x86.c 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  72. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  73. struct kvm_cpuid_entry2 __user *entries);
  74. struct kvm_x86_ops *kvm_x86_ops;
  75. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  76. int ignore_msrs = 0;
  77. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  78. struct kvm_stats_debugfs_item debugfs_entries[] = {
  79. { "pf_fixed", VCPU_STAT(pf_fixed) },
  80. { "pf_guest", VCPU_STAT(pf_guest) },
  81. { "tlb_flush", VCPU_STAT(tlb_flush) },
  82. { "invlpg", VCPU_STAT(invlpg) },
  83. { "exits", VCPU_STAT(exits) },
  84. { "io_exits", VCPU_STAT(io_exits) },
  85. { "mmio_exits", VCPU_STAT(mmio_exits) },
  86. { "signal_exits", VCPU_STAT(signal_exits) },
  87. { "irq_window", VCPU_STAT(irq_window_exits) },
  88. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  89. { "halt_exits", VCPU_STAT(halt_exits) },
  90. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  91. { "hypercalls", VCPU_STAT(hypercalls) },
  92. { "request_irq", VCPU_STAT(request_irq_exits) },
  93. { "irq_exits", VCPU_STAT(irq_exits) },
  94. { "host_state_reload", VCPU_STAT(host_state_reload) },
  95. { "efer_reload", VCPU_STAT(efer_reload) },
  96. { "fpu_reload", VCPU_STAT(fpu_reload) },
  97. { "insn_emulation", VCPU_STAT(insn_emulation) },
  98. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  99. { "irq_injections", VCPU_STAT(irq_injections) },
  100. { "nmi_injections", VCPU_STAT(nmi_injections) },
  101. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  102. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  103. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  104. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  105. { "mmu_flooded", VM_STAT(mmu_flooded) },
  106. { "mmu_recycled", VM_STAT(mmu_recycled) },
  107. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  108. { "mmu_unsync", VM_STAT(mmu_unsync) },
  109. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  110. { "largepages", VM_STAT(lpages) },
  111. { NULL }
  112. };
  113. unsigned long segment_base(u16 selector)
  114. {
  115. struct descriptor_table gdt;
  116. struct desc_struct *d;
  117. unsigned long table_base;
  118. unsigned long v;
  119. if (selector == 0)
  120. return 0;
  121. kvm_get_gdt(&gdt);
  122. table_base = gdt.base;
  123. if (selector & 4) { /* from ldt */
  124. u16 ldt_selector = kvm_read_ldt();
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = get_desc_base(d);
  129. #ifdef CONFIG_X86_64
  130. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  131. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  132. #endif
  133. return v;
  134. }
  135. EXPORT_SYMBOL_GPL(segment_base);
  136. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  137. {
  138. if (irqchip_in_kernel(vcpu->kvm))
  139. return vcpu->arch.apic_base;
  140. else
  141. return vcpu->arch.apic_base;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  144. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  145. {
  146. /* TODO: reserve bits check */
  147. if (irqchip_in_kernel(vcpu->kvm))
  148. kvm_lapic_set_base(vcpu, data);
  149. else
  150. vcpu->arch.apic_base = data;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  153. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  154. {
  155. WARN_ON(vcpu->arch.exception.pending);
  156. vcpu->arch.exception.pending = true;
  157. vcpu->arch.exception.has_error_code = false;
  158. vcpu->arch.exception.nr = nr;
  159. }
  160. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  161. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  162. u32 error_code)
  163. {
  164. ++vcpu->stat.pf_guest;
  165. if (vcpu->arch.exception.pending) {
  166. switch(vcpu->arch.exception.nr) {
  167. case DF_VECTOR:
  168. /* triple fault -> shutdown */
  169. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  170. return;
  171. case PF_VECTOR:
  172. vcpu->arch.exception.nr = DF_VECTOR;
  173. vcpu->arch.exception.error_code = 0;
  174. return;
  175. default:
  176. /* replace previous exception with a new one in a hope
  177. that instruction re-execution will regenerate lost
  178. exception */
  179. vcpu->arch.exception.pending = false;
  180. break;
  181. }
  182. }
  183. vcpu->arch.cr2 = addr;
  184. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  185. }
  186. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  187. {
  188. vcpu->arch.nmi_pending = 1;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  191. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  192. {
  193. WARN_ON(vcpu->arch.exception.pending);
  194. vcpu->arch.exception.pending = true;
  195. vcpu->arch.exception.has_error_code = true;
  196. vcpu->arch.exception.nr = nr;
  197. vcpu->arch.exception.error_code = error_code;
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  200. /*
  201. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  202. * a #GP and return false.
  203. */
  204. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  205. {
  206. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  207. return true;
  208. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  209. return false;
  210. }
  211. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  212. /*
  213. * Load the pae pdptrs. Return true is they are all valid.
  214. */
  215. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  216. {
  217. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  218. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  219. int i;
  220. int ret;
  221. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  222. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  223. offset * sizeof(u64), sizeof(pdpte));
  224. if (ret < 0) {
  225. ret = 0;
  226. goto out;
  227. }
  228. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  229. if (is_present_gpte(pdpte[i]) &&
  230. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  231. ret = 0;
  232. goto out;
  233. }
  234. }
  235. ret = 1;
  236. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  237. __set_bit(VCPU_EXREG_PDPTR,
  238. (unsigned long *)&vcpu->arch.regs_avail);
  239. __set_bit(VCPU_EXREG_PDPTR,
  240. (unsigned long *)&vcpu->arch.regs_dirty);
  241. out:
  242. return ret;
  243. }
  244. EXPORT_SYMBOL_GPL(load_pdptrs);
  245. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  246. {
  247. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  248. bool changed = true;
  249. int r;
  250. if (is_long_mode(vcpu) || !is_pae(vcpu))
  251. return false;
  252. if (!test_bit(VCPU_EXREG_PDPTR,
  253. (unsigned long *)&vcpu->arch.regs_avail))
  254. return true;
  255. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  256. if (r < 0)
  257. goto out;
  258. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  259. out:
  260. return changed;
  261. }
  262. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  263. {
  264. if (cr0 & CR0_RESERVED_BITS) {
  265. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  266. cr0, vcpu->arch.cr0);
  267. kvm_inject_gp(vcpu, 0);
  268. return;
  269. }
  270. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  272. kvm_inject_gp(vcpu, 0);
  273. return;
  274. }
  275. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  277. "and a clear PE flag\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  282. #ifdef CONFIG_X86_64
  283. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  284. int cs_db, cs_l;
  285. if (!is_pae(vcpu)) {
  286. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  287. "in long mode while PAE is disabled\n");
  288. kvm_inject_gp(vcpu, 0);
  289. return;
  290. }
  291. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  292. if (cs_l) {
  293. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  294. "in long mode while CS.L == 1\n");
  295. kvm_inject_gp(vcpu, 0);
  296. return;
  297. }
  298. } else
  299. #endif
  300. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  301. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  302. "reserved bits\n");
  303. kvm_inject_gp(vcpu, 0);
  304. return;
  305. }
  306. }
  307. kvm_x86_ops->set_cr0(vcpu, cr0);
  308. vcpu->arch.cr0 = cr0;
  309. kvm_mmu_reset_context(vcpu);
  310. return;
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  313. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  314. {
  315. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  316. }
  317. EXPORT_SYMBOL_GPL(kvm_lmsw);
  318. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  319. {
  320. unsigned long old_cr4 = vcpu->arch.cr4;
  321. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  322. if (cr4 & CR4_RESERVED_BITS) {
  323. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  324. kvm_inject_gp(vcpu, 0);
  325. return;
  326. }
  327. if (is_long_mode(vcpu)) {
  328. if (!(cr4 & X86_CR4_PAE)) {
  329. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  330. "in long mode\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  335. && ((cr4 ^ old_cr4) & pdptr_bits)
  336. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  337. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. if (cr4 & X86_CR4_VMXE) {
  342. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. kvm_x86_ops->set_cr4(vcpu, cr4);
  347. vcpu->arch.cr4 = cr4;
  348. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  349. kvm_mmu_reset_context(vcpu);
  350. }
  351. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  352. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  353. {
  354. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  355. kvm_mmu_sync_roots(vcpu);
  356. kvm_mmu_flush_tlb(vcpu);
  357. return;
  358. }
  359. if (is_long_mode(vcpu)) {
  360. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  361. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  362. kvm_inject_gp(vcpu, 0);
  363. return;
  364. }
  365. } else {
  366. if (is_pae(vcpu)) {
  367. if (cr3 & CR3_PAE_RESERVED_BITS) {
  368. printk(KERN_DEBUG
  369. "set_cr3: #GP, reserved bits\n");
  370. kvm_inject_gp(vcpu, 0);
  371. return;
  372. }
  373. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  374. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  375. "reserved bits\n");
  376. kvm_inject_gp(vcpu, 0);
  377. return;
  378. }
  379. }
  380. /*
  381. * We don't check reserved bits in nonpae mode, because
  382. * this isn't enforced, and VMware depends on this.
  383. */
  384. }
  385. /*
  386. * Does the new cr3 value map to physical memory? (Note, we
  387. * catch an invalid cr3 even in real-mode, because it would
  388. * cause trouble later on when we turn on paging anyway.)
  389. *
  390. * A real CPU would silently accept an invalid cr3 and would
  391. * attempt to use it - with largely undefined (and often hard
  392. * to debug) behavior on the guest side.
  393. */
  394. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  395. kvm_inject_gp(vcpu, 0);
  396. else {
  397. vcpu->arch.cr3 = cr3;
  398. vcpu->arch.mmu.new_cr3(vcpu);
  399. }
  400. }
  401. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  402. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  403. {
  404. if (cr8 & CR8_RESERVED_BITS) {
  405. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  406. kvm_inject_gp(vcpu, 0);
  407. return;
  408. }
  409. if (irqchip_in_kernel(vcpu->kvm))
  410. kvm_lapic_set_tpr(vcpu, cr8);
  411. else
  412. vcpu->arch.cr8 = cr8;
  413. }
  414. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  415. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  416. {
  417. if (irqchip_in_kernel(vcpu->kvm))
  418. return kvm_lapic_get_cr8(vcpu);
  419. else
  420. return vcpu->arch.cr8;
  421. }
  422. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  423. static inline u32 bit(int bitno)
  424. {
  425. return 1 << (bitno & 31);
  426. }
  427. /*
  428. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  429. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  430. *
  431. * This list is modified at module load time to reflect the
  432. * capabilities of the host cpu.
  433. */
  434. static u32 msrs_to_save[] = {
  435. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  436. MSR_K6_STAR,
  437. #ifdef CONFIG_X86_64
  438. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  439. #endif
  440. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  441. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  442. };
  443. static unsigned num_msrs_to_save;
  444. static u32 emulated_msrs[] = {
  445. MSR_IA32_MISC_ENABLE,
  446. };
  447. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  448. {
  449. if (efer & efer_reserved_bits) {
  450. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  451. efer);
  452. kvm_inject_gp(vcpu, 0);
  453. return;
  454. }
  455. if (is_paging(vcpu)
  456. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  457. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  458. kvm_inject_gp(vcpu, 0);
  459. return;
  460. }
  461. if (efer & EFER_FFXSR) {
  462. struct kvm_cpuid_entry2 *feat;
  463. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  464. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  465. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  466. kvm_inject_gp(vcpu, 0);
  467. return;
  468. }
  469. }
  470. if (efer & EFER_SVME) {
  471. struct kvm_cpuid_entry2 *feat;
  472. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  473. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  474. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  475. kvm_inject_gp(vcpu, 0);
  476. return;
  477. }
  478. }
  479. kvm_x86_ops->set_efer(vcpu, efer);
  480. efer &= ~EFER_LMA;
  481. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  482. vcpu->arch.shadow_efer = efer;
  483. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  484. kvm_mmu_reset_context(vcpu);
  485. }
  486. void kvm_enable_efer_bits(u64 mask)
  487. {
  488. efer_reserved_bits &= ~mask;
  489. }
  490. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  491. /*
  492. * Writes msr value into into the appropriate "register".
  493. * Returns 0 on success, non-0 otherwise.
  494. * Assumes vcpu_load() was already called.
  495. */
  496. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  497. {
  498. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  499. }
  500. /*
  501. * Adapt set_msr() to msr_io()'s calling convention
  502. */
  503. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  504. {
  505. return kvm_set_msr(vcpu, index, *data);
  506. }
  507. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  508. {
  509. static int version;
  510. struct pvclock_wall_clock wc;
  511. struct timespec now, sys, boot;
  512. if (!wall_clock)
  513. return;
  514. version++;
  515. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  516. /*
  517. * The guest calculates current wall clock time by adding
  518. * system time (updated by kvm_write_guest_time below) to the
  519. * wall clock specified here. guest system time equals host
  520. * system time for us, thus we must fill in host boot time here.
  521. */
  522. now = current_kernel_time();
  523. ktime_get_ts(&sys);
  524. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  525. wc.sec = boot.tv_sec;
  526. wc.nsec = boot.tv_nsec;
  527. wc.version = version;
  528. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  529. version++;
  530. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  531. }
  532. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  533. {
  534. uint32_t quotient, remainder;
  535. /* Don't try to replace with do_div(), this one calculates
  536. * "(dividend << 32) / divisor" */
  537. __asm__ ( "divl %4"
  538. : "=a" (quotient), "=d" (remainder)
  539. : "0" (0), "1" (dividend), "r" (divisor) );
  540. return quotient;
  541. }
  542. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  543. {
  544. uint64_t nsecs = 1000000000LL;
  545. int32_t shift = 0;
  546. uint64_t tps64;
  547. uint32_t tps32;
  548. tps64 = tsc_khz * 1000LL;
  549. while (tps64 > nsecs*2) {
  550. tps64 >>= 1;
  551. shift--;
  552. }
  553. tps32 = (uint32_t)tps64;
  554. while (tps32 <= (uint32_t)nsecs) {
  555. tps32 <<= 1;
  556. shift++;
  557. }
  558. hv_clock->tsc_shift = shift;
  559. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  560. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  561. __func__, tsc_khz, hv_clock->tsc_shift,
  562. hv_clock->tsc_to_system_mul);
  563. }
  564. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  565. static void kvm_write_guest_time(struct kvm_vcpu *v)
  566. {
  567. struct timespec ts;
  568. unsigned long flags;
  569. struct kvm_vcpu_arch *vcpu = &v->arch;
  570. void *shared_kaddr;
  571. unsigned long this_tsc_khz;
  572. if ((!vcpu->time_page))
  573. return;
  574. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  575. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  576. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  577. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  578. }
  579. put_cpu_var(cpu_tsc_khz);
  580. /* Keep irq disabled to prevent changes to the clock */
  581. local_irq_save(flags);
  582. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  583. ktime_get_ts(&ts);
  584. local_irq_restore(flags);
  585. /* With all the info we got, fill in the values */
  586. vcpu->hv_clock.system_time = ts.tv_nsec +
  587. (NSEC_PER_SEC * (u64)ts.tv_sec);
  588. /*
  589. * The interface expects us to write an even number signaling that the
  590. * update is finished. Since the guest won't see the intermediate
  591. * state, we just increase by 2 at the end.
  592. */
  593. vcpu->hv_clock.version += 2;
  594. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  595. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  596. sizeof(vcpu->hv_clock));
  597. kunmap_atomic(shared_kaddr, KM_USER0);
  598. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  599. }
  600. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  601. {
  602. struct kvm_vcpu_arch *vcpu = &v->arch;
  603. if (!vcpu->time_page)
  604. return 0;
  605. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  606. return 1;
  607. }
  608. static bool msr_mtrr_valid(unsigned msr)
  609. {
  610. switch (msr) {
  611. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  612. case MSR_MTRRfix64K_00000:
  613. case MSR_MTRRfix16K_80000:
  614. case MSR_MTRRfix16K_A0000:
  615. case MSR_MTRRfix4K_C0000:
  616. case MSR_MTRRfix4K_C8000:
  617. case MSR_MTRRfix4K_D0000:
  618. case MSR_MTRRfix4K_D8000:
  619. case MSR_MTRRfix4K_E0000:
  620. case MSR_MTRRfix4K_E8000:
  621. case MSR_MTRRfix4K_F0000:
  622. case MSR_MTRRfix4K_F8000:
  623. case MSR_MTRRdefType:
  624. case MSR_IA32_CR_PAT:
  625. return true;
  626. case 0x2f8:
  627. return true;
  628. }
  629. return false;
  630. }
  631. static bool valid_pat_type(unsigned t)
  632. {
  633. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  634. }
  635. static bool valid_mtrr_type(unsigned t)
  636. {
  637. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  638. }
  639. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  640. {
  641. int i;
  642. if (!msr_mtrr_valid(msr))
  643. return false;
  644. if (msr == MSR_IA32_CR_PAT) {
  645. for (i = 0; i < 8; i++)
  646. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  647. return false;
  648. return true;
  649. } else if (msr == MSR_MTRRdefType) {
  650. if (data & ~0xcff)
  651. return false;
  652. return valid_mtrr_type(data & 0xff);
  653. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  654. for (i = 0; i < 8 ; i++)
  655. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  656. return false;
  657. return true;
  658. }
  659. /* variable MTRRs */
  660. return valid_mtrr_type(data & 0xff);
  661. }
  662. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  663. {
  664. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  665. if (!mtrr_valid(vcpu, msr, data))
  666. return 1;
  667. if (msr == MSR_MTRRdefType) {
  668. vcpu->arch.mtrr_state.def_type = data;
  669. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  670. } else if (msr == MSR_MTRRfix64K_00000)
  671. p[0] = data;
  672. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  673. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  674. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  675. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  676. else if (msr == MSR_IA32_CR_PAT)
  677. vcpu->arch.pat = data;
  678. else { /* Variable MTRRs */
  679. int idx, is_mtrr_mask;
  680. u64 *pt;
  681. idx = (msr - 0x200) / 2;
  682. is_mtrr_mask = msr - 0x200 - 2 * idx;
  683. if (!is_mtrr_mask)
  684. pt =
  685. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  686. else
  687. pt =
  688. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  689. *pt = data;
  690. }
  691. kvm_mmu_reset_context(vcpu);
  692. return 0;
  693. }
  694. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  695. {
  696. u64 mcg_cap = vcpu->arch.mcg_cap;
  697. unsigned bank_num = mcg_cap & 0xff;
  698. switch (msr) {
  699. case MSR_IA32_MCG_STATUS:
  700. vcpu->arch.mcg_status = data;
  701. break;
  702. case MSR_IA32_MCG_CTL:
  703. if (!(mcg_cap & MCG_CTL_P))
  704. return 1;
  705. if (data != 0 && data != ~(u64)0)
  706. return -1;
  707. vcpu->arch.mcg_ctl = data;
  708. break;
  709. default:
  710. if (msr >= MSR_IA32_MC0_CTL &&
  711. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  712. u32 offset = msr - MSR_IA32_MC0_CTL;
  713. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  714. if ((offset & 0x3) == 0 &&
  715. data != 0 && data != ~(u64)0)
  716. return -1;
  717. vcpu->arch.mce_banks[offset] = data;
  718. break;
  719. }
  720. return 1;
  721. }
  722. return 0;
  723. }
  724. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  725. {
  726. switch (msr) {
  727. case MSR_EFER:
  728. set_efer(vcpu, data);
  729. break;
  730. case MSR_K7_HWCR:
  731. data &= ~(u64)0x40; /* ignore flush filter disable */
  732. if (data != 0) {
  733. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  734. data);
  735. return 1;
  736. }
  737. break;
  738. case MSR_FAM10H_MMIO_CONF_BASE:
  739. if (data != 0) {
  740. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  741. "0x%llx\n", data);
  742. return 1;
  743. }
  744. break;
  745. case MSR_AMD64_NB_CFG:
  746. break;
  747. case MSR_IA32_DEBUGCTLMSR:
  748. if (!data) {
  749. /* We support the non-activated case already */
  750. break;
  751. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  752. /* Values other than LBR and BTF are vendor-specific,
  753. thus reserved and should throw a #GP */
  754. return 1;
  755. }
  756. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  757. __func__, data);
  758. break;
  759. case MSR_IA32_UCODE_REV:
  760. case MSR_IA32_UCODE_WRITE:
  761. case MSR_VM_HSAVE_PA:
  762. case MSR_AMD64_PATCH_LOADER:
  763. break;
  764. case 0x200 ... 0x2ff:
  765. return set_msr_mtrr(vcpu, msr, data);
  766. case MSR_IA32_APICBASE:
  767. kvm_set_apic_base(vcpu, data);
  768. break;
  769. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  770. return kvm_x2apic_msr_write(vcpu, msr, data);
  771. case MSR_IA32_MISC_ENABLE:
  772. vcpu->arch.ia32_misc_enable_msr = data;
  773. break;
  774. case MSR_KVM_WALL_CLOCK:
  775. vcpu->kvm->arch.wall_clock = data;
  776. kvm_write_wall_clock(vcpu->kvm, data);
  777. break;
  778. case MSR_KVM_SYSTEM_TIME: {
  779. if (vcpu->arch.time_page) {
  780. kvm_release_page_dirty(vcpu->arch.time_page);
  781. vcpu->arch.time_page = NULL;
  782. }
  783. vcpu->arch.time = data;
  784. /* we verify if the enable bit is set... */
  785. if (!(data & 1))
  786. break;
  787. /* ...but clean it before doing the actual write */
  788. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  789. vcpu->arch.time_page =
  790. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  791. if (is_error_page(vcpu->arch.time_page)) {
  792. kvm_release_page_clean(vcpu->arch.time_page);
  793. vcpu->arch.time_page = NULL;
  794. }
  795. kvm_request_guest_time_update(vcpu);
  796. break;
  797. }
  798. case MSR_IA32_MCG_CTL:
  799. case MSR_IA32_MCG_STATUS:
  800. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  801. return set_msr_mce(vcpu, msr, data);
  802. /* Performance counters are not protected by a CPUID bit,
  803. * so we should check all of them in the generic path for the sake of
  804. * cross vendor migration.
  805. * Writing a zero into the event select MSRs disables them,
  806. * which we perfectly emulate ;-). Any other value should be at least
  807. * reported, some guests depend on them.
  808. */
  809. case MSR_P6_EVNTSEL0:
  810. case MSR_P6_EVNTSEL1:
  811. case MSR_K7_EVNTSEL0:
  812. case MSR_K7_EVNTSEL1:
  813. case MSR_K7_EVNTSEL2:
  814. case MSR_K7_EVNTSEL3:
  815. if (data != 0)
  816. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  817. "0x%x data 0x%llx\n", msr, data);
  818. break;
  819. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  820. * so we ignore writes to make it happy.
  821. */
  822. case MSR_P6_PERFCTR0:
  823. case MSR_P6_PERFCTR1:
  824. case MSR_K7_PERFCTR0:
  825. case MSR_K7_PERFCTR1:
  826. case MSR_K7_PERFCTR2:
  827. case MSR_K7_PERFCTR3:
  828. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  829. "0x%x data 0x%llx\n", msr, data);
  830. break;
  831. default:
  832. if (!ignore_msrs) {
  833. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  834. msr, data);
  835. return 1;
  836. } else {
  837. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  838. msr, data);
  839. break;
  840. }
  841. }
  842. return 0;
  843. }
  844. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  845. /*
  846. * Reads an msr value (of 'msr_index') into 'pdata'.
  847. * Returns 0 on success, non-0 otherwise.
  848. * Assumes vcpu_load() was already called.
  849. */
  850. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  851. {
  852. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  853. }
  854. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  855. {
  856. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  857. if (!msr_mtrr_valid(msr))
  858. return 1;
  859. if (msr == MSR_MTRRdefType)
  860. *pdata = vcpu->arch.mtrr_state.def_type +
  861. (vcpu->arch.mtrr_state.enabled << 10);
  862. else if (msr == MSR_MTRRfix64K_00000)
  863. *pdata = p[0];
  864. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  865. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  866. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  867. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  868. else if (msr == MSR_IA32_CR_PAT)
  869. *pdata = vcpu->arch.pat;
  870. else { /* Variable MTRRs */
  871. int idx, is_mtrr_mask;
  872. u64 *pt;
  873. idx = (msr - 0x200) / 2;
  874. is_mtrr_mask = msr - 0x200 - 2 * idx;
  875. if (!is_mtrr_mask)
  876. pt =
  877. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  878. else
  879. pt =
  880. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  881. *pdata = *pt;
  882. }
  883. return 0;
  884. }
  885. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  886. {
  887. u64 data;
  888. u64 mcg_cap = vcpu->arch.mcg_cap;
  889. unsigned bank_num = mcg_cap & 0xff;
  890. switch (msr) {
  891. case MSR_IA32_P5_MC_ADDR:
  892. case MSR_IA32_P5_MC_TYPE:
  893. data = 0;
  894. break;
  895. case MSR_IA32_MCG_CAP:
  896. data = vcpu->arch.mcg_cap;
  897. break;
  898. case MSR_IA32_MCG_CTL:
  899. if (!(mcg_cap & MCG_CTL_P))
  900. return 1;
  901. data = vcpu->arch.mcg_ctl;
  902. break;
  903. case MSR_IA32_MCG_STATUS:
  904. data = vcpu->arch.mcg_status;
  905. break;
  906. default:
  907. if (msr >= MSR_IA32_MC0_CTL &&
  908. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  909. u32 offset = msr - MSR_IA32_MC0_CTL;
  910. data = vcpu->arch.mce_banks[offset];
  911. break;
  912. }
  913. return 1;
  914. }
  915. *pdata = data;
  916. return 0;
  917. }
  918. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  919. {
  920. u64 data;
  921. switch (msr) {
  922. case MSR_IA32_PLATFORM_ID:
  923. case MSR_IA32_UCODE_REV:
  924. case MSR_IA32_EBL_CR_POWERON:
  925. case MSR_IA32_DEBUGCTLMSR:
  926. case MSR_IA32_LASTBRANCHFROMIP:
  927. case MSR_IA32_LASTBRANCHTOIP:
  928. case MSR_IA32_LASTINTFROMIP:
  929. case MSR_IA32_LASTINTTOIP:
  930. case MSR_K8_SYSCFG:
  931. case MSR_K7_HWCR:
  932. case MSR_VM_HSAVE_PA:
  933. case MSR_P6_PERFCTR0:
  934. case MSR_P6_PERFCTR1:
  935. case MSR_P6_EVNTSEL0:
  936. case MSR_P6_EVNTSEL1:
  937. case MSR_K7_EVNTSEL0:
  938. case MSR_K7_PERFCTR0:
  939. case MSR_K8_INT_PENDING_MSG:
  940. case MSR_AMD64_NB_CFG:
  941. case MSR_FAM10H_MMIO_CONF_BASE:
  942. data = 0;
  943. break;
  944. case MSR_MTRRcap:
  945. data = 0x500 | KVM_NR_VAR_MTRR;
  946. break;
  947. case 0x200 ... 0x2ff:
  948. return get_msr_mtrr(vcpu, msr, pdata);
  949. case 0xcd: /* fsb frequency */
  950. data = 3;
  951. break;
  952. case MSR_IA32_APICBASE:
  953. data = kvm_get_apic_base(vcpu);
  954. break;
  955. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  956. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  957. break;
  958. case MSR_IA32_MISC_ENABLE:
  959. data = vcpu->arch.ia32_misc_enable_msr;
  960. break;
  961. case MSR_IA32_PERF_STATUS:
  962. /* TSC increment by tick */
  963. data = 1000ULL;
  964. /* CPU multiplier */
  965. data |= (((uint64_t)4ULL) << 40);
  966. break;
  967. case MSR_EFER:
  968. data = vcpu->arch.shadow_efer;
  969. break;
  970. case MSR_KVM_WALL_CLOCK:
  971. data = vcpu->kvm->arch.wall_clock;
  972. break;
  973. case MSR_KVM_SYSTEM_TIME:
  974. data = vcpu->arch.time;
  975. break;
  976. case MSR_IA32_P5_MC_ADDR:
  977. case MSR_IA32_P5_MC_TYPE:
  978. case MSR_IA32_MCG_CAP:
  979. case MSR_IA32_MCG_CTL:
  980. case MSR_IA32_MCG_STATUS:
  981. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  982. return get_msr_mce(vcpu, msr, pdata);
  983. default:
  984. if (!ignore_msrs) {
  985. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  986. return 1;
  987. } else {
  988. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  989. data = 0;
  990. }
  991. break;
  992. }
  993. *pdata = data;
  994. return 0;
  995. }
  996. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  997. /*
  998. * Read or write a bunch of msrs. All parameters are kernel addresses.
  999. *
  1000. * @return number of msrs set successfully.
  1001. */
  1002. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1003. struct kvm_msr_entry *entries,
  1004. int (*do_msr)(struct kvm_vcpu *vcpu,
  1005. unsigned index, u64 *data))
  1006. {
  1007. int i;
  1008. vcpu_load(vcpu);
  1009. down_read(&vcpu->kvm->slots_lock);
  1010. for (i = 0; i < msrs->nmsrs; ++i)
  1011. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1012. break;
  1013. up_read(&vcpu->kvm->slots_lock);
  1014. vcpu_put(vcpu);
  1015. return i;
  1016. }
  1017. /*
  1018. * Read or write a bunch of msrs. Parameters are user addresses.
  1019. *
  1020. * @return number of msrs set successfully.
  1021. */
  1022. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1023. int (*do_msr)(struct kvm_vcpu *vcpu,
  1024. unsigned index, u64 *data),
  1025. int writeback)
  1026. {
  1027. struct kvm_msrs msrs;
  1028. struct kvm_msr_entry *entries;
  1029. int r, n;
  1030. unsigned size;
  1031. r = -EFAULT;
  1032. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1033. goto out;
  1034. r = -E2BIG;
  1035. if (msrs.nmsrs >= MAX_IO_MSRS)
  1036. goto out;
  1037. r = -ENOMEM;
  1038. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1039. entries = vmalloc(size);
  1040. if (!entries)
  1041. goto out;
  1042. r = -EFAULT;
  1043. if (copy_from_user(entries, user_msrs->entries, size))
  1044. goto out_free;
  1045. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1046. if (r < 0)
  1047. goto out_free;
  1048. r = -EFAULT;
  1049. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1050. goto out_free;
  1051. r = n;
  1052. out_free:
  1053. vfree(entries);
  1054. out:
  1055. return r;
  1056. }
  1057. int kvm_dev_ioctl_check_extension(long ext)
  1058. {
  1059. int r;
  1060. switch (ext) {
  1061. case KVM_CAP_IRQCHIP:
  1062. case KVM_CAP_HLT:
  1063. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1064. case KVM_CAP_SET_TSS_ADDR:
  1065. case KVM_CAP_EXT_CPUID:
  1066. case KVM_CAP_CLOCKSOURCE:
  1067. case KVM_CAP_PIT:
  1068. case KVM_CAP_NOP_IO_DELAY:
  1069. case KVM_CAP_MP_STATE:
  1070. case KVM_CAP_SYNC_MMU:
  1071. case KVM_CAP_REINJECT_CONTROL:
  1072. case KVM_CAP_IRQ_INJECT_STATUS:
  1073. case KVM_CAP_ASSIGN_DEV_IRQ:
  1074. case KVM_CAP_IRQFD:
  1075. case KVM_CAP_IOEVENTFD:
  1076. case KVM_CAP_PIT2:
  1077. case KVM_CAP_PIT_STATE2:
  1078. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1079. r = 1;
  1080. break;
  1081. case KVM_CAP_COALESCED_MMIO:
  1082. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1083. break;
  1084. case KVM_CAP_VAPIC:
  1085. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1086. break;
  1087. case KVM_CAP_NR_VCPUS:
  1088. r = KVM_MAX_VCPUS;
  1089. break;
  1090. case KVM_CAP_NR_MEMSLOTS:
  1091. r = KVM_MEMORY_SLOTS;
  1092. break;
  1093. case KVM_CAP_PV_MMU:
  1094. r = !tdp_enabled;
  1095. break;
  1096. case KVM_CAP_IOMMU:
  1097. r = iommu_found();
  1098. break;
  1099. case KVM_CAP_MCE:
  1100. r = KVM_MAX_MCE_BANKS;
  1101. break;
  1102. default:
  1103. r = 0;
  1104. break;
  1105. }
  1106. return r;
  1107. }
  1108. long kvm_arch_dev_ioctl(struct file *filp,
  1109. unsigned int ioctl, unsigned long arg)
  1110. {
  1111. void __user *argp = (void __user *)arg;
  1112. long r;
  1113. switch (ioctl) {
  1114. case KVM_GET_MSR_INDEX_LIST: {
  1115. struct kvm_msr_list __user *user_msr_list = argp;
  1116. struct kvm_msr_list msr_list;
  1117. unsigned n;
  1118. r = -EFAULT;
  1119. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1120. goto out;
  1121. n = msr_list.nmsrs;
  1122. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1123. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1124. goto out;
  1125. r = -E2BIG;
  1126. if (n < msr_list.nmsrs)
  1127. goto out;
  1128. r = -EFAULT;
  1129. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1130. num_msrs_to_save * sizeof(u32)))
  1131. goto out;
  1132. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1133. &emulated_msrs,
  1134. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1135. goto out;
  1136. r = 0;
  1137. break;
  1138. }
  1139. case KVM_GET_SUPPORTED_CPUID: {
  1140. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1141. struct kvm_cpuid2 cpuid;
  1142. r = -EFAULT;
  1143. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1144. goto out;
  1145. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1146. cpuid_arg->entries);
  1147. if (r)
  1148. goto out;
  1149. r = -EFAULT;
  1150. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1151. goto out;
  1152. r = 0;
  1153. break;
  1154. }
  1155. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1156. u64 mce_cap;
  1157. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1158. r = -EFAULT;
  1159. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1160. goto out;
  1161. r = 0;
  1162. break;
  1163. }
  1164. default:
  1165. r = -EINVAL;
  1166. }
  1167. out:
  1168. return r;
  1169. }
  1170. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1171. {
  1172. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1173. kvm_request_guest_time_update(vcpu);
  1174. }
  1175. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1176. {
  1177. kvm_x86_ops->vcpu_put(vcpu);
  1178. kvm_put_guest_fpu(vcpu);
  1179. }
  1180. static int is_efer_nx(void)
  1181. {
  1182. unsigned long long efer = 0;
  1183. rdmsrl_safe(MSR_EFER, &efer);
  1184. return efer & EFER_NX;
  1185. }
  1186. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1187. {
  1188. int i;
  1189. struct kvm_cpuid_entry2 *e, *entry;
  1190. entry = NULL;
  1191. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1192. e = &vcpu->arch.cpuid_entries[i];
  1193. if (e->function == 0x80000001) {
  1194. entry = e;
  1195. break;
  1196. }
  1197. }
  1198. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1199. entry->edx &= ~(1 << 20);
  1200. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1201. }
  1202. }
  1203. /* when an old userspace process fills a new kernel module */
  1204. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1205. struct kvm_cpuid *cpuid,
  1206. struct kvm_cpuid_entry __user *entries)
  1207. {
  1208. int r, i;
  1209. struct kvm_cpuid_entry *cpuid_entries;
  1210. r = -E2BIG;
  1211. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1212. goto out;
  1213. r = -ENOMEM;
  1214. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1215. if (!cpuid_entries)
  1216. goto out;
  1217. r = -EFAULT;
  1218. if (copy_from_user(cpuid_entries, entries,
  1219. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1220. goto out_free;
  1221. for (i = 0; i < cpuid->nent; i++) {
  1222. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1223. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1224. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1225. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1226. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1227. vcpu->arch.cpuid_entries[i].index = 0;
  1228. vcpu->arch.cpuid_entries[i].flags = 0;
  1229. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1230. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1231. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1232. }
  1233. vcpu->arch.cpuid_nent = cpuid->nent;
  1234. cpuid_fix_nx_cap(vcpu);
  1235. r = 0;
  1236. kvm_apic_set_version(vcpu);
  1237. out_free:
  1238. vfree(cpuid_entries);
  1239. out:
  1240. return r;
  1241. }
  1242. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1243. struct kvm_cpuid2 *cpuid,
  1244. struct kvm_cpuid_entry2 __user *entries)
  1245. {
  1246. int r;
  1247. r = -E2BIG;
  1248. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1249. goto out;
  1250. r = -EFAULT;
  1251. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1252. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1253. goto out;
  1254. vcpu->arch.cpuid_nent = cpuid->nent;
  1255. kvm_apic_set_version(vcpu);
  1256. return 0;
  1257. out:
  1258. return r;
  1259. }
  1260. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1261. struct kvm_cpuid2 *cpuid,
  1262. struct kvm_cpuid_entry2 __user *entries)
  1263. {
  1264. int r;
  1265. r = -E2BIG;
  1266. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1267. goto out;
  1268. r = -EFAULT;
  1269. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1270. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1271. goto out;
  1272. return 0;
  1273. out:
  1274. cpuid->nent = vcpu->arch.cpuid_nent;
  1275. return r;
  1276. }
  1277. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1278. u32 index)
  1279. {
  1280. entry->function = function;
  1281. entry->index = index;
  1282. cpuid_count(entry->function, entry->index,
  1283. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1284. entry->flags = 0;
  1285. }
  1286. #define F(x) bit(X86_FEATURE_##x)
  1287. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1288. u32 index, int *nent, int maxnent)
  1289. {
  1290. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1291. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1292. #ifdef CONFIG_X86_64
  1293. unsigned f_lm = F(LM);
  1294. #else
  1295. unsigned f_lm = 0;
  1296. #endif
  1297. /* cpuid 1.edx */
  1298. const u32 kvm_supported_word0_x86_features =
  1299. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1300. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1301. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1302. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1303. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1304. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1305. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1306. 0 /* HTT, TM, Reserved, PBE */;
  1307. /* cpuid 0x80000001.edx */
  1308. const u32 kvm_supported_word1_x86_features =
  1309. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1310. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1311. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1312. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1313. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1314. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1315. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1316. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1317. /* cpuid 1.ecx */
  1318. const u32 kvm_supported_word4_x86_features =
  1319. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1320. 0 /* DS-CPL, VMX, SMX, EST */ |
  1321. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1322. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1323. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1324. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1325. 0 /* Reserved, XSAVE, OSXSAVE */;
  1326. /* cpuid 0x80000001.ecx */
  1327. const u32 kvm_supported_word6_x86_features =
  1328. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1329. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1330. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1331. 0 /* SKINIT */ | 0 /* WDT */;
  1332. /* all calls to cpuid_count() should be made on the same cpu */
  1333. get_cpu();
  1334. do_cpuid_1_ent(entry, function, index);
  1335. ++*nent;
  1336. switch (function) {
  1337. case 0:
  1338. entry->eax = min(entry->eax, (u32)0xb);
  1339. break;
  1340. case 1:
  1341. entry->edx &= kvm_supported_word0_x86_features;
  1342. entry->ecx &= kvm_supported_word4_x86_features;
  1343. /* we support x2apic emulation even if host does not support
  1344. * it since we emulate x2apic in software */
  1345. entry->ecx |= F(X2APIC);
  1346. break;
  1347. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1348. * may return different values. This forces us to get_cpu() before
  1349. * issuing the first command, and also to emulate this annoying behavior
  1350. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1351. case 2: {
  1352. int t, times = entry->eax & 0xff;
  1353. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1354. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1355. for (t = 1; t < times && *nent < maxnent; ++t) {
  1356. do_cpuid_1_ent(&entry[t], function, 0);
  1357. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1358. ++*nent;
  1359. }
  1360. break;
  1361. }
  1362. /* function 4 and 0xb have additional index. */
  1363. case 4: {
  1364. int i, cache_type;
  1365. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1366. /* read more entries until cache_type is zero */
  1367. for (i = 1; *nent < maxnent; ++i) {
  1368. cache_type = entry[i - 1].eax & 0x1f;
  1369. if (!cache_type)
  1370. break;
  1371. do_cpuid_1_ent(&entry[i], function, i);
  1372. entry[i].flags |=
  1373. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1374. ++*nent;
  1375. }
  1376. break;
  1377. }
  1378. case 0xb: {
  1379. int i, level_type;
  1380. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1381. /* read more entries until level_type is zero */
  1382. for (i = 1; *nent < maxnent; ++i) {
  1383. level_type = entry[i - 1].ecx & 0xff00;
  1384. if (!level_type)
  1385. break;
  1386. do_cpuid_1_ent(&entry[i], function, i);
  1387. entry[i].flags |=
  1388. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1389. ++*nent;
  1390. }
  1391. break;
  1392. }
  1393. case 0x80000000:
  1394. entry->eax = min(entry->eax, 0x8000001a);
  1395. break;
  1396. case 0x80000001:
  1397. entry->edx &= kvm_supported_word1_x86_features;
  1398. entry->ecx &= kvm_supported_word6_x86_features;
  1399. break;
  1400. }
  1401. put_cpu();
  1402. }
  1403. #undef F
  1404. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1405. struct kvm_cpuid_entry2 __user *entries)
  1406. {
  1407. struct kvm_cpuid_entry2 *cpuid_entries;
  1408. int limit, nent = 0, r = -E2BIG;
  1409. u32 func;
  1410. if (cpuid->nent < 1)
  1411. goto out;
  1412. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1413. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1414. r = -ENOMEM;
  1415. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1416. if (!cpuid_entries)
  1417. goto out;
  1418. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1419. limit = cpuid_entries[0].eax;
  1420. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1421. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1422. &nent, cpuid->nent);
  1423. r = -E2BIG;
  1424. if (nent >= cpuid->nent)
  1425. goto out_free;
  1426. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1427. limit = cpuid_entries[nent - 1].eax;
  1428. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1429. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1430. &nent, cpuid->nent);
  1431. r = -E2BIG;
  1432. if (nent >= cpuid->nent)
  1433. goto out_free;
  1434. r = -EFAULT;
  1435. if (copy_to_user(entries, cpuid_entries,
  1436. nent * sizeof(struct kvm_cpuid_entry2)))
  1437. goto out_free;
  1438. cpuid->nent = nent;
  1439. r = 0;
  1440. out_free:
  1441. vfree(cpuid_entries);
  1442. out:
  1443. return r;
  1444. }
  1445. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1446. struct kvm_lapic_state *s)
  1447. {
  1448. vcpu_load(vcpu);
  1449. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1450. vcpu_put(vcpu);
  1451. return 0;
  1452. }
  1453. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1454. struct kvm_lapic_state *s)
  1455. {
  1456. vcpu_load(vcpu);
  1457. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1458. kvm_apic_post_state_restore(vcpu);
  1459. update_cr8_intercept(vcpu);
  1460. vcpu_put(vcpu);
  1461. return 0;
  1462. }
  1463. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1464. struct kvm_interrupt *irq)
  1465. {
  1466. if (irq->irq < 0 || irq->irq >= 256)
  1467. return -EINVAL;
  1468. if (irqchip_in_kernel(vcpu->kvm))
  1469. return -ENXIO;
  1470. vcpu_load(vcpu);
  1471. kvm_queue_interrupt(vcpu, irq->irq, false);
  1472. vcpu_put(vcpu);
  1473. return 0;
  1474. }
  1475. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1476. {
  1477. vcpu_load(vcpu);
  1478. kvm_inject_nmi(vcpu);
  1479. vcpu_put(vcpu);
  1480. return 0;
  1481. }
  1482. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1483. struct kvm_tpr_access_ctl *tac)
  1484. {
  1485. if (tac->flags)
  1486. return -EINVAL;
  1487. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1488. return 0;
  1489. }
  1490. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1491. u64 mcg_cap)
  1492. {
  1493. int r;
  1494. unsigned bank_num = mcg_cap & 0xff, bank;
  1495. r = -EINVAL;
  1496. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1497. goto out;
  1498. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1499. goto out;
  1500. r = 0;
  1501. vcpu->arch.mcg_cap = mcg_cap;
  1502. /* Init IA32_MCG_CTL to all 1s */
  1503. if (mcg_cap & MCG_CTL_P)
  1504. vcpu->arch.mcg_ctl = ~(u64)0;
  1505. /* Init IA32_MCi_CTL to all 1s */
  1506. for (bank = 0; bank < bank_num; bank++)
  1507. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1508. out:
  1509. return r;
  1510. }
  1511. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1512. struct kvm_x86_mce *mce)
  1513. {
  1514. u64 mcg_cap = vcpu->arch.mcg_cap;
  1515. unsigned bank_num = mcg_cap & 0xff;
  1516. u64 *banks = vcpu->arch.mce_banks;
  1517. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1518. return -EINVAL;
  1519. /*
  1520. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1521. * reporting is disabled
  1522. */
  1523. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1524. vcpu->arch.mcg_ctl != ~(u64)0)
  1525. return 0;
  1526. banks += 4 * mce->bank;
  1527. /*
  1528. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1529. * reporting is disabled for the bank
  1530. */
  1531. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1532. return 0;
  1533. if (mce->status & MCI_STATUS_UC) {
  1534. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1535. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1536. printk(KERN_DEBUG "kvm: set_mce: "
  1537. "injects mce exception while "
  1538. "previous one is in progress!\n");
  1539. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1540. return 0;
  1541. }
  1542. if (banks[1] & MCI_STATUS_VAL)
  1543. mce->status |= MCI_STATUS_OVER;
  1544. banks[2] = mce->addr;
  1545. banks[3] = mce->misc;
  1546. vcpu->arch.mcg_status = mce->mcg_status;
  1547. banks[1] = mce->status;
  1548. kvm_queue_exception(vcpu, MC_VECTOR);
  1549. } else if (!(banks[1] & MCI_STATUS_VAL)
  1550. || !(banks[1] & MCI_STATUS_UC)) {
  1551. if (banks[1] & MCI_STATUS_VAL)
  1552. mce->status |= MCI_STATUS_OVER;
  1553. banks[2] = mce->addr;
  1554. banks[3] = mce->misc;
  1555. banks[1] = mce->status;
  1556. } else
  1557. banks[1] |= MCI_STATUS_OVER;
  1558. return 0;
  1559. }
  1560. long kvm_arch_vcpu_ioctl(struct file *filp,
  1561. unsigned int ioctl, unsigned long arg)
  1562. {
  1563. struct kvm_vcpu *vcpu = filp->private_data;
  1564. void __user *argp = (void __user *)arg;
  1565. int r;
  1566. struct kvm_lapic_state *lapic = NULL;
  1567. switch (ioctl) {
  1568. case KVM_GET_LAPIC: {
  1569. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1570. r = -ENOMEM;
  1571. if (!lapic)
  1572. goto out;
  1573. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1574. if (r)
  1575. goto out;
  1576. r = -EFAULT;
  1577. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1578. goto out;
  1579. r = 0;
  1580. break;
  1581. }
  1582. case KVM_SET_LAPIC: {
  1583. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1584. r = -ENOMEM;
  1585. if (!lapic)
  1586. goto out;
  1587. r = -EFAULT;
  1588. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1589. goto out;
  1590. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1591. if (r)
  1592. goto out;
  1593. r = 0;
  1594. break;
  1595. }
  1596. case KVM_INTERRUPT: {
  1597. struct kvm_interrupt irq;
  1598. r = -EFAULT;
  1599. if (copy_from_user(&irq, argp, sizeof irq))
  1600. goto out;
  1601. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1602. if (r)
  1603. goto out;
  1604. r = 0;
  1605. break;
  1606. }
  1607. case KVM_NMI: {
  1608. r = kvm_vcpu_ioctl_nmi(vcpu);
  1609. if (r)
  1610. goto out;
  1611. r = 0;
  1612. break;
  1613. }
  1614. case KVM_SET_CPUID: {
  1615. struct kvm_cpuid __user *cpuid_arg = argp;
  1616. struct kvm_cpuid cpuid;
  1617. r = -EFAULT;
  1618. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1619. goto out;
  1620. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1621. if (r)
  1622. goto out;
  1623. break;
  1624. }
  1625. case KVM_SET_CPUID2: {
  1626. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1627. struct kvm_cpuid2 cpuid;
  1628. r = -EFAULT;
  1629. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1630. goto out;
  1631. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1632. cpuid_arg->entries);
  1633. if (r)
  1634. goto out;
  1635. break;
  1636. }
  1637. case KVM_GET_CPUID2: {
  1638. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1639. struct kvm_cpuid2 cpuid;
  1640. r = -EFAULT;
  1641. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1642. goto out;
  1643. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1644. cpuid_arg->entries);
  1645. if (r)
  1646. goto out;
  1647. r = -EFAULT;
  1648. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1649. goto out;
  1650. r = 0;
  1651. break;
  1652. }
  1653. case KVM_GET_MSRS:
  1654. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1655. break;
  1656. case KVM_SET_MSRS:
  1657. r = msr_io(vcpu, argp, do_set_msr, 0);
  1658. break;
  1659. case KVM_TPR_ACCESS_REPORTING: {
  1660. struct kvm_tpr_access_ctl tac;
  1661. r = -EFAULT;
  1662. if (copy_from_user(&tac, argp, sizeof tac))
  1663. goto out;
  1664. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1665. if (r)
  1666. goto out;
  1667. r = -EFAULT;
  1668. if (copy_to_user(argp, &tac, sizeof tac))
  1669. goto out;
  1670. r = 0;
  1671. break;
  1672. };
  1673. case KVM_SET_VAPIC_ADDR: {
  1674. struct kvm_vapic_addr va;
  1675. r = -EINVAL;
  1676. if (!irqchip_in_kernel(vcpu->kvm))
  1677. goto out;
  1678. r = -EFAULT;
  1679. if (copy_from_user(&va, argp, sizeof va))
  1680. goto out;
  1681. r = 0;
  1682. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1683. break;
  1684. }
  1685. case KVM_X86_SETUP_MCE: {
  1686. u64 mcg_cap;
  1687. r = -EFAULT;
  1688. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1689. goto out;
  1690. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1691. break;
  1692. }
  1693. case KVM_X86_SET_MCE: {
  1694. struct kvm_x86_mce mce;
  1695. r = -EFAULT;
  1696. if (copy_from_user(&mce, argp, sizeof mce))
  1697. goto out;
  1698. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1699. break;
  1700. }
  1701. default:
  1702. r = -EINVAL;
  1703. }
  1704. out:
  1705. kfree(lapic);
  1706. return r;
  1707. }
  1708. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1709. {
  1710. int ret;
  1711. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1712. return -1;
  1713. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1714. return ret;
  1715. }
  1716. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1717. u64 ident_addr)
  1718. {
  1719. kvm->arch.ept_identity_map_addr = ident_addr;
  1720. return 0;
  1721. }
  1722. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1723. u32 kvm_nr_mmu_pages)
  1724. {
  1725. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1726. return -EINVAL;
  1727. down_write(&kvm->slots_lock);
  1728. spin_lock(&kvm->mmu_lock);
  1729. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1730. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1731. spin_unlock(&kvm->mmu_lock);
  1732. up_write(&kvm->slots_lock);
  1733. return 0;
  1734. }
  1735. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1736. {
  1737. return kvm->arch.n_alloc_mmu_pages;
  1738. }
  1739. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1740. {
  1741. int i;
  1742. struct kvm_mem_alias *alias;
  1743. for (i = 0; i < kvm->arch.naliases; ++i) {
  1744. alias = &kvm->arch.aliases[i];
  1745. if (gfn >= alias->base_gfn
  1746. && gfn < alias->base_gfn + alias->npages)
  1747. return alias->target_gfn + gfn - alias->base_gfn;
  1748. }
  1749. return gfn;
  1750. }
  1751. /*
  1752. * Set a new alias region. Aliases map a portion of physical memory into
  1753. * another portion. This is useful for memory windows, for example the PC
  1754. * VGA region.
  1755. */
  1756. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1757. struct kvm_memory_alias *alias)
  1758. {
  1759. int r, n;
  1760. struct kvm_mem_alias *p;
  1761. r = -EINVAL;
  1762. /* General sanity checks */
  1763. if (alias->memory_size & (PAGE_SIZE - 1))
  1764. goto out;
  1765. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1766. goto out;
  1767. if (alias->slot >= KVM_ALIAS_SLOTS)
  1768. goto out;
  1769. if (alias->guest_phys_addr + alias->memory_size
  1770. < alias->guest_phys_addr)
  1771. goto out;
  1772. if (alias->target_phys_addr + alias->memory_size
  1773. < alias->target_phys_addr)
  1774. goto out;
  1775. down_write(&kvm->slots_lock);
  1776. spin_lock(&kvm->mmu_lock);
  1777. p = &kvm->arch.aliases[alias->slot];
  1778. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1779. p->npages = alias->memory_size >> PAGE_SHIFT;
  1780. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1781. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1782. if (kvm->arch.aliases[n - 1].npages)
  1783. break;
  1784. kvm->arch.naliases = n;
  1785. spin_unlock(&kvm->mmu_lock);
  1786. kvm_mmu_zap_all(kvm);
  1787. up_write(&kvm->slots_lock);
  1788. return 0;
  1789. out:
  1790. return r;
  1791. }
  1792. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1793. {
  1794. int r;
  1795. r = 0;
  1796. switch (chip->chip_id) {
  1797. case KVM_IRQCHIP_PIC_MASTER:
  1798. memcpy(&chip->chip.pic,
  1799. &pic_irqchip(kvm)->pics[0],
  1800. sizeof(struct kvm_pic_state));
  1801. break;
  1802. case KVM_IRQCHIP_PIC_SLAVE:
  1803. memcpy(&chip->chip.pic,
  1804. &pic_irqchip(kvm)->pics[1],
  1805. sizeof(struct kvm_pic_state));
  1806. break;
  1807. case KVM_IRQCHIP_IOAPIC:
  1808. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1809. break;
  1810. default:
  1811. r = -EINVAL;
  1812. break;
  1813. }
  1814. return r;
  1815. }
  1816. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1817. {
  1818. int r;
  1819. r = 0;
  1820. switch (chip->chip_id) {
  1821. case KVM_IRQCHIP_PIC_MASTER:
  1822. spin_lock(&pic_irqchip(kvm)->lock);
  1823. memcpy(&pic_irqchip(kvm)->pics[0],
  1824. &chip->chip.pic,
  1825. sizeof(struct kvm_pic_state));
  1826. spin_unlock(&pic_irqchip(kvm)->lock);
  1827. break;
  1828. case KVM_IRQCHIP_PIC_SLAVE:
  1829. spin_lock(&pic_irqchip(kvm)->lock);
  1830. memcpy(&pic_irqchip(kvm)->pics[1],
  1831. &chip->chip.pic,
  1832. sizeof(struct kvm_pic_state));
  1833. spin_unlock(&pic_irqchip(kvm)->lock);
  1834. break;
  1835. case KVM_IRQCHIP_IOAPIC:
  1836. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  1837. break;
  1838. default:
  1839. r = -EINVAL;
  1840. break;
  1841. }
  1842. kvm_pic_update_irq(pic_irqchip(kvm));
  1843. return r;
  1844. }
  1845. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1846. {
  1847. int r = 0;
  1848. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1849. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1850. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1851. return r;
  1852. }
  1853. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1854. {
  1855. int r = 0;
  1856. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1857. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1858. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1859. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1860. return r;
  1861. }
  1862. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1863. {
  1864. int r = 0;
  1865. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1866. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1867. sizeof(ps->channels));
  1868. ps->flags = kvm->arch.vpit->pit_state.flags;
  1869. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1870. return r;
  1871. }
  1872. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1873. {
  1874. int r = 0, start = 0;
  1875. u32 prev_legacy, cur_legacy;
  1876. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1877. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1878. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1879. if (!prev_legacy && cur_legacy)
  1880. start = 1;
  1881. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1882. sizeof(kvm->arch.vpit->pit_state.channels));
  1883. kvm->arch.vpit->pit_state.flags = ps->flags;
  1884. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1885. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1886. return r;
  1887. }
  1888. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1889. struct kvm_reinject_control *control)
  1890. {
  1891. if (!kvm->arch.vpit)
  1892. return -ENXIO;
  1893. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1894. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1895. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1896. return 0;
  1897. }
  1898. /*
  1899. * Get (and clear) the dirty memory log for a memory slot.
  1900. */
  1901. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1902. struct kvm_dirty_log *log)
  1903. {
  1904. int r;
  1905. int n;
  1906. struct kvm_memory_slot *memslot;
  1907. int is_dirty = 0;
  1908. down_write(&kvm->slots_lock);
  1909. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1910. if (r)
  1911. goto out;
  1912. /* If nothing is dirty, don't bother messing with page tables. */
  1913. if (is_dirty) {
  1914. spin_lock(&kvm->mmu_lock);
  1915. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1916. spin_unlock(&kvm->mmu_lock);
  1917. memslot = &kvm->memslots[log->slot];
  1918. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1919. memset(memslot->dirty_bitmap, 0, n);
  1920. }
  1921. r = 0;
  1922. out:
  1923. up_write(&kvm->slots_lock);
  1924. return r;
  1925. }
  1926. long kvm_arch_vm_ioctl(struct file *filp,
  1927. unsigned int ioctl, unsigned long arg)
  1928. {
  1929. struct kvm *kvm = filp->private_data;
  1930. void __user *argp = (void __user *)arg;
  1931. int r = -ENOTTY;
  1932. /*
  1933. * This union makes it completely explicit to gcc-3.x
  1934. * that these two variables' stack usage should be
  1935. * combined, not added together.
  1936. */
  1937. union {
  1938. struct kvm_pit_state ps;
  1939. struct kvm_pit_state2 ps2;
  1940. struct kvm_memory_alias alias;
  1941. struct kvm_pit_config pit_config;
  1942. } u;
  1943. switch (ioctl) {
  1944. case KVM_SET_TSS_ADDR:
  1945. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1946. if (r < 0)
  1947. goto out;
  1948. break;
  1949. case KVM_SET_IDENTITY_MAP_ADDR: {
  1950. u64 ident_addr;
  1951. r = -EFAULT;
  1952. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  1953. goto out;
  1954. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  1955. if (r < 0)
  1956. goto out;
  1957. break;
  1958. }
  1959. case KVM_SET_MEMORY_REGION: {
  1960. struct kvm_memory_region kvm_mem;
  1961. struct kvm_userspace_memory_region kvm_userspace_mem;
  1962. r = -EFAULT;
  1963. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1964. goto out;
  1965. kvm_userspace_mem.slot = kvm_mem.slot;
  1966. kvm_userspace_mem.flags = kvm_mem.flags;
  1967. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1968. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1969. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1970. if (r)
  1971. goto out;
  1972. break;
  1973. }
  1974. case KVM_SET_NR_MMU_PAGES:
  1975. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1976. if (r)
  1977. goto out;
  1978. break;
  1979. case KVM_GET_NR_MMU_PAGES:
  1980. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1981. break;
  1982. case KVM_SET_MEMORY_ALIAS:
  1983. r = -EFAULT;
  1984. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1985. goto out;
  1986. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1987. if (r)
  1988. goto out;
  1989. break;
  1990. case KVM_CREATE_IRQCHIP:
  1991. r = -ENOMEM;
  1992. kvm->arch.vpic = kvm_create_pic(kvm);
  1993. if (kvm->arch.vpic) {
  1994. r = kvm_ioapic_init(kvm);
  1995. if (r) {
  1996. kfree(kvm->arch.vpic);
  1997. kvm->arch.vpic = NULL;
  1998. goto out;
  1999. }
  2000. } else
  2001. goto out;
  2002. r = kvm_setup_default_irq_routing(kvm);
  2003. if (r) {
  2004. kfree(kvm->arch.vpic);
  2005. kfree(kvm->arch.vioapic);
  2006. goto out;
  2007. }
  2008. break;
  2009. case KVM_CREATE_PIT:
  2010. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2011. goto create_pit;
  2012. case KVM_CREATE_PIT2:
  2013. r = -EFAULT;
  2014. if (copy_from_user(&u.pit_config, argp,
  2015. sizeof(struct kvm_pit_config)))
  2016. goto out;
  2017. create_pit:
  2018. down_write(&kvm->slots_lock);
  2019. r = -EEXIST;
  2020. if (kvm->arch.vpit)
  2021. goto create_pit_unlock;
  2022. r = -ENOMEM;
  2023. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2024. if (kvm->arch.vpit)
  2025. r = 0;
  2026. create_pit_unlock:
  2027. up_write(&kvm->slots_lock);
  2028. break;
  2029. case KVM_IRQ_LINE_STATUS:
  2030. case KVM_IRQ_LINE: {
  2031. struct kvm_irq_level irq_event;
  2032. r = -EFAULT;
  2033. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2034. goto out;
  2035. if (irqchip_in_kernel(kvm)) {
  2036. __s32 status;
  2037. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2038. irq_event.irq, irq_event.level);
  2039. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2040. irq_event.status = status;
  2041. if (copy_to_user(argp, &irq_event,
  2042. sizeof irq_event))
  2043. goto out;
  2044. }
  2045. r = 0;
  2046. }
  2047. break;
  2048. }
  2049. case KVM_GET_IRQCHIP: {
  2050. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2051. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2052. r = -ENOMEM;
  2053. if (!chip)
  2054. goto out;
  2055. r = -EFAULT;
  2056. if (copy_from_user(chip, argp, sizeof *chip))
  2057. goto get_irqchip_out;
  2058. r = -ENXIO;
  2059. if (!irqchip_in_kernel(kvm))
  2060. goto get_irqchip_out;
  2061. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2062. if (r)
  2063. goto get_irqchip_out;
  2064. r = -EFAULT;
  2065. if (copy_to_user(argp, chip, sizeof *chip))
  2066. goto get_irqchip_out;
  2067. r = 0;
  2068. get_irqchip_out:
  2069. kfree(chip);
  2070. if (r)
  2071. goto out;
  2072. break;
  2073. }
  2074. case KVM_SET_IRQCHIP: {
  2075. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2076. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2077. r = -ENOMEM;
  2078. if (!chip)
  2079. goto out;
  2080. r = -EFAULT;
  2081. if (copy_from_user(chip, argp, sizeof *chip))
  2082. goto set_irqchip_out;
  2083. r = -ENXIO;
  2084. if (!irqchip_in_kernel(kvm))
  2085. goto set_irqchip_out;
  2086. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2087. if (r)
  2088. goto set_irqchip_out;
  2089. r = 0;
  2090. set_irqchip_out:
  2091. kfree(chip);
  2092. if (r)
  2093. goto out;
  2094. break;
  2095. }
  2096. case KVM_GET_PIT: {
  2097. r = -EFAULT;
  2098. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2099. goto out;
  2100. r = -ENXIO;
  2101. if (!kvm->arch.vpit)
  2102. goto out;
  2103. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2104. if (r)
  2105. goto out;
  2106. r = -EFAULT;
  2107. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2108. goto out;
  2109. r = 0;
  2110. break;
  2111. }
  2112. case KVM_SET_PIT: {
  2113. r = -EFAULT;
  2114. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2115. goto out;
  2116. r = -ENXIO;
  2117. if (!kvm->arch.vpit)
  2118. goto out;
  2119. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2120. if (r)
  2121. goto out;
  2122. r = 0;
  2123. break;
  2124. }
  2125. case KVM_GET_PIT2: {
  2126. r = -ENXIO;
  2127. if (!kvm->arch.vpit)
  2128. goto out;
  2129. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2130. if (r)
  2131. goto out;
  2132. r = -EFAULT;
  2133. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2134. goto out;
  2135. r = 0;
  2136. break;
  2137. }
  2138. case KVM_SET_PIT2: {
  2139. r = -EFAULT;
  2140. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2141. goto out;
  2142. r = -ENXIO;
  2143. if (!kvm->arch.vpit)
  2144. goto out;
  2145. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2146. if (r)
  2147. goto out;
  2148. r = 0;
  2149. break;
  2150. }
  2151. case KVM_REINJECT_CONTROL: {
  2152. struct kvm_reinject_control control;
  2153. r = -EFAULT;
  2154. if (copy_from_user(&control, argp, sizeof(control)))
  2155. goto out;
  2156. r = kvm_vm_ioctl_reinject(kvm, &control);
  2157. if (r)
  2158. goto out;
  2159. r = 0;
  2160. break;
  2161. }
  2162. default:
  2163. ;
  2164. }
  2165. out:
  2166. return r;
  2167. }
  2168. static void kvm_init_msr_list(void)
  2169. {
  2170. u32 dummy[2];
  2171. unsigned i, j;
  2172. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2173. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2174. continue;
  2175. if (j < i)
  2176. msrs_to_save[j] = msrs_to_save[i];
  2177. j++;
  2178. }
  2179. num_msrs_to_save = j;
  2180. }
  2181. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2182. const void *v)
  2183. {
  2184. if (vcpu->arch.apic &&
  2185. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2186. return 0;
  2187. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2188. }
  2189. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2190. {
  2191. if (vcpu->arch.apic &&
  2192. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2193. return 0;
  2194. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2195. }
  2196. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2197. struct kvm_vcpu *vcpu)
  2198. {
  2199. void *data = val;
  2200. int r = X86EMUL_CONTINUE;
  2201. while (bytes) {
  2202. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2203. unsigned offset = addr & (PAGE_SIZE-1);
  2204. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2205. int ret;
  2206. if (gpa == UNMAPPED_GVA) {
  2207. r = X86EMUL_PROPAGATE_FAULT;
  2208. goto out;
  2209. }
  2210. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2211. if (ret < 0) {
  2212. r = X86EMUL_UNHANDLEABLE;
  2213. goto out;
  2214. }
  2215. bytes -= toread;
  2216. data += toread;
  2217. addr += toread;
  2218. }
  2219. out:
  2220. return r;
  2221. }
  2222. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2223. struct kvm_vcpu *vcpu)
  2224. {
  2225. void *data = val;
  2226. int r = X86EMUL_CONTINUE;
  2227. while (bytes) {
  2228. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2229. unsigned offset = addr & (PAGE_SIZE-1);
  2230. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2231. int ret;
  2232. if (gpa == UNMAPPED_GVA) {
  2233. r = X86EMUL_PROPAGATE_FAULT;
  2234. goto out;
  2235. }
  2236. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2237. if (ret < 0) {
  2238. r = X86EMUL_UNHANDLEABLE;
  2239. goto out;
  2240. }
  2241. bytes -= towrite;
  2242. data += towrite;
  2243. addr += towrite;
  2244. }
  2245. out:
  2246. return r;
  2247. }
  2248. static int emulator_read_emulated(unsigned long addr,
  2249. void *val,
  2250. unsigned int bytes,
  2251. struct kvm_vcpu *vcpu)
  2252. {
  2253. gpa_t gpa;
  2254. if (vcpu->mmio_read_completed) {
  2255. memcpy(val, vcpu->mmio_data, bytes);
  2256. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2257. vcpu->mmio_phys_addr, *(u64 *)val);
  2258. vcpu->mmio_read_completed = 0;
  2259. return X86EMUL_CONTINUE;
  2260. }
  2261. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2262. /* For APIC access vmexit */
  2263. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2264. goto mmio;
  2265. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2266. == X86EMUL_CONTINUE)
  2267. return X86EMUL_CONTINUE;
  2268. if (gpa == UNMAPPED_GVA)
  2269. return X86EMUL_PROPAGATE_FAULT;
  2270. mmio:
  2271. /*
  2272. * Is this MMIO handled locally?
  2273. */
  2274. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2275. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2276. return X86EMUL_CONTINUE;
  2277. }
  2278. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2279. vcpu->mmio_needed = 1;
  2280. vcpu->mmio_phys_addr = gpa;
  2281. vcpu->mmio_size = bytes;
  2282. vcpu->mmio_is_write = 0;
  2283. return X86EMUL_UNHANDLEABLE;
  2284. }
  2285. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2286. const void *val, int bytes)
  2287. {
  2288. int ret;
  2289. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2290. if (ret < 0)
  2291. return 0;
  2292. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2293. return 1;
  2294. }
  2295. static int emulator_write_emulated_onepage(unsigned long addr,
  2296. const void *val,
  2297. unsigned int bytes,
  2298. struct kvm_vcpu *vcpu)
  2299. {
  2300. gpa_t gpa;
  2301. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2302. if (gpa == UNMAPPED_GVA) {
  2303. kvm_inject_page_fault(vcpu, addr, 2);
  2304. return X86EMUL_PROPAGATE_FAULT;
  2305. }
  2306. /* For APIC access vmexit */
  2307. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2308. goto mmio;
  2309. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2310. return X86EMUL_CONTINUE;
  2311. mmio:
  2312. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2313. /*
  2314. * Is this MMIO handled locally?
  2315. */
  2316. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2317. return X86EMUL_CONTINUE;
  2318. vcpu->mmio_needed = 1;
  2319. vcpu->mmio_phys_addr = gpa;
  2320. vcpu->mmio_size = bytes;
  2321. vcpu->mmio_is_write = 1;
  2322. memcpy(vcpu->mmio_data, val, bytes);
  2323. return X86EMUL_CONTINUE;
  2324. }
  2325. int emulator_write_emulated(unsigned long addr,
  2326. const void *val,
  2327. unsigned int bytes,
  2328. struct kvm_vcpu *vcpu)
  2329. {
  2330. /* Crossing a page boundary? */
  2331. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2332. int rc, now;
  2333. now = -addr & ~PAGE_MASK;
  2334. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2335. if (rc != X86EMUL_CONTINUE)
  2336. return rc;
  2337. addr += now;
  2338. val += now;
  2339. bytes -= now;
  2340. }
  2341. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2342. }
  2343. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2344. static int emulator_cmpxchg_emulated(unsigned long addr,
  2345. const void *old,
  2346. const void *new,
  2347. unsigned int bytes,
  2348. struct kvm_vcpu *vcpu)
  2349. {
  2350. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2351. #ifndef CONFIG_X86_64
  2352. /* guests cmpxchg8b have to be emulated atomically */
  2353. if (bytes == 8) {
  2354. gpa_t gpa;
  2355. struct page *page;
  2356. char *kaddr;
  2357. u64 val;
  2358. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2359. if (gpa == UNMAPPED_GVA ||
  2360. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2361. goto emul_write;
  2362. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2363. goto emul_write;
  2364. val = *(u64 *)new;
  2365. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2366. kaddr = kmap_atomic(page, KM_USER0);
  2367. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2368. kunmap_atomic(kaddr, KM_USER0);
  2369. kvm_release_page_dirty(page);
  2370. }
  2371. emul_write:
  2372. #endif
  2373. return emulator_write_emulated(addr, new, bytes, vcpu);
  2374. }
  2375. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2376. {
  2377. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2378. }
  2379. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2380. {
  2381. kvm_mmu_invlpg(vcpu, address);
  2382. return X86EMUL_CONTINUE;
  2383. }
  2384. int emulate_clts(struct kvm_vcpu *vcpu)
  2385. {
  2386. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2387. return X86EMUL_CONTINUE;
  2388. }
  2389. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2390. {
  2391. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2392. switch (dr) {
  2393. case 0 ... 3:
  2394. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2395. return X86EMUL_CONTINUE;
  2396. default:
  2397. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2398. return X86EMUL_UNHANDLEABLE;
  2399. }
  2400. }
  2401. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2402. {
  2403. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2404. int exception;
  2405. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2406. if (exception) {
  2407. /* FIXME: better handling */
  2408. return X86EMUL_UNHANDLEABLE;
  2409. }
  2410. return X86EMUL_CONTINUE;
  2411. }
  2412. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2413. {
  2414. u8 opcodes[4];
  2415. unsigned long rip = kvm_rip_read(vcpu);
  2416. unsigned long rip_linear;
  2417. if (!printk_ratelimit())
  2418. return;
  2419. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2420. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2421. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2422. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2423. }
  2424. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2425. static struct x86_emulate_ops emulate_ops = {
  2426. .read_std = kvm_read_guest_virt,
  2427. .read_emulated = emulator_read_emulated,
  2428. .write_emulated = emulator_write_emulated,
  2429. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2430. };
  2431. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2432. {
  2433. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2434. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2435. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2436. vcpu->arch.regs_dirty = ~0;
  2437. }
  2438. int emulate_instruction(struct kvm_vcpu *vcpu,
  2439. unsigned long cr2,
  2440. u16 error_code,
  2441. int emulation_type)
  2442. {
  2443. int r, shadow_mask;
  2444. struct decode_cache *c;
  2445. struct kvm_run *run = vcpu->run;
  2446. kvm_clear_exception_queue(vcpu);
  2447. vcpu->arch.mmio_fault_cr2 = cr2;
  2448. /*
  2449. * TODO: fix emulate.c to use guest_read/write_register
  2450. * instead of direct ->regs accesses, can save hundred cycles
  2451. * on Intel for instructions that don't read/change RSP, for
  2452. * for example.
  2453. */
  2454. cache_all_regs(vcpu);
  2455. vcpu->mmio_is_write = 0;
  2456. vcpu->arch.pio.string = 0;
  2457. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2458. int cs_db, cs_l;
  2459. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2460. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2461. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2462. vcpu->arch.emulate_ctxt.mode =
  2463. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2464. ? X86EMUL_MODE_REAL : cs_l
  2465. ? X86EMUL_MODE_PROT64 : cs_db
  2466. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2467. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2468. /* Only allow emulation of specific instructions on #UD
  2469. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2470. c = &vcpu->arch.emulate_ctxt.decode;
  2471. if (emulation_type & EMULTYPE_TRAP_UD) {
  2472. if (!c->twobyte)
  2473. return EMULATE_FAIL;
  2474. switch (c->b) {
  2475. case 0x01: /* VMMCALL */
  2476. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2477. return EMULATE_FAIL;
  2478. break;
  2479. case 0x34: /* sysenter */
  2480. case 0x35: /* sysexit */
  2481. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2482. return EMULATE_FAIL;
  2483. break;
  2484. case 0x05: /* syscall */
  2485. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2486. return EMULATE_FAIL;
  2487. break;
  2488. default:
  2489. return EMULATE_FAIL;
  2490. }
  2491. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2492. return EMULATE_FAIL;
  2493. }
  2494. ++vcpu->stat.insn_emulation;
  2495. if (r) {
  2496. ++vcpu->stat.insn_emulation_fail;
  2497. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2498. return EMULATE_DONE;
  2499. return EMULATE_FAIL;
  2500. }
  2501. }
  2502. if (emulation_type & EMULTYPE_SKIP) {
  2503. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2504. return EMULATE_DONE;
  2505. }
  2506. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2507. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2508. if (r == 0)
  2509. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2510. if (vcpu->arch.pio.string)
  2511. return EMULATE_DO_MMIO;
  2512. if ((r || vcpu->mmio_is_write) && run) {
  2513. run->exit_reason = KVM_EXIT_MMIO;
  2514. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2515. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2516. run->mmio.len = vcpu->mmio_size;
  2517. run->mmio.is_write = vcpu->mmio_is_write;
  2518. }
  2519. if (r) {
  2520. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2521. return EMULATE_DONE;
  2522. if (!vcpu->mmio_needed) {
  2523. kvm_report_emulation_failure(vcpu, "mmio");
  2524. return EMULATE_FAIL;
  2525. }
  2526. return EMULATE_DO_MMIO;
  2527. }
  2528. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2529. if (vcpu->mmio_is_write) {
  2530. vcpu->mmio_needed = 0;
  2531. return EMULATE_DO_MMIO;
  2532. }
  2533. return EMULATE_DONE;
  2534. }
  2535. EXPORT_SYMBOL_GPL(emulate_instruction);
  2536. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2537. {
  2538. void *p = vcpu->arch.pio_data;
  2539. gva_t q = vcpu->arch.pio.guest_gva;
  2540. unsigned bytes;
  2541. int ret;
  2542. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2543. if (vcpu->arch.pio.in)
  2544. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2545. else
  2546. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2547. return ret;
  2548. }
  2549. int complete_pio(struct kvm_vcpu *vcpu)
  2550. {
  2551. struct kvm_pio_request *io = &vcpu->arch.pio;
  2552. long delta;
  2553. int r;
  2554. unsigned long val;
  2555. if (!io->string) {
  2556. if (io->in) {
  2557. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2558. memcpy(&val, vcpu->arch.pio_data, io->size);
  2559. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2560. }
  2561. } else {
  2562. if (io->in) {
  2563. r = pio_copy_data(vcpu);
  2564. if (r)
  2565. return r;
  2566. }
  2567. delta = 1;
  2568. if (io->rep) {
  2569. delta *= io->cur_count;
  2570. /*
  2571. * The size of the register should really depend on
  2572. * current address size.
  2573. */
  2574. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2575. val -= delta;
  2576. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2577. }
  2578. if (io->down)
  2579. delta = -delta;
  2580. delta *= io->size;
  2581. if (io->in) {
  2582. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2583. val += delta;
  2584. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2585. } else {
  2586. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2587. val += delta;
  2588. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2589. }
  2590. }
  2591. io->count -= io->cur_count;
  2592. io->cur_count = 0;
  2593. return 0;
  2594. }
  2595. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2596. {
  2597. /* TODO: String I/O for in kernel device */
  2598. int r;
  2599. if (vcpu->arch.pio.in)
  2600. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2601. vcpu->arch.pio.size, pd);
  2602. else
  2603. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2604. vcpu->arch.pio.size, pd);
  2605. return r;
  2606. }
  2607. static int pio_string_write(struct kvm_vcpu *vcpu)
  2608. {
  2609. struct kvm_pio_request *io = &vcpu->arch.pio;
  2610. void *pd = vcpu->arch.pio_data;
  2611. int i, r = 0;
  2612. for (i = 0; i < io->cur_count; i++) {
  2613. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2614. io->port, io->size, pd)) {
  2615. r = -EOPNOTSUPP;
  2616. break;
  2617. }
  2618. pd += io->size;
  2619. }
  2620. return r;
  2621. }
  2622. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2623. {
  2624. unsigned long val;
  2625. vcpu->run->exit_reason = KVM_EXIT_IO;
  2626. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2627. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2628. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2629. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2630. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2631. vcpu->arch.pio.in = in;
  2632. vcpu->arch.pio.string = 0;
  2633. vcpu->arch.pio.down = 0;
  2634. vcpu->arch.pio.rep = 0;
  2635. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2636. size, 1);
  2637. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2638. memcpy(vcpu->arch.pio_data, &val, 4);
  2639. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2640. complete_pio(vcpu);
  2641. return 1;
  2642. }
  2643. return 0;
  2644. }
  2645. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2646. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2647. int size, unsigned long count, int down,
  2648. gva_t address, int rep, unsigned port)
  2649. {
  2650. unsigned now, in_page;
  2651. int ret = 0;
  2652. vcpu->run->exit_reason = KVM_EXIT_IO;
  2653. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2654. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2655. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2656. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2657. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2658. vcpu->arch.pio.in = in;
  2659. vcpu->arch.pio.string = 1;
  2660. vcpu->arch.pio.down = down;
  2661. vcpu->arch.pio.rep = rep;
  2662. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2663. size, count);
  2664. if (!count) {
  2665. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2666. return 1;
  2667. }
  2668. if (!down)
  2669. in_page = PAGE_SIZE - offset_in_page(address);
  2670. else
  2671. in_page = offset_in_page(address) + size;
  2672. now = min(count, (unsigned long)in_page / size);
  2673. if (!now)
  2674. now = 1;
  2675. if (down) {
  2676. /*
  2677. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2678. */
  2679. pr_unimpl(vcpu, "guest string pio down\n");
  2680. kvm_inject_gp(vcpu, 0);
  2681. return 1;
  2682. }
  2683. vcpu->run->io.count = now;
  2684. vcpu->arch.pio.cur_count = now;
  2685. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2686. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2687. vcpu->arch.pio.guest_gva = address;
  2688. if (!vcpu->arch.pio.in) {
  2689. /* string PIO write */
  2690. ret = pio_copy_data(vcpu);
  2691. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2692. kvm_inject_gp(vcpu, 0);
  2693. return 1;
  2694. }
  2695. if (ret == 0 && !pio_string_write(vcpu)) {
  2696. complete_pio(vcpu);
  2697. if (vcpu->arch.pio.count == 0)
  2698. ret = 1;
  2699. }
  2700. }
  2701. /* no string PIO read support yet */
  2702. return ret;
  2703. }
  2704. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2705. static void bounce_off(void *info)
  2706. {
  2707. /* nothing */
  2708. }
  2709. static unsigned int ref_freq;
  2710. static unsigned long tsc_khz_ref;
  2711. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2712. void *data)
  2713. {
  2714. struct cpufreq_freqs *freq = data;
  2715. struct kvm *kvm;
  2716. struct kvm_vcpu *vcpu;
  2717. int i, send_ipi = 0;
  2718. if (!ref_freq)
  2719. ref_freq = freq->old;
  2720. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2721. return 0;
  2722. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2723. return 0;
  2724. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2725. spin_lock(&kvm_lock);
  2726. list_for_each_entry(kvm, &vm_list, vm_list) {
  2727. kvm_for_each_vcpu(i, vcpu, kvm) {
  2728. if (vcpu->cpu != freq->cpu)
  2729. continue;
  2730. if (!kvm_request_guest_time_update(vcpu))
  2731. continue;
  2732. if (vcpu->cpu != smp_processor_id())
  2733. send_ipi++;
  2734. }
  2735. }
  2736. spin_unlock(&kvm_lock);
  2737. if (freq->old < freq->new && send_ipi) {
  2738. /*
  2739. * We upscale the frequency. Must make the guest
  2740. * doesn't see old kvmclock values while running with
  2741. * the new frequency, otherwise we risk the guest sees
  2742. * time go backwards.
  2743. *
  2744. * In case we update the frequency for another cpu
  2745. * (which might be in guest context) send an interrupt
  2746. * to kick the cpu out of guest context. Next time
  2747. * guest context is entered kvmclock will be updated,
  2748. * so the guest will not see stale values.
  2749. */
  2750. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2751. }
  2752. return 0;
  2753. }
  2754. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2755. .notifier_call = kvmclock_cpufreq_notifier
  2756. };
  2757. int kvm_arch_init(void *opaque)
  2758. {
  2759. int r, cpu;
  2760. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2761. if (kvm_x86_ops) {
  2762. printk(KERN_ERR "kvm: already loaded the other module\n");
  2763. r = -EEXIST;
  2764. goto out;
  2765. }
  2766. if (!ops->cpu_has_kvm_support()) {
  2767. printk(KERN_ERR "kvm: no hardware support\n");
  2768. r = -EOPNOTSUPP;
  2769. goto out;
  2770. }
  2771. if (ops->disabled_by_bios()) {
  2772. printk(KERN_ERR "kvm: disabled by bios\n");
  2773. r = -EOPNOTSUPP;
  2774. goto out;
  2775. }
  2776. r = kvm_mmu_module_init();
  2777. if (r)
  2778. goto out;
  2779. kvm_init_msr_list();
  2780. kvm_x86_ops = ops;
  2781. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2782. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2783. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2784. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2785. for_each_possible_cpu(cpu)
  2786. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2787. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2788. tsc_khz_ref = tsc_khz;
  2789. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2790. CPUFREQ_TRANSITION_NOTIFIER);
  2791. }
  2792. return 0;
  2793. out:
  2794. return r;
  2795. }
  2796. void kvm_arch_exit(void)
  2797. {
  2798. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2799. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2800. CPUFREQ_TRANSITION_NOTIFIER);
  2801. kvm_x86_ops = NULL;
  2802. kvm_mmu_module_exit();
  2803. }
  2804. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2805. {
  2806. ++vcpu->stat.halt_exits;
  2807. if (irqchip_in_kernel(vcpu->kvm)) {
  2808. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2809. return 1;
  2810. } else {
  2811. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2812. return 0;
  2813. }
  2814. }
  2815. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2816. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2817. unsigned long a1)
  2818. {
  2819. if (is_long_mode(vcpu))
  2820. return a0;
  2821. else
  2822. return a0 | ((gpa_t)a1 << 32);
  2823. }
  2824. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2825. {
  2826. unsigned long nr, a0, a1, a2, a3, ret;
  2827. int r = 1;
  2828. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2829. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2830. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2831. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2832. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2833. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2834. if (!is_long_mode(vcpu)) {
  2835. nr &= 0xFFFFFFFF;
  2836. a0 &= 0xFFFFFFFF;
  2837. a1 &= 0xFFFFFFFF;
  2838. a2 &= 0xFFFFFFFF;
  2839. a3 &= 0xFFFFFFFF;
  2840. }
  2841. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  2842. ret = -KVM_EPERM;
  2843. goto out;
  2844. }
  2845. switch (nr) {
  2846. case KVM_HC_VAPIC_POLL_IRQ:
  2847. ret = 0;
  2848. break;
  2849. case KVM_HC_MMU_OP:
  2850. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2851. break;
  2852. default:
  2853. ret = -KVM_ENOSYS;
  2854. break;
  2855. }
  2856. out:
  2857. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2858. ++vcpu->stat.hypercalls;
  2859. return r;
  2860. }
  2861. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2862. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2863. {
  2864. char instruction[3];
  2865. int ret = 0;
  2866. unsigned long rip = kvm_rip_read(vcpu);
  2867. /*
  2868. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2869. * to ensure that the updated hypercall appears atomically across all
  2870. * VCPUs.
  2871. */
  2872. kvm_mmu_zap_all(vcpu->kvm);
  2873. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2874. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2875. != X86EMUL_CONTINUE)
  2876. ret = -EFAULT;
  2877. return ret;
  2878. }
  2879. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2880. {
  2881. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2882. }
  2883. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2884. {
  2885. struct descriptor_table dt = { limit, base };
  2886. kvm_x86_ops->set_gdt(vcpu, &dt);
  2887. }
  2888. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2889. {
  2890. struct descriptor_table dt = { limit, base };
  2891. kvm_x86_ops->set_idt(vcpu, &dt);
  2892. }
  2893. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2894. unsigned long *rflags)
  2895. {
  2896. kvm_lmsw(vcpu, msw);
  2897. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2898. }
  2899. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2900. {
  2901. unsigned long value;
  2902. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2903. switch (cr) {
  2904. case 0:
  2905. value = vcpu->arch.cr0;
  2906. break;
  2907. case 2:
  2908. value = vcpu->arch.cr2;
  2909. break;
  2910. case 3:
  2911. value = vcpu->arch.cr3;
  2912. break;
  2913. case 4:
  2914. value = vcpu->arch.cr4;
  2915. break;
  2916. case 8:
  2917. value = kvm_get_cr8(vcpu);
  2918. break;
  2919. default:
  2920. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2921. return 0;
  2922. }
  2923. return value;
  2924. }
  2925. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2926. unsigned long *rflags)
  2927. {
  2928. switch (cr) {
  2929. case 0:
  2930. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2931. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2932. break;
  2933. case 2:
  2934. vcpu->arch.cr2 = val;
  2935. break;
  2936. case 3:
  2937. kvm_set_cr3(vcpu, val);
  2938. break;
  2939. case 4:
  2940. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2941. break;
  2942. case 8:
  2943. kvm_set_cr8(vcpu, val & 0xfUL);
  2944. break;
  2945. default:
  2946. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2947. }
  2948. }
  2949. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2950. {
  2951. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2952. int j, nent = vcpu->arch.cpuid_nent;
  2953. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2954. /* when no next entry is found, the current entry[i] is reselected */
  2955. for (j = i + 1; ; j = (j + 1) % nent) {
  2956. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2957. if (ej->function == e->function) {
  2958. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2959. return j;
  2960. }
  2961. }
  2962. return 0; /* silence gcc, even though control never reaches here */
  2963. }
  2964. /* find an entry with matching function, matching index (if needed), and that
  2965. * should be read next (if it's stateful) */
  2966. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2967. u32 function, u32 index)
  2968. {
  2969. if (e->function != function)
  2970. return 0;
  2971. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2972. return 0;
  2973. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2974. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2975. return 0;
  2976. return 1;
  2977. }
  2978. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2979. u32 function, u32 index)
  2980. {
  2981. int i;
  2982. struct kvm_cpuid_entry2 *best = NULL;
  2983. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2984. struct kvm_cpuid_entry2 *e;
  2985. e = &vcpu->arch.cpuid_entries[i];
  2986. if (is_matching_cpuid_entry(e, function, index)) {
  2987. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2988. move_to_next_stateful_cpuid_entry(vcpu, i);
  2989. best = e;
  2990. break;
  2991. }
  2992. /*
  2993. * Both basic or both extended?
  2994. */
  2995. if (((e->function ^ function) & 0x80000000) == 0)
  2996. if (!best || e->function > best->function)
  2997. best = e;
  2998. }
  2999. return best;
  3000. }
  3001. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3002. {
  3003. struct kvm_cpuid_entry2 *best;
  3004. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3005. if (best)
  3006. return best->eax & 0xff;
  3007. return 36;
  3008. }
  3009. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3010. {
  3011. u32 function, index;
  3012. struct kvm_cpuid_entry2 *best;
  3013. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3014. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3015. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3016. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3017. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3018. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3019. best = kvm_find_cpuid_entry(vcpu, function, index);
  3020. if (best) {
  3021. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3022. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3023. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3024. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3025. }
  3026. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3027. trace_kvm_cpuid(function,
  3028. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3029. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3030. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3031. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3032. }
  3033. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3034. /*
  3035. * Check if userspace requested an interrupt window, and that the
  3036. * interrupt window is open.
  3037. *
  3038. * No need to exit to userspace if we already have an interrupt queued.
  3039. */
  3040. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3041. {
  3042. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3043. vcpu->run->request_interrupt_window &&
  3044. kvm_arch_interrupt_allowed(vcpu));
  3045. }
  3046. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3047. {
  3048. struct kvm_run *kvm_run = vcpu->run;
  3049. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3050. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3051. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3052. if (irqchip_in_kernel(vcpu->kvm))
  3053. kvm_run->ready_for_interrupt_injection = 1;
  3054. else
  3055. kvm_run->ready_for_interrupt_injection =
  3056. kvm_arch_interrupt_allowed(vcpu) &&
  3057. !kvm_cpu_has_interrupt(vcpu) &&
  3058. !kvm_event_needs_reinjection(vcpu);
  3059. }
  3060. static void vapic_enter(struct kvm_vcpu *vcpu)
  3061. {
  3062. struct kvm_lapic *apic = vcpu->arch.apic;
  3063. struct page *page;
  3064. if (!apic || !apic->vapic_addr)
  3065. return;
  3066. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3067. vcpu->arch.apic->vapic_page = page;
  3068. }
  3069. static void vapic_exit(struct kvm_vcpu *vcpu)
  3070. {
  3071. struct kvm_lapic *apic = vcpu->arch.apic;
  3072. if (!apic || !apic->vapic_addr)
  3073. return;
  3074. down_read(&vcpu->kvm->slots_lock);
  3075. kvm_release_page_dirty(apic->vapic_page);
  3076. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3077. up_read(&vcpu->kvm->slots_lock);
  3078. }
  3079. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3080. {
  3081. int max_irr, tpr;
  3082. if (!kvm_x86_ops->update_cr8_intercept)
  3083. return;
  3084. if (!vcpu->arch.apic)
  3085. return;
  3086. if (!vcpu->arch.apic->vapic_addr)
  3087. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3088. else
  3089. max_irr = -1;
  3090. if (max_irr != -1)
  3091. max_irr >>= 4;
  3092. tpr = kvm_lapic_get_cr8(vcpu);
  3093. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3094. }
  3095. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3096. {
  3097. /* try to reinject previous events if any */
  3098. if (vcpu->arch.exception.pending) {
  3099. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3100. vcpu->arch.exception.has_error_code,
  3101. vcpu->arch.exception.error_code);
  3102. return;
  3103. }
  3104. if (vcpu->arch.nmi_injected) {
  3105. kvm_x86_ops->set_nmi(vcpu);
  3106. return;
  3107. }
  3108. if (vcpu->arch.interrupt.pending) {
  3109. kvm_x86_ops->set_irq(vcpu);
  3110. return;
  3111. }
  3112. /* try to inject new event if pending */
  3113. if (vcpu->arch.nmi_pending) {
  3114. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3115. vcpu->arch.nmi_pending = false;
  3116. vcpu->arch.nmi_injected = true;
  3117. kvm_x86_ops->set_nmi(vcpu);
  3118. }
  3119. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3120. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3121. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3122. false);
  3123. kvm_x86_ops->set_irq(vcpu);
  3124. }
  3125. }
  3126. }
  3127. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3128. {
  3129. int r;
  3130. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3131. vcpu->run->request_interrupt_window;
  3132. if (vcpu->requests)
  3133. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3134. kvm_mmu_unload(vcpu);
  3135. r = kvm_mmu_reload(vcpu);
  3136. if (unlikely(r))
  3137. goto out;
  3138. if (vcpu->requests) {
  3139. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3140. __kvm_migrate_timers(vcpu);
  3141. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3142. kvm_write_guest_time(vcpu);
  3143. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3144. kvm_mmu_sync_roots(vcpu);
  3145. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3146. kvm_x86_ops->tlb_flush(vcpu);
  3147. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3148. &vcpu->requests)) {
  3149. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3150. r = 0;
  3151. goto out;
  3152. }
  3153. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3154. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3155. r = 0;
  3156. goto out;
  3157. }
  3158. }
  3159. preempt_disable();
  3160. kvm_x86_ops->prepare_guest_switch(vcpu);
  3161. kvm_load_guest_fpu(vcpu);
  3162. local_irq_disable();
  3163. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3164. smp_mb__after_clear_bit();
  3165. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3166. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3167. local_irq_enable();
  3168. preempt_enable();
  3169. r = 1;
  3170. goto out;
  3171. }
  3172. inject_pending_event(vcpu);
  3173. /* enable NMI/IRQ window open exits if needed */
  3174. if (vcpu->arch.nmi_pending)
  3175. kvm_x86_ops->enable_nmi_window(vcpu);
  3176. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3177. kvm_x86_ops->enable_irq_window(vcpu);
  3178. if (kvm_lapic_enabled(vcpu)) {
  3179. update_cr8_intercept(vcpu);
  3180. kvm_lapic_sync_to_vapic(vcpu);
  3181. }
  3182. up_read(&vcpu->kvm->slots_lock);
  3183. kvm_guest_enter();
  3184. if (unlikely(vcpu->arch.switch_db_regs)) {
  3185. set_debugreg(0, 7);
  3186. set_debugreg(vcpu->arch.eff_db[0], 0);
  3187. set_debugreg(vcpu->arch.eff_db[1], 1);
  3188. set_debugreg(vcpu->arch.eff_db[2], 2);
  3189. set_debugreg(vcpu->arch.eff_db[3], 3);
  3190. }
  3191. trace_kvm_entry(vcpu->vcpu_id);
  3192. kvm_x86_ops->run(vcpu);
  3193. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3194. set_debugreg(current->thread.debugreg0, 0);
  3195. set_debugreg(current->thread.debugreg1, 1);
  3196. set_debugreg(current->thread.debugreg2, 2);
  3197. set_debugreg(current->thread.debugreg3, 3);
  3198. set_debugreg(current->thread.debugreg6, 6);
  3199. set_debugreg(current->thread.debugreg7, 7);
  3200. }
  3201. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3202. local_irq_enable();
  3203. ++vcpu->stat.exits;
  3204. /*
  3205. * We must have an instruction between local_irq_enable() and
  3206. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3207. * the interrupt shadow. The stat.exits increment will do nicely.
  3208. * But we need to prevent reordering, hence this barrier():
  3209. */
  3210. barrier();
  3211. kvm_guest_exit();
  3212. preempt_enable();
  3213. down_read(&vcpu->kvm->slots_lock);
  3214. /*
  3215. * Profile KVM exit RIPs:
  3216. */
  3217. if (unlikely(prof_on == KVM_PROFILING)) {
  3218. unsigned long rip = kvm_rip_read(vcpu);
  3219. profile_hit(KVM_PROFILING, (void *)rip);
  3220. }
  3221. kvm_lapic_sync_from_vapic(vcpu);
  3222. r = kvm_x86_ops->handle_exit(vcpu);
  3223. out:
  3224. return r;
  3225. }
  3226. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3227. {
  3228. int r;
  3229. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3230. pr_debug("vcpu %d received sipi with vector # %x\n",
  3231. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3232. kvm_lapic_reset(vcpu);
  3233. r = kvm_arch_vcpu_reset(vcpu);
  3234. if (r)
  3235. return r;
  3236. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3237. }
  3238. down_read(&vcpu->kvm->slots_lock);
  3239. vapic_enter(vcpu);
  3240. r = 1;
  3241. while (r > 0) {
  3242. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3243. r = vcpu_enter_guest(vcpu);
  3244. else {
  3245. up_read(&vcpu->kvm->slots_lock);
  3246. kvm_vcpu_block(vcpu);
  3247. down_read(&vcpu->kvm->slots_lock);
  3248. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3249. {
  3250. switch(vcpu->arch.mp_state) {
  3251. case KVM_MP_STATE_HALTED:
  3252. vcpu->arch.mp_state =
  3253. KVM_MP_STATE_RUNNABLE;
  3254. case KVM_MP_STATE_RUNNABLE:
  3255. break;
  3256. case KVM_MP_STATE_SIPI_RECEIVED:
  3257. default:
  3258. r = -EINTR;
  3259. break;
  3260. }
  3261. }
  3262. }
  3263. if (r <= 0)
  3264. break;
  3265. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3266. if (kvm_cpu_has_pending_timer(vcpu))
  3267. kvm_inject_pending_timer_irqs(vcpu);
  3268. if (dm_request_for_irq_injection(vcpu)) {
  3269. r = -EINTR;
  3270. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3271. ++vcpu->stat.request_irq_exits;
  3272. }
  3273. if (signal_pending(current)) {
  3274. r = -EINTR;
  3275. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3276. ++vcpu->stat.signal_exits;
  3277. }
  3278. if (need_resched()) {
  3279. up_read(&vcpu->kvm->slots_lock);
  3280. kvm_resched(vcpu);
  3281. down_read(&vcpu->kvm->slots_lock);
  3282. }
  3283. }
  3284. up_read(&vcpu->kvm->slots_lock);
  3285. post_kvm_run_save(vcpu);
  3286. vapic_exit(vcpu);
  3287. return r;
  3288. }
  3289. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3290. {
  3291. int r;
  3292. sigset_t sigsaved;
  3293. vcpu_load(vcpu);
  3294. if (vcpu->sigset_active)
  3295. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3296. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3297. kvm_vcpu_block(vcpu);
  3298. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3299. r = -EAGAIN;
  3300. goto out;
  3301. }
  3302. /* re-sync apic's tpr */
  3303. if (!irqchip_in_kernel(vcpu->kvm))
  3304. kvm_set_cr8(vcpu, kvm_run->cr8);
  3305. if (vcpu->arch.pio.cur_count) {
  3306. r = complete_pio(vcpu);
  3307. if (r)
  3308. goto out;
  3309. }
  3310. #if CONFIG_HAS_IOMEM
  3311. if (vcpu->mmio_needed) {
  3312. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3313. vcpu->mmio_read_completed = 1;
  3314. vcpu->mmio_needed = 0;
  3315. down_read(&vcpu->kvm->slots_lock);
  3316. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3317. EMULTYPE_NO_DECODE);
  3318. up_read(&vcpu->kvm->slots_lock);
  3319. if (r == EMULATE_DO_MMIO) {
  3320. /*
  3321. * Read-modify-write. Back to userspace.
  3322. */
  3323. r = 0;
  3324. goto out;
  3325. }
  3326. }
  3327. #endif
  3328. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3329. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3330. kvm_run->hypercall.ret);
  3331. r = __vcpu_run(vcpu);
  3332. out:
  3333. if (vcpu->sigset_active)
  3334. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3335. vcpu_put(vcpu);
  3336. return r;
  3337. }
  3338. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3339. {
  3340. vcpu_load(vcpu);
  3341. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3342. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3343. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3344. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3345. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3346. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3347. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3348. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3349. #ifdef CONFIG_X86_64
  3350. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3351. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3352. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3353. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3354. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3355. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3356. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3357. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3358. #endif
  3359. regs->rip = kvm_rip_read(vcpu);
  3360. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3361. /*
  3362. * Don't leak debug flags in case they were set for guest debugging
  3363. */
  3364. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3365. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3366. vcpu_put(vcpu);
  3367. return 0;
  3368. }
  3369. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3370. {
  3371. vcpu_load(vcpu);
  3372. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3373. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3374. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3375. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3376. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3377. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3378. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3379. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3380. #ifdef CONFIG_X86_64
  3381. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3382. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3383. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3384. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3385. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3386. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3387. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3388. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3389. #endif
  3390. kvm_rip_write(vcpu, regs->rip);
  3391. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3392. vcpu->arch.exception.pending = false;
  3393. vcpu_put(vcpu);
  3394. return 0;
  3395. }
  3396. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3397. struct kvm_segment *var, int seg)
  3398. {
  3399. kvm_x86_ops->get_segment(vcpu, var, seg);
  3400. }
  3401. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3402. {
  3403. struct kvm_segment cs;
  3404. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3405. *db = cs.db;
  3406. *l = cs.l;
  3407. }
  3408. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3409. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3410. struct kvm_sregs *sregs)
  3411. {
  3412. struct descriptor_table dt;
  3413. vcpu_load(vcpu);
  3414. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3415. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3416. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3417. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3418. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3419. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3420. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3421. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3422. kvm_x86_ops->get_idt(vcpu, &dt);
  3423. sregs->idt.limit = dt.limit;
  3424. sregs->idt.base = dt.base;
  3425. kvm_x86_ops->get_gdt(vcpu, &dt);
  3426. sregs->gdt.limit = dt.limit;
  3427. sregs->gdt.base = dt.base;
  3428. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3429. sregs->cr0 = vcpu->arch.cr0;
  3430. sregs->cr2 = vcpu->arch.cr2;
  3431. sregs->cr3 = vcpu->arch.cr3;
  3432. sregs->cr4 = vcpu->arch.cr4;
  3433. sregs->cr8 = kvm_get_cr8(vcpu);
  3434. sregs->efer = vcpu->arch.shadow_efer;
  3435. sregs->apic_base = kvm_get_apic_base(vcpu);
  3436. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3437. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3438. set_bit(vcpu->arch.interrupt.nr,
  3439. (unsigned long *)sregs->interrupt_bitmap);
  3440. vcpu_put(vcpu);
  3441. return 0;
  3442. }
  3443. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3444. struct kvm_mp_state *mp_state)
  3445. {
  3446. vcpu_load(vcpu);
  3447. mp_state->mp_state = vcpu->arch.mp_state;
  3448. vcpu_put(vcpu);
  3449. return 0;
  3450. }
  3451. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3452. struct kvm_mp_state *mp_state)
  3453. {
  3454. vcpu_load(vcpu);
  3455. vcpu->arch.mp_state = mp_state->mp_state;
  3456. vcpu_put(vcpu);
  3457. return 0;
  3458. }
  3459. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3460. struct kvm_segment *var, int seg)
  3461. {
  3462. kvm_x86_ops->set_segment(vcpu, var, seg);
  3463. }
  3464. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3465. struct kvm_segment *kvm_desct)
  3466. {
  3467. kvm_desct->base = get_desc_base(seg_desc);
  3468. kvm_desct->limit = get_desc_limit(seg_desc);
  3469. if (seg_desc->g) {
  3470. kvm_desct->limit <<= 12;
  3471. kvm_desct->limit |= 0xfff;
  3472. }
  3473. kvm_desct->selector = selector;
  3474. kvm_desct->type = seg_desc->type;
  3475. kvm_desct->present = seg_desc->p;
  3476. kvm_desct->dpl = seg_desc->dpl;
  3477. kvm_desct->db = seg_desc->d;
  3478. kvm_desct->s = seg_desc->s;
  3479. kvm_desct->l = seg_desc->l;
  3480. kvm_desct->g = seg_desc->g;
  3481. kvm_desct->avl = seg_desc->avl;
  3482. if (!selector)
  3483. kvm_desct->unusable = 1;
  3484. else
  3485. kvm_desct->unusable = 0;
  3486. kvm_desct->padding = 0;
  3487. }
  3488. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3489. u16 selector,
  3490. struct descriptor_table *dtable)
  3491. {
  3492. if (selector & 1 << 2) {
  3493. struct kvm_segment kvm_seg;
  3494. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3495. if (kvm_seg.unusable)
  3496. dtable->limit = 0;
  3497. else
  3498. dtable->limit = kvm_seg.limit;
  3499. dtable->base = kvm_seg.base;
  3500. }
  3501. else
  3502. kvm_x86_ops->get_gdt(vcpu, dtable);
  3503. }
  3504. /* allowed just for 8 bytes segments */
  3505. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3506. struct desc_struct *seg_desc)
  3507. {
  3508. struct descriptor_table dtable;
  3509. u16 index = selector >> 3;
  3510. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3511. if (dtable.limit < index * 8 + 7) {
  3512. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3513. return 1;
  3514. }
  3515. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3516. }
  3517. /* allowed just for 8 bytes segments */
  3518. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3519. struct desc_struct *seg_desc)
  3520. {
  3521. struct descriptor_table dtable;
  3522. u16 index = selector >> 3;
  3523. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3524. if (dtable.limit < index * 8 + 7)
  3525. return 1;
  3526. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3527. }
  3528. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3529. struct desc_struct *seg_desc)
  3530. {
  3531. u32 base_addr = get_desc_base(seg_desc);
  3532. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3533. }
  3534. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3535. {
  3536. struct kvm_segment kvm_seg;
  3537. kvm_get_segment(vcpu, &kvm_seg, seg);
  3538. return kvm_seg.selector;
  3539. }
  3540. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3541. u16 selector,
  3542. struct kvm_segment *kvm_seg)
  3543. {
  3544. struct desc_struct seg_desc;
  3545. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3546. return 1;
  3547. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3548. return 0;
  3549. }
  3550. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3551. {
  3552. struct kvm_segment segvar = {
  3553. .base = selector << 4,
  3554. .limit = 0xffff,
  3555. .selector = selector,
  3556. .type = 3,
  3557. .present = 1,
  3558. .dpl = 3,
  3559. .db = 0,
  3560. .s = 1,
  3561. .l = 0,
  3562. .g = 0,
  3563. .avl = 0,
  3564. .unusable = 0,
  3565. };
  3566. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3567. return 0;
  3568. }
  3569. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3570. {
  3571. return (seg != VCPU_SREG_LDTR) &&
  3572. (seg != VCPU_SREG_TR) &&
  3573. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
  3574. }
  3575. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3576. int type_bits, int seg)
  3577. {
  3578. struct kvm_segment kvm_seg;
  3579. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3580. return kvm_load_realmode_segment(vcpu, selector, seg);
  3581. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3582. return 1;
  3583. kvm_seg.type |= type_bits;
  3584. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3585. seg != VCPU_SREG_LDTR)
  3586. if (!kvm_seg.s)
  3587. kvm_seg.unusable = 1;
  3588. kvm_set_segment(vcpu, &kvm_seg, seg);
  3589. return 0;
  3590. }
  3591. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3592. struct tss_segment_32 *tss)
  3593. {
  3594. tss->cr3 = vcpu->arch.cr3;
  3595. tss->eip = kvm_rip_read(vcpu);
  3596. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3597. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3598. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3599. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3600. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3601. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3602. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3603. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3604. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3605. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3606. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3607. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3608. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3609. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3610. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3611. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3612. }
  3613. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3614. struct tss_segment_32 *tss)
  3615. {
  3616. kvm_set_cr3(vcpu, tss->cr3);
  3617. kvm_rip_write(vcpu, tss->eip);
  3618. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3619. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3620. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3621. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3622. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3623. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3624. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3625. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3626. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3627. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3628. return 1;
  3629. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3630. return 1;
  3631. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3632. return 1;
  3633. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3634. return 1;
  3635. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3636. return 1;
  3637. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3638. return 1;
  3639. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3640. return 1;
  3641. return 0;
  3642. }
  3643. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3644. struct tss_segment_16 *tss)
  3645. {
  3646. tss->ip = kvm_rip_read(vcpu);
  3647. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3648. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3649. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3650. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3651. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3652. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3653. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3654. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3655. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3656. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3657. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3658. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3659. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3660. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3661. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3662. }
  3663. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3664. struct tss_segment_16 *tss)
  3665. {
  3666. kvm_rip_write(vcpu, tss->ip);
  3667. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3668. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3669. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3670. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3671. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3672. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3673. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3674. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3675. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3676. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3677. return 1;
  3678. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3679. return 1;
  3680. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3681. return 1;
  3682. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3683. return 1;
  3684. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3685. return 1;
  3686. return 0;
  3687. }
  3688. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3689. u16 old_tss_sel, u32 old_tss_base,
  3690. struct desc_struct *nseg_desc)
  3691. {
  3692. struct tss_segment_16 tss_segment_16;
  3693. int ret = 0;
  3694. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3695. sizeof tss_segment_16))
  3696. goto out;
  3697. save_state_to_tss16(vcpu, &tss_segment_16);
  3698. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3699. sizeof tss_segment_16))
  3700. goto out;
  3701. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3702. &tss_segment_16, sizeof tss_segment_16))
  3703. goto out;
  3704. if (old_tss_sel != 0xffff) {
  3705. tss_segment_16.prev_task_link = old_tss_sel;
  3706. if (kvm_write_guest(vcpu->kvm,
  3707. get_tss_base_addr(vcpu, nseg_desc),
  3708. &tss_segment_16.prev_task_link,
  3709. sizeof tss_segment_16.prev_task_link))
  3710. goto out;
  3711. }
  3712. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3713. goto out;
  3714. ret = 1;
  3715. out:
  3716. return ret;
  3717. }
  3718. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3719. u16 old_tss_sel, u32 old_tss_base,
  3720. struct desc_struct *nseg_desc)
  3721. {
  3722. struct tss_segment_32 tss_segment_32;
  3723. int ret = 0;
  3724. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3725. sizeof tss_segment_32))
  3726. goto out;
  3727. save_state_to_tss32(vcpu, &tss_segment_32);
  3728. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3729. sizeof tss_segment_32))
  3730. goto out;
  3731. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3732. &tss_segment_32, sizeof tss_segment_32))
  3733. goto out;
  3734. if (old_tss_sel != 0xffff) {
  3735. tss_segment_32.prev_task_link = old_tss_sel;
  3736. if (kvm_write_guest(vcpu->kvm,
  3737. get_tss_base_addr(vcpu, nseg_desc),
  3738. &tss_segment_32.prev_task_link,
  3739. sizeof tss_segment_32.prev_task_link))
  3740. goto out;
  3741. }
  3742. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3743. goto out;
  3744. ret = 1;
  3745. out:
  3746. return ret;
  3747. }
  3748. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3749. {
  3750. struct kvm_segment tr_seg;
  3751. struct desc_struct cseg_desc;
  3752. struct desc_struct nseg_desc;
  3753. int ret = 0;
  3754. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3755. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3756. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3757. /* FIXME: Handle errors. Failure to read either TSS or their
  3758. * descriptors should generate a pagefault.
  3759. */
  3760. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3761. goto out;
  3762. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3763. goto out;
  3764. if (reason != TASK_SWITCH_IRET) {
  3765. int cpl;
  3766. cpl = kvm_x86_ops->get_cpl(vcpu);
  3767. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3768. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3769. return 1;
  3770. }
  3771. }
  3772. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3773. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3774. return 1;
  3775. }
  3776. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3777. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3778. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3779. }
  3780. if (reason == TASK_SWITCH_IRET) {
  3781. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3782. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3783. }
  3784. /* set back link to prev task only if NT bit is set in eflags
  3785. note that old_tss_sel is not used afetr this point */
  3786. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3787. old_tss_sel = 0xffff;
  3788. /* set back link to prev task only if NT bit is set in eflags
  3789. note that old_tss_sel is not used afetr this point */
  3790. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3791. old_tss_sel = 0xffff;
  3792. if (nseg_desc.type & 8)
  3793. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3794. old_tss_base, &nseg_desc);
  3795. else
  3796. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3797. old_tss_base, &nseg_desc);
  3798. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3799. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3800. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3801. }
  3802. if (reason != TASK_SWITCH_IRET) {
  3803. nseg_desc.type |= (1 << 1);
  3804. save_guest_segment_descriptor(vcpu, tss_selector,
  3805. &nseg_desc);
  3806. }
  3807. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3808. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3809. tr_seg.type = 11;
  3810. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3811. out:
  3812. return ret;
  3813. }
  3814. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3815. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3816. struct kvm_sregs *sregs)
  3817. {
  3818. int mmu_reset_needed = 0;
  3819. int pending_vec, max_bits;
  3820. struct descriptor_table dt;
  3821. vcpu_load(vcpu);
  3822. dt.limit = sregs->idt.limit;
  3823. dt.base = sregs->idt.base;
  3824. kvm_x86_ops->set_idt(vcpu, &dt);
  3825. dt.limit = sregs->gdt.limit;
  3826. dt.base = sregs->gdt.base;
  3827. kvm_x86_ops->set_gdt(vcpu, &dt);
  3828. vcpu->arch.cr2 = sregs->cr2;
  3829. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3830. vcpu->arch.cr3 = sregs->cr3;
  3831. kvm_set_cr8(vcpu, sregs->cr8);
  3832. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3833. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3834. kvm_set_apic_base(vcpu, sregs->apic_base);
  3835. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3836. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3837. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3838. vcpu->arch.cr0 = sregs->cr0;
  3839. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3840. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3841. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3842. load_pdptrs(vcpu, vcpu->arch.cr3);
  3843. if (mmu_reset_needed)
  3844. kvm_mmu_reset_context(vcpu);
  3845. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3846. pending_vec = find_first_bit(
  3847. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3848. if (pending_vec < max_bits) {
  3849. kvm_queue_interrupt(vcpu, pending_vec, false);
  3850. pr_debug("Set back pending irq %d\n", pending_vec);
  3851. if (irqchip_in_kernel(vcpu->kvm))
  3852. kvm_pic_clear_isr_ack(vcpu->kvm);
  3853. }
  3854. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3855. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3856. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3857. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3858. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3859. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3860. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3861. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3862. update_cr8_intercept(vcpu);
  3863. /* Older userspace won't unhalt the vcpu on reset. */
  3864. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3865. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3866. !(vcpu->arch.cr0 & X86_CR0_PE))
  3867. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3868. vcpu_put(vcpu);
  3869. return 0;
  3870. }
  3871. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3872. struct kvm_guest_debug *dbg)
  3873. {
  3874. int i, r;
  3875. vcpu_load(vcpu);
  3876. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3877. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3878. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3879. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3880. vcpu->arch.switch_db_regs =
  3881. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3882. } else {
  3883. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3884. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3885. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3886. }
  3887. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3888. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3889. kvm_queue_exception(vcpu, DB_VECTOR);
  3890. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3891. kvm_queue_exception(vcpu, BP_VECTOR);
  3892. vcpu_put(vcpu);
  3893. return r;
  3894. }
  3895. /*
  3896. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3897. * we have asm/x86/processor.h
  3898. */
  3899. struct fxsave {
  3900. u16 cwd;
  3901. u16 swd;
  3902. u16 twd;
  3903. u16 fop;
  3904. u64 rip;
  3905. u64 rdp;
  3906. u32 mxcsr;
  3907. u32 mxcsr_mask;
  3908. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3909. #ifdef CONFIG_X86_64
  3910. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3911. #else
  3912. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3913. #endif
  3914. };
  3915. /*
  3916. * Translate a guest virtual address to a guest physical address.
  3917. */
  3918. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3919. struct kvm_translation *tr)
  3920. {
  3921. unsigned long vaddr = tr->linear_address;
  3922. gpa_t gpa;
  3923. vcpu_load(vcpu);
  3924. down_read(&vcpu->kvm->slots_lock);
  3925. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3926. up_read(&vcpu->kvm->slots_lock);
  3927. tr->physical_address = gpa;
  3928. tr->valid = gpa != UNMAPPED_GVA;
  3929. tr->writeable = 1;
  3930. tr->usermode = 0;
  3931. vcpu_put(vcpu);
  3932. return 0;
  3933. }
  3934. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3935. {
  3936. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3937. vcpu_load(vcpu);
  3938. memcpy(fpu->fpr, fxsave->st_space, 128);
  3939. fpu->fcw = fxsave->cwd;
  3940. fpu->fsw = fxsave->swd;
  3941. fpu->ftwx = fxsave->twd;
  3942. fpu->last_opcode = fxsave->fop;
  3943. fpu->last_ip = fxsave->rip;
  3944. fpu->last_dp = fxsave->rdp;
  3945. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3946. vcpu_put(vcpu);
  3947. return 0;
  3948. }
  3949. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3950. {
  3951. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3952. vcpu_load(vcpu);
  3953. memcpy(fxsave->st_space, fpu->fpr, 128);
  3954. fxsave->cwd = fpu->fcw;
  3955. fxsave->swd = fpu->fsw;
  3956. fxsave->twd = fpu->ftwx;
  3957. fxsave->fop = fpu->last_opcode;
  3958. fxsave->rip = fpu->last_ip;
  3959. fxsave->rdp = fpu->last_dp;
  3960. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3961. vcpu_put(vcpu);
  3962. return 0;
  3963. }
  3964. void fx_init(struct kvm_vcpu *vcpu)
  3965. {
  3966. unsigned after_mxcsr_mask;
  3967. /*
  3968. * Touch the fpu the first time in non atomic context as if
  3969. * this is the first fpu instruction the exception handler
  3970. * will fire before the instruction returns and it'll have to
  3971. * allocate ram with GFP_KERNEL.
  3972. */
  3973. if (!used_math())
  3974. kvm_fx_save(&vcpu->arch.host_fx_image);
  3975. /* Initialize guest FPU by resetting ours and saving into guest's */
  3976. preempt_disable();
  3977. kvm_fx_save(&vcpu->arch.host_fx_image);
  3978. kvm_fx_finit();
  3979. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3980. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3981. preempt_enable();
  3982. vcpu->arch.cr0 |= X86_CR0_ET;
  3983. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3984. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3985. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3986. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3987. }
  3988. EXPORT_SYMBOL_GPL(fx_init);
  3989. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3990. {
  3991. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3992. return;
  3993. vcpu->guest_fpu_loaded = 1;
  3994. kvm_fx_save(&vcpu->arch.host_fx_image);
  3995. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3996. }
  3997. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3998. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3999. {
  4000. if (!vcpu->guest_fpu_loaded)
  4001. return;
  4002. vcpu->guest_fpu_loaded = 0;
  4003. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4004. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4005. ++vcpu->stat.fpu_reload;
  4006. }
  4007. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4008. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4009. {
  4010. if (vcpu->arch.time_page) {
  4011. kvm_release_page_dirty(vcpu->arch.time_page);
  4012. vcpu->arch.time_page = NULL;
  4013. }
  4014. kvm_x86_ops->vcpu_free(vcpu);
  4015. }
  4016. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4017. unsigned int id)
  4018. {
  4019. return kvm_x86_ops->vcpu_create(kvm, id);
  4020. }
  4021. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4022. {
  4023. int r;
  4024. /* We do fxsave: this must be aligned. */
  4025. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4026. vcpu->arch.mtrr_state.have_fixed = 1;
  4027. vcpu_load(vcpu);
  4028. r = kvm_arch_vcpu_reset(vcpu);
  4029. if (r == 0)
  4030. r = kvm_mmu_setup(vcpu);
  4031. vcpu_put(vcpu);
  4032. if (r < 0)
  4033. goto free_vcpu;
  4034. return 0;
  4035. free_vcpu:
  4036. kvm_x86_ops->vcpu_free(vcpu);
  4037. return r;
  4038. }
  4039. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4040. {
  4041. vcpu_load(vcpu);
  4042. kvm_mmu_unload(vcpu);
  4043. vcpu_put(vcpu);
  4044. kvm_x86_ops->vcpu_free(vcpu);
  4045. }
  4046. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4047. {
  4048. vcpu->arch.nmi_pending = false;
  4049. vcpu->arch.nmi_injected = false;
  4050. vcpu->arch.switch_db_regs = 0;
  4051. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4052. vcpu->arch.dr6 = DR6_FIXED_1;
  4053. vcpu->arch.dr7 = DR7_FIXED_1;
  4054. return kvm_x86_ops->vcpu_reset(vcpu);
  4055. }
  4056. int kvm_arch_hardware_enable(void *garbage)
  4057. {
  4058. return kvm_x86_ops->hardware_enable(garbage);
  4059. }
  4060. void kvm_arch_hardware_disable(void *garbage)
  4061. {
  4062. kvm_x86_ops->hardware_disable(garbage);
  4063. }
  4064. int kvm_arch_hardware_setup(void)
  4065. {
  4066. return kvm_x86_ops->hardware_setup();
  4067. }
  4068. void kvm_arch_hardware_unsetup(void)
  4069. {
  4070. kvm_x86_ops->hardware_unsetup();
  4071. }
  4072. void kvm_arch_check_processor_compat(void *rtn)
  4073. {
  4074. kvm_x86_ops->check_processor_compatibility(rtn);
  4075. }
  4076. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4077. {
  4078. struct page *page;
  4079. struct kvm *kvm;
  4080. int r;
  4081. BUG_ON(vcpu->kvm == NULL);
  4082. kvm = vcpu->kvm;
  4083. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4084. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4085. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4086. else
  4087. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4088. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4089. if (!page) {
  4090. r = -ENOMEM;
  4091. goto fail;
  4092. }
  4093. vcpu->arch.pio_data = page_address(page);
  4094. r = kvm_mmu_create(vcpu);
  4095. if (r < 0)
  4096. goto fail_free_pio_data;
  4097. if (irqchip_in_kernel(kvm)) {
  4098. r = kvm_create_lapic(vcpu);
  4099. if (r < 0)
  4100. goto fail_mmu_destroy;
  4101. }
  4102. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4103. GFP_KERNEL);
  4104. if (!vcpu->arch.mce_banks) {
  4105. r = -ENOMEM;
  4106. goto fail_mmu_destroy;
  4107. }
  4108. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4109. return 0;
  4110. fail_mmu_destroy:
  4111. kvm_mmu_destroy(vcpu);
  4112. fail_free_pio_data:
  4113. free_page((unsigned long)vcpu->arch.pio_data);
  4114. fail:
  4115. return r;
  4116. }
  4117. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4118. {
  4119. kvm_free_lapic(vcpu);
  4120. down_read(&vcpu->kvm->slots_lock);
  4121. kvm_mmu_destroy(vcpu);
  4122. up_read(&vcpu->kvm->slots_lock);
  4123. free_page((unsigned long)vcpu->arch.pio_data);
  4124. }
  4125. struct kvm *kvm_arch_create_vm(void)
  4126. {
  4127. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4128. if (!kvm)
  4129. return ERR_PTR(-ENOMEM);
  4130. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4131. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4132. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4133. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4134. rdtscll(kvm->arch.vm_init_tsc);
  4135. return kvm;
  4136. }
  4137. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4138. {
  4139. vcpu_load(vcpu);
  4140. kvm_mmu_unload(vcpu);
  4141. vcpu_put(vcpu);
  4142. }
  4143. static void kvm_free_vcpus(struct kvm *kvm)
  4144. {
  4145. unsigned int i;
  4146. struct kvm_vcpu *vcpu;
  4147. /*
  4148. * Unpin any mmu pages first.
  4149. */
  4150. kvm_for_each_vcpu(i, vcpu, kvm)
  4151. kvm_unload_vcpu_mmu(vcpu);
  4152. kvm_for_each_vcpu(i, vcpu, kvm)
  4153. kvm_arch_vcpu_free(vcpu);
  4154. mutex_lock(&kvm->lock);
  4155. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4156. kvm->vcpus[i] = NULL;
  4157. atomic_set(&kvm->online_vcpus, 0);
  4158. mutex_unlock(&kvm->lock);
  4159. }
  4160. void kvm_arch_sync_events(struct kvm *kvm)
  4161. {
  4162. kvm_free_all_assigned_devices(kvm);
  4163. }
  4164. void kvm_arch_destroy_vm(struct kvm *kvm)
  4165. {
  4166. kvm_iommu_unmap_guest(kvm);
  4167. kvm_free_pit(kvm);
  4168. kfree(kvm->arch.vpic);
  4169. kfree(kvm->arch.vioapic);
  4170. kvm_free_vcpus(kvm);
  4171. kvm_free_physmem(kvm);
  4172. if (kvm->arch.apic_access_page)
  4173. put_page(kvm->arch.apic_access_page);
  4174. if (kvm->arch.ept_identity_pagetable)
  4175. put_page(kvm->arch.ept_identity_pagetable);
  4176. kfree(kvm);
  4177. }
  4178. int kvm_arch_set_memory_region(struct kvm *kvm,
  4179. struct kvm_userspace_memory_region *mem,
  4180. struct kvm_memory_slot old,
  4181. int user_alloc)
  4182. {
  4183. int npages = mem->memory_size >> PAGE_SHIFT;
  4184. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4185. /*To keep backward compatibility with older userspace,
  4186. *x86 needs to hanlde !user_alloc case.
  4187. */
  4188. if (!user_alloc) {
  4189. if (npages && !old.rmap) {
  4190. unsigned long userspace_addr;
  4191. down_write(&current->mm->mmap_sem);
  4192. userspace_addr = do_mmap(NULL, 0,
  4193. npages * PAGE_SIZE,
  4194. PROT_READ | PROT_WRITE,
  4195. MAP_PRIVATE | MAP_ANONYMOUS,
  4196. 0);
  4197. up_write(&current->mm->mmap_sem);
  4198. if (IS_ERR((void *)userspace_addr))
  4199. return PTR_ERR((void *)userspace_addr);
  4200. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4201. spin_lock(&kvm->mmu_lock);
  4202. memslot->userspace_addr = userspace_addr;
  4203. spin_unlock(&kvm->mmu_lock);
  4204. } else {
  4205. if (!old.user_alloc && old.rmap) {
  4206. int ret;
  4207. down_write(&current->mm->mmap_sem);
  4208. ret = do_munmap(current->mm, old.userspace_addr,
  4209. old.npages * PAGE_SIZE);
  4210. up_write(&current->mm->mmap_sem);
  4211. if (ret < 0)
  4212. printk(KERN_WARNING
  4213. "kvm_vm_ioctl_set_memory_region: "
  4214. "failed to munmap memory\n");
  4215. }
  4216. }
  4217. }
  4218. spin_lock(&kvm->mmu_lock);
  4219. if (!kvm->arch.n_requested_mmu_pages) {
  4220. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4221. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4222. }
  4223. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4224. spin_unlock(&kvm->mmu_lock);
  4225. return 0;
  4226. }
  4227. void kvm_arch_flush_shadow(struct kvm *kvm)
  4228. {
  4229. kvm_mmu_zap_all(kvm);
  4230. kvm_reload_remote_mmus(kvm);
  4231. }
  4232. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4233. {
  4234. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4235. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4236. || vcpu->arch.nmi_pending ||
  4237. (kvm_arch_interrupt_allowed(vcpu) &&
  4238. kvm_cpu_has_interrupt(vcpu));
  4239. }
  4240. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4241. {
  4242. int me;
  4243. int cpu = vcpu->cpu;
  4244. if (waitqueue_active(&vcpu->wq)) {
  4245. wake_up_interruptible(&vcpu->wq);
  4246. ++vcpu->stat.halt_wakeup;
  4247. }
  4248. me = get_cpu();
  4249. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4250. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4251. smp_send_reschedule(cpu);
  4252. put_cpu();
  4253. }
  4254. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4255. {
  4256. return kvm_x86_ops->interrupt_allowed(vcpu);
  4257. }
  4258. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4259. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4260. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4261. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4262. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);