rmap.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->mutex
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. struct anon_vma *anon_vma;
  64. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. if (anon_vma) {
  66. atomic_set(&anon_vma->refcount, 1);
  67. /*
  68. * Initialise the anon_vma root to point to itself. If called
  69. * from fork, the root will be reset to the parents anon_vma.
  70. */
  71. anon_vma->root = anon_vma;
  72. }
  73. return anon_vma;
  74. }
  75. static inline void anon_vma_free(struct anon_vma *anon_vma)
  76. {
  77. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  78. /*
  79. * Synchronize against page_lock_anon_vma() such that
  80. * we can safely hold the lock without the anon_vma getting
  81. * freed.
  82. *
  83. * Relies on the full mb implied by the atomic_dec_and_test() from
  84. * put_anon_vma() against the acquire barrier implied by
  85. * mutex_trylock() from page_lock_anon_vma(). This orders:
  86. *
  87. * page_lock_anon_vma() VS put_anon_vma()
  88. * mutex_trylock() atomic_dec_and_test()
  89. * LOCK MB
  90. * atomic_read() mutex_is_locked()
  91. *
  92. * LOCK should suffice since the actual taking of the lock must
  93. * happen _before_ what follows.
  94. */
  95. if (mutex_is_locked(&anon_vma->root->mutex)) {
  96. anon_vma_lock(anon_vma);
  97. anon_vma_unlock(anon_vma);
  98. }
  99. kmem_cache_free(anon_vma_cachep, anon_vma);
  100. }
  101. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  102. {
  103. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  104. }
  105. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  106. {
  107. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  108. }
  109. static void anon_vma_chain_link(struct vm_area_struct *vma,
  110. struct anon_vma_chain *avc,
  111. struct anon_vma *anon_vma)
  112. {
  113. avc->vma = vma;
  114. avc->anon_vma = anon_vma;
  115. list_add(&avc->same_vma, &vma->anon_vma_chain);
  116. /*
  117. * It's critical to add new vmas to the tail of the anon_vma,
  118. * see comment in huge_memory.c:__split_huge_page().
  119. */
  120. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  121. }
  122. /**
  123. * anon_vma_prepare - attach an anon_vma to a memory region
  124. * @vma: the memory region in question
  125. *
  126. * This makes sure the memory mapping described by 'vma' has
  127. * an 'anon_vma' attached to it, so that we can associate the
  128. * anonymous pages mapped into it with that anon_vma.
  129. *
  130. * The common case will be that we already have one, but if
  131. * not we either need to find an adjacent mapping that we
  132. * can re-use the anon_vma from (very common when the only
  133. * reason for splitting a vma has been mprotect()), or we
  134. * allocate a new one.
  135. *
  136. * Anon-vma allocations are very subtle, because we may have
  137. * optimistically looked up an anon_vma in page_lock_anon_vma()
  138. * and that may actually touch the spinlock even in the newly
  139. * allocated vma (it depends on RCU to make sure that the
  140. * anon_vma isn't actually destroyed).
  141. *
  142. * As a result, we need to do proper anon_vma locking even
  143. * for the new allocation. At the same time, we do not want
  144. * to do any locking for the common case of already having
  145. * an anon_vma.
  146. *
  147. * This must be called with the mmap_sem held for reading.
  148. */
  149. int anon_vma_prepare(struct vm_area_struct *vma)
  150. {
  151. struct anon_vma *anon_vma = vma->anon_vma;
  152. struct anon_vma_chain *avc;
  153. might_sleep();
  154. if (unlikely(!anon_vma)) {
  155. struct mm_struct *mm = vma->vm_mm;
  156. struct anon_vma *allocated;
  157. avc = anon_vma_chain_alloc(GFP_KERNEL);
  158. if (!avc)
  159. goto out_enomem;
  160. anon_vma = find_mergeable_anon_vma(vma);
  161. allocated = NULL;
  162. if (!anon_vma) {
  163. anon_vma = anon_vma_alloc();
  164. if (unlikely(!anon_vma))
  165. goto out_enomem_free_avc;
  166. allocated = anon_vma;
  167. }
  168. anon_vma_lock(anon_vma);
  169. /* page_table_lock to protect against threads */
  170. spin_lock(&mm->page_table_lock);
  171. if (likely(!vma->anon_vma)) {
  172. vma->anon_vma = anon_vma;
  173. anon_vma_chain_link(vma, avc, anon_vma);
  174. allocated = NULL;
  175. avc = NULL;
  176. }
  177. spin_unlock(&mm->page_table_lock);
  178. anon_vma_unlock(anon_vma);
  179. if (unlikely(allocated))
  180. put_anon_vma(allocated);
  181. if (unlikely(avc))
  182. anon_vma_chain_free(avc);
  183. }
  184. return 0;
  185. out_enomem_free_avc:
  186. anon_vma_chain_free(avc);
  187. out_enomem:
  188. return -ENOMEM;
  189. }
  190. /*
  191. * This is a useful helper function for locking the anon_vma root as
  192. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  193. * have the same vma.
  194. *
  195. * Such anon_vma's should have the same root, so you'd expect to see
  196. * just a single mutex_lock for the whole traversal.
  197. */
  198. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  199. {
  200. struct anon_vma *new_root = anon_vma->root;
  201. if (new_root != root) {
  202. if (WARN_ON_ONCE(root))
  203. mutex_unlock(&root->mutex);
  204. root = new_root;
  205. mutex_lock(&root->mutex);
  206. }
  207. return root;
  208. }
  209. static inline void unlock_anon_vma_root(struct anon_vma *root)
  210. {
  211. if (root)
  212. mutex_unlock(&root->mutex);
  213. }
  214. /*
  215. * Attach the anon_vmas from src to dst.
  216. * Returns 0 on success, -ENOMEM on failure.
  217. */
  218. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  219. {
  220. struct anon_vma_chain *avc, *pavc;
  221. struct anon_vma *root = NULL;
  222. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  223. struct anon_vma *anon_vma;
  224. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  225. if (unlikely(!avc)) {
  226. unlock_anon_vma_root(root);
  227. root = NULL;
  228. avc = anon_vma_chain_alloc(GFP_KERNEL);
  229. if (!avc)
  230. goto enomem_failure;
  231. }
  232. anon_vma = pavc->anon_vma;
  233. root = lock_anon_vma_root(root, anon_vma);
  234. anon_vma_chain_link(dst, avc, anon_vma);
  235. }
  236. unlock_anon_vma_root(root);
  237. return 0;
  238. enomem_failure:
  239. unlink_anon_vmas(dst);
  240. return -ENOMEM;
  241. }
  242. /*
  243. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  244. * the corresponding VMA in the parent process is attached to.
  245. * Returns 0 on success, non-zero on failure.
  246. */
  247. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  248. {
  249. struct anon_vma_chain *avc;
  250. struct anon_vma *anon_vma;
  251. /* Don't bother if the parent process has no anon_vma here. */
  252. if (!pvma->anon_vma)
  253. return 0;
  254. /*
  255. * First, attach the new VMA to the parent VMA's anon_vmas,
  256. * so rmap can find non-COWed pages in child processes.
  257. */
  258. if (anon_vma_clone(vma, pvma))
  259. return -ENOMEM;
  260. /* Then add our own anon_vma. */
  261. anon_vma = anon_vma_alloc();
  262. if (!anon_vma)
  263. goto out_error;
  264. avc = anon_vma_chain_alloc(GFP_KERNEL);
  265. if (!avc)
  266. goto out_error_free_anon_vma;
  267. /*
  268. * The root anon_vma's spinlock is the lock actually used when we
  269. * lock any of the anon_vmas in this anon_vma tree.
  270. */
  271. anon_vma->root = pvma->anon_vma->root;
  272. /*
  273. * With refcounts, an anon_vma can stay around longer than the
  274. * process it belongs to. The root anon_vma needs to be pinned until
  275. * this anon_vma is freed, because the lock lives in the root.
  276. */
  277. get_anon_vma(anon_vma->root);
  278. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  279. vma->anon_vma = anon_vma;
  280. anon_vma_lock(anon_vma);
  281. anon_vma_chain_link(vma, avc, anon_vma);
  282. anon_vma_unlock(anon_vma);
  283. return 0;
  284. out_error_free_anon_vma:
  285. put_anon_vma(anon_vma);
  286. out_error:
  287. unlink_anon_vmas(vma);
  288. return -ENOMEM;
  289. }
  290. void unlink_anon_vmas(struct vm_area_struct *vma)
  291. {
  292. struct anon_vma_chain *avc, *next;
  293. struct anon_vma *root = NULL;
  294. /*
  295. * Unlink each anon_vma chained to the VMA. This list is ordered
  296. * from newest to oldest, ensuring the root anon_vma gets freed last.
  297. */
  298. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  299. struct anon_vma *anon_vma = avc->anon_vma;
  300. root = lock_anon_vma_root(root, anon_vma);
  301. list_del(&avc->same_anon_vma);
  302. /*
  303. * Leave empty anon_vmas on the list - we'll need
  304. * to free them outside the lock.
  305. */
  306. if (list_empty(&anon_vma->head))
  307. continue;
  308. list_del(&avc->same_vma);
  309. anon_vma_chain_free(avc);
  310. }
  311. unlock_anon_vma_root(root);
  312. /*
  313. * Iterate the list once more, it now only contains empty and unlinked
  314. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  315. * needing to acquire the anon_vma->root->mutex.
  316. */
  317. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  318. struct anon_vma *anon_vma = avc->anon_vma;
  319. put_anon_vma(anon_vma);
  320. list_del(&avc->same_vma);
  321. anon_vma_chain_free(avc);
  322. }
  323. }
  324. static void anon_vma_ctor(void *data)
  325. {
  326. struct anon_vma *anon_vma = data;
  327. mutex_init(&anon_vma->mutex);
  328. atomic_set(&anon_vma->refcount, 0);
  329. INIT_LIST_HEAD(&anon_vma->head);
  330. }
  331. void __init anon_vma_init(void)
  332. {
  333. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  334. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  335. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  336. }
  337. /*
  338. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  339. *
  340. * Since there is no serialization what so ever against page_remove_rmap()
  341. * the best this function can do is return a locked anon_vma that might
  342. * have been relevant to this page.
  343. *
  344. * The page might have been remapped to a different anon_vma or the anon_vma
  345. * returned may already be freed (and even reused).
  346. *
  347. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  348. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  349. * ensure that any anon_vma obtained from the page will still be valid for as
  350. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  351. *
  352. * All users of this function must be very careful when walking the anon_vma
  353. * chain and verify that the page in question is indeed mapped in it
  354. * [ something equivalent to page_mapped_in_vma() ].
  355. *
  356. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  357. * that the anon_vma pointer from page->mapping is valid if there is a
  358. * mapcount, we can dereference the anon_vma after observing those.
  359. */
  360. struct anon_vma *page_get_anon_vma(struct page *page)
  361. {
  362. struct anon_vma *anon_vma = NULL;
  363. unsigned long anon_mapping;
  364. rcu_read_lock();
  365. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  366. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  367. goto out;
  368. if (!page_mapped(page))
  369. goto out;
  370. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  371. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  372. anon_vma = NULL;
  373. goto out;
  374. }
  375. /*
  376. * If this page is still mapped, then its anon_vma cannot have been
  377. * freed. But if it has been unmapped, we have no security against the
  378. * anon_vma structure being freed and reused (for another anon_vma:
  379. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  380. * above cannot corrupt).
  381. */
  382. if (!page_mapped(page)) {
  383. put_anon_vma(anon_vma);
  384. anon_vma = NULL;
  385. }
  386. out:
  387. rcu_read_unlock();
  388. return anon_vma;
  389. }
  390. /*
  391. * Similar to page_get_anon_vma() except it locks the anon_vma.
  392. *
  393. * Its a little more complex as it tries to keep the fast path to a single
  394. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  395. * reference like with page_get_anon_vma() and then block on the mutex.
  396. */
  397. struct anon_vma *page_lock_anon_vma(struct page *page)
  398. {
  399. struct anon_vma *anon_vma = NULL;
  400. struct anon_vma *root_anon_vma;
  401. unsigned long anon_mapping;
  402. rcu_read_lock();
  403. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  404. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  405. goto out;
  406. if (!page_mapped(page))
  407. goto out;
  408. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  409. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  410. if (mutex_trylock(&root_anon_vma->mutex)) {
  411. /*
  412. * If the page is still mapped, then this anon_vma is still
  413. * its anon_vma, and holding the mutex ensures that it will
  414. * not go away, see anon_vma_free().
  415. */
  416. if (!page_mapped(page)) {
  417. mutex_unlock(&root_anon_vma->mutex);
  418. anon_vma = NULL;
  419. }
  420. goto out;
  421. }
  422. /* trylock failed, we got to sleep */
  423. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  424. anon_vma = NULL;
  425. goto out;
  426. }
  427. if (!page_mapped(page)) {
  428. put_anon_vma(anon_vma);
  429. anon_vma = NULL;
  430. goto out;
  431. }
  432. /* we pinned the anon_vma, its safe to sleep */
  433. rcu_read_unlock();
  434. anon_vma_lock(anon_vma);
  435. if (atomic_dec_and_test(&anon_vma->refcount)) {
  436. /*
  437. * Oops, we held the last refcount, release the lock
  438. * and bail -- can't simply use put_anon_vma() because
  439. * we'll deadlock on the anon_vma_lock() recursion.
  440. */
  441. anon_vma_unlock(anon_vma);
  442. __put_anon_vma(anon_vma);
  443. anon_vma = NULL;
  444. }
  445. return anon_vma;
  446. out:
  447. rcu_read_unlock();
  448. return anon_vma;
  449. }
  450. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  451. {
  452. anon_vma_unlock(anon_vma);
  453. }
  454. /*
  455. * At what user virtual address is page expected in @vma?
  456. * Returns virtual address or -EFAULT if page's index/offset is not
  457. * within the range mapped the @vma.
  458. */
  459. inline unsigned long
  460. vma_address(struct page *page, struct vm_area_struct *vma)
  461. {
  462. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  463. unsigned long address;
  464. if (unlikely(is_vm_hugetlb_page(vma)))
  465. pgoff = page->index << huge_page_order(page_hstate(page));
  466. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  467. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  468. /* page should be within @vma mapping range */
  469. return -EFAULT;
  470. }
  471. return address;
  472. }
  473. /*
  474. * At what user virtual address is page expected in vma?
  475. * Caller should check the page is actually part of the vma.
  476. */
  477. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  478. {
  479. if (PageAnon(page)) {
  480. struct anon_vma *page__anon_vma = page_anon_vma(page);
  481. /*
  482. * Note: swapoff's unuse_vma() is more efficient with this
  483. * check, and needs it to match anon_vma when KSM is active.
  484. */
  485. if (!vma->anon_vma || !page__anon_vma ||
  486. vma->anon_vma->root != page__anon_vma->root)
  487. return -EFAULT;
  488. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  489. if (!vma->vm_file ||
  490. vma->vm_file->f_mapping != page->mapping)
  491. return -EFAULT;
  492. } else
  493. return -EFAULT;
  494. return vma_address(page, vma);
  495. }
  496. /*
  497. * Check that @page is mapped at @address into @mm.
  498. *
  499. * If @sync is false, page_check_address may perform a racy check to avoid
  500. * the page table lock when the pte is not present (helpful when reclaiming
  501. * highly shared pages).
  502. *
  503. * On success returns with pte mapped and locked.
  504. */
  505. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  506. unsigned long address, spinlock_t **ptlp, int sync)
  507. {
  508. pgd_t *pgd;
  509. pud_t *pud;
  510. pmd_t *pmd;
  511. pte_t *pte;
  512. spinlock_t *ptl;
  513. if (unlikely(PageHuge(page))) {
  514. pte = huge_pte_offset(mm, address);
  515. ptl = &mm->page_table_lock;
  516. goto check;
  517. }
  518. pgd = pgd_offset(mm, address);
  519. if (!pgd_present(*pgd))
  520. return NULL;
  521. pud = pud_offset(pgd, address);
  522. if (!pud_present(*pud))
  523. return NULL;
  524. pmd = pmd_offset(pud, address);
  525. if (!pmd_present(*pmd))
  526. return NULL;
  527. if (pmd_trans_huge(*pmd))
  528. return NULL;
  529. pte = pte_offset_map(pmd, address);
  530. /* Make a quick check before getting the lock */
  531. if (!sync && !pte_present(*pte)) {
  532. pte_unmap(pte);
  533. return NULL;
  534. }
  535. ptl = pte_lockptr(mm, pmd);
  536. check:
  537. spin_lock(ptl);
  538. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  539. *ptlp = ptl;
  540. return pte;
  541. }
  542. pte_unmap_unlock(pte, ptl);
  543. return NULL;
  544. }
  545. /**
  546. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  547. * @page: the page to test
  548. * @vma: the VMA to test
  549. *
  550. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  551. * if the page is not mapped into the page tables of this VMA. Only
  552. * valid for normal file or anonymous VMAs.
  553. */
  554. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  555. {
  556. unsigned long address;
  557. pte_t *pte;
  558. spinlock_t *ptl;
  559. address = vma_address(page, vma);
  560. if (address == -EFAULT) /* out of vma range */
  561. return 0;
  562. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  563. if (!pte) /* the page is not in this mm */
  564. return 0;
  565. pte_unmap_unlock(pte, ptl);
  566. return 1;
  567. }
  568. /*
  569. * Subfunctions of page_referenced: page_referenced_one called
  570. * repeatedly from either page_referenced_anon or page_referenced_file.
  571. */
  572. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  573. unsigned long address, unsigned int *mapcount,
  574. unsigned long *vm_flags)
  575. {
  576. struct mm_struct *mm = vma->vm_mm;
  577. int referenced = 0;
  578. if (unlikely(PageTransHuge(page))) {
  579. pmd_t *pmd;
  580. spin_lock(&mm->page_table_lock);
  581. /*
  582. * rmap might return false positives; we must filter
  583. * these out using page_check_address_pmd().
  584. */
  585. pmd = page_check_address_pmd(page, mm, address,
  586. PAGE_CHECK_ADDRESS_PMD_FLAG);
  587. if (!pmd) {
  588. spin_unlock(&mm->page_table_lock);
  589. goto out;
  590. }
  591. if (vma->vm_flags & VM_LOCKED) {
  592. spin_unlock(&mm->page_table_lock);
  593. *mapcount = 0; /* break early from loop */
  594. *vm_flags |= VM_LOCKED;
  595. goto out;
  596. }
  597. /* go ahead even if the pmd is pmd_trans_splitting() */
  598. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  599. referenced++;
  600. spin_unlock(&mm->page_table_lock);
  601. } else {
  602. pte_t *pte;
  603. spinlock_t *ptl;
  604. /*
  605. * rmap might return false positives; we must filter
  606. * these out using page_check_address().
  607. */
  608. pte = page_check_address(page, mm, address, &ptl, 0);
  609. if (!pte)
  610. goto out;
  611. if (vma->vm_flags & VM_LOCKED) {
  612. pte_unmap_unlock(pte, ptl);
  613. *mapcount = 0; /* break early from loop */
  614. *vm_flags |= VM_LOCKED;
  615. goto out;
  616. }
  617. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  618. /*
  619. * Don't treat a reference through a sequentially read
  620. * mapping as such. If the page has been used in
  621. * another mapping, we will catch it; if this other
  622. * mapping is already gone, the unmap path will have
  623. * set PG_referenced or activated the page.
  624. */
  625. if (likely(!VM_SequentialReadHint(vma)))
  626. referenced++;
  627. }
  628. pte_unmap_unlock(pte, ptl);
  629. }
  630. (*mapcount)--;
  631. if (referenced)
  632. *vm_flags |= vma->vm_flags;
  633. out:
  634. return referenced;
  635. }
  636. static int page_referenced_anon(struct page *page,
  637. struct mem_cgroup *memcg,
  638. unsigned long *vm_flags)
  639. {
  640. unsigned int mapcount;
  641. struct anon_vma *anon_vma;
  642. struct anon_vma_chain *avc;
  643. int referenced = 0;
  644. anon_vma = page_lock_anon_vma(page);
  645. if (!anon_vma)
  646. return referenced;
  647. mapcount = page_mapcount(page);
  648. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  649. struct vm_area_struct *vma = avc->vma;
  650. unsigned long address = vma_address(page, vma);
  651. if (address == -EFAULT)
  652. continue;
  653. /*
  654. * If we are reclaiming on behalf of a cgroup, skip
  655. * counting on behalf of references from different
  656. * cgroups
  657. */
  658. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  659. continue;
  660. referenced += page_referenced_one(page, vma, address,
  661. &mapcount, vm_flags);
  662. if (!mapcount)
  663. break;
  664. }
  665. page_unlock_anon_vma(anon_vma);
  666. return referenced;
  667. }
  668. /**
  669. * page_referenced_file - referenced check for object-based rmap
  670. * @page: the page we're checking references on.
  671. * @memcg: target memory control group
  672. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  673. *
  674. * For an object-based mapped page, find all the places it is mapped and
  675. * check/clear the referenced flag. This is done by following the page->mapping
  676. * pointer, then walking the chain of vmas it holds. It returns the number
  677. * of references it found.
  678. *
  679. * This function is only called from page_referenced for object-based pages.
  680. */
  681. static int page_referenced_file(struct page *page,
  682. struct mem_cgroup *memcg,
  683. unsigned long *vm_flags)
  684. {
  685. unsigned int mapcount;
  686. struct address_space *mapping = page->mapping;
  687. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  688. struct vm_area_struct *vma;
  689. int referenced = 0;
  690. /*
  691. * The caller's checks on page->mapping and !PageAnon have made
  692. * sure that this is a file page: the check for page->mapping
  693. * excludes the case just before it gets set on an anon page.
  694. */
  695. BUG_ON(PageAnon(page));
  696. /*
  697. * The page lock not only makes sure that page->mapping cannot
  698. * suddenly be NULLified by truncation, it makes sure that the
  699. * structure at mapping cannot be freed and reused yet,
  700. * so we can safely take mapping->i_mmap_mutex.
  701. */
  702. BUG_ON(!PageLocked(page));
  703. mutex_lock(&mapping->i_mmap_mutex);
  704. /*
  705. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  706. * is more likely to be accurate if we note it after spinning.
  707. */
  708. mapcount = page_mapcount(page);
  709. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  710. unsigned long address = vma_address(page, vma);
  711. if (address == -EFAULT)
  712. continue;
  713. /*
  714. * If we are reclaiming on behalf of a cgroup, skip
  715. * counting on behalf of references from different
  716. * cgroups
  717. */
  718. if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
  719. continue;
  720. referenced += page_referenced_one(page, vma, address,
  721. &mapcount, vm_flags);
  722. if (!mapcount)
  723. break;
  724. }
  725. mutex_unlock(&mapping->i_mmap_mutex);
  726. return referenced;
  727. }
  728. /**
  729. * page_referenced - test if the page was referenced
  730. * @page: the page to test
  731. * @is_locked: caller holds lock on the page
  732. * @memcg: target memory cgroup
  733. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  734. *
  735. * Quick test_and_clear_referenced for all mappings to a page,
  736. * returns the number of ptes which referenced the page.
  737. */
  738. int page_referenced(struct page *page,
  739. int is_locked,
  740. struct mem_cgroup *memcg,
  741. unsigned long *vm_flags)
  742. {
  743. int referenced = 0;
  744. int we_locked = 0;
  745. *vm_flags = 0;
  746. if (page_mapped(page) && page_rmapping(page)) {
  747. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  748. we_locked = trylock_page(page);
  749. if (!we_locked) {
  750. referenced++;
  751. goto out;
  752. }
  753. }
  754. if (unlikely(PageKsm(page)))
  755. referenced += page_referenced_ksm(page, memcg,
  756. vm_flags);
  757. else if (PageAnon(page))
  758. referenced += page_referenced_anon(page, memcg,
  759. vm_flags);
  760. else if (page->mapping)
  761. referenced += page_referenced_file(page, memcg,
  762. vm_flags);
  763. if (we_locked)
  764. unlock_page(page);
  765. if (page_test_and_clear_young(page_to_pfn(page)))
  766. referenced++;
  767. }
  768. out:
  769. return referenced;
  770. }
  771. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  772. unsigned long address)
  773. {
  774. struct mm_struct *mm = vma->vm_mm;
  775. pte_t *pte;
  776. spinlock_t *ptl;
  777. int ret = 0;
  778. pte = page_check_address(page, mm, address, &ptl, 1);
  779. if (!pte)
  780. goto out;
  781. if (pte_dirty(*pte) || pte_write(*pte)) {
  782. pte_t entry;
  783. flush_cache_page(vma, address, pte_pfn(*pte));
  784. entry = ptep_clear_flush_notify(vma, address, pte);
  785. entry = pte_wrprotect(entry);
  786. entry = pte_mkclean(entry);
  787. set_pte_at(mm, address, pte, entry);
  788. ret = 1;
  789. }
  790. pte_unmap_unlock(pte, ptl);
  791. out:
  792. return ret;
  793. }
  794. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  795. {
  796. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  797. struct vm_area_struct *vma;
  798. int ret = 0;
  799. BUG_ON(PageAnon(page));
  800. mutex_lock(&mapping->i_mmap_mutex);
  801. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  802. if (vma->vm_flags & VM_SHARED) {
  803. unsigned long address = vma_address(page, vma);
  804. if (address == -EFAULT)
  805. continue;
  806. ret += page_mkclean_one(page, vma, address);
  807. }
  808. }
  809. mutex_unlock(&mapping->i_mmap_mutex);
  810. return ret;
  811. }
  812. int page_mkclean(struct page *page)
  813. {
  814. int ret = 0;
  815. BUG_ON(!PageLocked(page));
  816. if (page_mapped(page)) {
  817. struct address_space *mapping = page_mapping(page);
  818. if (mapping) {
  819. ret = page_mkclean_file(mapping, page);
  820. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  821. ret = 1;
  822. }
  823. }
  824. return ret;
  825. }
  826. EXPORT_SYMBOL_GPL(page_mkclean);
  827. /**
  828. * page_move_anon_rmap - move a page to our anon_vma
  829. * @page: the page to move to our anon_vma
  830. * @vma: the vma the page belongs to
  831. * @address: the user virtual address mapped
  832. *
  833. * When a page belongs exclusively to one process after a COW event,
  834. * that page can be moved into the anon_vma that belongs to just that
  835. * process, so the rmap code will not search the parent or sibling
  836. * processes.
  837. */
  838. void page_move_anon_rmap(struct page *page,
  839. struct vm_area_struct *vma, unsigned long address)
  840. {
  841. struct anon_vma *anon_vma = vma->anon_vma;
  842. VM_BUG_ON(!PageLocked(page));
  843. VM_BUG_ON(!anon_vma);
  844. VM_BUG_ON(page->index != linear_page_index(vma, address));
  845. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  846. page->mapping = (struct address_space *) anon_vma;
  847. }
  848. /**
  849. * __page_set_anon_rmap - set up new anonymous rmap
  850. * @page: Page to add to rmap
  851. * @vma: VM area to add page to.
  852. * @address: User virtual address of the mapping
  853. * @exclusive: the page is exclusively owned by the current process
  854. */
  855. static void __page_set_anon_rmap(struct page *page,
  856. struct vm_area_struct *vma, unsigned long address, int exclusive)
  857. {
  858. struct anon_vma *anon_vma = vma->anon_vma;
  859. BUG_ON(!anon_vma);
  860. if (PageAnon(page))
  861. return;
  862. /*
  863. * If the page isn't exclusively mapped into this vma,
  864. * we must use the _oldest_ possible anon_vma for the
  865. * page mapping!
  866. */
  867. if (!exclusive)
  868. anon_vma = anon_vma->root;
  869. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  870. page->mapping = (struct address_space *) anon_vma;
  871. page->index = linear_page_index(vma, address);
  872. }
  873. /**
  874. * __page_check_anon_rmap - sanity check anonymous rmap addition
  875. * @page: the page to add the mapping to
  876. * @vma: the vm area in which the mapping is added
  877. * @address: the user virtual address mapped
  878. */
  879. static void __page_check_anon_rmap(struct page *page,
  880. struct vm_area_struct *vma, unsigned long address)
  881. {
  882. #ifdef CONFIG_DEBUG_VM
  883. /*
  884. * The page's anon-rmap details (mapping and index) are guaranteed to
  885. * be set up correctly at this point.
  886. *
  887. * We have exclusion against page_add_anon_rmap because the caller
  888. * always holds the page locked, except if called from page_dup_rmap,
  889. * in which case the page is already known to be setup.
  890. *
  891. * We have exclusion against page_add_new_anon_rmap because those pages
  892. * are initially only visible via the pagetables, and the pte is locked
  893. * over the call to page_add_new_anon_rmap.
  894. */
  895. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  896. BUG_ON(page->index != linear_page_index(vma, address));
  897. #endif
  898. }
  899. /**
  900. * page_add_anon_rmap - add pte mapping to an anonymous page
  901. * @page: the page to add the mapping to
  902. * @vma: the vm area in which the mapping is added
  903. * @address: the user virtual address mapped
  904. *
  905. * The caller needs to hold the pte lock, and the page must be locked in
  906. * the anon_vma case: to serialize mapping,index checking after setting,
  907. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  908. * (but PageKsm is never downgraded to PageAnon).
  909. */
  910. void page_add_anon_rmap(struct page *page,
  911. struct vm_area_struct *vma, unsigned long address)
  912. {
  913. do_page_add_anon_rmap(page, vma, address, 0);
  914. }
  915. /*
  916. * Special version of the above for do_swap_page, which often runs
  917. * into pages that are exclusively owned by the current process.
  918. * Everybody else should continue to use page_add_anon_rmap above.
  919. */
  920. void do_page_add_anon_rmap(struct page *page,
  921. struct vm_area_struct *vma, unsigned long address, int exclusive)
  922. {
  923. int first = atomic_inc_and_test(&page->_mapcount);
  924. if (first) {
  925. if (!PageTransHuge(page))
  926. __inc_zone_page_state(page, NR_ANON_PAGES);
  927. else
  928. __inc_zone_page_state(page,
  929. NR_ANON_TRANSPARENT_HUGEPAGES);
  930. }
  931. if (unlikely(PageKsm(page)))
  932. return;
  933. VM_BUG_ON(!PageLocked(page));
  934. /* address might be in next vma when migration races vma_adjust */
  935. if (first)
  936. __page_set_anon_rmap(page, vma, address, exclusive);
  937. else
  938. __page_check_anon_rmap(page, vma, address);
  939. }
  940. /**
  941. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  942. * @page: the page to add the mapping to
  943. * @vma: the vm area in which the mapping is added
  944. * @address: the user virtual address mapped
  945. *
  946. * Same as page_add_anon_rmap but must only be called on *new* pages.
  947. * This means the inc-and-test can be bypassed.
  948. * Page does not have to be locked.
  949. */
  950. void page_add_new_anon_rmap(struct page *page,
  951. struct vm_area_struct *vma, unsigned long address)
  952. {
  953. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  954. SetPageSwapBacked(page);
  955. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  956. if (!PageTransHuge(page))
  957. __inc_zone_page_state(page, NR_ANON_PAGES);
  958. else
  959. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  960. __page_set_anon_rmap(page, vma, address, 1);
  961. if (page_evictable(page, vma))
  962. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  963. else
  964. add_page_to_unevictable_list(page);
  965. }
  966. /**
  967. * page_add_file_rmap - add pte mapping to a file page
  968. * @page: the page to add the mapping to
  969. *
  970. * The caller needs to hold the pte lock.
  971. */
  972. void page_add_file_rmap(struct page *page)
  973. {
  974. bool locked;
  975. unsigned long flags;
  976. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  977. if (atomic_inc_and_test(&page->_mapcount)) {
  978. __inc_zone_page_state(page, NR_FILE_MAPPED);
  979. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  980. }
  981. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  982. }
  983. /**
  984. * page_remove_rmap - take down pte mapping from a page
  985. * @page: page to remove mapping from
  986. *
  987. * The caller needs to hold the pte lock.
  988. */
  989. void page_remove_rmap(struct page *page)
  990. {
  991. bool anon = PageAnon(page);
  992. bool locked;
  993. unsigned long flags;
  994. /*
  995. * The anon case has no mem_cgroup page_stat to update; but may
  996. * uncharge_page() below, where the lock ordering can deadlock if
  997. * we hold the lock against page_stat move: so avoid it on anon.
  998. */
  999. if (!anon)
  1000. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  1001. /* page still mapped by someone else? */
  1002. if (!atomic_add_negative(-1, &page->_mapcount))
  1003. goto out;
  1004. /*
  1005. * Now that the last pte has gone, s390 must transfer dirty
  1006. * flag from storage key to struct page. We can usually skip
  1007. * this if the page is anon, so about to be freed; but perhaps
  1008. * not if it's in swapcache - there might be another pte slot
  1009. * containing the swap entry, but page not yet written to swap.
  1010. */
  1011. if ((!anon || PageSwapCache(page)) &&
  1012. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1013. set_page_dirty(page);
  1014. /*
  1015. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1016. * and not charged by memcg for now.
  1017. */
  1018. if (unlikely(PageHuge(page)))
  1019. goto out;
  1020. if (anon) {
  1021. mem_cgroup_uncharge_page(page);
  1022. if (!PageTransHuge(page))
  1023. __dec_zone_page_state(page, NR_ANON_PAGES);
  1024. else
  1025. __dec_zone_page_state(page,
  1026. NR_ANON_TRANSPARENT_HUGEPAGES);
  1027. } else {
  1028. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1029. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1030. }
  1031. /*
  1032. * It would be tidy to reset the PageAnon mapping here,
  1033. * but that might overwrite a racing page_add_anon_rmap
  1034. * which increments mapcount after us but sets mapping
  1035. * before us: so leave the reset to free_hot_cold_page,
  1036. * and remember that it's only reliable while mapped.
  1037. * Leaving it set also helps swapoff to reinstate ptes
  1038. * faster for those pages still in swapcache.
  1039. */
  1040. out:
  1041. if (!anon)
  1042. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1043. }
  1044. /*
  1045. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1046. * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
  1047. */
  1048. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1049. unsigned long address, enum ttu_flags flags)
  1050. {
  1051. struct mm_struct *mm = vma->vm_mm;
  1052. pte_t *pte;
  1053. pte_t pteval;
  1054. spinlock_t *ptl;
  1055. int ret = SWAP_AGAIN;
  1056. pte = page_check_address(page, mm, address, &ptl, 0);
  1057. if (!pte)
  1058. goto out;
  1059. /*
  1060. * If the page is mlock()d, we cannot swap it out.
  1061. * If it's recently referenced (perhaps page_referenced
  1062. * skipped over this mm) then we should reactivate it.
  1063. */
  1064. if (!(flags & TTU_IGNORE_MLOCK)) {
  1065. if (vma->vm_flags & VM_LOCKED)
  1066. goto out_mlock;
  1067. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1068. goto out_unmap;
  1069. }
  1070. if (!(flags & TTU_IGNORE_ACCESS)) {
  1071. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1072. ret = SWAP_FAIL;
  1073. goto out_unmap;
  1074. }
  1075. }
  1076. /* Nuke the page table entry. */
  1077. flush_cache_page(vma, address, page_to_pfn(page));
  1078. pteval = ptep_clear_flush_notify(vma, address, pte);
  1079. /* Move the dirty bit to the physical page now the pte is gone. */
  1080. if (pte_dirty(pteval))
  1081. set_page_dirty(page);
  1082. /* Update high watermark before we lower rss */
  1083. update_hiwater_rss(mm);
  1084. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1085. if (PageAnon(page))
  1086. dec_mm_counter(mm, MM_ANONPAGES);
  1087. else
  1088. dec_mm_counter(mm, MM_FILEPAGES);
  1089. set_pte_at(mm, address, pte,
  1090. swp_entry_to_pte(make_hwpoison_entry(page)));
  1091. } else if (PageAnon(page)) {
  1092. swp_entry_t entry = { .val = page_private(page) };
  1093. if (PageSwapCache(page)) {
  1094. /*
  1095. * Store the swap location in the pte.
  1096. * See handle_pte_fault() ...
  1097. */
  1098. if (swap_duplicate(entry) < 0) {
  1099. set_pte_at(mm, address, pte, pteval);
  1100. ret = SWAP_FAIL;
  1101. goto out_unmap;
  1102. }
  1103. if (list_empty(&mm->mmlist)) {
  1104. spin_lock(&mmlist_lock);
  1105. if (list_empty(&mm->mmlist))
  1106. list_add(&mm->mmlist, &init_mm.mmlist);
  1107. spin_unlock(&mmlist_lock);
  1108. }
  1109. dec_mm_counter(mm, MM_ANONPAGES);
  1110. inc_mm_counter(mm, MM_SWAPENTS);
  1111. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1112. /*
  1113. * Store the pfn of the page in a special migration
  1114. * pte. do_swap_page() will wait until the migration
  1115. * pte is removed and then restart fault handling.
  1116. */
  1117. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1118. entry = make_migration_entry(page, pte_write(pteval));
  1119. }
  1120. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1121. BUG_ON(pte_file(*pte));
  1122. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1123. (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1124. /* Establish migration entry for a file page */
  1125. swp_entry_t entry;
  1126. entry = make_migration_entry(page, pte_write(pteval));
  1127. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1128. } else
  1129. dec_mm_counter(mm, MM_FILEPAGES);
  1130. page_remove_rmap(page);
  1131. page_cache_release(page);
  1132. out_unmap:
  1133. pte_unmap_unlock(pte, ptl);
  1134. out:
  1135. return ret;
  1136. out_mlock:
  1137. pte_unmap_unlock(pte, ptl);
  1138. /*
  1139. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1140. * unstable result and race. Plus, We can't wait here because
  1141. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1142. * if trylock failed, the page remain in evictable lru and later
  1143. * vmscan could retry to move the page to unevictable lru if the
  1144. * page is actually mlocked.
  1145. */
  1146. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1147. if (vma->vm_flags & VM_LOCKED) {
  1148. mlock_vma_page(page);
  1149. ret = SWAP_MLOCK;
  1150. }
  1151. up_read(&vma->vm_mm->mmap_sem);
  1152. }
  1153. return ret;
  1154. }
  1155. /*
  1156. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1157. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1158. * Consequently, given a particular page and its ->index, we cannot locate the
  1159. * ptes which are mapping that page without an exhaustive linear search.
  1160. *
  1161. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1162. * maps the file to which the target page belongs. The ->vm_private_data field
  1163. * holds the current cursor into that scan. Successive searches will circulate
  1164. * around the vma's virtual address space.
  1165. *
  1166. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1167. * more scanning pressure is placed against them as well. Eventually pages
  1168. * will become fully unmapped and are eligible for eviction.
  1169. *
  1170. * For very sparsely populated VMAs this is a little inefficient - chances are
  1171. * there there won't be many ptes located within the scan cluster. In this case
  1172. * maybe we could scan further - to the end of the pte page, perhaps.
  1173. *
  1174. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1175. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1176. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1177. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1178. */
  1179. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1180. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1181. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1182. struct vm_area_struct *vma, struct page *check_page)
  1183. {
  1184. struct mm_struct *mm = vma->vm_mm;
  1185. pgd_t *pgd;
  1186. pud_t *pud;
  1187. pmd_t *pmd;
  1188. pte_t *pte;
  1189. pte_t pteval;
  1190. spinlock_t *ptl;
  1191. struct page *page;
  1192. unsigned long address;
  1193. unsigned long end;
  1194. int ret = SWAP_AGAIN;
  1195. int locked_vma = 0;
  1196. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1197. end = address + CLUSTER_SIZE;
  1198. if (address < vma->vm_start)
  1199. address = vma->vm_start;
  1200. if (end > vma->vm_end)
  1201. end = vma->vm_end;
  1202. pgd = pgd_offset(mm, address);
  1203. if (!pgd_present(*pgd))
  1204. return ret;
  1205. pud = pud_offset(pgd, address);
  1206. if (!pud_present(*pud))
  1207. return ret;
  1208. pmd = pmd_offset(pud, address);
  1209. if (!pmd_present(*pmd))
  1210. return ret;
  1211. /*
  1212. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1213. * keep the sem while scanning the cluster for mlocking pages.
  1214. */
  1215. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1216. locked_vma = (vma->vm_flags & VM_LOCKED);
  1217. if (!locked_vma)
  1218. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1219. }
  1220. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1221. /* Update high watermark before we lower rss */
  1222. update_hiwater_rss(mm);
  1223. for (; address < end; pte++, address += PAGE_SIZE) {
  1224. if (!pte_present(*pte))
  1225. continue;
  1226. page = vm_normal_page(vma, address, *pte);
  1227. BUG_ON(!page || PageAnon(page));
  1228. if (locked_vma) {
  1229. mlock_vma_page(page); /* no-op if already mlocked */
  1230. if (page == check_page)
  1231. ret = SWAP_MLOCK;
  1232. continue; /* don't unmap */
  1233. }
  1234. if (ptep_clear_flush_young_notify(vma, address, pte))
  1235. continue;
  1236. /* Nuke the page table entry. */
  1237. flush_cache_page(vma, address, pte_pfn(*pte));
  1238. pteval = ptep_clear_flush_notify(vma, address, pte);
  1239. /* If nonlinear, store the file page offset in the pte. */
  1240. if (page->index != linear_page_index(vma, address))
  1241. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1242. /* Move the dirty bit to the physical page now the pte is gone. */
  1243. if (pte_dirty(pteval))
  1244. set_page_dirty(page);
  1245. page_remove_rmap(page);
  1246. page_cache_release(page);
  1247. dec_mm_counter(mm, MM_FILEPAGES);
  1248. (*mapcount)--;
  1249. }
  1250. pte_unmap_unlock(pte - 1, ptl);
  1251. if (locked_vma)
  1252. up_read(&vma->vm_mm->mmap_sem);
  1253. return ret;
  1254. }
  1255. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1256. {
  1257. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1258. if (!maybe_stack)
  1259. return false;
  1260. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1261. VM_STACK_INCOMPLETE_SETUP)
  1262. return true;
  1263. return false;
  1264. }
  1265. /**
  1266. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1267. * rmap method
  1268. * @page: the page to unmap/unlock
  1269. * @flags: action and flags
  1270. *
  1271. * Find all the mappings of a page using the mapping pointer and the vma chains
  1272. * contained in the anon_vma struct it points to.
  1273. *
  1274. * This function is only called from try_to_unmap/try_to_munlock for
  1275. * anonymous pages.
  1276. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1277. * where the page was found will be held for write. So, we won't recheck
  1278. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1279. * 'LOCKED.
  1280. */
  1281. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1282. {
  1283. struct anon_vma *anon_vma;
  1284. struct anon_vma_chain *avc;
  1285. int ret = SWAP_AGAIN;
  1286. anon_vma = page_lock_anon_vma(page);
  1287. if (!anon_vma)
  1288. return ret;
  1289. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1290. struct vm_area_struct *vma = avc->vma;
  1291. unsigned long address;
  1292. /*
  1293. * During exec, a temporary VMA is setup and later moved.
  1294. * The VMA is moved under the anon_vma lock but not the
  1295. * page tables leading to a race where migration cannot
  1296. * find the migration ptes. Rather than increasing the
  1297. * locking requirements of exec(), migration skips
  1298. * temporary VMAs until after exec() completes.
  1299. */
  1300. if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
  1301. is_vma_temporary_stack(vma))
  1302. continue;
  1303. address = vma_address(page, vma);
  1304. if (address == -EFAULT)
  1305. continue;
  1306. ret = try_to_unmap_one(page, vma, address, flags);
  1307. if (ret != SWAP_AGAIN || !page_mapped(page))
  1308. break;
  1309. }
  1310. page_unlock_anon_vma(anon_vma);
  1311. return ret;
  1312. }
  1313. /**
  1314. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1315. * @page: the page to unmap/unlock
  1316. * @flags: action and flags
  1317. *
  1318. * Find all the mappings of a page using the mapping pointer and the vma chains
  1319. * contained in the address_space struct it points to.
  1320. *
  1321. * This function is only called from try_to_unmap/try_to_munlock for
  1322. * object-based pages.
  1323. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1324. * where the page was found will be held for write. So, we won't recheck
  1325. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1326. * 'LOCKED.
  1327. */
  1328. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1329. {
  1330. struct address_space *mapping = page->mapping;
  1331. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1332. struct vm_area_struct *vma;
  1333. int ret = SWAP_AGAIN;
  1334. unsigned long cursor;
  1335. unsigned long max_nl_cursor = 0;
  1336. unsigned long max_nl_size = 0;
  1337. unsigned int mapcount;
  1338. mutex_lock(&mapping->i_mmap_mutex);
  1339. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1340. unsigned long address = vma_address(page, vma);
  1341. if (address == -EFAULT)
  1342. continue;
  1343. ret = try_to_unmap_one(page, vma, address, flags);
  1344. if (ret != SWAP_AGAIN || !page_mapped(page))
  1345. goto out;
  1346. }
  1347. if (list_empty(&mapping->i_mmap_nonlinear))
  1348. goto out;
  1349. /*
  1350. * We don't bother to try to find the munlocked page in nonlinears.
  1351. * It's costly. Instead, later, page reclaim logic may call
  1352. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1353. */
  1354. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1355. goto out;
  1356. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1357. shared.nonlinear) {
  1358. cursor = (unsigned long) vma->vm_private_data;
  1359. if (cursor > max_nl_cursor)
  1360. max_nl_cursor = cursor;
  1361. cursor = vma->vm_end - vma->vm_start;
  1362. if (cursor > max_nl_size)
  1363. max_nl_size = cursor;
  1364. }
  1365. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1366. ret = SWAP_FAIL;
  1367. goto out;
  1368. }
  1369. /*
  1370. * We don't try to search for this page in the nonlinear vmas,
  1371. * and page_referenced wouldn't have found it anyway. Instead
  1372. * just walk the nonlinear vmas trying to age and unmap some.
  1373. * The mapcount of the page we came in with is irrelevant,
  1374. * but even so use it as a guide to how hard we should try?
  1375. */
  1376. mapcount = page_mapcount(page);
  1377. if (!mapcount)
  1378. goto out;
  1379. cond_resched();
  1380. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1381. if (max_nl_cursor == 0)
  1382. max_nl_cursor = CLUSTER_SIZE;
  1383. do {
  1384. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1385. shared.nonlinear) {
  1386. cursor = (unsigned long) vma->vm_private_data;
  1387. while ( cursor < max_nl_cursor &&
  1388. cursor < vma->vm_end - vma->vm_start) {
  1389. if (try_to_unmap_cluster(cursor, &mapcount,
  1390. vma, page) == SWAP_MLOCK)
  1391. ret = SWAP_MLOCK;
  1392. cursor += CLUSTER_SIZE;
  1393. vma->vm_private_data = (void *) cursor;
  1394. if ((int)mapcount <= 0)
  1395. goto out;
  1396. }
  1397. vma->vm_private_data = (void *) max_nl_cursor;
  1398. }
  1399. cond_resched();
  1400. max_nl_cursor += CLUSTER_SIZE;
  1401. } while (max_nl_cursor <= max_nl_size);
  1402. /*
  1403. * Don't loop forever (perhaps all the remaining pages are
  1404. * in locked vmas). Reset cursor on all unreserved nonlinear
  1405. * vmas, now forgetting on which ones it had fallen behind.
  1406. */
  1407. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1408. vma->vm_private_data = NULL;
  1409. out:
  1410. mutex_unlock(&mapping->i_mmap_mutex);
  1411. return ret;
  1412. }
  1413. /**
  1414. * try_to_unmap - try to remove all page table mappings to a page
  1415. * @page: the page to get unmapped
  1416. * @flags: action and flags
  1417. *
  1418. * Tries to remove all the page table entries which are mapping this
  1419. * page, used in the pageout path. Caller must hold the page lock.
  1420. * Return values are:
  1421. *
  1422. * SWAP_SUCCESS - we succeeded in removing all mappings
  1423. * SWAP_AGAIN - we missed a mapping, try again later
  1424. * SWAP_FAIL - the page is unswappable
  1425. * SWAP_MLOCK - page is mlocked.
  1426. */
  1427. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1428. {
  1429. int ret;
  1430. BUG_ON(!PageLocked(page));
  1431. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1432. if (unlikely(PageKsm(page)))
  1433. ret = try_to_unmap_ksm(page, flags);
  1434. else if (PageAnon(page))
  1435. ret = try_to_unmap_anon(page, flags);
  1436. else
  1437. ret = try_to_unmap_file(page, flags);
  1438. if (ret != SWAP_MLOCK && !page_mapped(page))
  1439. ret = SWAP_SUCCESS;
  1440. return ret;
  1441. }
  1442. /**
  1443. * try_to_munlock - try to munlock a page
  1444. * @page: the page to be munlocked
  1445. *
  1446. * Called from munlock code. Checks all of the VMAs mapping the page
  1447. * to make sure nobody else has this page mlocked. The page will be
  1448. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1449. *
  1450. * Return values are:
  1451. *
  1452. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1453. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1454. * SWAP_FAIL - page cannot be located at present
  1455. * SWAP_MLOCK - page is now mlocked.
  1456. */
  1457. int try_to_munlock(struct page *page)
  1458. {
  1459. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1460. if (unlikely(PageKsm(page)))
  1461. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1462. else if (PageAnon(page))
  1463. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1464. else
  1465. return try_to_unmap_file(page, TTU_MUNLOCK);
  1466. }
  1467. void __put_anon_vma(struct anon_vma *anon_vma)
  1468. {
  1469. struct anon_vma *root = anon_vma->root;
  1470. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1471. anon_vma_free(root);
  1472. anon_vma_free(anon_vma);
  1473. }
  1474. #ifdef CONFIG_MIGRATION
  1475. /*
  1476. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1477. * Called by migrate.c to remove migration ptes, but might be used more later.
  1478. */
  1479. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1480. struct vm_area_struct *, unsigned long, void *), void *arg)
  1481. {
  1482. struct anon_vma *anon_vma;
  1483. struct anon_vma_chain *avc;
  1484. int ret = SWAP_AGAIN;
  1485. /*
  1486. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1487. * because that depends on page_mapped(); but not all its usages
  1488. * are holding mmap_sem. Users without mmap_sem are required to
  1489. * take a reference count to prevent the anon_vma disappearing
  1490. */
  1491. anon_vma = page_anon_vma(page);
  1492. if (!anon_vma)
  1493. return ret;
  1494. anon_vma_lock(anon_vma);
  1495. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1496. struct vm_area_struct *vma = avc->vma;
  1497. unsigned long address = vma_address(page, vma);
  1498. if (address == -EFAULT)
  1499. continue;
  1500. ret = rmap_one(page, vma, address, arg);
  1501. if (ret != SWAP_AGAIN)
  1502. break;
  1503. }
  1504. anon_vma_unlock(anon_vma);
  1505. return ret;
  1506. }
  1507. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1508. struct vm_area_struct *, unsigned long, void *), void *arg)
  1509. {
  1510. struct address_space *mapping = page->mapping;
  1511. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1512. struct vm_area_struct *vma;
  1513. int ret = SWAP_AGAIN;
  1514. if (!mapping)
  1515. return ret;
  1516. mutex_lock(&mapping->i_mmap_mutex);
  1517. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1518. unsigned long address = vma_address(page, vma);
  1519. if (address == -EFAULT)
  1520. continue;
  1521. ret = rmap_one(page, vma, address, arg);
  1522. if (ret != SWAP_AGAIN)
  1523. break;
  1524. }
  1525. /*
  1526. * No nonlinear handling: being always shared, nonlinear vmas
  1527. * never contain migration ptes. Decide what to do about this
  1528. * limitation to linear when we need rmap_walk() on nonlinear.
  1529. */
  1530. mutex_unlock(&mapping->i_mmap_mutex);
  1531. return ret;
  1532. }
  1533. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1534. struct vm_area_struct *, unsigned long, void *), void *arg)
  1535. {
  1536. VM_BUG_ON(!PageLocked(page));
  1537. if (unlikely(PageKsm(page)))
  1538. return rmap_walk_ksm(page, rmap_one, arg);
  1539. else if (PageAnon(page))
  1540. return rmap_walk_anon(page, rmap_one, arg);
  1541. else
  1542. return rmap_walk_file(page, rmap_one, arg);
  1543. }
  1544. #endif /* CONFIG_MIGRATION */
  1545. #ifdef CONFIG_HUGETLB_PAGE
  1546. /*
  1547. * The following three functions are for anonymous (private mapped) hugepages.
  1548. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1549. * and no lru code, because we handle hugepages differently from common pages.
  1550. */
  1551. static void __hugepage_set_anon_rmap(struct page *page,
  1552. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1553. {
  1554. struct anon_vma *anon_vma = vma->anon_vma;
  1555. BUG_ON(!anon_vma);
  1556. if (PageAnon(page))
  1557. return;
  1558. if (!exclusive)
  1559. anon_vma = anon_vma->root;
  1560. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1561. page->mapping = (struct address_space *) anon_vma;
  1562. page->index = linear_page_index(vma, address);
  1563. }
  1564. void hugepage_add_anon_rmap(struct page *page,
  1565. struct vm_area_struct *vma, unsigned long address)
  1566. {
  1567. struct anon_vma *anon_vma = vma->anon_vma;
  1568. int first;
  1569. BUG_ON(!PageLocked(page));
  1570. BUG_ON(!anon_vma);
  1571. /* address might be in next vma when migration races vma_adjust */
  1572. first = atomic_inc_and_test(&page->_mapcount);
  1573. if (first)
  1574. __hugepage_set_anon_rmap(page, vma, address, 0);
  1575. }
  1576. void hugepage_add_new_anon_rmap(struct page *page,
  1577. struct vm_area_struct *vma, unsigned long address)
  1578. {
  1579. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1580. atomic_set(&page->_mapcount, 0);
  1581. __hugepage_set_anon_rmap(page, vma, address, 1);
  1582. }
  1583. #endif /* CONFIG_HUGETLB_PAGE */