unlikely(on_rq)) {
  1540. schedule_timeout_uninterruptible(1);
  1541. continue;
  1542. }
  1543. /*
  1544. * Ahh, all good. It wasn't running, and it wasn't
  1545. * runnable, which means that it will never become
  1546. * running in the future either. We're all done!
  1547. */
  1548. break;
  1549. }
  1550. }
  1551. /***
  1552. * kick_process - kick a running thread to enter/exit the kernel
  1553. * @p: the to-be-kicked thread
  1554. *
  1555. * Cause a process which is running on another CPU to enter
  1556. * kernel-mode, without any delay. (to get signals handled.)
  1557. *
  1558. * NOTE: this function doesnt have to take the runqueue lock,
  1559. * because all it wants to ensure is that the remote task enters
  1560. * the kernel. If the IPI races and the task has been migrated
  1561. * to another CPU then no harm is done and the purpose has been
  1562. * achieved as well.
  1563. */
  1564. void kick_process(struct task_struct *p)
  1565. {
  1566. int cpu;
  1567. preempt_disable();
  1568. cpu = task_cpu(p);
  1569. if ((cpu != smp_processor_id()) && task_curr(p))
  1570. smp_send_reschedule(cpu);
  1571. preempt_enable();
  1572. }
  1573. /*
  1574. * Return a low guess at the load of a migration-source cpu weighted
  1575. * according to the scheduling class and "nice" value.
  1576. *
  1577. * We want to under-estimate the load of migration sources, to
  1578. * balance conservatively.
  1579. */
  1580. static unsigned long source_load(int cpu, int type)
  1581. {
  1582. struct rq *rq = cpu_rq(cpu);
  1583. unsigned long total = weighted_cpuload(cpu);
  1584. if (type == 0)
  1585. return total;
  1586. return min(rq->cpu_load[type-1], total);
  1587. }
  1588. /*
  1589. * Return a high guess at the load of a migration-target cpu weighted
  1590. * according to the scheduling class and "nice" value.
  1591. */
  1592. static unsigned long target_load(int cpu, int type)
  1593. {
  1594. struct rq *rq = cpu_rq(cpu);
  1595. unsigned long total = weighted_cpuload(cpu);
  1596. if (type == 0)
  1597. return total;
  1598. return max(rq->cpu_load[type-1], total);
  1599. }
  1600. /*
  1601. * Return the average load per task on the cpu's run queue
  1602. */
  1603. static unsigned long cpu_avg_load_per_task(int cpu)
  1604. {
  1605. struct rq *rq = cpu_rq(cpu);
  1606. unsigned long total = weighted_cpuload(cpu);
  1607. unsigned long n = rq->nr_running;
  1608. return n ? total / n : SCHED_LOAD_SCALE;
  1609. }
  1610. /*
  1611. * find_idlest_group finds and returns the least busy CPU group within the
  1612. * domain.
  1613. */
  1614. static struct sched_group *
  1615. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1616. {
  1617. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1618. unsigned long min_load = ULONG_MAX, this_load = 0;
  1619. int load_idx = sd->forkexec_idx;
  1620. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1621. do {
  1622. unsigned long load, avg_load;
  1623. int local_group;
  1624. int i;
  1625. /* Skip over this group if it has no CPUs allowed */
  1626. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1627. continue;
  1628. local_group = cpu_isset(this_cpu, group->cpumask);
  1629. /* Tally up the load of all CPUs in the group */
  1630. avg_load = 0;
  1631. for_each_cpu_mask(i, group->cpumask) {
  1632. /* Bias balancing toward cpus of our domain */
  1633. if (local_group)
  1634. load = source_load(i, load_idx);
  1635. else
  1636. load = target_load(i, load_idx);
  1637. avg_load += load;
  1638. }
  1639. /* Adjust by relative CPU power of the group */
  1640. avg_load = sg_div_cpu_power(group,
  1641. avg_load * SCHED_LOAD_SCALE);
  1642. if (local_group) {
  1643. this_load = avg_load;
  1644. this = group;
  1645. } else if (avg_load < min_load) {
  1646. min_load = avg_load;
  1647. idlest = group;
  1648. }
  1649. } while (group = group->next, group != sd->groups);
  1650. if (!idlest || 100*this_load < imbalance*min_load)
  1651. return NULL;
  1652. return idlest;
  1653. }
  1654. /*
  1655. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1656. */
  1657. static int
  1658. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1659. cpumask_t *tmp)
  1660. {
  1661. unsigned long load, min_load = ULONG_MAX;
  1662. int idlest = -1;
  1663. int i;
  1664. /* Traverse only the allowed CPUs */
  1665. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1666. for_each_cpu_mask(i, *tmp) {
  1667. load = weighted_cpuload(i);
  1668. if (load < min_load || (load == min_load && i == this_cpu)) {
  1669. min_load = load;
  1670. idlest = i;
  1671. }
  1672. }
  1673. return idlest;
  1674. }
  1675. /*
  1676. * sched_balance_self: balance the current task (running on cpu) in domains
  1677. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1678. * SD_BALANCE_EXEC.
  1679. *
  1680. * Balance, ie. select the least loaded group.
  1681. *
  1682. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1683. *
  1684. * preempt must be disabled.
  1685. */
  1686. static int sched_balance_self(int cpu, int flag)
  1687. {
  1688. struct task_struct *t = current;
  1689. struct sched_domain *tmp, *sd = NULL;
  1690. for_each_domain(cpu, tmp) {
  1691. /*
  1692. * If power savings logic is enabled for a domain, stop there.
  1693. */
  1694. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1695. break;
  1696. if (tmp->flags & flag)
  1697. sd = tmp;
  1698. }
  1699. while (sd) {
  1700. cpumask_t span, tmpmask;
  1701. struct sched_group *group;
  1702. int new_cpu, weight;
  1703. if (!(sd->flags & flag)) {
  1704. sd = sd->child;
  1705. continue;
  1706. }
  1707. span = sd->span;
  1708. group = find_idlest_group(sd, t, cpu);
  1709. if (!group) {
  1710. sd = sd->child;
  1711. continue;
  1712. }
  1713. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1714. if (new_cpu == -1 || new_cpu == cpu) {
  1715. /* Now try balancing at a lower domain level of cpu */
  1716. sd = sd->child;
  1717. continue;
  1718. }
  1719. /* Now try balancing at a lower domain level of new_cpu */
  1720. cpu = new_cpu;
  1721. sd = NULL;
  1722. weight = cpus_weight(span);
  1723. for_each_domain(cpu, tmp) {
  1724. if (weight <= cpus_weight(tmp->span))
  1725. break;
  1726. if (tmp->flags & flag)
  1727. sd = tmp;
  1728. }
  1729. /* while loop will break here if sd == NULL */
  1730. }
  1731. return cpu;
  1732. }
  1733. #endif /* CONFIG_SMP */
  1734. /***
  1735. * try_to_wake_up - wake up a thread
  1736. * @p: the to-be-woken-up thread
  1737. * @state: the mask of task states that can be woken
  1738. * @sync: do a synchronous wakeup?
  1739. *
  1740. * Put it on the run-queue if it's not already there. The "current"
  1741. * thread is always on the run-queue (except when the actual
  1742. * re-schedule is in progress), and as such you're allowed to do
  1743. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1744. * runnable without the overhead of this.
  1745. *
  1746. * returns failure only if the task is already active.
  1747. */
  1748. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1749. {
  1750. int cpu, orig_cpu, this_cpu, success = 0;
  1751. unsigned long flags;
  1752. long old_state;
  1753. struct rq *rq;
  1754. if (!sched_feat(SYNC_WAKEUPS))
  1755. sync = 0;
  1756. smp_wmb();
  1757. rq = task_rq_lock(p, &flags);
  1758. old_state = p->state;
  1759. if (!(old_state & state))
  1760. goto out;
  1761. if (p->se.on_rq)
  1762. goto out_running;
  1763. cpu = task_cpu(p);
  1764. orig_cpu = cpu;
  1765. this_cpu = smp_processor_id();
  1766. #ifdef CONFIG_SMP
  1767. if (unlikely(task_running(rq, p)))
  1768. goto out_activate;
  1769. cpu = p->sched_class->select_task_rq(p, sync);
  1770. if (cpu != orig_cpu) {
  1771. set_task_cpu(p, cpu);
  1772. task_rq_unlock(rq, &flags);
  1773. /* might preempt at this point */
  1774. rq = task_rq_lock(p, &flags);
  1775. old_state = p->state;
  1776. if (!(old_state & state))
  1777. goto out;
  1778. if (p->se.on_rq)
  1779. goto out_running;
  1780. this_cpu = smp_processor_id();
  1781. cpu = task_cpu(p);
  1782. }
  1783. #ifdef CONFIG_SCHEDSTATS
  1784. schedstat_inc(rq, ttwu_count);
  1785. if (cpu == this_cpu)
  1786. schedstat_inc(rq, ttwu_local);
  1787. else {
  1788. struct sched_domain *sd;
  1789. for_each_domain(this_cpu, sd) {
  1790. if (cpu_isset(cpu, sd->span)) {
  1791. schedstat_inc(sd, ttwu_wake_remote);
  1792. break;
  1793. }
  1794. }
  1795. }
  1796. #endif /* CONFIG_SCHEDSTATS */
  1797. out_activate:
  1798. #endif /* CONFIG_SMP */
  1799. schedstat_inc(p, se.nr_wakeups);
  1800. if (sync)
  1801. schedstat_inc(p, se.nr_wakeups_sync);
  1802. if (orig_cpu != cpu)
  1803. schedstat_inc(p, se.nr_wakeups_migrate);
  1804. if (cpu == this_cpu)
  1805. schedstat_inc(p, se.nr_wakeups_local);
  1806. else
  1807. schedstat_inc(p, se.nr_wakeups_remote);
  1808. update_rq_clock(rq);
  1809. activate_task(rq, p, 1);
  1810. success = 1;
  1811. out_running:
  1812. check_preempt_curr(rq, p);
  1813. p->state = TASK_RUNNING;
  1814. #ifdef CONFIG_SMP
  1815. if (p->sched_class->task_wake_up)
  1816. p->sched_class->task_wake_up(rq, p);
  1817. #endif
  1818. out:
  1819. task_rq_unlock(rq, &flags);
  1820. return success;
  1821. }
  1822. int wake_up_process(struct task_struct *p)
  1823. {
  1824. return try_to_wake_up(p, TASK_ALL, 0);
  1825. }
  1826. EXPORT_SYMBOL(wake_up_process);
  1827. int wake_up_state(struct task_struct *p, unsigned int state)
  1828. {
  1829. return try_to_wake_up(p, state, 0);
  1830. }
  1831. /*
  1832. * Perform scheduler related setup for a newly forked process p.
  1833. * p is forked by current.
  1834. *
  1835. * __sched_fork() is basic setup used by init_idle() too:
  1836. */
  1837. static void __sched_fork(struct task_struct *p)
  1838. {
  1839. p->se.exec_start = 0;
  1840. p->se.sum_exec_runtime = 0;
  1841. p->se.prev_sum_exec_runtime = 0;
  1842. p->se.last_wakeup = 0;
  1843. p->se.avg_overlap = 0;
  1844. #ifdef CONFIG_SCHEDSTATS
  1845. p->se.wait_start = 0;
  1846. p->se.sum_sleep_runtime = 0;
  1847. p->se.sleep_start = 0;
  1848. p->se.block_start = 0;
  1849. p->se.sleep_max = 0;
  1850. p->se.block_max = 0;
  1851. p->se.exec_max = 0;
  1852. p->se.slice_max = 0;
  1853. p->se.wait_max = 0;
  1854. #endif
  1855. INIT_LIST_HEAD(&p->rt.run_list);
  1856. p->se.on_rq = 0;
  1857. INIT_LIST_HEAD(&p->se.group_node);
  1858. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1859. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1860. #endif
  1861. /*
  1862. * We mark the process as running here, but have not actually
  1863. * inserted it onto the runqueue yet. This guarantees that
  1864. * nobody will actually run it, and a signal or other external
  1865. * event cannot wake it up and insert it on the runqueue either.
  1866. */
  1867. p->state = TASK_RUNNING;
  1868. }
  1869. /*
  1870. * fork()/clone()-time setup:
  1871. */
  1872. void sched_fork(struct task_struct *p, int clone_flags)
  1873. {
  1874. int cpu = get_cpu();
  1875. __sched_fork(p);
  1876. #ifdef CONFIG_SMP
  1877. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1878. #endif
  1879. set_task_cpu(p, cpu);
  1880. /*
  1881. * Make sure we do not leak PI boosting priority to the child:
  1882. */
  1883. p->prio = current->normal_prio;
  1884. if (!rt_prio(p->prio))
  1885. p->sched_class = &fair_sched_class;
  1886. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1887. if (likely(sched_info_on()))
  1888. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1889. #endif
  1890. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1891. p->oncpu = 0;
  1892. #endif
  1893. #ifdef CONFIG_PREEMPT
  1894. /* Want to start with kernel preemption disabled. */
  1895. task_thread_info(p)->preempt_count = 1;
  1896. #endif
  1897. put_cpu();
  1898. }
  1899. /*
  1900. * wake_up_new_task - wake up a newly created task for the first time.
  1901. *
  1902. * This function will do some initial scheduler statistics housekeeping
  1903. * that must be done for every newly created context, then puts the task
  1904. * on the runqueue and wakes it.
  1905. */
  1906. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1907. {
  1908. unsigned long flags;
  1909. struct rq *rq;
  1910. rq = task_rq_lock(p, &flags);
  1911. BUG_ON(p->state != TASK_RUNNING);
  1912. update_rq_clock(rq);
  1913. p->prio = effective_prio(p);
  1914. if (!p->sched_class->task_new || !current->se.on_rq) {
  1915. activate_task(rq, p, 0);
  1916. } else {
  1917. /*
  1918. * Let the scheduling class do new task startup
  1919. * management (if any):
  1920. */
  1921. p->sched_class->task_new(rq, p);
  1922. inc_nr_running(p, rq);
  1923. }
  1924. check_preempt_curr(rq, p);
  1925. #ifdef CONFIG_SMP
  1926. if (p->sched_class->task_wake_up)
  1927. p->sched_class->task_wake_up(rq, p);
  1928. #endif
  1929. task_rq_unlock(rq, &flags);
  1930. }
  1931. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1932. /**
  1933. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1934. * @notifier: notifier struct to register
  1935. */
  1936. void preempt_notifier_register(struct preempt_notifier *notifier)
  1937. {
  1938. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1939. }
  1940. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1941. /**
  1942. * preempt_notifier_unregister - no longer interested in preemption notifications
  1943. * @notifier: notifier struct to unregister
  1944. *
  1945. * This is safe to call from within a preemption notifier.
  1946. */
  1947. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1948. {
  1949. hlist_del(&notifier->link);
  1950. }
  1951. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1952. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1953. {
  1954. struct preempt_notifier *notifier;
  1955. struct hlist_node *node;
  1956. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1957. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1958. }
  1959. static void
  1960. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1961. struct task_struct *next)
  1962. {
  1963. struct preempt_notifier *notifier;
  1964. struct hlist_node *node;
  1965. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1966. notifier->ops->sched_out(notifier, next);
  1967. }
  1968. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1969. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1970. {
  1971. }
  1972. static void
  1973. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1974. struct task_struct *next)
  1975. {
  1976. }
  1977. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1978. /**
  1979. * prepare_task_switch - prepare to switch tasks
  1980. * @rq: the runqueue preparing to switch
  1981. * @prev: the current task that is being switched out
  1982. * @next: the task we are going to switch to.
  1983. *
  1984. * This is called with the rq lock held and interrupts off. It must
  1985. * be paired with a subsequent finish_task_switch after the context
  1986. * switch.
  1987. *
  1988. * prepare_task_switch sets up locking and calls architecture specific
  1989. * hooks.
  1990. */
  1991. static inline void
  1992. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1993. struct task_struct *next)
  1994. {
  1995. fire_sched_out_preempt_notifiers(prev, next);
  1996. prepare_lock_switch(rq, next);
  1997. prepare_arch_switch(next);
  1998. }
  1999. /**
  2000. * finish_task_switch - clean up after a task-switch
  2001. * @rq: runqueue associated with task-switch
  2002. * @prev: the thread we just switched away from.
  2003. *
  2004. * finish_task_switch must be called after the context switch, paired
  2005. * with a prepare_task_switch call before the context switch.
  2006. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2007. * and do any other architecture-specific cleanup actions.
  2008. *
  2009. * Note that we may have delayed dropping an mm in context_switch(). If
  2010. * so, we finish that here outside of the runqueue lock. (Doing it
  2011. * with the lock held can cause deadlocks; see schedule() for
  2012. * details.)
  2013. */
  2014. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2015. __releases(rq->lock)
  2016. {
  2017. struct mm_struct *mm = rq->prev_mm;
  2018. long prev_state;
  2019. rq->prev_mm = NULL;
  2020. /*
  2021. * A task struct has one reference for the use as "current".
  2022. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2023. * schedule one last time. The schedule call will never return, and
  2024. * the scheduled task must drop that reference.
  2025. * The test for TASK_DEAD must occur while the runqueue locks are
  2026. * still held, otherwise prev could be scheduled on another cpu, die
  2027. * there before we look at prev->state, and then the reference would
  2028. * be dropped twice.
  2029. * Manfred Spraul <manfred@colorfullife.com>
  2030. */
  2031. prev_state = prev->state;
  2032. finish_arch_switch(prev);
  2033. finish_lock_switch(rq, prev);
  2034. #ifdef CONFIG_SMP
  2035. if (current->sched_class->post_schedule)
  2036. current->sched_class->post_schedule(rq);
  2037. #endif
  2038. fire_sched_in_preempt_notifiers(current);
  2039. if (mm)
  2040. mmdrop(mm);
  2041. if (unlikely(prev_state == TASK_DEAD)) {
  2042. /*
  2043. * Remove function-return probe instances associated with this
  2044. * task and put them back on the free list.
  2045. */
  2046. kprobe_flush_task(prev);
  2047. put_task_struct(prev);
  2048. }
  2049. }
  2050. /**
  2051. * schedule_tail - first thing a freshly forked thread must call.
  2052. * @prev: the thread we just switched away from.
  2053. */
  2054. asmlinkage void schedule_tail(struct task_struct *prev)
  2055. __releases(rq->lock)
  2056. {
  2057. struct rq *rq = this_rq();
  2058. finish_task_switch(rq, prev);
  2059. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2060. /* In this case, finish_task_switch does not reenable preemption */
  2061. preempt_enable();
  2062. #endif
  2063. if (current->set_child_tid)
  2064. put_user(task_pid_vnr(current), current->set_child_tid);
  2065. }
  2066. /*
  2067. * context_switch - switch to the new MM and the new
  2068. * thread's register state.
  2069. */
  2070. static inline void
  2071. context_switch(struct rq *rq, struct task_struct *prev,
  2072. struct task_struct *next)
  2073. {
  2074. struct mm_struct *mm, *oldmm;
  2075. prepare_task_switch(rq, prev, next);
  2076. mm = next->mm;
  2077. oldmm = prev->active_mm;
  2078. /*
  2079. * For paravirt, this is coupled with an exit in switch_to to
  2080. * combine the page table reload and the switch backend into
  2081. * one hypercall.
  2082. */
  2083. arch_enter_lazy_cpu_mode();
  2084. if (unlikely(!mm)) {
  2085. next->active_mm = oldmm;
  2086. atomic_inc(&oldmm->mm_count);
  2087. enter_lazy_tlb(oldmm, next);
  2088. } else
  2089. switch_mm(oldmm, mm, next);
  2090. if (unlikely(!prev->mm)) {
  2091. prev->active_mm = NULL;
  2092. rq->prev_mm = oldmm;
  2093. }
  2094. /*
  2095. * Since the runqueue lock will be released by the next
  2096. * task (which is an invalid locking op but in the case
  2097. * of the scheduler it's an obvious special-case), so we
  2098. * do an early lockdep release here:
  2099. */
  2100. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2101. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2102. #endif
  2103. /* Here we just switch the register state and the stack. */
  2104. switch_to(prev, next, prev);
  2105. barrier();
  2106. /*
  2107. * this_rq must be evaluated again because prev may have moved
  2108. * CPUs since it called schedule(), thus the 'rq' on its stack
  2109. * frame will be invalid.
  2110. */
  2111. finish_task_switch(this_rq(), prev);
  2112. }
  2113. /*
  2114. * nr_running, nr_uninterruptible and nr_context_switches:
  2115. *
  2116. * externally visible scheduler statistics: current number of runnable
  2117. * threads, current number of uninterruptible-sleeping threads, total
  2118. * number of context switches performed since bootup.
  2119. */
  2120. unsigned long nr_running(void)
  2121. {
  2122. unsigned long i, sum = 0;
  2123. for_each_online_cpu(i)
  2124. sum += cpu_rq(i)->nr_running;
  2125. return sum;
  2126. }
  2127. unsigned long nr_uninterruptible(void)
  2128. {
  2129. unsigned long i, sum = 0;
  2130. for_each_possible_cpu(i)
  2131. sum += cpu_rq(i)->nr_uninterruptible;
  2132. /*
  2133. * Since we read the counters lockless, it might be slightly
  2134. * inaccurate. Do not allow it to go below zero though:
  2135. */
  2136. if (unlikely((long)sum < 0))
  2137. sum = 0;
  2138. return sum;
  2139. }
  2140. unsigned long long nr_context_switches(void)
  2141. {
  2142. int i;
  2143. unsigned long long sum = 0;
  2144. for_each_possible_cpu(i)
  2145. sum += cpu_rq(i)->nr_switches;
  2146. return sum;
  2147. }
  2148. unsigned long nr_iowait(void)
  2149. {
  2150. unsigned long i, sum = 0;
  2151. for_each_possible_cpu(i)
  2152. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2153. return sum;
  2154. }
  2155. unsigned long nr_active(void)
  2156. {
  2157. unsigned long i, running = 0, uninterruptible = 0;
  2158. for_each_online_cpu(i) {
  2159. running += cpu_rq(i)->nr_running;
  2160. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2161. }
  2162. if (unlikely((long)uninterruptible < 0))
  2163. uninterruptible = 0;
  2164. return running + uninterruptible;
  2165. }
  2166. /*
  2167. * Update rq->cpu_load[] statistics. This function is usually called every
  2168. * scheduler tick (TICK_NSEC).
  2169. */
  2170. static void update_cpu_load(struct rq *this_rq)
  2171. {
  2172. unsigned long this_load = this_rq->load.weight;
  2173. int i, scale;
  2174. this_rq->nr_load_updates++;
  2175. /* Update our load: */
  2176. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2177. unsigned long old_load, new_load;
  2178. /* scale is effectively 1 << i now, and >> i divides by scale */
  2179. old_load = this_rq->cpu_load[i];
  2180. new_load = this_load;
  2181. /*
  2182. * Round up the averaging division if load is increasing. This
  2183. * prevents us from getting stuck on 9 if the load is 10, for
  2184. * example.
  2185. */
  2186. if (new_load > old_load)
  2187. new_load += scale-1;
  2188. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2189. }
  2190. }
  2191. #ifdef CONFIG_SMP
  2192. /*
  2193. * double_rq_lock - safely lock two runqueues
  2194. *
  2195. * Note this does not disable interrupts like task_rq_lock,
  2196. * you need to do so manually before calling.
  2197. */
  2198. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2199. __acquires(rq1->lock)
  2200. __acquires(rq2->lock)
  2201. {
  2202. BUG_ON(!irqs_disabled());
  2203. if (rq1 == rq2) {
  2204. spin_lock(&rq1->lock);
  2205. __acquire(rq2->lock); /* Fake it out ;) */
  2206. } else {
  2207. if (rq1 < rq2) {
  2208. spin_lock(&rq1->lock);
  2209. spin_lock(&rq2->lock);
  2210. } else {
  2211. spin_lock(&rq2->lock);
  2212. spin_lock(&rq1->lock);
  2213. }
  2214. }
  2215. update_rq_clock(rq1);
  2216. update_rq_clock(rq2);
  2217. }
  2218. /*
  2219. * double_rq_unlock - safely unlock two runqueues
  2220. *
  2221. * Note this does not restore interrupts like task_rq_unlock,
  2222. * you need to do so manually after calling.
  2223. */
  2224. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2225. __releases(rq1->lock)
  2226. __releases(rq2->lock)
  2227. {
  2228. spin_unlock(&rq1->lock);
  2229. if (rq1 != rq2)
  2230. spin_unlock(&rq2->lock);
  2231. else
  2232. __release(rq2->lock);
  2233. }
  2234. /*
  2235. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2236. */
  2237. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2238. __releases(this_rq->lock)
  2239. __acquires(busiest->lock)
  2240. __acquires(this_rq->lock)
  2241. {
  2242. int ret = 0;
  2243. if (unlikely(!irqs_disabled())) {
  2244. /* printk() doesn't work good under rq->lock */
  2245. spin_unlock(&this_rq->lock);
  2246. BUG_ON(1);
  2247. }
  2248. if (unlikely(!spin_trylock(&busiest->lock))) {
  2249. if (busiest < this_rq) {
  2250. spin_unlock(&this_rq->lock);
  2251. spin_lock(&busiest->lock);
  2252. spin_lock(&this_rq->lock);
  2253. ret = 1;
  2254. } else
  2255. spin_lock(&busiest->lock);
  2256. }
  2257. return ret;
  2258. }
  2259. /*
  2260. * If dest_cpu is allowed for this process, migrate the task to it.
  2261. * This is accomplished by forcing the cpu_allowed mask to only
  2262. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2263. * the cpu_allowed mask is restored.
  2264. */
  2265. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2266. {
  2267. struct migration_req req;
  2268. unsigned long flags;
  2269. struct rq *rq;
  2270. rq = task_rq_lock(p, &flags);
  2271. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2272. || unlikely(cpu_is_offline(dest_cpu)))
  2273. goto out;
  2274. /* force the process onto the specified CPU */
  2275. if (migrate_task(p, dest_cpu, &req)) {
  2276. /* Need to wait for migration thread (might exit: take ref). */
  2277. struct task_struct *mt = rq->migration_thread;
  2278. get_task_struct(mt);
  2279. task_rq_unlock(rq, &flags);
  2280. wake_up_process(mt);
  2281. put_task_struct(mt);
  2282. wait_for_completion(&req.done);
  2283. return;
  2284. }
  2285. out:
  2286. task_rq_unlock(rq, &flags);
  2287. }
  2288. /*
  2289. * sched_exec - execve() is a valuable balancing opportunity, because at
  2290. * this point the task has the smallest effective memory and cache footprint.
  2291. */
  2292. void sched_exec(void)
  2293. {
  2294. int new_cpu, this_cpu = get_cpu();
  2295. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2296. put_cpu();
  2297. if (new_cpu != this_cpu)
  2298. sched_migrate_task(current, new_cpu);
  2299. }
  2300. /*
  2301. * pull_task - move a task from a remote runqueue to the local runqueue.
  2302. * Both runqueues must be locked.
  2303. */
  2304. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2305. struct rq *this_rq, int this_cpu)
  2306. {
  2307. deactivate_task(src_rq, p, 0);
  2308. set_task_cpu(p, this_cpu);
  2309. activate_task(this_rq, p, 0);
  2310. /*
  2311. * Note that idle threads have a prio of MAX_PRIO, for this test
  2312. * to be always true for them.
  2313. */
  2314. check_preempt_curr(this_rq, p);
  2315. }
  2316. /*
  2317. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2318. */
  2319. static
  2320. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2321. struct sched_domain *sd, enum cpu_idle_type idle,
  2322. int *all_pinned)
  2323. {
  2324. /*
  2325. * We do not migrate tasks that are:
  2326. * 1) running (obviously), or
  2327. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2328. * 3) are cache-hot on their current CPU.
  2329. */
  2330. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2331. schedstat_inc(p, se.nr_failed_migrations_affine);
  2332. return 0;
  2333. }
  2334. *all_pinned = 0;
  2335. if (task_running(rq, p)) {
  2336. schedstat_inc(p, se.nr_failed_migrations_running);
  2337. return 0;
  2338. }
  2339. /*
  2340. * Aggressive migration if:
  2341. * 1) task is cache cold, or
  2342. * 2) too many balance attempts have failed.
  2343. */
  2344. if (!task_hot(p, rq->clock, sd) ||
  2345. sd->nr_balance_failed > sd->cache_nice_tries) {
  2346. #ifdef CONFIG_SCHEDSTATS
  2347. if (task_hot(p, rq->clock, sd)) {
  2348. schedstat_inc(sd, lb_hot_gained[idle]);
  2349. schedstat_inc(p, se.nr_forced_migrations);
  2350. }
  2351. #endif
  2352. return 1;
  2353. }
  2354. if (task_hot(p, rq->clock, sd)) {
  2355. schedstat_inc(p, se.nr_failed_migrations_hot);
  2356. return 0;
  2357. }
  2358. return 1;
  2359. }
  2360. static unsigned long
  2361. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2362. unsigned long max_load_move, struct sched_domain *sd,
  2363. enum cpu_idle_type idle, int *all_pinned,
  2364. int *this_best_prio, struct rq_iterator *iterator)
  2365. {
  2366. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2367. struct task_struct *p;
  2368. long rem_load_move = max_load_move;
  2369. if (max_load_move == 0)
  2370. goto out;
  2371. pinned = 1;
  2372. /*
  2373. * Start the load-balancing iterator:
  2374. */
  2375. p = iterator->start(iterator->arg);
  2376. next:
  2377. if (!p || loops++ > sysctl_sched_nr_migrate)
  2378. goto out;
  2379. /*
  2380. * To help distribute high priority tasks across CPUs we don't
  2381. * skip a task if it will be the highest priority task (i.e. smallest
  2382. * prio value) on its new queue regardless of its load weight
  2383. */
  2384. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2385. SCHED_LOAD_SCALE_FUZZ;
  2386. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2387. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2388. p = iterator->next(iterator->arg);
  2389. goto next;
  2390. }
  2391. pull_task(busiest, p, this_rq, this_cpu);
  2392. pulled++;
  2393. rem_load_move -= p->se.load.weight;
  2394. /*
  2395. * We only want to steal up to the prescribed amount of weighted load.
  2396. */
  2397. if (rem_load_move > 0) {
  2398. if (p->prio < *this_best_prio)
  2399. *this_best_prio = p->prio;
  2400. p = iterator->next(iterator->arg);
  2401. goto next;
  2402. }
  2403. out:
  2404. /*
  2405. * Right now, this is one of only two places pull_task() is called,
  2406. * so we can safely collect pull_task() stats here rather than
  2407. * inside pull_task().
  2408. */
  2409. schedstat_add(sd, lb_gained[idle], pulled);
  2410. if (all_pinned)
  2411. *all_pinned = pinned;
  2412. return max_load_move - rem_load_move;
  2413. }
  2414. /*
  2415. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2416. * this_rq, as part of a balancing operation within domain "sd".
  2417. * Returns 1 if successful and 0 otherwise.
  2418. *
  2419. * Called with both runqueues locked.
  2420. */
  2421. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2422. unsigned long max_load_move,
  2423. struct sched_domain *sd, enum cpu_idle_type idle,
  2424. int *all_pinned)
  2425. {
  2426. const struct sched_class *class = sched_class_highest;
  2427. unsigned long total_load_moved = 0;
  2428. int this_best_prio = this_rq->curr->prio;
  2429. do {
  2430. total_load_moved +=
  2431. class->load_balance(this_rq, this_cpu, busiest,
  2432. max_load_move - total_load_moved,
  2433. sd, idle, all_pinned, &this_best_prio);
  2434. class = class->next;
  2435. } while (class && max_load_move > total_load_moved);
  2436. return total_load_moved > 0;
  2437. }
  2438. static int
  2439. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2440. struct sched_domain *sd, enum cpu_idle_type idle,
  2441. struct rq_iterator *iterator)
  2442. {
  2443. struct task_struct *p = iterator->start(iterator->arg);
  2444. int pinned = 0;
  2445. while (p) {
  2446. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2447. pull_task(busiest, p, this_rq, this_cpu);
  2448. /*
  2449. * Right now, this is only the second place pull_task()
  2450. * is called, so we can safely collect pull_task()
  2451. * stats here rather than inside pull_task().
  2452. */
  2453. schedstat_inc(sd, lb_gained[idle]);
  2454. return 1;
  2455. }
  2456. p = iterator->next(iterator->arg);
  2457. }
  2458. return 0;
  2459. }
  2460. /*
  2461. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2462. * part of active balancing operations within "domain".
  2463. * Returns 1 if successful and 0 otherwise.
  2464. *
  2465. * Called with both runqueues locked.
  2466. */
  2467. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2468. struct sched_domain *sd, enum cpu_idle_type idle)
  2469. {
  2470. const struct sched_class *class;
  2471. for (class = sched_class_highest; class; class = class->next)
  2472. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2473. return 1;
  2474. return 0;
  2475. }
  2476. /*
  2477. * find_busiest_group finds and returns the busiest CPU group within the
  2478. * domain. It calculates and returns the amount of weighted load which
  2479. * should be moved to restore balance via the imbalance parameter.
  2480. */
  2481. static struct sched_group *
  2482. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2483. unsigned long *imbalance, enum cpu_idle_type idle,
  2484. int *sd_idle, const cpumask_t *cpus, int *balance)
  2485. {
  2486. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2487. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2488. unsigned long max_pull;
  2489. unsigned long busiest_load_per_task, busiest_nr_running;
  2490. unsigned long this_load_per_task, this_nr_running;
  2491. int load_idx, group_imb = 0;
  2492. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2493. int power_savings_balance = 1;
  2494. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2495. unsigned long min_nr_running = ULONG_MAX;
  2496. struct sched_group *group_min = NULL, *group_leader = NULL;
  2497. #endif
  2498. max_load = this_load = total_load = total_pwr = 0;
  2499. busiest_load_per_task = busiest_nr_running = 0;
  2500. this_load_per_task = this_nr_running = 0;
  2501. if (idle == CPU_NOT_IDLE)
  2502. load_idx = sd->busy_idx;
  2503. else if (idle == CPU_NEWLY_IDLE)
  2504. load_idx = sd->newidle_idx;
  2505. else
  2506. load_idx = sd->idle_idx;
  2507. do {
  2508. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2509. int local_group;
  2510. int i;
  2511. int __group_imb = 0;
  2512. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2513. unsigned long sum_nr_running, sum_weighted_load;
  2514. local_group = cpu_isset(this_cpu, group->cpumask);
  2515. if (local_group)
  2516. balance_cpu = first_cpu(group->cpumask);
  2517. /* Tally up the load of all CPUs in the group */
  2518. sum_weighted_load = sum_nr_running = avg_load = 0;
  2519. max_cpu_load = 0;
  2520. min_cpu_load = ~0UL;
  2521. for_each_cpu_mask(i, group->cpumask) {
  2522. struct rq *rq;
  2523. if (!cpu_isset(i, *cpus))
  2524. continue;
  2525. rq = cpu_rq(i);
  2526. if (*sd_idle && rq->nr_running)
  2527. *sd_idle = 0;
  2528. /* Bias balancing toward cpus of our domain */
  2529. if (local_group) {
  2530. if (idle_cpu(i) && !first_idle_cpu) {
  2531. first_idle_cpu = 1;
  2532. balance_cpu = i;
  2533. }
  2534. load = target_load(i, load_idx);
  2535. } else {
  2536. load = source_load(i, load_idx);
  2537. if (load > max_cpu_load)
  2538. max_cpu_load = load;
  2539. if (min_cpu_load > load)
  2540. min_cpu_load = load;
  2541. }
  2542. avg_load += load;
  2543. sum_nr_running += rq->nr_running;
  2544. sum_weighted_load += weighted_cpuload(i);
  2545. }
  2546. /*
  2547. * First idle cpu or the first cpu(busiest) in this sched group
  2548. * is eligible for doing load balancing at this and above
  2549. * domains. In the newly idle case, we will allow all the cpu's
  2550. * to do the newly idle load balance.
  2551. */
  2552. if (idle != CPU_NEWLY_IDLE && local_group &&
  2553. balance_cpu != this_cpu && balance) {
  2554. *balance = 0;
  2555. goto ret;
  2556. }
  2557. total_load += avg_load;
  2558. total_pwr += group->__cpu_power;
  2559. /* Adjust by relative CPU power of the group */
  2560. avg_load = sg_div_cpu_power(group,
  2561. avg_load * SCHED_LOAD_SCALE);
  2562. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2563. __group_imb = 1;
  2564. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2565. if (local_group) {
  2566. this_load = avg_load;
  2567. this = group;
  2568. this_nr_running = sum_nr_running;
  2569. this_load_per_task = sum_weighted_load;
  2570. } else if (avg_load > max_load &&
  2571. (sum_nr_running > group_capacity || __group_imb)) {
  2572. max_load = avg_load;
  2573. busiest = group;
  2574. busiest_nr_running = sum_nr_running;
  2575. busiest_load_per_task = sum_weighted_load;
  2576. group_imb = __group_imb;
  2577. }
  2578. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2579. /*
  2580. * Busy processors will not participate in power savings
  2581. * balance.
  2582. */
  2583. if (idle == CPU_NOT_IDLE ||
  2584. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2585. goto group_next;
  2586. /*
  2587. * If the local group is idle or completely loaded
  2588. * no need to do power savings balance at this domain
  2589. */
  2590. if (local_group && (this_nr_running >= group_capacity ||
  2591. !this_nr_running))
  2592. power_savings_balance = 0;
  2593. /*
  2594. * If a group is already running at full capacity or idle,
  2595. * don't include that group in power savings calculations
  2596. */
  2597. if (!power_savings_balance || sum_nr_running >= group_capacity
  2598. || !sum_nr_running)
  2599. goto group_next;
  2600. /*
  2601. * Calculate the group which has the least non-idle load.
  2602. * This is the group from where we need to pick up the load
  2603. * for saving power
  2604. */
  2605. if ((sum_nr_running < min_nr_running) ||
  2606. (sum_nr_running == min_nr_running &&
  2607. first_cpu(group->cpumask) <
  2608. first_cpu(group_min->cpumask))) {
  2609. group_min = group;
  2610. min_nr_running = sum_nr_running;
  2611. min_load_per_task = sum_weighted_load /
  2612. sum_nr_running;
  2613. }
  2614. /*
  2615. * Calculate the group which is almost near its
  2616. * capacity but still has some space to pick up some load
  2617. * from other group and save more power
  2618. */
  2619. if (sum_nr_running <= group_capacity - 1) {
  2620. if (sum_nr_running > leader_nr_running ||
  2621. (sum_nr_running == leader_nr_running &&
  2622. first_cpu(group->cpumask) >
  2623. first_cpu(group_leader->cpumask))) {
  2624. group_leader = group;
  2625. leader_nr_running = sum_nr_running;
  2626. }
  2627. }
  2628. group_next:
  2629. #endif
  2630. group = group->next;
  2631. } while (group != sd->groups);
  2632. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2633. goto out_balanced;
  2634. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2635. if (this_load >= avg_load ||
  2636. 100*max_load <= sd->imbalance_pct*this_load)
  2637. goto out_balanced;
  2638. busiest_load_per_task /= busiest_nr_running;
  2639. if (group_imb)
  2640. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2641. /*
  2642. * We're trying to get all the cpus to the average_load, so we don't
  2643. * want to push ourselves above the average load, nor do we wish to
  2644. * reduce the max loaded cpu below the average load, as either of these
  2645. * actions would just result in more rebalancing later, and ping-pong
  2646. * tasks around. Thus we look for the minimum possible imbalance.
  2647. * Negative imbalances (*we* are more loaded than anyone else) will
  2648. * be counted as no imbalance for these purposes -- we can't fix that
  2649. * by pulling tasks to us. Be careful of negative numbers as they'll
  2650. * appear as very large values with unsigned longs.
  2651. */
  2652. if (max_load <= busiest_load_per_task)
  2653. goto out_balanced;
  2654. /*
  2655. * In the presence of smp nice balancing, certain scenarios can have
  2656. * max load less than avg load(as we skip the groups at or below
  2657. * its cpu_power, while calculating max_load..)
  2658. */
  2659. if (max_load < avg_load) {
  2660. *imbalance = 0;
  2661. goto small_imbalance;
  2662. }
  2663. /* Don't want to pull so many tasks that a group would go idle */
  2664. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2665. /* How much load to actually move to equalise the imbalance */
  2666. *imbalance = min(max_pull * busiest->__cpu_power,
  2667. (avg_load - this_load) * this->__cpu_power)
  2668. / SCHED_LOAD_SCALE;
  2669. /*
  2670. * if *imbalance is less than the average load per runnable task
  2671. * there is no gaurantee that any tasks will be moved so we'll have
  2672. * a think about bumping its value to force at least one task to be
  2673. * moved
  2674. */
  2675. if (*imbalance < busiest_load_per_task) {
  2676. unsigned long tmp, pwr_now, pwr_move;
  2677. unsigned int imbn;
  2678. small_imbalance:
  2679. pwr_move = pwr_now = 0;
  2680. imbn = 2;
  2681. if (this_nr_running) {
  2682. this_load_per_task /= this_nr_running;
  2683. if (busiest_load_per_task > this_load_per_task)
  2684. imbn = 1;
  2685. } else
  2686. this_load_per_task = SCHED_LOAD_SCALE;
  2687. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2688. busiest_load_per_task * imbn) {
  2689. *imbalance = busiest_load_per_task;
  2690. return busiest;
  2691. }
  2692. /*
  2693. * OK, we don't have enough imbalance to justify moving tasks,
  2694. * however we may be able to increase total CPU power used by
  2695. * moving them.
  2696. */
  2697. pwr_now += busiest->__cpu_power *
  2698. min(busiest_load_per_task, max_load);
  2699. pwr_now += this->__cpu_power *
  2700. min(this_load_per_task, this_load);
  2701. pwr_now /= SCHED_LOAD_SCALE;
  2702. /* Amount of load we'd subtract */
  2703. tmp = sg_div_cpu_power(busiest,
  2704. busiest_load_per_task * SCHED_LOAD_SCALE);
  2705. if (max_load > tmp)
  2706. pwr_move += busiest->__cpu_power *
  2707. min(busiest_load_per_task, max_load - tmp);
  2708. /* Amount of load we'd add */
  2709. if (max_load * busiest->__cpu_power <
  2710. busiest_load_per_task * SCHED_LOAD_SCALE)
  2711. tmp = sg_div_cpu_power(this,
  2712. max_load * busiest->__cpu_power);
  2713. else
  2714. tmp = sg_div_cpu_power(this,
  2715. busiest_load_per_task * SCHED_LOAD_SCALE);
  2716. pwr_move += this->__cpu_power *
  2717. min(this_load_per_task, this_load + tmp);
  2718. pwr_move /= SCHED_LOAD_SCALE;
  2719. /* Move if we gain throughput */
  2720. if (pwr_move > pwr_now)
  2721. *imbalance = busiest_load_per_task;
  2722. }
  2723. return busiest;
  2724. out_balanced:
  2725. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2726. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2727. goto ret;
  2728. if (this == group_leader && group_leader != group_min) {
  2729. *imbalance = min_load_per_task;
  2730. return group_min;
  2731. }
  2732. #endif
  2733. ret:
  2734. *imbalance = 0;
  2735. return NULL;
  2736. }
  2737. /*
  2738. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2739. */
  2740. static struct rq *
  2741. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2742. unsigned long imbalance, const cpumask_t *cpus)
  2743. {
  2744. struct rq *busiest = NULL, *rq;
  2745. unsigned long max_load = 0;
  2746. int i;
  2747. for_each_cpu_mask(i, group->cpumask) {
  2748. unsigned long wl;
  2749. if (!cpu_isset(i, *cpus))
  2750. continue;
  2751. rq = cpu_rq(i);
  2752. wl = weighted_cpuload(i);
  2753. if (rq->nr_running == 1 && wl > imbalance)
  2754. continue;
  2755. if (wl > max_load) {
  2756. max_load = wl;
  2757. busiest = rq;
  2758. }
  2759. }
  2760. return busiest;
  2761. }
  2762. /*
  2763. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2764. * so long as it is large enough.
  2765. */
  2766. #define MAX_PINNED_INTERVAL 512
  2767. /*
  2768. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2769. * tasks if there is an imbalance.
  2770. */
  2771. static int load_balance(int this_cpu, struct rq *this_rq,
  2772. struct sched_domain *sd, enum cpu_idle_type idle,
  2773. int *balance, cpumask_t *cpus)
  2774. {
  2775. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2776. struct sched_group *group;
  2777. unsigned long imbalance;
  2778. struct rq *busiest;
  2779. unsigned long flags;
  2780. cpus_setall(*cpus);
  2781. /*
  2782. * When power savings policy is enabled for the parent domain, idle
  2783. * sibling can pick up load irrespective of busy siblings. In this case,
  2784. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2785. * portraying it as CPU_NOT_IDLE.
  2786. */
  2787. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2788. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2789. sd_idle = 1;
  2790. schedstat_inc(sd, lb_count[idle]);
  2791. redo:
  2792. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2793. cpus, balance);
  2794. if (*balance == 0)
  2795. goto out_balanced;
  2796. if (!group) {
  2797. schedstat_inc(sd, lb_nobusyg[idle]);
  2798. goto out_balanced;
  2799. }
  2800. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2801. if (!busiest) {
  2802. schedstat_inc(sd, lb_nobusyq[idle]);
  2803. goto out_balanced;
  2804. }
  2805. BUG_ON(busiest == this_rq);
  2806. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2807. ld_moved = 0;
  2808. if (busiest->nr_running > 1) {
  2809. /*
  2810. * Attempt to move tasks. If find_busiest_group has found
  2811. * an imbalance but busiest->nr_running <= 1, the group is
  2812. * still unbalanced. ld_moved simply stays zero, so it is
  2813. * correctly treated as an imbalance.
  2814. */
  2815. local_irq_save(flags);
  2816. double_rq_lock(this_rq, busiest);
  2817. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2818. imbalance, sd, idle, &all_pinned);
  2819. double_rq_unlock(this_rq, busiest);
  2820. local_irq_restore(flags);
  2821. /*
  2822. * some other cpu did the load balance for us.
  2823. */
  2824. if (ld_moved && this_cpu != smp_processor_id())
  2825. resched_cpu(this_cpu);
  2826. /* All tasks on this runqueue were pinned by CPU affinity */
  2827. if (unlikely(all_pinned)) {
  2828. cpu_clear(cpu_of(busiest), *cpus);
  2829. if (!cpus_empty(*cpus))
  2830. goto redo;
  2831. goto out_balanced;
  2832. }
  2833. }
  2834. if (!ld_moved) {
  2835. schedstat_inc(sd, lb_failed[idle]);
  2836. sd->nr_balance_failed++;
  2837. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2838. spin_lock_irqsave(&busiest->lock, flags);
  2839. /* don't kick the migration_thread, if the curr
  2840. * task on busiest cpu can't be moved to this_cpu
  2841. */
  2842. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2843. spin_unlock_irqrestore(&busiest->lock, flags);
  2844. all_pinned = 1;
  2845. goto out_one_pinned;
  2846. }
  2847. if (!busiest->active_balance) {
  2848. busiest->active_balance = 1;
  2849. busiest->push_cpu = this_cpu;
  2850. active_balance = 1;
  2851. }
  2852. spin_unlock_irqrestore(&busiest->lock, flags);
  2853. if (active_balance)
  2854. wake_up_process(busiest->migration_thread);
  2855. /*
  2856. * We've kicked active balancing, reset the failure
  2857. * counter.
  2858. */
  2859. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2860. }
  2861. } else
  2862. sd->nr_balance_failed = 0;
  2863. if (likely(!active_balance)) {
  2864. /* We were unbalanced, so reset the balancing interval */
  2865. sd->balance_interval = sd->min_interval;
  2866. } else {
  2867. /*
  2868. * If we've begun active balancing, start to back off. This
  2869. * case may not be covered by the all_pinned logic if there
  2870. * is only 1 task on the busy runqueue (because we don't call
  2871. * move_tasks).
  2872. */
  2873. if (sd->balance_interval < sd->max_interval)
  2874. sd->balance_interval *= 2;
  2875. }
  2876. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2877. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2878. return -1;
  2879. return ld_moved;
  2880. out_balanced:
  2881. schedstat_inc(sd, lb_balanced[idle]);
  2882. sd->nr_balance_failed = 0;
  2883. out_one_pinned:
  2884. /* tune up the balancing interval */
  2885. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2886. (sd->balance_interval < sd->max_interval))
  2887. sd->balance_interval *= 2;
  2888. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2889. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2890. return -1;
  2891. return 0;
  2892. }
  2893. /*
  2894. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2895. * tasks if there is an imbalance.
  2896. *
  2897. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2898. * this_rq is locked.
  2899. */
  2900. static int
  2901. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2902. cpumask_t *cpus)
  2903. {
  2904. struct sched_group *group;
  2905. struct rq *busiest = NULL;
  2906. unsigned long imbalance;
  2907. int ld_moved = 0;
  2908. int sd_idle = 0;
  2909. int all_pinned = 0;
  2910. cpus_setall(*cpus);
  2911. /*
  2912. * When power savings policy is enabled for the parent domain, idle
  2913. * sibling can pick up load irrespective of busy siblings. In this case,
  2914. * let the state of idle sibling percolate up as IDLE, instead of
  2915. * portraying it as CPU_NOT_IDLE.
  2916. */
  2917. if (sd->flags & SD_SHARE_CPUPOWER &&
  2918. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2919. sd_idle = 1;
  2920. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2921. redo:
  2922. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2923. &sd_idle, cpus, NULL);
  2924. if (!group) {
  2925. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2926. goto out_balanced;
  2927. }
  2928. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2929. if (!busiest) {
  2930. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2931. goto out_balanced;
  2932. }
  2933. BUG_ON(busiest == this_rq);
  2934. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2935. ld_moved = 0;
  2936. if (busiest->nr_running > 1) {
  2937. /* Attempt to move tasks */
  2938. double_lock_balance(this_rq, busiest);
  2939. /* this_rq->clock is already updated */
  2940. update_rq_clock(busiest);
  2941. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2942. imbalance, sd, CPU_NEWLY_IDLE,
  2943. &all_pinned);
  2944. spin_unlock(&busiest->lock);
  2945. if (unlikely(all_pinned)) {
  2946. cpu_clear(cpu_of(busiest), *cpus);
  2947. if (!cpus_empty(*cpus))
  2948. goto redo;
  2949. }
  2950. }
  2951. if (!ld_moved) {
  2952. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2953. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2954. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2955. return -1;
  2956. } else
  2957. sd->nr_balance_failed = 0;
  2958. return ld_moved;
  2959. out_balanced:
  2960. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2961. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2962. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2963. return -1;
  2964. sd->nr_balance_failed = 0;
  2965. return 0;
  2966. }
  2967. /*
  2968. * idle_balance is called by schedule() if this_cpu is about to become
  2969. * idle. Attempts to pull tasks from other CPUs.
  2970. */
  2971. static void idle_balance(int this_cpu, struct rq *this_rq)
  2972. {
  2973. struct sched_domain *sd;
  2974. int pulled_task = -1;
  2975. unsigned long next_balance = jiffies + HZ;
  2976. cpumask_t tmpmask;
  2977. for_each_domain(this_cpu, sd) {
  2978. unsigned long interval;
  2979. if (!(sd->flags & SD_LOAD_BALANCE))
  2980. continue;
  2981. if (sd->flags & SD_BALANCE_NEWIDLE)
  2982. /* If we've pulled tasks over stop searching: */
  2983. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2984. sd, &tmpmask);
  2985. interval = msecs_to_jiffies(sd->balance_interval);
  2986. if (time_after(next_balance, sd->last_balance + interval))
  2987. next_balance = sd->last_balance + interval;
  2988. if (pulled_task)
  2989. break;
  2990. }
  2991. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2992. /*
  2993. * We are going idle. next_balance may be set based on
  2994. * a busy processor. So reset next_balance.
  2995. */
  2996. this_rq->next_balance = next_balance;
  2997. }
  2998. }
  2999. /*
  3000. * active_load_balance is run by migration threads. It pushes running tasks
  3001. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3002. * running on each physical CPU where possible, and avoids physical /
  3003. * logical imbalances.
  3004. *
  3005. * Called with busiest_rq locked.
  3006. */
  3007. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3008. {
  3009. int target_cpu = busiest_rq->push_cpu;
  3010. struct sched_domain *sd;
  3011. struct rq *target_rq;
  3012. /* Is there any task to move? */
  3013. if (busiest_rq->nr_running <= 1)
  3014. return;
  3015. target_rq = cpu_rq(target_cpu);
  3016. /*
  3017. * This condition is "impossible", if it occurs
  3018. * we need to fix it. Originally reported by
  3019. * Bjorn Helgaas on a 128-cpu setup.
  3020. */
  3021. BUG_ON(busiest_rq == target_rq);
  3022. /* move a task from busiest_rq to target_rq */
  3023. double_lock_balance(busiest_rq, target_rq);
  3024. update_rq_clock(busiest_rq);
  3025. update_rq_clock(target_rq);
  3026. /* Search for an sd spanning us and the target CPU. */
  3027. for_each_domain(target_cpu, sd) {
  3028. if ((sd->flags & SD_LOAD_BALANCE) &&
  3029. cpu_isset(busiest_cpu, sd->span))
  3030. break;
  3031. }
  3032. if (likely(sd)) {
  3033. schedstat_inc(sd, alb_count);
  3034. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3035. sd, CPU_IDLE))
  3036. schedstat_inc(sd, alb_pushed);
  3037. else
  3038. schedstat_inc(sd, alb_failed);
  3039. }
  3040. spin_unlock(&target_rq->lock);
  3041. }
  3042. #ifdef CONFIG_NO_HZ
  3043. static struct {
  3044. atomic_t load_balancer;
  3045. cpumask_t cpu_mask;
  3046. } nohz ____cacheline_aligned = {
  3047. .load_balancer = ATOMIC_INIT(-1),
  3048. .cpu_mask = CPU_MASK_NONE,
  3049. };
  3050. /*
  3051. * This routine will try to nominate the ilb (idle load balancing)
  3052. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3053. * load balancing on behalf of all those cpus. If all the cpus in the system
  3054. * go into this tickless mode, then there will be no ilb owner (as there is
  3055. * no need for one) and all the cpus will sleep till the next wakeup event
  3056. * arrives...
  3057. *
  3058. * For the ilb owner, tick is not stopped. And this tick will be used
  3059. * for idle load balancing. ilb owner will still be part of
  3060. * nohz.cpu_mask..
  3061. *
  3062. * While stopping the tick, this cpu will become the ilb owner if there
  3063. * is no other owner. And will be the owner till that cpu becomes busy
  3064. * or if all cpus in the system stop their ticks at which point
  3065. * there is no need for ilb owner.
  3066. *
  3067. * When the ilb owner becomes busy, it nominates another owner, during the
  3068. * next busy scheduler_tick()
  3069. */
  3070. int select_nohz_load_balancer(int stop_tick)
  3071. {
  3072. int cpu = smp_processor_id();
  3073. if (stop_tick) {
  3074. cpu_set(cpu, nohz.cpu_mask);
  3075. cpu_rq(cpu)->in_nohz_recently = 1;
  3076. /*
  3077. * If we are going offline and still the leader, give up!
  3078. */
  3079. if (cpu_is_offline(cpu) &&
  3080. atomic_read(&nohz.load_balancer) == cpu) {
  3081. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3082. BUG();
  3083. return 0;
  3084. }
  3085. /* time for ilb owner also to sleep */
  3086. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3087. if (atomic_read(&nohz.load_balancer) == cpu)
  3088. atomic_set(&nohz.load_balancer, -1);
  3089. return 0;
  3090. }
  3091. if (atomic_read(&nohz.load_balancer) == -1) {
  3092. /* make me the ilb owner */
  3093. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3094. return 1;
  3095. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3096. return 1;
  3097. } else {
  3098. if (!cpu_isset(cpu, nohz.cpu_mask))
  3099. return 0;
  3100. cpu_clear(cpu, nohz.cpu_mask);
  3101. if (atomic_read(&nohz.load_balancer) == cpu)
  3102. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3103. BUG();
  3104. }
  3105. return 0;
  3106. }
  3107. #endif
  3108. static DEFINE_SPINLOCK(balancing);
  3109. /*
  3110. * It checks each scheduling domain to see if it is due to be balanced,
  3111. * and initiates a balancing operation if so.
  3112. *
  3113. * Balancing parameters are set up in arch_init_sched_domains.
  3114. */
  3115. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3116. {
  3117. int balance = 1;
  3118. struct rq *rq = cpu_rq(cpu);
  3119. unsigned long interval;
  3120. struct sched_domain *sd;
  3121. /* Earliest time when we have to do rebalance again */
  3122. unsigned long next_balance = jiffies + 60*HZ;
  3123. int update_next_balance = 0;
  3124. int need_serialize;
  3125. cpumask_t tmp;
  3126. for_each_domain(cpu, sd) {
  3127. if (!(sd->flags & SD_LOAD_BALANCE))
  3128. continue;
  3129. interval = sd->balance_interval;
  3130. if (idle != CPU_IDLE)
  3131. interval *= sd->busy_factor;
  3132. /* scale ms to jiffies */
  3133. interval = msecs_to_jiffies(interval);
  3134. if (unlikely(!interval))
  3135. interval = 1;
  3136. if (interval > HZ*NR_CPUS/10)
  3137. interval = HZ*NR_CPUS/10;
  3138. need_serialize = sd->flags & SD_SERIALIZE;
  3139. if (need_serialize) {
  3140. if (!spin_trylock(&balancing))
  3141. goto out;
  3142. }
  3143. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3144. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3145. /*
  3146. * We've pulled tasks over so either we're no
  3147. * longer idle, or one of our SMT siblings is
  3148. * not idle.
  3149. */
  3150. idle = CPU_NOT_IDLE;
  3151. }
  3152. sd->last_balance = jiffies;
  3153. }
  3154. if (need_serialize)
  3155. spin_unlock(&balancing);
  3156. out:
  3157. if (time_after(next_balance, sd->last_balance + interval)) {
  3158. next_balance = sd->last_balance + interval;
  3159. update_next_balance = 1;
  3160. }
  3161. /*
  3162. * Stop the load balance at this level. There is another
  3163. * CPU in our sched group which is doing load balancing more
  3164. * actively.
  3165. */
  3166. if (!balance)
  3167. break;
  3168. }
  3169. /*
  3170. * next_balance will be updated only when there is a need.
  3171. * When the cpu is attached to null domain for ex, it will not be
  3172. * updated.
  3173. */
  3174. if (likely(update_next_balance))
  3175. rq->next_balance = next_balance;
  3176. }
  3177. /*
  3178. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3179. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3180. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3181. */
  3182. static void run_rebalance_domains(struct softirq_action *h)
  3183. {
  3184. int this_cpu = smp_processor_id();
  3185. struct rq *this_rq = cpu_rq(this_cpu);
  3186. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3187. CPU_IDLE : CPU_NOT_IDLE;
  3188. rebalance_domains(this_cpu, idle);
  3189. #ifdef CONFIG_NO_HZ
  3190. /*
  3191. * If this cpu is the owner for idle load balancing, then do the
  3192. * balancing on behalf of the other idle cpus whose ticks are
  3193. * stopped.
  3194. */
  3195. if (this_rq->idle_at_tick &&
  3196. atomic_read(&nohz.load_balancer) == this_cpu) {
  3197. cpumask_t cpus = nohz.cpu_mask;
  3198. struct rq *rq;
  3199. int balance_cpu;
  3200. cpu_clear(this_cpu, cpus);
  3201. for_each_cpu_mask(balance_cpu, cpus) {
  3202. /*
  3203. * If this cpu gets work to do, stop the load balancing
  3204. * work being done for other cpus. Next load
  3205. * balancing owner will pick it up.
  3206. */
  3207. if (need_resched())
  3208. break;
  3209. rebalance_domains(balance_cpu, CPU_IDLE);
  3210. rq = cpu_rq(balance_cpu);
  3211. if (time_after(this_rq->next_balance, rq->next_balance))
  3212. this_rq->next_balance = rq->next_balance;
  3213. }
  3214. }
  3215. #endif
  3216. }
  3217. /*
  3218. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3219. *
  3220. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3221. * idle load balancing owner or decide to stop the periodic load balancing,
  3222. * if the whole system is idle.
  3223. */
  3224. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3225. {
  3226. #ifdef CONFIG_NO_HZ
  3227. /*
  3228. * If we were in the nohz mode recently and busy at the current
  3229. * scheduler tick, then check if we need to nominate new idle
  3230. * load balancer.
  3231. */
  3232. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3233. rq->in_nohz_recently = 0;
  3234. if (atomic_read(&nohz.load_balancer) == cpu) {
  3235. cpu_clear(cpu, nohz.cpu_mask);
  3236. atomic_set(&nohz.load_balancer, -1);
  3237. }
  3238. if (atomic_read(&nohz.load_balancer) == -1) {
  3239. /*
  3240. * simple selection for now: Nominate the
  3241. * first cpu in the nohz list to be the next
  3242. * ilb owner.
  3243. *
  3244. * TBD: Traverse the sched domains and nominate
  3245. * the nearest cpu in the nohz.cpu_mask.
  3246. */
  3247. int ilb = first_cpu(nohz.cpu_mask);
  3248. if (ilb < nr_cpu_ids)
  3249. resched_cpu(ilb);
  3250. }
  3251. }
  3252. /*
  3253. * If this cpu is idle and doing idle load balancing for all the
  3254. * cpus with ticks stopped, is it time for that to stop?
  3255. */
  3256. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3257. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3258. resched_cpu(cpu);
  3259. return;
  3260. }
  3261. /*
  3262. * If this cpu is idle and the idle load balancing is done by
  3263. * someone else, then no need raise the SCHED_SOFTIRQ
  3264. */
  3265. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3266. cpu_isset(cpu, nohz.cpu_mask))
  3267. return;
  3268. #endif
  3269. if (time_after_eq(jiffies, rq->next_balance))
  3270. raise_softirq(SCHED_SOFTIRQ);
  3271. }
  3272. #else /* CONFIG_SMP */
  3273. /*
  3274. * on UP we do not need to balance between CPUs:
  3275. */
  3276. static inline void idle_balance(int cpu, struct rq *rq)
  3277. {
  3278. }
  3279. #endif
  3280. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3281. EXPORT_PER_CPU_SYMBOL(kstat);
  3282. /*
  3283. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3284. * that have not yet been banked in case the task is currently running.
  3285. */
  3286. unsigned long long task_sched_runtime(struct task_struct *p)
  3287. {
  3288. unsigned long flags;
  3289. u64 ns, delta_exec;
  3290. struct rq *rq;
  3291. rq = task_rq_lock(p, &flags);
  3292. ns = p->se.sum_exec_runtime;
  3293. if (task_current(rq, p)) {
  3294. update_rq_clock(rq);
  3295. delta_exec = rq->clock - p->se.exec_start;
  3296. if ((s64)delta_exec > 0)
  3297. ns += delta_exec;
  3298. }
  3299. task_rq_unlock(rq, &flags);
  3300. return ns;
  3301. }
  3302. /*
  3303. * Account user cpu time to a process.
  3304. * @p: the process that the cpu time gets accounted to
  3305. * @cputime: the cpu time spent in user space since the last update
  3306. */
  3307. void account_user_time(struct task_struct *p, cputime_t cputime)
  3308. {
  3309. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3310. cputime64_t tmp;
  3311. p->utime = cputime_add(p->utime, cputime);
  3312. /* Add user time to cpustat. */
  3313. tmp = cputime_to_cputime64(cputime);
  3314. if (TASK_NICE(p) > 0)
  3315. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3316. else
  3317. cpustat->user = cputime64_add(cpustat->user, tmp);
  3318. }
  3319. /*
  3320. * Account guest cpu time to a process.
  3321. * @p: the process that the cpu time gets accounted to
  3322. * @cputime: the cpu time spent in virtual machine since the last update
  3323. */
  3324. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3325. {
  3326. cputime64_t tmp;
  3327. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3328. tmp = cputime_to_cputime64(cputime);
  3329. p->utime = cputime_add(p->utime, cputime);
  3330. p->gtime = cputime_add(p->gtime, cputime);
  3331. cpustat->user = cputime64_add(cpustat->user, tmp);
  3332. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3333. }
  3334. /*
  3335. * Account scaled user cpu time to a process.
  3336. * @p: the process that the cpu time gets accounted to
  3337. * @cputime: the cpu time spent in user space since the last update
  3338. */
  3339. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3340. {
  3341. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3342. }
  3343. /*
  3344. * Account system cpu time to a process.
  3345. * @p: the process that the cpu time gets accounted to
  3346. * @hardirq_offset: the offset to subtract from hardirq_count()
  3347. * @cputime: the cpu time spent in kernel space since the last update
  3348. */
  3349. void account_system_time(struct task_struct *p, int hardirq_offset,
  3350. cputime_t cputime)
  3351. {
  3352. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3353. struct rq *rq = this_rq();
  3354. cputime64_t tmp;
  3355. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3356. account_guest_time(p, cputime);
  3357. return;
  3358. }
  3359. p->stime = cputime_add(p->stime, cputime);
  3360. /* Add system time to cpustat. */
  3361. tmp = cputime_to_cputime64(cputime);
  3362. if (hardirq_count() - hardirq_offset)
  3363. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3364. else if (softirq_count())
  3365. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3366. else if (p != rq->idle)
  3367. cpustat->system = cputime64_add(cpustat->system, tmp);
  3368. else if (atomic_read(&rq->nr_iowait) > 0)
  3369. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3370. else
  3371. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3372. /* Account for system time used */
  3373. acct_update_integrals(p);
  3374. }
  3375. /*
  3376. * Account scaled system cpu time to a process.
  3377. * @p: the process that the cpu time gets accounted to
  3378. * @hardirq_offset: the offset to subtract from hardirq_count()
  3379. * @cputime: the cpu time spent in kernel space since the last update
  3380. */
  3381. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3382. {
  3383. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3384. }
  3385. /*
  3386. * Account for involuntary wait time.
  3387. * @p: the process from which the cpu time has been stolen
  3388. * @steal: the cpu time spent in involuntary wait
  3389. */
  3390. void account_steal_time(struct task_struct *p, cputime_t steal)
  3391. {
  3392. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3393. cputime64_t tmp = cputime_to_cputime64(steal);
  3394. struct rq *rq = this_rq();
  3395. if (p == rq->idle) {
  3396. p->stime = cputime_add(p->stime, steal);
  3397. if (atomic_read(&rq->nr_iowait) > 0)
  3398. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3399. else
  3400. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3401. } else
  3402. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3403. }
  3404. /*
  3405. * This function gets called by the timer code, with HZ frequency.
  3406. * We call it with interrupts disabled.
  3407. *
  3408. * It also gets called by the fork code, when changing the parent's
  3409. * timeslices.
  3410. */
  3411. void scheduler_tick(void)
  3412. {
  3413. int cpu = smp_processor_id();
  3414. struct rq *rq = cpu_rq(cpu);
  3415. struct task_struct *curr = rq->curr;
  3416. sched_clock_tick();
  3417. spin_lock(&rq->lock);
  3418. update_rq_clock(rq);
  3419. update_cpu_load(rq);
  3420. curr->sched_class->task_tick(rq, curr, 0);
  3421. spin_unlock(&rq->lock);
  3422. #ifdef CONFIG_SMP
  3423. rq->idle_at_tick = idle_cpu(cpu);
  3424. trigger_load_balance(rq, cpu);
  3425. #endif
  3426. }
  3427. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3428. void __kprobes add_preempt_count(int val)
  3429. {
  3430. /*
  3431. * Underflow?
  3432. */
  3433. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3434. return;
  3435. preempt_count() += val;
  3436. /*
  3437. * Spinlock count overflowing soon?
  3438. */
  3439. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3440. PREEMPT_MASK - 10);
  3441. }
  3442. EXPORT_SYMBOL(add_preempt_count);
  3443. void __kprobes sub_preempt_count(int val)
  3444. {
  3445. /*
  3446. * Underflow?
  3447. */
  3448. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3449. return;
  3450. /*
  3451. * Is the spinlock portion underflowing?
  3452. */
  3453. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3454. !(preempt_count() & PREEMPT_MASK)))
  3455. return;
  3456. preempt_count() -= val;
  3457. }
  3458. EXPORT_SYMBOL(sub_preempt_count);
  3459. #endif
  3460. /*
  3461. * Print scheduling while atomic bug:
  3462. */
  3463. static noinline void __schedule_bug(struct task_struct *prev)
  3464. {
  3465. struct pt_regs *regs = get_irq_regs();
  3466. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3467. prev->comm, prev->pid, preempt_count());
  3468. debug_show_held_locks(prev);
  3469. print_modules();
  3470. if (irqs_disabled())
  3471. print_irqtrace_events(prev);
  3472. if (regs)
  3473. show_regs(regs);
  3474. else
  3475. dump_stack();
  3476. }
  3477. /*
  3478. * Various schedule()-time debugging checks and statistics:
  3479. */
  3480. static inline void schedule_debug(struct task_struct *prev)
  3481. {
  3482. /*
  3483. * Test if we are atomic. Since do_exit() needs to call into
  3484. * schedule() atomically, we ignore that path for now.
  3485. * Otherwise, whine if we are scheduling when we should not be.
  3486. */
  3487. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3488. __schedule_bug(prev);
  3489. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3490. schedstat_inc(this_rq(), sched_count);
  3491. #ifdef CONFIG_SCHEDSTATS
  3492. if (unlikely(prev->lock_depth >= 0)) {
  3493. schedstat_inc(this_rq(), bkl_count);
  3494. schedstat_inc(prev, sched_info.bkl_count);
  3495. }
  3496. #endif
  3497. }
  3498. /*
  3499. * Pick up the highest-prio task:
  3500. */
  3501. static inline struct task_struct *
  3502. pick_next_task(struct rq *rq, struct task_struct *prev)
  3503. {
  3504. const struct sched_class *class;
  3505. struct task_struct *p;
  3506. /*
  3507. * Optimization: we know that if all tasks are in
  3508. * the fair class we can call that function directly:
  3509. */
  3510. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3511. p = fair_sched_class.pick_next_task(rq);
  3512. if (likely(p))
  3513. return p;
  3514. }
  3515. class = sched_class_highest;
  3516. for ( ; ; ) {
  3517. p = class->pick_next_task(rq);
  3518. if (p)
  3519. return p;
  3520. /*
  3521. * Will never be NULL as the idle class always
  3522. * returns a non-NULL p:
  3523. */
  3524. class = class->next;
  3525. }
  3526. }
  3527. /*
  3528. * schedule() is the main scheduler function.
  3529. */
  3530. asmlinkage void __sched schedule(void)
  3531. {
  3532. struct task_struct *prev, *next;
  3533. unsigned long *switch_count;
  3534. struct rq *rq;
  3535. int cpu, hrtick = sched_feat(HRTICK);
  3536. need_resched:
  3537. preempt_disable();
  3538. cpu = smp_processor_id();
  3539. rq = cpu_rq(cpu);
  3540. rcu_qsctr_inc(cpu);
  3541. prev = rq->curr;
  3542. switch_count = &prev->nivcsw;
  3543. release_kernel_lock(prev);
  3544. need_resched_nonpreemptible:
  3545. schedule_debug(prev);
  3546. if (hrtick)
  3547. hrtick_clear(rq);
  3548. /*
  3549. * Do the rq-clock update outside the rq lock:
  3550. */
  3551. local_irq_disable();
  3552. update_rq_clock(rq);
  3553. spin_lock(&rq->lock);
  3554. clear_tsk_need_resched(prev);
  3555. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3556. if (unlikely(signal_pending_state(prev->state, prev)))
  3557. prev->state = TASK_RUNNING;
  3558. else
  3559. deactivate_task(rq, prev, 1);
  3560. switch_count = &prev->nvcsw;
  3561. }
  3562. #ifdef CONFIG_SMP
  3563. if (prev->sched_class->pre_schedule)
  3564. prev->sched_class->pre_schedule(rq, prev);
  3565. #endif
  3566. if (unlikely(!rq->nr_running))
  3567. idle_balance(cpu, rq);
  3568. prev->sched_class->put_prev_task(rq, prev);
  3569. next = pick_next_task(rq, prev);
  3570. if (likely(prev != next)) {
  3571. sched_info_switch(prev, next);
  3572. rq->nr_switches++;
  3573. rq->curr = next;
  3574. ++*switch_count;
  3575. context_switch(rq, prev, next); /* unlocks the rq */
  3576. /*
  3577. * the context switch might have flipped the stack from under
  3578. * us, hence refresh the local variables.
  3579. */
  3580. cpu = smp_processor_id();
  3581. rq = cpu_rq(cpu);
  3582. } else
  3583. spin_unlock_irq(&rq->lock);
  3584. if (hrtick)
  3585. hrtick_set(rq);
  3586. if (unlikely(reacquire_kernel_lock(current) < 0))
  3587. goto need_resched_nonpreemptible;
  3588. preempt_enable_no_resched();
  3589. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3590. goto need_resched;
  3591. }
  3592. EXPORT_SYMBOL(schedule);
  3593. #ifdef CONFIG_PREEMPT
  3594. /*
  3595. * this is the entry point to schedule() from in-kernel preemption
  3596. * off of preempt_enable. Kernel preemptions off return from interrupt
  3597. * occur there and call schedule directly.
  3598. */
  3599. asmlinkage void __sched preempt_schedule(void)
  3600. {
  3601. struct thread_info *ti = current_thread_info();
  3602. /*
  3603. * If there is a non-zero preempt_count or interrupts are disabled,
  3604. * we do not want to preempt the current task. Just return..
  3605. */
  3606. if (likely(ti->preempt_count || irqs_disabled()))
  3607. return;
  3608. do {
  3609. add_preempt_count(PREEMPT_ACTIVE);
  3610. schedule();
  3611. sub_preempt_count(PREEMPT_ACTIVE);
  3612. /*
  3613. * Check again in case we missed a preemption opportunity
  3614. * between schedule and now.
  3615. */
  3616. barrier();
  3617. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3618. }
  3619. EXPORT_SYMBOL(preempt_schedule);
  3620. /*
  3621. * this is the entry point to schedule() from kernel preemption
  3622. * off of irq context.
  3623. * Note, that this is called and return with irqs disabled. This will
  3624. * protect us against recursive calling from irq.
  3625. */
  3626. asmlinkage void __sched preempt_schedule_irq(void)
  3627. {
  3628. struct thread_info *ti = current_thread_info();
  3629. /* Catch callers which need to be fixed */
  3630. BUG_ON(ti->preempt_count || !irqs_disabled());
  3631. do {
  3632. add_preempt_count(PREEMPT_ACTIVE);
  3633. local_irq_enable();
  3634. schedule();
  3635. local_irq_disable();
  3636. sub_preempt_count(PREEMPT_ACTIVE);
  3637. /*
  3638. * Check again in case we missed a preemption opportunity
  3639. * between schedule and now.
  3640. */
  3641. barrier();
  3642. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3643. }
  3644. #endif /* CONFIG_PREEMPT */
  3645. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3646. void *key)
  3647. {
  3648. return try_to_wake_up(curr->private, mode, sync);
  3649. }
  3650. EXPORT_SYMBOL(default_wake_function);
  3651. /*
  3652. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3653. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3654. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3655. *
  3656. * There are circumstances in which we can try to wake a task which has already
  3657. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3658. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3659. */
  3660. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3661. int nr_exclusive, int sync, void *key)
  3662. {
  3663. wait_queue_t *curr, *next;
  3664. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3665. unsigned flags = curr->flags;
  3666. if (curr->func(curr, mode, sync, key) &&
  3667. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3668. break;
  3669. }
  3670. }
  3671. /**
  3672. * __wake_up - wake up threads blocked on a waitqueue.
  3673. * @q: the waitqueue
  3674. * @mode: which threads
  3675. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3676. * @key: is directly passed to the wakeup function
  3677. */
  3678. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3679. int nr_exclusive, void *key)
  3680. {
  3681. unsigned long flags;
  3682. spin_lock_irqsave(&q->lock, flags);
  3683. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3684. spin_unlock_irqrestore(&q->lock, flags);
  3685. }
  3686. EXPORT_SYMBOL(__wake_up);
  3687. /*
  3688. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3689. */
  3690. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3691. {
  3692. __wake_up_common(q, mode, 1, 0, NULL);
  3693. }
  3694. /**
  3695. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3696. * @q: the waitqueue
  3697. * @mode: which threads
  3698. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3699. *
  3700. * The sync wakeup differs that the waker knows that it will schedule
  3701. * away soon, so while the target thread will be woken up, it will not
  3702. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3703. * with each other. This can prevent needless bouncing between CPUs.
  3704. *
  3705. * On UP it can prevent extra preemption.
  3706. */
  3707. void
  3708. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3709. {
  3710. unsigned long flags;
  3711. int sync = 1;
  3712. if (unlikely(!q))
  3713. return;
  3714. if (unlikely(!nr_exclusive))
  3715. sync = 0;
  3716. spin_lock_irqsave(&q->lock, flags);
  3717. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3718. spin_unlock_irqrestore(&q->lock, flags);
  3719. }
  3720. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3721. void complete(struct completion *x)
  3722. {
  3723. unsigned long flags;
  3724. spin_lock_irqsave(&x->wait.lock, flags);
  3725. x->done++;
  3726. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3727. spin_unlock_irqrestore(&x->wait.lock, flags);
  3728. }
  3729. EXPORT_SYMBOL(complete);
  3730. void complete_all(struct completion *x)
  3731. {
  3732. unsigned long flags;
  3733. spin_lock_irqsave(&x->wait.lock, flags);
  3734. x->done += UINT_MAX/2;
  3735. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3736. spin_unlock_irqrestore(&x->wait.lock, flags);
  3737. }
  3738. EXPORT_SYMBOL(complete_all);
  3739. static inline long __sched
  3740. do_wait_for_common(struct completion *x, long timeout, int state)
  3741. {
  3742. if (!x->done) {
  3743. DECLARE_WAITQUEUE(wait, current);
  3744. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3745. __add_wait_queue_tail(&x->wait, &wait);
  3746. do {
  3747. if ((state == TASK_INTERRUPTIBLE &&
  3748. signal_pending(current)) ||
  3749. (state == TASK_KILLABLE &&
  3750. fatal_signal_pending(current))) {
  3751. __remove_wait_queue(&x->wait, &wait);
  3752. return -ERESTARTSYS;
  3753. }
  3754. __set_current_state(state);
  3755. spin_unlock_irq(&x->wait.lock);
  3756. timeout = schedule_timeout(timeout);
  3757. spin_lock_irq(&x->wait.lock);
  3758. if (!timeout) {
  3759. __remove_wait_queue(&x->wait, &wait);
  3760. return timeout;
  3761. }
  3762. } while (!x->done);
  3763. __remove_wait_queue(&x->wait, &wait);
  3764. }
  3765. x->done--;
  3766. return timeout;
  3767. }
  3768. static long __sched
  3769. wait_for_common(struct completion *x, long timeout, int state)
  3770. {
  3771. might_sleep();
  3772. spin_lock_irq(&x->wait.lock);
  3773. timeout = do_wait_for_common(x, timeout, state);
  3774. spin_unlock_irq(&x->wait.lock);
  3775. return timeout;
  3776. }
  3777. void __sched wait_for_completion(struct completion *x)
  3778. {
  3779. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3780. }
  3781. EXPORT_SYMBOL(wait_for_completion);
  3782. unsigned long __sched
  3783. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3784. {
  3785. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3786. }
  3787. EXPORT_SYMBOL(wait_for_completion_timeout);
  3788. int __sched wait_for_completion_interruptible(struct completion *x)
  3789. {
  3790. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3791. if (t == -ERESTARTSYS)
  3792. return t;
  3793. return 0;
  3794. }
  3795. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3796. unsigned long __sched
  3797. wait_for_completion_interruptible_timeout(struct completion *x,
  3798. unsigned long timeout)
  3799. {
  3800. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3801. }
  3802. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3803. int __sched wait_for_completion_killable(struct completion *x)
  3804. {
  3805. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3806. if (t == -ERESTARTSYS)
  3807. return t;
  3808. return 0;
  3809. }
  3810. EXPORT_SYMBOL(wait_for_completion_killable);
  3811. static long __sched
  3812. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3813. {
  3814. unsigned long flags;
  3815. wait_queue_t wait;
  3816. init_waitqueue_entry(&wait, current);
  3817. __set_current_state(state);
  3818. spin_lock_irqsave(&q->lock, flags);
  3819. __add_wait_queue(q, &wait);
  3820. spin_unlock(&q->lock);
  3821. timeout = schedule_timeout(timeout);
  3822. spin_lock_irq(&q->lock);
  3823. __remove_wait_queue(q, &wait);
  3824. spin_unlock_irqrestore(&q->lock, flags);
  3825. return timeout;
  3826. }
  3827. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3828. {
  3829. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3830. }
  3831. EXPORT_SYMBOL(interruptible_sleep_on);
  3832. long __sched
  3833. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3834. {
  3835. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3836. }
  3837. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3838. void __sched sleep_on(wait_queue_head_t *q)
  3839. {
  3840. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3841. }
  3842. EXPORT_SYMBOL(sleep_on);
  3843. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3844. {
  3845. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3846. }
  3847. EXPORT_SYMBOL(sleep_on_timeout);
  3848. #ifdef CONFIG_RT_MUTEXES
  3849. /*
  3850. * rt_mutex_setprio - set the current priority of a task
  3851. * @p: task
  3852. * @prio: prio value (kernel-internal form)
  3853. *
  3854. * This function changes the 'effective' priority of a task. It does
  3855. * not touch ->normal_prio like __setscheduler().
  3856. *
  3857. * Used by the rt_mutex code to implement priority inheritance logic.
  3858. */
  3859. void rt_mutex_setprio(struct task_struct *p, int prio)
  3860. {
  3861. unsigned long flags;
  3862. int oldprio, on_rq, running;
  3863. struct rq *rq;
  3864. const struct sched_class *prev_class = p->sched_class;
  3865. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3866. rq = task_rq_lock(p, &flags);
  3867. update_rq_clock(rq);
  3868. oldprio = p->prio;
  3869. on_rq = p->se.on_rq;
  3870. running = task_current(rq, p);
  3871. if (on_rq)
  3872. dequeue_task(rq, p, 0);
  3873. if (running)
  3874. p->sched_class->put_prev_task(rq, p);
  3875. if (rt_prio(prio))
  3876. p->sched_class = &rt_sched_class;
  3877. else
  3878. p->sched_class = &fair_sched_class;
  3879. p->prio = prio;
  3880. if (running)
  3881. p->sched_class->set_curr_task(rq);
  3882. if (on_rq) {
  3883. enqueue_task(rq, p, 0);
  3884. check_class_changed(rq, p, prev_class, oldprio, running);
  3885. }
  3886. task_rq_unlock(rq, &flags);
  3887. }
  3888. #endif
  3889. void set_user_nice(struct task_struct *p, long nice)
  3890. {
  3891. int old_prio, delta, on_rq;
  3892. unsigned long flags;
  3893. struct rq *rq;
  3894. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3895. return;
  3896. /*
  3897. * We have to be careful, if called from sys_setpriority(),
  3898. * the task might be in the middle of scheduling on another CPU.
  3899. */
  3900. rq = task_rq_lock(p, &flags);
  3901. update_rq_clock(rq);
  3902. /*
  3903. * The RT priorities are set via sched_setscheduler(), but we still
  3904. * allow the 'normal' nice value to be set - but as expected
  3905. * it wont have any effect on scheduling until the task is
  3906. * SCHED_FIFO/SCHED_RR:
  3907. */
  3908. if (task_has_rt_policy(p)) {
  3909. p->static_prio = NICE_TO_PRIO(nice);
  3910. goto out_unlock;
  3911. }
  3912. on_rq = p->se.on_rq;
  3913. if (on_rq) {
  3914. dequeue_task(rq, p, 0);
  3915. dec_load(rq, p);
  3916. }
  3917. p->static_prio = NICE_TO_PRIO(nice);
  3918. set_load_weight(p);
  3919. old_prio = p->prio;
  3920. p->prio = effective_prio(p);
  3921. delta = p->prio - old_prio;
  3922. if (on_rq) {
  3923. enqueue_task(rq, p, 0);
  3924. inc_load(rq, p);
  3925. /*
  3926. * If the task increased its priority or is running and
  3927. * lowered its priority, then reschedule its CPU:
  3928. */
  3929. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3930. resched_task(rq->curr);
  3931. }
  3932. out_unlock:
  3933. task_rq_unlock(rq, &flags);
  3934. }
  3935. EXPORT_SYMBOL(set_user_nice);
  3936. /*
  3937. * can_nice - check if a task can reduce its nice value
  3938. * @p: task
  3939. * @nice: nice value
  3940. */
  3941. int can_nice(const struct task_struct *p, const int nice)
  3942. {
  3943. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3944. int nice_rlim = 20 - nice;
  3945. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3946. capable(CAP_SYS_NICE));
  3947. }
  3948. #ifdef __ARCH_WANT_SYS_NICE
  3949. /*
  3950. * sys_nice - change the priority of the current process.
  3951. * @increment: priority increment
  3952. *
  3953. * sys_setpriority is a more generic, but much slower function that
  3954. * does similar things.
  3955. */
  3956. asmlinkage long sys_nice(int increment)
  3957. {
  3958. long nice, retval;
  3959. /*
  3960. * Setpriority might change our priority at the same moment.
  3961. * We don't have to worry. Conceptually one call occurs first
  3962. * and we have a single winner.
  3963. */
  3964. if (increment < -40)
  3965. increment = -40;
  3966. if (increment > 40)
  3967. increment = 40;
  3968. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3969. if (nice < -20)
  3970. nice = -20;
  3971. if (nice > 19)
  3972. nice = 19;
  3973. if (increment < 0 && !can_nice(current, nice))
  3974. return -EPERM;
  3975. retval = security_task_setnice(current, nice);
  3976. if (retval)
  3977. return retval;
  3978. set_user_nice(current, nice);
  3979. return 0;
  3980. }
  3981. #endif
  3982. /**
  3983. * task_prio - return the priority value of a given task.
  3984. * @p: the task in question.
  3985. *
  3986. * This is the priority value as seen by users in /proc.
  3987. * RT tasks are offset by -200. Normal tasks are centered
  3988. * around 0, value goes from -16 to +15.
  3989. */
  3990. int task_prio(const struct task_struct *p)
  3991. {
  3992. return p->prio - MAX_RT_PRIO;
  3993. }
  3994. /**
  3995. * task_nice - return the nice value of a given task.
  3996. * @p: the task in question.
  3997. */
  3998. int task_nice(const struct task_struct *p)
  3999. {
  4000. return TASK_NICE(p);
  4001. }
  4002. EXPORT_SYMBOL(task_nice);
  4003. /**
  4004. * idle_cpu - is a given cpu idle currently?
  4005. * @cpu: the processor in question.
  4006. */
  4007. int idle_cpu(int cpu)
  4008. {
  4009. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4010. }
  4011. /**
  4012. * idle_task - return the idle task for a given cpu.
  4013. * @cpu: the processor in question.
  4014. */
  4015. struct task_struct *idle_task(int cpu)
  4016. {
  4017. return cpu_rq(cpu)->idle;
  4018. }
  4019. /**
  4020. * find_process_by_pid - find a process with a matching PID value.
  4021. * @pid: the pid in question.
  4022. */
  4023. static struct task_struct *find_process_by_pid(pid_t pid)
  4024. {
  4025. return pid ? find_task_by_vpid(pid) : current;
  4026. }
  4027. /* Actually do priority change: must hold rq lock. */
  4028. static void
  4029. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4030. {
  4031. BUG_ON(p->se.on_rq);
  4032. p->policy = policy;
  4033. switch (p->policy) {
  4034. case SCHED_NORMAL:
  4035. case SCHED_BATCH:
  4036. case SCHED_IDLE:
  4037. p->sched_class = &fair_sched_class;
  4038. break;
  4039. case SCHED_FIFO:
  4040. case SCHED_RR:
  4041. p->sched_class = &rt_sched_class;
  4042. break;
  4043. }
  4044. p->rt_priority = prio;
  4045. p->normal_prio = normal_prio(p);
  4046. /* we are holding p->pi_lock already */
  4047. p->prio = rt_mutex_getprio(p);
  4048. set_load_weight(p);
  4049. }
  4050. /**
  4051. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4052. * @p: the task in question.
  4053. * @policy: new policy.
  4054. * @param: structure containing the new RT priority.
  4055. *
  4056. * NOTE that the task may be already dead.
  4057. */
  4058. int sched_setscheduler(struct task_struct *p, int policy,
  4059. struct sched_param *param)
  4060. {
  4061. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4062. unsigned long flags;
  4063. const struct sched_class *prev_class = p->sched_class;
  4064. struct rq *rq;
  4065. /* may grab non-irq protected spin_locks */
  4066. BUG_ON(in_interrupt());
  4067. recheck:
  4068. /* double check policy once rq lock held */
  4069. if (policy < 0)
  4070. policy = oldpolicy = p->policy;
  4071. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4072. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4073. policy != SCHED_IDLE)
  4074. return -EINVAL;
  4075. /*
  4076. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4077. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4078. * SCHED_BATCH and SCHED_IDLE is 0.
  4079. */
  4080. if (param->sched_priority < 0 ||
  4081. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4082. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4083. return -EINVAL;
  4084. if (rt_policy(policy) != (param->sched_priority != 0))
  4085. return -EINVAL;
  4086. /*
  4087. * Allow unprivileged RT tasks to decrease priority:
  4088. */
  4089. if (!capable(CAP_SYS_NICE)) {
  4090. if (rt_policy(policy)) {
  4091. unsigned long rlim_rtprio;
  4092. if (!lock_task_sighand(p, &flags))
  4093. return -ESRCH;
  4094. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4095. unlock_task_sighand(p, &flags);
  4096. /* can't set/change the rt policy */
  4097. if (policy != p->policy && !rlim_rtprio)
  4098. return -EPERM;
  4099. /* can't increase priority */
  4100. if (param->sched_priority > p->rt_priority &&
  4101. param->sched_priority > rlim_rtprio)
  4102. return -EPERM;
  4103. }
  4104. /*
  4105. * Like positive nice levels, dont allow tasks to
  4106. * move out of SCHED_IDLE either:
  4107. */
  4108. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4109. return -EPERM;
  4110. /* can't change other user's priorities */
  4111. if ((current->euid != p->euid) &&
  4112. (current->euid != p->uid))
  4113. return -EPERM;
  4114. }
  4115. #ifdef CONFIG_RT_GROUP_SCHED
  4116. /*
  4117. * Do not allow realtime tasks into groups that have no runtime
  4118. * assigned.
  4119. */
  4120. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4121. return -EPERM;
  4122. #endif
  4123. retval = security_task_setscheduler(p, policy, param);
  4124. if (retval)
  4125. return retval;
  4126. /*
  4127. * make sure no PI-waiters arrive (or leave) while we are
  4128. * changing the priority of the task:
  4129. */
  4130. spin_lock_irqsave(&p->pi_lock, flags);
  4131. /*
  4132. * To be able to change p->policy safely, the apropriate
  4133. * runqueue lock must be held.
  4134. */
  4135. rq = __task_rq_lock(p);
  4136. /* recheck policy now with rq lock held */
  4137. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4138. policy = oldpolicy = -1;
  4139. __task_rq_unlock(rq);
  4140. spin_unlock_irqrestore(&p->pi_lock, flags);
  4141. goto recheck;
  4142. }
  4143. update_rq_clock(rq);
  4144. on_rq = p->se.on_rq;
  4145. running = task_current(rq, p);
  4146. if (on_rq)
  4147. deactivate_task(rq, p, 0);
  4148. if (running)
  4149. p->sched_class->put_prev_task(rq, p);
  4150. oldprio = p->prio;
  4151. __setscheduler(rq, p, policy, param->sched_priority);
  4152. if (running)
  4153. p->sched_class->set_curr_task(rq);
  4154. if (on_rq) {
  4155. activate_task(rq, p, 0);
  4156. check_class_changed(rq, p, prev_class, oldprio, running);
  4157. }
  4158. __task_rq_unlock(rq);
  4159. spin_unlock_irqrestore(&p->pi_lock, flags);
  4160. rt_mutex_adjust_pi(p);
  4161. return 0;
  4162. }
  4163. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4164. static int
  4165. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4166. {
  4167. struct sched_param lparam;
  4168. struct task_struct *p;
  4169. int retval;
  4170. if (!param || pid < 0)
  4171. return -EINVAL;
  4172. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4173. return -EFAULT;
  4174. rcu_read_lock();
  4175. retval = -ESRCH;
  4176. p = find_process_by_pid(pid);
  4177. if (p != NULL)
  4178. retval = sched_setscheduler(p, policy, &lparam);
  4179. rcu_read_unlock();
  4180. return retval;
  4181. }
  4182. /**
  4183. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4184. * @pid: the pid in question.
  4185. * @policy: new policy.
  4186. * @param: structure containing the new RT priority.
  4187. */
  4188. asmlinkage long
  4189. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4190. {
  4191. /* negative values for policy are not valid */
  4192. if (policy < 0)
  4193. return -EINVAL;
  4194. return do_sched_setscheduler(pid, policy, param);
  4195. }
  4196. /**
  4197. * sys_sched_setparam - set/change the RT priority of a thread
  4198. * @pid: the pid in question.
  4199. * @param: structure containing the new RT priority.
  4200. */
  4201. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4202. {
  4203. return do_sched_setscheduler(pid, -1, param);
  4204. }
  4205. /**
  4206. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4207. * @pid: the pid in question.
  4208. */
  4209. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4210. {
  4211. struct task_struct *p;
  4212. int retval;
  4213. if (pid < 0)
  4214. return -EINVAL;
  4215. retval = -ESRCH;
  4216. read_lock(&tasklist_lock);
  4217. p = find_process_by_pid(pid);
  4218. if (p) {
  4219. retval = security_task_getscheduler(p);
  4220. if (!retval)
  4221. retval = p->policy;
  4222. }
  4223. read_unlock(&tasklist_lock);
  4224. return retval;
  4225. }
  4226. /**
  4227. * sys_sched_getscheduler - get the RT priority of a thread
  4228. * @pid: the pid in question.
  4229. * @param: structure containing the RT priority.
  4230. */
  4231. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4232. {
  4233. struct sched_param lp;
  4234. struct task_struct *p;
  4235. int retval;
  4236. if (!param || pid < 0)
  4237. return -EINVAL;
  4238. read_lock(&tasklist_lock);
  4239. p = find_process_by_pid(pid);
  4240. retval = -ESRCH;
  4241. if (!p)
  4242. goto out_unlock;
  4243. retval = security_task_getscheduler(p);
  4244. if (retval)
  4245. goto out_unlock;
  4246. lp.sched_priority = p->rt_priority;
  4247. read_unlock(&tasklist_lock);
  4248. /*
  4249. * This one might sleep, we cannot do it with a spinlock held ...
  4250. */
  4251. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4252. return retval;
  4253. out_unlock:
  4254. read_unlock(&tasklist_lock);
  4255. return retval;
  4256. }
  4257. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4258. {
  4259. cpumask_t cpus_allowed;
  4260. cpumask_t new_mask = *in_mask;
  4261. struct task_struct *p;
  4262. int retval;
  4263. get_online_cpus();
  4264. read_lock(&tasklist_lock);
  4265. p = find_process_by_pid(pid);
  4266. if (!p) {
  4267. read_unlock(&tasklist_lock);
  4268. put_online_cpus();
  4269. return -ESRCH;
  4270. }
  4271. /*
  4272. * It is not safe to call set_cpus_allowed with the
  4273. * tasklist_lock held. We will bump the task_struct's
  4274. * usage count and then drop tasklist_lock.
  4275. */
  4276. get_task_struct(p);
  4277. read_unlock(&tasklist_lock);
  4278. retval = -EPERM;
  4279. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4280. !capable(CAP_SYS_NICE))
  4281. goto out_unlock;
  4282. retval = security_task_setscheduler(p, 0, NULL);
  4283. if (retval)
  4284. goto out_unlock;
  4285. cpuset_cpus_allowed(p, &cpus_allowed);
  4286. cpus_and(new_mask, new_mask, cpus_allowed);
  4287. again:
  4288. retval = set_cpus_allowed_ptr(p, &new_mask);
  4289. if (!retval) {
  4290. cpuset_cpus_allowed(p, &cpus_allowed);
  4291. if (!cpus_subset(new_mask, cpus_allowed)) {
  4292. /*
  4293. * We must have raced with a concurrent cpuset
  4294. * update. Just reset the cpus_allowed to the
  4295. * cpuset's cpus_allowed
  4296. */
  4297. new_mask = cpus_allowed;
  4298. goto again;
  4299. }
  4300. }
  4301. out_unlock:
  4302. put_task_struct(p);
  4303. put_online_cpus();
  4304. return retval;
  4305. }
  4306. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4307. cpumask_t *new_mask)
  4308. {
  4309. if (len < sizeof(cpumask_t)) {
  4310. memset(new_mask, 0, sizeof(cpumask_t));
  4311. } else if (len > sizeof(cpumask_t)) {
  4312. len = sizeof(cpumask_t);
  4313. }
  4314. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4315. }
  4316. /**
  4317. * sys_sched_setaffinity - set the cpu affinity of a process
  4318. * @pid: pid of the process
  4319. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4320. * @user_mask_ptr: user-space pointer to the new cpu mask
  4321. */
  4322. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4323. unsigned long __user *user_mask_ptr)
  4324. {
  4325. cpumask_t new_mask;
  4326. int retval;
  4327. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4328. if (retval)
  4329. return retval;
  4330. return sched_setaffinity(pid, &new_mask);
  4331. }
  4332. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4333. {
  4334. struct task_struct *p;
  4335. int retval;
  4336. get_online_cpus();
  4337. read_lock(&tasklist_lock);
  4338. retval = -ESRCH;
  4339. p = find_process_by_pid(pid);
  4340. if (!p)
  4341. goto out_unlock;
  4342. retval = security_task_getscheduler(p);
  4343. if (retval)
  4344. goto out_unlock;
  4345. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4346. out_unlock:
  4347. read_unlock(&tasklist_lock);
  4348. put_online_cpus();
  4349. return retval;
  4350. }
  4351. /**
  4352. * sys_sched_getaffinity - get the cpu affinity of a process
  4353. * @pid: pid of the process
  4354. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4355. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4356. */
  4357. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4358. unsigned long __user *user_mask_ptr)
  4359. {
  4360. int ret;
  4361. cpumask_t mask;
  4362. if (len < sizeof(cpumask_t))
  4363. return -EINVAL;
  4364. ret = sched_getaffinity(pid, &mask);
  4365. if (ret < 0)
  4366. return ret;
  4367. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4368. return -EFAULT;
  4369. return sizeof(cpumask_t);
  4370. }
  4371. /**
  4372. * sys_sched_yield - yield the current processor to other threads.
  4373. *
  4374. * This function yields the current CPU to other tasks. If there are no
  4375. * other threads running on this CPU then this function will return.
  4376. */
  4377. asmlinkage long sys_sched_yield(void)
  4378. {
  4379. struct rq *rq = this_rq_lock();
  4380. schedstat_inc(rq, yld_count);
  4381. current->sched_class->yield_task(rq);
  4382. /*
  4383. * Since we are going to call schedule() anyway, there's
  4384. * no need to preempt or enable interrupts:
  4385. */
  4386. __release(rq->lock);
  4387. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4388. _raw_spin_unlock(&rq->lock);
  4389. preempt_enable_no_resched();
  4390. schedule();
  4391. return 0;
  4392. }
  4393. static void __cond_resched(void)
  4394. {
  4395. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4396. __might_sleep(__FILE__, __LINE__);
  4397. #endif
  4398. /*
  4399. * The BKS might be reacquired before we have dropped
  4400. * PREEMPT_ACTIVE, which could trigger a second
  4401. * cond_resched() call.
  4402. */
  4403. do {
  4404. add_preempt_count(PREEMPT_ACTIVE);
  4405. schedule();
  4406. sub_preempt_count(PREEMPT_ACTIVE);
  4407. } while (need_resched());
  4408. }
  4409. int __sched _cond_resched(void)
  4410. {
  4411. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4412. system_state == SYSTEM_RUNNING) {
  4413. __cond_resched();
  4414. return 1;
  4415. }
  4416. return 0;
  4417. }
  4418. EXPORT_SYMBOL(_cond_resched);
  4419. /*
  4420. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4421. * call schedule, and on return reacquire the lock.
  4422. *
  4423. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4424. * operations here to prevent schedule() from being called twice (once via
  4425. * spin_unlock(), once by hand).
  4426. */
  4427. int cond_resched_lock(spinlock_t *lock)
  4428. {
  4429. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4430. int ret = 0;
  4431. if (spin_needbreak(lock) || resched) {
  4432. spin_unlock(lock);
  4433. if (resched && need_resched())
  4434. __cond_resched();
  4435. else
  4436. cpu_relax();
  4437. ret = 1;
  4438. spin_lock(lock);
  4439. }
  4440. return ret;
  4441. }
  4442. EXPORT_SYMBOL(cond_resched_lock);
  4443. int __sched cond_resched_softirq(void)
  4444. {
  4445. BUG_ON(!in_softirq());
  4446. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4447. local_bh_enable();
  4448. __cond_resched();
  4449. local_bh_disable();
  4450. return 1;
  4451. }
  4452. return 0;
  4453. }
  4454. EXPORT_SYMBOL(cond_resched_softirq);
  4455. /**
  4456. * yield - yield the current processor to other threads.
  4457. *
  4458. * This is a shortcut for kernel-space yielding - it marks the
  4459. * thread runnable and calls sys_sched_yield().
  4460. */
  4461. void __sched yield(void)
  4462. {
  4463. set_current_state(TASK_RUNNING);
  4464. sys_sched_yield();
  4465. }
  4466. EXPORT_SYMBOL(yield);
  4467. /*
  4468. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4469. * that process accounting knows that this is a task in IO wait state.
  4470. *
  4471. * But don't do that if it is a deliberate, throttling IO wait (this task
  4472. * has set its backing_dev_info: the queue against which it should throttle)
  4473. */
  4474. void __sched io_schedule(void)
  4475. {
  4476. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4477. delayacct_blkio_start();
  4478. atomic_inc(&rq->nr_iowait);
  4479. schedule();
  4480. atomic_dec(&rq->nr_iowait);
  4481. delayacct_blkio_end();
  4482. }
  4483. EXPORT_SYMBOL(io_schedule);
  4484. long __sched io_schedule_timeout(long timeout)
  4485. {
  4486. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4487. long ret;
  4488. delayacct_blkio_start();
  4489. atomic_inc(&rq->nr_iowait);
  4490. ret = schedule_timeout(timeout);
  4491. atomic_dec(&rq->nr_iowait);
  4492. delayacct_blkio_end();
  4493. return ret;
  4494. }
  4495. /**
  4496. * sys_sched_get_priority_max - return maximum RT priority.
  4497. * @policy: scheduling class.
  4498. *
  4499. * this syscall returns the maximum rt_priority that can be used
  4500. * by a given scheduling class.
  4501. */
  4502. asmlinkage long sys_sched_get_priority_max(int policy)
  4503. {
  4504. int ret = -EINVAL;
  4505. switch (policy) {
  4506. case SCHED_FIFO:
  4507. case SCHED_RR:
  4508. ret = MAX_USER_RT_PRIO-1;
  4509. break;
  4510. case SCHED_NORMAL:
  4511. case SCHED_BATCH:
  4512. case SCHED_IDLE:
  4513. ret = 0;
  4514. break;
  4515. }
  4516. return ret;
  4517. }
  4518. /**
  4519. * sys_sched_get_priority_min - return minimum RT priority.
  4520. * @policy: scheduling class.
  4521. *
  4522. * this syscall returns the minimum rt_priority that can be used
  4523. * by a given scheduling class.
  4524. */
  4525. asmlinkage long sys_sched_get_priority_min(int policy)
  4526. {
  4527. int ret = -EINVAL;
  4528. switch (policy) {
  4529. case SCHED_FIFO:
  4530. case SCHED_RR:
  4531. ret = 1;
  4532. break;
  4533. case SCHED_NORMAL:
  4534. case SCHED_BATCH:
  4535. case SCHED_IDLE:
  4536. ret = 0;
  4537. }
  4538. return ret;
  4539. }
  4540. /**
  4541. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4542. * @pid: pid of the process.
  4543. * @interval: userspace pointer to the timeslice value.
  4544. *
  4545. * this syscall writes the default timeslice value of a given process
  4546. * into the user-space timespec buffer. A value of '0' means infinity.
  4547. */
  4548. asmlinkage
  4549. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4550. {
  4551. struct task_struct *p;
  4552. unsigned int time_slice;
  4553. int retval;
  4554. struct timespec t;
  4555. if (pid < 0)
  4556. return -EINVAL;
  4557. retval = -ESRCH;
  4558. read_lock(&tasklist_lock);
  4559. p = find_process_by_pid(pid);
  4560. if (!p)
  4561. goto out_unlock;
  4562. retval = security_task_getscheduler(p);
  4563. if (retval)
  4564. goto out_unlock;
  4565. /*
  4566. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4567. * tasks that are on an otherwise idle runqueue:
  4568. */
  4569. time_slice = 0;
  4570. if (p->policy == SCHED_RR) {
  4571. time_slice = DEF_TIMESLICE;
  4572. } else if (p->policy != SCHED_FIFO) {
  4573. struct sched_entity *se = &p->se;
  4574. unsigned long flags;
  4575. struct rq *rq;
  4576. rq = task_rq_lock(p, &flags);
  4577. if (rq->cfs.load.weight)
  4578. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4579. task_rq_unlock(rq, &flags);
  4580. }
  4581. read_unlock(&tasklist_lock);
  4582. jiffies_to_timespec(time_slice, &t);
  4583. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4584. return retval;
  4585. out_unlock:
  4586. read_unlock(&tasklist_lock);
  4587. return retval;
  4588. }
  4589. static const char stat_nam[] = "RSDTtZX";
  4590. void sched_show_task(struct task_struct *p)
  4591. {
  4592. unsigned long free = 0;
  4593. unsigned state;
  4594. state = p->state ? __ffs(p->state) + 1 : 0;
  4595. printk(KERN_INFO "%-13.13s %c", p->comm,
  4596. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4597. #if BITS_PER_LONG == 32
  4598. if (state == TASK_RUNNING)
  4599. printk(KERN_CONT " running ");
  4600. else
  4601. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4602. #else
  4603. if (state == TASK_RUNNING)
  4604. printk(KERN_CONT " running task ");
  4605. else
  4606. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4607. #endif
  4608. #ifdef CONFIG_DEBUG_STACK_USAGE
  4609. {
  4610. unsigned long *n = end_of_stack(p);
  4611. while (!*n)
  4612. n++;
  4613. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4614. }
  4615. #endif
  4616. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4617. task_pid_nr(p), task_pid_nr(p->real_parent));
  4618. show_stack(p, NULL);
  4619. }
  4620. void show_state_filter(unsigned long state_filter)
  4621. {
  4622. struct task_struct *g, *p;
  4623. #if BITS_PER_LONG == 32
  4624. printk(KERN_INFO
  4625. " task PC stack pid father\n");
  4626. #else
  4627. printk(KERN_INFO
  4628. " task PC stack pid father\n");
  4629. #endif
  4630. read_lock(&tasklist_lock);
  4631. do_each_thread(g, p) {
  4632. /*
  4633. * reset the NMI-timeout, listing all files on a slow
  4634. * console might take alot of time:
  4635. */
  4636. touch_nmi_watchdog();
  4637. if (!state_filter || (p->state & state_filter))
  4638. sched_show_task(p);
  4639. } while_each_thread(g, p);
  4640. touch_all_softlockup_watchdogs();
  4641. #ifdef CONFIG_SCHED_DEBUG
  4642. sysrq_sched_debug_show();
  4643. #endif
  4644. read_unlock(&tasklist_lock);
  4645. /*
  4646. * Only show locks if all tasks are dumped:
  4647. */
  4648. if (state_filter == -1)
  4649. debug_show_all_locks();
  4650. }
  4651. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4652. {
  4653. idle->sched_class = &idle_sched_class;
  4654. }
  4655. /**
  4656. * init_idle - set up an idle thread for a given CPU
  4657. * @idle: task in question
  4658. * @cpu: cpu the idle task belongs to
  4659. *
  4660. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4661. * flag, to make booting more robust.
  4662. */
  4663. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4664. {
  4665. struct rq *rq = cpu_rq(cpu);
  4666. unsigned long flags;
  4667. __sched_fork(idle);
  4668. idle->se.exec_start = sched_clock();
  4669. idle->prio = idle->normal_prio = MAX_PRIO;
  4670. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4671. __set_task_cpu(idle, cpu);
  4672. spin_lock_irqsave(&rq->lock, flags);
  4673. rq->curr = rq->idle = idle;
  4674. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4675. idle->oncpu = 1;
  4676. #endif
  4677. spin_unlock_irqrestore(&rq->lock, flags);
  4678. /* Set the preempt count _outside_ the spinlocks! */
  4679. #if defined(CONFIG_PREEMPT)
  4680. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4681. #else
  4682. task_thread_info(idle)->preempt_count = 0;
  4683. #endif
  4684. /*
  4685. * The idle tasks have their own, simple scheduling class:
  4686. */
  4687. idle->sched_class = &idle_sched_class;
  4688. }
  4689. /*
  4690. * In a system that switches off the HZ timer nohz_cpu_mask
  4691. * indicates which cpus entered this state. This is used
  4692. * in the rcu update to wait only for active cpus. For system
  4693. * which do not switch off the HZ timer nohz_cpu_mask should
  4694. * always be CPU_MASK_NONE.
  4695. */
  4696. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4697. /*
  4698. * Increase the granularity value when there are more CPUs,
  4699. * because with more CPUs the 'effective latency' as visible
  4700. * to users decreases. But the relationship is not linear,
  4701. * so pick a second-best guess by going with the log2 of the
  4702. * number of CPUs.
  4703. *
  4704. * This idea comes from the SD scheduler of Con Kolivas:
  4705. */
  4706. static inline void sched_init_granularity(void)
  4707. {
  4708. unsigned int factor = 1 + ilog2(num_online_cpus());
  4709. const unsigned long limit = 200000000;
  4710. sysctl_sched_min_granularity *= factor;
  4711. if (sysctl_sched_min_granularity > limit)
  4712. sysctl_sched_min_granularity = limit;
  4713. sysctl_sched_latency *= factor;
  4714. if (sysctl_sched_latency > limit)
  4715. sysctl_sched_latency = limit;
  4716. sysctl_sched_wakeup_granularity *= factor;
  4717. }
  4718. #ifdef CONFIG_SMP
  4719. /*
  4720. * This is how migration works:
  4721. *
  4722. * 1) we queue a struct migration_req structure in the source CPU's
  4723. * runqueue and wake up that CPU's migration thread.
  4724. * 2) we down() the locked semaphore => thread blocks.
  4725. * 3) migration thread wakes up (implicitly it forces the migrated
  4726. * thread off the CPU)
  4727. * 4) it gets the migration request and checks whether the migrated
  4728. * task is still in the wrong runqueue.
  4729. * 5) if it's in the wrong runqueue then the migration thread removes
  4730. * it and puts it into the right queue.
  4731. * 6) migration thread up()s the semaphore.
  4732. * 7) we wake up and the migration is done.
  4733. */
  4734. /*
  4735. * Change a given task's CPU affinity. Migrate the thread to a
  4736. * proper CPU and schedule it away if the CPU it's executing on
  4737. * is removed from the allowed bitmask.
  4738. *
  4739. * NOTE: the caller must have a valid reference to the task, the
  4740. * task must not exit() & deallocate itself prematurely. The
  4741. * call is not atomic; no spinlocks may be held.
  4742. */
  4743. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4744. {
  4745. struct migration_req req;
  4746. unsigned long flags;
  4747. struct rq *rq;
  4748. int ret = 0;
  4749. rq = task_rq_lock(p, &flags);
  4750. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4751. ret = -EINVAL;
  4752. goto out;
  4753. }
  4754. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4755. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4756. ret = -EINVAL;
  4757. goto out;
  4758. }
  4759. if (p->sched_class->set_cpus_allowed)
  4760. p->sched_class->set_cpus_allowed(p, new_mask);
  4761. else {
  4762. p->cpus_allowed = *new_mask;
  4763. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4764. }
  4765. /* Can the task run on the task's current CPU? If so, we're done */
  4766. if (cpu_isset(task_cpu(p), *new_mask))
  4767. goto out;
  4768. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4769. /* Need help from migration thread: drop lock and wait. */
  4770. task_rq_unlock(rq, &flags);
  4771. wake_up_process(rq->migration_thread);
  4772. wait_for_completion(&req.done);
  4773. tlb_migrate_finish(p->mm);
  4774. return 0;
  4775. }
  4776. out:
  4777. task_rq_unlock(rq, &flags);
  4778. return ret;
  4779. }
  4780. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4781. /*
  4782. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4783. * this because either it can't run here any more (set_cpus_allowed()
  4784. * away from this CPU, or CPU going down), or because we're
  4785. * attempting to rebalance this task on exec (sched_exec).
  4786. *
  4787. * So we race with normal scheduler movements, but that's OK, as long
  4788. * as the task is no longer on this CPU.
  4789. *
  4790. * Returns non-zero if task was successfully migrated.
  4791. */
  4792. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4793. {
  4794. struct rq *rq_dest, *rq_src;
  4795. int ret = 0, on_rq;
  4796. if (unlikely(cpu_is_offline(dest_cpu)))
  4797. return ret;
  4798. rq_src = cpu_rq(src_cpu);
  4799. rq_dest = cpu_rq(dest_cpu);
  4800. double_rq_lock(rq_src, rq_dest);
  4801. /* Already moved. */
  4802. if (task_cpu(p) != src_cpu)
  4803. goto out;
  4804. /* Affinity changed (again). */
  4805. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4806. goto out;
  4807. on_rq = p->se.on_rq;
  4808. if (on_rq)
  4809. deactivate_task(rq_src, p, 0);
  4810. set_task_cpu(p, dest_cpu);
  4811. if (on_rq) {
  4812. activate_task(rq_dest, p, 0);
  4813. check_preempt_curr(rq_dest, p);
  4814. }
  4815. ret = 1;
  4816. out:
  4817. double_rq_unlock(rq_src, rq_dest);
  4818. return ret;
  4819. }
  4820. /*
  4821. * migration_thread - this is a highprio system thread that performs
  4822. * thread migration by bumping thread off CPU then 'pushing' onto
  4823. * another runqueue.
  4824. */
  4825. static int migration_thread(void *data)
  4826. {
  4827. int cpu = (long)data;
  4828. struct rq *rq;
  4829. rq = cpu_rq(cpu);
  4830. BUG_ON(rq->migration_thread != current);
  4831. set_current_state(TASK_INTERRUPTIBLE);
  4832. while (!kthread_should_stop()) {
  4833. struct migration_req *req;
  4834. struct list_head *head;
  4835. spin_lock_irq(&rq->lock);
  4836. if (cpu_is_offline(cpu)) {
  4837. spin_unlock_irq(&rq->lock);
  4838. goto wait_to_die;
  4839. }
  4840. if (rq->active_balance) {
  4841. active_load_balance(rq, cpu);
  4842. rq->active_balance = 0;
  4843. }
  4844. head = &rq->migration_queue;
  4845. if (list_empty(head)) {
  4846. spin_unlock_irq(&rq->lock);
  4847. schedule();
  4848. set_current_state(TASK_INTERRUPTIBLE);
  4849. continue;
  4850. }
  4851. req = list_entry(head->next, struct migration_req, list);
  4852. list_del_init(head->next);
  4853. spin_unlock(&rq->lock);
  4854. __migrate_task(req->task, cpu, req->dest_cpu);
  4855. local_irq_enable();
  4856. complete(&req->done);
  4857. }
  4858. __set_current_state(TASK_RUNNING);
  4859. return 0;
  4860. wait_to_die:
  4861. /* Wait for kthread_stop */
  4862. set_current_state(TASK_INTERRUPTIBLE);
  4863. while (!kthread_should_stop()) {
  4864. schedule();
  4865. set_current_state(TASK_INTERRUPTIBLE);
  4866. }
  4867. __set_current_state(TASK_RUNNING);
  4868. return 0;
  4869. }
  4870. #ifdef CONFIG_HOTPLUG_CPU
  4871. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4872. {
  4873. int ret;
  4874. local_irq_disable();
  4875. ret = __migrate_task(p, src_cpu, dest_cpu);
  4876. local_irq_enable();
  4877. return ret;
  4878. }
  4879. /*
  4880. * Figure out where task on dead CPU should go, use force if necessary.
  4881. * NOTE: interrupts should be disabled by the caller
  4882. */
  4883. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4884. {
  4885. unsigned long flags;
  4886. cpumask_t mask;
  4887. struct rq *rq;
  4888. int dest_cpu;
  4889. do {
  4890. /* On same node? */
  4891. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4892. cpus_and(mask, mask, p->cpus_allowed);
  4893. dest_cpu = any_online_cpu(mask);
  4894. /* On any allowed CPU? */
  4895. if (dest_cpu >= nr_cpu_ids)
  4896. dest_cpu = any_online_cpu(p->cpus_allowed);
  4897. /* No more Mr. Nice Guy. */
  4898. if (dest_cpu >= nr_cpu_ids) {
  4899. cpumask_t cpus_allowed;
  4900. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4901. /*
  4902. * Try to stay on the same cpuset, where the
  4903. * current cpuset may be a subset of all cpus.
  4904. * The cpuset_cpus_allowed_locked() variant of
  4905. * cpuset_cpus_allowed() will not block. It must be
  4906. * called within calls to cpuset_lock/cpuset_unlock.
  4907. */
  4908. rq = task_rq_lock(p, &flags);
  4909. p->cpus_allowed = cpus_allowed;
  4910. dest_cpu = any_online_cpu(p->cpus_allowed);
  4911. task_rq_unlock(rq, &flags);
  4912. /*
  4913. * Don't tell them about moving exiting tasks or
  4914. * kernel threads (both mm NULL), since they never
  4915. * leave kernel.
  4916. */
  4917. if (p->mm && printk_ratelimit()) {
  4918. printk(KERN_INFO "process %d (%s) no "
  4919. "longer affine to cpu%d\n",
  4920. task_pid_nr(p), p->comm, dead_cpu);
  4921. }
  4922. }
  4923. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4924. }
  4925. /*
  4926. * While a dead CPU has no uninterruptible tasks queued at this point,
  4927. * it might still have a nonzero ->nr_uninterruptible counter, because
  4928. * for performance reasons the counter is not stricly tracking tasks to
  4929. * their home CPUs. So we just add the counter to another CPU's counter,
  4930. * to keep the global sum constant after CPU-down:
  4931. */
  4932. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4933. {
  4934. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4935. unsigned long flags;
  4936. local_irq_save(flags);
  4937. double_rq_lock(rq_src, rq_dest);
  4938. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4939. rq_src->nr_uninterruptible = 0;
  4940. double_rq_unlock(rq_src, rq_dest);
  4941. local_irq_restore(flags);
  4942. }
  4943. /* Run through task list and migrate tasks from the dead cpu. */
  4944. static void migrate_live_tasks(int src_cpu)
  4945. {
  4946. struct task_struct *p, *t;
  4947. read_lock(&tasklist_lock);
  4948. do_each_thread(t, p) {
  4949. if (p == current)
  4950. continue;
  4951. if (task_cpu(p) == src_cpu)
  4952. move_task_off_dead_cpu(src_cpu, p);
  4953. } while_each_thread(t, p);
  4954. read_unlock(&tasklist_lock);
  4955. }
  4956. /*
  4957. * Schedules idle task to be the next runnable task on current CPU.
  4958. * It does so by boosting its priority to highest possible.
  4959. * Used by CPU offline code.
  4960. */
  4961. void sched_idle_next(void)
  4962. {
  4963. int this_cpu = smp_processor_id();
  4964. struct rq *rq = cpu_rq(this_cpu);
  4965. struct task_struct *p = rq->idle;
  4966. unsigned long flags;
  4967. /* cpu has to be offline */
  4968. BUG_ON(cpu_online(this_cpu));
  4969. /*
  4970. * Strictly not necessary since rest of the CPUs are stopped by now
  4971. * and interrupts disabled on the current cpu.
  4972. */
  4973. spin_lock_irqsave(&rq->lock, flags);
  4974. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4975. update_rq_clock(rq);
  4976. activate_task(rq, p, 0);
  4977. spin_unlock_irqrestore(&rq->lock, flags);
  4978. }
  4979. /*
  4980. * Ensures that the idle task is using init_mm right before its cpu goes
  4981. * offline.
  4982. */
  4983. void idle_task_exit(void)
  4984. {
  4985. struct mm_struct *mm = current->active_mm;
  4986. BUG_ON(cpu_online(smp_processor_id()));
  4987. if (mm != &init_mm)
  4988. switch_mm(mm, &init_mm, current);
  4989. mmdrop(mm);
  4990. }
  4991. /* called under rq->lock with disabled interrupts */
  4992. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4993. {
  4994. struct rq *rq = cpu_rq(dead_cpu);
  4995. /* Must be exiting, otherwise would be on tasklist. */
  4996. BUG_ON(!p->exit_state);
  4997. /* Cannot have done final schedule yet: would have vanished. */
  4998. BUG_ON(p->state == TASK_DEAD);
  4999. get_task_struct(p);
  5000. /*
  5001. * Drop lock around migration; if someone else moves it,
  5002. * that's OK. No task can be added to this CPU, so iteration is
  5003. * fine.
  5004. */
  5005. spin_unlock_irq(&rq->lock);
  5006. move_task_off_dead_cpu(dead_cpu, p);
  5007. spin_lock_irq(&rq->lock);
  5008. put_task_struct(p);
  5009. }
  5010. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5011. static void migrate_dead_tasks(unsigned int dead_cpu)
  5012. {
  5013. struct rq *rq = cpu_rq(dead_cpu);
  5014. struct task_struct *next;
  5015. for ( ; ; ) {
  5016. if (!rq->nr_running)
  5017. break;
  5018. update_rq_clock(rq);
  5019. next = pick_next_task(rq, rq->curr);
  5020. if (!next)
  5021. break;
  5022. migrate_dead(dead_cpu, next);
  5023. }
  5024. }
  5025. #endif /* CONFIG_HOTPLUG_CPU */
  5026. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5027. static struct ctl_table sd_ctl_dir[] = {
  5028. {
  5029. .procname = "sched_domain",
  5030. .mode = 0555,
  5031. },
  5032. {0, },
  5033. };
  5034. static struct ctl_table sd_ctl_root[] = {
  5035. {
  5036. .ctl_name = CTL_KERN,
  5037. .procname = "kernel",
  5038. .mode = 0555,
  5039. .child = sd_ctl_dir,
  5040. },
  5041. {0, },
  5042. };
  5043. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5044. {
  5045. struct ctl_table *entry =
  5046. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5047. return entry;
  5048. }
  5049. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5050. {
  5051. struct ctl_table *entry;
  5052. /*
  5053. * In the intermediate directories, both the child directory and
  5054. * procname are dynamically allocated and could fail but the mode
  5055. * will always be set. In the lowest directory the names are
  5056. * static strings and all have proc handlers.
  5057. */
  5058. for (entry = *tablep; entry->mode; entry++) {
  5059. if (entry->child)
  5060. sd_free_ctl_entry(&entry->child);
  5061. if (entry->proc_handler == NULL)
  5062. kfree(entry->procname);
  5063. }
  5064. kfree(*tablep);
  5065. *tablep = NULL;
  5066. }
  5067. static void
  5068. set_table_entry(struct ctl_table *entry,
  5069. const char *procname, void *data, int maxlen,
  5070. mode_t mode, proc_handler *proc_handler)
  5071. {
  5072. entry->procname = procname;
  5073. entry->data = data;
  5074. entry->maxlen = maxlen;
  5075. entry->mode = mode;
  5076. entry->proc_handler = proc_handler;
  5077. }
  5078. static struct ctl_table *
  5079. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5080. {
  5081. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5082. if (table == NULL)
  5083. return NULL;
  5084. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5085. sizeof(long), 0644, proc_doulongvec_minmax);
  5086. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5087. sizeof(long), 0644, proc_doulongvec_minmax);
  5088. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5089. sizeof(int), 0644, proc_dointvec_minmax);
  5090. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5091. sizeof(int), 0644, proc_dointvec_minmax);
  5092. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5093. sizeof(int), 0644, proc_dointvec_minmax);
  5094. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5095. sizeof(int), 0644, proc_dointvec_minmax);
  5096. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5097. sizeof(int), 0644, proc_dointvec_minmax);
  5098. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5099. sizeof(int), 0644, proc_dointvec_minmax);
  5100. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5101. sizeof(int), 0644, proc_dointvec_minmax);
  5102. set_table_entry(&table[9], "cache_nice_tries",
  5103. &sd->cache_nice_tries,
  5104. sizeof(int), 0644, proc_dointvec_minmax);
  5105. set_table_entry(&table[10], "flags", &sd->flags,
  5106. sizeof(int), 0644, proc_dointvec_minmax);
  5107. /* &table[11] is terminator */
  5108. return table;
  5109. }
  5110. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5111. {
  5112. struct ctl_table *entry, *table;
  5113. struct sched_domain *sd;
  5114. int domain_num = 0, i;
  5115. char buf[32];
  5116. for_each_domain(cpu, sd)
  5117. domain_num++;
  5118. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5119. if (table == NULL)
  5120. return NULL;
  5121. i = 0;
  5122. for_each_domain(cpu, sd) {
  5123. snprintf(buf, 32, "domain%d", i);
  5124. entry->procname = kstrdup(buf, GFP_KERNEL);
  5125. entry->mode = 0555;
  5126. entry->child = sd_alloc_ctl_domain_table(sd);
  5127. entry++;
  5128. i++;
  5129. }
  5130. return table;
  5131. }
  5132. static struct ctl_table_header *sd_sysctl_header;
  5133. static void register_sched_domain_sysctl(void)
  5134. {
  5135. int i, cpu_num = num_online_cpus();
  5136. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5137. char buf[32];
  5138. WARN_ON(sd_ctl_dir[0].child);
  5139. sd_ctl_dir[0].child = entry;
  5140. if (entry == NULL)
  5141. return;
  5142. for_each_online_cpu(i) {
  5143. snprintf(buf, 32, "cpu%d", i);
  5144. entry->procname = kstrdup(buf, GFP_KERNEL);
  5145. entry->mode = 0555;
  5146. entry->child = sd_alloc_ctl_cpu_table(i);
  5147. entry++;
  5148. }
  5149. WARN_ON(sd_sysctl_header);
  5150. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5151. }
  5152. /* may be called multiple times per register */
  5153. static void unregister_sched_domain_sysctl(void)
  5154. {
  5155. if (sd_sysctl_header)
  5156. unregister_sysctl_table(sd_sysctl_header);
  5157. sd_sysctl_header = NULL;
  5158. if (sd_ctl_dir[0].child)
  5159. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5160. }
  5161. #else
  5162. static void register_sched_domain_sysctl(void)
  5163. {
  5164. }
  5165. static void unregister_sched_domain_sysctl(void)
  5166. {
  5167. }
  5168. #endif
  5169. static void set_rq_online(struct rq *rq)
  5170. {
  5171. if (!rq->online) {
  5172. const struct sched_class *class;
  5173. cpu_set(rq->cpu, rq->rd->online);
  5174. rq->online = 1;
  5175. for_each_class(class) {
  5176. if (class->rq_online)
  5177. class->rq_online(rq);
  5178. }
  5179. }
  5180. }
  5181. static void set_rq_offline(struct rq *rq)
  5182. {
  5183. if (rq->online) {
  5184. const struct sched_class *class;
  5185. for_each_class(class) {
  5186. if (class->rq_offline)
  5187. class->rq_offline(rq);
  5188. }
  5189. cpu_clear(rq->cpu, rq->rd->online);
  5190. rq->online = 0;
  5191. }
  5192. }
  5193. /*
  5194. * migration_call - callback that gets triggered when a CPU is added.
  5195. * Here we can start up the necessary migration thread for the new CPU.
  5196. */
  5197. static int __cpuinit
  5198. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5199. {
  5200. struct task_struct *p;
  5201. int cpu = (long)hcpu;
  5202. unsigned long flags;
  5203. struct rq *rq;
  5204. switch (action) {
  5205. case CPU_UP_PREPARE:
  5206. case CPU_UP_PREPARE_FROZEN:
  5207. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5208. if (IS_ERR(p))
  5209. return NOTIFY_BAD;
  5210. kthread_bind(p, cpu);
  5211. /* Must be high prio: stop_machine expects to yield to it. */
  5212. rq = task_rq_lock(p, &flags);
  5213. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5214. task_rq_unlock(rq, &flags);
  5215. cpu_rq(cpu)->migration_thread = p;
  5216. break;
  5217. case CPU_ONLINE:
  5218. case CPU_ONLINE_FROZEN:
  5219. /* Strictly unnecessary, as first user will wake it. */
  5220. wake_up_process(cpu_rq(cpu)->migration_thread);
  5221. /* Update our root-domain */
  5222. rq = cpu_rq(cpu);
  5223. spin_lock_irqsave(&rq->lock, flags);
  5224. if (rq->rd) {
  5225. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5226. set_rq_online(rq);
  5227. }
  5228. spin_unlock_irqrestore(&rq->lock, flags);
  5229. break;
  5230. #ifdef CONFIG_HOTPLUG_CPU
  5231. case CPU_UP_CANCELED:
  5232. case CPU_UP_CANCELED_FROZEN:
  5233. if (!cpu_rq(cpu)->migration_thread)
  5234. break;
  5235. /* Unbind it from offline cpu so it can run. Fall thru. */
  5236. kthread_bind(cpu_rq(cpu)->migration_thread,
  5237. any_online_cpu(cpu_online_map));
  5238. kthread_stop(cpu_rq(cpu)->migration_thread);
  5239. cpu_rq(cpu)->migration_thread = NULL;
  5240. break;
  5241. case CPU_DEAD:
  5242. case CPU_DEAD_FROZEN:
  5243. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5244. migrate_live_tasks(cpu);
  5245. rq = cpu_rq(cpu);
  5246. kthread_stop(rq->migration_thread);
  5247. rq->migration_thread = NULL;
  5248. /* Idle task back to normal (off runqueue, low prio) */
  5249. spin_lock_irq(&rq->lock);
  5250. update_rq_clock(rq);
  5251. deactivate_task(rq, rq->idle, 0);
  5252. rq->idle->static_prio = MAX_PRIO;
  5253. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5254. rq->idle->sched_class = &idle_sched_class;
  5255. migrate_dead_tasks(cpu);
  5256. spin_unlock_irq(&rq->lock);
  5257. cpuset_unlock();
  5258. migrate_nr_uninterruptible(rq);
  5259. BUG_ON(rq->nr_running != 0);
  5260. /*
  5261. * No need to migrate the tasks: it was best-effort if
  5262. * they didn't take sched_hotcpu_mutex. Just wake up
  5263. * the requestors.
  5264. */
  5265. spin_lock_irq(&rq->lock);
  5266. while (!list_empty(&rq->migration_queue)) {
  5267. struct migration_req *req;
  5268. req = list_entry(rq->migration_queue.next,
  5269. struct migration_req, list);
  5270. list_del_init(&req->list);
  5271. complete(&req->done);
  5272. }
  5273. spin_unlock_irq(&rq->lock);
  5274. break;
  5275. case CPU_DYING:
  5276. case CPU_DYING_FROZEN:
  5277. /* Update our root-domain */
  5278. rq = cpu_rq(cpu);
  5279. spin_lock_irqsave(&rq->lock, flags);
  5280. if (rq->rd) {
  5281. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5282. set_rq_offline(rq);
  5283. }
  5284. spin_unlock_irqrestore(&rq->lock, flags);
  5285. break;
  5286. #endif
  5287. }
  5288. return NOTIFY_OK;
  5289. }
  5290. /* Register at highest priority so that task migration (migrate_all_tasks)
  5291. * happens before everything else.
  5292. */
  5293. static struct notifier_block __cpuinitdata migration_notifier = {
  5294. .notifier_call = migration_call,
  5295. .priority = 10
  5296. };
  5297. void __init migration_init(void)
  5298. {
  5299. void *cpu = (void *)(long)smp_processor_id();
  5300. int err;
  5301. /* Start one for the boot CPU: */
  5302. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5303. BUG_ON(err == NOTIFY_BAD);
  5304. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5305. register_cpu_notifier(&migration_notifier);
  5306. }
  5307. #endif
  5308. #ifdef CONFIG_SMP
  5309. #ifdef CONFIG_SCHED_DEBUG
  5310. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5311. {
  5312. switch (lvl) {
  5313. case SD_LV_NONE:
  5314. return "NONE";
  5315. case SD_LV_SIBLING:
  5316. return "SIBLING";
  5317. case SD_LV_MC:
  5318. return "MC";
  5319. case SD_LV_CPU:
  5320. return "CPU";
  5321. case SD_LV_NODE:
  5322. return "NODE";
  5323. case SD_LV_ALLNODES:
  5324. return "ALLNODES";
  5325. case SD_LV_MAX:
  5326. return "MAX";
  5327. }
  5328. return "MAX";
  5329. }
  5330. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5331. cpumask_t *groupmask)
  5332. {
  5333. struct sched_group *group = sd->groups;
  5334. char str[256];
  5335. cpulist_scnprintf(str, sizeof(str), sd->span);
  5336. cpus_clear(*groupmask);
  5337. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5338. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5339. printk("does not load-balance\n");
  5340. if (sd->parent)
  5341. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5342. " has parent");
  5343. return -1;
  5344. }
  5345. printk(KERN_CONT "span %s level %s\n",
  5346. str, sd_level_to_string(sd->level));
  5347. if (!cpu_isset(cpu, sd->span)) {
  5348. printk(KERN_ERR "ERROR: domain->span does not contain "
  5349. "CPU%d\n", cpu);
  5350. }
  5351. if (!cpu_isset(cpu, group->cpumask)) {
  5352. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5353. " CPU%d\n", cpu);
  5354. }
  5355. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5356. do {
  5357. if (!group) {
  5358. printk("\n");
  5359. printk(KERN_ERR "ERROR: group is NULL\n");
  5360. break;
  5361. }
  5362. if (!group->__cpu_power) {
  5363. printk(KERN_CONT "\n");
  5364. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5365. "set\n");
  5366. break;
  5367. }
  5368. if (!cpus_weight(group->cpumask)) {
  5369. printk(KERN_CONT "\n");
  5370. printk(KERN_ERR "ERROR: empty group\n");
  5371. break;
  5372. }
  5373. if (cpus_intersects(*groupmask, group->cpumask)) {
  5374. printk(KERN_CONT "\n");
  5375. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5376. break;
  5377. }
  5378. cpus_or(*groupmask, *groupmask, group->cpumask);
  5379. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5380. printk(KERN_CONT " %s", str);
  5381. group = group->next;
  5382. } while (group != sd->groups);
  5383. printk(KERN_CONT "\n");
  5384. if (!cpus_equal(sd->span, *groupmask))
  5385. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5386. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5387. printk(KERN_ERR "ERROR: parent span is not a superset "
  5388. "of domain->span\n");
  5389. return 0;
  5390. }
  5391. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5392. {
  5393. cpumask_t *groupmask;
  5394. int level = 0;
  5395. if (!sd) {
  5396. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5397. return;
  5398. }
  5399. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5400. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5401. if (!groupmask) {
  5402. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5403. return;
  5404. }
  5405. for (;;) {
  5406. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5407. break;
  5408. level++;
  5409. sd = sd->parent;
  5410. if (!sd)
  5411. break;
  5412. }
  5413. kfree(groupmask);
  5414. }
  5415. #else /* !CONFIG_SCHED_DEBUG */
  5416. # define sched_domain_debug(sd, cpu) do { } while (0)
  5417. #endif /* CONFIG_SCHED_DEBUG */
  5418. static int sd_degenerate(struct sched_domain *sd)
  5419. {
  5420. if (cpus_weight(sd->span) == 1)
  5421. return 1;
  5422. /* Following flags need at least 2 groups */
  5423. if (sd->flags & (SD_LOAD_BALANCE |
  5424. SD_BALANCE_NEWIDLE |
  5425. SD_BALANCE_FORK |
  5426. SD_BALANCE_EXEC |
  5427. SD_SHARE_CPUPOWER |
  5428. SD_SHARE_PKG_RESOURCES)) {
  5429. if (sd->groups != sd->groups->next)
  5430. return 0;
  5431. }
  5432. /* Following flags don't use groups */
  5433. if (sd->flags & (SD_WAKE_IDLE |
  5434. SD_WAKE_AFFINE |
  5435. SD_WAKE_BALANCE))
  5436. return 0;
  5437. return 1;
  5438. }
  5439. static int
  5440. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5441. {
  5442. unsigned long cflags = sd->flags, pflags = parent->flags;
  5443. if (sd_degenerate(parent))
  5444. return 1;
  5445. if (!cpus_equal(sd->span, parent->span))
  5446. return 0;
  5447. /* Does parent contain flags not in child? */
  5448. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5449. if (cflags & SD_WAKE_AFFINE)
  5450. pflags &= ~SD_WAKE_BALANCE;
  5451. /* Flags needing groups don't count if only 1 group in parent */
  5452. if (parent->groups == parent->groups->next) {
  5453. pflags &= ~(SD_LOAD_BALANCE |
  5454. SD_BALANCE_NEWIDLE |
  5455. SD_BALANCE_FORK |
  5456. SD_BALANCE_EXEC |
  5457. SD_SHARE_CPUPOWER |
  5458. SD_SHARE_PKG_RESOURCES);
  5459. }
  5460. if (~cflags & pflags)
  5461. return 0;
  5462. return 1;
  5463. }
  5464. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5465. {
  5466. unsigned long flags;
  5467. spin_lock_irqsave(&rq->lock, flags);
  5468. if (rq->rd) {
  5469. struct root_domain *old_rd = rq->rd;
  5470. if (cpu_isset(rq->cpu, old_rd->online))
  5471. set_rq_offline(rq);
  5472. cpu_clear(rq->cpu, old_rd->span);
  5473. if (atomic_dec_and_test(&old_rd->refcount))
  5474. kfree(old_rd);
  5475. }
  5476. atomic_inc(&rd->refcount);
  5477. rq->rd = rd;
  5478. cpu_set(rq->cpu, rd->span);
  5479. if (cpu_isset(rq->cpu, cpu_online_map))
  5480. set_rq_online(rq);
  5481. spin_unlock_irqrestore(&rq->lock, flags);
  5482. }
  5483. static void init_rootdomain(struct root_domain *rd)
  5484. {
  5485. memset(rd, 0, sizeof(*rd));
  5486. cpus_clear(rd->span);
  5487. cpus_clear(rd->online);
  5488. cpupri_init(&rd->cpupri);
  5489. }
  5490. static void init_defrootdomain(void)
  5491. {
  5492. init_rootdomain(&def_root_domain);
  5493. atomic_set(&def_root_domain.refcount, 1);
  5494. }
  5495. static struct root_domain *alloc_rootdomain(void)
  5496. {
  5497. struct root_domain *rd;
  5498. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5499. if (!rd)
  5500. return NULL;
  5501. init_rootdomain(rd);
  5502. return rd;
  5503. }
  5504. /*
  5505. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5506. * hold the hotplug lock.
  5507. */
  5508. static void
  5509. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5510. {
  5511. struct rq *rq = cpu_rq(cpu);
  5512. struct sched_domain *tmp;
  5513. /* Remove the sched domains which do not contribute to scheduling. */
  5514. for (tmp = sd; tmp; tmp = tmp->parent) {
  5515. struct sched_domain *parent = tmp->parent;
  5516. if (!parent)
  5517. break;
  5518. if (sd_parent_degenerate(tmp, parent)) {
  5519. tmp->parent = parent->parent;
  5520. if (parent->parent)
  5521. parent->parent->child = tmp;
  5522. }
  5523. }
  5524. if (sd && sd_degenerate(sd)) {
  5525. sd = sd->parent;
  5526. if (sd)
  5527. sd->child = NULL;
  5528. }
  5529. sched_domain_debug(sd, cpu);
  5530. rq_attach_root(rq, rd);
  5531. rcu_assign_pointer(rq->sd, sd);
  5532. }
  5533. /* cpus with isolated domains */
  5534. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5535. /* Setup the mask of cpus configured for isolated domains */
  5536. static int __init isolated_cpu_setup(char *str)
  5537. {
  5538. int ints[NR_CPUS], i;
  5539. str = get_options(str, ARRAY_SIZE(ints), ints);
  5540. cpus_clear(cpu_isolated_map);
  5541. for (i = 1; i <= ints[0]; i++)
  5542. if (ints[i] < NR_CPUS)
  5543. cpu_set(ints[i], cpu_isolated_map);
  5544. return 1;
  5545. }
  5546. __setup("isolcpus=", isolated_cpu_setup);
  5547. /*
  5548. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5549. * to a function which identifies what group(along with sched group) a CPU
  5550. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5551. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5552. *
  5553. * init_sched_build_groups will build a circular linked list of the groups
  5554. * covered by the given span, and will set each group's ->cpumask correctly,
  5555. * and ->cpu_power to 0.
  5556. */
  5557. static void
  5558. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5559. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5560. struct sched_group **sg,
  5561. cpumask_t *tmpmask),
  5562. cpumask_t *covered, cpumask_t *tmpmask)
  5563. {
  5564. struct sched_group *first = NULL, *last = NULL;
  5565. int i;
  5566. cpus_clear(*covered);
  5567. for_each_cpu_mask(i, *span) {
  5568. struct sched_group *sg;
  5569. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5570. int j;
  5571. if (cpu_isset(i, *covered))
  5572. continue;
  5573. cpus_clear(sg->cpumask);
  5574. sg->__cpu_power = 0;
  5575. for_each_cpu_mask(j, *span) {
  5576. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5577. continue;
  5578. cpu_set(j, *covered);
  5579. cpu_set(j, sg->cpumask);
  5580. }
  5581. if (!first)
  5582. first = sg;
  5583. if (last)
  5584. last->next = sg;
  5585. last = sg;
  5586. }
  5587. last->next = first;
  5588. }
  5589. #define SD_NODES_PER_DOMAIN 16
  5590. #ifdef CONFIG_NUMA
  5591. /**
  5592. * find_next_best_node - find the next node to include in a sched_domain
  5593. * @node: node whose sched_domain we're building
  5594. * @used_nodes: nodes already in the sched_domain
  5595. *
  5596. * Find the next node to include in a given scheduling domain. Simply
  5597. * finds the closest node not already in the @used_nodes map.
  5598. *
  5599. * Should use nodemask_t.
  5600. */
  5601. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5602. {
  5603. int i, n, val, min_val, best_node = 0;
  5604. min_val = INT_MAX;
  5605. for (i = 0; i < MAX_NUMNODES; i++) {
  5606. /* Start at @node */
  5607. n = (node + i) % MAX_NUMNODES;
  5608. if (!nr_cpus_node(n))
  5609. continue;
  5610. /* Skip already used nodes */
  5611. if (node_isset(n, *used_nodes))
  5612. continue;
  5613. /* Simple min distance search */
  5614. val = node_distance(node, n);
  5615. if (val < min_val) {
  5616. min_val = val;
  5617. best_node = n;
  5618. }
  5619. }
  5620. node_set(best_node, *used_nodes);
  5621. return best_node;
  5622. }
  5623. /**
  5624. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5625. * @node: node whose cpumask we're constructing
  5626. * @span: resulting cpumask
  5627. *
  5628. * Given a node, construct a good cpumask for its sched_domain to span. It
  5629. * should be one that prevents unnecessary balancing, but also spreads tasks
  5630. * out optimally.
  5631. */
  5632. static void sched_domain_node_span(int node, cpumask_t *span)
  5633. {
  5634. nodemask_t used_nodes;
  5635. node_to_cpumask_ptr(nodemask, node);
  5636. int i;
  5637. cpus_clear(*span);
  5638. nodes_clear(used_nodes);
  5639. cpus_or(*span, *span, *nodemask);
  5640. node_set(node, used_nodes);
  5641. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5642. int next_node = find_next_best_node(node, &used_nodes);
  5643. node_to_cpumask_ptr_next(nodemask, next_node);
  5644. cpus_or(*span, *span, *nodemask);
  5645. }
  5646. }
  5647. #endif /* CONFIG_NUMA */
  5648. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5649. /*
  5650. * SMT sched-domains:
  5651. */
  5652. #ifdef CONFIG_SCHED_SMT
  5653. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5654. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5655. static int
  5656. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5657. cpumask_t *unused)
  5658. {
  5659. if (sg)
  5660. *sg = &per_cpu(sched_group_cpus, cpu);
  5661. return cpu;
  5662. }
  5663. #endif /* CONFIG_SCHED_SMT */
  5664. /*
  5665. * multi-core sched-domains:
  5666. */
  5667. #ifdef CONFIG_SCHED_MC
  5668. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5669. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5670. #endif /* CONFIG_SCHED_MC */
  5671. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5672. static int
  5673. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5674. cpumask_t *mask)
  5675. {
  5676. int group;
  5677. *mask = per_cpu(cpu_sibling_map, cpu);
  5678. cpus_and(*mask, *mask, *cpu_map);
  5679. group = first_cpu(*mask);
  5680. if (sg)
  5681. *sg = &per_cpu(sched_group_core, group);
  5682. return group;
  5683. }
  5684. #elif defined(CONFIG_SCHED_MC)
  5685. static int
  5686. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5687. cpumask_t *unused)
  5688. {
  5689. if (sg)
  5690. *sg = &per_cpu(sched_group_core, cpu);
  5691. return cpu;
  5692. }
  5693. #endif
  5694. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5695. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5696. static int
  5697. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5698. cpumask_t *mask)
  5699. {
  5700. int group;
  5701. #ifdef CONFIG_SCHED_MC
  5702. *mask = cpu_coregroup_map(cpu);
  5703. cpus_and(*mask, *mask, *cpu_map);
  5704. group = first_cpu(*mask);
  5705. #elif defined(CONFIG_SCHED_SMT)
  5706. *mask = per_cpu(cpu_sibling_map, cpu);
  5707. cpus_and(*mask, *mask, *cpu_map);
  5708. group = first_cpu(*mask);
  5709. #else
  5710. group = cpu;
  5711. #endif
  5712. if (sg)
  5713. *sg = &per_cpu(sched_group_phys, group);
  5714. return group;
  5715. }
  5716. #ifdef CONFIG_NUMA
  5717. /*
  5718. * The init_sched_build_groups can't handle what we want to do with node
  5719. * groups, so roll our own. Now each node has its own list of groups which
  5720. * gets dynamically allocated.
  5721. */
  5722. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5723. static struct sched_group ***sched_group_nodes_bycpu;
  5724. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5725. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5726. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5727. struct sched_group **sg, cpumask_t *nodemask)
  5728. {
  5729. int group;
  5730. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5731. cpus_and(*nodemask, *nodemask, *cpu_map);
  5732. group = first_cpu(*nodemask);
  5733. if (sg)
  5734. *sg = &per_cpu(sched_group_allnodes, group);
  5735. return group;
  5736. }
  5737. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5738. {
  5739. struct sched_group *sg = group_head;
  5740. int j;
  5741. if (!sg)
  5742. return;
  5743. do {
  5744. for_each_cpu_mask(j, sg->cpumask) {
  5745. struct sched_domain *sd;
  5746. sd = &per_cpu(phys_domains, j);
  5747. if (j != first_cpu(sd->groups->cpumask)) {
  5748. /*
  5749. * Only add "power" once for each
  5750. * physical package.
  5751. */
  5752. continue;
  5753. }
  5754. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5755. }
  5756. sg = sg->next;
  5757. } while (sg != group_head);
  5758. }
  5759. #endif /* CONFIG_NUMA */
  5760. #ifdef CONFIG_NUMA
  5761. /* Free memory allocated for various sched_group structures */
  5762. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5763. {
  5764. int cpu, i;
  5765. for_each_cpu_mask(cpu, *cpu_map) {
  5766. struct sched_group **sched_group_nodes
  5767. = sched_group_nodes_bycpu[cpu];
  5768. if (!sched_group_nodes)
  5769. continue;
  5770. for (i = 0; i < MAX_NUMNODES; i++) {
  5771. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5772. *nodemask = node_to_cpumask(i);
  5773. cpus_and(*nodemask, *nodemask, *cpu_map);
  5774. if (cpus_empty(*nodemask))
  5775. continue;
  5776. if (sg == NULL)
  5777. continue;
  5778. sg = sg->next;
  5779. next_sg:
  5780. oldsg = sg;
  5781. sg = sg->next;
  5782. kfree(oldsg);
  5783. if (oldsg != sched_group_nodes[i])
  5784. goto next_sg;
  5785. }
  5786. kfree(sched_group_nodes);
  5787. sched_group_nodes_bycpu[cpu] = NULL;
  5788. }
  5789. }
  5790. #else /* !CONFIG_NUMA */
  5791. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5792. {
  5793. }
  5794. #endif /* CONFIG_NUMA */
  5795. /*
  5796. * Initialize sched groups cpu_power.
  5797. *
  5798. * cpu_power indicates the capacity of sched group, which is used while
  5799. * distributing the load between different sched groups in a sched domain.
  5800. * Typically cpu_power for all the groups in a sched domain will be same unless
  5801. * there are asymmetries in the topology. If there are asymmetries, group
  5802. * having more cpu_power will pickup more load compared to the group having
  5803. * less cpu_power.
  5804. *
  5805. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5806. * the maximum number of tasks a group can handle in the presence of other idle
  5807. * or lightly loaded groups in the same sched domain.
  5808. */
  5809. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5810. {
  5811. struct sched_domain *child;
  5812. struct sched_group *group;
  5813. WARN_ON(!sd || !sd->groups);
  5814. if (cpu != first_cpu(sd->groups->cpumask))
  5815. return;
  5816. child = sd->child;
  5817. sd->groups->__cpu_power = 0;
  5818. /*
  5819. * For perf policy, if the groups in child domain share resources
  5820. * (for example cores sharing some portions of the cache hierarchy
  5821. * or SMT), then set this domain groups cpu_power such that each group
  5822. * can handle only one task, when there are other idle groups in the
  5823. * same sched domain.
  5824. */
  5825. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5826. (child->flags &
  5827. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5828. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5829. return;
  5830. }
  5831. /*
  5832. * add cpu_power of each child group to this groups cpu_power
  5833. */
  5834. group = child->groups;
  5835. do {
  5836. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5837. group = group->next;
  5838. } while (group != child->groups);
  5839. }
  5840. /*
  5841. * Initializers for schedule domains
  5842. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5843. */
  5844. #define SD_INIT(sd, type) sd_init_##type(sd)
  5845. #define SD_INIT_FUNC(type) \
  5846. static noinline void sd_init_##type(struct sched_domain *sd) \
  5847. { \
  5848. memset(sd, 0, sizeof(*sd)); \
  5849. *sd = SD_##type##_INIT; \
  5850. sd->level = SD_LV_##type; \
  5851. }
  5852. SD_INIT_FUNC(CPU)
  5853. #ifdef CONFIG_NUMA
  5854. SD_INIT_FUNC(ALLNODES)
  5855. SD_INIT_FUNC(NODE)
  5856. #endif
  5857. #ifdef CONFIG_SCHED_SMT
  5858. SD_INIT_FUNC(SIBLING)
  5859. #endif
  5860. #ifdef CONFIG_SCHED_MC
  5861. SD_INIT_FUNC(MC)
  5862. #endif
  5863. /*
  5864. * To minimize stack usage kmalloc room for cpumasks and share the
  5865. * space as the usage in build_sched_domains() dictates. Used only
  5866. * if the amount of space is significant.
  5867. */
  5868. struct allmasks {
  5869. cpumask_t tmpmask; /* make this one first */
  5870. union {
  5871. cpumask_t nodemask;
  5872. cpumask_t this_sibling_map;
  5873. cpumask_t this_core_map;
  5874. };
  5875. cpumask_t send_covered;
  5876. #ifdef CONFIG_NUMA
  5877. cpumask_t domainspan;
  5878. cpumask_t covered;
  5879. cpumask_t notcovered;
  5880. #endif
  5881. };
  5882. #if NR_CPUS > 128
  5883. #define SCHED_CPUMASK_ALLOC 1
  5884. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5885. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5886. #else
  5887. #define SCHED_CPUMASK_ALLOC 0
  5888. #define SCHED_CPUMASK_FREE(v)
  5889. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5890. #endif
  5891. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5892. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5893. static int default_relax_domain_level = -1;
  5894. static int __init setup_relax_domain_level(char *str)
  5895. {
  5896. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  5897. return 1;
  5898. }
  5899. __setup("relax_domain_level=", setup_relax_domain_level);
  5900. static void set_domain_attribute(struct sched_domain *sd,
  5901. struct sched_domain_attr *attr)
  5902. {
  5903. int request;
  5904. if (!attr || attr->relax_domain_level < 0) {
  5905. if (default_relax_domain_level < 0)
  5906. return;
  5907. else
  5908. request = default_relax_domain_level;
  5909. } else
  5910. request = attr->relax_domain_level;
  5911. if (request < sd->level) {
  5912. /* turn off idle balance on this domain */
  5913. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  5914. } else {
  5915. /* turn on idle balance on this domain */
  5916. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  5917. }
  5918. }
  5919. /*
  5920. * Build sched domains for a given set of cpus and attach the sched domains
  5921. * to the individual cpus
  5922. */
  5923. static int __build_sched_domains(const cpumask_t *cpu_map,
  5924. struct sched_domain_attr *attr)
  5925. {
  5926. int i;
  5927. struct root_domain *rd;
  5928. SCHED_CPUMASK_DECLARE(allmasks);
  5929. cpumask_t *tmpmask;
  5930. #ifdef CONFIG_NUMA
  5931. struct sched_group **sched_group_nodes = NULL;
  5932. int sd_allnodes = 0;
  5933. /*
  5934. * Allocate the per-node list of sched groups
  5935. */
  5936. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5937. GFP_KERNEL);
  5938. if (!sched_group_nodes) {
  5939. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5940. return -ENOMEM;
  5941. }
  5942. #endif
  5943. rd = alloc_rootdomain();
  5944. if (!rd) {
  5945. printk(KERN_WARNING "Cannot alloc root domain\n");
  5946. #ifdef CONFIG_NUMA
  5947. kfree(sched_group_nodes);
  5948. #endif
  5949. return -ENOMEM;
  5950. }
  5951. #if SCHED_CPUMASK_ALLOC
  5952. /* get space for all scratch cpumask variables */
  5953. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5954. if (!allmasks) {
  5955. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5956. kfree(rd);
  5957. #ifdef CONFIG_NUMA
  5958. kfree(sched_group_nodes);
  5959. #endif
  5960. return -ENOMEM;
  5961. }
  5962. #endif
  5963. tmpmask = (cpumask_t *)allmasks;
  5964. #ifdef CONFIG_NUMA
  5965. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5966. #endif
  5967. /*
  5968. * Set up domains for cpus specified by the cpu_map.
  5969. */
  5970. for_each_cpu_mask(i, *cpu_map) {
  5971. struct sched_domain *sd = NULL, *p;
  5972. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5973. *nodemask = node_to_cpumask(cpu_to_node(i));
  5974. cpus_and(*nodemask, *nodemask, *cpu_map);
  5975. #ifdef CONFIG_NUMA
  5976. if (cpus_weight(*cpu_map) >
  5977. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5978. sd = &per_cpu(allnodes_domains, i);
  5979. SD_INIT(sd, ALLNODES);
  5980. set_domain_attribute(sd, attr);
  5981. sd->span = *cpu_map;
  5982. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5983. p = sd;
  5984. sd_allnodes = 1;
  5985. } else
  5986. p = NULL;
  5987. sd = &per_cpu(node_domains, i);
  5988. SD_INIT(sd, NODE);
  5989. set_domain_attribute(sd, attr);
  5990. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5991. sd->parent = p;
  5992. if (p)
  5993. p->child = sd;
  5994. cpus_and(sd->span, sd->span, *cpu_map);
  5995. #endif
  5996. p = sd;
  5997. sd = &per_cpu(phys_domains, i);
  5998. SD_INIT(sd, CPU);
  5999. set_domain_attribute(sd, attr);
  6000. sd->span = *nodemask;
  6001. sd->parent = p;
  6002. if (p)
  6003. p->child = sd;
  6004. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6005. #ifdef CONFIG_SCHED_MC
  6006. p = sd;
  6007. sd = &per_cpu(core_domains, i);
  6008. SD_INIT(sd, MC);
  6009. set_domain_attribute(sd, attr);
  6010. sd->span = cpu_coregroup_map(i);
  6011. cpus_and(sd->span, sd->span, *cpu_map);
  6012. sd->parent = p;
  6013. p->child = sd;
  6014. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6015. #endif
  6016. #ifdef CONFIG_SCHED_SMT
  6017. p = sd;
  6018. sd = &per_cpu(cpu_domains, i);
  6019. SD_INIT(sd, SIBLING);
  6020. set_domain_attribute(sd, attr);
  6021. sd->span = per_cpu(cpu_sibling_map, i);
  6022. cpus_and(sd->span, sd->span, *cpu_map);
  6023. sd->parent = p;
  6024. p->child = sd;
  6025. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6026. #endif
  6027. }
  6028. #ifdef CONFIG_SCHED_SMT
  6029. /* Set up CPU (sibling) groups */
  6030. for_each_cpu_mask(i, *cpu_map) {
  6031. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6032. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6033. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6034. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6035. if (i != first_cpu(*this_sibling_map))
  6036. continue;
  6037. init_sched_build_groups(this_sibling_map, cpu_map,
  6038. &cpu_to_cpu_group,
  6039. send_covered, tmpmask);
  6040. }
  6041. #endif
  6042. #ifdef CONFIG_SCHED_MC
  6043. /* Set up multi-core groups */
  6044. for_each_cpu_mask(i, *cpu_map) {
  6045. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6046. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6047. *this_core_map = cpu_coregroup_map(i);
  6048. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6049. if (i != first_cpu(*this_core_map))
  6050. continue;
  6051. init_sched_build_groups(this_core_map, cpu_map,
  6052. &cpu_to_core_group,
  6053. send_covered, tmpmask);
  6054. }
  6055. #endif
  6056. /* Set up physical groups */
  6057. for (i = 0; i < MAX_NUMNODES; i++) {
  6058. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6059. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6060. *nodemask = node_to_cpumask(i);
  6061. cpus_and(*nodemask, *nodemask, *cpu_map);
  6062. if (cpus_empty(*nodemask))
  6063. continue;
  6064. init_sched_build_groups(nodemask, cpu_map,
  6065. &cpu_to_phys_group,
  6066. send_covered, tmpmask);
  6067. }
  6068. #ifdef CONFIG_NUMA
  6069. /* Set up node groups */
  6070. if (sd_allnodes) {
  6071. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6072. init_sched_build_groups(cpu_map, cpu_map,
  6073. &cpu_to_allnodes_group,
  6074. send_covered, tmpmask);
  6075. }
  6076. for (i = 0; i < MAX_NUMNODES; i++) {
  6077. /* Set up node groups */
  6078. struct sched_group *sg, *prev;
  6079. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6080. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6081. SCHED_CPUMASK_VAR(covered, allmasks);
  6082. int j;
  6083. *nodemask = node_to_cpumask(i);
  6084. cpus_clear(*covered);
  6085. cpus_and(*nodemask, *nodemask, *cpu_map);
  6086. if (cpus_empty(*nodemask)) {
  6087. sched_group_nodes[i] = NULL;
  6088. continue;
  6089. }
  6090. sched_domain_node_span(i, domainspan);
  6091. cpus_and(*domainspan, *domainspan, *cpu_map);
  6092. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6093. if (!sg) {
  6094. printk(KERN_WARNING "Can not alloc domain group for "
  6095. "node %d\n", i);
  6096. goto error;
  6097. }
  6098. sched_group_nodes[i] = sg;
  6099. for_each_cpu_mask(j, *nodemask) {
  6100. struct sched_domain *sd;
  6101. sd = &per_cpu(node_domains, j);
  6102. sd->groups = sg;
  6103. }
  6104. sg->__cpu_power = 0;
  6105. sg->cpumask = *nodemask;
  6106. sg->next = sg;
  6107. cpus_or(*covered, *covered, *nodemask);
  6108. prev = sg;
  6109. for (j = 0; j < MAX_NUMNODES; j++) {
  6110. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6111. int n = (i + j) % MAX_NUMNODES;
  6112. node_to_cpumask_ptr(pnodemask, n);
  6113. cpus_complement(*notcovered, *covered);
  6114. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6115. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6116. if (cpus_empty(*tmpmask))
  6117. break;
  6118. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6119. if (cpus_empty(*tmpmask))
  6120. continue;
  6121. sg = kmalloc_node(sizeof(struct sched_group),
  6122. GFP_KERNEL, i);
  6123. if (!sg) {
  6124. printk(KERN_WARNING
  6125. "Can not alloc domain group for node %d\n", j);
  6126. goto error;
  6127. }
  6128. sg->__cpu_power = 0;
  6129. sg->cpumask = *tmpmask;
  6130. sg->next = prev->next;
  6131. cpus_or(*covered, *covered, *tmpmask);
  6132. prev->next = sg;
  6133. prev = sg;
  6134. }
  6135. }
  6136. #endif
  6137. /* Calculate CPU power for physical packages and nodes */
  6138. #ifdef CONFIG_SCHED_SMT
  6139. for_each_cpu_mask(i, *cpu_map) {
  6140. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6141. init_sched_groups_power(i, sd);
  6142. }
  6143. #endif
  6144. #ifdef CONFIG_SCHED_MC
  6145. for_each_cpu_mask(i, *cpu_map) {
  6146. struct sched_domain *sd = &per_cpu(core_domains, i);
  6147. init_sched_groups_power(i, sd);
  6148. }
  6149. #endif
  6150. for_each_cpu_mask(i, *cpu_map) {
  6151. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6152. init_sched_groups_power(i, sd);
  6153. }
  6154. #ifdef CONFIG_NUMA
  6155. for (i = 0; i < MAX_NUMNODES; i++)
  6156. init_numa_sched_groups_power(sched_group_nodes[i]);
  6157. if (sd_allnodes) {
  6158. struct sched_group *sg;
  6159. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6160. tmpmask);
  6161. init_numa_sched_groups_power(sg);
  6162. }
  6163. #endif
  6164. /* Attach the domains */
  6165. for_each_cpu_mask(i, *cpu_map) {
  6166. struct sched_domain *sd;
  6167. #ifdef CONFIG_SCHED_SMT
  6168. sd = &per_cpu(cpu_domains, i);
  6169. #elif defined(CONFIG_SCHED_MC)
  6170. sd = &per_cpu(core_domains, i);
  6171. #else
  6172. sd = &per_cpu(phys_domains, i);
  6173. #endif
  6174. cpu_attach_domain(sd, rd, i);
  6175. }
  6176. SCHED_CPUMASK_FREE((void *)allmasks);
  6177. return 0;
  6178. #ifdef CONFIG_NUMA
  6179. error:
  6180. free_sched_groups(cpu_map, tmpmask);
  6181. SCHED_CPUMASK_FREE((void *)allmasks);
  6182. return -ENOMEM;
  6183. #endif
  6184. }
  6185. static int build_sched_domains(const cpumask_t *cpu_map)
  6186. {
  6187. return __build_sched_domains(cpu_map, NULL);
  6188. }
  6189. static cpumask_t *doms_cur; /* current sched domains */
  6190. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6191. static struct sched_domain_attr *dattr_cur;
  6192. /* attribues of custom domains in 'doms_cur' */
  6193. /*
  6194. * Special case: If a kmalloc of a doms_cur partition (array of
  6195. * cpumask_t) fails, then fallback to a single sched domain,
  6196. * as determined by the single cpumask_t fallback_doms.
  6197. */
  6198. static cpumask_t fallback_doms;
  6199. void __attribute__((weak)) arch_update_cpu_topology(void)
  6200. {
  6201. }
  6202. /*
  6203. * Free current domain masks.
  6204. * Called after all cpus are attached to NULL domain.
  6205. */
  6206. static void free_sched_domains(void)
  6207. {
  6208. ndoms_cur = 0;
  6209. if (doms_cur != &fallback_doms)
  6210. kfree(doms_cur);
  6211. doms_cur = &fallback_doms;
  6212. }
  6213. /*
  6214. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6215. * For now this just excludes isolated cpus, but could be used to
  6216. * exclude other special cases in the future.
  6217. */
  6218. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6219. {
  6220. int err;
  6221. arch_update_cpu_topology();
  6222. ndoms_cur = 1;
  6223. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6224. if (!doms_cur)
  6225. doms_cur = &fallback_doms;
  6226. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6227. dattr_cur = NULL;
  6228. err = build_sched_domains(doms_cur);
  6229. register_sched_domain_sysctl();
  6230. return err;
  6231. }
  6232. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6233. cpumask_t *tmpmask)
  6234. {
  6235. free_sched_groups(cpu_map, tmpmask);
  6236. }
  6237. /*
  6238. * Detach sched domains from a group of cpus specified in cpu_map
  6239. * These cpus will now be attached to the NULL domain
  6240. */
  6241. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6242. {
  6243. cpumask_t tmpmask;
  6244. int i;
  6245. unregister_sched_domain_sysctl();
  6246. for_each_cpu_mask(i, *cpu_map)
  6247. cpu_attach_domain(NULL, &def_root_domain, i);
  6248. synchronize_sched();
  6249. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6250. }
  6251. /* handle null as "default" */
  6252. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6253. struct sched_domain_attr *new, int idx_new)
  6254. {
  6255. struct sched_domain_attr tmp;
  6256. /* fast path */
  6257. if (!new && !cur)
  6258. return 1;
  6259. tmp = SD_ATTR_INIT;
  6260. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6261. new ? (new + idx_new) : &tmp,
  6262. sizeof(struct sched_domain_attr));
  6263. }
  6264. /*
  6265. * Partition sched domains as specified by the 'ndoms_new'
  6266. * cpumasks in the array doms_new[] of cpumasks. This compares
  6267. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6268. * It destroys each deleted domain and builds each new domain.
  6269. *
  6270. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6271. * The masks don't intersect (don't overlap.) We should setup one
  6272. * sched domain for each mask. CPUs not in any of the cpumasks will
  6273. * not be load balanced. If the same cpumask appears both in the
  6274. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6275. * it as it is.
  6276. *
  6277. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6278. * ownership of it and will kfree it when done with it. If the caller
  6279. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6280. * and partition_sched_domains() will fallback to the single partition
  6281. * 'fallback_doms'.
  6282. *
  6283. * Call with hotplug lock held
  6284. */
  6285. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6286. struct sched_domain_attr *dattr_new)
  6287. {
  6288. int i, j;
  6289. mutex_lock(&sched_domains_mutex);
  6290. /* always unregister in case we don't destroy any domains */
  6291. unregister_sched_domain_sysctl();
  6292. if (doms_new == NULL) {
  6293. ndoms_new = 1;
  6294. doms_new = &fallback_doms;
  6295. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6296. dattr_new = NULL;
  6297. }
  6298. /* Destroy deleted domains */
  6299. for (i = 0; i < ndoms_cur; i++) {
  6300. for (j = 0; j < ndoms_new; j++) {
  6301. if (cpus_equal(doms_cur[i], doms_new[j])
  6302. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6303. goto match1;
  6304. }
  6305. /* no match - a current sched domain not in new doms_new[] */
  6306. detach_destroy_domains(doms_cur + i);
  6307. match1:
  6308. ;
  6309. }
  6310. /* Build new domains */
  6311. for (i = 0; i < ndoms_new; i++) {
  6312. for (j = 0; j < ndoms_cur; j++) {
  6313. if (cpus_equal(doms_new[i], doms_cur[j])
  6314. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6315. goto match2;
  6316. }
  6317. /* no match - add a new doms_new */
  6318. __build_sched_domains(doms_new + i,
  6319. dattr_new ? dattr_new + i : NULL);
  6320. match2:
  6321. ;
  6322. }
  6323. /* Remember the new sched domains */
  6324. if (doms_cur != &fallback_doms)
  6325. kfree(doms_cur);
  6326. kfree(dattr_cur); /* kfree(NULL) is safe */
  6327. doms_cur = doms_new;
  6328. dattr_cur = dattr_new;
  6329. ndoms_cur = ndoms_new;
  6330. register_sched_domain_sysctl();
  6331. mutex_unlock(&sched_domains_mutex);
  6332. }
  6333. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6334. int arch_reinit_sched_domains(void)
  6335. {
  6336. int err;
  6337. get_online_cpus();
  6338. mutex_lock(&sched_domains_mutex);
  6339. detach_destroy_domains(&cpu_online_map);
  6340. free_sched_domains();
  6341. err = arch_init_sched_domains(&cpu_online_map);
  6342. mutex_unlock(&sched_domains_mutex);
  6343. put_online_cpus();
  6344. return err;
  6345. }
  6346. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6347. {
  6348. int ret;
  6349. if (buf[0] != '0' && buf[0] != '1')
  6350. return -EINVAL;
  6351. if (smt)
  6352. sched_smt_power_savings = (buf[0] == '1');
  6353. else
  6354. sched_mc_power_savings = (buf[0] == '1');
  6355. ret = arch_reinit_sched_domains();
  6356. return ret ? ret : count;
  6357. }
  6358. #ifdef CONFIG_SCHED_MC
  6359. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6360. {
  6361. return sprintf(page, "%u\n", sched_mc_power_savings);
  6362. }
  6363. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6364. const char *buf, size_t count)
  6365. {
  6366. return sched_power_savings_store(buf, count, 0);
  6367. }
  6368. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6369. sched_mc_power_savings_store);
  6370. #endif
  6371. #ifdef CONFIG_SCHED_SMT
  6372. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6373. {
  6374. return sprintf(page, "%u\n", sched_smt_power_savings);
  6375. }
  6376. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6377. const char *buf, size_t count)
  6378. {
  6379. return sched_power_savings_store(buf, count, 1);
  6380. }
  6381. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6382. sched_smt_power_savings_store);
  6383. #endif
  6384. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6385. {
  6386. int err = 0;
  6387. #ifdef CONFIG_SCHED_SMT
  6388. if (smt_capable())
  6389. err = sysfs_create_file(&cls->kset.kobj,
  6390. &attr_sched_smt_power_savings.attr);
  6391. #endif
  6392. #ifdef CONFIG_SCHED_MC
  6393. if (!err && mc_capable())
  6394. err = sysfs_create_file(&cls->kset.kobj,
  6395. &attr_sched_mc_power_savings.attr);
  6396. #endif
  6397. return err;
  6398. }
  6399. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6400. /*
  6401. * Force a reinitialization of the sched domains hierarchy. The domains
  6402. * and groups cannot be updated in place without racing with the balancing
  6403. * code, so we temporarily attach all running cpus to the NULL domain
  6404. * which will prevent rebalancing while the sched domains are recalculated.
  6405. */
  6406. static int update_sched_domains(struct notifier_block *nfb,
  6407. unsigned long action, void *hcpu)
  6408. {
  6409. int cpu = (int)(long)hcpu;
  6410. switch (action) {
  6411. case CPU_DOWN_PREPARE:
  6412. case CPU_DOWN_PREPARE_FROZEN:
  6413. disable_runtime(cpu_rq(cpu));
  6414. /* fall-through */
  6415. case CPU_UP_PREPARE:
  6416. case CPU_UP_PREPARE_FROZEN:
  6417. detach_destroy_domains(&cpu_online_map);
  6418. free_sched_domains();
  6419. return NOTIFY_OK;
  6420. case CPU_DOWN_FAILED:
  6421. case CPU_DOWN_FAILED_FROZEN:
  6422. case CPU_ONLINE:
  6423. case CPU_ONLINE_FROZEN:
  6424. enable_runtime(cpu_rq(cpu));
  6425. /* fall-through */
  6426. case CPU_UP_CANCELED:
  6427. case CPU_UP_CANCELED_FROZEN:
  6428. case CPU_DEAD:
  6429. case CPU_DEAD_FROZEN:
  6430. /*
  6431. * Fall through and re-initialise the domains.
  6432. */
  6433. break;
  6434. default:
  6435. return NOTIFY_DONE;
  6436. }
  6437. #ifndef CONFIG_CPUSETS
  6438. /*
  6439. * Create default domain partitioning if cpusets are disabled.
  6440. * Otherwise we let cpusets rebuild the domains based on the
  6441. * current setup.
  6442. */
  6443. /* The hotplug lock is already held by cpu_up/cpu_down */
  6444. arch_init_sched_domains(&cpu_online_map);
  6445. #endif
  6446. return NOTIFY_OK;
  6447. }
  6448. void __init sched_init_smp(void)
  6449. {
  6450. cpumask_t non_isolated_cpus;
  6451. #if defined(CONFIG_NUMA)
  6452. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6453. GFP_KERNEL);
  6454. BUG_ON(sched_group_nodes_bycpu == NULL);
  6455. #endif
  6456. get_online_cpus();
  6457. mutex_lock(&sched_domains_mutex);
  6458. arch_init_sched_domains(&cpu_online_map);
  6459. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6460. if (cpus_empty(non_isolated_cpus))
  6461. cpu_set(smp_processor_id(), non_isolated_cpus);
  6462. mutex_unlock(&sched_domains_mutex);
  6463. put_online_cpus();
  6464. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6465. hotcpu_notifier(update_sched_domains, 0);
  6466. init_hrtick();
  6467. /* Move init over to a non-isolated CPU */
  6468. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6469. BUG();
  6470. sched_init_granularity();
  6471. }
  6472. #else
  6473. void __init sched_init_smp(void)
  6474. {
  6475. sched_init_granularity();
  6476. }
  6477. #endif /* CONFIG_SMP */
  6478. int in_sched_functions(unsigned long addr)
  6479. {
  6480. return in_lock_functions(addr) ||
  6481. (addr >= (unsigned long)__sched_text_start
  6482. && addr < (unsigned long)__sched_text_end);
  6483. }
  6484. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6485. {
  6486. cfs_rq->tasks_timeline = RB_ROOT;
  6487. INIT_LIST_HEAD(&cfs_rq->tasks);
  6488. #ifdef CONFIG_FAIR_GROUP_SCHED
  6489. cfs_rq->rq = rq;
  6490. #endif
  6491. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6492. }
  6493. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6494. {
  6495. struct rt_prio_array *array;
  6496. int i;
  6497. array = &rt_rq->active;
  6498. for (i = 0; i < MAX_RT_PRIO; i++) {
  6499. INIT_LIST_HEAD(array->queue + i);
  6500. __clear_bit(i, array->bitmap);
  6501. }
  6502. /* delimiter for bitsearch: */
  6503. __set_bit(MAX_RT_PRIO, array->bitmap);
  6504. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6505. rt_rq->highest_prio = MAX_RT_PRIO;
  6506. #endif
  6507. #ifdef CONFIG_SMP
  6508. rt_rq->rt_nr_migratory = 0;
  6509. rt_rq->overloaded = 0;
  6510. #endif
  6511. rt_rq->rt_time = 0;
  6512. rt_rq->rt_throttled = 0;
  6513. rt_rq->rt_runtime = 0;
  6514. spin_lock_init(&rt_rq->rt_runtime_lock);
  6515. #ifdef CONFIG_RT_GROUP_SCHED
  6516. rt_rq->rt_nr_boosted = 0;
  6517. rt_rq->rq = rq;
  6518. #endif
  6519. }
  6520. #ifdef CONFIG_FAIR_GROUP_SCHED
  6521. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6522. struct sched_entity *se, int cpu, int add,
  6523. struct sched_entity *parent)
  6524. {
  6525. struct rq *rq = cpu_rq(cpu);
  6526. tg->cfs_rq[cpu] = cfs_rq;
  6527. init_cfs_rq(cfs_rq, rq);
  6528. cfs_rq->tg = tg;
  6529. if (add)
  6530. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6531. tg->se[cpu] = se;
  6532. /* se could be NULL for init_task_group */
  6533. if (!se)
  6534. return;
  6535. if (!parent)
  6536. se->cfs_rq = &rq->cfs;
  6537. else
  6538. se->cfs_rq = parent->my_q;
  6539. se->my_q = cfs_rq;
  6540. se->load.weight = tg->shares;
  6541. se->load.inv_weight = 0;
  6542. se->parent = parent;
  6543. }
  6544. #endif
  6545. #ifdef CONFIG_RT_GROUP_SCHED
  6546. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6547. struct sched_rt_entity *rt_se, int cpu, int add,
  6548. struct sched_rt_entity *parent)
  6549. {
  6550. struct rq *rq = cpu_rq(cpu);
  6551. tg->rt_rq[cpu] = rt_rq;
  6552. init_rt_rq(rt_rq, rq);
  6553. rt_rq->tg = tg;
  6554. rt_rq->rt_se = rt_se;
  6555. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6556. if (add)
  6557. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6558. tg->rt_se[cpu] = rt_se;
  6559. if (!rt_se)
  6560. return;
  6561. if (!parent)
  6562. rt_se->rt_rq = &rq->rt;
  6563. else
  6564. rt_se->rt_rq = parent->my_q;
  6565. rt_se->my_q = rt_rq;
  6566. rt_se->parent = parent;
  6567. INIT_LIST_HEAD(&rt_se->run_list);
  6568. }
  6569. #endif
  6570. void __init sched_init(void)
  6571. {
  6572. int i, j;
  6573. unsigned long alloc_size = 0, ptr;
  6574. #ifdef CONFIG_FAIR_GROUP_SCHED
  6575. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6576. #endif
  6577. #ifdef CONFIG_RT_GROUP_SCHED
  6578. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6579. #endif
  6580. #ifdef CONFIG_USER_SCHED
  6581. alloc_size *= 2;
  6582. #endif
  6583. /*
  6584. * As sched_init() is called before page_alloc is setup,
  6585. * we use alloc_bootmem().
  6586. */
  6587. if (alloc_size) {
  6588. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6589. #ifdef CONFIG_FAIR_GROUP_SCHED
  6590. init_task_group.se = (struct sched_entity **)ptr;
  6591. ptr += nr_cpu_ids * sizeof(void **);
  6592. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6593. ptr += nr_cpu_ids * sizeof(void **);
  6594. #ifdef CONFIG_USER_SCHED
  6595. root_task_group.se = (struct sched_entity **)ptr;
  6596. ptr += nr_cpu_ids * sizeof(void **);
  6597. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6598. ptr += nr_cpu_ids * sizeof(void **);
  6599. #endif /* CONFIG_USER_SCHED */
  6600. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6601. #ifdef CONFIG_RT_GROUP_SCHED
  6602. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6603. ptr += nr_cpu_ids * sizeof(void **);
  6604. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6605. ptr += nr_cpu_ids * sizeof(void **);
  6606. #ifdef CONFIG_USER_SCHED
  6607. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6608. ptr += nr_cpu_ids * sizeof(void **);
  6609. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6610. ptr += nr_cpu_ids * sizeof(void **);
  6611. #endif /* CONFIG_USER_SCHED */
  6612. #endif /* CONFIG_RT_GROUP_SCHED */
  6613. }
  6614. #ifdef CONFIG_SMP
  6615. init_defrootdomain();
  6616. #endif
  6617. init_rt_bandwidth(&def_rt_bandwidth,
  6618. global_rt_period(), global_rt_runtime());
  6619. #ifdef CONFIG_RT_GROUP_SCHED
  6620. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6621. global_rt_period(), global_rt_runtime());
  6622. #ifdef CONFIG_USER_SCHED
  6623. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6624. global_rt_period(), RUNTIME_INF);
  6625. #endif /* CONFIG_USER_SCHED */
  6626. #endif /* CONFIG_RT_GROUP_SCHED */
  6627. #ifdef CONFIG_GROUP_SCHED
  6628. list_add(&init_task_group.list, &task_groups);
  6629. INIT_LIST_HEAD(&init_task_group.children);
  6630. #ifdef CONFIG_USER_SCHED
  6631. INIT_LIST_HEAD(&root_task_group.children);
  6632. init_task_group.parent = &root_task_group;
  6633. list_add(&init_task_group.siblings, &root_task_group.children);
  6634. #endif /* CONFIG_USER_SCHED */
  6635. #endif /* CONFIG_GROUP_SCHED */
  6636. for_each_possible_cpu(i) {
  6637. struct rq *rq;
  6638. rq = cpu_rq(i);
  6639. spin_lock_init(&rq->lock);
  6640. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6641. rq->nr_running = 0;
  6642. init_cfs_rq(&rq->cfs, rq);
  6643. init_rt_rq(&rq->rt, rq);
  6644. #ifdef CONFIG_FAIR_GROUP_SCHED
  6645. init_task_group.shares = init_task_group_load;
  6646. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6647. #ifdef CONFIG_CGROUP_SCHED
  6648. /*
  6649. * How much cpu bandwidth does init_task_group get?
  6650. *
  6651. * In case of task-groups formed thr' the cgroup filesystem, it
  6652. * gets 100% of the cpu resources in the system. This overall
  6653. * system cpu resource is divided among the tasks of
  6654. * init_task_group and its child task-groups in a fair manner,
  6655. * based on each entity's (task or task-group's) weight
  6656. * (se->load.weight).
  6657. *
  6658. * In other words, if init_task_group has 10 tasks of weight
  6659. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6660. * then A0's share of the cpu resource is:
  6661. *
  6662. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6663. *
  6664. * We achieve this by letting init_task_group's tasks sit
  6665. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6666. */
  6667. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6668. #elif defined CONFIG_USER_SCHED
  6669. root_task_group.shares = NICE_0_LOAD;
  6670. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6671. /*
  6672. * In case of task-groups formed thr' the user id of tasks,
  6673. * init_task_group represents tasks belonging to root user.
  6674. * Hence it forms a sibling of all subsequent groups formed.
  6675. * In this case, init_task_group gets only a fraction of overall
  6676. * system cpu resource, based on the weight assigned to root
  6677. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6678. * by letting tasks of init_task_group sit in a separate cfs_rq
  6679. * (init_cfs_rq) and having one entity represent this group of
  6680. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6681. */
  6682. init_tg_cfs_entry(&init_task_group,
  6683. &per_cpu(init_cfs_rq, i),
  6684. &per_cpu(init_sched_entity, i), i, 1,
  6685. root_task_group.se[i]);
  6686. #endif
  6687. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6688. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6689. #ifdef CONFIG_RT_GROUP_SCHED
  6690. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6691. #ifdef CONFIG_CGROUP_SCHED
  6692. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6693. #elif defined CONFIG_USER_SCHED
  6694. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6695. init_tg_rt_entry(&init_task_group,
  6696. &per_cpu(init_rt_rq, i),
  6697. &per_cpu(init_sched_rt_entity, i), i, 1,
  6698. root_task_group.rt_se[i]);
  6699. #endif
  6700. #endif
  6701. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6702. rq->cpu_load[j] = 0;
  6703. #ifdef CONFIG_SMP
  6704. rq->sd = NULL;
  6705. rq->rd = NULL;
  6706. rq->active_balance = 0;
  6707. rq->next_balance = jiffies;
  6708. rq->push_cpu = 0;
  6709. rq->cpu = i;
  6710. rq->online = 0;
  6711. rq->migration_thread = NULL;
  6712. INIT_LIST_HEAD(&rq->migration_queue);
  6713. rq_attach_root(rq, &def_root_domain);
  6714. #endif
  6715. init_rq_hrtick(rq);
  6716. atomic_set(&rq->nr_iowait, 0);
  6717. }
  6718. set_load_weight(&init_task);
  6719. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6720. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6721. #endif
  6722. #ifdef CONFIG_SMP
  6723. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6724. #endif
  6725. #ifdef CONFIG_RT_MUTEXES
  6726. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6727. #endif
  6728. /*
  6729. * The boot idle thread does lazy MMU switching as well:
  6730. */
  6731. atomic_inc(&init_mm.mm_count);
  6732. enter_lazy_tlb(&init_mm, current);
  6733. /*
  6734. * Make us the idle thread. Technically, schedule() should not be
  6735. * called from this thread, however somewhere below it might be,
  6736. * but because we are the idle thread, we just pick up running again
  6737. * when this runqueue becomes "idle".
  6738. */
  6739. init_idle(current, smp_processor_id());
  6740. /*
  6741. * During early bootup we pretend to be a normal task:
  6742. */
  6743. current->sched_class = &fair_sched_class;
  6744. scheduler_running = 1;
  6745. }
  6746. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6747. void __might_sleep(char *file, int line)
  6748. {
  6749. #ifdef in_atomic
  6750. static unsigned long prev_jiffy; /* ratelimiting */
  6751. if ((in_atomic() || irqs_disabled()) &&
  6752. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6753. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6754. return;
  6755. prev_jiffy = jiffies;
  6756. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6757. " context at %s:%d\n", file, line);
  6758. printk("in_atomic():%d, irqs_disabled():%d\n",
  6759. in_atomic(), irqs_disabled());
  6760. debug_show_held_locks(current);
  6761. if (irqs_disabled())
  6762. print_irqtrace_events(current);
  6763. dump_stack();
  6764. }
  6765. #endif
  6766. }
  6767. EXPORT_SYMBOL(__might_sleep);
  6768. #endif
  6769. #ifdef CONFIG_MAGIC_SYSRQ
  6770. static void normalize_task(struct rq *rq, struct task_struct *p)
  6771. {
  6772. int on_rq;
  6773. update_rq_clock(rq);
  6774. on_rq = p->se.on_rq;
  6775. if (on_rq)
  6776. deactivate_task(rq, p, 0);
  6777. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6778. if (on_rq) {
  6779. activate_task(rq, p, 0);
  6780. resched_task(rq->curr);
  6781. }
  6782. }
  6783. void normalize_rt_tasks(void)
  6784. {
  6785. struct task_struct *g, *p;
  6786. unsigned long flags;
  6787. struct rq *rq;
  6788. read_lock_irqsave(&tasklist_lock, flags);
  6789. do_each_thread(g, p) {
  6790. /*
  6791. * Only normalize user tasks:
  6792. */
  6793. if (!p->mm)
  6794. continue;
  6795. p->se.exec_start = 0;
  6796. #ifdef CONFIG_SCHEDSTATS
  6797. p->se.wait_start = 0;
  6798. p->se.sleep_start = 0;
  6799. p->se.block_start = 0;
  6800. #endif
  6801. if (!rt_task(p)) {
  6802. /*
  6803. * Renice negative nice level userspace
  6804. * tasks back to 0:
  6805. */
  6806. if (TASK_NICE(p) < 0 && p->mm)
  6807. set_user_nice(p, 0);
  6808. continue;
  6809. }
  6810. spin_lock(&p->pi_lock);
  6811. rq = __task_rq_lock(p);
  6812. normalize_task(rq, p);
  6813. __task_rq_unlock(rq);
  6814. spin_unlock(&p->pi_lock);
  6815. } while_each_thread(g, p);
  6816. read_unlock_irqrestore(&tasklist_lock, flags);
  6817. }
  6818. #endif /* CONFIG_MAGIC_SYSRQ */
  6819. #ifdef CONFIG_IA64
  6820. /*
  6821. * These functions are only useful for the IA64 MCA handling.
  6822. *
  6823. * They can only be called when the whole system has been
  6824. * stopped - every CPU needs to be quiescent, and no scheduling
  6825. * activity can take place. Using them for anything else would
  6826. * be a serious bug, and as a result, they aren't even visible
  6827. * under any other configuration.
  6828. */
  6829. /**
  6830. * curr_task - return the current task for a given cpu.
  6831. * @cpu: the processor in question.
  6832. *
  6833. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6834. */
  6835. struct task_struct *curr_task(int cpu)
  6836. {
  6837. return cpu_curr(cpu);
  6838. }
  6839. /**
  6840. * set_curr_task - set the current task for a given cpu.
  6841. * @cpu: the processor in question.
  6842. * @p: the task pointer to set.
  6843. *
  6844. * Description: This function must only be used when non-maskable interrupts
  6845. * are serviced on a separate stack. It allows the architecture to switch the
  6846. * notion of the current task on a cpu in a non-blocking manner. This function
  6847. * must be called with all CPU's synchronized, and interrupts disabled, the
  6848. * and caller must save the original value of the current task (see
  6849. * curr_task() above) and restore that value before reenabling interrupts and
  6850. * re-starting the system.
  6851. *
  6852. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6853. */
  6854. void set_curr_task(int cpu, struct task_struct *p)
  6855. {
  6856. cpu_curr(cpu) = p;
  6857. }
  6858. #endif
  6859. #ifdef CONFIG_FAIR_GROUP_SCHED
  6860. static void free_fair_sched_group(struct task_group *tg)
  6861. {
  6862. int i;
  6863. for_each_possible_cpu(i) {
  6864. if (tg->cfs_rq)
  6865. kfree(tg->cfs_rq[i]);
  6866. if (tg->se)
  6867. kfree(tg->se[i]);
  6868. }
  6869. kfree(tg->cfs_rq);
  6870. kfree(tg->se);
  6871. }
  6872. static
  6873. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6874. {
  6875. struct cfs_rq *cfs_rq;
  6876. struct sched_entity *se, *parent_se;
  6877. struct rq *rq;
  6878. int i;
  6879. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6880. if (!tg->cfs_rq)
  6881. goto err;
  6882. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6883. if (!tg->se)
  6884. goto err;
  6885. tg->shares = NICE_0_LOAD;
  6886. for_each_possible_cpu(i) {
  6887. rq = cpu_rq(i);
  6888. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6889. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6890. if (!cfs_rq)
  6891. goto err;
  6892. se = kmalloc_node(sizeof(struct sched_entity),
  6893. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6894. if (!se)
  6895. goto err;
  6896. parent_se = parent ? parent->se[i] : NULL;
  6897. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  6898. }
  6899. return 1;
  6900. err:
  6901. return 0;
  6902. }
  6903. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6904. {
  6905. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6906. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6907. }
  6908. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6909. {
  6910. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6911. }
  6912. #else /* !CONFG_FAIR_GROUP_SCHED */
  6913. static inline void free_fair_sched_group(struct task_group *tg)
  6914. {
  6915. }
  6916. static inline
  6917. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6918. {
  6919. return 1;
  6920. }
  6921. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6922. {
  6923. }
  6924. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6925. {
  6926. }
  6927. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6928. #ifdef CONFIG_RT_GROUP_SCHED
  6929. static void free_rt_sched_group(struct task_group *tg)
  6930. {
  6931. int i;
  6932. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6933. for_each_possible_cpu(i) {
  6934. if (tg->rt_rq)
  6935. kfree(tg->rt_rq[i]);
  6936. if (tg->rt_se)
  6937. kfree(tg->rt_se[i]);
  6938. }
  6939. kfree(tg->rt_rq);
  6940. kfree(tg->rt_se);
  6941. }
  6942. static
  6943. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6944. {
  6945. struct rt_rq *rt_rq;
  6946. struct sched_rt_entity *rt_se, *parent_se;
  6947. struct rq *rq;
  6948. int i;
  6949. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6950. if (!tg->rt_rq)
  6951. goto err;
  6952. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6953. if (!tg->rt_se)
  6954. goto err;
  6955. init_rt_bandwidth(&tg->rt_bandwidth,
  6956. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6957. for_each_possible_cpu(i) {
  6958. rq = cpu_rq(i);
  6959. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6960. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6961. if (!rt_rq)
  6962. goto err;
  6963. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6964. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6965. if (!rt_se)
  6966. goto err;
  6967. parent_se = parent ? parent->rt_se[i] : NULL;
  6968. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  6969. }
  6970. return 1;
  6971. err:
  6972. return 0;
  6973. }
  6974. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6975. {
  6976. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6977. &cpu_rq(cpu)->leaf_rt_rq_list);
  6978. }
  6979. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6980. {
  6981. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6982. }
  6983. #else /* !CONFIG_RT_GROUP_SCHED */
  6984. static inline void free_rt_sched_group(struct task_group *tg)
  6985. {
  6986. }
  6987. static inline
  6988. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6989. {
  6990. return 1;
  6991. }
  6992. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6993. {
  6994. }
  6995. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6996. {
  6997. }
  6998. #endif /* CONFIG_RT_GROUP_SCHED */
  6999. #ifdef CONFIG_GROUP_SCHED
  7000. static void free_sched_group(struct task_group *tg)
  7001. {
  7002. free_fair_sched_group(tg);
  7003. free_rt_sched_group(tg);
  7004. kfree(tg);
  7005. }
  7006. /* allocate runqueue etc for a new task group */
  7007. struct task_group *sched_create_group(struct task_group *parent)
  7008. {
  7009. struct task_group *tg;
  7010. unsigned long flags;
  7011. int i;
  7012. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7013. if (!tg)
  7014. return ERR_PTR(-ENOMEM);
  7015. if (!alloc_fair_sched_group(tg, parent))
  7016. goto err;
  7017. if (!alloc_rt_sched_group(tg, parent))
  7018. goto err;
  7019. spin_lock_irqsave(&task_group_lock, flags);
  7020. for_each_possible_cpu(i) {
  7021. register_fair_sched_group(tg, i);
  7022. register_rt_sched_group(tg, i);
  7023. }
  7024. list_add_rcu(&tg->list, &task_groups);
  7025. WARN_ON(!parent); /* root should already exist */
  7026. tg->parent = parent;
  7027. list_add_rcu(&tg->siblings, &parent->children);
  7028. INIT_LIST_HEAD(&tg->children);
  7029. spin_unlock_irqrestore(&task_group_lock, flags);
  7030. return tg;
  7031. err:
  7032. free_sched_group(tg);
  7033. return ERR_PTR(-ENOMEM);
  7034. }
  7035. /* rcu callback to free various structures associated with a task group */
  7036. static void free_sched_group_rcu(struct rcu_head *rhp)
  7037. {
  7038. /* now it should be safe to free those cfs_rqs */
  7039. free_sched_group(container_of(rhp, struct task_group, rcu));
  7040. }
  7041. /* Destroy runqueue etc associated with a task group */
  7042. void sched_destroy_group(struct task_group *tg)
  7043. {
  7044. unsigned long flags;
  7045. int i;
  7046. spin_lock_irqsave(&task_group_lock, flags);
  7047. for_each_possible_cpu(i) {
  7048. unregister_fair_sched_group(tg, i);
  7049. unregister_rt_sched_group(tg, i);
  7050. }
  7051. list_del_rcu(&tg->list);
  7052. list_del_rcu(&tg->siblings);
  7053. spin_unlock_irqrestore(&task_group_lock, flags);
  7054. /* wait for possible concurrent references to cfs_rqs complete */
  7055. call_rcu(&tg->rcu, free_sched_group_rcu);
  7056. }
  7057. /* change task's runqueue when it moves between groups.
  7058. * The caller of this function should have put the task in its new group
  7059. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7060. * reflect its new group.
  7061. */
  7062. void sched_move_task(struct task_struct *tsk)
  7063. {
  7064. int on_rq, running;
  7065. unsigned long flags;
  7066. struct rq *rq;
  7067. rq = task_rq_lock(tsk, &flags);
  7068. update_rq_clock(rq);
  7069. running = task_current(rq, tsk);
  7070. on_rq = tsk->se.on_rq;
  7071. if (on_rq)
  7072. dequeue_task(rq, tsk, 0);
  7073. if (unlikely(running))
  7074. tsk->sched_class->put_prev_task(rq, tsk);
  7075. set_task_rq(tsk, task_cpu(tsk));
  7076. #ifdef CONFIG_FAIR_GROUP_SCHED
  7077. if (tsk->sched_class->moved_group)
  7078. tsk->sched_class->moved_group(tsk);
  7079. #endif
  7080. if (unlikely(running))
  7081. tsk->sched_class->set_curr_task(rq);
  7082. if (on_rq)
  7083. enqueue_task(rq, tsk, 0);
  7084. task_rq_unlock(rq, &flags);
  7085. }
  7086. #endif /* CONFIG_GROUP_SCHED */
  7087. #ifdef CONFIG_FAIR_GROUP_SCHED
  7088. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7089. {
  7090. struct cfs_rq *cfs_rq = se->cfs_rq;
  7091. struct rq *rq = cfs_rq->rq;
  7092. int on_rq;
  7093. spin_lock_irq(&rq->lock);
  7094. on_rq = se->on_rq;
  7095. if (on_rq)
  7096. dequeue_entity(cfs_rq, se, 0);
  7097. se->load.weight = shares;
  7098. se->load.inv_weight = 0;
  7099. if (on_rq)
  7100. enqueue_entity(cfs_rq, se, 0);
  7101. spin_unlock_irq(&rq->lock);
  7102. }
  7103. static DEFINE_MUTEX(shares_mutex);
  7104. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7105. {
  7106. int i;
  7107. unsigned long flags;
  7108. /*
  7109. * We can't change the weight of the root cgroup.
  7110. */
  7111. if (!tg->se[0])
  7112. return -EINVAL;
  7113. if (shares < MIN_SHARES)
  7114. shares = MIN_SHARES;
  7115. else if (shares > MAX_SHARES)
  7116. shares = MAX_SHARES;
  7117. mutex_lock(&shares_mutex);
  7118. if (tg->shares == shares)
  7119. goto done;
  7120. spin_lock_irqsave(&task_group_lock, flags);
  7121. for_each_possible_cpu(i)
  7122. unregister_fair_sched_group(tg, i);
  7123. list_del_rcu(&tg->siblings);
  7124. spin_unlock_irqrestore(&task_group_lock, flags);
  7125. /* wait for any ongoing reference to this group to finish */
  7126. synchronize_sched();
  7127. /*
  7128. * Now we are free to modify the group's share on each cpu
  7129. * w/o tripping rebalance_share or load_balance_fair.
  7130. */
  7131. tg->shares = shares;
  7132. for_each_possible_cpu(i)
  7133. set_se_shares(tg->se[i], shares);
  7134. /*
  7135. * Enable load balance activity on this group, by inserting it back on
  7136. * each cpu's rq->leaf_cfs_rq_list.
  7137. */
  7138. spin_lock_irqsave(&task_group_lock, flags);
  7139. for_each_possible_cpu(i)
  7140. register_fair_sched_group(tg, i);
  7141. list_add_rcu(&tg->siblings, &tg->parent->children);
  7142. spin_unlock_irqrestore(&task_group_lock, flags);
  7143. done:
  7144. mutex_unlock(&shares_mutex);
  7145. return 0;
  7146. }
  7147. unsigned long sched_group_shares(struct task_group *tg)
  7148. {
  7149. return tg->shares;
  7150. }
  7151. #endif
  7152. #ifdef CONFIG_RT_GROUP_SCHED
  7153. /*
  7154. * Ensure that the real time constraints are schedulable.
  7155. */
  7156. static DEFINE_MUTEX(rt_constraints_mutex);
  7157. static unsigned long to_ratio(u64 period, u64 runtime)
  7158. {
  7159. if (runtime == RUNTIME_INF)
  7160. return 1ULL << 16;
  7161. return div64_u64(runtime << 16, period);
  7162. }
  7163. #ifdef CONFIG_CGROUP_SCHED
  7164. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7165. {
  7166. struct task_group *tgi, *parent = tg->parent;
  7167. unsigned long total = 0;
  7168. if (!parent) {
  7169. if (global_rt_period() < period)
  7170. return 0;
  7171. return to_ratio(period, runtime) <
  7172. to_ratio(global_rt_period(), global_rt_runtime());
  7173. }
  7174. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7175. return 0;
  7176. rcu_read_lock();
  7177. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7178. if (tgi == tg)
  7179. continue;
  7180. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7181. tgi->rt_bandwidth.rt_runtime);
  7182. }
  7183. rcu_read_unlock();
  7184. return total + to_ratio(period, runtime) <=
  7185. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7186. parent->rt_bandwidth.rt_runtime);
  7187. }
  7188. #elif defined CONFIG_USER_SCHED
  7189. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7190. {
  7191. struct task_group *tgi;
  7192. unsigned long total = 0;
  7193. unsigned long global_ratio =
  7194. to_ratio(global_rt_period(), global_rt_runtime());
  7195. rcu_read_lock();
  7196. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7197. if (tgi == tg)
  7198. continue;
  7199. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7200. tgi->rt_bandwidth.rt_runtime);
  7201. }
  7202. rcu_read_unlock();
  7203. return total + to_ratio(period, runtime) < global_ratio;
  7204. }
  7205. #endif
  7206. /* Must be called with tasklist_lock held */
  7207. static inline int tg_has_rt_tasks(struct task_group *tg)
  7208. {
  7209. struct task_struct *g, *p;
  7210. do_each_thread(g, p) {
  7211. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7212. return 1;
  7213. } while_each_thread(g, p);
  7214. return 0;
  7215. }
  7216. static int tg_set_bandwidth(struct task_group *tg,
  7217. u64 rt_period, u64 rt_runtime)
  7218. {
  7219. int i, err = 0;
  7220. mutex_lock(&rt_constraints_mutex);
  7221. read_lock(&tasklist_lock);
  7222. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7223. err = -EBUSY;
  7224. goto unlock;
  7225. }
  7226. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7227. err = -EINVAL;
  7228. goto unlock;
  7229. }
  7230. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7231. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7232. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7233. for_each_possible_cpu(i) {
  7234. struct rt_rq *rt_rq = tg->rt_rq[i];
  7235. spin_lock(&rt_rq->rt_runtime_lock);
  7236. rt_rq->rt_runtime = rt_runtime;
  7237. spin_unlock(&rt_rq->rt_runtime_lock);
  7238. }
  7239. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7240. unlock:
  7241. read_unlock(&tasklist_lock);
  7242. mutex_unlock(&rt_constraints_mutex);
  7243. return err;
  7244. }
  7245. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7246. {
  7247. u64 rt_runtime, rt_period;
  7248. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7249. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7250. if (rt_runtime_us < 0)
  7251. rt_runtime = RUNTIME_INF;
  7252. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7253. }
  7254. long sched_group_rt_runtime(struct task_group *tg)
  7255. {
  7256. u64 rt_runtime_us;
  7257. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7258. return -1;
  7259. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7260. do_div(rt_runtime_us, NSEC_PER_USEC);
  7261. return rt_runtime_us;
  7262. }
  7263. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7264. {
  7265. u64 rt_runtime, rt_period;
  7266. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7267. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7268. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7269. }
  7270. long sched_group_rt_period(struct task_group *tg)
  7271. {
  7272. u64 rt_period_us;
  7273. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7274. do_div(rt_period_us, NSEC_PER_USEC);
  7275. return rt_period_us;
  7276. }
  7277. static int sched_rt_global_constraints(void)
  7278. {
  7279. struct task_group *tg = &root_task_group;
  7280. u64 rt_runtime, rt_period;
  7281. int ret = 0;
  7282. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7283. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7284. mutex_lock(&rt_constraints_mutex);
  7285. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7286. ret = -EINVAL;
  7287. mutex_unlock(&rt_constraints_mutex);
  7288. return ret;
  7289. }
  7290. #else /* !CONFIG_RT_GROUP_SCHED */
  7291. static int sched_rt_global_constraints(void)
  7292. {
  7293. unsigned long flags;
  7294. int i;
  7295. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7296. for_each_possible_cpu(i) {
  7297. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7298. spin_lock(&rt_rq->rt_runtime_lock);
  7299. rt_rq->rt_runtime = global_rt_runtime();
  7300. spin_unlock(&rt_rq->rt_runtime_lock);
  7301. }
  7302. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7303. return 0;
  7304. }
  7305. #endif /* CONFIG_RT_GROUP_SCHED */
  7306. int sched_rt_handler(struct ctl_table *table, int write,
  7307. struct file *filp, void __user *buffer, size_t *lenp,
  7308. loff_t *ppos)
  7309. {
  7310. int ret;
  7311. int old_period, old_runtime;
  7312. static DEFINE_MUTEX(mutex);
  7313. mutex_lock(&mutex);
  7314. old_period = sysctl_sched_rt_period;
  7315. old_runtime = sysctl_sched_rt_runtime;
  7316. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7317. if (!ret && write) {
  7318. ret = sched_rt_global_constraints();
  7319. if (ret) {
  7320. sysctl_sched_rt_period = old_period;
  7321. sysctl_sched_rt_runtime = old_runtime;
  7322. } else {
  7323. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7324. def_rt_bandwidth.rt_period =
  7325. ns_to_ktime(global_rt_period());
  7326. }
  7327. }
  7328. mutex_unlock(&mutex);
  7329. return ret;
  7330. }
  7331. #ifdef CONFIG_CGROUP_SCHED
  7332. /* return corresponding task_group object of a cgroup */
  7333. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7334. {
  7335. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7336. struct task_group, css);
  7337. }
  7338. static struct cgroup_subsys_state *
  7339. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7340. {
  7341. struct task_group *tg, *parent;
  7342. if (!cgrp->parent) {
  7343. /* This is early initialization for the top cgroup */
  7344. init_task_group.css.cgroup = cgrp;
  7345. return &init_task_group.css;
  7346. }
  7347. parent = cgroup_tg(cgrp->parent);
  7348. tg = sched_create_group(parent);
  7349. if (IS_ERR(tg))
  7350. return ERR_PTR(-ENOMEM);
  7351. /* Bind the cgroup to task_group object we just created */
  7352. tg->css.cgroup = cgrp;
  7353. return &tg->css;
  7354. }
  7355. static void
  7356. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7357. {
  7358. struct task_group *tg = cgroup_tg(cgrp);
  7359. sched_destroy_group(tg);
  7360. }
  7361. static int
  7362. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7363. struct task_struct *tsk)
  7364. {
  7365. #ifdef CONFIG_RT_GROUP_SCHED
  7366. /* Don't accept realtime tasks when there is no way for them to run */
  7367. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7368. return -EINVAL;
  7369. #else
  7370. /* We don't support RT-tasks being in separate groups */
  7371. if (tsk->sched_class != &fair_sched_class)
  7372. return -EINVAL;
  7373. #endif
  7374. return 0;
  7375. }
  7376. static void
  7377. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7378. struct cgroup *old_cont, struct task_struct *tsk)
  7379. {
  7380. sched_move_task(tsk);
  7381. }
  7382. #ifdef CONFIG_FAIR_GROUP_SCHED
  7383. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7384. u64 shareval)
  7385. {
  7386. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7387. }
  7388. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7389. {
  7390. struct task_group *tg = cgroup_tg(cgrp);
  7391. return (u64) tg->shares;
  7392. }
  7393. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7394. #ifdef CONFIG_RT_GROUP_SCHED
  7395. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7396. s64 val)
  7397. {
  7398. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7399. }
  7400. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7401. {
  7402. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7403. }
  7404. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7405. u64 rt_period_us)
  7406. {
  7407. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7408. }
  7409. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7410. {
  7411. return sched_group_rt_period(cgroup_tg(cgrp));
  7412. }
  7413. #endif /* CONFIG_RT_GROUP_SCHED */
  7414. static struct cftype cpu_files[] = {
  7415. #ifdef CONFIG_FAIR_GROUP_SCHED
  7416. {
  7417. .name = "shares",
  7418. .read_u64 = cpu_shares_read_u64,
  7419. .write_u64 = cpu_shares_write_u64,
  7420. },
  7421. #endif
  7422. #ifdef CONFIG_RT_GROUP_SCHED
  7423. {
  7424. .name = "rt_runtime_us",
  7425. .read_s64 = cpu_rt_runtime_read,
  7426. .write_s64 = cpu_rt_runtime_write,
  7427. },
  7428. {
  7429. .name = "rt_period_us",
  7430. .read_u64 = cpu_rt_period_read_uint,
  7431. .write_u64 = cpu_rt_period_write_uint,
  7432. },
  7433. #endif
  7434. };
  7435. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7436. {
  7437. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7438. }
  7439. struct cgroup_subsys cpu_cgroup_subsys = {
  7440. .name = "cpu",
  7441. .create = cpu_cgroup_create,
  7442. .destroy = cpu_cgroup_destroy,
  7443. .can_attach = cpu_cgroup_can_attach,
  7444. .attach = cpu_cgroup_attach,
  7445. .populate = cpu_cgroup_populate,
  7446. .subsys_id = cpu_cgroup_subsys_id,
  7447. .early_init = 1,
  7448. };
  7449. #endif /* CONFIG_CGROUP_SCHED */
  7450. #ifdef CONFIG_CGROUP_CPUACCT
  7451. /*
  7452. * CPU accounting code for task groups.
  7453. *
  7454. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7455. * (balbir@in.ibm.com).
  7456. */
  7457. /* track cpu usage of a group of tasks */
  7458. struct cpuacct {
  7459. struct cgroup_subsys_state css;
  7460. /* cpuusage holds pointer to a u64-type object on every cpu */
  7461. u64 *cpuusage;
  7462. };
  7463. struct cgroup_subsys cpuacct_subsys;
  7464. /* return cpu accounting group corresponding to this container */
  7465. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7466. {
  7467. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7468. struct cpuacct, css);
  7469. }
  7470. /* return cpu accounting group to which this task belongs */
  7471. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7472. {
  7473. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7474. struct cpuacct, css);
  7475. }
  7476. /* create a new cpu accounting group */
  7477. static struct cgroup_subsys_state *cpuacct_create(
  7478. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7479. {
  7480. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7481. if (!ca)
  7482. return ERR_PTR(-ENOMEM);
  7483. ca->cpuusage = alloc_percpu(u64);
  7484. if (!ca->cpuusage) {
  7485. kfree(ca);
  7486. return ERR_PTR(-ENOMEM);
  7487. }
  7488. return &ca->css;
  7489. }
  7490. /* destroy an existing cpu accounting group */
  7491. static void
  7492. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7493. {
  7494. struct cpuacct *ca = cgroup_ca(cgrp);
  7495. free_percpu(ca->cpuusage);
  7496. kfree(ca);
  7497. }
  7498. /* return total cpu usage (in nanoseconds) of a group */
  7499. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7500. {
  7501. struct cpuacct *ca = cgroup_ca(cgrp);
  7502. u64 totalcpuusage = 0;
  7503. int i;
  7504. for_each_possible_cpu(i) {
  7505. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7506. /*
  7507. * Take rq->lock to make 64-bit addition safe on 32-bit
  7508. * platforms.
  7509. */
  7510. spin_lock_irq(&cpu_rq(i)->lock);
  7511. totalcpuusage += *cpuusage;
  7512. spin_unlock_irq(&cpu_rq(i)->lock);
  7513. }
  7514. return totalcpuusage;
  7515. }
  7516. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7517. u64 reset)
  7518. {
  7519. struct cpuacct *ca = cgroup_ca(cgrp);
  7520. int err = 0;
  7521. int i;
  7522. if (reset) {
  7523. err = -EINVAL;
  7524. goto out;
  7525. }
  7526. for_each_possible_cpu(i) {
  7527. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7528. spin_lock_irq(&cpu_rq(i)->lock);
  7529. *cpuusage = 0;
  7530. spin_unlock_irq(&cpu_rq(i)->lock);
  7531. }
  7532. out:
  7533. return err;
  7534. }
  7535. static struct cftype files[] = {
  7536. {
  7537. .name = "usage",
  7538. .read_u64 = cpuusage_read,
  7539. .write_u64 = cpuusage_write,
  7540. },
  7541. };
  7542. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7543. {
  7544. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7545. }
  7546. /*
  7547. * charge this task's execution time to its accounting group.
  7548. *
  7549. * called with rq->lock held.
  7550. */
  7551. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7552. {
  7553. struct cpuacct *ca;
  7554. if (!cpuacct_subsys.active)
  7555. return;
  7556. ca = task_ca(tsk);
  7557. if (ca) {
  7558. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7559. *cpuusage += cputime;
  7560. }
  7561. }
  7562. struct cgroup_subsys cpuacct_subsys = {
  7563. .name = "cpuacct",
  7564. .create = cpuacct_create,
  7565. .destroy = cpuacct_destroy,
  7566. .populate = cpuacct_populate,
  7567. .subsys_id = cpuacct_subsys_id,
  7568. };
  7569. #endif /* CONFIG_CGROUP_CPUACCT */