vmx.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. static int bypass_guest_pf = 1;
  33. module_param(bypass_guest_pf, bool, 0);
  34. struct vmcs {
  35. u32 revision_id;
  36. u32 abort;
  37. char data[0];
  38. };
  39. struct vcpu_vmx {
  40. struct kvm_vcpu vcpu;
  41. int launched;
  42. u8 fail;
  43. u32 idt_vectoring_info;
  44. struct kvm_msr_entry *guest_msrs;
  45. struct kvm_msr_entry *host_msrs;
  46. int nmsrs;
  47. int save_nmsrs;
  48. int msr_offset_efer;
  49. #ifdef CONFIG_X86_64
  50. int msr_offset_kernel_gs_base;
  51. #endif
  52. struct vmcs *vmcs;
  53. struct {
  54. int loaded;
  55. u16 fs_sel, gs_sel, ldt_sel;
  56. int gs_ldt_reload_needed;
  57. int fs_reload_needed;
  58. int guest_efer_loaded;
  59. } host_state;
  60. struct {
  61. struct {
  62. bool pending;
  63. u8 vector;
  64. unsigned rip;
  65. } irq;
  66. } rmode;
  67. };
  68. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  69. {
  70. return container_of(vcpu, struct vcpu_vmx, vcpu);
  71. }
  72. static int init_rmode_tss(struct kvm *kvm);
  73. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  74. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  75. static struct page *vmx_io_bitmap_a;
  76. static struct page *vmx_io_bitmap_b;
  77. static struct vmcs_config {
  78. int size;
  79. int order;
  80. u32 revision_id;
  81. u32 pin_based_exec_ctrl;
  82. u32 cpu_based_exec_ctrl;
  83. u32 cpu_based_2nd_exec_ctrl;
  84. u32 vmexit_ctrl;
  85. u32 vmentry_ctrl;
  86. } vmcs_config;
  87. #define VMX_SEGMENT_FIELD(seg) \
  88. [VCPU_SREG_##seg] = { \
  89. .selector = GUEST_##seg##_SELECTOR, \
  90. .base = GUEST_##seg##_BASE, \
  91. .limit = GUEST_##seg##_LIMIT, \
  92. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  93. }
  94. static struct kvm_vmx_segment_field {
  95. unsigned selector;
  96. unsigned base;
  97. unsigned limit;
  98. unsigned ar_bytes;
  99. } kvm_vmx_segment_fields[] = {
  100. VMX_SEGMENT_FIELD(CS),
  101. VMX_SEGMENT_FIELD(DS),
  102. VMX_SEGMENT_FIELD(ES),
  103. VMX_SEGMENT_FIELD(FS),
  104. VMX_SEGMENT_FIELD(GS),
  105. VMX_SEGMENT_FIELD(SS),
  106. VMX_SEGMENT_FIELD(TR),
  107. VMX_SEGMENT_FIELD(LDTR),
  108. };
  109. /*
  110. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  111. * away by decrementing the array size.
  112. */
  113. static const u32 vmx_msr_index[] = {
  114. #ifdef CONFIG_X86_64
  115. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  116. #endif
  117. MSR_EFER, MSR_K6_STAR,
  118. };
  119. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  120. static void load_msrs(struct kvm_msr_entry *e, int n)
  121. {
  122. int i;
  123. for (i = 0; i < n; ++i)
  124. wrmsrl(e[i].index, e[i].data);
  125. }
  126. static void save_msrs(struct kvm_msr_entry *e, int n)
  127. {
  128. int i;
  129. for (i = 0; i < n; ++i)
  130. rdmsrl(e[i].index, e[i].data);
  131. }
  132. static inline int is_page_fault(u32 intr_info)
  133. {
  134. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  135. INTR_INFO_VALID_MASK)) ==
  136. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  137. }
  138. static inline int is_no_device(u32 intr_info)
  139. {
  140. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  141. INTR_INFO_VALID_MASK)) ==
  142. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  143. }
  144. static inline int is_invalid_opcode(u32 intr_info)
  145. {
  146. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  147. INTR_INFO_VALID_MASK)) ==
  148. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  149. }
  150. static inline int is_external_interrupt(u32 intr_info)
  151. {
  152. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  153. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  154. }
  155. static inline int cpu_has_vmx_tpr_shadow(void)
  156. {
  157. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  158. }
  159. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  160. {
  161. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  162. }
  163. static inline int cpu_has_secondary_exec_ctrls(void)
  164. {
  165. return (vmcs_config.cpu_based_exec_ctrl &
  166. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  167. }
  168. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  169. {
  170. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  171. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  172. }
  173. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  174. {
  175. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  176. (irqchip_in_kernel(kvm)));
  177. }
  178. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  179. {
  180. int i;
  181. for (i = 0; i < vmx->nmsrs; ++i)
  182. if (vmx->guest_msrs[i].index == msr)
  183. return i;
  184. return -1;
  185. }
  186. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  187. {
  188. int i;
  189. i = __find_msr_index(vmx, msr);
  190. if (i >= 0)
  191. return &vmx->guest_msrs[i];
  192. return NULL;
  193. }
  194. static void vmcs_clear(struct vmcs *vmcs)
  195. {
  196. u64 phys_addr = __pa(vmcs);
  197. u8 error;
  198. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  199. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  200. : "cc", "memory");
  201. if (error)
  202. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  203. vmcs, phys_addr);
  204. }
  205. static void __vcpu_clear(void *arg)
  206. {
  207. struct vcpu_vmx *vmx = arg;
  208. int cpu = raw_smp_processor_id();
  209. if (vmx->vcpu.cpu == cpu)
  210. vmcs_clear(vmx->vmcs);
  211. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  212. per_cpu(current_vmcs, cpu) = NULL;
  213. rdtscll(vmx->vcpu.arch.host_tsc);
  214. }
  215. static void vcpu_clear(struct vcpu_vmx *vmx)
  216. {
  217. if (vmx->vcpu.cpu == -1)
  218. return;
  219. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  220. vmx->launched = 0;
  221. }
  222. static unsigned long vmcs_readl(unsigned long field)
  223. {
  224. unsigned long value;
  225. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  226. : "=a"(value) : "d"(field) : "cc");
  227. return value;
  228. }
  229. static u16 vmcs_read16(unsigned long field)
  230. {
  231. return vmcs_readl(field);
  232. }
  233. static u32 vmcs_read32(unsigned long field)
  234. {
  235. return vmcs_readl(field);
  236. }
  237. static u64 vmcs_read64(unsigned long field)
  238. {
  239. #ifdef CONFIG_X86_64
  240. return vmcs_readl(field);
  241. #else
  242. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  243. #endif
  244. }
  245. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  246. {
  247. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  248. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  249. dump_stack();
  250. }
  251. static void vmcs_writel(unsigned long field, unsigned long value)
  252. {
  253. u8 error;
  254. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  255. : "=q"(error) : "a"(value), "d"(field) : "cc");
  256. if (unlikely(error))
  257. vmwrite_error(field, value);
  258. }
  259. static void vmcs_write16(unsigned long field, u16 value)
  260. {
  261. vmcs_writel(field, value);
  262. }
  263. static void vmcs_write32(unsigned long field, u32 value)
  264. {
  265. vmcs_writel(field, value);
  266. }
  267. static void vmcs_write64(unsigned long field, u64 value)
  268. {
  269. #ifdef CONFIG_X86_64
  270. vmcs_writel(field, value);
  271. #else
  272. vmcs_writel(field, value);
  273. asm volatile ("");
  274. vmcs_writel(field+1, value >> 32);
  275. #endif
  276. }
  277. static void vmcs_clear_bits(unsigned long field, u32 mask)
  278. {
  279. vmcs_writel(field, vmcs_readl(field) & ~mask);
  280. }
  281. static void vmcs_set_bits(unsigned long field, u32 mask)
  282. {
  283. vmcs_writel(field, vmcs_readl(field) | mask);
  284. }
  285. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  286. {
  287. u32 eb;
  288. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  289. if (!vcpu->fpu_active)
  290. eb |= 1u << NM_VECTOR;
  291. if (vcpu->guest_debug.enabled)
  292. eb |= 1u << 1;
  293. if (vcpu->arch.rmode.active)
  294. eb = ~0;
  295. vmcs_write32(EXCEPTION_BITMAP, eb);
  296. }
  297. static void reload_tss(void)
  298. {
  299. #ifndef CONFIG_X86_64
  300. /*
  301. * VT restores TR but not its size. Useless.
  302. */
  303. struct descriptor_table gdt;
  304. struct segment_descriptor *descs;
  305. get_gdt(&gdt);
  306. descs = (void *)gdt.base;
  307. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  308. load_TR_desc();
  309. #endif
  310. }
  311. static void load_transition_efer(struct vcpu_vmx *vmx)
  312. {
  313. int efer_offset = vmx->msr_offset_efer;
  314. u64 host_efer = vmx->host_msrs[efer_offset].data;
  315. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  316. u64 ignore_bits;
  317. if (efer_offset < 0)
  318. return;
  319. /*
  320. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  321. * outside long mode
  322. */
  323. ignore_bits = EFER_NX | EFER_SCE;
  324. #ifdef CONFIG_X86_64
  325. ignore_bits |= EFER_LMA | EFER_LME;
  326. /* SCE is meaningful only in long mode on Intel */
  327. if (guest_efer & EFER_LMA)
  328. ignore_bits &= ~(u64)EFER_SCE;
  329. #endif
  330. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  331. return;
  332. vmx->host_state.guest_efer_loaded = 1;
  333. guest_efer &= ~ignore_bits;
  334. guest_efer |= host_efer & ignore_bits;
  335. wrmsrl(MSR_EFER, guest_efer);
  336. vmx->vcpu.stat.efer_reload++;
  337. }
  338. static void reload_host_efer(struct vcpu_vmx *vmx)
  339. {
  340. if (vmx->host_state.guest_efer_loaded) {
  341. vmx->host_state.guest_efer_loaded = 0;
  342. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  343. }
  344. }
  345. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  346. {
  347. struct vcpu_vmx *vmx = to_vmx(vcpu);
  348. if (vmx->host_state.loaded)
  349. return;
  350. vmx->host_state.loaded = 1;
  351. /*
  352. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  353. * allow segment selectors with cpl > 0 or ti == 1.
  354. */
  355. vmx->host_state.ldt_sel = read_ldt();
  356. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  357. vmx->host_state.fs_sel = read_fs();
  358. if (!(vmx->host_state.fs_sel & 7)) {
  359. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  360. vmx->host_state.fs_reload_needed = 0;
  361. } else {
  362. vmcs_write16(HOST_FS_SELECTOR, 0);
  363. vmx->host_state.fs_reload_needed = 1;
  364. }
  365. vmx->host_state.gs_sel = read_gs();
  366. if (!(vmx->host_state.gs_sel & 7))
  367. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  368. else {
  369. vmcs_write16(HOST_GS_SELECTOR, 0);
  370. vmx->host_state.gs_ldt_reload_needed = 1;
  371. }
  372. #ifdef CONFIG_X86_64
  373. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  374. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  375. #else
  376. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  377. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  378. #endif
  379. #ifdef CONFIG_X86_64
  380. if (is_long_mode(&vmx->vcpu))
  381. save_msrs(vmx->host_msrs +
  382. vmx->msr_offset_kernel_gs_base, 1);
  383. #endif
  384. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  385. load_transition_efer(vmx);
  386. }
  387. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  388. {
  389. unsigned long flags;
  390. if (!vmx->host_state.loaded)
  391. return;
  392. ++vmx->vcpu.stat.host_state_reload;
  393. vmx->host_state.loaded = 0;
  394. if (vmx->host_state.fs_reload_needed)
  395. load_fs(vmx->host_state.fs_sel);
  396. if (vmx->host_state.gs_ldt_reload_needed) {
  397. load_ldt(vmx->host_state.ldt_sel);
  398. /*
  399. * If we have to reload gs, we must take care to
  400. * preserve our gs base.
  401. */
  402. local_irq_save(flags);
  403. load_gs(vmx->host_state.gs_sel);
  404. #ifdef CONFIG_X86_64
  405. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  406. #endif
  407. local_irq_restore(flags);
  408. }
  409. reload_tss();
  410. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  411. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  412. reload_host_efer(vmx);
  413. }
  414. /*
  415. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  416. * vcpu mutex is already taken.
  417. */
  418. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  419. {
  420. struct vcpu_vmx *vmx = to_vmx(vcpu);
  421. u64 phys_addr = __pa(vmx->vmcs);
  422. u64 tsc_this, delta;
  423. if (vcpu->cpu != cpu) {
  424. vcpu_clear(vmx);
  425. kvm_migrate_apic_timer(vcpu);
  426. }
  427. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  428. u8 error;
  429. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  430. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  431. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  432. : "cc");
  433. if (error)
  434. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  435. vmx->vmcs, phys_addr);
  436. }
  437. if (vcpu->cpu != cpu) {
  438. struct descriptor_table dt;
  439. unsigned long sysenter_esp;
  440. vcpu->cpu = cpu;
  441. /*
  442. * Linux uses per-cpu TSS and GDT, so set these when switching
  443. * processors.
  444. */
  445. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  446. get_gdt(&dt);
  447. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  448. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  449. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  450. /*
  451. * Make sure the time stamp counter is monotonous.
  452. */
  453. rdtscll(tsc_this);
  454. delta = vcpu->arch.host_tsc - tsc_this;
  455. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  456. }
  457. }
  458. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  459. {
  460. vmx_load_host_state(to_vmx(vcpu));
  461. }
  462. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  463. {
  464. if (vcpu->fpu_active)
  465. return;
  466. vcpu->fpu_active = 1;
  467. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  468. if (vcpu->arch.cr0 & X86_CR0_TS)
  469. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  470. update_exception_bitmap(vcpu);
  471. }
  472. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  473. {
  474. if (!vcpu->fpu_active)
  475. return;
  476. vcpu->fpu_active = 0;
  477. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  478. update_exception_bitmap(vcpu);
  479. }
  480. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  481. {
  482. vcpu_clear(to_vmx(vcpu));
  483. }
  484. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  485. {
  486. return vmcs_readl(GUEST_RFLAGS);
  487. }
  488. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  489. {
  490. if (vcpu->arch.rmode.active)
  491. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  492. vmcs_writel(GUEST_RFLAGS, rflags);
  493. }
  494. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  495. {
  496. unsigned long rip;
  497. u32 interruptibility;
  498. rip = vmcs_readl(GUEST_RIP);
  499. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  500. vmcs_writel(GUEST_RIP, rip);
  501. /*
  502. * We emulated an instruction, so temporary interrupt blocking
  503. * should be removed, if set.
  504. */
  505. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  506. if (interruptibility & 3)
  507. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  508. interruptibility & ~3);
  509. vcpu->arch.interrupt_window_open = 1;
  510. }
  511. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  512. bool has_error_code, u32 error_code)
  513. {
  514. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  515. nr | INTR_TYPE_EXCEPTION
  516. | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
  517. | INTR_INFO_VALID_MASK);
  518. if (has_error_code)
  519. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  520. }
  521. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  522. {
  523. struct vcpu_vmx *vmx = to_vmx(vcpu);
  524. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  525. }
  526. /*
  527. * Swap MSR entry in host/guest MSR entry array.
  528. */
  529. #ifdef CONFIG_X86_64
  530. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  531. {
  532. struct kvm_msr_entry tmp;
  533. tmp = vmx->guest_msrs[to];
  534. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  535. vmx->guest_msrs[from] = tmp;
  536. tmp = vmx->host_msrs[to];
  537. vmx->host_msrs[to] = vmx->host_msrs[from];
  538. vmx->host_msrs[from] = tmp;
  539. }
  540. #endif
  541. /*
  542. * Set up the vmcs to automatically save and restore system
  543. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  544. * mode, as fiddling with msrs is very expensive.
  545. */
  546. static void setup_msrs(struct vcpu_vmx *vmx)
  547. {
  548. int save_nmsrs;
  549. save_nmsrs = 0;
  550. #ifdef CONFIG_X86_64
  551. if (is_long_mode(&vmx->vcpu)) {
  552. int index;
  553. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  554. if (index >= 0)
  555. move_msr_up(vmx, index, save_nmsrs++);
  556. index = __find_msr_index(vmx, MSR_LSTAR);
  557. if (index >= 0)
  558. move_msr_up(vmx, index, save_nmsrs++);
  559. index = __find_msr_index(vmx, MSR_CSTAR);
  560. if (index >= 0)
  561. move_msr_up(vmx, index, save_nmsrs++);
  562. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  563. if (index >= 0)
  564. move_msr_up(vmx, index, save_nmsrs++);
  565. /*
  566. * MSR_K6_STAR is only needed on long mode guests, and only
  567. * if efer.sce is enabled.
  568. */
  569. index = __find_msr_index(vmx, MSR_K6_STAR);
  570. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  571. move_msr_up(vmx, index, save_nmsrs++);
  572. }
  573. #endif
  574. vmx->save_nmsrs = save_nmsrs;
  575. #ifdef CONFIG_X86_64
  576. vmx->msr_offset_kernel_gs_base =
  577. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  578. #endif
  579. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  580. }
  581. /*
  582. * reads and returns guest's timestamp counter "register"
  583. * guest_tsc = host_tsc + tsc_offset -- 21.3
  584. */
  585. static u64 guest_read_tsc(void)
  586. {
  587. u64 host_tsc, tsc_offset;
  588. rdtscll(host_tsc);
  589. tsc_offset = vmcs_read64(TSC_OFFSET);
  590. return host_tsc + tsc_offset;
  591. }
  592. /*
  593. * writes 'guest_tsc' into guest's timestamp counter "register"
  594. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  595. */
  596. static void guest_write_tsc(u64 guest_tsc)
  597. {
  598. u64 host_tsc;
  599. rdtscll(host_tsc);
  600. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  601. }
  602. /*
  603. * Reads an msr value (of 'msr_index') into 'pdata'.
  604. * Returns 0 on success, non-0 otherwise.
  605. * Assumes vcpu_load() was already called.
  606. */
  607. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  608. {
  609. u64 data;
  610. struct kvm_msr_entry *msr;
  611. if (!pdata) {
  612. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  613. return -EINVAL;
  614. }
  615. switch (msr_index) {
  616. #ifdef CONFIG_X86_64
  617. case MSR_FS_BASE:
  618. data = vmcs_readl(GUEST_FS_BASE);
  619. break;
  620. case MSR_GS_BASE:
  621. data = vmcs_readl(GUEST_GS_BASE);
  622. break;
  623. case MSR_EFER:
  624. return kvm_get_msr_common(vcpu, msr_index, pdata);
  625. #endif
  626. case MSR_IA32_TIME_STAMP_COUNTER:
  627. data = guest_read_tsc();
  628. break;
  629. case MSR_IA32_SYSENTER_CS:
  630. data = vmcs_read32(GUEST_SYSENTER_CS);
  631. break;
  632. case MSR_IA32_SYSENTER_EIP:
  633. data = vmcs_readl(GUEST_SYSENTER_EIP);
  634. break;
  635. case MSR_IA32_SYSENTER_ESP:
  636. data = vmcs_readl(GUEST_SYSENTER_ESP);
  637. break;
  638. default:
  639. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  640. if (msr) {
  641. data = msr->data;
  642. break;
  643. }
  644. return kvm_get_msr_common(vcpu, msr_index, pdata);
  645. }
  646. *pdata = data;
  647. return 0;
  648. }
  649. /*
  650. * Writes msr value into into the appropriate "register".
  651. * Returns 0 on success, non-0 otherwise.
  652. * Assumes vcpu_load() was already called.
  653. */
  654. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  655. {
  656. struct vcpu_vmx *vmx = to_vmx(vcpu);
  657. struct kvm_msr_entry *msr;
  658. int ret = 0;
  659. switch (msr_index) {
  660. #ifdef CONFIG_X86_64
  661. case MSR_EFER:
  662. ret = kvm_set_msr_common(vcpu, msr_index, data);
  663. if (vmx->host_state.loaded) {
  664. reload_host_efer(vmx);
  665. load_transition_efer(vmx);
  666. }
  667. break;
  668. case MSR_FS_BASE:
  669. vmcs_writel(GUEST_FS_BASE, data);
  670. break;
  671. case MSR_GS_BASE:
  672. vmcs_writel(GUEST_GS_BASE, data);
  673. break;
  674. #endif
  675. case MSR_IA32_SYSENTER_CS:
  676. vmcs_write32(GUEST_SYSENTER_CS, data);
  677. break;
  678. case MSR_IA32_SYSENTER_EIP:
  679. vmcs_writel(GUEST_SYSENTER_EIP, data);
  680. break;
  681. case MSR_IA32_SYSENTER_ESP:
  682. vmcs_writel(GUEST_SYSENTER_ESP, data);
  683. break;
  684. case MSR_IA32_TIME_STAMP_COUNTER:
  685. guest_write_tsc(data);
  686. break;
  687. default:
  688. msr = find_msr_entry(vmx, msr_index);
  689. if (msr) {
  690. msr->data = data;
  691. if (vmx->host_state.loaded)
  692. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  693. break;
  694. }
  695. ret = kvm_set_msr_common(vcpu, msr_index, data);
  696. }
  697. return ret;
  698. }
  699. /*
  700. * Sync the rsp and rip registers into the vcpu structure. This allows
  701. * registers to be accessed by indexing vcpu->arch.regs.
  702. */
  703. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  704. {
  705. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  706. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  707. }
  708. /*
  709. * Syncs rsp and rip back into the vmcs. Should be called after possible
  710. * modification.
  711. */
  712. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  713. {
  714. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  715. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  716. }
  717. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  718. {
  719. unsigned long dr7 = 0x400;
  720. int old_singlestep;
  721. old_singlestep = vcpu->guest_debug.singlestep;
  722. vcpu->guest_debug.enabled = dbg->enabled;
  723. if (vcpu->guest_debug.enabled) {
  724. int i;
  725. dr7 |= 0x200; /* exact */
  726. for (i = 0; i < 4; ++i) {
  727. if (!dbg->breakpoints[i].enabled)
  728. continue;
  729. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  730. dr7 |= 2 << (i*2); /* global enable */
  731. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  732. }
  733. vcpu->guest_debug.singlestep = dbg->singlestep;
  734. } else
  735. vcpu->guest_debug.singlestep = 0;
  736. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  737. unsigned long flags;
  738. flags = vmcs_readl(GUEST_RFLAGS);
  739. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  740. vmcs_writel(GUEST_RFLAGS, flags);
  741. }
  742. update_exception_bitmap(vcpu);
  743. vmcs_writel(GUEST_DR7, dr7);
  744. return 0;
  745. }
  746. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  747. {
  748. struct vcpu_vmx *vmx = to_vmx(vcpu);
  749. u32 idtv_info_field;
  750. idtv_info_field = vmx->idt_vectoring_info;
  751. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  752. if (is_external_interrupt(idtv_info_field))
  753. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  754. else
  755. printk(KERN_DEBUG "pending exception: not handled yet\n");
  756. }
  757. return -1;
  758. }
  759. static __init int cpu_has_kvm_support(void)
  760. {
  761. unsigned long ecx = cpuid_ecx(1);
  762. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  763. }
  764. static __init int vmx_disabled_by_bios(void)
  765. {
  766. u64 msr;
  767. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  768. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  769. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  770. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  771. /* locked but not enabled */
  772. }
  773. static void hardware_enable(void *garbage)
  774. {
  775. int cpu = raw_smp_processor_id();
  776. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  777. u64 old;
  778. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  779. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  780. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  781. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  782. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  783. /* enable and lock */
  784. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  785. MSR_IA32_FEATURE_CONTROL_LOCKED |
  786. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  787. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  788. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  789. : "memory", "cc");
  790. }
  791. static void hardware_disable(void *garbage)
  792. {
  793. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  794. }
  795. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  796. u32 msr, u32 *result)
  797. {
  798. u32 vmx_msr_low, vmx_msr_high;
  799. u32 ctl = ctl_min | ctl_opt;
  800. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  801. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  802. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  803. /* Ensure minimum (required) set of control bits are supported. */
  804. if (ctl_min & ~ctl)
  805. return -EIO;
  806. *result = ctl;
  807. return 0;
  808. }
  809. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  810. {
  811. u32 vmx_msr_low, vmx_msr_high;
  812. u32 min, opt;
  813. u32 _pin_based_exec_control = 0;
  814. u32 _cpu_based_exec_control = 0;
  815. u32 _cpu_based_2nd_exec_control = 0;
  816. u32 _vmexit_control = 0;
  817. u32 _vmentry_control = 0;
  818. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  819. opt = 0;
  820. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  821. &_pin_based_exec_control) < 0)
  822. return -EIO;
  823. min = CPU_BASED_HLT_EXITING |
  824. #ifdef CONFIG_X86_64
  825. CPU_BASED_CR8_LOAD_EXITING |
  826. CPU_BASED_CR8_STORE_EXITING |
  827. #endif
  828. CPU_BASED_USE_IO_BITMAPS |
  829. CPU_BASED_MOV_DR_EXITING |
  830. CPU_BASED_USE_TSC_OFFSETING;
  831. opt = CPU_BASED_TPR_SHADOW |
  832. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  833. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  834. &_cpu_based_exec_control) < 0)
  835. return -EIO;
  836. #ifdef CONFIG_X86_64
  837. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  838. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  839. ~CPU_BASED_CR8_STORE_EXITING;
  840. #endif
  841. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  842. min = 0;
  843. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  844. SECONDARY_EXEC_WBINVD_EXITING;
  845. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  846. &_cpu_based_2nd_exec_control) < 0)
  847. return -EIO;
  848. }
  849. #ifndef CONFIG_X86_64
  850. if (!(_cpu_based_2nd_exec_control &
  851. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  852. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  853. #endif
  854. min = 0;
  855. #ifdef CONFIG_X86_64
  856. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  857. #endif
  858. opt = 0;
  859. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  860. &_vmexit_control) < 0)
  861. return -EIO;
  862. min = opt = 0;
  863. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  864. &_vmentry_control) < 0)
  865. return -EIO;
  866. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  867. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  868. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  869. return -EIO;
  870. #ifdef CONFIG_X86_64
  871. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  872. if (vmx_msr_high & (1u<<16))
  873. return -EIO;
  874. #endif
  875. /* Require Write-Back (WB) memory type for VMCS accesses. */
  876. if (((vmx_msr_high >> 18) & 15) != 6)
  877. return -EIO;
  878. vmcs_conf->size = vmx_msr_high & 0x1fff;
  879. vmcs_conf->order = get_order(vmcs_config.size);
  880. vmcs_conf->revision_id = vmx_msr_low;
  881. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  882. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  883. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  884. vmcs_conf->vmexit_ctrl = _vmexit_control;
  885. vmcs_conf->vmentry_ctrl = _vmentry_control;
  886. return 0;
  887. }
  888. static struct vmcs *alloc_vmcs_cpu(int cpu)
  889. {
  890. int node = cpu_to_node(cpu);
  891. struct page *pages;
  892. struct vmcs *vmcs;
  893. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  894. if (!pages)
  895. return NULL;
  896. vmcs = page_address(pages);
  897. memset(vmcs, 0, vmcs_config.size);
  898. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  899. return vmcs;
  900. }
  901. static struct vmcs *alloc_vmcs(void)
  902. {
  903. return alloc_vmcs_cpu(raw_smp_processor_id());
  904. }
  905. static void free_vmcs(struct vmcs *vmcs)
  906. {
  907. free_pages((unsigned long)vmcs, vmcs_config.order);
  908. }
  909. static void free_kvm_area(void)
  910. {
  911. int cpu;
  912. for_each_online_cpu(cpu)
  913. free_vmcs(per_cpu(vmxarea, cpu));
  914. }
  915. static __init int alloc_kvm_area(void)
  916. {
  917. int cpu;
  918. for_each_online_cpu(cpu) {
  919. struct vmcs *vmcs;
  920. vmcs = alloc_vmcs_cpu(cpu);
  921. if (!vmcs) {
  922. free_kvm_area();
  923. return -ENOMEM;
  924. }
  925. per_cpu(vmxarea, cpu) = vmcs;
  926. }
  927. return 0;
  928. }
  929. static __init int hardware_setup(void)
  930. {
  931. if (setup_vmcs_config(&vmcs_config) < 0)
  932. return -EIO;
  933. return alloc_kvm_area();
  934. }
  935. static __exit void hardware_unsetup(void)
  936. {
  937. free_kvm_area();
  938. }
  939. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  940. {
  941. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  942. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  943. vmcs_write16(sf->selector, save->selector);
  944. vmcs_writel(sf->base, save->base);
  945. vmcs_write32(sf->limit, save->limit);
  946. vmcs_write32(sf->ar_bytes, save->ar);
  947. } else {
  948. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  949. << AR_DPL_SHIFT;
  950. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  951. }
  952. }
  953. static void enter_pmode(struct kvm_vcpu *vcpu)
  954. {
  955. unsigned long flags;
  956. vcpu->arch.rmode.active = 0;
  957. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  958. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  959. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  960. flags = vmcs_readl(GUEST_RFLAGS);
  961. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  962. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  963. vmcs_writel(GUEST_RFLAGS, flags);
  964. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  965. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  966. update_exception_bitmap(vcpu);
  967. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  968. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  969. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  970. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  971. vmcs_write16(GUEST_SS_SELECTOR, 0);
  972. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  973. vmcs_write16(GUEST_CS_SELECTOR,
  974. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  975. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  976. }
  977. static gva_t rmode_tss_base(struct kvm *kvm)
  978. {
  979. if (!kvm->arch.tss_addr) {
  980. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  981. kvm->memslots[0].npages - 3;
  982. return base_gfn << PAGE_SHIFT;
  983. }
  984. return kvm->arch.tss_addr;
  985. }
  986. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  987. {
  988. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  989. save->selector = vmcs_read16(sf->selector);
  990. save->base = vmcs_readl(sf->base);
  991. save->limit = vmcs_read32(sf->limit);
  992. save->ar = vmcs_read32(sf->ar_bytes);
  993. vmcs_write16(sf->selector, save->base >> 4);
  994. vmcs_write32(sf->base, save->base & 0xfffff);
  995. vmcs_write32(sf->limit, 0xffff);
  996. vmcs_write32(sf->ar_bytes, 0xf3);
  997. }
  998. static void enter_rmode(struct kvm_vcpu *vcpu)
  999. {
  1000. unsigned long flags;
  1001. vcpu->arch.rmode.active = 1;
  1002. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1003. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1004. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1005. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1006. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1007. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1008. flags = vmcs_readl(GUEST_RFLAGS);
  1009. vcpu->arch.rmode.save_iopl
  1010. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1011. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1012. vmcs_writel(GUEST_RFLAGS, flags);
  1013. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1014. update_exception_bitmap(vcpu);
  1015. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1016. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1017. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1018. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1019. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1020. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1021. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1022. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1023. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1024. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1025. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1026. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1027. kvm_mmu_reset_context(vcpu);
  1028. init_rmode_tss(vcpu->kvm);
  1029. }
  1030. #ifdef CONFIG_X86_64
  1031. static void enter_lmode(struct kvm_vcpu *vcpu)
  1032. {
  1033. u32 guest_tr_ar;
  1034. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1035. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1036. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1037. __FUNCTION__);
  1038. vmcs_write32(GUEST_TR_AR_BYTES,
  1039. (guest_tr_ar & ~AR_TYPE_MASK)
  1040. | AR_TYPE_BUSY_64_TSS);
  1041. }
  1042. vcpu->arch.shadow_efer |= EFER_LMA;
  1043. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1044. vmcs_write32(VM_ENTRY_CONTROLS,
  1045. vmcs_read32(VM_ENTRY_CONTROLS)
  1046. | VM_ENTRY_IA32E_MODE);
  1047. }
  1048. static void exit_lmode(struct kvm_vcpu *vcpu)
  1049. {
  1050. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1051. vmcs_write32(VM_ENTRY_CONTROLS,
  1052. vmcs_read32(VM_ENTRY_CONTROLS)
  1053. & ~VM_ENTRY_IA32E_MODE);
  1054. }
  1055. #endif
  1056. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1057. {
  1058. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1059. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1060. }
  1061. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1062. {
  1063. vmx_fpu_deactivate(vcpu);
  1064. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1065. enter_pmode(vcpu);
  1066. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1067. enter_rmode(vcpu);
  1068. #ifdef CONFIG_X86_64
  1069. if (vcpu->arch.shadow_efer & EFER_LME) {
  1070. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1071. enter_lmode(vcpu);
  1072. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1073. exit_lmode(vcpu);
  1074. }
  1075. #endif
  1076. vmcs_writel(CR0_READ_SHADOW, cr0);
  1077. vmcs_writel(GUEST_CR0,
  1078. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1079. vcpu->arch.cr0 = cr0;
  1080. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1081. vmx_fpu_activate(vcpu);
  1082. }
  1083. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1084. {
  1085. vmcs_writel(GUEST_CR3, cr3);
  1086. if (vcpu->arch.cr0 & X86_CR0_PE)
  1087. vmx_fpu_deactivate(vcpu);
  1088. }
  1089. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1090. {
  1091. vmcs_writel(CR4_READ_SHADOW, cr4);
  1092. vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
  1093. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1094. vcpu->arch.cr4 = cr4;
  1095. }
  1096. #ifdef CONFIG_X86_64
  1097. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1098. {
  1099. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1100. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1101. vcpu->arch.shadow_efer = efer;
  1102. if (efer & EFER_LMA) {
  1103. vmcs_write32(VM_ENTRY_CONTROLS,
  1104. vmcs_read32(VM_ENTRY_CONTROLS) |
  1105. VM_ENTRY_IA32E_MODE);
  1106. msr->data = efer;
  1107. } else {
  1108. vmcs_write32(VM_ENTRY_CONTROLS,
  1109. vmcs_read32(VM_ENTRY_CONTROLS) &
  1110. ~VM_ENTRY_IA32E_MODE);
  1111. msr->data = efer & ~EFER_LME;
  1112. }
  1113. setup_msrs(vmx);
  1114. }
  1115. #endif
  1116. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1117. {
  1118. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1119. return vmcs_readl(sf->base);
  1120. }
  1121. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1122. struct kvm_segment *var, int seg)
  1123. {
  1124. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1125. u32 ar;
  1126. var->base = vmcs_readl(sf->base);
  1127. var->limit = vmcs_read32(sf->limit);
  1128. var->selector = vmcs_read16(sf->selector);
  1129. ar = vmcs_read32(sf->ar_bytes);
  1130. if (ar & AR_UNUSABLE_MASK)
  1131. ar = 0;
  1132. var->type = ar & 15;
  1133. var->s = (ar >> 4) & 1;
  1134. var->dpl = (ar >> 5) & 3;
  1135. var->present = (ar >> 7) & 1;
  1136. var->avl = (ar >> 12) & 1;
  1137. var->l = (ar >> 13) & 1;
  1138. var->db = (ar >> 14) & 1;
  1139. var->g = (ar >> 15) & 1;
  1140. var->unusable = (ar >> 16) & 1;
  1141. }
  1142. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1143. {
  1144. u32 ar;
  1145. if (var->unusable)
  1146. ar = 1 << 16;
  1147. else {
  1148. ar = var->type & 15;
  1149. ar |= (var->s & 1) << 4;
  1150. ar |= (var->dpl & 3) << 5;
  1151. ar |= (var->present & 1) << 7;
  1152. ar |= (var->avl & 1) << 12;
  1153. ar |= (var->l & 1) << 13;
  1154. ar |= (var->db & 1) << 14;
  1155. ar |= (var->g & 1) << 15;
  1156. }
  1157. if (ar == 0) /* a 0 value means unusable */
  1158. ar = AR_UNUSABLE_MASK;
  1159. return ar;
  1160. }
  1161. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1162. struct kvm_segment *var, int seg)
  1163. {
  1164. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1165. u32 ar;
  1166. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1167. vcpu->arch.rmode.tr.selector = var->selector;
  1168. vcpu->arch.rmode.tr.base = var->base;
  1169. vcpu->arch.rmode.tr.limit = var->limit;
  1170. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1171. return;
  1172. }
  1173. vmcs_writel(sf->base, var->base);
  1174. vmcs_write32(sf->limit, var->limit);
  1175. vmcs_write16(sf->selector, var->selector);
  1176. if (vcpu->arch.rmode.active && var->s) {
  1177. /*
  1178. * Hack real-mode segments into vm86 compatibility.
  1179. */
  1180. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1181. vmcs_writel(sf->base, 0xf0000);
  1182. ar = 0xf3;
  1183. } else
  1184. ar = vmx_segment_access_rights(var);
  1185. vmcs_write32(sf->ar_bytes, ar);
  1186. }
  1187. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1188. {
  1189. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1190. *db = (ar >> 14) & 1;
  1191. *l = (ar >> 13) & 1;
  1192. }
  1193. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1194. {
  1195. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1196. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1197. }
  1198. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1199. {
  1200. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1201. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1202. }
  1203. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1204. {
  1205. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1206. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1207. }
  1208. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1209. {
  1210. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1211. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1212. }
  1213. static int init_rmode_tss(struct kvm *kvm)
  1214. {
  1215. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1216. u16 data = 0;
  1217. int ret = 0;
  1218. int r;
  1219. down_read(&current->mm->mmap_sem);
  1220. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1221. if (r < 0)
  1222. goto out;
  1223. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1224. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1225. if (r < 0)
  1226. goto out;
  1227. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1228. if (r < 0)
  1229. goto out;
  1230. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1231. if (r < 0)
  1232. goto out;
  1233. data = ~0;
  1234. r = kvm_write_guest_page(kvm, fn, &data,
  1235. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1236. sizeof(u8));
  1237. if (r < 0)
  1238. goto out;
  1239. ret = 1;
  1240. out:
  1241. up_read(&current->mm->mmap_sem);
  1242. return ret;
  1243. }
  1244. static void seg_setup(int seg)
  1245. {
  1246. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1247. vmcs_write16(sf->selector, 0);
  1248. vmcs_writel(sf->base, 0);
  1249. vmcs_write32(sf->limit, 0xffff);
  1250. vmcs_write32(sf->ar_bytes, 0x93);
  1251. }
  1252. static int alloc_apic_access_page(struct kvm *kvm)
  1253. {
  1254. struct kvm_userspace_memory_region kvm_userspace_mem;
  1255. int r = 0;
  1256. mutex_lock(&kvm->lock);
  1257. down_write(&current->mm->mmap_sem);
  1258. if (kvm->arch.apic_access_page)
  1259. goto out;
  1260. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1261. kvm_userspace_mem.flags = 0;
  1262. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1263. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1264. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1265. if (r)
  1266. goto out;
  1267. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1268. out:
  1269. up_write(&current->mm->mmap_sem);
  1270. mutex_unlock(&kvm->lock);
  1271. return r;
  1272. }
  1273. /*
  1274. * Sets up the vmcs for emulated real mode.
  1275. */
  1276. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1277. {
  1278. u32 host_sysenter_cs;
  1279. u32 junk;
  1280. unsigned long a;
  1281. struct descriptor_table dt;
  1282. int i;
  1283. unsigned long kvm_vmx_return;
  1284. u32 exec_control;
  1285. /* I/O */
  1286. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1287. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1288. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1289. /* Control */
  1290. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1291. vmcs_config.pin_based_exec_ctrl);
  1292. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1293. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1294. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1295. #ifdef CONFIG_X86_64
  1296. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1297. CPU_BASED_CR8_LOAD_EXITING;
  1298. #endif
  1299. }
  1300. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1301. if (cpu_has_secondary_exec_ctrls()) {
  1302. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1303. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1304. exec_control &=
  1305. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1306. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1307. }
  1308. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1309. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1310. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1311. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1312. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1313. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1314. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1315. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1316. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1317. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1318. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1319. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1320. #ifdef CONFIG_X86_64
  1321. rdmsrl(MSR_FS_BASE, a);
  1322. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1323. rdmsrl(MSR_GS_BASE, a);
  1324. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1325. #else
  1326. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1327. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1328. #endif
  1329. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1330. get_idt(&dt);
  1331. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1332. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1333. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1334. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1335. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1336. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1337. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1338. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1339. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1340. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1341. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1342. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1343. for (i = 0; i < NR_VMX_MSR; ++i) {
  1344. u32 index = vmx_msr_index[i];
  1345. u32 data_low, data_high;
  1346. u64 data;
  1347. int j = vmx->nmsrs;
  1348. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1349. continue;
  1350. if (wrmsr_safe(index, data_low, data_high) < 0)
  1351. continue;
  1352. data = data_low | ((u64)data_high << 32);
  1353. vmx->host_msrs[j].index = index;
  1354. vmx->host_msrs[j].reserved = 0;
  1355. vmx->host_msrs[j].data = data;
  1356. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1357. ++vmx->nmsrs;
  1358. }
  1359. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1360. /* 22.2.1, 20.8.1 */
  1361. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1362. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1363. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1364. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1365. if (alloc_apic_access_page(vmx->vcpu.kvm) != 0)
  1366. return -ENOMEM;
  1367. return 0;
  1368. }
  1369. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1370. {
  1371. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1372. u64 msr;
  1373. int ret;
  1374. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1375. ret = -ENOMEM;
  1376. goto out;
  1377. }
  1378. vmx->vcpu.arch.rmode.active = 0;
  1379. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1380. set_cr8(&vmx->vcpu, 0);
  1381. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1382. if (vmx->vcpu.vcpu_id == 0)
  1383. msr |= MSR_IA32_APICBASE_BSP;
  1384. kvm_set_apic_base(&vmx->vcpu, msr);
  1385. fx_init(&vmx->vcpu);
  1386. /*
  1387. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1388. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1389. */
  1390. if (vmx->vcpu.vcpu_id == 0) {
  1391. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1392. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1393. } else {
  1394. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1395. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1396. }
  1397. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1398. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1399. seg_setup(VCPU_SREG_DS);
  1400. seg_setup(VCPU_SREG_ES);
  1401. seg_setup(VCPU_SREG_FS);
  1402. seg_setup(VCPU_SREG_GS);
  1403. seg_setup(VCPU_SREG_SS);
  1404. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1405. vmcs_writel(GUEST_TR_BASE, 0);
  1406. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1407. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1408. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1409. vmcs_writel(GUEST_LDTR_BASE, 0);
  1410. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1411. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1412. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1413. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1414. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1415. vmcs_writel(GUEST_RFLAGS, 0x02);
  1416. if (vmx->vcpu.vcpu_id == 0)
  1417. vmcs_writel(GUEST_RIP, 0xfff0);
  1418. else
  1419. vmcs_writel(GUEST_RIP, 0);
  1420. vmcs_writel(GUEST_RSP, 0);
  1421. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1422. vmcs_writel(GUEST_DR7, 0x400);
  1423. vmcs_writel(GUEST_GDTR_BASE, 0);
  1424. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1425. vmcs_writel(GUEST_IDTR_BASE, 0);
  1426. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1427. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1428. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1429. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1430. guest_write_tsc(0);
  1431. /* Special registers */
  1432. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1433. setup_msrs(vmx);
  1434. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1435. if (cpu_has_vmx_tpr_shadow()) {
  1436. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1437. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1438. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1439. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1440. vmcs_write32(TPR_THRESHOLD, 0);
  1441. }
  1442. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1443. vmcs_write64(APIC_ACCESS_ADDR,
  1444. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1445. vmx->vcpu.arch.cr0 = 0x60000010;
  1446. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1447. vmx_set_cr4(&vmx->vcpu, 0);
  1448. #ifdef CONFIG_X86_64
  1449. vmx_set_efer(&vmx->vcpu, 0);
  1450. #endif
  1451. vmx_fpu_activate(&vmx->vcpu);
  1452. update_exception_bitmap(&vmx->vcpu);
  1453. return 0;
  1454. out:
  1455. return ret;
  1456. }
  1457. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1458. {
  1459. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1460. if (vcpu->arch.rmode.active) {
  1461. vmx->rmode.irq.pending = true;
  1462. vmx->rmode.irq.vector = irq;
  1463. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1464. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1465. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1466. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1467. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1468. return;
  1469. }
  1470. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1471. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1472. }
  1473. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1474. {
  1475. int word_index = __ffs(vcpu->arch.irq_summary);
  1476. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1477. int irq = word_index * BITS_PER_LONG + bit_index;
  1478. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1479. if (!vcpu->arch.irq_pending[word_index])
  1480. clear_bit(word_index, &vcpu->arch.irq_summary);
  1481. vmx_inject_irq(vcpu, irq);
  1482. }
  1483. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1484. struct kvm_run *kvm_run)
  1485. {
  1486. u32 cpu_based_vm_exec_control;
  1487. vcpu->arch.interrupt_window_open =
  1488. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1489. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1490. if (vcpu->arch.interrupt_window_open &&
  1491. vcpu->arch.irq_summary &&
  1492. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1493. /*
  1494. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1495. */
  1496. kvm_do_inject_irq(vcpu);
  1497. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1498. if (!vcpu->arch.interrupt_window_open &&
  1499. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1500. /*
  1501. * Interrupts blocked. Wait for unblock.
  1502. */
  1503. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1504. else
  1505. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1506. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1507. }
  1508. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1509. {
  1510. int ret;
  1511. struct kvm_userspace_memory_region tss_mem = {
  1512. .slot = 8,
  1513. .guest_phys_addr = addr,
  1514. .memory_size = PAGE_SIZE * 3,
  1515. .flags = 0,
  1516. };
  1517. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1518. if (ret)
  1519. return ret;
  1520. kvm->arch.tss_addr = addr;
  1521. return 0;
  1522. }
  1523. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1524. {
  1525. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1526. set_debugreg(dbg->bp[0], 0);
  1527. set_debugreg(dbg->bp[1], 1);
  1528. set_debugreg(dbg->bp[2], 2);
  1529. set_debugreg(dbg->bp[3], 3);
  1530. if (dbg->singlestep) {
  1531. unsigned long flags;
  1532. flags = vmcs_readl(GUEST_RFLAGS);
  1533. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1534. vmcs_writel(GUEST_RFLAGS, flags);
  1535. }
  1536. }
  1537. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1538. int vec, u32 err_code)
  1539. {
  1540. if (!vcpu->arch.rmode.active)
  1541. return 0;
  1542. /*
  1543. * Instruction with address size override prefix opcode 0x67
  1544. * Cause the #SS fault with 0 error code in VM86 mode.
  1545. */
  1546. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1547. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1548. return 1;
  1549. return 0;
  1550. }
  1551. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1552. {
  1553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1554. u32 intr_info, error_code;
  1555. unsigned long cr2, rip;
  1556. u32 vect_info;
  1557. enum emulation_result er;
  1558. vect_info = vmx->idt_vectoring_info;
  1559. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1560. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1561. !is_page_fault(intr_info))
  1562. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1563. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1564. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1565. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1566. set_bit(irq, vcpu->arch.irq_pending);
  1567. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1568. }
  1569. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1570. return 1; /* already handled by vmx_vcpu_run() */
  1571. if (is_no_device(intr_info)) {
  1572. vmx_fpu_activate(vcpu);
  1573. return 1;
  1574. }
  1575. if (is_invalid_opcode(intr_info)) {
  1576. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1577. if (er != EMULATE_DONE)
  1578. kvm_queue_exception(vcpu, UD_VECTOR);
  1579. return 1;
  1580. }
  1581. error_code = 0;
  1582. rip = vmcs_readl(GUEST_RIP);
  1583. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1584. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1585. if (is_page_fault(intr_info)) {
  1586. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1587. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1588. }
  1589. if (vcpu->arch.rmode.active &&
  1590. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1591. error_code)) {
  1592. if (vcpu->arch.halt_request) {
  1593. vcpu->arch.halt_request = 0;
  1594. return kvm_emulate_halt(vcpu);
  1595. }
  1596. return 1;
  1597. }
  1598. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1599. (INTR_TYPE_EXCEPTION | 1)) {
  1600. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1601. return 0;
  1602. }
  1603. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1604. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1605. kvm_run->ex.error_code = error_code;
  1606. return 0;
  1607. }
  1608. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1609. struct kvm_run *kvm_run)
  1610. {
  1611. ++vcpu->stat.irq_exits;
  1612. return 1;
  1613. }
  1614. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1615. {
  1616. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1617. return 0;
  1618. }
  1619. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1620. {
  1621. unsigned long exit_qualification;
  1622. int size, down, in, string, rep;
  1623. unsigned port;
  1624. ++vcpu->stat.io_exits;
  1625. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1626. string = (exit_qualification & 16) != 0;
  1627. if (string) {
  1628. if (emulate_instruction(vcpu,
  1629. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1630. return 0;
  1631. return 1;
  1632. }
  1633. size = (exit_qualification & 7) + 1;
  1634. in = (exit_qualification & 8) != 0;
  1635. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1636. rep = (exit_qualification & 32) != 0;
  1637. port = exit_qualification >> 16;
  1638. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1639. }
  1640. static void
  1641. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1642. {
  1643. /*
  1644. * Patch in the VMCALL instruction:
  1645. */
  1646. hypercall[0] = 0x0f;
  1647. hypercall[1] = 0x01;
  1648. hypercall[2] = 0xc1;
  1649. }
  1650. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1651. {
  1652. unsigned long exit_qualification;
  1653. int cr;
  1654. int reg;
  1655. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1656. cr = exit_qualification & 15;
  1657. reg = (exit_qualification >> 8) & 15;
  1658. switch ((exit_qualification >> 4) & 3) {
  1659. case 0: /* mov to cr */
  1660. switch (cr) {
  1661. case 0:
  1662. vcpu_load_rsp_rip(vcpu);
  1663. set_cr0(vcpu, vcpu->arch.regs[reg]);
  1664. skip_emulated_instruction(vcpu);
  1665. return 1;
  1666. case 3:
  1667. vcpu_load_rsp_rip(vcpu);
  1668. set_cr3(vcpu, vcpu->arch.regs[reg]);
  1669. skip_emulated_instruction(vcpu);
  1670. return 1;
  1671. case 4:
  1672. vcpu_load_rsp_rip(vcpu);
  1673. set_cr4(vcpu, vcpu->arch.regs[reg]);
  1674. skip_emulated_instruction(vcpu);
  1675. return 1;
  1676. case 8:
  1677. vcpu_load_rsp_rip(vcpu);
  1678. set_cr8(vcpu, vcpu->arch.regs[reg]);
  1679. skip_emulated_instruction(vcpu);
  1680. if (irqchip_in_kernel(vcpu->kvm))
  1681. return 1;
  1682. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1683. return 0;
  1684. };
  1685. break;
  1686. case 2: /* clts */
  1687. vcpu_load_rsp_rip(vcpu);
  1688. vmx_fpu_deactivate(vcpu);
  1689. vcpu->arch.cr0 &= ~X86_CR0_TS;
  1690. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1691. vmx_fpu_activate(vcpu);
  1692. skip_emulated_instruction(vcpu);
  1693. return 1;
  1694. case 1: /*mov from cr*/
  1695. switch (cr) {
  1696. case 3:
  1697. vcpu_load_rsp_rip(vcpu);
  1698. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  1699. vcpu_put_rsp_rip(vcpu);
  1700. skip_emulated_instruction(vcpu);
  1701. return 1;
  1702. case 8:
  1703. vcpu_load_rsp_rip(vcpu);
  1704. vcpu->arch.regs[reg] = get_cr8(vcpu);
  1705. vcpu_put_rsp_rip(vcpu);
  1706. skip_emulated_instruction(vcpu);
  1707. return 1;
  1708. }
  1709. break;
  1710. case 3: /* lmsw */
  1711. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1712. skip_emulated_instruction(vcpu);
  1713. return 1;
  1714. default:
  1715. break;
  1716. }
  1717. kvm_run->exit_reason = 0;
  1718. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1719. (int)(exit_qualification >> 4) & 3, cr);
  1720. return 0;
  1721. }
  1722. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1723. {
  1724. unsigned long exit_qualification;
  1725. unsigned long val;
  1726. int dr, reg;
  1727. /*
  1728. * FIXME: this code assumes the host is debugging the guest.
  1729. * need to deal with guest debugging itself too.
  1730. */
  1731. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1732. dr = exit_qualification & 7;
  1733. reg = (exit_qualification >> 8) & 15;
  1734. vcpu_load_rsp_rip(vcpu);
  1735. if (exit_qualification & 16) {
  1736. /* mov from dr */
  1737. switch (dr) {
  1738. case 6:
  1739. val = 0xffff0ff0;
  1740. break;
  1741. case 7:
  1742. val = 0x400;
  1743. break;
  1744. default:
  1745. val = 0;
  1746. }
  1747. vcpu->arch.regs[reg] = val;
  1748. } else {
  1749. /* mov to dr */
  1750. }
  1751. vcpu_put_rsp_rip(vcpu);
  1752. skip_emulated_instruction(vcpu);
  1753. return 1;
  1754. }
  1755. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1756. {
  1757. kvm_emulate_cpuid(vcpu);
  1758. return 1;
  1759. }
  1760. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1761. {
  1762. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1763. u64 data;
  1764. if (vmx_get_msr(vcpu, ecx, &data)) {
  1765. kvm_inject_gp(vcpu, 0);
  1766. return 1;
  1767. }
  1768. /* FIXME: handling of bits 32:63 of rax, rdx */
  1769. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  1770. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1771. skip_emulated_instruction(vcpu);
  1772. return 1;
  1773. }
  1774. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1775. {
  1776. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1777. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  1778. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1779. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1780. kvm_inject_gp(vcpu, 0);
  1781. return 1;
  1782. }
  1783. skip_emulated_instruction(vcpu);
  1784. return 1;
  1785. }
  1786. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1787. struct kvm_run *kvm_run)
  1788. {
  1789. return 1;
  1790. }
  1791. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1792. struct kvm_run *kvm_run)
  1793. {
  1794. u32 cpu_based_vm_exec_control;
  1795. /* clear pending irq */
  1796. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1797. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1798. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1799. /*
  1800. * If the user space waits to inject interrupts, exit as soon as
  1801. * possible
  1802. */
  1803. if (kvm_run->request_interrupt_window &&
  1804. !vcpu->arch.irq_summary) {
  1805. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1806. ++vcpu->stat.irq_window_exits;
  1807. return 0;
  1808. }
  1809. return 1;
  1810. }
  1811. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1812. {
  1813. skip_emulated_instruction(vcpu);
  1814. return kvm_emulate_halt(vcpu);
  1815. }
  1816. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1817. {
  1818. skip_emulated_instruction(vcpu);
  1819. kvm_emulate_hypercall(vcpu);
  1820. return 1;
  1821. }
  1822. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1823. {
  1824. skip_emulated_instruction(vcpu);
  1825. /* TODO: Add support for VT-d/pass-through device */
  1826. return 1;
  1827. }
  1828. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1829. {
  1830. u64 exit_qualification;
  1831. enum emulation_result er;
  1832. unsigned long offset;
  1833. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1834. offset = exit_qualification & 0xffful;
  1835. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1836. if (er != EMULATE_DONE) {
  1837. printk(KERN_ERR
  1838. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1839. offset);
  1840. return -ENOTSUPP;
  1841. }
  1842. return 1;
  1843. }
  1844. /*
  1845. * The exit handlers return 1 if the exit was handled fully and guest execution
  1846. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1847. * to be done to userspace and return 0.
  1848. */
  1849. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1850. struct kvm_run *kvm_run) = {
  1851. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1852. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1853. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1854. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1855. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1856. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1857. [EXIT_REASON_CPUID] = handle_cpuid,
  1858. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1859. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1860. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1861. [EXIT_REASON_HLT] = handle_halt,
  1862. [EXIT_REASON_VMCALL] = handle_vmcall,
  1863. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1864. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1865. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1866. };
  1867. static const int kvm_vmx_max_exit_handlers =
  1868. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1869. /*
  1870. * The guest has exited. See if we can fix it or if we need userspace
  1871. * assistance.
  1872. */
  1873. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1874. {
  1875. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1876. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1877. u32 vectoring_info = vmx->idt_vectoring_info;
  1878. if (unlikely(vmx->fail)) {
  1879. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1880. kvm_run->fail_entry.hardware_entry_failure_reason
  1881. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1882. return 0;
  1883. }
  1884. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1885. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1886. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1887. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1888. if (exit_reason < kvm_vmx_max_exit_handlers
  1889. && kvm_vmx_exit_handlers[exit_reason])
  1890. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1891. else {
  1892. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1893. kvm_run->hw.hardware_exit_reason = exit_reason;
  1894. }
  1895. return 0;
  1896. }
  1897. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1898. {
  1899. }
  1900. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1901. {
  1902. int max_irr, tpr;
  1903. if (!vm_need_tpr_shadow(vcpu->kvm))
  1904. return;
  1905. if (!kvm_lapic_enabled(vcpu) ||
  1906. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1907. vmcs_write32(TPR_THRESHOLD, 0);
  1908. return;
  1909. }
  1910. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1911. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1912. }
  1913. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1914. {
  1915. u32 cpu_based_vm_exec_control;
  1916. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1917. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1918. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1919. }
  1920. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1921. {
  1922. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1923. u32 idtv_info_field, intr_info_field;
  1924. int has_ext_irq, interrupt_window_open;
  1925. int vector;
  1926. update_tpr_threshold(vcpu);
  1927. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1928. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1929. idtv_info_field = vmx->idt_vectoring_info;
  1930. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1931. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1932. /* TODO: fault when IDT_Vectoring */
  1933. if (printk_ratelimit())
  1934. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1935. }
  1936. if (has_ext_irq)
  1937. enable_irq_window(vcpu);
  1938. return;
  1939. }
  1940. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1941. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1942. == INTR_TYPE_EXT_INTR
  1943. && vcpu->arch.rmode.active) {
  1944. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1945. vmx_inject_irq(vcpu, vect);
  1946. if (unlikely(has_ext_irq))
  1947. enable_irq_window(vcpu);
  1948. return;
  1949. }
  1950. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1951. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1952. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1953. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1954. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1955. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1956. if (unlikely(has_ext_irq))
  1957. enable_irq_window(vcpu);
  1958. return;
  1959. }
  1960. if (!has_ext_irq)
  1961. return;
  1962. interrupt_window_open =
  1963. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1964. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1965. if (interrupt_window_open) {
  1966. vector = kvm_cpu_get_interrupt(vcpu);
  1967. vmx_inject_irq(vcpu, vector);
  1968. kvm_timer_intr_post(vcpu, vector);
  1969. } else
  1970. enable_irq_window(vcpu);
  1971. }
  1972. /*
  1973. * Failure to inject an interrupt should give us the information
  1974. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  1975. * when fetching the interrupt redirection bitmap in the real-mode
  1976. * tss, this doesn't happen. So we do it ourselves.
  1977. */
  1978. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  1979. {
  1980. vmx->rmode.irq.pending = 0;
  1981. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  1982. return;
  1983. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  1984. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  1985. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  1986. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  1987. return;
  1988. }
  1989. vmx->idt_vectoring_info =
  1990. VECTORING_INFO_VALID_MASK
  1991. | INTR_TYPE_EXT_INTR
  1992. | vmx->rmode.irq.vector;
  1993. }
  1994. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1995. {
  1996. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1997. u32 intr_info;
  1998. /*
  1999. * Loading guest fpu may have cleared host cr0.ts
  2000. */
  2001. vmcs_writel(HOST_CR0, read_cr0());
  2002. asm(
  2003. /* Store host registers */
  2004. #ifdef CONFIG_X86_64
  2005. "push %%rdx; push %%rbp;"
  2006. "push %%rcx \n\t"
  2007. #else
  2008. "push %%edx; push %%ebp;"
  2009. "push %%ecx \n\t"
  2010. #endif
  2011. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2012. /* Check if vmlaunch of vmresume is needed */
  2013. "cmpl $0, %c[launched](%0) \n\t"
  2014. /* Load guest registers. Don't clobber flags. */
  2015. #ifdef CONFIG_X86_64
  2016. "mov %c[cr2](%0), %%rax \n\t"
  2017. "mov %%rax, %%cr2 \n\t"
  2018. "mov %c[rax](%0), %%rax \n\t"
  2019. "mov %c[rbx](%0), %%rbx \n\t"
  2020. "mov %c[rdx](%0), %%rdx \n\t"
  2021. "mov %c[rsi](%0), %%rsi \n\t"
  2022. "mov %c[rdi](%0), %%rdi \n\t"
  2023. "mov %c[rbp](%0), %%rbp \n\t"
  2024. "mov %c[r8](%0), %%r8 \n\t"
  2025. "mov %c[r9](%0), %%r9 \n\t"
  2026. "mov %c[r10](%0), %%r10 \n\t"
  2027. "mov %c[r11](%0), %%r11 \n\t"
  2028. "mov %c[r12](%0), %%r12 \n\t"
  2029. "mov %c[r13](%0), %%r13 \n\t"
  2030. "mov %c[r14](%0), %%r14 \n\t"
  2031. "mov %c[r15](%0), %%r15 \n\t"
  2032. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2033. #else
  2034. "mov %c[cr2](%0), %%eax \n\t"
  2035. "mov %%eax, %%cr2 \n\t"
  2036. "mov %c[rax](%0), %%eax \n\t"
  2037. "mov %c[rbx](%0), %%ebx \n\t"
  2038. "mov %c[rdx](%0), %%edx \n\t"
  2039. "mov %c[rsi](%0), %%esi \n\t"
  2040. "mov %c[rdi](%0), %%edi \n\t"
  2041. "mov %c[rbp](%0), %%ebp \n\t"
  2042. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2043. #endif
  2044. /* Enter guest mode */
  2045. "jne .Llaunched \n\t"
  2046. ASM_VMX_VMLAUNCH "\n\t"
  2047. "jmp .Lkvm_vmx_return \n\t"
  2048. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2049. ".Lkvm_vmx_return: "
  2050. /* Save guest registers, load host registers, keep flags */
  2051. #ifdef CONFIG_X86_64
  2052. "xchg %0, (%%rsp) \n\t"
  2053. "mov %%rax, %c[rax](%0) \n\t"
  2054. "mov %%rbx, %c[rbx](%0) \n\t"
  2055. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2056. "mov %%rdx, %c[rdx](%0) \n\t"
  2057. "mov %%rsi, %c[rsi](%0) \n\t"
  2058. "mov %%rdi, %c[rdi](%0) \n\t"
  2059. "mov %%rbp, %c[rbp](%0) \n\t"
  2060. "mov %%r8, %c[r8](%0) \n\t"
  2061. "mov %%r9, %c[r9](%0) \n\t"
  2062. "mov %%r10, %c[r10](%0) \n\t"
  2063. "mov %%r11, %c[r11](%0) \n\t"
  2064. "mov %%r12, %c[r12](%0) \n\t"
  2065. "mov %%r13, %c[r13](%0) \n\t"
  2066. "mov %%r14, %c[r14](%0) \n\t"
  2067. "mov %%r15, %c[r15](%0) \n\t"
  2068. "mov %%cr2, %%rax \n\t"
  2069. "mov %%rax, %c[cr2](%0) \n\t"
  2070. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2071. #else
  2072. "xchg %0, (%%esp) \n\t"
  2073. "mov %%eax, %c[rax](%0) \n\t"
  2074. "mov %%ebx, %c[rbx](%0) \n\t"
  2075. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2076. "mov %%edx, %c[rdx](%0) \n\t"
  2077. "mov %%esi, %c[rsi](%0) \n\t"
  2078. "mov %%edi, %c[rdi](%0) \n\t"
  2079. "mov %%ebp, %c[rbp](%0) \n\t"
  2080. "mov %%cr2, %%eax \n\t"
  2081. "mov %%eax, %c[cr2](%0) \n\t"
  2082. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2083. #endif
  2084. "setbe %c[fail](%0) \n\t"
  2085. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2086. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2087. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2088. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2089. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2090. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2091. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2092. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2093. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2094. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2095. #ifdef CONFIG_X86_64
  2096. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2097. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2098. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2099. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2100. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2101. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2102. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2103. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2104. #endif
  2105. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2106. : "cc", "memory"
  2107. #ifdef CONFIG_X86_64
  2108. , "rbx", "rdi", "rsi"
  2109. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2110. #else
  2111. , "ebx", "edi", "rsi"
  2112. #endif
  2113. );
  2114. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2115. if (vmx->rmode.irq.pending)
  2116. fixup_rmode_irq(vmx);
  2117. vcpu->arch.interrupt_window_open =
  2118. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2119. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2120. vmx->launched = 1;
  2121. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2122. /* We need to handle NMIs before interrupts are enabled */
  2123. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2124. asm("int $2");
  2125. }
  2126. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2127. {
  2128. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2129. if (vmx->vmcs) {
  2130. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2131. free_vmcs(vmx->vmcs);
  2132. vmx->vmcs = NULL;
  2133. }
  2134. }
  2135. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2136. {
  2137. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2138. vmx_free_vmcs(vcpu);
  2139. kfree(vmx->host_msrs);
  2140. kfree(vmx->guest_msrs);
  2141. kvm_vcpu_uninit(vcpu);
  2142. kmem_cache_free(kvm_vcpu_cache, vmx);
  2143. }
  2144. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2145. {
  2146. int err;
  2147. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2148. int cpu;
  2149. if (!vmx)
  2150. return ERR_PTR(-ENOMEM);
  2151. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2152. if (err)
  2153. goto free_vcpu;
  2154. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2155. if (!vmx->guest_msrs) {
  2156. err = -ENOMEM;
  2157. goto uninit_vcpu;
  2158. }
  2159. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2160. if (!vmx->host_msrs)
  2161. goto free_guest_msrs;
  2162. vmx->vmcs = alloc_vmcs();
  2163. if (!vmx->vmcs)
  2164. goto free_msrs;
  2165. vmcs_clear(vmx->vmcs);
  2166. cpu = get_cpu();
  2167. vmx_vcpu_load(&vmx->vcpu, cpu);
  2168. err = vmx_vcpu_setup(vmx);
  2169. vmx_vcpu_put(&vmx->vcpu);
  2170. put_cpu();
  2171. if (err)
  2172. goto free_vmcs;
  2173. return &vmx->vcpu;
  2174. free_vmcs:
  2175. free_vmcs(vmx->vmcs);
  2176. free_msrs:
  2177. kfree(vmx->host_msrs);
  2178. free_guest_msrs:
  2179. kfree(vmx->guest_msrs);
  2180. uninit_vcpu:
  2181. kvm_vcpu_uninit(&vmx->vcpu);
  2182. free_vcpu:
  2183. kmem_cache_free(kvm_vcpu_cache, vmx);
  2184. return ERR_PTR(err);
  2185. }
  2186. static void __init vmx_check_processor_compat(void *rtn)
  2187. {
  2188. struct vmcs_config vmcs_conf;
  2189. *(int *)rtn = 0;
  2190. if (setup_vmcs_config(&vmcs_conf) < 0)
  2191. *(int *)rtn = -EIO;
  2192. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2193. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2194. smp_processor_id());
  2195. *(int *)rtn = -EIO;
  2196. }
  2197. }
  2198. static struct kvm_x86_ops vmx_x86_ops = {
  2199. .cpu_has_kvm_support = cpu_has_kvm_support,
  2200. .disabled_by_bios = vmx_disabled_by_bios,
  2201. .hardware_setup = hardware_setup,
  2202. .hardware_unsetup = hardware_unsetup,
  2203. .check_processor_compatibility = vmx_check_processor_compat,
  2204. .hardware_enable = hardware_enable,
  2205. .hardware_disable = hardware_disable,
  2206. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2207. .vcpu_create = vmx_create_vcpu,
  2208. .vcpu_free = vmx_free_vcpu,
  2209. .vcpu_reset = vmx_vcpu_reset,
  2210. .prepare_guest_switch = vmx_save_host_state,
  2211. .vcpu_load = vmx_vcpu_load,
  2212. .vcpu_put = vmx_vcpu_put,
  2213. .vcpu_decache = vmx_vcpu_decache,
  2214. .set_guest_debug = set_guest_debug,
  2215. .guest_debug_pre = kvm_guest_debug_pre,
  2216. .get_msr = vmx_get_msr,
  2217. .set_msr = vmx_set_msr,
  2218. .get_segment_base = vmx_get_segment_base,
  2219. .get_segment = vmx_get_segment,
  2220. .set_segment = vmx_set_segment,
  2221. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2222. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2223. .set_cr0 = vmx_set_cr0,
  2224. .set_cr3 = vmx_set_cr3,
  2225. .set_cr4 = vmx_set_cr4,
  2226. #ifdef CONFIG_X86_64
  2227. .set_efer = vmx_set_efer,
  2228. #endif
  2229. .get_idt = vmx_get_idt,
  2230. .set_idt = vmx_set_idt,
  2231. .get_gdt = vmx_get_gdt,
  2232. .set_gdt = vmx_set_gdt,
  2233. .cache_regs = vcpu_load_rsp_rip,
  2234. .decache_regs = vcpu_put_rsp_rip,
  2235. .get_rflags = vmx_get_rflags,
  2236. .set_rflags = vmx_set_rflags,
  2237. .tlb_flush = vmx_flush_tlb,
  2238. .run = vmx_vcpu_run,
  2239. .handle_exit = kvm_handle_exit,
  2240. .skip_emulated_instruction = skip_emulated_instruction,
  2241. .patch_hypercall = vmx_patch_hypercall,
  2242. .get_irq = vmx_get_irq,
  2243. .set_irq = vmx_inject_irq,
  2244. .queue_exception = vmx_queue_exception,
  2245. .exception_injected = vmx_exception_injected,
  2246. .inject_pending_irq = vmx_intr_assist,
  2247. .inject_pending_vectors = do_interrupt_requests,
  2248. .set_tss_addr = vmx_set_tss_addr,
  2249. };
  2250. static int __init vmx_init(void)
  2251. {
  2252. void *iova;
  2253. int r;
  2254. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2255. if (!vmx_io_bitmap_a)
  2256. return -ENOMEM;
  2257. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2258. if (!vmx_io_bitmap_b) {
  2259. r = -ENOMEM;
  2260. goto out;
  2261. }
  2262. /*
  2263. * Allow direct access to the PC debug port (it is often used for I/O
  2264. * delays, but the vmexits simply slow things down).
  2265. */
  2266. iova = kmap(vmx_io_bitmap_a);
  2267. memset(iova, 0xff, PAGE_SIZE);
  2268. clear_bit(0x80, iova);
  2269. kunmap(vmx_io_bitmap_a);
  2270. iova = kmap(vmx_io_bitmap_b);
  2271. memset(iova, 0xff, PAGE_SIZE);
  2272. kunmap(vmx_io_bitmap_b);
  2273. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2274. if (r)
  2275. goto out1;
  2276. if (bypass_guest_pf)
  2277. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2278. return 0;
  2279. out1:
  2280. __free_page(vmx_io_bitmap_b);
  2281. out:
  2282. __free_page(vmx_io_bitmap_a);
  2283. return r;
  2284. }
  2285. static void __exit vmx_exit(void)
  2286. {
  2287. __free_page(vmx_io_bitmap_b);
  2288. __free_page(vmx_io_bitmap_a);
  2289. kvm_exit();
  2290. }
  2291. module_init(vmx_init)
  2292. module_exit(vmx_exit)