rt2800pci.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. iounmap(base_addr);
  78. }
  79. #else
  80. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  81. {
  82. }
  83. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  84. #ifdef CONFIG_PCI
  85. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  86. {
  87. struct rt2x00_dev *rt2x00dev = eeprom->data;
  88. u32 reg;
  89. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  90. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  91. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  92. eeprom->reg_data_clock =
  93. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  94. eeprom->reg_chip_select =
  95. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  96. }
  97. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  98. {
  99. struct rt2x00_dev *rt2x00dev = eeprom->data;
  100. u32 reg = 0;
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  103. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  104. !!eeprom->reg_data_clock);
  105. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  106. !!eeprom->reg_chip_select);
  107. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  108. }
  109. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  110. {
  111. struct eeprom_93cx6 eeprom;
  112. u32 reg;
  113. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  114. eeprom.data = rt2x00dev;
  115. eeprom.register_read = rt2800pci_eepromregister_read;
  116. eeprom.register_write = rt2800pci_eepromregister_write;
  117. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  118. {
  119. case 0:
  120. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  121. break;
  122. case 1:
  123. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  124. break;
  125. default:
  126. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  127. break;
  128. }
  129. eeprom.reg_data_in = 0;
  130. eeprom.reg_data_out = 0;
  131. eeprom.reg_data_clock = 0;
  132. eeprom.reg_chip_select = 0;
  133. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  134. EEPROM_SIZE / sizeof(u16));
  135. }
  136. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  137. {
  138. return rt2800_efuse_detect(rt2x00dev);
  139. }
  140. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  141. {
  142. rt2800_read_eeprom_efuse(rt2x00dev);
  143. }
  144. #else
  145. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  146. {
  147. }
  148. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  149. {
  150. return 0;
  151. }
  152. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  153. {
  154. }
  155. #endif /* CONFIG_PCI */
  156. /*
  157. * Firmware functions
  158. */
  159. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  160. {
  161. return FIRMWARE_RT2860;
  162. }
  163. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  164. const u8 *data, const size_t len)
  165. {
  166. u32 reg;
  167. /*
  168. * enable Host program ram write selection
  169. */
  170. reg = 0;
  171. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  172. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  173. /*
  174. * Write firmware to device.
  175. */
  176. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  177. data, len);
  178. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  179. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  180. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  181. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  182. return 0;
  183. }
  184. /*
  185. * Initialization functions.
  186. */
  187. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  188. {
  189. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  190. u32 word;
  191. if (entry->queue->qid == QID_RX) {
  192. rt2x00_desc_read(entry_priv->desc, 1, &word);
  193. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  194. } else {
  195. rt2x00_desc_read(entry_priv->desc, 1, &word);
  196. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  197. }
  198. }
  199. static void rt2800pci_clear_entry(struct queue_entry *entry)
  200. {
  201. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  202. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  203. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  204. u32 word;
  205. if (entry->queue->qid == QID_RX) {
  206. rt2x00_desc_read(entry_priv->desc, 0, &word);
  207. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  208. rt2x00_desc_write(entry_priv->desc, 0, word);
  209. rt2x00_desc_read(entry_priv->desc, 1, &word);
  210. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  211. rt2x00_desc_write(entry_priv->desc, 1, word);
  212. /*
  213. * Set RX IDX in register to inform hardware that we have
  214. * handled this entry and it is available for reuse again.
  215. */
  216. rt2800_register_write(rt2x00dev, RX_CRX_IDX,
  217. entry->entry_idx);
  218. } else {
  219. rt2x00_desc_read(entry_priv->desc, 1, &word);
  220. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  221. rt2x00_desc_write(entry_priv->desc, 1, word);
  222. }
  223. }
  224. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  225. {
  226. struct queue_entry_priv_pci *entry_priv;
  227. u32 reg;
  228. /*
  229. * Initialize registers.
  230. */
  231. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  232. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  233. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  234. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  235. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  236. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  237. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  238. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  239. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  240. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  241. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  242. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  243. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  244. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  245. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  246. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  247. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  248. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  249. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  250. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  251. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  252. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  253. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  254. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  255. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  256. /*
  257. * Enable global DMA configuration
  258. */
  259. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  260. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  261. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  262. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  263. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  264. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  265. return 0;
  266. }
  267. /*
  268. * Device state switch handlers.
  269. */
  270. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  271. enum dev_state state)
  272. {
  273. u32 reg;
  274. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  275. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  276. (state == STATE_RADIO_RX_ON));
  277. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  278. }
  279. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  280. enum dev_state state)
  281. {
  282. int mask = (state == STATE_RADIO_IRQ_ON) ||
  283. (state == STATE_RADIO_IRQ_ON_ISR);
  284. u32 reg;
  285. /*
  286. * When interrupts are being enabled, the interrupt registers
  287. * should clear the register to assure a clean state.
  288. */
  289. if (state == STATE_RADIO_IRQ_ON) {
  290. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  291. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  292. }
  293. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  294. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
  295. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
  296. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  297. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
  298. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
  299. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
  300. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
  301. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
  302. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
  303. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
  304. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
  305. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  306. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  307. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  308. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  309. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
  310. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
  311. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
  312. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  313. }
  314. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  315. {
  316. u32 reg;
  317. /*
  318. * Reset DMA indexes
  319. */
  320. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  321. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  322. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  323. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  324. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  325. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  326. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  327. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  328. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  329. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  330. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  331. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  332. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  333. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  334. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  335. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  336. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  337. return 0;
  338. }
  339. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  340. {
  341. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  342. rt2800pci_init_queues(rt2x00dev)))
  343. return -EIO;
  344. return rt2800_enable_radio(rt2x00dev);
  345. }
  346. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  347. {
  348. u32 reg;
  349. rt2800_disable_radio(rt2x00dev);
  350. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  351. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  352. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  353. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  354. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  355. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  356. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  357. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  358. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  359. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  360. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  361. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  362. }
  363. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  364. enum dev_state state)
  365. {
  366. /*
  367. * Always put the device to sleep (even when we intend to wakeup!)
  368. * if the device is booting and wasn't asleep it will return
  369. * failure when attempting to wakeup.
  370. */
  371. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
  372. if (state == STATE_AWAKE) {
  373. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  374. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  375. }
  376. return 0;
  377. }
  378. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  379. enum dev_state state)
  380. {
  381. int retval = 0;
  382. switch (state) {
  383. case STATE_RADIO_ON:
  384. /*
  385. * Before the radio can be enabled, the device first has
  386. * to be woken up. After that it needs a bit of time
  387. * to be fully awake and then the radio can be enabled.
  388. */
  389. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  390. msleep(1);
  391. retval = rt2800pci_enable_radio(rt2x00dev);
  392. break;
  393. case STATE_RADIO_OFF:
  394. /*
  395. * After the radio has been disabled, the device should
  396. * be put to sleep for powersaving.
  397. */
  398. rt2800pci_disable_radio(rt2x00dev);
  399. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  400. break;
  401. case STATE_RADIO_RX_ON:
  402. case STATE_RADIO_RX_OFF:
  403. rt2800pci_toggle_rx(rt2x00dev, state);
  404. break;
  405. case STATE_RADIO_IRQ_ON:
  406. case STATE_RADIO_IRQ_ON_ISR:
  407. case STATE_RADIO_IRQ_OFF:
  408. case STATE_RADIO_IRQ_OFF_ISR:
  409. rt2800pci_toggle_irq(rt2x00dev, state);
  410. break;
  411. case STATE_DEEP_SLEEP:
  412. case STATE_SLEEP:
  413. case STATE_STANDBY:
  414. case STATE_AWAKE:
  415. retval = rt2800pci_set_state(rt2x00dev, state);
  416. break;
  417. default:
  418. retval = -ENOTSUPP;
  419. break;
  420. }
  421. if (unlikely(retval))
  422. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  423. state, retval);
  424. return retval;
  425. }
  426. /*
  427. * TX descriptor initialization
  428. */
  429. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  430. {
  431. return (__le32 *) entry->skb->data;
  432. }
  433. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  434. struct txentry_desc *txdesc)
  435. {
  436. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  437. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  438. __le32 *txd = entry_priv->desc;
  439. u32 word;
  440. /*
  441. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  442. * must contains a TXWI structure + 802.11 header + padding + 802.11
  443. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  444. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  445. * data. It means that LAST_SEC0 is always 0.
  446. */
  447. /*
  448. * Initialize TX descriptor
  449. */
  450. rt2x00_desc_read(txd, 0, &word);
  451. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  452. rt2x00_desc_write(txd, 0, word);
  453. rt2x00_desc_read(txd, 1, &word);
  454. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  455. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  456. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  457. rt2x00_set_field32(&word, TXD_W1_BURST,
  458. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  459. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  460. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  461. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  462. rt2x00_desc_write(txd, 1, word);
  463. rt2x00_desc_read(txd, 2, &word);
  464. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  465. skbdesc->skb_dma + TXWI_DESC_SIZE);
  466. rt2x00_desc_write(txd, 2, word);
  467. rt2x00_desc_read(txd, 3, &word);
  468. rt2x00_set_field32(&word, TXD_W3_WIV,
  469. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  470. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  471. rt2x00_desc_write(txd, 3, word);
  472. /*
  473. * Register descriptor details in skb frame descriptor.
  474. */
  475. skbdesc->desc = txd;
  476. skbdesc->desc_len = TXD_DESC_SIZE;
  477. }
  478. /*
  479. * TX data initialization
  480. */
  481. static void rt2800pci_kick_tx_queue(struct data_queue *queue)
  482. {
  483. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  484. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  485. unsigned int qidx;
  486. if (queue->qid == QID_MGMT)
  487. qidx = 5;
  488. else
  489. qidx = queue->qid;
  490. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
  491. }
  492. static void rt2800pci_kill_tx_queue(struct data_queue *queue)
  493. {
  494. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  495. u32 reg;
  496. if (queue->qid == QID_BEACON) {
  497. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  498. return;
  499. }
  500. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  501. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
  502. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
  503. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
  504. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
  505. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  506. }
  507. /*
  508. * RX control handlers
  509. */
  510. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  511. struct rxdone_entry_desc *rxdesc)
  512. {
  513. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  514. __le32 *rxd = entry_priv->desc;
  515. u32 word;
  516. rt2x00_desc_read(rxd, 3, &word);
  517. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  518. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  519. /*
  520. * Unfortunately we don't know the cipher type used during
  521. * decryption. This prevents us from correct providing
  522. * correct statistics through debugfs.
  523. */
  524. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  525. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  526. /*
  527. * Hardware has stripped IV/EIV data from 802.11 frame during
  528. * decryption. Unfortunately the descriptor doesn't contain
  529. * any fields with the EIV/IV data either, so they can't
  530. * be restored by rt2x00lib.
  531. */
  532. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  533. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  534. rxdesc->flags |= RX_FLAG_DECRYPTED;
  535. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  536. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  537. }
  538. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  539. rxdesc->dev_flags |= RXDONE_MY_BSS;
  540. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  541. rxdesc->dev_flags |= RXDONE_L2PAD;
  542. /*
  543. * Process the RXWI structure that is at the start of the buffer.
  544. */
  545. rt2800_process_rxwi(entry, rxdesc);
  546. }
  547. /*
  548. * Interrupt functions.
  549. */
  550. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  551. {
  552. struct ieee80211_conf conf = { .flags = 0 };
  553. struct rt2x00lib_conf libconf = { .conf = &conf };
  554. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  555. }
  556. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  557. {
  558. struct data_queue *queue;
  559. struct queue_entry *entry;
  560. u32 status;
  561. u8 qid;
  562. while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
  563. /* Now remove the tx status from the FIFO */
  564. if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
  565. sizeof(status)) != sizeof(status)) {
  566. WARN_ON(1);
  567. break;
  568. }
  569. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
  570. if (qid >= QID_RX) {
  571. /*
  572. * Unknown queue, this shouldn't happen. Just drop
  573. * this tx status.
  574. */
  575. WARNING(rt2x00dev, "Got TX status report with "
  576. "unexpected pid %u, dropping", qid);
  577. break;
  578. }
  579. queue = rt2x00queue_get_queue(rt2x00dev, qid);
  580. if (unlikely(queue == NULL)) {
  581. /*
  582. * The queue is NULL, this shouldn't happen. Stop
  583. * processing here and drop the tx status
  584. */
  585. WARNING(rt2x00dev, "Got TX status for an unavailable "
  586. "queue %u, dropping", qid);
  587. break;
  588. }
  589. if (rt2x00queue_empty(queue)) {
  590. /*
  591. * The queue is empty. Stop processing here
  592. * and drop the tx status.
  593. */
  594. WARNING(rt2x00dev, "Got TX status for an empty "
  595. "queue %u, dropping", qid);
  596. break;
  597. }
  598. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  599. rt2800_txdone_entry(entry, status);
  600. }
  601. }
  602. static void rt2800pci_txstatus_tasklet(unsigned long data)
  603. {
  604. rt2800pci_txdone((struct rt2x00_dev *)data);
  605. }
  606. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  607. {
  608. struct rt2x00_dev *rt2x00dev = dev_instance;
  609. u32 reg = rt2x00dev->irqvalue[0];
  610. /*
  611. * 1 - Pre TBTT interrupt.
  612. */
  613. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  614. rt2x00lib_pretbtt(rt2x00dev);
  615. /*
  616. * 2 - Beacondone interrupt.
  617. */
  618. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  619. rt2x00lib_beacondone(rt2x00dev);
  620. /*
  621. * 3 - Rx ring done interrupt.
  622. */
  623. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  624. rt2x00pci_rxdone(rt2x00dev);
  625. /*
  626. * 4 - Auto wakeup interrupt.
  627. */
  628. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  629. rt2800pci_wakeup(rt2x00dev);
  630. /* Enable interrupts again. */
  631. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  632. STATE_RADIO_IRQ_ON_ISR);
  633. return IRQ_HANDLED;
  634. }
  635. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  636. {
  637. u32 status;
  638. int i;
  639. /*
  640. * The TX_FIFO_STATUS interrupt needs special care. We should
  641. * read TX_STA_FIFO but we should do it immediately as otherwise
  642. * the register can overflow and we would lose status reports.
  643. *
  644. * Hence, read the TX_STA_FIFO register and copy all tx status
  645. * reports into a kernel FIFO which is handled in the txstatus
  646. * tasklet. We use a tasklet to process the tx status reports
  647. * because we can schedule the tasklet multiple times (when the
  648. * interrupt fires again during tx status processing).
  649. *
  650. * Furthermore we don't disable the TX_FIFO_STATUS
  651. * interrupt here but leave it enabled so that the TX_STA_FIFO
  652. * can also be read while the interrupt thread gets executed.
  653. *
  654. * Since we have only one producer and one consumer we don't
  655. * need to lock the kfifo.
  656. */
  657. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  658. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
  659. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  660. break;
  661. if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
  662. WARNING(rt2x00dev, "TX status FIFO overrun,"
  663. " drop tx status report.\n");
  664. break;
  665. }
  666. if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
  667. sizeof(status)) != sizeof(status)) {
  668. WARNING(rt2x00dev, "TX status FIFO overrun,"
  669. "drop tx status report.\n");
  670. break;
  671. }
  672. }
  673. /* Schedule the tasklet for processing the tx status. */
  674. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  675. }
  676. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  677. {
  678. struct rt2x00_dev *rt2x00dev = dev_instance;
  679. u32 reg;
  680. irqreturn_t ret = IRQ_HANDLED;
  681. /* Read status and ACK all interrupts */
  682. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  683. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  684. if (!reg)
  685. return IRQ_NONE;
  686. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  687. return IRQ_HANDLED;
  688. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  689. rt2800pci_txstatus_interrupt(rt2x00dev);
  690. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
  691. rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
  692. rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
  693. rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
  694. /*
  695. * All other interrupts are handled in the interrupt thread.
  696. * Store irqvalue for use in the interrupt thread.
  697. */
  698. rt2x00dev->irqvalue[0] = reg;
  699. /*
  700. * Disable interrupts, will be enabled again in the
  701. * interrupt thread.
  702. */
  703. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  704. STATE_RADIO_IRQ_OFF_ISR);
  705. /*
  706. * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
  707. * tx status reports.
  708. */
  709. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  710. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  711. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  712. ret = IRQ_WAKE_THREAD;
  713. }
  714. return ret;
  715. }
  716. /*
  717. * Device probe functions.
  718. */
  719. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  720. {
  721. /*
  722. * Read EEPROM into buffer
  723. */
  724. if (rt2x00_is_soc(rt2x00dev))
  725. rt2800pci_read_eeprom_soc(rt2x00dev);
  726. else if (rt2800pci_efuse_detect(rt2x00dev))
  727. rt2800pci_read_eeprom_efuse(rt2x00dev);
  728. else
  729. rt2800pci_read_eeprom_pci(rt2x00dev);
  730. return rt2800_validate_eeprom(rt2x00dev);
  731. }
  732. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  733. {
  734. int retval;
  735. /*
  736. * Allocate eeprom data.
  737. */
  738. retval = rt2800pci_validate_eeprom(rt2x00dev);
  739. if (retval)
  740. return retval;
  741. retval = rt2800_init_eeprom(rt2x00dev);
  742. if (retval)
  743. return retval;
  744. /*
  745. * Initialize hw specifications.
  746. */
  747. retval = rt2800_probe_hw_mode(rt2x00dev);
  748. if (retval)
  749. return retval;
  750. /*
  751. * This device has multiple filters for control frames
  752. * and has a separate filter for PS Poll frames.
  753. */
  754. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  755. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  756. /*
  757. * This device has a pre tbtt interrupt and thus fetches
  758. * a new beacon directly prior to transmission.
  759. */
  760. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  761. /*
  762. * This device requires firmware.
  763. */
  764. if (!rt2x00_is_soc(rt2x00dev))
  765. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  766. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  767. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  768. __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
  769. if (!modparam_nohwcrypt)
  770. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  771. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  772. /*
  773. * Set the rssi offset.
  774. */
  775. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  776. return 0;
  777. }
  778. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  779. .tx = rt2x00mac_tx,
  780. .start = rt2x00mac_start,
  781. .stop = rt2x00mac_stop,
  782. .add_interface = rt2x00mac_add_interface,
  783. .remove_interface = rt2x00mac_remove_interface,
  784. .config = rt2x00mac_config,
  785. .configure_filter = rt2x00mac_configure_filter,
  786. .set_key = rt2x00mac_set_key,
  787. .sw_scan_start = rt2x00mac_sw_scan_start,
  788. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  789. .get_stats = rt2x00mac_get_stats,
  790. .get_tkip_seq = rt2800_get_tkip_seq,
  791. .set_rts_threshold = rt2800_set_rts_threshold,
  792. .bss_info_changed = rt2x00mac_bss_info_changed,
  793. .conf_tx = rt2800_conf_tx,
  794. .get_tsf = rt2800_get_tsf,
  795. .rfkill_poll = rt2x00mac_rfkill_poll,
  796. .ampdu_action = rt2800_ampdu_action,
  797. .flush = rt2x00mac_flush,
  798. };
  799. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  800. .register_read = rt2x00pci_register_read,
  801. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  802. .register_write = rt2x00pci_register_write,
  803. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  804. .register_multiread = rt2x00pci_register_multiread,
  805. .register_multiwrite = rt2x00pci_register_multiwrite,
  806. .regbusy_read = rt2x00pci_regbusy_read,
  807. .drv_write_firmware = rt2800pci_write_firmware,
  808. .drv_init_registers = rt2800pci_init_registers,
  809. .drv_get_txwi = rt2800pci_get_txwi,
  810. };
  811. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  812. .irq_handler = rt2800pci_interrupt,
  813. .irq_handler_thread = rt2800pci_interrupt_thread,
  814. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  815. .probe_hw = rt2800pci_probe_hw,
  816. .get_firmware_name = rt2800pci_get_firmware_name,
  817. .check_firmware = rt2800_check_firmware,
  818. .load_firmware = rt2800_load_firmware,
  819. .initialize = rt2x00pci_initialize,
  820. .uninitialize = rt2x00pci_uninitialize,
  821. .get_entry_state = rt2800pci_get_entry_state,
  822. .clear_entry = rt2800pci_clear_entry,
  823. .set_device_state = rt2800pci_set_device_state,
  824. .rfkill_poll = rt2800_rfkill_poll,
  825. .link_stats = rt2800_link_stats,
  826. .reset_tuner = rt2800_reset_tuner,
  827. .link_tuner = rt2800_link_tuner,
  828. .write_tx_desc = rt2800pci_write_tx_desc,
  829. .write_tx_data = rt2800_write_tx_data,
  830. .write_beacon = rt2800_write_beacon,
  831. .kick_tx_queue = rt2800pci_kick_tx_queue,
  832. .kill_tx_queue = rt2800pci_kill_tx_queue,
  833. .fill_rxdone = rt2800pci_fill_rxdone,
  834. .config_shared_key = rt2800_config_shared_key,
  835. .config_pairwise_key = rt2800_config_pairwise_key,
  836. .config_filter = rt2800_config_filter,
  837. .config_intf = rt2800_config_intf,
  838. .config_erp = rt2800_config_erp,
  839. .config_ant = rt2800_config_ant,
  840. .config = rt2800_config,
  841. };
  842. static const struct data_queue_desc rt2800pci_queue_rx = {
  843. .entry_num = 128,
  844. .data_size = AGGREGATION_SIZE,
  845. .desc_size = RXD_DESC_SIZE,
  846. .priv_size = sizeof(struct queue_entry_priv_pci),
  847. };
  848. static const struct data_queue_desc rt2800pci_queue_tx = {
  849. .entry_num = 64,
  850. .data_size = AGGREGATION_SIZE,
  851. .desc_size = TXD_DESC_SIZE,
  852. .priv_size = sizeof(struct queue_entry_priv_pci),
  853. };
  854. static const struct data_queue_desc rt2800pci_queue_bcn = {
  855. .entry_num = 8,
  856. .data_size = 0, /* No DMA required for beacons */
  857. .desc_size = TXWI_DESC_SIZE,
  858. .priv_size = sizeof(struct queue_entry_priv_pci),
  859. };
  860. static const struct rt2x00_ops rt2800pci_ops = {
  861. .name = KBUILD_MODNAME,
  862. .max_sta_intf = 1,
  863. .max_ap_intf = 8,
  864. .eeprom_size = EEPROM_SIZE,
  865. .rf_size = RF_SIZE,
  866. .tx_queues = NUM_TX_QUEUES,
  867. .extra_tx_headroom = TXWI_DESC_SIZE,
  868. .rx = &rt2800pci_queue_rx,
  869. .tx = &rt2800pci_queue_tx,
  870. .bcn = &rt2800pci_queue_bcn,
  871. .lib = &rt2800pci_rt2x00_ops,
  872. .drv = &rt2800pci_rt2800_ops,
  873. .hw = &rt2800pci_mac80211_ops,
  874. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  875. .debugfs = &rt2800_rt2x00debug,
  876. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  877. };
  878. /*
  879. * RT2800pci module information.
  880. */
  881. #ifdef CONFIG_PCI
  882. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  883. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  884. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  885. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  886. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  887. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  888. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  889. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  890. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  891. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  892. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  893. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  894. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  895. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  896. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  897. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  898. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  899. #ifdef CONFIG_RT2800PCI_RT33XX
  900. { PCI_DEVICE(0x1814, 0x3390), PCI_DEVICE_DATA(&rt2800pci_ops) },
  901. #endif
  902. #ifdef CONFIG_RT2800PCI_RT35XX
  903. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  904. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  905. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  906. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  907. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  908. #endif
  909. { 0, }
  910. };
  911. #endif /* CONFIG_PCI */
  912. MODULE_AUTHOR(DRV_PROJECT);
  913. MODULE_VERSION(DRV_VERSION);
  914. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  915. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  916. #ifdef CONFIG_PCI
  917. MODULE_FIRMWARE(FIRMWARE_RT2860);
  918. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  919. #endif /* CONFIG_PCI */
  920. MODULE_LICENSE("GPL");
  921. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  922. static int rt2800soc_probe(struct platform_device *pdev)
  923. {
  924. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  925. }
  926. static struct platform_driver rt2800soc_driver = {
  927. .driver = {
  928. .name = "rt2800_wmac",
  929. .owner = THIS_MODULE,
  930. .mod_name = KBUILD_MODNAME,
  931. },
  932. .probe = rt2800soc_probe,
  933. .remove = __devexit_p(rt2x00soc_remove),
  934. .suspend = rt2x00soc_suspend,
  935. .resume = rt2x00soc_resume,
  936. };
  937. #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
  938. #ifdef CONFIG_PCI
  939. static struct pci_driver rt2800pci_driver = {
  940. .name = KBUILD_MODNAME,
  941. .id_table = rt2800pci_device_table,
  942. .probe = rt2x00pci_probe,
  943. .remove = __devexit_p(rt2x00pci_remove),
  944. .suspend = rt2x00pci_suspend,
  945. .resume = rt2x00pci_resume,
  946. };
  947. #endif /* CONFIG_PCI */
  948. static int __init rt2800pci_init(void)
  949. {
  950. int ret = 0;
  951. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  952. ret = platform_driver_register(&rt2800soc_driver);
  953. if (ret)
  954. return ret;
  955. #endif
  956. #ifdef CONFIG_PCI
  957. ret = pci_register_driver(&rt2800pci_driver);
  958. if (ret) {
  959. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  960. platform_driver_unregister(&rt2800soc_driver);
  961. #endif
  962. return ret;
  963. }
  964. #endif
  965. return ret;
  966. }
  967. static void __exit rt2800pci_exit(void)
  968. {
  969. #ifdef CONFIG_PCI
  970. pci_unregister_driver(&rt2800pci_driver);
  971. #endif
  972. #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
  973. platform_driver_unregister(&rt2800soc_driver);
  974. #endif
  975. }
  976. module_init(rt2800pci_init);
  977. module_exit(rt2800pci_exit);