spi.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/cache.h>
  24. #include <linux/mutex.h>
  25. #include <linux/spi/spi.h>
  26. /* SPI bustype and spi_master class are registered after board init code
  27. * provides the SPI device tables, ensuring that both are present by the
  28. * time controller driver registration causes spi_devices to "enumerate".
  29. */
  30. static void spidev_release(struct device *dev)
  31. {
  32. struct spi_device *spi = to_spi_device(dev);
  33. /* spi masters may cleanup for released devices */
  34. if (spi->master->cleanup)
  35. spi->master->cleanup(spi);
  36. spi_master_put(spi->master);
  37. kfree(dev);
  38. }
  39. static ssize_t
  40. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  41. {
  42. const struct spi_device *spi = to_spi_device(dev);
  43. return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
  44. }
  45. static struct device_attribute spi_dev_attrs[] = {
  46. __ATTR_RO(modalias),
  47. __ATTR_NULL,
  48. };
  49. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  50. * and the sysfs version makes coldplug work too.
  51. */
  52. static int spi_match_device(struct device *dev, struct device_driver *drv)
  53. {
  54. const struct spi_device *spi = to_spi_device(dev);
  55. return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
  56. }
  57. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  58. {
  59. const struct spi_device *spi = to_spi_device(dev);
  60. add_uevent_var(env, "MODALIAS=%s", spi->modalias);
  61. return 0;
  62. }
  63. #ifdef CONFIG_PM
  64. static int spi_suspend(struct device *dev, pm_message_t message)
  65. {
  66. int value = 0;
  67. struct spi_driver *drv = to_spi_driver(dev->driver);
  68. /* suspend will stop irqs and dma; no more i/o */
  69. if (drv) {
  70. if (drv->suspend)
  71. value = drv->suspend(to_spi_device(dev), message);
  72. else
  73. dev_dbg(dev, "... can't suspend\n");
  74. }
  75. return value;
  76. }
  77. static int spi_resume(struct device *dev)
  78. {
  79. int value = 0;
  80. struct spi_driver *drv = to_spi_driver(dev->driver);
  81. /* resume may restart the i/o queue */
  82. if (drv) {
  83. if (drv->resume)
  84. value = drv->resume(to_spi_device(dev));
  85. else
  86. dev_dbg(dev, "... can't resume\n");
  87. }
  88. return value;
  89. }
  90. #else
  91. #define spi_suspend NULL
  92. #define spi_resume NULL
  93. #endif
  94. struct bus_type spi_bus_type = {
  95. .name = "spi",
  96. .dev_attrs = spi_dev_attrs,
  97. .match = spi_match_device,
  98. .uevent = spi_uevent,
  99. .suspend = spi_suspend,
  100. .resume = spi_resume,
  101. };
  102. EXPORT_SYMBOL_GPL(spi_bus_type);
  103. static int spi_drv_probe(struct device *dev)
  104. {
  105. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  106. return sdrv->probe(to_spi_device(dev));
  107. }
  108. static int spi_drv_remove(struct device *dev)
  109. {
  110. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  111. return sdrv->remove(to_spi_device(dev));
  112. }
  113. static void spi_drv_shutdown(struct device *dev)
  114. {
  115. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  116. sdrv->shutdown(to_spi_device(dev));
  117. }
  118. /**
  119. * spi_register_driver - register a SPI driver
  120. * @sdrv: the driver to register
  121. * Context: can sleep
  122. */
  123. int spi_register_driver(struct spi_driver *sdrv)
  124. {
  125. sdrv->driver.bus = &spi_bus_type;
  126. if (sdrv->probe)
  127. sdrv->driver.probe = spi_drv_probe;
  128. if (sdrv->remove)
  129. sdrv->driver.remove = spi_drv_remove;
  130. if (sdrv->shutdown)
  131. sdrv->driver.shutdown = spi_drv_shutdown;
  132. return driver_register(&sdrv->driver);
  133. }
  134. EXPORT_SYMBOL_GPL(spi_register_driver);
  135. /*-------------------------------------------------------------------------*/
  136. /* SPI devices should normally not be created by SPI device drivers; that
  137. * would make them board-specific. Similarly with SPI master drivers.
  138. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  139. * with other readonly (flashable) information about mainboard devices.
  140. */
  141. struct boardinfo {
  142. struct list_head list;
  143. unsigned n_board_info;
  144. struct spi_board_info board_info[0];
  145. };
  146. static LIST_HEAD(board_list);
  147. static DEFINE_MUTEX(board_lock);
  148. /**
  149. * spi_new_device - instantiate one new SPI device
  150. * @master: Controller to which device is connected
  151. * @chip: Describes the SPI device
  152. * Context: can sleep
  153. *
  154. * On typical mainboards, this is purely internal; and it's not needed
  155. * after board init creates the hard-wired devices. Some development
  156. * platforms may not be able to use spi_register_board_info though, and
  157. * this is exported so that for example a USB or parport based adapter
  158. * driver could add devices (which it would learn about out-of-band).
  159. *
  160. * Returns the new device, or NULL.
  161. */
  162. struct spi_device *spi_new_device(struct spi_master *master,
  163. struct spi_board_info *chip)
  164. {
  165. struct spi_device *proxy;
  166. struct device *dev = master->dev.parent;
  167. int status;
  168. /* NOTE: caller did any chip->bus_num checks necessary.
  169. *
  170. * Also, unless we change the return value convention to use
  171. * error-or-pointer (not NULL-or-pointer), troubleshootability
  172. * suggests syslogged diagnostics are best here (ugh).
  173. */
  174. /* Chipselects are numbered 0..max; validate. */
  175. if (chip->chip_select >= master->num_chipselect) {
  176. dev_err(dev, "cs%d > max %d\n",
  177. chip->chip_select,
  178. master->num_chipselect);
  179. return NULL;
  180. }
  181. if (!spi_master_get(master))
  182. return NULL;
  183. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  184. proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
  185. if (!proxy) {
  186. dev_err(dev, "can't alloc dev for cs%d\n",
  187. chip->chip_select);
  188. goto fail;
  189. }
  190. proxy->master = master;
  191. proxy->chip_select = chip->chip_select;
  192. proxy->max_speed_hz = chip->max_speed_hz;
  193. proxy->mode = chip->mode;
  194. proxy->irq = chip->irq;
  195. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  196. snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
  197. "%s.%u", master->dev.bus_id,
  198. chip->chip_select);
  199. proxy->dev.parent = dev;
  200. proxy->dev.bus = &spi_bus_type;
  201. proxy->dev.platform_data = (void *) chip->platform_data;
  202. proxy->controller_data = chip->controller_data;
  203. proxy->controller_state = NULL;
  204. proxy->dev.release = spidev_release;
  205. /* drivers may modify this initial i/o setup */
  206. status = master->setup(proxy);
  207. if (status < 0) {
  208. dev_err(dev, "can't %s %s, status %d\n",
  209. "setup", proxy->dev.bus_id, status);
  210. goto fail;
  211. }
  212. /* driver core catches callers that misbehave by defining
  213. * devices that already exist.
  214. */
  215. status = device_register(&proxy->dev);
  216. if (status < 0) {
  217. dev_err(dev, "can't %s %s, status %d\n",
  218. "add", proxy->dev.bus_id, status);
  219. goto fail;
  220. }
  221. dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
  222. return proxy;
  223. fail:
  224. spi_master_put(master);
  225. kfree(proxy);
  226. return NULL;
  227. }
  228. EXPORT_SYMBOL_GPL(spi_new_device);
  229. /**
  230. * spi_register_board_info - register SPI devices for a given board
  231. * @info: array of chip descriptors
  232. * @n: how many descriptors are provided
  233. * Context: can sleep
  234. *
  235. * Board-specific early init code calls this (probably during arch_initcall)
  236. * with segments of the SPI device table. Any device nodes are created later,
  237. * after the relevant parent SPI controller (bus_num) is defined. We keep
  238. * this table of devices forever, so that reloading a controller driver will
  239. * not make Linux forget about these hard-wired devices.
  240. *
  241. * Other code can also call this, e.g. a particular add-on board might provide
  242. * SPI devices through its expansion connector, so code initializing that board
  243. * would naturally declare its SPI devices.
  244. *
  245. * The board info passed can safely be __initdata ... but be careful of
  246. * any embedded pointers (platform_data, etc), they're copied as-is.
  247. */
  248. int __init
  249. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  250. {
  251. struct boardinfo *bi;
  252. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  253. if (!bi)
  254. return -ENOMEM;
  255. bi->n_board_info = n;
  256. memcpy(bi->board_info, info, n * sizeof *info);
  257. mutex_lock(&board_lock);
  258. list_add_tail(&bi->list, &board_list);
  259. mutex_unlock(&board_lock);
  260. return 0;
  261. }
  262. /* FIXME someone should add support for a __setup("spi", ...) that
  263. * creates board info from kernel command lines
  264. */
  265. static void scan_boardinfo(struct spi_master *master)
  266. {
  267. struct boardinfo *bi;
  268. mutex_lock(&board_lock);
  269. list_for_each_entry(bi, &board_list, list) {
  270. struct spi_board_info *chip = bi->board_info;
  271. unsigned n;
  272. for (n = bi->n_board_info; n > 0; n--, chip++) {
  273. if (chip->bus_num != master->bus_num)
  274. continue;
  275. /* NOTE: this relies on spi_new_device to
  276. * issue diagnostics when given bogus inputs
  277. */
  278. (void) spi_new_device(master, chip);
  279. }
  280. }
  281. mutex_unlock(&board_lock);
  282. }
  283. /*-------------------------------------------------------------------------*/
  284. static void spi_master_release(struct device *dev)
  285. {
  286. struct spi_master *master;
  287. master = container_of(dev, struct spi_master, dev);
  288. kfree(master);
  289. }
  290. static struct class spi_master_class = {
  291. .name = "spi_master",
  292. .owner = THIS_MODULE,
  293. .dev_release = spi_master_release,
  294. };
  295. /**
  296. * spi_alloc_master - allocate SPI master controller
  297. * @dev: the controller, possibly using the platform_bus
  298. * @size: how much zeroed driver-private data to allocate; the pointer to this
  299. * memory is in the driver_data field of the returned device,
  300. * accessible with spi_master_get_devdata().
  301. * Context: can sleep
  302. *
  303. * This call is used only by SPI master controller drivers, which are the
  304. * only ones directly touching chip registers. It's how they allocate
  305. * an spi_master structure, prior to calling spi_register_master().
  306. *
  307. * This must be called from context that can sleep. It returns the SPI
  308. * master structure on success, else NULL.
  309. *
  310. * The caller is responsible for assigning the bus number and initializing
  311. * the master's methods before calling spi_register_master(); and (after errors
  312. * adding the device) calling spi_master_put() to prevent a memory leak.
  313. */
  314. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  315. {
  316. struct spi_master *master;
  317. if (!dev)
  318. return NULL;
  319. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  320. if (!master)
  321. return NULL;
  322. device_initialize(&master->dev);
  323. master->dev.class = &spi_master_class;
  324. master->dev.parent = get_device(dev);
  325. spi_master_set_devdata(master, &master[1]);
  326. return master;
  327. }
  328. EXPORT_SYMBOL_GPL(spi_alloc_master);
  329. /**
  330. * spi_register_master - register SPI master controller
  331. * @master: initialized master, originally from spi_alloc_master()
  332. * Context: can sleep
  333. *
  334. * SPI master controllers connect to their drivers using some non-SPI bus,
  335. * such as the platform bus. The final stage of probe() in that code
  336. * includes calling spi_register_master() to hook up to this SPI bus glue.
  337. *
  338. * SPI controllers use board specific (often SOC specific) bus numbers,
  339. * and board-specific addressing for SPI devices combines those numbers
  340. * with chip select numbers. Since SPI does not directly support dynamic
  341. * device identification, boards need configuration tables telling which
  342. * chip is at which address.
  343. *
  344. * This must be called from context that can sleep. It returns zero on
  345. * success, else a negative error code (dropping the master's refcount).
  346. * After a successful return, the caller is responsible for calling
  347. * spi_unregister_master().
  348. */
  349. int spi_register_master(struct spi_master *master)
  350. {
  351. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  352. struct device *dev = master->dev.parent;
  353. int status = -ENODEV;
  354. int dynamic = 0;
  355. if (!dev)
  356. return -ENODEV;
  357. /* even if it's just one always-selected device, there must
  358. * be at least one chipselect
  359. */
  360. if (master->num_chipselect == 0)
  361. return -EINVAL;
  362. /* convention: dynamically assigned bus IDs count down from the max */
  363. if (master->bus_num < 0) {
  364. /* FIXME switch to an IDR based scheme, something like
  365. * I2C now uses, so we can't run out of "dynamic" IDs
  366. */
  367. master->bus_num = atomic_dec_return(&dyn_bus_id);
  368. dynamic = 1;
  369. }
  370. /* register the device, then userspace will see it.
  371. * registration fails if the bus ID is in use.
  372. */
  373. snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
  374. "spi%u", master->bus_num);
  375. status = device_add(&master->dev);
  376. if (status < 0)
  377. goto done;
  378. dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
  379. dynamic ? " (dynamic)" : "");
  380. /* populate children from any spi device tables */
  381. scan_boardinfo(master);
  382. status = 0;
  383. done:
  384. return status;
  385. }
  386. EXPORT_SYMBOL_GPL(spi_register_master);
  387. static int __unregister(struct device *dev, void *master_dev)
  388. {
  389. /* note: before about 2.6.14-rc1 this would corrupt memory: */
  390. if (dev != master_dev)
  391. spi_unregister_device(to_spi_device(dev));
  392. return 0;
  393. }
  394. /**
  395. * spi_unregister_master - unregister SPI master controller
  396. * @master: the master being unregistered
  397. * Context: can sleep
  398. *
  399. * This call is used only by SPI master controller drivers, which are the
  400. * only ones directly touching chip registers.
  401. *
  402. * This must be called from context that can sleep.
  403. */
  404. void spi_unregister_master(struct spi_master *master)
  405. {
  406. int dummy;
  407. dummy = device_for_each_child(master->dev.parent, &master->dev,
  408. __unregister);
  409. device_unregister(&master->dev);
  410. }
  411. EXPORT_SYMBOL_GPL(spi_unregister_master);
  412. static int __spi_master_match(struct device *dev, void *data)
  413. {
  414. struct spi_master *m;
  415. u16 *bus_num = data;
  416. m = container_of(dev, struct spi_master, dev);
  417. return m->bus_num == *bus_num;
  418. }
  419. /**
  420. * spi_busnum_to_master - look up master associated with bus_num
  421. * @bus_num: the master's bus number
  422. * Context: can sleep
  423. *
  424. * This call may be used with devices that are registered after
  425. * arch init time. It returns a refcounted pointer to the relevant
  426. * spi_master (which the caller must release), or NULL if there is
  427. * no such master registered.
  428. */
  429. struct spi_master *spi_busnum_to_master(u16 bus_num)
  430. {
  431. struct device *dev;
  432. struct spi_master *master = NULL;
  433. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  434. __spi_master_match);
  435. if (dev)
  436. master = container_of(dev, struct spi_master, dev);
  437. /* reference got in class_find_device */
  438. return master;
  439. }
  440. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  441. /*-------------------------------------------------------------------------*/
  442. static void spi_complete(void *arg)
  443. {
  444. complete(arg);
  445. }
  446. /**
  447. * spi_sync - blocking/synchronous SPI data transfers
  448. * @spi: device with which data will be exchanged
  449. * @message: describes the data transfers
  450. * Context: can sleep
  451. *
  452. * This call may only be used from a context that may sleep. The sleep
  453. * is non-interruptible, and has no timeout. Low-overhead controller
  454. * drivers may DMA directly into and out of the message buffers.
  455. *
  456. * Note that the SPI device's chip select is active during the message,
  457. * and then is normally disabled between messages. Drivers for some
  458. * frequently-used devices may want to minimize costs of selecting a chip,
  459. * by leaving it selected in anticipation that the next message will go
  460. * to the same chip. (That may increase power usage.)
  461. *
  462. * Also, the caller is guaranteeing that the memory associated with the
  463. * message will not be freed before this call returns.
  464. *
  465. * It returns zero on success, else a negative error code.
  466. */
  467. int spi_sync(struct spi_device *spi, struct spi_message *message)
  468. {
  469. DECLARE_COMPLETION_ONSTACK(done);
  470. int status;
  471. message->complete = spi_complete;
  472. message->context = &done;
  473. status = spi_async(spi, message);
  474. if (status == 0) {
  475. wait_for_completion(&done);
  476. status = message->status;
  477. }
  478. message->context = NULL;
  479. return status;
  480. }
  481. EXPORT_SYMBOL_GPL(spi_sync);
  482. /* portable code must never pass more than 32 bytes */
  483. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  484. static u8 *buf;
  485. /**
  486. * spi_write_then_read - SPI synchronous write followed by read
  487. * @spi: device with which data will be exchanged
  488. * @txbuf: data to be written (need not be dma-safe)
  489. * @n_tx: size of txbuf, in bytes
  490. * @rxbuf: buffer into which data will be read
  491. * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
  492. * Context: can sleep
  493. *
  494. * This performs a half duplex MicroWire style transaction with the
  495. * device, sending txbuf and then reading rxbuf. The return value
  496. * is zero for success, else a negative errno status code.
  497. * This call may only be used from a context that may sleep.
  498. *
  499. * Parameters to this routine are always copied using a small buffer;
  500. * portable code should never use this for more than 32 bytes.
  501. * Performance-sensitive or bulk transfer code should instead use
  502. * spi_{async,sync}() calls with dma-safe buffers.
  503. */
  504. int spi_write_then_read(struct spi_device *spi,
  505. const u8 *txbuf, unsigned n_tx,
  506. u8 *rxbuf, unsigned n_rx)
  507. {
  508. static DEFINE_MUTEX(lock);
  509. int status;
  510. struct spi_message message;
  511. struct spi_transfer x[2];
  512. u8 *local_buf;
  513. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  514. * (as a pure convenience thing), but we can keep heap costs
  515. * out of the hot path ...
  516. */
  517. if ((n_tx + n_rx) > SPI_BUFSIZ)
  518. return -EINVAL;
  519. spi_message_init(&message);
  520. memset(x, 0, sizeof x);
  521. if (n_tx) {
  522. x[0].len = n_tx;
  523. spi_message_add_tail(&x[0], &message);
  524. }
  525. if (n_rx) {
  526. x[1].len = n_rx;
  527. spi_message_add_tail(&x[1], &message);
  528. }
  529. /* ... unless someone else is using the pre-allocated buffer */
  530. if (!mutex_trylock(&lock)) {
  531. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  532. if (!local_buf)
  533. return -ENOMEM;
  534. } else
  535. local_buf = buf;
  536. memcpy(local_buf, txbuf, n_tx);
  537. x[0].tx_buf = local_buf;
  538. x[1].rx_buf = local_buf + n_tx;
  539. /* do the i/o */
  540. status = spi_sync(spi, &message);
  541. if (status == 0)
  542. memcpy(rxbuf, x[1].rx_buf, n_rx);
  543. if (x[0].tx_buf == buf)
  544. mutex_unlock(&lock);
  545. else
  546. kfree(local_buf);
  547. return status;
  548. }
  549. EXPORT_SYMBOL_GPL(spi_write_then_read);
  550. /*-------------------------------------------------------------------------*/
  551. static int __init spi_init(void)
  552. {
  553. int status;
  554. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  555. if (!buf) {
  556. status = -ENOMEM;
  557. goto err0;
  558. }
  559. status = bus_register(&spi_bus_type);
  560. if (status < 0)
  561. goto err1;
  562. status = class_register(&spi_master_class);
  563. if (status < 0)
  564. goto err2;
  565. return 0;
  566. err2:
  567. bus_unregister(&spi_bus_type);
  568. err1:
  569. kfree(buf);
  570. buf = NULL;
  571. err0:
  572. return status;
  573. }
  574. /* board_info is normally registered in arch_initcall(),
  575. * but even essential drivers wait till later
  576. *
  577. * REVISIT only boardinfo really needs static linking. the rest (device and
  578. * driver registration) _could_ be dynamically linked (modular) ... costs
  579. * include needing to have boardinfo data structures be much more public.
  580. */
  581. subsys_initcall(spi_init);