mmu.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  359. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  360. }
  361. static bool spte_has_volatile_bits(u64 spte)
  362. {
  363. /*
  364. * Always atomicly update spte if it can be updated
  365. * out of mmu-lock, it can ensure dirty bit is not lost,
  366. * also, it can help us to get a stable is_writable_pte()
  367. * to ensure tlb flush is not missed.
  368. */
  369. if (spte_is_locklessly_modifiable(spte))
  370. return true;
  371. if (!shadow_accessed_mask)
  372. return false;
  373. if (!is_shadow_present_pte(spte))
  374. return false;
  375. if ((spte & shadow_accessed_mask) &&
  376. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  377. return false;
  378. return true;
  379. }
  380. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  381. {
  382. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  383. }
  384. /* Rules for using mmu_spte_set:
  385. * Set the sptep from nonpresent to present.
  386. * Note: the sptep being assigned *must* be either not present
  387. * or in a state where the hardware will not attempt to update
  388. * the spte.
  389. */
  390. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  391. {
  392. WARN_ON(is_shadow_present_pte(*sptep));
  393. __set_spte(sptep, new_spte);
  394. }
  395. /* Rules for using mmu_spte_update:
  396. * Update the state bits, it means the mapped pfn is not changged.
  397. *
  398. * Whenever we overwrite a writable spte with a read-only one we
  399. * should flush remote TLBs. Otherwise rmap_write_protect
  400. * will find a read-only spte, even though the writable spte
  401. * might be cached on a CPU's TLB, the return value indicates this
  402. * case.
  403. */
  404. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  405. {
  406. u64 old_spte = *sptep;
  407. bool ret = false;
  408. WARN_ON(!is_rmap_spte(new_spte));
  409. if (!is_shadow_present_pte(old_spte)) {
  410. mmu_spte_set(sptep, new_spte);
  411. return ret;
  412. }
  413. if (!spte_has_volatile_bits(old_spte))
  414. __update_clear_spte_fast(sptep, new_spte);
  415. else
  416. old_spte = __update_clear_spte_slow(sptep, new_spte);
  417. /*
  418. * For the spte updated out of mmu-lock is safe, since
  419. * we always atomicly update it, see the comments in
  420. * spte_has_volatile_bits().
  421. */
  422. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  423. ret = true;
  424. if (!shadow_accessed_mask)
  425. return ret;
  426. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  427. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  428. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  429. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  430. return ret;
  431. }
  432. /*
  433. * Rules for using mmu_spte_clear_track_bits:
  434. * It sets the sptep from present to nonpresent, and track the
  435. * state bits, it is used to clear the last level sptep.
  436. */
  437. static int mmu_spte_clear_track_bits(u64 *sptep)
  438. {
  439. pfn_t pfn;
  440. u64 old_spte = *sptep;
  441. if (!spte_has_volatile_bits(old_spte))
  442. __update_clear_spte_fast(sptep, 0ull);
  443. else
  444. old_spte = __update_clear_spte_slow(sptep, 0ull);
  445. if (!is_rmap_spte(old_spte))
  446. return 0;
  447. pfn = spte_to_pfn(old_spte);
  448. /*
  449. * KVM does not hold the refcount of the page used by
  450. * kvm mmu, before reclaiming the page, we should
  451. * unmap it from mmu first.
  452. */
  453. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  454. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  455. kvm_set_pfn_accessed(pfn);
  456. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  457. kvm_set_pfn_dirty(pfn);
  458. return 1;
  459. }
  460. /*
  461. * Rules for using mmu_spte_clear_no_track:
  462. * Directly clear spte without caring the state bits of sptep,
  463. * it is used to set the upper level spte.
  464. */
  465. static void mmu_spte_clear_no_track(u64 *sptep)
  466. {
  467. __update_clear_spte_fast(sptep, 0ull);
  468. }
  469. static u64 mmu_spte_get_lockless(u64 *sptep)
  470. {
  471. return __get_spte_lockless(sptep);
  472. }
  473. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  474. {
  475. /*
  476. * Prevent page table teardown by making any free-er wait during
  477. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  478. */
  479. local_irq_disable();
  480. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  481. /*
  482. * Make sure a following spte read is not reordered ahead of the write
  483. * to vcpu->mode.
  484. */
  485. smp_mb();
  486. }
  487. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  488. {
  489. /*
  490. * Make sure the write to vcpu->mode is not reordered in front of
  491. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  492. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  493. */
  494. smp_mb();
  495. vcpu->mode = OUTSIDE_GUEST_MODE;
  496. local_irq_enable();
  497. }
  498. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  499. struct kmem_cache *base_cache, int min)
  500. {
  501. void *obj;
  502. if (cache->nobjs >= min)
  503. return 0;
  504. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  505. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  506. if (!obj)
  507. return -ENOMEM;
  508. cache->objects[cache->nobjs++] = obj;
  509. }
  510. return 0;
  511. }
  512. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  513. {
  514. return cache->nobjs;
  515. }
  516. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  517. struct kmem_cache *cache)
  518. {
  519. while (mc->nobjs)
  520. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  521. }
  522. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  523. int min)
  524. {
  525. void *page;
  526. if (cache->nobjs >= min)
  527. return 0;
  528. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  529. page = (void *)__get_free_page(GFP_KERNEL);
  530. if (!page)
  531. return -ENOMEM;
  532. cache->objects[cache->nobjs++] = page;
  533. }
  534. return 0;
  535. }
  536. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  537. {
  538. while (mc->nobjs)
  539. free_page((unsigned long)mc->objects[--mc->nobjs]);
  540. }
  541. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  542. {
  543. int r;
  544. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  545. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  546. if (r)
  547. goto out;
  548. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  549. if (r)
  550. goto out;
  551. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  552. mmu_page_header_cache, 4);
  553. out:
  554. return r;
  555. }
  556. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  557. {
  558. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  559. pte_list_desc_cache);
  560. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  561. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  562. mmu_page_header_cache);
  563. }
  564. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  565. {
  566. void *p;
  567. BUG_ON(!mc->nobjs);
  568. p = mc->objects[--mc->nobjs];
  569. return p;
  570. }
  571. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  572. {
  573. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  574. }
  575. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  576. {
  577. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  578. }
  579. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  580. {
  581. if (!sp->role.direct)
  582. return sp->gfns[index];
  583. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  584. }
  585. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  586. {
  587. if (sp->role.direct)
  588. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  589. else
  590. sp->gfns[index] = gfn;
  591. }
  592. /*
  593. * Return the pointer to the large page information for a given gfn,
  594. * handling slots that are not large page aligned.
  595. */
  596. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  597. struct kvm_memory_slot *slot,
  598. int level)
  599. {
  600. unsigned long idx;
  601. idx = gfn_to_index(gfn, slot->base_gfn, level);
  602. return &slot->arch.lpage_info[level - 2][idx];
  603. }
  604. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  605. {
  606. struct kvm_memory_slot *slot;
  607. struct kvm_lpage_info *linfo;
  608. int i;
  609. slot = gfn_to_memslot(kvm, gfn);
  610. for (i = PT_DIRECTORY_LEVEL;
  611. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  612. linfo = lpage_info_slot(gfn, slot, i);
  613. linfo->write_count += 1;
  614. }
  615. kvm->arch.indirect_shadow_pages++;
  616. }
  617. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  618. {
  619. struct kvm_memory_slot *slot;
  620. struct kvm_lpage_info *linfo;
  621. int i;
  622. slot = gfn_to_memslot(kvm, gfn);
  623. for (i = PT_DIRECTORY_LEVEL;
  624. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  625. linfo = lpage_info_slot(gfn, slot, i);
  626. linfo->write_count -= 1;
  627. WARN_ON(linfo->write_count < 0);
  628. }
  629. kvm->arch.indirect_shadow_pages--;
  630. }
  631. static int has_wrprotected_page(struct kvm *kvm,
  632. gfn_t gfn,
  633. int level)
  634. {
  635. struct kvm_memory_slot *slot;
  636. struct kvm_lpage_info *linfo;
  637. slot = gfn_to_memslot(kvm, gfn);
  638. if (slot) {
  639. linfo = lpage_info_slot(gfn, slot, level);
  640. return linfo->write_count;
  641. }
  642. return 1;
  643. }
  644. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  645. {
  646. unsigned long page_size;
  647. int i, ret = 0;
  648. page_size = kvm_host_page_size(kvm, gfn);
  649. for (i = PT_PAGE_TABLE_LEVEL;
  650. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  651. if (page_size >= KVM_HPAGE_SIZE(i))
  652. ret = i;
  653. else
  654. break;
  655. }
  656. return ret;
  657. }
  658. static struct kvm_memory_slot *
  659. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  660. bool no_dirty_log)
  661. {
  662. struct kvm_memory_slot *slot;
  663. slot = gfn_to_memslot(vcpu->kvm, gfn);
  664. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  665. (no_dirty_log && slot->dirty_bitmap))
  666. slot = NULL;
  667. return slot;
  668. }
  669. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  670. {
  671. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  672. }
  673. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  674. {
  675. int host_level, level, max_level;
  676. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  677. if (host_level == PT_PAGE_TABLE_LEVEL)
  678. return host_level;
  679. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  680. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  681. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  682. break;
  683. return level - 1;
  684. }
  685. /*
  686. * Pte mapping structures:
  687. *
  688. * If pte_list bit zero is zero, then pte_list point to the spte.
  689. *
  690. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  691. * pte_list_desc containing more mappings.
  692. *
  693. * Returns the number of pte entries before the spte was added or zero if
  694. * the spte was not added.
  695. *
  696. */
  697. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  698. unsigned long *pte_list)
  699. {
  700. struct pte_list_desc *desc;
  701. int i, count = 0;
  702. if (!*pte_list) {
  703. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  704. *pte_list = (unsigned long)spte;
  705. } else if (!(*pte_list & 1)) {
  706. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  707. desc = mmu_alloc_pte_list_desc(vcpu);
  708. desc->sptes[0] = (u64 *)*pte_list;
  709. desc->sptes[1] = spte;
  710. *pte_list = (unsigned long)desc | 1;
  711. ++count;
  712. } else {
  713. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  714. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  715. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  716. desc = desc->more;
  717. count += PTE_LIST_EXT;
  718. }
  719. if (desc->sptes[PTE_LIST_EXT-1]) {
  720. desc->more = mmu_alloc_pte_list_desc(vcpu);
  721. desc = desc->more;
  722. }
  723. for (i = 0; desc->sptes[i]; ++i)
  724. ++count;
  725. desc->sptes[i] = spte;
  726. }
  727. return count;
  728. }
  729. static void
  730. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  731. int i, struct pte_list_desc *prev_desc)
  732. {
  733. int j;
  734. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  735. ;
  736. desc->sptes[i] = desc->sptes[j];
  737. desc->sptes[j] = NULL;
  738. if (j != 0)
  739. return;
  740. if (!prev_desc && !desc->more)
  741. *pte_list = (unsigned long)desc->sptes[0];
  742. else
  743. if (prev_desc)
  744. prev_desc->more = desc->more;
  745. else
  746. *pte_list = (unsigned long)desc->more | 1;
  747. mmu_free_pte_list_desc(desc);
  748. }
  749. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  750. {
  751. struct pte_list_desc *desc;
  752. struct pte_list_desc *prev_desc;
  753. int i;
  754. if (!*pte_list) {
  755. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  756. BUG();
  757. } else if (!(*pte_list & 1)) {
  758. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  759. if ((u64 *)*pte_list != spte) {
  760. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  761. BUG();
  762. }
  763. *pte_list = 0;
  764. } else {
  765. rmap_printk("pte_list_remove: %p many->many\n", spte);
  766. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  767. prev_desc = NULL;
  768. while (desc) {
  769. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  770. if (desc->sptes[i] == spte) {
  771. pte_list_desc_remove_entry(pte_list,
  772. desc, i,
  773. prev_desc);
  774. return;
  775. }
  776. prev_desc = desc;
  777. desc = desc->more;
  778. }
  779. pr_err("pte_list_remove: %p many->many\n", spte);
  780. BUG();
  781. }
  782. }
  783. typedef void (*pte_list_walk_fn) (u64 *spte);
  784. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  785. {
  786. struct pte_list_desc *desc;
  787. int i;
  788. if (!*pte_list)
  789. return;
  790. if (!(*pte_list & 1))
  791. return fn((u64 *)*pte_list);
  792. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  793. while (desc) {
  794. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  795. fn(desc->sptes[i]);
  796. desc = desc->more;
  797. }
  798. }
  799. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  800. struct kvm_memory_slot *slot)
  801. {
  802. unsigned long idx;
  803. idx = gfn_to_index(gfn, slot->base_gfn, level);
  804. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  805. }
  806. /*
  807. * Take gfn and return the reverse mapping to it.
  808. */
  809. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  810. {
  811. struct kvm_memory_slot *slot;
  812. slot = gfn_to_memslot(kvm, gfn);
  813. return __gfn_to_rmap(gfn, level, slot);
  814. }
  815. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  816. {
  817. struct kvm_mmu_memory_cache *cache;
  818. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  819. return mmu_memory_cache_free_objects(cache);
  820. }
  821. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  822. {
  823. struct kvm_mmu_page *sp;
  824. unsigned long *rmapp;
  825. sp = page_header(__pa(spte));
  826. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  827. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  828. return pte_list_add(vcpu, spte, rmapp);
  829. }
  830. static void rmap_remove(struct kvm *kvm, u64 *spte)
  831. {
  832. struct kvm_mmu_page *sp;
  833. gfn_t gfn;
  834. unsigned long *rmapp;
  835. sp = page_header(__pa(spte));
  836. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  837. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  838. pte_list_remove(spte, rmapp);
  839. }
  840. /*
  841. * Used by the following functions to iterate through the sptes linked by a
  842. * rmap. All fields are private and not assumed to be used outside.
  843. */
  844. struct rmap_iterator {
  845. /* private fields */
  846. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  847. int pos; /* index of the sptep */
  848. };
  849. /*
  850. * Iteration must be started by this function. This should also be used after
  851. * removing/dropping sptes from the rmap link because in such cases the
  852. * information in the itererator may not be valid.
  853. *
  854. * Returns sptep if found, NULL otherwise.
  855. */
  856. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  857. {
  858. if (!rmap)
  859. return NULL;
  860. if (!(rmap & 1)) {
  861. iter->desc = NULL;
  862. return (u64 *)rmap;
  863. }
  864. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  865. iter->pos = 0;
  866. return iter->desc->sptes[iter->pos];
  867. }
  868. /*
  869. * Must be used with a valid iterator: e.g. after rmap_get_first().
  870. *
  871. * Returns sptep if found, NULL otherwise.
  872. */
  873. static u64 *rmap_get_next(struct rmap_iterator *iter)
  874. {
  875. if (iter->desc) {
  876. if (iter->pos < PTE_LIST_EXT - 1) {
  877. u64 *sptep;
  878. ++iter->pos;
  879. sptep = iter->desc->sptes[iter->pos];
  880. if (sptep)
  881. return sptep;
  882. }
  883. iter->desc = iter->desc->more;
  884. if (iter->desc) {
  885. iter->pos = 0;
  886. /* desc->sptes[0] cannot be NULL */
  887. return iter->desc->sptes[iter->pos];
  888. }
  889. }
  890. return NULL;
  891. }
  892. static void drop_spte(struct kvm *kvm, u64 *sptep)
  893. {
  894. if (mmu_spte_clear_track_bits(sptep))
  895. rmap_remove(kvm, sptep);
  896. }
  897. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  898. {
  899. if (is_large_pte(*sptep)) {
  900. WARN_ON(page_header(__pa(sptep))->role.level ==
  901. PT_PAGE_TABLE_LEVEL);
  902. drop_spte(kvm, sptep);
  903. --kvm->stat.lpages;
  904. return true;
  905. }
  906. return false;
  907. }
  908. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  909. {
  910. if (__drop_large_spte(vcpu->kvm, sptep))
  911. kvm_flush_remote_tlbs(vcpu->kvm);
  912. }
  913. /*
  914. * Write-protect on the specified @sptep, @pt_protect indicates whether
  915. * spte writ-protection is caused by protecting shadow page table.
  916. * @flush indicates whether tlb need be flushed.
  917. *
  918. * Note: write protection is difference between drity logging and spte
  919. * protection:
  920. * - for dirty logging, the spte can be set to writable at anytime if
  921. * its dirty bitmap is properly set.
  922. * - for spte protection, the spte can be writable only after unsync-ing
  923. * shadow page.
  924. *
  925. * Return true if the spte is dropped.
  926. */
  927. static bool
  928. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  929. {
  930. u64 spte = *sptep;
  931. if (!is_writable_pte(spte) &&
  932. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  933. return false;
  934. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  935. if (__drop_large_spte(kvm, sptep)) {
  936. *flush |= true;
  937. return true;
  938. }
  939. if (pt_protect)
  940. spte &= ~SPTE_MMU_WRITEABLE;
  941. spte = spte & ~PT_WRITABLE_MASK;
  942. *flush |= mmu_spte_update(sptep, spte);
  943. return false;
  944. }
  945. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  946. bool pt_protect)
  947. {
  948. u64 *sptep;
  949. struct rmap_iterator iter;
  950. bool flush = false;
  951. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  952. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  953. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  954. sptep = rmap_get_first(*rmapp, &iter);
  955. continue;
  956. }
  957. sptep = rmap_get_next(&iter);
  958. }
  959. return flush;
  960. }
  961. /**
  962. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  963. * @kvm: kvm instance
  964. * @slot: slot to protect
  965. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  966. * @mask: indicates which pages we should protect
  967. *
  968. * Used when we do not need to care about huge page mappings: e.g. during dirty
  969. * logging we do not have any such mappings.
  970. */
  971. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  972. struct kvm_memory_slot *slot,
  973. gfn_t gfn_offset, unsigned long mask)
  974. {
  975. unsigned long *rmapp;
  976. while (mask) {
  977. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  978. PT_PAGE_TABLE_LEVEL, slot);
  979. __rmap_write_protect(kvm, rmapp, false);
  980. /* clear the first set bit */
  981. mask &= mask - 1;
  982. }
  983. }
  984. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  985. {
  986. struct kvm_memory_slot *slot;
  987. unsigned long *rmapp;
  988. int i;
  989. bool write_protected = false;
  990. slot = gfn_to_memslot(kvm, gfn);
  991. for (i = PT_PAGE_TABLE_LEVEL;
  992. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  993. rmapp = __gfn_to_rmap(gfn, i, slot);
  994. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  995. }
  996. return write_protected;
  997. }
  998. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  999. struct kvm_memory_slot *slot, unsigned long data)
  1000. {
  1001. u64 *sptep;
  1002. struct rmap_iterator iter;
  1003. int need_tlb_flush = 0;
  1004. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1005. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1006. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1007. drop_spte(kvm, sptep);
  1008. need_tlb_flush = 1;
  1009. }
  1010. return need_tlb_flush;
  1011. }
  1012. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1013. struct kvm_memory_slot *slot, unsigned long data)
  1014. {
  1015. u64 *sptep;
  1016. struct rmap_iterator iter;
  1017. int need_flush = 0;
  1018. u64 new_spte;
  1019. pte_t *ptep = (pte_t *)data;
  1020. pfn_t new_pfn;
  1021. WARN_ON(pte_huge(*ptep));
  1022. new_pfn = pte_pfn(*ptep);
  1023. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1024. BUG_ON(!is_shadow_present_pte(*sptep));
  1025. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1026. need_flush = 1;
  1027. if (pte_write(*ptep)) {
  1028. drop_spte(kvm, sptep);
  1029. sptep = rmap_get_first(*rmapp, &iter);
  1030. } else {
  1031. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1032. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1033. new_spte &= ~PT_WRITABLE_MASK;
  1034. new_spte &= ~SPTE_HOST_WRITEABLE;
  1035. new_spte &= ~shadow_accessed_mask;
  1036. mmu_spte_clear_track_bits(sptep);
  1037. mmu_spte_set(sptep, new_spte);
  1038. sptep = rmap_get_next(&iter);
  1039. }
  1040. }
  1041. if (need_flush)
  1042. kvm_flush_remote_tlbs(kvm);
  1043. return 0;
  1044. }
  1045. static int kvm_handle_hva_range(struct kvm *kvm,
  1046. unsigned long start,
  1047. unsigned long end,
  1048. unsigned long data,
  1049. int (*handler)(struct kvm *kvm,
  1050. unsigned long *rmapp,
  1051. struct kvm_memory_slot *slot,
  1052. unsigned long data))
  1053. {
  1054. int j;
  1055. int ret = 0;
  1056. struct kvm_memslots *slots;
  1057. struct kvm_memory_slot *memslot;
  1058. slots = kvm_memslots(kvm);
  1059. kvm_for_each_memslot(memslot, slots) {
  1060. unsigned long hva_start, hva_end;
  1061. gfn_t gfn_start, gfn_end;
  1062. hva_start = max(start, memslot->userspace_addr);
  1063. hva_end = min(end, memslot->userspace_addr +
  1064. (memslot->npages << PAGE_SHIFT));
  1065. if (hva_start >= hva_end)
  1066. continue;
  1067. /*
  1068. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1069. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1070. */
  1071. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1072. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1073. for (j = PT_PAGE_TABLE_LEVEL;
  1074. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1075. unsigned long idx, idx_end;
  1076. unsigned long *rmapp;
  1077. /*
  1078. * {idx(page_j) | page_j intersects with
  1079. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1080. */
  1081. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1082. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1083. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1084. for (; idx <= idx_end; ++idx)
  1085. ret |= handler(kvm, rmapp++, memslot, data);
  1086. }
  1087. }
  1088. return ret;
  1089. }
  1090. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1091. unsigned long data,
  1092. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1093. struct kvm_memory_slot *slot,
  1094. unsigned long data))
  1095. {
  1096. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1097. }
  1098. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1099. {
  1100. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1101. }
  1102. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1103. {
  1104. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1105. }
  1106. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1107. {
  1108. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1109. }
  1110. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1111. struct kvm_memory_slot *slot, unsigned long data)
  1112. {
  1113. u64 *sptep;
  1114. struct rmap_iterator uninitialized_var(iter);
  1115. int young = 0;
  1116. /*
  1117. * In case of absence of EPT Access and Dirty Bits supports,
  1118. * emulate the accessed bit for EPT, by checking if this page has
  1119. * an EPT mapping, and clearing it if it does. On the next access,
  1120. * a new EPT mapping will be established.
  1121. * This has some overhead, but not as much as the cost of swapping
  1122. * out actively used pages or breaking up actively used hugepages.
  1123. */
  1124. if (!shadow_accessed_mask) {
  1125. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1126. goto out;
  1127. }
  1128. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1129. sptep = rmap_get_next(&iter)) {
  1130. BUG_ON(!is_shadow_present_pte(*sptep));
  1131. if (*sptep & shadow_accessed_mask) {
  1132. young = 1;
  1133. clear_bit((ffs(shadow_accessed_mask) - 1),
  1134. (unsigned long *)sptep);
  1135. }
  1136. }
  1137. out:
  1138. /* @data has hva passed to kvm_age_hva(). */
  1139. trace_kvm_age_page(data, slot, young);
  1140. return young;
  1141. }
  1142. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1143. struct kvm_memory_slot *slot, unsigned long data)
  1144. {
  1145. u64 *sptep;
  1146. struct rmap_iterator iter;
  1147. int young = 0;
  1148. /*
  1149. * If there's no access bit in the secondary pte set by the
  1150. * hardware it's up to gup-fast/gup to set the access bit in
  1151. * the primary pte or in the page structure.
  1152. */
  1153. if (!shadow_accessed_mask)
  1154. goto out;
  1155. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1156. sptep = rmap_get_next(&iter)) {
  1157. BUG_ON(!is_shadow_present_pte(*sptep));
  1158. if (*sptep & shadow_accessed_mask) {
  1159. young = 1;
  1160. break;
  1161. }
  1162. }
  1163. out:
  1164. return young;
  1165. }
  1166. #define RMAP_RECYCLE_THRESHOLD 1000
  1167. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1168. {
  1169. unsigned long *rmapp;
  1170. struct kvm_mmu_page *sp;
  1171. sp = page_header(__pa(spte));
  1172. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1173. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1174. kvm_flush_remote_tlbs(vcpu->kvm);
  1175. }
  1176. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1177. {
  1178. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1179. }
  1180. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1181. {
  1182. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1183. }
  1184. #ifdef MMU_DEBUG
  1185. static int is_empty_shadow_page(u64 *spt)
  1186. {
  1187. u64 *pos;
  1188. u64 *end;
  1189. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1190. if (is_shadow_present_pte(*pos)) {
  1191. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1192. pos, *pos);
  1193. return 0;
  1194. }
  1195. return 1;
  1196. }
  1197. #endif
  1198. /*
  1199. * This value is the sum of all of the kvm instances's
  1200. * kvm->arch.n_used_mmu_pages values. We need a global,
  1201. * aggregate version in order to make the slab shrinker
  1202. * faster
  1203. */
  1204. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1205. {
  1206. kvm->arch.n_used_mmu_pages += nr;
  1207. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1208. }
  1209. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1210. {
  1211. ASSERT(is_empty_shadow_page(sp->spt));
  1212. hlist_del(&sp->hash_link);
  1213. list_del(&sp->link);
  1214. free_page((unsigned long)sp->spt);
  1215. if (!sp->role.direct)
  1216. free_page((unsigned long)sp->gfns);
  1217. kmem_cache_free(mmu_page_header_cache, sp);
  1218. }
  1219. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1220. {
  1221. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1222. }
  1223. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1224. struct kvm_mmu_page *sp, u64 *parent_pte)
  1225. {
  1226. if (!parent_pte)
  1227. return;
  1228. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1229. }
  1230. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1231. u64 *parent_pte)
  1232. {
  1233. pte_list_remove(parent_pte, &sp->parent_ptes);
  1234. }
  1235. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1236. u64 *parent_pte)
  1237. {
  1238. mmu_page_remove_parent_pte(sp, parent_pte);
  1239. mmu_spte_clear_no_track(parent_pte);
  1240. }
  1241. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1242. u64 *parent_pte, int direct)
  1243. {
  1244. struct kvm_mmu_page *sp;
  1245. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1246. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1247. if (!direct)
  1248. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1249. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1250. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1251. sp->parent_ptes = 0;
  1252. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1253. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1254. return sp;
  1255. }
  1256. static void mark_unsync(u64 *spte);
  1257. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1258. {
  1259. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1260. }
  1261. static void mark_unsync(u64 *spte)
  1262. {
  1263. struct kvm_mmu_page *sp;
  1264. unsigned int index;
  1265. sp = page_header(__pa(spte));
  1266. index = spte - sp->spt;
  1267. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1268. return;
  1269. if (sp->unsync_children++)
  1270. return;
  1271. kvm_mmu_mark_parents_unsync(sp);
  1272. }
  1273. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1274. struct kvm_mmu_page *sp)
  1275. {
  1276. return 1;
  1277. }
  1278. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1279. {
  1280. }
  1281. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1282. struct kvm_mmu_page *sp, u64 *spte,
  1283. const void *pte)
  1284. {
  1285. WARN_ON(1);
  1286. }
  1287. #define KVM_PAGE_ARRAY_NR 16
  1288. struct kvm_mmu_pages {
  1289. struct mmu_page_and_offset {
  1290. struct kvm_mmu_page *sp;
  1291. unsigned int idx;
  1292. } page[KVM_PAGE_ARRAY_NR];
  1293. unsigned int nr;
  1294. };
  1295. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1296. int idx)
  1297. {
  1298. int i;
  1299. if (sp->unsync)
  1300. for (i=0; i < pvec->nr; i++)
  1301. if (pvec->page[i].sp == sp)
  1302. return 0;
  1303. pvec->page[pvec->nr].sp = sp;
  1304. pvec->page[pvec->nr].idx = idx;
  1305. pvec->nr++;
  1306. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1307. }
  1308. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1309. struct kvm_mmu_pages *pvec)
  1310. {
  1311. int i, ret, nr_unsync_leaf = 0;
  1312. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1313. struct kvm_mmu_page *child;
  1314. u64 ent = sp->spt[i];
  1315. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1316. goto clear_child_bitmap;
  1317. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1318. if (child->unsync_children) {
  1319. if (mmu_pages_add(pvec, child, i))
  1320. return -ENOSPC;
  1321. ret = __mmu_unsync_walk(child, pvec);
  1322. if (!ret)
  1323. goto clear_child_bitmap;
  1324. else if (ret > 0)
  1325. nr_unsync_leaf += ret;
  1326. else
  1327. return ret;
  1328. } else if (child->unsync) {
  1329. nr_unsync_leaf++;
  1330. if (mmu_pages_add(pvec, child, i))
  1331. return -ENOSPC;
  1332. } else
  1333. goto clear_child_bitmap;
  1334. continue;
  1335. clear_child_bitmap:
  1336. __clear_bit(i, sp->unsync_child_bitmap);
  1337. sp->unsync_children--;
  1338. WARN_ON((int)sp->unsync_children < 0);
  1339. }
  1340. return nr_unsync_leaf;
  1341. }
  1342. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1343. struct kvm_mmu_pages *pvec)
  1344. {
  1345. if (!sp->unsync_children)
  1346. return 0;
  1347. mmu_pages_add(pvec, sp, 0);
  1348. return __mmu_unsync_walk(sp, pvec);
  1349. }
  1350. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1351. {
  1352. WARN_ON(!sp->unsync);
  1353. trace_kvm_mmu_sync_page(sp);
  1354. sp->unsync = 0;
  1355. --kvm->stat.mmu_unsync;
  1356. }
  1357. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1358. struct list_head *invalid_list);
  1359. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1360. struct list_head *invalid_list);
  1361. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1362. hlist_for_each_entry(_sp, \
  1363. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1364. if ((_sp)->gfn != (_gfn)) {} else
  1365. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1366. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1367. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1368. /* @sp->gfn should be write-protected at the call site */
  1369. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1370. struct list_head *invalid_list, bool clear_unsync)
  1371. {
  1372. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1373. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1374. return 1;
  1375. }
  1376. if (clear_unsync)
  1377. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1378. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1379. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1380. return 1;
  1381. }
  1382. kvm_mmu_flush_tlb(vcpu);
  1383. return 0;
  1384. }
  1385. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1386. struct kvm_mmu_page *sp)
  1387. {
  1388. LIST_HEAD(invalid_list);
  1389. int ret;
  1390. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1391. if (ret)
  1392. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1393. return ret;
  1394. }
  1395. #ifdef CONFIG_KVM_MMU_AUDIT
  1396. #include "mmu_audit.c"
  1397. #else
  1398. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1399. static void mmu_audit_disable(void) { }
  1400. #endif
  1401. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1402. struct list_head *invalid_list)
  1403. {
  1404. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1405. }
  1406. /* @gfn should be write-protected at the call site */
  1407. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1408. {
  1409. struct kvm_mmu_page *s;
  1410. LIST_HEAD(invalid_list);
  1411. bool flush = false;
  1412. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1413. if (!s->unsync)
  1414. continue;
  1415. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1416. kvm_unlink_unsync_page(vcpu->kvm, s);
  1417. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1418. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1419. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1420. continue;
  1421. }
  1422. flush = true;
  1423. }
  1424. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1425. if (flush)
  1426. kvm_mmu_flush_tlb(vcpu);
  1427. }
  1428. struct mmu_page_path {
  1429. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1430. unsigned int idx[PT64_ROOT_LEVEL-1];
  1431. };
  1432. #define for_each_sp(pvec, sp, parents, i) \
  1433. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1434. sp = pvec.page[i].sp; \
  1435. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1436. i = mmu_pages_next(&pvec, &parents, i))
  1437. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1438. struct mmu_page_path *parents,
  1439. int i)
  1440. {
  1441. int n;
  1442. for (n = i+1; n < pvec->nr; n++) {
  1443. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1444. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1445. parents->idx[0] = pvec->page[n].idx;
  1446. return n;
  1447. }
  1448. parents->parent[sp->role.level-2] = sp;
  1449. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1450. }
  1451. return n;
  1452. }
  1453. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1454. {
  1455. struct kvm_mmu_page *sp;
  1456. unsigned int level = 0;
  1457. do {
  1458. unsigned int idx = parents->idx[level];
  1459. sp = parents->parent[level];
  1460. if (!sp)
  1461. return;
  1462. --sp->unsync_children;
  1463. WARN_ON((int)sp->unsync_children < 0);
  1464. __clear_bit(idx, sp->unsync_child_bitmap);
  1465. level++;
  1466. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1467. }
  1468. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1469. struct mmu_page_path *parents,
  1470. struct kvm_mmu_pages *pvec)
  1471. {
  1472. parents->parent[parent->role.level-1] = NULL;
  1473. pvec->nr = 0;
  1474. }
  1475. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1476. struct kvm_mmu_page *parent)
  1477. {
  1478. int i;
  1479. struct kvm_mmu_page *sp;
  1480. struct mmu_page_path parents;
  1481. struct kvm_mmu_pages pages;
  1482. LIST_HEAD(invalid_list);
  1483. kvm_mmu_pages_init(parent, &parents, &pages);
  1484. while (mmu_unsync_walk(parent, &pages)) {
  1485. bool protected = false;
  1486. for_each_sp(pages, sp, parents, i)
  1487. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1488. if (protected)
  1489. kvm_flush_remote_tlbs(vcpu->kvm);
  1490. for_each_sp(pages, sp, parents, i) {
  1491. kvm_sync_page(vcpu, sp, &invalid_list);
  1492. mmu_pages_clear_parents(&parents);
  1493. }
  1494. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1495. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1496. kvm_mmu_pages_init(parent, &parents, &pages);
  1497. }
  1498. }
  1499. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1500. {
  1501. int i;
  1502. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1503. sp->spt[i] = 0ull;
  1504. }
  1505. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1506. {
  1507. sp->write_flooding_count = 0;
  1508. }
  1509. static void clear_sp_write_flooding_count(u64 *spte)
  1510. {
  1511. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1512. __clear_sp_write_flooding_count(sp);
  1513. }
  1514. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1515. gfn_t gfn,
  1516. gva_t gaddr,
  1517. unsigned level,
  1518. int direct,
  1519. unsigned access,
  1520. u64 *parent_pte)
  1521. {
  1522. union kvm_mmu_page_role role;
  1523. unsigned quadrant;
  1524. struct kvm_mmu_page *sp;
  1525. bool need_sync = false;
  1526. role = vcpu->arch.mmu.base_role;
  1527. role.level = level;
  1528. role.direct = direct;
  1529. if (role.direct)
  1530. role.cr4_pae = 0;
  1531. role.access = access;
  1532. if (!vcpu->arch.mmu.direct_map
  1533. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1534. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1535. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1536. role.quadrant = quadrant;
  1537. }
  1538. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1539. if (!need_sync && sp->unsync)
  1540. need_sync = true;
  1541. if (sp->role.word != role.word)
  1542. continue;
  1543. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1544. break;
  1545. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1546. if (sp->unsync_children) {
  1547. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1548. kvm_mmu_mark_parents_unsync(sp);
  1549. } else if (sp->unsync)
  1550. kvm_mmu_mark_parents_unsync(sp);
  1551. __clear_sp_write_flooding_count(sp);
  1552. trace_kvm_mmu_get_page(sp, false);
  1553. return sp;
  1554. }
  1555. ++vcpu->kvm->stat.mmu_cache_miss;
  1556. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1557. if (!sp)
  1558. return sp;
  1559. sp->gfn = gfn;
  1560. sp->role = role;
  1561. hlist_add_head(&sp->hash_link,
  1562. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1563. if (!direct) {
  1564. if (rmap_write_protect(vcpu->kvm, gfn))
  1565. kvm_flush_remote_tlbs(vcpu->kvm);
  1566. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1567. kvm_sync_pages(vcpu, gfn);
  1568. account_shadowed(vcpu->kvm, gfn);
  1569. }
  1570. init_shadow_page_table(sp);
  1571. trace_kvm_mmu_get_page(sp, true);
  1572. return sp;
  1573. }
  1574. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1575. struct kvm_vcpu *vcpu, u64 addr)
  1576. {
  1577. iterator->addr = addr;
  1578. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1579. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1580. if (iterator->level == PT64_ROOT_LEVEL &&
  1581. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1582. !vcpu->arch.mmu.direct_map)
  1583. --iterator->level;
  1584. if (iterator->level == PT32E_ROOT_LEVEL) {
  1585. iterator->shadow_addr
  1586. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1587. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1588. --iterator->level;
  1589. if (!iterator->shadow_addr)
  1590. iterator->level = 0;
  1591. }
  1592. }
  1593. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1594. {
  1595. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1596. return false;
  1597. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1598. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1599. return true;
  1600. }
  1601. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1602. u64 spte)
  1603. {
  1604. if (is_last_spte(spte, iterator->level)) {
  1605. iterator->level = 0;
  1606. return;
  1607. }
  1608. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1609. --iterator->level;
  1610. }
  1611. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1612. {
  1613. return __shadow_walk_next(iterator, *iterator->sptep);
  1614. }
  1615. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1616. {
  1617. u64 spte;
  1618. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1619. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1620. mmu_spte_set(sptep, spte);
  1621. }
  1622. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1623. unsigned direct_access)
  1624. {
  1625. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1626. struct kvm_mmu_page *child;
  1627. /*
  1628. * For the direct sp, if the guest pte's dirty bit
  1629. * changed form clean to dirty, it will corrupt the
  1630. * sp's access: allow writable in the read-only sp,
  1631. * so we should update the spte at this point to get
  1632. * a new sp with the correct access.
  1633. */
  1634. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1635. if (child->role.access == direct_access)
  1636. return;
  1637. drop_parent_pte(child, sptep);
  1638. kvm_flush_remote_tlbs(vcpu->kvm);
  1639. }
  1640. }
  1641. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1642. u64 *spte)
  1643. {
  1644. u64 pte;
  1645. struct kvm_mmu_page *child;
  1646. pte = *spte;
  1647. if (is_shadow_present_pte(pte)) {
  1648. if (is_last_spte(pte, sp->role.level)) {
  1649. drop_spte(kvm, spte);
  1650. if (is_large_pte(pte))
  1651. --kvm->stat.lpages;
  1652. } else {
  1653. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1654. drop_parent_pte(child, spte);
  1655. }
  1656. return true;
  1657. }
  1658. if (is_mmio_spte(pte))
  1659. mmu_spte_clear_no_track(spte);
  1660. return false;
  1661. }
  1662. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1663. struct kvm_mmu_page *sp)
  1664. {
  1665. unsigned i;
  1666. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1667. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1668. }
  1669. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1670. {
  1671. mmu_page_remove_parent_pte(sp, parent_pte);
  1672. }
  1673. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1674. {
  1675. u64 *sptep;
  1676. struct rmap_iterator iter;
  1677. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1678. drop_parent_pte(sp, sptep);
  1679. }
  1680. static int mmu_zap_unsync_children(struct kvm *kvm,
  1681. struct kvm_mmu_page *parent,
  1682. struct list_head *invalid_list)
  1683. {
  1684. int i, zapped = 0;
  1685. struct mmu_page_path parents;
  1686. struct kvm_mmu_pages pages;
  1687. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1688. return 0;
  1689. kvm_mmu_pages_init(parent, &parents, &pages);
  1690. while (mmu_unsync_walk(parent, &pages)) {
  1691. struct kvm_mmu_page *sp;
  1692. for_each_sp(pages, sp, parents, i) {
  1693. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1694. mmu_pages_clear_parents(&parents);
  1695. zapped++;
  1696. }
  1697. kvm_mmu_pages_init(parent, &parents, &pages);
  1698. }
  1699. return zapped;
  1700. }
  1701. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1702. struct list_head *invalid_list)
  1703. {
  1704. int ret;
  1705. trace_kvm_mmu_prepare_zap_page(sp);
  1706. ++kvm->stat.mmu_shadow_zapped;
  1707. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1708. kvm_mmu_page_unlink_children(kvm, sp);
  1709. kvm_mmu_unlink_parents(kvm, sp);
  1710. if (!sp->role.invalid && !sp->role.direct)
  1711. unaccount_shadowed(kvm, sp->gfn);
  1712. if (sp->unsync)
  1713. kvm_unlink_unsync_page(kvm, sp);
  1714. if (!sp->root_count) {
  1715. /* Count self */
  1716. ret++;
  1717. list_move(&sp->link, invalid_list);
  1718. kvm_mod_used_mmu_pages(kvm, -1);
  1719. } else {
  1720. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1721. kvm_reload_remote_mmus(kvm);
  1722. }
  1723. sp->role.invalid = 1;
  1724. return ret;
  1725. }
  1726. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1727. struct list_head *invalid_list)
  1728. {
  1729. struct kvm_mmu_page *sp;
  1730. if (list_empty(invalid_list))
  1731. return;
  1732. /*
  1733. * wmb: make sure everyone sees our modifications to the page tables
  1734. * rmb: make sure we see changes to vcpu->mode
  1735. */
  1736. smp_mb();
  1737. /*
  1738. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1739. * page table walks.
  1740. */
  1741. kvm_flush_remote_tlbs(kvm);
  1742. do {
  1743. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1744. WARN_ON(!sp->role.invalid || sp->root_count);
  1745. kvm_mmu_free_page(sp);
  1746. } while (!list_empty(invalid_list));
  1747. }
  1748. /*
  1749. * Changing the number of mmu pages allocated to the vm
  1750. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1751. */
  1752. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1753. {
  1754. LIST_HEAD(invalid_list);
  1755. /*
  1756. * If we set the number of mmu pages to be smaller be than the
  1757. * number of actived pages , we must to free some mmu pages before we
  1758. * change the value
  1759. */
  1760. spin_lock(&kvm->mmu_lock);
  1761. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1762. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1763. !list_empty(&kvm->arch.active_mmu_pages)) {
  1764. struct kvm_mmu_page *page;
  1765. page = container_of(kvm->arch.active_mmu_pages.prev,
  1766. struct kvm_mmu_page, link);
  1767. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1768. }
  1769. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1770. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1771. }
  1772. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1773. spin_unlock(&kvm->mmu_lock);
  1774. }
  1775. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1776. {
  1777. struct kvm_mmu_page *sp;
  1778. LIST_HEAD(invalid_list);
  1779. int r;
  1780. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1781. r = 0;
  1782. spin_lock(&kvm->mmu_lock);
  1783. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1784. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1785. sp->role.word);
  1786. r = 1;
  1787. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1788. }
  1789. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1790. spin_unlock(&kvm->mmu_lock);
  1791. return r;
  1792. }
  1793. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1794. /*
  1795. * The function is based on mtrr_type_lookup() in
  1796. * arch/x86/kernel/cpu/mtrr/generic.c
  1797. */
  1798. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1799. u64 start, u64 end)
  1800. {
  1801. int i;
  1802. u64 base, mask;
  1803. u8 prev_match, curr_match;
  1804. int num_var_ranges = KVM_NR_VAR_MTRR;
  1805. if (!mtrr_state->enabled)
  1806. return 0xFF;
  1807. /* Make end inclusive end, instead of exclusive */
  1808. end--;
  1809. /* Look in fixed ranges. Just return the type as per start */
  1810. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1811. int idx;
  1812. if (start < 0x80000) {
  1813. idx = 0;
  1814. idx += (start >> 16);
  1815. return mtrr_state->fixed_ranges[idx];
  1816. } else if (start < 0xC0000) {
  1817. idx = 1 * 8;
  1818. idx += ((start - 0x80000) >> 14);
  1819. return mtrr_state->fixed_ranges[idx];
  1820. } else if (start < 0x1000000) {
  1821. idx = 3 * 8;
  1822. idx += ((start - 0xC0000) >> 12);
  1823. return mtrr_state->fixed_ranges[idx];
  1824. }
  1825. }
  1826. /*
  1827. * Look in variable ranges
  1828. * Look of multiple ranges matching this address and pick type
  1829. * as per MTRR precedence
  1830. */
  1831. if (!(mtrr_state->enabled & 2))
  1832. return mtrr_state->def_type;
  1833. prev_match = 0xFF;
  1834. for (i = 0; i < num_var_ranges; ++i) {
  1835. unsigned short start_state, end_state;
  1836. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1837. continue;
  1838. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1839. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1840. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1841. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1842. start_state = ((start & mask) == (base & mask));
  1843. end_state = ((end & mask) == (base & mask));
  1844. if (start_state != end_state)
  1845. return 0xFE;
  1846. if ((start & mask) != (base & mask))
  1847. continue;
  1848. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1849. if (prev_match == 0xFF) {
  1850. prev_match = curr_match;
  1851. continue;
  1852. }
  1853. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1854. curr_match == MTRR_TYPE_UNCACHABLE)
  1855. return MTRR_TYPE_UNCACHABLE;
  1856. if ((prev_match == MTRR_TYPE_WRBACK &&
  1857. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1858. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1859. curr_match == MTRR_TYPE_WRBACK)) {
  1860. prev_match = MTRR_TYPE_WRTHROUGH;
  1861. curr_match = MTRR_TYPE_WRTHROUGH;
  1862. }
  1863. if (prev_match != curr_match)
  1864. return MTRR_TYPE_UNCACHABLE;
  1865. }
  1866. if (prev_match != 0xFF)
  1867. return prev_match;
  1868. return mtrr_state->def_type;
  1869. }
  1870. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1871. {
  1872. u8 mtrr;
  1873. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1874. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1875. if (mtrr == 0xfe || mtrr == 0xff)
  1876. mtrr = MTRR_TYPE_WRBACK;
  1877. return mtrr;
  1878. }
  1879. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1880. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1881. {
  1882. trace_kvm_mmu_unsync_page(sp);
  1883. ++vcpu->kvm->stat.mmu_unsync;
  1884. sp->unsync = 1;
  1885. kvm_mmu_mark_parents_unsync(sp);
  1886. }
  1887. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1888. {
  1889. struct kvm_mmu_page *s;
  1890. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1891. if (s->unsync)
  1892. continue;
  1893. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1894. __kvm_unsync_page(vcpu, s);
  1895. }
  1896. }
  1897. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1898. bool can_unsync)
  1899. {
  1900. struct kvm_mmu_page *s;
  1901. bool need_unsync = false;
  1902. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1903. if (!can_unsync)
  1904. return 1;
  1905. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1906. return 1;
  1907. if (!s->unsync)
  1908. need_unsync = true;
  1909. }
  1910. if (need_unsync)
  1911. kvm_unsync_pages(vcpu, gfn);
  1912. return 0;
  1913. }
  1914. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1915. unsigned pte_access, int level,
  1916. gfn_t gfn, pfn_t pfn, bool speculative,
  1917. bool can_unsync, bool host_writable)
  1918. {
  1919. u64 spte;
  1920. int ret = 0;
  1921. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1922. return 0;
  1923. spte = PT_PRESENT_MASK;
  1924. if (!speculative)
  1925. spte |= shadow_accessed_mask;
  1926. if (pte_access & ACC_EXEC_MASK)
  1927. spte |= shadow_x_mask;
  1928. else
  1929. spte |= shadow_nx_mask;
  1930. if (pte_access & ACC_USER_MASK)
  1931. spte |= shadow_user_mask;
  1932. if (level > PT_PAGE_TABLE_LEVEL)
  1933. spte |= PT_PAGE_SIZE_MASK;
  1934. if (tdp_enabled)
  1935. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1936. kvm_is_mmio_pfn(pfn));
  1937. if (host_writable)
  1938. spte |= SPTE_HOST_WRITEABLE;
  1939. else
  1940. pte_access &= ~ACC_WRITE_MASK;
  1941. spte |= (u64)pfn << PAGE_SHIFT;
  1942. if (pte_access & ACC_WRITE_MASK) {
  1943. /*
  1944. * Other vcpu creates new sp in the window between
  1945. * mapping_level() and acquiring mmu-lock. We can
  1946. * allow guest to retry the access, the mapping can
  1947. * be fixed if guest refault.
  1948. */
  1949. if (level > PT_PAGE_TABLE_LEVEL &&
  1950. has_wrprotected_page(vcpu->kvm, gfn, level))
  1951. goto done;
  1952. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1953. /*
  1954. * Optimization: for pte sync, if spte was writable the hash
  1955. * lookup is unnecessary (and expensive). Write protection
  1956. * is responsibility of mmu_get_page / kvm_sync_page.
  1957. * Same reasoning can be applied to dirty page accounting.
  1958. */
  1959. if (!can_unsync && is_writable_pte(*sptep))
  1960. goto set_pte;
  1961. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1962. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1963. __func__, gfn);
  1964. ret = 1;
  1965. pte_access &= ~ACC_WRITE_MASK;
  1966. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1967. }
  1968. }
  1969. if (pte_access & ACC_WRITE_MASK)
  1970. mark_page_dirty(vcpu->kvm, gfn);
  1971. set_pte:
  1972. if (mmu_spte_update(sptep, spte))
  1973. kvm_flush_remote_tlbs(vcpu->kvm);
  1974. done:
  1975. return ret;
  1976. }
  1977. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1978. unsigned pte_access, int write_fault, int *emulate,
  1979. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  1980. bool host_writable)
  1981. {
  1982. int was_rmapped = 0;
  1983. int rmap_count;
  1984. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  1985. *sptep, write_fault, gfn);
  1986. if (is_rmap_spte(*sptep)) {
  1987. /*
  1988. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1989. * the parent of the now unreachable PTE.
  1990. */
  1991. if (level > PT_PAGE_TABLE_LEVEL &&
  1992. !is_large_pte(*sptep)) {
  1993. struct kvm_mmu_page *child;
  1994. u64 pte = *sptep;
  1995. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1996. drop_parent_pte(child, sptep);
  1997. kvm_flush_remote_tlbs(vcpu->kvm);
  1998. } else if (pfn != spte_to_pfn(*sptep)) {
  1999. pgprintk("hfn old %llx new %llx\n",
  2000. spte_to_pfn(*sptep), pfn);
  2001. drop_spte(vcpu->kvm, sptep);
  2002. kvm_flush_remote_tlbs(vcpu->kvm);
  2003. } else
  2004. was_rmapped = 1;
  2005. }
  2006. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2007. true, host_writable)) {
  2008. if (write_fault)
  2009. *emulate = 1;
  2010. kvm_mmu_flush_tlb(vcpu);
  2011. }
  2012. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2013. *emulate = 1;
  2014. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2015. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2016. is_large_pte(*sptep)? "2MB" : "4kB",
  2017. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2018. *sptep, sptep);
  2019. if (!was_rmapped && is_large_pte(*sptep))
  2020. ++vcpu->kvm->stat.lpages;
  2021. if (is_shadow_present_pte(*sptep)) {
  2022. if (!was_rmapped) {
  2023. rmap_count = rmap_add(vcpu, sptep, gfn);
  2024. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2025. rmap_recycle(vcpu, sptep, gfn);
  2026. }
  2027. }
  2028. kvm_release_pfn_clean(pfn);
  2029. }
  2030. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2031. {
  2032. mmu_free_roots(vcpu);
  2033. }
  2034. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2035. {
  2036. int bit7;
  2037. bit7 = (gpte >> 7) & 1;
  2038. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2039. }
  2040. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2041. bool no_dirty_log)
  2042. {
  2043. struct kvm_memory_slot *slot;
  2044. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2045. if (!slot)
  2046. return KVM_PFN_ERR_FAULT;
  2047. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2048. }
  2049. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2050. struct kvm_mmu_page *sp, u64 *spte,
  2051. u64 gpte)
  2052. {
  2053. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2054. goto no_present;
  2055. if (!is_present_gpte(gpte))
  2056. goto no_present;
  2057. if (!(gpte & PT_ACCESSED_MASK))
  2058. goto no_present;
  2059. return false;
  2060. no_present:
  2061. drop_spte(vcpu->kvm, spte);
  2062. return true;
  2063. }
  2064. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2065. struct kvm_mmu_page *sp,
  2066. u64 *start, u64 *end)
  2067. {
  2068. struct page *pages[PTE_PREFETCH_NUM];
  2069. unsigned access = sp->role.access;
  2070. int i, ret;
  2071. gfn_t gfn;
  2072. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2073. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2074. return -1;
  2075. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2076. if (ret <= 0)
  2077. return -1;
  2078. for (i = 0; i < ret; i++, gfn++, start++)
  2079. mmu_set_spte(vcpu, start, access, 0, NULL,
  2080. sp->role.level, gfn, page_to_pfn(pages[i]),
  2081. true, true);
  2082. return 0;
  2083. }
  2084. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2085. struct kvm_mmu_page *sp, u64 *sptep)
  2086. {
  2087. u64 *spte, *start = NULL;
  2088. int i;
  2089. WARN_ON(!sp->role.direct);
  2090. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2091. spte = sp->spt + i;
  2092. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2093. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2094. if (!start)
  2095. continue;
  2096. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2097. break;
  2098. start = NULL;
  2099. } else if (!start)
  2100. start = spte;
  2101. }
  2102. }
  2103. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2104. {
  2105. struct kvm_mmu_page *sp;
  2106. /*
  2107. * Since it's no accessed bit on EPT, it's no way to
  2108. * distinguish between actually accessed translations
  2109. * and prefetched, so disable pte prefetch if EPT is
  2110. * enabled.
  2111. */
  2112. if (!shadow_accessed_mask)
  2113. return;
  2114. sp = page_header(__pa(sptep));
  2115. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2116. return;
  2117. __direct_pte_prefetch(vcpu, sp, sptep);
  2118. }
  2119. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2120. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2121. bool prefault)
  2122. {
  2123. struct kvm_shadow_walk_iterator iterator;
  2124. struct kvm_mmu_page *sp;
  2125. int emulate = 0;
  2126. gfn_t pseudo_gfn;
  2127. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2128. if (iterator.level == level) {
  2129. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2130. write, &emulate, level, gfn, pfn,
  2131. prefault, map_writable);
  2132. direct_pte_prefetch(vcpu, iterator.sptep);
  2133. ++vcpu->stat.pf_fixed;
  2134. break;
  2135. }
  2136. if (!is_shadow_present_pte(*iterator.sptep)) {
  2137. u64 base_addr = iterator.addr;
  2138. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2139. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2140. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2141. iterator.level - 1,
  2142. 1, ACC_ALL, iterator.sptep);
  2143. link_shadow_page(iterator.sptep, sp);
  2144. }
  2145. }
  2146. return emulate;
  2147. }
  2148. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2149. {
  2150. siginfo_t info;
  2151. info.si_signo = SIGBUS;
  2152. info.si_errno = 0;
  2153. info.si_code = BUS_MCEERR_AR;
  2154. info.si_addr = (void __user *)address;
  2155. info.si_addr_lsb = PAGE_SHIFT;
  2156. send_sig_info(SIGBUS, &info, tsk);
  2157. }
  2158. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2159. {
  2160. /*
  2161. * Do not cache the mmio info caused by writing the readonly gfn
  2162. * into the spte otherwise read access on readonly gfn also can
  2163. * caused mmio page fault and treat it as mmio access.
  2164. * Return 1 to tell kvm to emulate it.
  2165. */
  2166. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2167. return 1;
  2168. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2169. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2170. return 0;
  2171. }
  2172. return -EFAULT;
  2173. }
  2174. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2175. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2176. {
  2177. pfn_t pfn = *pfnp;
  2178. gfn_t gfn = *gfnp;
  2179. int level = *levelp;
  2180. /*
  2181. * Check if it's a transparent hugepage. If this would be an
  2182. * hugetlbfs page, level wouldn't be set to
  2183. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2184. * here.
  2185. */
  2186. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2187. level == PT_PAGE_TABLE_LEVEL &&
  2188. PageTransCompound(pfn_to_page(pfn)) &&
  2189. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2190. unsigned long mask;
  2191. /*
  2192. * mmu_notifier_retry was successful and we hold the
  2193. * mmu_lock here, so the pmd can't become splitting
  2194. * from under us, and in turn
  2195. * __split_huge_page_refcount() can't run from under
  2196. * us and we can safely transfer the refcount from
  2197. * PG_tail to PG_head as we switch the pfn to tail to
  2198. * head.
  2199. */
  2200. *levelp = level = PT_DIRECTORY_LEVEL;
  2201. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2202. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2203. if (pfn & mask) {
  2204. gfn &= ~mask;
  2205. *gfnp = gfn;
  2206. kvm_release_pfn_clean(pfn);
  2207. pfn &= ~mask;
  2208. kvm_get_pfn(pfn);
  2209. *pfnp = pfn;
  2210. }
  2211. }
  2212. }
  2213. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2214. pfn_t pfn, unsigned access, int *ret_val)
  2215. {
  2216. bool ret = true;
  2217. /* The pfn is invalid, report the error! */
  2218. if (unlikely(is_error_pfn(pfn))) {
  2219. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2220. goto exit;
  2221. }
  2222. if (unlikely(is_noslot_pfn(pfn)))
  2223. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2224. ret = false;
  2225. exit:
  2226. return ret;
  2227. }
  2228. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2229. {
  2230. /*
  2231. * #PF can be fast only if the shadow page table is present and it
  2232. * is caused by write-protect, that means we just need change the
  2233. * W bit of the spte which can be done out of mmu-lock.
  2234. */
  2235. if (!(error_code & PFERR_PRESENT_MASK) ||
  2236. !(error_code & PFERR_WRITE_MASK))
  2237. return false;
  2238. return true;
  2239. }
  2240. static bool
  2241. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2242. {
  2243. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2244. gfn_t gfn;
  2245. WARN_ON(!sp->role.direct);
  2246. /*
  2247. * The gfn of direct spte is stable since it is calculated
  2248. * by sp->gfn.
  2249. */
  2250. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2251. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2252. mark_page_dirty(vcpu->kvm, gfn);
  2253. return true;
  2254. }
  2255. /*
  2256. * Return value:
  2257. * - true: let the vcpu to access on the same address again.
  2258. * - false: let the real page fault path to fix it.
  2259. */
  2260. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2261. u32 error_code)
  2262. {
  2263. struct kvm_shadow_walk_iterator iterator;
  2264. bool ret = false;
  2265. u64 spte = 0ull;
  2266. if (!page_fault_can_be_fast(vcpu, error_code))
  2267. return false;
  2268. walk_shadow_page_lockless_begin(vcpu);
  2269. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2270. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2271. break;
  2272. /*
  2273. * If the mapping has been changed, let the vcpu fault on the
  2274. * same address again.
  2275. */
  2276. if (!is_rmap_spte(spte)) {
  2277. ret = true;
  2278. goto exit;
  2279. }
  2280. if (!is_last_spte(spte, level))
  2281. goto exit;
  2282. /*
  2283. * Check if it is a spurious fault caused by TLB lazily flushed.
  2284. *
  2285. * Need not check the access of upper level table entries since
  2286. * they are always ACC_ALL.
  2287. */
  2288. if (is_writable_pte(spte)) {
  2289. ret = true;
  2290. goto exit;
  2291. }
  2292. /*
  2293. * Currently, to simplify the code, only the spte write-protected
  2294. * by dirty-log can be fast fixed.
  2295. */
  2296. if (!spte_is_locklessly_modifiable(spte))
  2297. goto exit;
  2298. /*
  2299. * Currently, fast page fault only works for direct mapping since
  2300. * the gfn is not stable for indirect shadow page.
  2301. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2302. */
  2303. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2304. exit:
  2305. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2306. spte, ret);
  2307. walk_shadow_page_lockless_end(vcpu);
  2308. return ret;
  2309. }
  2310. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2311. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2312. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2313. gfn_t gfn, bool prefault)
  2314. {
  2315. int r;
  2316. int level;
  2317. int force_pt_level;
  2318. pfn_t pfn;
  2319. unsigned long mmu_seq;
  2320. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2321. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2322. if (likely(!force_pt_level)) {
  2323. level = mapping_level(vcpu, gfn);
  2324. /*
  2325. * This path builds a PAE pagetable - so we can map
  2326. * 2mb pages at maximum. Therefore check if the level
  2327. * is larger than that.
  2328. */
  2329. if (level > PT_DIRECTORY_LEVEL)
  2330. level = PT_DIRECTORY_LEVEL;
  2331. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2332. } else
  2333. level = PT_PAGE_TABLE_LEVEL;
  2334. if (fast_page_fault(vcpu, v, level, error_code))
  2335. return 0;
  2336. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2337. smp_rmb();
  2338. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2339. return 0;
  2340. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2341. return r;
  2342. spin_lock(&vcpu->kvm->mmu_lock);
  2343. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2344. goto out_unlock;
  2345. kvm_mmu_free_some_pages(vcpu);
  2346. if (likely(!force_pt_level))
  2347. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2348. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2349. prefault);
  2350. spin_unlock(&vcpu->kvm->mmu_lock);
  2351. return r;
  2352. out_unlock:
  2353. spin_unlock(&vcpu->kvm->mmu_lock);
  2354. kvm_release_pfn_clean(pfn);
  2355. return 0;
  2356. }
  2357. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2358. {
  2359. int i;
  2360. struct kvm_mmu_page *sp;
  2361. LIST_HEAD(invalid_list);
  2362. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2363. return;
  2364. spin_lock(&vcpu->kvm->mmu_lock);
  2365. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2366. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2367. vcpu->arch.mmu.direct_map)) {
  2368. hpa_t root = vcpu->arch.mmu.root_hpa;
  2369. sp = page_header(root);
  2370. --sp->root_count;
  2371. if (!sp->root_count && sp->role.invalid) {
  2372. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2373. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2374. }
  2375. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2376. spin_unlock(&vcpu->kvm->mmu_lock);
  2377. return;
  2378. }
  2379. for (i = 0; i < 4; ++i) {
  2380. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2381. if (root) {
  2382. root &= PT64_BASE_ADDR_MASK;
  2383. sp = page_header(root);
  2384. --sp->root_count;
  2385. if (!sp->root_count && sp->role.invalid)
  2386. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2387. &invalid_list);
  2388. }
  2389. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2390. }
  2391. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2392. spin_unlock(&vcpu->kvm->mmu_lock);
  2393. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2394. }
  2395. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2396. {
  2397. int ret = 0;
  2398. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2399. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2400. ret = 1;
  2401. }
  2402. return ret;
  2403. }
  2404. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2405. {
  2406. struct kvm_mmu_page *sp;
  2407. unsigned i;
  2408. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2409. spin_lock(&vcpu->kvm->mmu_lock);
  2410. kvm_mmu_free_some_pages(vcpu);
  2411. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2412. 1, ACC_ALL, NULL);
  2413. ++sp->root_count;
  2414. spin_unlock(&vcpu->kvm->mmu_lock);
  2415. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2416. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2417. for (i = 0; i < 4; ++i) {
  2418. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2419. ASSERT(!VALID_PAGE(root));
  2420. spin_lock(&vcpu->kvm->mmu_lock);
  2421. kvm_mmu_free_some_pages(vcpu);
  2422. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2423. i << 30,
  2424. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2425. NULL);
  2426. root = __pa(sp->spt);
  2427. ++sp->root_count;
  2428. spin_unlock(&vcpu->kvm->mmu_lock);
  2429. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2430. }
  2431. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2432. } else
  2433. BUG();
  2434. return 0;
  2435. }
  2436. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2437. {
  2438. struct kvm_mmu_page *sp;
  2439. u64 pdptr, pm_mask;
  2440. gfn_t root_gfn;
  2441. int i;
  2442. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2443. if (mmu_check_root(vcpu, root_gfn))
  2444. return 1;
  2445. /*
  2446. * Do we shadow a long mode page table? If so we need to
  2447. * write-protect the guests page table root.
  2448. */
  2449. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2450. hpa_t root = vcpu->arch.mmu.root_hpa;
  2451. ASSERT(!VALID_PAGE(root));
  2452. spin_lock(&vcpu->kvm->mmu_lock);
  2453. kvm_mmu_free_some_pages(vcpu);
  2454. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2455. 0, ACC_ALL, NULL);
  2456. root = __pa(sp->spt);
  2457. ++sp->root_count;
  2458. spin_unlock(&vcpu->kvm->mmu_lock);
  2459. vcpu->arch.mmu.root_hpa = root;
  2460. return 0;
  2461. }
  2462. /*
  2463. * We shadow a 32 bit page table. This may be a legacy 2-level
  2464. * or a PAE 3-level page table. In either case we need to be aware that
  2465. * the shadow page table may be a PAE or a long mode page table.
  2466. */
  2467. pm_mask = PT_PRESENT_MASK;
  2468. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2469. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2470. for (i = 0; i < 4; ++i) {
  2471. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2472. ASSERT(!VALID_PAGE(root));
  2473. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2474. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2475. if (!is_present_gpte(pdptr)) {
  2476. vcpu->arch.mmu.pae_root[i] = 0;
  2477. continue;
  2478. }
  2479. root_gfn = pdptr >> PAGE_SHIFT;
  2480. if (mmu_check_root(vcpu, root_gfn))
  2481. return 1;
  2482. }
  2483. spin_lock(&vcpu->kvm->mmu_lock);
  2484. kvm_mmu_free_some_pages(vcpu);
  2485. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2486. PT32_ROOT_LEVEL, 0,
  2487. ACC_ALL, NULL);
  2488. root = __pa(sp->spt);
  2489. ++sp->root_count;
  2490. spin_unlock(&vcpu->kvm->mmu_lock);
  2491. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2492. }
  2493. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2494. /*
  2495. * If we shadow a 32 bit page table with a long mode page
  2496. * table we enter this path.
  2497. */
  2498. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2499. if (vcpu->arch.mmu.lm_root == NULL) {
  2500. /*
  2501. * The additional page necessary for this is only
  2502. * allocated on demand.
  2503. */
  2504. u64 *lm_root;
  2505. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2506. if (lm_root == NULL)
  2507. return 1;
  2508. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2509. vcpu->arch.mmu.lm_root = lm_root;
  2510. }
  2511. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2512. }
  2513. return 0;
  2514. }
  2515. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2516. {
  2517. if (vcpu->arch.mmu.direct_map)
  2518. return mmu_alloc_direct_roots(vcpu);
  2519. else
  2520. return mmu_alloc_shadow_roots(vcpu);
  2521. }
  2522. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2523. {
  2524. int i;
  2525. struct kvm_mmu_page *sp;
  2526. if (vcpu->arch.mmu.direct_map)
  2527. return;
  2528. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2529. return;
  2530. vcpu_clear_mmio_info(vcpu, ~0ul);
  2531. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2532. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2533. hpa_t root = vcpu->arch.mmu.root_hpa;
  2534. sp = page_header(root);
  2535. mmu_sync_children(vcpu, sp);
  2536. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2537. return;
  2538. }
  2539. for (i = 0; i < 4; ++i) {
  2540. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2541. if (root && VALID_PAGE(root)) {
  2542. root &= PT64_BASE_ADDR_MASK;
  2543. sp = page_header(root);
  2544. mmu_sync_children(vcpu, sp);
  2545. }
  2546. }
  2547. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2548. }
  2549. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2550. {
  2551. spin_lock(&vcpu->kvm->mmu_lock);
  2552. mmu_sync_roots(vcpu);
  2553. spin_unlock(&vcpu->kvm->mmu_lock);
  2554. }
  2555. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2556. u32 access, struct x86_exception *exception)
  2557. {
  2558. if (exception)
  2559. exception->error_code = 0;
  2560. return vaddr;
  2561. }
  2562. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2563. u32 access,
  2564. struct x86_exception *exception)
  2565. {
  2566. if (exception)
  2567. exception->error_code = 0;
  2568. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2569. }
  2570. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2571. {
  2572. if (direct)
  2573. return vcpu_match_mmio_gpa(vcpu, addr);
  2574. return vcpu_match_mmio_gva(vcpu, addr);
  2575. }
  2576. /*
  2577. * On direct hosts, the last spte is only allows two states
  2578. * for mmio page fault:
  2579. * - It is the mmio spte
  2580. * - It is zapped or it is being zapped.
  2581. *
  2582. * This function completely checks the spte when the last spte
  2583. * is not the mmio spte.
  2584. */
  2585. static bool check_direct_spte_mmio_pf(u64 spte)
  2586. {
  2587. return __check_direct_spte_mmio_pf(spte);
  2588. }
  2589. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2590. {
  2591. struct kvm_shadow_walk_iterator iterator;
  2592. u64 spte = 0ull;
  2593. walk_shadow_page_lockless_begin(vcpu);
  2594. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2595. if (!is_shadow_present_pte(spte))
  2596. break;
  2597. walk_shadow_page_lockless_end(vcpu);
  2598. return spte;
  2599. }
  2600. /*
  2601. * If it is a real mmio page fault, return 1 and emulat the instruction
  2602. * directly, return 0 to let CPU fault again on the address, -1 is
  2603. * returned if bug is detected.
  2604. */
  2605. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2606. {
  2607. u64 spte;
  2608. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2609. return 1;
  2610. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2611. if (is_mmio_spte(spte)) {
  2612. gfn_t gfn = get_mmio_spte_gfn(spte);
  2613. unsigned access = get_mmio_spte_access(spte);
  2614. if (direct)
  2615. addr = 0;
  2616. trace_handle_mmio_page_fault(addr, gfn, access);
  2617. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2618. return 1;
  2619. }
  2620. /*
  2621. * It's ok if the gva is remapped by other cpus on shadow guest,
  2622. * it's a BUG if the gfn is not a mmio page.
  2623. */
  2624. if (direct && !check_direct_spte_mmio_pf(spte))
  2625. return -1;
  2626. /*
  2627. * If the page table is zapped by other cpus, let CPU fault again on
  2628. * the address.
  2629. */
  2630. return 0;
  2631. }
  2632. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2633. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2634. u32 error_code, bool direct)
  2635. {
  2636. int ret;
  2637. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2638. WARN_ON(ret < 0);
  2639. return ret;
  2640. }
  2641. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2642. u32 error_code, bool prefault)
  2643. {
  2644. gfn_t gfn;
  2645. int r;
  2646. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2647. if (unlikely(error_code & PFERR_RSVD_MASK))
  2648. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2649. r = mmu_topup_memory_caches(vcpu);
  2650. if (r)
  2651. return r;
  2652. ASSERT(vcpu);
  2653. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2654. gfn = gva >> PAGE_SHIFT;
  2655. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2656. error_code, gfn, prefault);
  2657. }
  2658. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2659. {
  2660. struct kvm_arch_async_pf arch;
  2661. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2662. arch.gfn = gfn;
  2663. arch.direct_map = vcpu->arch.mmu.direct_map;
  2664. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2665. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2666. }
  2667. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2668. {
  2669. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2670. kvm_event_needs_reinjection(vcpu)))
  2671. return false;
  2672. return kvm_x86_ops->interrupt_allowed(vcpu);
  2673. }
  2674. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2675. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2676. {
  2677. bool async;
  2678. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2679. if (!async)
  2680. return false; /* *pfn has correct page already */
  2681. if (!prefault && can_do_async_pf(vcpu)) {
  2682. trace_kvm_try_async_get_page(gva, gfn);
  2683. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2684. trace_kvm_async_pf_doublefault(gva, gfn);
  2685. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2686. return true;
  2687. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2688. return true;
  2689. }
  2690. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2691. return false;
  2692. }
  2693. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2694. bool prefault)
  2695. {
  2696. pfn_t pfn;
  2697. int r;
  2698. int level;
  2699. int force_pt_level;
  2700. gfn_t gfn = gpa >> PAGE_SHIFT;
  2701. unsigned long mmu_seq;
  2702. int write = error_code & PFERR_WRITE_MASK;
  2703. bool map_writable;
  2704. ASSERT(vcpu);
  2705. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2706. if (unlikely(error_code & PFERR_RSVD_MASK))
  2707. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2708. r = mmu_topup_memory_caches(vcpu);
  2709. if (r)
  2710. return r;
  2711. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2712. if (likely(!force_pt_level)) {
  2713. level = mapping_level(vcpu, gfn);
  2714. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2715. } else
  2716. level = PT_PAGE_TABLE_LEVEL;
  2717. if (fast_page_fault(vcpu, gpa, level, error_code))
  2718. return 0;
  2719. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2720. smp_rmb();
  2721. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2722. return 0;
  2723. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2724. return r;
  2725. spin_lock(&vcpu->kvm->mmu_lock);
  2726. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2727. goto out_unlock;
  2728. kvm_mmu_free_some_pages(vcpu);
  2729. if (likely(!force_pt_level))
  2730. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2731. r = __direct_map(vcpu, gpa, write, map_writable,
  2732. level, gfn, pfn, prefault);
  2733. spin_unlock(&vcpu->kvm->mmu_lock);
  2734. return r;
  2735. out_unlock:
  2736. spin_unlock(&vcpu->kvm->mmu_lock);
  2737. kvm_release_pfn_clean(pfn);
  2738. return 0;
  2739. }
  2740. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2741. {
  2742. mmu_free_roots(vcpu);
  2743. }
  2744. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2745. struct kvm_mmu *context)
  2746. {
  2747. context->new_cr3 = nonpaging_new_cr3;
  2748. context->page_fault = nonpaging_page_fault;
  2749. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2750. context->free = nonpaging_free;
  2751. context->sync_page = nonpaging_sync_page;
  2752. context->invlpg = nonpaging_invlpg;
  2753. context->update_pte = nonpaging_update_pte;
  2754. context->root_level = 0;
  2755. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2756. context->root_hpa = INVALID_PAGE;
  2757. context->direct_map = true;
  2758. context->nx = false;
  2759. return 0;
  2760. }
  2761. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2762. {
  2763. ++vcpu->stat.tlb_flush;
  2764. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2765. }
  2766. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2767. {
  2768. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2769. mmu_free_roots(vcpu);
  2770. }
  2771. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2772. {
  2773. return kvm_read_cr3(vcpu);
  2774. }
  2775. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2776. struct x86_exception *fault)
  2777. {
  2778. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2779. }
  2780. static void paging_free(struct kvm_vcpu *vcpu)
  2781. {
  2782. nonpaging_free(vcpu);
  2783. }
  2784. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2785. {
  2786. unsigned mask;
  2787. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2788. mask = (unsigned)~ACC_WRITE_MASK;
  2789. /* Allow write access to dirty gptes */
  2790. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2791. *access &= mask;
  2792. }
  2793. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2794. int *nr_present)
  2795. {
  2796. if (unlikely(is_mmio_spte(*sptep))) {
  2797. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2798. mmu_spte_clear_no_track(sptep);
  2799. return true;
  2800. }
  2801. (*nr_present)++;
  2802. mark_mmio_spte(sptep, gfn, access);
  2803. return true;
  2804. }
  2805. return false;
  2806. }
  2807. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2808. {
  2809. unsigned access;
  2810. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2811. access &= ~(gpte >> PT64_NX_SHIFT);
  2812. return access;
  2813. }
  2814. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2815. {
  2816. unsigned index;
  2817. index = level - 1;
  2818. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2819. return mmu->last_pte_bitmap & (1 << index);
  2820. }
  2821. #define PTTYPE 64
  2822. #include "paging_tmpl.h"
  2823. #undef PTTYPE
  2824. #define PTTYPE 32
  2825. #include "paging_tmpl.h"
  2826. #undef PTTYPE
  2827. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2828. struct kvm_mmu *context)
  2829. {
  2830. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2831. u64 exb_bit_rsvd = 0;
  2832. if (!context->nx)
  2833. exb_bit_rsvd = rsvd_bits(63, 63);
  2834. switch (context->root_level) {
  2835. case PT32_ROOT_LEVEL:
  2836. /* no rsvd bits for 2 level 4K page table entries */
  2837. context->rsvd_bits_mask[0][1] = 0;
  2838. context->rsvd_bits_mask[0][0] = 0;
  2839. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2840. if (!is_pse(vcpu)) {
  2841. context->rsvd_bits_mask[1][1] = 0;
  2842. break;
  2843. }
  2844. if (is_cpuid_PSE36())
  2845. /* 36bits PSE 4MB page */
  2846. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2847. else
  2848. /* 32 bits PSE 4MB page */
  2849. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2850. break;
  2851. case PT32E_ROOT_LEVEL:
  2852. context->rsvd_bits_mask[0][2] =
  2853. rsvd_bits(maxphyaddr, 63) |
  2854. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2855. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2856. rsvd_bits(maxphyaddr, 62); /* PDE */
  2857. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2858. rsvd_bits(maxphyaddr, 62); /* PTE */
  2859. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2860. rsvd_bits(maxphyaddr, 62) |
  2861. rsvd_bits(13, 20); /* large page */
  2862. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2863. break;
  2864. case PT64_ROOT_LEVEL:
  2865. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2866. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2867. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2868. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2869. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2870. rsvd_bits(maxphyaddr, 51);
  2871. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2872. rsvd_bits(maxphyaddr, 51);
  2873. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2874. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2875. rsvd_bits(maxphyaddr, 51) |
  2876. rsvd_bits(13, 29);
  2877. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2878. rsvd_bits(maxphyaddr, 51) |
  2879. rsvd_bits(13, 20); /* large page */
  2880. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2881. break;
  2882. }
  2883. }
  2884. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2885. {
  2886. unsigned bit, byte, pfec;
  2887. u8 map;
  2888. bool fault, x, w, u, wf, uf, ff, smep;
  2889. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2890. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2891. pfec = byte << 1;
  2892. map = 0;
  2893. wf = pfec & PFERR_WRITE_MASK;
  2894. uf = pfec & PFERR_USER_MASK;
  2895. ff = pfec & PFERR_FETCH_MASK;
  2896. for (bit = 0; bit < 8; ++bit) {
  2897. x = bit & ACC_EXEC_MASK;
  2898. w = bit & ACC_WRITE_MASK;
  2899. u = bit & ACC_USER_MASK;
  2900. /* Not really needed: !nx will cause pte.nx to fault */
  2901. x |= !mmu->nx;
  2902. /* Allow supervisor writes if !cr0.wp */
  2903. w |= !is_write_protection(vcpu) && !uf;
  2904. /* Disallow supervisor fetches of user code if cr4.smep */
  2905. x &= !(smep && u && !uf);
  2906. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2907. map |= fault << bit;
  2908. }
  2909. mmu->permissions[byte] = map;
  2910. }
  2911. }
  2912. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2913. {
  2914. u8 map;
  2915. unsigned level, root_level = mmu->root_level;
  2916. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2917. if (root_level == PT32E_ROOT_LEVEL)
  2918. --root_level;
  2919. /* PT_PAGE_TABLE_LEVEL always terminates */
  2920. map = 1 | (1 << ps_set_index);
  2921. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2922. if (level <= PT_PDPE_LEVEL
  2923. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2924. map |= 1 << (ps_set_index | (level - 1));
  2925. }
  2926. mmu->last_pte_bitmap = map;
  2927. }
  2928. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2929. struct kvm_mmu *context,
  2930. int level)
  2931. {
  2932. context->nx = is_nx(vcpu);
  2933. context->root_level = level;
  2934. reset_rsvds_bits_mask(vcpu, context);
  2935. update_permission_bitmask(vcpu, context);
  2936. update_last_pte_bitmap(vcpu, context);
  2937. ASSERT(is_pae(vcpu));
  2938. context->new_cr3 = paging_new_cr3;
  2939. context->page_fault = paging64_page_fault;
  2940. context->gva_to_gpa = paging64_gva_to_gpa;
  2941. context->sync_page = paging64_sync_page;
  2942. context->invlpg = paging64_invlpg;
  2943. context->update_pte = paging64_update_pte;
  2944. context->free = paging_free;
  2945. context->shadow_root_level = level;
  2946. context->root_hpa = INVALID_PAGE;
  2947. context->direct_map = false;
  2948. return 0;
  2949. }
  2950. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2951. struct kvm_mmu *context)
  2952. {
  2953. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2954. }
  2955. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2956. struct kvm_mmu *context)
  2957. {
  2958. context->nx = false;
  2959. context->root_level = PT32_ROOT_LEVEL;
  2960. reset_rsvds_bits_mask(vcpu, context);
  2961. update_permission_bitmask(vcpu, context);
  2962. update_last_pte_bitmap(vcpu, context);
  2963. context->new_cr3 = paging_new_cr3;
  2964. context->page_fault = paging32_page_fault;
  2965. context->gva_to_gpa = paging32_gva_to_gpa;
  2966. context->free = paging_free;
  2967. context->sync_page = paging32_sync_page;
  2968. context->invlpg = paging32_invlpg;
  2969. context->update_pte = paging32_update_pte;
  2970. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2971. context->root_hpa = INVALID_PAGE;
  2972. context->direct_map = false;
  2973. return 0;
  2974. }
  2975. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2976. struct kvm_mmu *context)
  2977. {
  2978. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2979. }
  2980. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2981. {
  2982. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2983. context->base_role.word = 0;
  2984. context->new_cr3 = nonpaging_new_cr3;
  2985. context->page_fault = tdp_page_fault;
  2986. context->free = nonpaging_free;
  2987. context->sync_page = nonpaging_sync_page;
  2988. context->invlpg = nonpaging_invlpg;
  2989. context->update_pte = nonpaging_update_pte;
  2990. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2991. context->root_hpa = INVALID_PAGE;
  2992. context->direct_map = true;
  2993. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2994. context->get_cr3 = get_cr3;
  2995. context->get_pdptr = kvm_pdptr_read;
  2996. context->inject_page_fault = kvm_inject_page_fault;
  2997. if (!is_paging(vcpu)) {
  2998. context->nx = false;
  2999. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3000. context->root_level = 0;
  3001. } else if (is_long_mode(vcpu)) {
  3002. context->nx = is_nx(vcpu);
  3003. context->root_level = PT64_ROOT_LEVEL;
  3004. reset_rsvds_bits_mask(vcpu, context);
  3005. context->gva_to_gpa = paging64_gva_to_gpa;
  3006. } else if (is_pae(vcpu)) {
  3007. context->nx = is_nx(vcpu);
  3008. context->root_level = PT32E_ROOT_LEVEL;
  3009. reset_rsvds_bits_mask(vcpu, context);
  3010. context->gva_to_gpa = paging64_gva_to_gpa;
  3011. } else {
  3012. context->nx = false;
  3013. context->root_level = PT32_ROOT_LEVEL;
  3014. reset_rsvds_bits_mask(vcpu, context);
  3015. context->gva_to_gpa = paging32_gva_to_gpa;
  3016. }
  3017. update_permission_bitmask(vcpu, context);
  3018. update_last_pte_bitmap(vcpu, context);
  3019. return 0;
  3020. }
  3021. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3022. {
  3023. int r;
  3024. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3025. ASSERT(vcpu);
  3026. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3027. if (!is_paging(vcpu))
  3028. r = nonpaging_init_context(vcpu, context);
  3029. else if (is_long_mode(vcpu))
  3030. r = paging64_init_context(vcpu, context);
  3031. else if (is_pae(vcpu))
  3032. r = paging32E_init_context(vcpu, context);
  3033. else
  3034. r = paging32_init_context(vcpu, context);
  3035. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3036. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3037. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3038. vcpu->arch.mmu.base_role.smep_andnot_wp
  3039. = smep && !is_write_protection(vcpu);
  3040. return r;
  3041. }
  3042. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3043. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3044. {
  3045. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3046. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3047. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3048. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3049. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3050. return r;
  3051. }
  3052. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3053. {
  3054. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3055. g_context->get_cr3 = get_cr3;
  3056. g_context->get_pdptr = kvm_pdptr_read;
  3057. g_context->inject_page_fault = kvm_inject_page_fault;
  3058. /*
  3059. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3060. * translation of l2_gpa to l1_gpa addresses is done using the
  3061. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3062. * functions between mmu and nested_mmu are swapped.
  3063. */
  3064. if (!is_paging(vcpu)) {
  3065. g_context->nx = false;
  3066. g_context->root_level = 0;
  3067. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3068. } else if (is_long_mode(vcpu)) {
  3069. g_context->nx = is_nx(vcpu);
  3070. g_context->root_level = PT64_ROOT_LEVEL;
  3071. reset_rsvds_bits_mask(vcpu, g_context);
  3072. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3073. } else if (is_pae(vcpu)) {
  3074. g_context->nx = is_nx(vcpu);
  3075. g_context->root_level = PT32E_ROOT_LEVEL;
  3076. reset_rsvds_bits_mask(vcpu, g_context);
  3077. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3078. } else {
  3079. g_context->nx = false;
  3080. g_context->root_level = PT32_ROOT_LEVEL;
  3081. reset_rsvds_bits_mask(vcpu, g_context);
  3082. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3083. }
  3084. update_permission_bitmask(vcpu, g_context);
  3085. update_last_pte_bitmap(vcpu, g_context);
  3086. return 0;
  3087. }
  3088. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3089. {
  3090. if (mmu_is_nested(vcpu))
  3091. return init_kvm_nested_mmu(vcpu);
  3092. else if (tdp_enabled)
  3093. return init_kvm_tdp_mmu(vcpu);
  3094. else
  3095. return init_kvm_softmmu(vcpu);
  3096. }
  3097. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3098. {
  3099. ASSERT(vcpu);
  3100. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3101. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3102. vcpu->arch.mmu.free(vcpu);
  3103. }
  3104. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3105. {
  3106. destroy_kvm_mmu(vcpu);
  3107. return init_kvm_mmu(vcpu);
  3108. }
  3109. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3110. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3111. {
  3112. int r;
  3113. r = mmu_topup_memory_caches(vcpu);
  3114. if (r)
  3115. goto out;
  3116. r = mmu_alloc_roots(vcpu);
  3117. spin_lock(&vcpu->kvm->mmu_lock);
  3118. mmu_sync_roots(vcpu);
  3119. spin_unlock(&vcpu->kvm->mmu_lock);
  3120. if (r)
  3121. goto out;
  3122. /* set_cr3() should ensure TLB has been flushed */
  3123. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3124. out:
  3125. return r;
  3126. }
  3127. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3128. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3129. {
  3130. mmu_free_roots(vcpu);
  3131. }
  3132. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3133. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3134. struct kvm_mmu_page *sp, u64 *spte,
  3135. const void *new)
  3136. {
  3137. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3138. ++vcpu->kvm->stat.mmu_pde_zapped;
  3139. return;
  3140. }
  3141. ++vcpu->kvm->stat.mmu_pte_updated;
  3142. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3143. }
  3144. static bool need_remote_flush(u64 old, u64 new)
  3145. {
  3146. if (!is_shadow_present_pte(old))
  3147. return false;
  3148. if (!is_shadow_present_pte(new))
  3149. return true;
  3150. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3151. return true;
  3152. old ^= PT64_NX_MASK;
  3153. new ^= PT64_NX_MASK;
  3154. return (old & ~new & PT64_PERM_MASK) != 0;
  3155. }
  3156. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3157. bool remote_flush, bool local_flush)
  3158. {
  3159. if (zap_page)
  3160. return;
  3161. if (remote_flush)
  3162. kvm_flush_remote_tlbs(vcpu->kvm);
  3163. else if (local_flush)
  3164. kvm_mmu_flush_tlb(vcpu);
  3165. }
  3166. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3167. const u8 *new, int *bytes)
  3168. {
  3169. u64 gentry;
  3170. int r;
  3171. /*
  3172. * Assume that the pte write on a page table of the same type
  3173. * as the current vcpu paging mode since we update the sptes only
  3174. * when they have the same mode.
  3175. */
  3176. if (is_pae(vcpu) && *bytes == 4) {
  3177. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3178. *gpa &= ~(gpa_t)7;
  3179. *bytes = 8;
  3180. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3181. if (r)
  3182. gentry = 0;
  3183. new = (const u8 *)&gentry;
  3184. }
  3185. switch (*bytes) {
  3186. case 4:
  3187. gentry = *(const u32 *)new;
  3188. break;
  3189. case 8:
  3190. gentry = *(const u64 *)new;
  3191. break;
  3192. default:
  3193. gentry = 0;
  3194. break;
  3195. }
  3196. return gentry;
  3197. }
  3198. /*
  3199. * If we're seeing too many writes to a page, it may no longer be a page table,
  3200. * or we may be forking, in which case it is better to unmap the page.
  3201. */
  3202. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3203. {
  3204. /*
  3205. * Skip write-flooding detected for the sp whose level is 1, because
  3206. * it can become unsync, then the guest page is not write-protected.
  3207. */
  3208. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3209. return false;
  3210. return ++sp->write_flooding_count >= 3;
  3211. }
  3212. /*
  3213. * Misaligned accesses are too much trouble to fix up; also, they usually
  3214. * indicate a page is not used as a page table.
  3215. */
  3216. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3217. int bytes)
  3218. {
  3219. unsigned offset, pte_size, misaligned;
  3220. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3221. gpa, bytes, sp->role.word);
  3222. offset = offset_in_page(gpa);
  3223. pte_size = sp->role.cr4_pae ? 8 : 4;
  3224. /*
  3225. * Sometimes, the OS only writes the last one bytes to update status
  3226. * bits, for example, in linux, andb instruction is used in clear_bit().
  3227. */
  3228. if (!(offset & (pte_size - 1)) && bytes == 1)
  3229. return false;
  3230. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3231. misaligned |= bytes < 4;
  3232. return misaligned;
  3233. }
  3234. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3235. {
  3236. unsigned page_offset, quadrant;
  3237. u64 *spte;
  3238. int level;
  3239. page_offset = offset_in_page(gpa);
  3240. level = sp->role.level;
  3241. *nspte = 1;
  3242. if (!sp->role.cr4_pae) {
  3243. page_offset <<= 1; /* 32->64 */
  3244. /*
  3245. * A 32-bit pde maps 4MB while the shadow pdes map
  3246. * only 2MB. So we need to double the offset again
  3247. * and zap two pdes instead of one.
  3248. */
  3249. if (level == PT32_ROOT_LEVEL) {
  3250. page_offset &= ~7; /* kill rounding error */
  3251. page_offset <<= 1;
  3252. *nspte = 2;
  3253. }
  3254. quadrant = page_offset >> PAGE_SHIFT;
  3255. page_offset &= ~PAGE_MASK;
  3256. if (quadrant != sp->role.quadrant)
  3257. return NULL;
  3258. }
  3259. spte = &sp->spt[page_offset / sizeof(*spte)];
  3260. return spte;
  3261. }
  3262. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3263. const u8 *new, int bytes)
  3264. {
  3265. gfn_t gfn = gpa >> PAGE_SHIFT;
  3266. union kvm_mmu_page_role mask = { .word = 0 };
  3267. struct kvm_mmu_page *sp;
  3268. LIST_HEAD(invalid_list);
  3269. u64 entry, gentry, *spte;
  3270. int npte;
  3271. bool remote_flush, local_flush, zap_page;
  3272. /*
  3273. * If we don't have indirect shadow pages, it means no page is
  3274. * write-protected, so we can exit simply.
  3275. */
  3276. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3277. return;
  3278. zap_page = remote_flush = local_flush = false;
  3279. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3280. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3281. /*
  3282. * No need to care whether allocation memory is successful
  3283. * or not since pte prefetch is skiped if it does not have
  3284. * enough objects in the cache.
  3285. */
  3286. mmu_topup_memory_caches(vcpu);
  3287. spin_lock(&vcpu->kvm->mmu_lock);
  3288. ++vcpu->kvm->stat.mmu_pte_write;
  3289. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3290. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3291. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3292. if (detect_write_misaligned(sp, gpa, bytes) ||
  3293. detect_write_flooding(sp)) {
  3294. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3295. &invalid_list);
  3296. ++vcpu->kvm->stat.mmu_flooded;
  3297. continue;
  3298. }
  3299. spte = get_written_sptes(sp, gpa, &npte);
  3300. if (!spte)
  3301. continue;
  3302. local_flush = true;
  3303. while (npte--) {
  3304. entry = *spte;
  3305. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3306. if (gentry &&
  3307. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3308. & mask.word) && rmap_can_add(vcpu))
  3309. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3310. if (need_remote_flush(entry, *spte))
  3311. remote_flush = true;
  3312. ++spte;
  3313. }
  3314. }
  3315. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3316. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3317. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3318. spin_unlock(&vcpu->kvm->mmu_lock);
  3319. }
  3320. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3321. {
  3322. gpa_t gpa;
  3323. int r;
  3324. if (vcpu->arch.mmu.direct_map)
  3325. return 0;
  3326. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3327. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3328. return r;
  3329. }
  3330. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3331. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3332. {
  3333. LIST_HEAD(invalid_list);
  3334. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3335. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3336. struct kvm_mmu_page *sp;
  3337. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3338. struct kvm_mmu_page, link);
  3339. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3340. ++vcpu->kvm->stat.mmu_recycled;
  3341. }
  3342. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3343. }
  3344. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3345. {
  3346. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3347. return vcpu_match_mmio_gpa(vcpu, addr);
  3348. return vcpu_match_mmio_gva(vcpu, addr);
  3349. }
  3350. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3351. void *insn, int insn_len)
  3352. {
  3353. int r, emulation_type = EMULTYPE_RETRY;
  3354. enum emulation_result er;
  3355. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3356. if (r < 0)
  3357. goto out;
  3358. if (!r) {
  3359. r = 1;
  3360. goto out;
  3361. }
  3362. if (is_mmio_page_fault(vcpu, cr2))
  3363. emulation_type = 0;
  3364. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3365. switch (er) {
  3366. case EMULATE_DONE:
  3367. return 1;
  3368. case EMULATE_DO_MMIO:
  3369. ++vcpu->stat.mmio_exits;
  3370. /* fall through */
  3371. case EMULATE_FAIL:
  3372. return 0;
  3373. default:
  3374. BUG();
  3375. }
  3376. out:
  3377. return r;
  3378. }
  3379. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3380. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3381. {
  3382. vcpu->arch.mmu.invlpg(vcpu, gva);
  3383. kvm_mmu_flush_tlb(vcpu);
  3384. ++vcpu->stat.invlpg;
  3385. }
  3386. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3387. void kvm_enable_tdp(void)
  3388. {
  3389. tdp_enabled = true;
  3390. }
  3391. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3392. void kvm_disable_tdp(void)
  3393. {
  3394. tdp_enabled = false;
  3395. }
  3396. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3397. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3398. {
  3399. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3400. if (vcpu->arch.mmu.lm_root != NULL)
  3401. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3402. }
  3403. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3404. {
  3405. struct page *page;
  3406. int i;
  3407. ASSERT(vcpu);
  3408. /*
  3409. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3410. * Therefore we need to allocate shadow page tables in the first
  3411. * 4GB of memory, which happens to fit the DMA32 zone.
  3412. */
  3413. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3414. if (!page)
  3415. return -ENOMEM;
  3416. vcpu->arch.mmu.pae_root = page_address(page);
  3417. for (i = 0; i < 4; ++i)
  3418. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3419. return 0;
  3420. }
  3421. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3422. {
  3423. ASSERT(vcpu);
  3424. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3425. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3426. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3427. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3428. return alloc_mmu_pages(vcpu);
  3429. }
  3430. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3431. {
  3432. ASSERT(vcpu);
  3433. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3434. return init_kvm_mmu(vcpu);
  3435. }
  3436. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3437. {
  3438. struct kvm_memory_slot *memslot;
  3439. gfn_t last_gfn;
  3440. int i;
  3441. memslot = id_to_memslot(kvm->memslots, slot);
  3442. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3443. spin_lock(&kvm->mmu_lock);
  3444. for (i = PT_PAGE_TABLE_LEVEL;
  3445. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3446. unsigned long *rmapp;
  3447. unsigned long last_index, index;
  3448. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3449. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3450. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3451. if (*rmapp)
  3452. __rmap_write_protect(kvm, rmapp, false);
  3453. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3454. kvm_flush_remote_tlbs(kvm);
  3455. cond_resched_lock(&kvm->mmu_lock);
  3456. }
  3457. }
  3458. }
  3459. kvm_flush_remote_tlbs(kvm);
  3460. spin_unlock(&kvm->mmu_lock);
  3461. }
  3462. void kvm_mmu_zap_all(struct kvm *kvm)
  3463. {
  3464. struct kvm_mmu_page *sp, *node;
  3465. LIST_HEAD(invalid_list);
  3466. spin_lock(&kvm->mmu_lock);
  3467. restart:
  3468. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3469. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3470. goto restart;
  3471. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3472. spin_unlock(&kvm->mmu_lock);
  3473. }
  3474. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3475. struct list_head *invalid_list)
  3476. {
  3477. struct kvm_mmu_page *page;
  3478. if (list_empty(&kvm->arch.active_mmu_pages))
  3479. return;
  3480. page = container_of(kvm->arch.active_mmu_pages.prev,
  3481. struct kvm_mmu_page, link);
  3482. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3483. }
  3484. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3485. {
  3486. struct kvm *kvm;
  3487. int nr_to_scan = sc->nr_to_scan;
  3488. if (nr_to_scan == 0)
  3489. goto out;
  3490. raw_spin_lock(&kvm_lock);
  3491. list_for_each_entry(kvm, &vm_list, vm_list) {
  3492. int idx;
  3493. LIST_HEAD(invalid_list);
  3494. /*
  3495. * Never scan more than sc->nr_to_scan VM instances.
  3496. * Will not hit this condition practically since we do not try
  3497. * to shrink more than one VM and it is very unlikely to see
  3498. * !n_used_mmu_pages so many times.
  3499. */
  3500. if (!nr_to_scan--)
  3501. break;
  3502. /*
  3503. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3504. * here. We may skip a VM instance errorneosly, but we do not
  3505. * want to shrink a VM that only started to populate its MMU
  3506. * anyway.
  3507. */
  3508. if (!kvm->arch.n_used_mmu_pages)
  3509. continue;
  3510. idx = srcu_read_lock(&kvm->srcu);
  3511. spin_lock(&kvm->mmu_lock);
  3512. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3513. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3514. spin_unlock(&kvm->mmu_lock);
  3515. srcu_read_unlock(&kvm->srcu, idx);
  3516. list_move_tail(&kvm->vm_list, &vm_list);
  3517. break;
  3518. }
  3519. raw_spin_unlock(&kvm_lock);
  3520. out:
  3521. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3522. }
  3523. static struct shrinker mmu_shrinker = {
  3524. .shrink = mmu_shrink,
  3525. .seeks = DEFAULT_SEEKS * 10,
  3526. };
  3527. static void mmu_destroy_caches(void)
  3528. {
  3529. if (pte_list_desc_cache)
  3530. kmem_cache_destroy(pte_list_desc_cache);
  3531. if (mmu_page_header_cache)
  3532. kmem_cache_destroy(mmu_page_header_cache);
  3533. }
  3534. int kvm_mmu_module_init(void)
  3535. {
  3536. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3537. sizeof(struct pte_list_desc),
  3538. 0, 0, NULL);
  3539. if (!pte_list_desc_cache)
  3540. goto nomem;
  3541. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3542. sizeof(struct kvm_mmu_page),
  3543. 0, 0, NULL);
  3544. if (!mmu_page_header_cache)
  3545. goto nomem;
  3546. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3547. goto nomem;
  3548. register_shrinker(&mmu_shrinker);
  3549. return 0;
  3550. nomem:
  3551. mmu_destroy_caches();
  3552. return -ENOMEM;
  3553. }
  3554. /*
  3555. * Caculate mmu pages needed for kvm.
  3556. */
  3557. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3558. {
  3559. unsigned int nr_mmu_pages;
  3560. unsigned int nr_pages = 0;
  3561. struct kvm_memslots *slots;
  3562. struct kvm_memory_slot *memslot;
  3563. slots = kvm_memslots(kvm);
  3564. kvm_for_each_memslot(memslot, slots)
  3565. nr_pages += memslot->npages;
  3566. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3567. nr_mmu_pages = max(nr_mmu_pages,
  3568. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3569. return nr_mmu_pages;
  3570. }
  3571. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3572. {
  3573. struct kvm_shadow_walk_iterator iterator;
  3574. u64 spte;
  3575. int nr_sptes = 0;
  3576. walk_shadow_page_lockless_begin(vcpu);
  3577. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3578. sptes[iterator.level-1] = spte;
  3579. nr_sptes++;
  3580. if (!is_shadow_present_pte(spte))
  3581. break;
  3582. }
  3583. walk_shadow_page_lockless_end(vcpu);
  3584. return nr_sptes;
  3585. }
  3586. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3587. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3588. {
  3589. ASSERT(vcpu);
  3590. destroy_kvm_mmu(vcpu);
  3591. free_mmu_pages(vcpu);
  3592. mmu_free_memory_caches(vcpu);
  3593. }
  3594. void kvm_mmu_module_exit(void)
  3595. {
  3596. mmu_destroy_caches();
  3597. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3598. unregister_shrinker(&mmu_shrinker);
  3599. mmu_audit_disable();
  3600. }