slab.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/seq_file.h>
  98. #include <linux/notifier.h>
  99. #include <linux/kallsyms.h>
  100. #include <linux/cpu.h>
  101. #include <linux/sysctl.h>
  102. #include <linux/module.h>
  103. #include <linux/rcupdate.h>
  104. #include <linux/string.h>
  105. #include <linux/nodemask.h>
  106. #include <linux/mempolicy.h>
  107. #include <linux/mutex.h>
  108. #include <asm/uaccess.h>
  109. #include <asm/cacheflush.h>
  110. #include <asm/tlbflush.h>
  111. #include <asm/page.h>
  112. /*
  113. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  114. * SLAB_RED_ZONE & SLAB_POISON.
  115. * 0 for faster, smaller code (especially in the critical paths).
  116. *
  117. * STATS - 1 to collect stats for /proc/slabinfo.
  118. * 0 for faster, smaller code (especially in the critical paths).
  119. *
  120. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  121. */
  122. #ifdef CONFIG_DEBUG_SLAB
  123. #define DEBUG 1
  124. #define STATS 1
  125. #define FORCED_DEBUG 1
  126. #else
  127. #define DEBUG 0
  128. #define STATS 0
  129. #define FORCED_DEBUG 0
  130. #endif
  131. /* Shouldn't this be in a header file somewhere? */
  132. #define BYTES_PER_WORD sizeof(void *)
  133. #ifndef cache_line_size
  134. #define cache_line_size() L1_CACHE_BYTES
  135. #endif
  136. #ifndef ARCH_KMALLOC_MINALIGN
  137. /*
  138. * Enforce a minimum alignment for the kmalloc caches.
  139. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  140. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  141. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  142. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  143. * Note that this flag disables some debug features.
  144. */
  145. #define ARCH_KMALLOC_MINALIGN 0
  146. #endif
  147. #ifndef ARCH_SLAB_MINALIGN
  148. /*
  149. * Enforce a minimum alignment for all caches.
  150. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  151. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  152. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  153. * some debug features.
  154. */
  155. #define ARCH_SLAB_MINALIGN 0
  156. #endif
  157. #ifndef ARCH_KMALLOC_FLAGS
  158. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  159. #endif
  160. /* Legal flag mask for kmem_cache_create(). */
  161. #if DEBUG
  162. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  163. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  164. SLAB_CACHE_DMA | \
  165. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  166. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  167. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  168. #else
  169. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  170. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
  173. #endif
  174. /*
  175. * kmem_bufctl_t:
  176. *
  177. * Bufctl's are used for linking objs within a slab
  178. * linked offsets.
  179. *
  180. * This implementation relies on "struct page" for locating the cache &
  181. * slab an object belongs to.
  182. * This allows the bufctl structure to be small (one int), but limits
  183. * the number of objects a slab (not a cache) can contain when off-slab
  184. * bufctls are used. The limit is the size of the largest general cache
  185. * that does not use off-slab slabs.
  186. * For 32bit archs with 4 kB pages, is this 56.
  187. * This is not serious, as it is only for large objects, when it is unwise
  188. * to have too many per slab.
  189. * Note: This limit can be raised by introducing a general cache whose size
  190. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  191. */
  192. typedef unsigned int kmem_bufctl_t;
  193. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  194. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  195. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
  196. /* Max number of objs-per-slab for caches which use off-slab slabs.
  197. * Needed to avoid a possible looping condition in cache_grow().
  198. */
  199. static unsigned long offslab_limit;
  200. /*
  201. * struct slab
  202. *
  203. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  204. * for a slab, or allocated from an general cache.
  205. * Slabs are chained into three list: fully used, partial, fully free slabs.
  206. */
  207. struct slab {
  208. struct list_head list;
  209. unsigned long colouroff;
  210. void *s_mem; /* including colour offset */
  211. unsigned int inuse; /* num of objs active in slab */
  212. kmem_bufctl_t free;
  213. unsigned short nodeid;
  214. };
  215. /*
  216. * struct slab_rcu
  217. *
  218. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  219. * arrange for kmem_freepages to be called via RCU. This is useful if
  220. * we need to approach a kernel structure obliquely, from its address
  221. * obtained without the usual locking. We can lock the structure to
  222. * stabilize it and check it's still at the given address, only if we
  223. * can be sure that the memory has not been meanwhile reused for some
  224. * other kind of object (which our subsystem's lock might corrupt).
  225. *
  226. * rcu_read_lock before reading the address, then rcu_read_unlock after
  227. * taking the spinlock within the structure expected at that address.
  228. *
  229. * We assume struct slab_rcu can overlay struct slab when destroying.
  230. */
  231. struct slab_rcu {
  232. struct rcu_head head;
  233. struct kmem_cache *cachep;
  234. void *addr;
  235. };
  236. /*
  237. * struct array_cache
  238. *
  239. * Purpose:
  240. * - LIFO ordering, to hand out cache-warm objects from _alloc
  241. * - reduce the number of linked list operations
  242. * - reduce spinlock operations
  243. *
  244. * The limit is stored in the per-cpu structure to reduce the data cache
  245. * footprint.
  246. *
  247. */
  248. struct array_cache {
  249. unsigned int avail;
  250. unsigned int limit;
  251. unsigned int batchcount;
  252. unsigned int touched;
  253. spinlock_t lock;
  254. void *entry[0]; /*
  255. * Must have this definition in here for the proper
  256. * alignment of array_cache. Also simplifies accessing
  257. * the entries.
  258. * [0] is for gcc 2.95. It should really be [].
  259. */
  260. };
  261. /*
  262. * bootstrap: The caches do not work without cpuarrays anymore, but the
  263. * cpuarrays are allocated from the generic caches...
  264. */
  265. #define BOOT_CPUCACHE_ENTRIES 1
  266. struct arraycache_init {
  267. struct array_cache cache;
  268. void *entries[BOOT_CPUCACHE_ENTRIES];
  269. };
  270. /*
  271. * The slab lists for all objects.
  272. */
  273. struct kmem_list3 {
  274. struct list_head slabs_partial; /* partial list first, better asm code */
  275. struct list_head slabs_full;
  276. struct list_head slabs_free;
  277. unsigned long free_objects;
  278. unsigned int free_limit;
  279. unsigned int colour_next; /* Per-node cache coloring */
  280. spinlock_t list_lock;
  281. struct array_cache *shared; /* shared per node */
  282. struct array_cache **alien; /* on other nodes */
  283. unsigned long next_reap; /* updated without locking */
  284. int free_touched; /* updated without locking */
  285. };
  286. /*
  287. * Need this for bootstrapping a per node allocator.
  288. */
  289. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  290. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  291. #define CACHE_CACHE 0
  292. #define SIZE_AC 1
  293. #define SIZE_L3 (1 + MAX_NUMNODES)
  294. /*
  295. * This function must be completely optimized away if a constant is passed to
  296. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  297. */
  298. static __always_inline int index_of(const size_t size)
  299. {
  300. extern void __bad_size(void);
  301. if (__builtin_constant_p(size)) {
  302. int i = 0;
  303. #define CACHE(x) \
  304. if (size <=x) \
  305. return i; \
  306. else \
  307. i++;
  308. #include "linux/kmalloc_sizes.h"
  309. #undef CACHE
  310. __bad_size();
  311. } else
  312. __bad_size();
  313. return 0;
  314. }
  315. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  316. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  317. static void kmem_list3_init(struct kmem_list3 *parent)
  318. {
  319. INIT_LIST_HEAD(&parent->slabs_full);
  320. INIT_LIST_HEAD(&parent->slabs_partial);
  321. INIT_LIST_HEAD(&parent->slabs_free);
  322. parent->shared = NULL;
  323. parent->alien = NULL;
  324. parent->colour_next = 0;
  325. spin_lock_init(&parent->list_lock);
  326. parent->free_objects = 0;
  327. parent->free_touched = 0;
  328. }
  329. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  330. do { \
  331. INIT_LIST_HEAD(listp); \
  332. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  333. } while (0)
  334. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  335. do { \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  338. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  339. } while (0)
  340. /*
  341. * struct kmem_cache
  342. *
  343. * manages a cache.
  344. */
  345. struct kmem_cache {
  346. /* 1) per-cpu data, touched during every alloc/free */
  347. struct array_cache *array[NR_CPUS];
  348. /* 2) Cache tunables. Protected by cache_chain_mutex */
  349. unsigned int batchcount;
  350. unsigned int limit;
  351. unsigned int shared;
  352. unsigned int buffer_size;
  353. /* 3) touched by every alloc & free from the backend */
  354. struct kmem_list3 *nodelists[MAX_NUMNODES];
  355. unsigned int flags; /* constant flags */
  356. unsigned int num; /* # of objs per slab */
  357. /* 4) cache_grow/shrink */
  358. /* order of pgs per slab (2^n) */
  359. unsigned int gfporder;
  360. /* force GFP flags, e.g. GFP_DMA */
  361. gfp_t gfpflags;
  362. size_t colour; /* cache colouring range */
  363. unsigned int colour_off; /* colour offset */
  364. struct kmem_cache *slabp_cache;
  365. unsigned int slab_size;
  366. unsigned int dflags; /* dynamic flags */
  367. /* constructor func */
  368. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  369. /* de-constructor func */
  370. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  371. /* 5) cache creation/removal */
  372. const char *name;
  373. struct list_head next;
  374. /* 6) statistics */
  375. #if STATS
  376. unsigned long num_active;
  377. unsigned long num_allocations;
  378. unsigned long high_mark;
  379. unsigned long grown;
  380. unsigned long reaped;
  381. unsigned long errors;
  382. unsigned long max_freeable;
  383. unsigned long node_allocs;
  384. unsigned long node_frees;
  385. atomic_t allochit;
  386. atomic_t allocmiss;
  387. atomic_t freehit;
  388. atomic_t freemiss;
  389. #endif
  390. #if DEBUG
  391. /*
  392. * If debugging is enabled, then the allocator can add additional
  393. * fields and/or padding to every object. buffer_size contains the total
  394. * object size including these internal fields, the following two
  395. * variables contain the offset to the user object and its size.
  396. */
  397. int obj_offset;
  398. int obj_size;
  399. #endif
  400. };
  401. #define CFLGS_OFF_SLAB (0x80000000UL)
  402. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  403. #define BATCHREFILL_LIMIT 16
  404. /*
  405. * Optimization question: fewer reaps means less probability for unnessary
  406. * cpucache drain/refill cycles.
  407. *
  408. * OTOH the cpuarrays can contain lots of objects,
  409. * which could lock up otherwise freeable slabs.
  410. */
  411. #define REAPTIMEOUT_CPUC (2*HZ)
  412. #define REAPTIMEOUT_LIST3 (4*HZ)
  413. #if STATS
  414. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  415. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  416. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  417. #define STATS_INC_GROWN(x) ((x)->grown++)
  418. #define STATS_INC_REAPED(x) ((x)->reaped++)
  419. #define STATS_SET_HIGH(x) \
  420. do { \
  421. if ((x)->num_active > (x)->high_mark) \
  422. (x)->high_mark = (x)->num_active; \
  423. } while (0)
  424. #define STATS_INC_ERR(x) ((x)->errors++)
  425. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  426. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  427. #define STATS_SET_FREEABLE(x, i) \
  428. do { \
  429. if ((x)->max_freeable < i) \
  430. (x)->max_freeable = i; \
  431. } while (0)
  432. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  433. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  434. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  435. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  436. #else
  437. #define STATS_INC_ACTIVE(x) do { } while (0)
  438. #define STATS_DEC_ACTIVE(x) do { } while (0)
  439. #define STATS_INC_ALLOCED(x) do { } while (0)
  440. #define STATS_INC_GROWN(x) do { } while (0)
  441. #define STATS_INC_REAPED(x) do { } while (0)
  442. #define STATS_SET_HIGH(x) do { } while (0)
  443. #define STATS_INC_ERR(x) do { } while (0)
  444. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  445. #define STATS_INC_NODEFREES(x) do { } while (0)
  446. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  447. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  448. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  449. #define STATS_INC_FREEHIT(x) do { } while (0)
  450. #define STATS_INC_FREEMISS(x) do { } while (0)
  451. #endif
  452. #if DEBUG
  453. /*
  454. * Magic nums for obj red zoning.
  455. * Placed in the first word before and the first word after an obj.
  456. */
  457. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  458. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  459. /* ...and for poisoning */
  460. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  461. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  462. #define POISON_END 0xa5 /* end-byte of poisoning */
  463. /*
  464. * memory layout of objects:
  465. * 0 : objp
  466. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  467. * the end of an object is aligned with the end of the real
  468. * allocation. Catches writes behind the end of the allocation.
  469. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  470. * redzone word.
  471. * cachep->obj_offset: The real object.
  472. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  473. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  474. * [BYTES_PER_WORD long]
  475. */
  476. static int obj_offset(struct kmem_cache *cachep)
  477. {
  478. return cachep->obj_offset;
  479. }
  480. static int obj_size(struct kmem_cache *cachep)
  481. {
  482. return cachep->obj_size;
  483. }
  484. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  485. {
  486. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  487. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  488. }
  489. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  490. {
  491. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  492. if (cachep->flags & SLAB_STORE_USER)
  493. return (unsigned long *)(objp + cachep->buffer_size -
  494. 2 * BYTES_PER_WORD);
  495. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  496. }
  497. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  498. {
  499. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  500. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  501. }
  502. #else
  503. #define obj_offset(x) 0
  504. #define obj_size(cachep) (cachep->buffer_size)
  505. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  507. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  508. #endif
  509. /*
  510. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  511. * order.
  512. */
  513. #if defined(CONFIG_LARGE_ALLOCS)
  514. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  515. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  516. #elif defined(CONFIG_MMU)
  517. #define MAX_OBJ_ORDER 5 /* 32 pages */
  518. #define MAX_GFP_ORDER 5 /* 32 pages */
  519. #else
  520. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  521. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  522. #endif
  523. /*
  524. * Do not go above this order unless 0 objects fit into the slab.
  525. */
  526. #define BREAK_GFP_ORDER_HI 1
  527. #define BREAK_GFP_ORDER_LO 0
  528. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  529. /*
  530. * Functions for storing/retrieving the cachep and or slab from the page
  531. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  532. * these are used to find the cache which an obj belongs to.
  533. */
  534. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  535. {
  536. page->lru.next = (struct list_head *)cache;
  537. }
  538. static inline struct kmem_cache *page_get_cache(struct page *page)
  539. {
  540. if (unlikely(PageCompound(page)))
  541. page = (struct page *)page_private(page);
  542. return (struct kmem_cache *)page->lru.next;
  543. }
  544. static inline void page_set_slab(struct page *page, struct slab *slab)
  545. {
  546. page->lru.prev = (struct list_head *)slab;
  547. }
  548. static inline struct slab *page_get_slab(struct page *page)
  549. {
  550. if (unlikely(PageCompound(page)))
  551. page = (struct page *)page_private(page);
  552. return (struct slab *)page->lru.prev;
  553. }
  554. static inline struct kmem_cache *virt_to_cache(const void *obj)
  555. {
  556. struct page *page = virt_to_page(obj);
  557. return page_get_cache(page);
  558. }
  559. static inline struct slab *virt_to_slab(const void *obj)
  560. {
  561. struct page *page = virt_to_page(obj);
  562. return page_get_slab(page);
  563. }
  564. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  565. unsigned int idx)
  566. {
  567. return slab->s_mem + cache->buffer_size * idx;
  568. }
  569. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  570. struct slab *slab, void *obj)
  571. {
  572. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  573. }
  574. /*
  575. * These are the default caches for kmalloc. Custom caches can have other sizes.
  576. */
  577. struct cache_sizes malloc_sizes[] = {
  578. #define CACHE(x) { .cs_size = (x) },
  579. #include <linux/kmalloc_sizes.h>
  580. CACHE(ULONG_MAX)
  581. #undef CACHE
  582. };
  583. EXPORT_SYMBOL(malloc_sizes);
  584. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  585. struct cache_names {
  586. char *name;
  587. char *name_dma;
  588. };
  589. static struct cache_names __initdata cache_names[] = {
  590. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  591. #include <linux/kmalloc_sizes.h>
  592. {NULL,}
  593. #undef CACHE
  594. };
  595. static struct arraycache_init initarray_cache __initdata =
  596. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  597. static struct arraycache_init initarray_generic =
  598. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  599. /* internal cache of cache description objs */
  600. static struct kmem_cache cache_cache = {
  601. .batchcount = 1,
  602. .limit = BOOT_CPUCACHE_ENTRIES,
  603. .shared = 1,
  604. .buffer_size = sizeof(struct kmem_cache),
  605. .name = "kmem_cache",
  606. #if DEBUG
  607. .obj_size = sizeof(struct kmem_cache),
  608. #endif
  609. };
  610. /* Guard access to the cache-chain. */
  611. static DEFINE_MUTEX(cache_chain_mutex);
  612. static struct list_head cache_chain;
  613. /*
  614. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  615. * are possibly freeable under pressure
  616. *
  617. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  618. */
  619. atomic_t slab_reclaim_pages;
  620. /*
  621. * chicken and egg problem: delay the per-cpu array allocation
  622. * until the general caches are up.
  623. */
  624. static enum {
  625. NONE,
  626. PARTIAL_AC,
  627. PARTIAL_L3,
  628. FULL
  629. } g_cpucache_up;
  630. static DEFINE_PER_CPU(struct work_struct, reap_work);
  631. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  632. int node);
  633. static void enable_cpucache(struct kmem_cache *cachep);
  634. static void cache_reap(void *unused);
  635. static int __node_shrink(struct kmem_cache *cachep, int node);
  636. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  637. {
  638. return cachep->array[smp_processor_id()];
  639. }
  640. static inline struct kmem_cache *__find_general_cachep(size_t size,
  641. gfp_t gfpflags)
  642. {
  643. struct cache_sizes *csizep = malloc_sizes;
  644. #if DEBUG
  645. /* This happens if someone tries to call
  646. * kmem_cache_create(), or __kmalloc(), before
  647. * the generic caches are initialized.
  648. */
  649. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  650. #endif
  651. while (size > csizep->cs_size)
  652. csizep++;
  653. /*
  654. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  655. * has cs_{dma,}cachep==NULL. Thus no special case
  656. * for large kmalloc calls required.
  657. */
  658. if (unlikely(gfpflags & GFP_DMA))
  659. return csizep->cs_dmacachep;
  660. return csizep->cs_cachep;
  661. }
  662. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  663. {
  664. return __find_general_cachep(size, gfpflags);
  665. }
  666. EXPORT_SYMBOL(kmem_find_general_cachep);
  667. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  668. {
  669. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  670. }
  671. /*
  672. * Calculate the number of objects and left-over bytes for a given buffer size.
  673. */
  674. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  675. size_t align, int flags, size_t *left_over,
  676. unsigned int *num)
  677. {
  678. int nr_objs;
  679. size_t mgmt_size;
  680. size_t slab_size = PAGE_SIZE << gfporder;
  681. /*
  682. * The slab management structure can be either off the slab or
  683. * on it. For the latter case, the memory allocated for a
  684. * slab is used for:
  685. *
  686. * - The struct slab
  687. * - One kmem_bufctl_t for each object
  688. * - Padding to respect alignment of @align
  689. * - @buffer_size bytes for each object
  690. *
  691. * If the slab management structure is off the slab, then the
  692. * alignment will already be calculated into the size. Because
  693. * the slabs are all pages aligned, the objects will be at the
  694. * correct alignment when allocated.
  695. */
  696. if (flags & CFLGS_OFF_SLAB) {
  697. mgmt_size = 0;
  698. nr_objs = slab_size / buffer_size;
  699. if (nr_objs > SLAB_LIMIT)
  700. nr_objs = SLAB_LIMIT;
  701. } else {
  702. /*
  703. * Ignore padding for the initial guess. The padding
  704. * is at most @align-1 bytes, and @buffer_size is at
  705. * least @align. In the worst case, this result will
  706. * be one greater than the number of objects that fit
  707. * into the memory allocation when taking the padding
  708. * into account.
  709. */
  710. nr_objs = (slab_size - sizeof(struct slab)) /
  711. (buffer_size + sizeof(kmem_bufctl_t));
  712. /*
  713. * This calculated number will be either the right
  714. * amount, or one greater than what we want.
  715. */
  716. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  717. > slab_size)
  718. nr_objs--;
  719. if (nr_objs > SLAB_LIMIT)
  720. nr_objs = SLAB_LIMIT;
  721. mgmt_size = slab_mgmt_size(nr_objs, align);
  722. }
  723. *num = nr_objs;
  724. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  725. }
  726. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  727. static void __slab_error(const char *function, struct kmem_cache *cachep,
  728. char *msg)
  729. {
  730. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  731. function, cachep->name, msg);
  732. dump_stack();
  733. }
  734. #ifdef CONFIG_NUMA
  735. /*
  736. * Special reaping functions for NUMA systems called from cache_reap().
  737. * These take care of doing round robin flushing of alien caches (containing
  738. * objects freed on different nodes from which they were allocated) and the
  739. * flushing of remote pcps by calling drain_node_pages.
  740. */
  741. static DEFINE_PER_CPU(unsigned long, reap_node);
  742. static void init_reap_node(int cpu)
  743. {
  744. int node;
  745. node = next_node(cpu_to_node(cpu), node_online_map);
  746. if (node == MAX_NUMNODES)
  747. node = first_node(node_online_map);
  748. __get_cpu_var(reap_node) = node;
  749. }
  750. static void next_reap_node(void)
  751. {
  752. int node = __get_cpu_var(reap_node);
  753. /*
  754. * Also drain per cpu pages on remote zones
  755. */
  756. if (node != numa_node_id())
  757. drain_node_pages(node);
  758. node = next_node(node, node_online_map);
  759. if (unlikely(node >= MAX_NUMNODES))
  760. node = first_node(node_online_map);
  761. __get_cpu_var(reap_node) = node;
  762. }
  763. #else
  764. #define init_reap_node(cpu) do { } while (0)
  765. #define next_reap_node(void) do { } while (0)
  766. #endif
  767. /*
  768. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  769. * via the workqueue/eventd.
  770. * Add the CPU number into the expiration time to minimize the possibility of
  771. * the CPUs getting into lockstep and contending for the global cache chain
  772. * lock.
  773. */
  774. static void __devinit start_cpu_timer(int cpu)
  775. {
  776. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  777. /*
  778. * When this gets called from do_initcalls via cpucache_init(),
  779. * init_workqueues() has already run, so keventd will be setup
  780. * at that time.
  781. */
  782. if (keventd_up() && reap_work->func == NULL) {
  783. init_reap_node(cpu);
  784. INIT_WORK(reap_work, cache_reap, NULL);
  785. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  786. }
  787. }
  788. static struct array_cache *alloc_arraycache(int node, int entries,
  789. int batchcount)
  790. {
  791. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  792. struct array_cache *nc = NULL;
  793. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  794. if (nc) {
  795. nc->avail = 0;
  796. nc->limit = entries;
  797. nc->batchcount = batchcount;
  798. nc->touched = 0;
  799. spin_lock_init(&nc->lock);
  800. }
  801. return nc;
  802. }
  803. #ifdef CONFIG_NUMA
  804. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  805. static struct array_cache **alloc_alien_cache(int node, int limit)
  806. {
  807. struct array_cache **ac_ptr;
  808. int memsize = sizeof(void *) * MAX_NUMNODES;
  809. int i;
  810. if (limit > 1)
  811. limit = 12;
  812. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  813. if (ac_ptr) {
  814. for_each_node(i) {
  815. if (i == node || !node_online(i)) {
  816. ac_ptr[i] = NULL;
  817. continue;
  818. }
  819. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  820. if (!ac_ptr[i]) {
  821. for (i--; i <= 0; i--)
  822. kfree(ac_ptr[i]);
  823. kfree(ac_ptr);
  824. return NULL;
  825. }
  826. }
  827. }
  828. return ac_ptr;
  829. }
  830. static void free_alien_cache(struct array_cache **ac_ptr)
  831. {
  832. int i;
  833. if (!ac_ptr)
  834. return;
  835. for_each_node(i)
  836. kfree(ac_ptr[i]);
  837. kfree(ac_ptr);
  838. }
  839. static void __drain_alien_cache(struct kmem_cache *cachep,
  840. struct array_cache *ac, int node)
  841. {
  842. struct kmem_list3 *rl3 = cachep->nodelists[node];
  843. if (ac->avail) {
  844. spin_lock(&rl3->list_lock);
  845. free_block(cachep, ac->entry, ac->avail, node);
  846. ac->avail = 0;
  847. spin_unlock(&rl3->list_lock);
  848. }
  849. }
  850. /*
  851. * Called from cache_reap() to regularly drain alien caches round robin.
  852. */
  853. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  854. {
  855. int node = __get_cpu_var(reap_node);
  856. if (l3->alien) {
  857. struct array_cache *ac = l3->alien[node];
  858. if (ac && ac->avail) {
  859. spin_lock_irq(&ac->lock);
  860. __drain_alien_cache(cachep, ac, node);
  861. spin_unlock_irq(&ac->lock);
  862. }
  863. }
  864. }
  865. static void drain_alien_cache(struct kmem_cache *cachep,
  866. struct array_cache **alien)
  867. {
  868. int i = 0;
  869. struct array_cache *ac;
  870. unsigned long flags;
  871. for_each_online_node(i) {
  872. ac = alien[i];
  873. if (ac) {
  874. spin_lock_irqsave(&ac->lock, flags);
  875. __drain_alien_cache(cachep, ac, i);
  876. spin_unlock_irqrestore(&ac->lock, flags);
  877. }
  878. }
  879. }
  880. #else
  881. #define drain_alien_cache(cachep, alien) do { } while (0)
  882. #define reap_alien(cachep, l3) do { } while (0)
  883. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  884. {
  885. return (struct array_cache **) 0x01020304ul;
  886. }
  887. static inline void free_alien_cache(struct array_cache **ac_ptr)
  888. {
  889. }
  890. #endif
  891. static int __devinit cpuup_callback(struct notifier_block *nfb,
  892. unsigned long action, void *hcpu)
  893. {
  894. long cpu = (long)hcpu;
  895. struct kmem_cache *cachep;
  896. struct kmem_list3 *l3 = NULL;
  897. int node = cpu_to_node(cpu);
  898. int memsize = sizeof(struct kmem_list3);
  899. switch (action) {
  900. case CPU_UP_PREPARE:
  901. mutex_lock(&cache_chain_mutex);
  902. /*
  903. * We need to do this right in the beginning since
  904. * alloc_arraycache's are going to use this list.
  905. * kmalloc_node allows us to add the slab to the right
  906. * kmem_list3 and not this cpu's kmem_list3
  907. */
  908. list_for_each_entry(cachep, &cache_chain, next) {
  909. /*
  910. * Set up the size64 kmemlist for cpu before we can
  911. * begin anything. Make sure some other cpu on this
  912. * node has not already allocated this
  913. */
  914. if (!cachep->nodelists[node]) {
  915. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  916. if (!l3)
  917. goto bad;
  918. kmem_list3_init(l3);
  919. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  920. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  921. /*
  922. * The l3s don't come and go as CPUs come and
  923. * go. cache_chain_mutex is sufficient
  924. * protection here.
  925. */
  926. cachep->nodelists[node] = l3;
  927. }
  928. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  929. cachep->nodelists[node]->free_limit =
  930. (1 + nr_cpus_node(node)) *
  931. cachep->batchcount + cachep->num;
  932. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  933. }
  934. /*
  935. * Now we can go ahead with allocating the shared arrays and
  936. * array caches
  937. */
  938. list_for_each_entry(cachep, &cache_chain, next) {
  939. struct array_cache *nc;
  940. struct array_cache *shared;
  941. struct array_cache **alien;
  942. nc = alloc_arraycache(node, cachep->limit,
  943. cachep->batchcount);
  944. if (!nc)
  945. goto bad;
  946. shared = alloc_arraycache(node,
  947. cachep->shared * cachep->batchcount,
  948. 0xbaadf00d);
  949. if (!shared)
  950. goto bad;
  951. alien = alloc_alien_cache(node, cachep->limit);
  952. if (!alien)
  953. goto bad;
  954. cachep->array[cpu] = nc;
  955. l3 = cachep->nodelists[node];
  956. BUG_ON(!l3);
  957. spin_lock_irq(&l3->list_lock);
  958. if (!l3->shared) {
  959. /*
  960. * We are serialised from CPU_DEAD or
  961. * CPU_UP_CANCELLED by the cpucontrol lock
  962. */
  963. l3->shared = shared;
  964. shared = NULL;
  965. }
  966. #ifdef CONFIG_NUMA
  967. if (!l3->alien) {
  968. l3->alien = alien;
  969. alien = NULL;
  970. }
  971. #endif
  972. spin_unlock_irq(&l3->list_lock);
  973. kfree(shared);
  974. free_alien_cache(alien);
  975. }
  976. mutex_unlock(&cache_chain_mutex);
  977. break;
  978. case CPU_ONLINE:
  979. start_cpu_timer(cpu);
  980. break;
  981. #ifdef CONFIG_HOTPLUG_CPU
  982. case CPU_DEAD:
  983. /*
  984. * Even if all the cpus of a node are down, we don't free the
  985. * kmem_list3 of any cache. This to avoid a race between
  986. * cpu_down, and a kmalloc allocation from another cpu for
  987. * memory from the node of the cpu going down. The list3
  988. * structure is usually allocated from kmem_cache_create() and
  989. * gets destroyed at kmem_cache_destroy().
  990. */
  991. /* fall thru */
  992. case CPU_UP_CANCELED:
  993. mutex_lock(&cache_chain_mutex);
  994. list_for_each_entry(cachep, &cache_chain, next) {
  995. struct array_cache *nc;
  996. struct array_cache *shared;
  997. struct array_cache **alien;
  998. cpumask_t mask;
  999. mask = node_to_cpumask(node);
  1000. /* cpu is dead; no one can alloc from it. */
  1001. nc = cachep->array[cpu];
  1002. cachep->array[cpu] = NULL;
  1003. l3 = cachep->nodelists[node];
  1004. if (!l3)
  1005. goto free_array_cache;
  1006. spin_lock_irq(&l3->list_lock);
  1007. /* Free limit for this kmem_list3 */
  1008. l3->free_limit -= cachep->batchcount;
  1009. if (nc)
  1010. free_block(cachep, nc->entry, nc->avail, node);
  1011. if (!cpus_empty(mask)) {
  1012. spin_unlock_irq(&l3->list_lock);
  1013. goto free_array_cache;
  1014. }
  1015. shared = l3->shared;
  1016. if (shared) {
  1017. free_block(cachep, l3->shared->entry,
  1018. l3->shared->avail, node);
  1019. l3->shared = NULL;
  1020. }
  1021. alien = l3->alien;
  1022. l3->alien = NULL;
  1023. spin_unlock_irq(&l3->list_lock);
  1024. kfree(shared);
  1025. if (alien) {
  1026. drain_alien_cache(cachep, alien);
  1027. free_alien_cache(alien);
  1028. }
  1029. free_array_cache:
  1030. kfree(nc);
  1031. }
  1032. /*
  1033. * In the previous loop, all the objects were freed to
  1034. * the respective cache's slabs, now we can go ahead and
  1035. * shrink each nodelist to its limit.
  1036. */
  1037. list_for_each_entry(cachep, &cache_chain, next) {
  1038. l3 = cachep->nodelists[node];
  1039. if (!l3)
  1040. continue;
  1041. spin_lock_irq(&l3->list_lock);
  1042. /* free slabs belonging to this node */
  1043. __node_shrink(cachep, node);
  1044. spin_unlock_irq(&l3->list_lock);
  1045. }
  1046. mutex_unlock(&cache_chain_mutex);
  1047. break;
  1048. #endif
  1049. }
  1050. return NOTIFY_OK;
  1051. bad:
  1052. mutex_unlock(&cache_chain_mutex);
  1053. return NOTIFY_BAD;
  1054. }
  1055. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1056. /*
  1057. * swap the static kmem_list3 with kmalloced memory
  1058. */
  1059. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1060. int nodeid)
  1061. {
  1062. struct kmem_list3 *ptr;
  1063. BUG_ON(cachep->nodelists[nodeid] != list);
  1064. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1065. BUG_ON(!ptr);
  1066. local_irq_disable();
  1067. memcpy(ptr, list, sizeof(struct kmem_list3));
  1068. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1069. cachep->nodelists[nodeid] = ptr;
  1070. local_irq_enable();
  1071. }
  1072. /*
  1073. * Initialisation. Called after the page allocator have been initialised and
  1074. * before smp_init().
  1075. */
  1076. void __init kmem_cache_init(void)
  1077. {
  1078. size_t left_over;
  1079. struct cache_sizes *sizes;
  1080. struct cache_names *names;
  1081. int i;
  1082. int order;
  1083. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1084. kmem_list3_init(&initkmem_list3[i]);
  1085. if (i < MAX_NUMNODES)
  1086. cache_cache.nodelists[i] = NULL;
  1087. }
  1088. /*
  1089. * Fragmentation resistance on low memory - only use bigger
  1090. * page orders on machines with more than 32MB of memory.
  1091. */
  1092. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1093. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1094. /* Bootstrap is tricky, because several objects are allocated
  1095. * from caches that do not exist yet:
  1096. * 1) initialize the cache_cache cache: it contains the struct
  1097. * kmem_cache structures of all caches, except cache_cache itself:
  1098. * cache_cache is statically allocated.
  1099. * Initially an __init data area is used for the head array and the
  1100. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1101. * array at the end of the bootstrap.
  1102. * 2) Create the first kmalloc cache.
  1103. * The struct kmem_cache for the new cache is allocated normally.
  1104. * An __init data area is used for the head array.
  1105. * 3) Create the remaining kmalloc caches, with minimally sized
  1106. * head arrays.
  1107. * 4) Replace the __init data head arrays for cache_cache and the first
  1108. * kmalloc cache with kmalloc allocated arrays.
  1109. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1110. * the other cache's with kmalloc allocated memory.
  1111. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1112. */
  1113. /* 1) create the cache_cache */
  1114. INIT_LIST_HEAD(&cache_chain);
  1115. list_add(&cache_cache.next, &cache_chain);
  1116. cache_cache.colour_off = cache_line_size();
  1117. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1118. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1119. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1120. cache_line_size());
  1121. for (order = 0; order < MAX_ORDER; order++) {
  1122. cache_estimate(order, cache_cache.buffer_size,
  1123. cache_line_size(), 0, &left_over, &cache_cache.num);
  1124. if (cache_cache.num)
  1125. break;
  1126. }
  1127. if (!cache_cache.num)
  1128. BUG();
  1129. cache_cache.gfporder = order;
  1130. cache_cache.colour = left_over / cache_cache.colour_off;
  1131. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1132. sizeof(struct slab), cache_line_size());
  1133. /* 2+3) create the kmalloc caches */
  1134. sizes = malloc_sizes;
  1135. names = cache_names;
  1136. /*
  1137. * Initialize the caches that provide memory for the array cache and the
  1138. * kmem_list3 structures first. Without this, further allocations will
  1139. * bug.
  1140. */
  1141. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1142. sizes[INDEX_AC].cs_size,
  1143. ARCH_KMALLOC_MINALIGN,
  1144. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1145. NULL, NULL);
  1146. if (INDEX_AC != INDEX_L3) {
  1147. sizes[INDEX_L3].cs_cachep =
  1148. kmem_cache_create(names[INDEX_L3].name,
  1149. sizes[INDEX_L3].cs_size,
  1150. ARCH_KMALLOC_MINALIGN,
  1151. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1152. NULL, NULL);
  1153. }
  1154. while (sizes->cs_size != ULONG_MAX) {
  1155. /*
  1156. * For performance, all the general caches are L1 aligned.
  1157. * This should be particularly beneficial on SMP boxes, as it
  1158. * eliminates "false sharing".
  1159. * Note for systems short on memory removing the alignment will
  1160. * allow tighter packing of the smaller caches.
  1161. */
  1162. if (!sizes->cs_cachep) {
  1163. sizes->cs_cachep = kmem_cache_create(names->name,
  1164. sizes->cs_size,
  1165. ARCH_KMALLOC_MINALIGN,
  1166. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1167. NULL, NULL);
  1168. }
  1169. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1170. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1171. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1172. offslab_limit /= sizeof(kmem_bufctl_t);
  1173. }
  1174. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1175. sizes->cs_size,
  1176. ARCH_KMALLOC_MINALIGN,
  1177. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1178. SLAB_PANIC,
  1179. NULL, NULL);
  1180. sizes++;
  1181. names++;
  1182. }
  1183. /* 4) Replace the bootstrap head arrays */
  1184. {
  1185. void *ptr;
  1186. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1187. local_irq_disable();
  1188. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1189. memcpy(ptr, cpu_cache_get(&cache_cache),
  1190. sizeof(struct arraycache_init));
  1191. cache_cache.array[smp_processor_id()] = ptr;
  1192. local_irq_enable();
  1193. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1194. local_irq_disable();
  1195. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1196. != &initarray_generic.cache);
  1197. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1198. sizeof(struct arraycache_init));
  1199. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1200. ptr;
  1201. local_irq_enable();
  1202. }
  1203. /* 5) Replace the bootstrap kmem_list3's */
  1204. {
  1205. int node;
  1206. /* Replace the static kmem_list3 structures for the boot cpu */
  1207. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1208. numa_node_id());
  1209. for_each_online_node(node) {
  1210. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1211. &initkmem_list3[SIZE_AC + node], node);
  1212. if (INDEX_AC != INDEX_L3) {
  1213. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1214. &initkmem_list3[SIZE_L3 + node],
  1215. node);
  1216. }
  1217. }
  1218. }
  1219. /* 6) resize the head arrays to their final sizes */
  1220. {
  1221. struct kmem_cache *cachep;
  1222. mutex_lock(&cache_chain_mutex);
  1223. list_for_each_entry(cachep, &cache_chain, next)
  1224. enable_cpucache(cachep);
  1225. mutex_unlock(&cache_chain_mutex);
  1226. }
  1227. /* Done! */
  1228. g_cpucache_up = FULL;
  1229. /*
  1230. * Register a cpu startup notifier callback that initializes
  1231. * cpu_cache_get for all new cpus
  1232. */
  1233. register_cpu_notifier(&cpucache_notifier);
  1234. /*
  1235. * The reap timers are started later, with a module init call: That part
  1236. * of the kernel is not yet operational.
  1237. */
  1238. }
  1239. static int __init cpucache_init(void)
  1240. {
  1241. int cpu;
  1242. /*
  1243. * Register the timers that return unneeded pages to the page allocator
  1244. */
  1245. for_each_online_cpu(cpu)
  1246. start_cpu_timer(cpu);
  1247. return 0;
  1248. }
  1249. __initcall(cpucache_init);
  1250. /*
  1251. * Interface to system's page allocator. No need to hold the cache-lock.
  1252. *
  1253. * If we requested dmaable memory, we will get it. Even if we
  1254. * did not request dmaable memory, we might get it, but that
  1255. * would be relatively rare and ignorable.
  1256. */
  1257. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1258. {
  1259. struct page *page;
  1260. void *addr;
  1261. int i;
  1262. flags |= cachep->gfpflags;
  1263. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1264. if (!page)
  1265. return NULL;
  1266. addr = page_address(page);
  1267. i = (1 << cachep->gfporder);
  1268. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1269. atomic_add(i, &slab_reclaim_pages);
  1270. add_page_state(nr_slab, i);
  1271. while (i--) {
  1272. __SetPageSlab(page);
  1273. page++;
  1274. }
  1275. return addr;
  1276. }
  1277. /*
  1278. * Interface to system's page release.
  1279. */
  1280. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1281. {
  1282. unsigned long i = (1 << cachep->gfporder);
  1283. struct page *page = virt_to_page(addr);
  1284. const unsigned long nr_freed = i;
  1285. while (i--) {
  1286. BUG_ON(!PageSlab(page));
  1287. __ClearPageSlab(page);
  1288. page++;
  1289. }
  1290. sub_page_state(nr_slab, nr_freed);
  1291. if (current->reclaim_state)
  1292. current->reclaim_state->reclaimed_slab += nr_freed;
  1293. free_pages((unsigned long)addr, cachep->gfporder);
  1294. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1295. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1296. }
  1297. static void kmem_rcu_free(struct rcu_head *head)
  1298. {
  1299. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1300. struct kmem_cache *cachep = slab_rcu->cachep;
  1301. kmem_freepages(cachep, slab_rcu->addr);
  1302. if (OFF_SLAB(cachep))
  1303. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1304. }
  1305. #if DEBUG
  1306. #ifdef CONFIG_DEBUG_PAGEALLOC
  1307. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1308. unsigned long caller)
  1309. {
  1310. int size = obj_size(cachep);
  1311. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1312. if (size < 5 * sizeof(unsigned long))
  1313. return;
  1314. *addr++ = 0x12345678;
  1315. *addr++ = caller;
  1316. *addr++ = smp_processor_id();
  1317. size -= 3 * sizeof(unsigned long);
  1318. {
  1319. unsigned long *sptr = &caller;
  1320. unsigned long svalue;
  1321. while (!kstack_end(sptr)) {
  1322. svalue = *sptr++;
  1323. if (kernel_text_address(svalue)) {
  1324. *addr++ = svalue;
  1325. size -= sizeof(unsigned long);
  1326. if (size <= sizeof(unsigned long))
  1327. break;
  1328. }
  1329. }
  1330. }
  1331. *addr++ = 0x87654321;
  1332. }
  1333. #endif
  1334. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1335. {
  1336. int size = obj_size(cachep);
  1337. addr = &((char *)addr)[obj_offset(cachep)];
  1338. memset(addr, val, size);
  1339. *(unsigned char *)(addr + size - 1) = POISON_END;
  1340. }
  1341. static void dump_line(char *data, int offset, int limit)
  1342. {
  1343. int i;
  1344. printk(KERN_ERR "%03x:", offset);
  1345. for (i = 0; i < limit; i++)
  1346. printk(" %02x", (unsigned char)data[offset + i]);
  1347. printk("\n");
  1348. }
  1349. #endif
  1350. #if DEBUG
  1351. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1352. {
  1353. int i, size;
  1354. char *realobj;
  1355. if (cachep->flags & SLAB_RED_ZONE) {
  1356. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1357. *dbg_redzone1(cachep, objp),
  1358. *dbg_redzone2(cachep, objp));
  1359. }
  1360. if (cachep->flags & SLAB_STORE_USER) {
  1361. printk(KERN_ERR "Last user: [<%p>]",
  1362. *dbg_userword(cachep, objp));
  1363. print_symbol("(%s)",
  1364. (unsigned long)*dbg_userword(cachep, objp));
  1365. printk("\n");
  1366. }
  1367. realobj = (char *)objp + obj_offset(cachep);
  1368. size = obj_size(cachep);
  1369. for (i = 0; i < size && lines; i += 16, lines--) {
  1370. int limit;
  1371. limit = 16;
  1372. if (i + limit > size)
  1373. limit = size - i;
  1374. dump_line(realobj, i, limit);
  1375. }
  1376. }
  1377. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1378. {
  1379. char *realobj;
  1380. int size, i;
  1381. int lines = 0;
  1382. realobj = (char *)objp + obj_offset(cachep);
  1383. size = obj_size(cachep);
  1384. for (i = 0; i < size; i++) {
  1385. char exp = POISON_FREE;
  1386. if (i == size - 1)
  1387. exp = POISON_END;
  1388. if (realobj[i] != exp) {
  1389. int limit;
  1390. /* Mismatch ! */
  1391. /* Print header */
  1392. if (lines == 0) {
  1393. printk(KERN_ERR
  1394. "Slab corruption: start=%p, len=%d\n",
  1395. realobj, size);
  1396. print_objinfo(cachep, objp, 0);
  1397. }
  1398. /* Hexdump the affected line */
  1399. i = (i / 16) * 16;
  1400. limit = 16;
  1401. if (i + limit > size)
  1402. limit = size - i;
  1403. dump_line(realobj, i, limit);
  1404. i += 16;
  1405. lines++;
  1406. /* Limit to 5 lines */
  1407. if (lines > 5)
  1408. break;
  1409. }
  1410. }
  1411. if (lines != 0) {
  1412. /* Print some data about the neighboring objects, if they
  1413. * exist:
  1414. */
  1415. struct slab *slabp = virt_to_slab(objp);
  1416. unsigned int objnr;
  1417. objnr = obj_to_index(cachep, slabp, objp);
  1418. if (objnr) {
  1419. objp = index_to_obj(cachep, slabp, objnr - 1);
  1420. realobj = (char *)objp + obj_offset(cachep);
  1421. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1422. realobj, size);
  1423. print_objinfo(cachep, objp, 2);
  1424. }
  1425. if (objnr + 1 < cachep->num) {
  1426. objp = index_to_obj(cachep, slabp, objnr + 1);
  1427. realobj = (char *)objp + obj_offset(cachep);
  1428. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1429. realobj, size);
  1430. print_objinfo(cachep, objp, 2);
  1431. }
  1432. }
  1433. }
  1434. #endif
  1435. #if DEBUG
  1436. /**
  1437. * slab_destroy_objs - destroy a slab and its objects
  1438. * @cachep: cache pointer being destroyed
  1439. * @slabp: slab pointer being destroyed
  1440. *
  1441. * Call the registered destructor for each object in a slab that is being
  1442. * destroyed.
  1443. */
  1444. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1445. {
  1446. int i;
  1447. for (i = 0; i < cachep->num; i++) {
  1448. void *objp = index_to_obj(cachep, slabp, i);
  1449. if (cachep->flags & SLAB_POISON) {
  1450. #ifdef CONFIG_DEBUG_PAGEALLOC
  1451. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1452. OFF_SLAB(cachep))
  1453. kernel_map_pages(virt_to_page(objp),
  1454. cachep->buffer_size / PAGE_SIZE, 1);
  1455. else
  1456. check_poison_obj(cachep, objp);
  1457. #else
  1458. check_poison_obj(cachep, objp);
  1459. #endif
  1460. }
  1461. if (cachep->flags & SLAB_RED_ZONE) {
  1462. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1463. slab_error(cachep, "start of a freed object "
  1464. "was overwritten");
  1465. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1466. slab_error(cachep, "end of a freed object "
  1467. "was overwritten");
  1468. }
  1469. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1470. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1471. }
  1472. }
  1473. #else
  1474. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1475. {
  1476. if (cachep->dtor) {
  1477. int i;
  1478. for (i = 0; i < cachep->num; i++) {
  1479. void *objp = index_to_obj(cachep, slabp, i);
  1480. (cachep->dtor) (objp, cachep, 0);
  1481. }
  1482. }
  1483. }
  1484. #endif
  1485. /**
  1486. * slab_destroy - destroy and release all objects in a slab
  1487. * @cachep: cache pointer being destroyed
  1488. * @slabp: slab pointer being destroyed
  1489. *
  1490. * Destroy all the objs in a slab, and release the mem back to the system.
  1491. * Before calling the slab must have been unlinked from the cache. The
  1492. * cache-lock is not held/needed.
  1493. */
  1494. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1495. {
  1496. void *addr = slabp->s_mem - slabp->colouroff;
  1497. slab_destroy_objs(cachep, slabp);
  1498. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1499. struct slab_rcu *slab_rcu;
  1500. slab_rcu = (struct slab_rcu *)slabp;
  1501. slab_rcu->cachep = cachep;
  1502. slab_rcu->addr = addr;
  1503. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1504. } else {
  1505. kmem_freepages(cachep, addr);
  1506. if (OFF_SLAB(cachep))
  1507. kmem_cache_free(cachep->slabp_cache, slabp);
  1508. }
  1509. }
  1510. /*
  1511. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1512. * size of kmem_list3.
  1513. */
  1514. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1515. {
  1516. int node;
  1517. for_each_online_node(node) {
  1518. cachep->nodelists[node] = &initkmem_list3[index + node];
  1519. cachep->nodelists[node]->next_reap = jiffies +
  1520. REAPTIMEOUT_LIST3 +
  1521. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1522. }
  1523. }
  1524. /**
  1525. * calculate_slab_order - calculate size (page order) of slabs
  1526. * @cachep: pointer to the cache that is being created
  1527. * @size: size of objects to be created in this cache.
  1528. * @align: required alignment for the objects.
  1529. * @flags: slab allocation flags
  1530. *
  1531. * Also calculates the number of objects per slab.
  1532. *
  1533. * This could be made much more intelligent. For now, try to avoid using
  1534. * high order pages for slabs. When the gfp() functions are more friendly
  1535. * towards high-order requests, this should be changed.
  1536. */
  1537. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1538. size_t size, size_t align, unsigned long flags)
  1539. {
  1540. size_t left_over = 0;
  1541. int gfporder;
  1542. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1543. unsigned int num;
  1544. size_t remainder;
  1545. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1546. if (!num)
  1547. continue;
  1548. /* More than offslab_limit objects will cause problems */
  1549. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1550. break;
  1551. /* Found something acceptable - save it away */
  1552. cachep->num = num;
  1553. cachep->gfporder = gfporder;
  1554. left_over = remainder;
  1555. /*
  1556. * A VFS-reclaimable slab tends to have most allocations
  1557. * as GFP_NOFS and we really don't want to have to be allocating
  1558. * higher-order pages when we are unable to shrink dcache.
  1559. */
  1560. if (flags & SLAB_RECLAIM_ACCOUNT)
  1561. break;
  1562. /*
  1563. * Large number of objects is good, but very large slabs are
  1564. * currently bad for the gfp()s.
  1565. */
  1566. if (gfporder >= slab_break_gfp_order)
  1567. break;
  1568. /*
  1569. * Acceptable internal fragmentation?
  1570. */
  1571. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1572. break;
  1573. }
  1574. return left_over;
  1575. }
  1576. static void setup_cpu_cache(struct kmem_cache *cachep)
  1577. {
  1578. if (g_cpucache_up == FULL) {
  1579. enable_cpucache(cachep);
  1580. return;
  1581. }
  1582. if (g_cpucache_up == NONE) {
  1583. /*
  1584. * Note: the first kmem_cache_create must create the cache
  1585. * that's used by kmalloc(24), otherwise the creation of
  1586. * further caches will BUG().
  1587. */
  1588. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1589. /*
  1590. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1591. * the first cache, then we need to set up all its list3s,
  1592. * otherwise the creation of further caches will BUG().
  1593. */
  1594. set_up_list3s(cachep, SIZE_AC);
  1595. if (INDEX_AC == INDEX_L3)
  1596. g_cpucache_up = PARTIAL_L3;
  1597. else
  1598. g_cpucache_up = PARTIAL_AC;
  1599. } else {
  1600. cachep->array[smp_processor_id()] =
  1601. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1602. if (g_cpucache_up == PARTIAL_AC) {
  1603. set_up_list3s(cachep, SIZE_L3);
  1604. g_cpucache_up = PARTIAL_L3;
  1605. } else {
  1606. int node;
  1607. for_each_online_node(node) {
  1608. cachep->nodelists[node] =
  1609. kmalloc_node(sizeof(struct kmem_list3),
  1610. GFP_KERNEL, node);
  1611. BUG_ON(!cachep->nodelists[node]);
  1612. kmem_list3_init(cachep->nodelists[node]);
  1613. }
  1614. }
  1615. }
  1616. cachep->nodelists[numa_node_id()]->next_reap =
  1617. jiffies + REAPTIMEOUT_LIST3 +
  1618. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1619. cpu_cache_get(cachep)->avail = 0;
  1620. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1621. cpu_cache_get(cachep)->batchcount = 1;
  1622. cpu_cache_get(cachep)->touched = 0;
  1623. cachep->batchcount = 1;
  1624. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1625. }
  1626. /**
  1627. * kmem_cache_create - Create a cache.
  1628. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1629. * @size: The size of objects to be created in this cache.
  1630. * @align: The required alignment for the objects.
  1631. * @flags: SLAB flags
  1632. * @ctor: A constructor for the objects.
  1633. * @dtor: A destructor for the objects.
  1634. *
  1635. * Returns a ptr to the cache on success, NULL on failure.
  1636. * Cannot be called within a int, but can be interrupted.
  1637. * The @ctor is run when new pages are allocated by the cache
  1638. * and the @dtor is run before the pages are handed back.
  1639. *
  1640. * @name must be valid until the cache is destroyed. This implies that
  1641. * the module calling this has to destroy the cache before getting unloaded.
  1642. *
  1643. * The flags are
  1644. *
  1645. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1646. * to catch references to uninitialised memory.
  1647. *
  1648. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1649. * for buffer overruns.
  1650. *
  1651. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1652. * cacheline. This can be beneficial if you're counting cycles as closely
  1653. * as davem.
  1654. */
  1655. struct kmem_cache *
  1656. kmem_cache_create (const char *name, size_t size, size_t align,
  1657. unsigned long flags,
  1658. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1659. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1660. {
  1661. size_t left_over, slab_size, ralign;
  1662. struct kmem_cache *cachep = NULL;
  1663. struct list_head *p;
  1664. /*
  1665. * Sanity checks... these are all serious usage bugs.
  1666. */
  1667. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1668. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1669. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1670. name);
  1671. BUG();
  1672. }
  1673. /*
  1674. * Prevent CPUs from coming and going.
  1675. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1676. */
  1677. lock_cpu_hotplug();
  1678. mutex_lock(&cache_chain_mutex);
  1679. list_for_each(p, &cache_chain) {
  1680. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1681. mm_segment_t old_fs = get_fs();
  1682. char tmp;
  1683. int res;
  1684. /*
  1685. * This happens when the module gets unloaded and doesn't
  1686. * destroy its slab cache and no-one else reuses the vmalloc
  1687. * area of the module. Print a warning.
  1688. */
  1689. set_fs(KERNEL_DS);
  1690. res = __get_user(tmp, pc->name);
  1691. set_fs(old_fs);
  1692. if (res) {
  1693. printk("SLAB: cache with size %d has lost its name\n",
  1694. pc->buffer_size);
  1695. continue;
  1696. }
  1697. if (!strcmp(pc->name, name)) {
  1698. printk("kmem_cache_create: duplicate cache %s\n", name);
  1699. dump_stack();
  1700. goto oops;
  1701. }
  1702. }
  1703. #if DEBUG
  1704. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1705. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1706. /* No constructor, but inital state check requested */
  1707. printk(KERN_ERR "%s: No con, but init state check "
  1708. "requested - %s\n", __FUNCTION__, name);
  1709. flags &= ~SLAB_DEBUG_INITIAL;
  1710. }
  1711. #if FORCED_DEBUG
  1712. /*
  1713. * Enable redzoning and last user accounting, except for caches with
  1714. * large objects, if the increased size would increase the object size
  1715. * above the next power of two: caches with object sizes just above a
  1716. * power of two have a significant amount of internal fragmentation.
  1717. */
  1718. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1719. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1720. if (!(flags & SLAB_DESTROY_BY_RCU))
  1721. flags |= SLAB_POISON;
  1722. #endif
  1723. if (flags & SLAB_DESTROY_BY_RCU)
  1724. BUG_ON(flags & SLAB_POISON);
  1725. #endif
  1726. if (flags & SLAB_DESTROY_BY_RCU)
  1727. BUG_ON(dtor);
  1728. /*
  1729. * Always checks flags, a caller might be expecting debug support which
  1730. * isn't available.
  1731. */
  1732. if (flags & ~CREATE_MASK)
  1733. BUG();
  1734. /*
  1735. * Check that size is in terms of words. This is needed to avoid
  1736. * unaligned accesses for some archs when redzoning is used, and makes
  1737. * sure any on-slab bufctl's are also correctly aligned.
  1738. */
  1739. if (size & (BYTES_PER_WORD - 1)) {
  1740. size += (BYTES_PER_WORD - 1);
  1741. size &= ~(BYTES_PER_WORD - 1);
  1742. }
  1743. /* calculate the final buffer alignment: */
  1744. /* 1) arch recommendation: can be overridden for debug */
  1745. if (flags & SLAB_HWCACHE_ALIGN) {
  1746. /*
  1747. * Default alignment: as specified by the arch code. Except if
  1748. * an object is really small, then squeeze multiple objects into
  1749. * one cacheline.
  1750. */
  1751. ralign = cache_line_size();
  1752. while (size <= ralign / 2)
  1753. ralign /= 2;
  1754. } else {
  1755. ralign = BYTES_PER_WORD;
  1756. }
  1757. /* 2) arch mandated alignment: disables debug if necessary */
  1758. if (ralign < ARCH_SLAB_MINALIGN) {
  1759. ralign = ARCH_SLAB_MINALIGN;
  1760. if (ralign > BYTES_PER_WORD)
  1761. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1762. }
  1763. /* 3) caller mandated alignment: disables debug if necessary */
  1764. if (ralign < align) {
  1765. ralign = align;
  1766. if (ralign > BYTES_PER_WORD)
  1767. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1768. }
  1769. /*
  1770. * 4) Store it. Note that the debug code below can reduce
  1771. * the alignment to BYTES_PER_WORD.
  1772. */
  1773. align = ralign;
  1774. /* Get cache's description obj. */
  1775. cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  1776. if (!cachep)
  1777. goto oops;
  1778. memset(cachep, 0, sizeof(struct kmem_cache));
  1779. #if DEBUG
  1780. cachep->obj_size = size;
  1781. if (flags & SLAB_RED_ZONE) {
  1782. /* redzoning only works with word aligned caches */
  1783. align = BYTES_PER_WORD;
  1784. /* add space for red zone words */
  1785. cachep->obj_offset += BYTES_PER_WORD;
  1786. size += 2 * BYTES_PER_WORD;
  1787. }
  1788. if (flags & SLAB_STORE_USER) {
  1789. /* user store requires word alignment and
  1790. * one word storage behind the end of the real
  1791. * object.
  1792. */
  1793. align = BYTES_PER_WORD;
  1794. size += BYTES_PER_WORD;
  1795. }
  1796. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1797. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1798. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1799. cachep->obj_offset += PAGE_SIZE - size;
  1800. size = PAGE_SIZE;
  1801. }
  1802. #endif
  1803. #endif
  1804. /* Determine if the slab management is 'on' or 'off' slab. */
  1805. if (size >= (PAGE_SIZE >> 3))
  1806. /*
  1807. * Size is large, assume best to place the slab management obj
  1808. * off-slab (should allow better packing of objs).
  1809. */
  1810. flags |= CFLGS_OFF_SLAB;
  1811. size = ALIGN(size, align);
  1812. left_over = calculate_slab_order(cachep, size, align, flags);
  1813. if (!cachep->num) {
  1814. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1815. kmem_cache_free(&cache_cache, cachep);
  1816. cachep = NULL;
  1817. goto oops;
  1818. }
  1819. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1820. + sizeof(struct slab), align);
  1821. /*
  1822. * If the slab has been placed off-slab, and we have enough space then
  1823. * move it on-slab. This is at the expense of any extra colouring.
  1824. */
  1825. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1826. flags &= ~CFLGS_OFF_SLAB;
  1827. left_over -= slab_size;
  1828. }
  1829. if (flags & CFLGS_OFF_SLAB) {
  1830. /* really off slab. No need for manual alignment */
  1831. slab_size =
  1832. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1833. }
  1834. cachep->colour_off = cache_line_size();
  1835. /* Offset must be a multiple of the alignment. */
  1836. if (cachep->colour_off < align)
  1837. cachep->colour_off = align;
  1838. cachep->colour = left_over / cachep->colour_off;
  1839. cachep->slab_size = slab_size;
  1840. cachep->flags = flags;
  1841. cachep->gfpflags = 0;
  1842. if (flags & SLAB_CACHE_DMA)
  1843. cachep->gfpflags |= GFP_DMA;
  1844. cachep->buffer_size = size;
  1845. if (flags & CFLGS_OFF_SLAB)
  1846. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1847. cachep->ctor = ctor;
  1848. cachep->dtor = dtor;
  1849. cachep->name = name;
  1850. setup_cpu_cache(cachep);
  1851. /* cache setup completed, link it into the list */
  1852. list_add(&cachep->next, &cache_chain);
  1853. oops:
  1854. if (!cachep && (flags & SLAB_PANIC))
  1855. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1856. name);
  1857. mutex_unlock(&cache_chain_mutex);
  1858. unlock_cpu_hotplug();
  1859. return cachep;
  1860. }
  1861. EXPORT_SYMBOL(kmem_cache_create);
  1862. #if DEBUG
  1863. static void check_irq_off(void)
  1864. {
  1865. BUG_ON(!irqs_disabled());
  1866. }
  1867. static void check_irq_on(void)
  1868. {
  1869. BUG_ON(irqs_disabled());
  1870. }
  1871. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1872. {
  1873. #ifdef CONFIG_SMP
  1874. check_irq_off();
  1875. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1876. #endif
  1877. }
  1878. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1879. {
  1880. #ifdef CONFIG_SMP
  1881. check_irq_off();
  1882. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1883. #endif
  1884. }
  1885. #else
  1886. #define check_irq_off() do { } while(0)
  1887. #define check_irq_on() do { } while(0)
  1888. #define check_spinlock_acquired(x) do { } while(0)
  1889. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1890. #endif
  1891. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  1892. struct array_cache *ac,
  1893. int force, int node);
  1894. static void do_drain(void *arg)
  1895. {
  1896. struct kmem_cache *cachep = arg;
  1897. struct array_cache *ac;
  1898. int node = numa_node_id();
  1899. check_irq_off();
  1900. ac = cpu_cache_get(cachep);
  1901. spin_lock(&cachep->nodelists[node]->list_lock);
  1902. free_block(cachep, ac->entry, ac->avail, node);
  1903. spin_unlock(&cachep->nodelists[node]->list_lock);
  1904. ac->avail = 0;
  1905. }
  1906. static void drain_cpu_caches(struct kmem_cache *cachep)
  1907. {
  1908. struct kmem_list3 *l3;
  1909. int node;
  1910. on_each_cpu(do_drain, cachep, 1, 1);
  1911. check_irq_on();
  1912. for_each_online_node(node) {
  1913. l3 = cachep->nodelists[node];
  1914. if (l3) {
  1915. drain_array(cachep, l3, l3->shared, 1, node);
  1916. if (l3->alien)
  1917. drain_alien_cache(cachep, l3->alien);
  1918. }
  1919. }
  1920. }
  1921. static int __node_shrink(struct kmem_cache *cachep, int node)
  1922. {
  1923. struct slab *slabp;
  1924. struct kmem_list3 *l3 = cachep->nodelists[node];
  1925. int ret;
  1926. for (;;) {
  1927. struct list_head *p;
  1928. p = l3->slabs_free.prev;
  1929. if (p == &l3->slabs_free)
  1930. break;
  1931. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1932. #if DEBUG
  1933. if (slabp->inuse)
  1934. BUG();
  1935. #endif
  1936. list_del(&slabp->list);
  1937. l3->free_objects -= cachep->num;
  1938. spin_unlock_irq(&l3->list_lock);
  1939. slab_destroy(cachep, slabp);
  1940. spin_lock_irq(&l3->list_lock);
  1941. }
  1942. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1943. return ret;
  1944. }
  1945. static int __cache_shrink(struct kmem_cache *cachep)
  1946. {
  1947. int ret = 0, i = 0;
  1948. struct kmem_list3 *l3;
  1949. drain_cpu_caches(cachep);
  1950. check_irq_on();
  1951. for_each_online_node(i) {
  1952. l3 = cachep->nodelists[i];
  1953. if (l3) {
  1954. spin_lock_irq(&l3->list_lock);
  1955. ret += __node_shrink(cachep, i);
  1956. spin_unlock_irq(&l3->list_lock);
  1957. }
  1958. }
  1959. return (ret ? 1 : 0);
  1960. }
  1961. /**
  1962. * kmem_cache_shrink - Shrink a cache.
  1963. * @cachep: The cache to shrink.
  1964. *
  1965. * Releases as many slabs as possible for a cache.
  1966. * To help debugging, a zero exit status indicates all slabs were released.
  1967. */
  1968. int kmem_cache_shrink(struct kmem_cache *cachep)
  1969. {
  1970. if (!cachep || in_interrupt())
  1971. BUG();
  1972. return __cache_shrink(cachep);
  1973. }
  1974. EXPORT_SYMBOL(kmem_cache_shrink);
  1975. /**
  1976. * kmem_cache_destroy - delete a cache
  1977. * @cachep: the cache to destroy
  1978. *
  1979. * Remove a struct kmem_cache object from the slab cache.
  1980. * Returns 0 on success.
  1981. *
  1982. * It is expected this function will be called by a module when it is
  1983. * unloaded. This will remove the cache completely, and avoid a duplicate
  1984. * cache being allocated each time a module is loaded and unloaded, if the
  1985. * module doesn't have persistent in-kernel storage across loads and unloads.
  1986. *
  1987. * The cache must be empty before calling this function.
  1988. *
  1989. * The caller must guarantee that noone will allocate memory from the cache
  1990. * during the kmem_cache_destroy().
  1991. */
  1992. int kmem_cache_destroy(struct kmem_cache *cachep)
  1993. {
  1994. int i;
  1995. struct kmem_list3 *l3;
  1996. if (!cachep || in_interrupt())
  1997. BUG();
  1998. /* Don't let CPUs to come and go */
  1999. lock_cpu_hotplug();
  2000. /* Find the cache in the chain of caches. */
  2001. mutex_lock(&cache_chain_mutex);
  2002. /*
  2003. * the chain is never empty, cache_cache is never destroyed
  2004. */
  2005. list_del(&cachep->next);
  2006. mutex_unlock(&cache_chain_mutex);
  2007. if (__cache_shrink(cachep)) {
  2008. slab_error(cachep, "Can't free all objects");
  2009. mutex_lock(&cache_chain_mutex);
  2010. list_add(&cachep->next, &cache_chain);
  2011. mutex_unlock(&cache_chain_mutex);
  2012. unlock_cpu_hotplug();
  2013. return 1;
  2014. }
  2015. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2016. synchronize_rcu();
  2017. for_each_online_cpu(i)
  2018. kfree(cachep->array[i]);
  2019. /* NUMA: free the list3 structures */
  2020. for_each_online_node(i) {
  2021. l3 = cachep->nodelists[i];
  2022. if (l3) {
  2023. kfree(l3->shared);
  2024. free_alien_cache(l3->alien);
  2025. kfree(l3);
  2026. }
  2027. }
  2028. kmem_cache_free(&cache_cache, cachep);
  2029. unlock_cpu_hotplug();
  2030. return 0;
  2031. }
  2032. EXPORT_SYMBOL(kmem_cache_destroy);
  2033. /* Get the memory for a slab management obj. */
  2034. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2035. int colour_off, gfp_t local_flags)
  2036. {
  2037. struct slab *slabp;
  2038. if (OFF_SLAB(cachep)) {
  2039. /* Slab management obj is off-slab. */
  2040. slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
  2041. if (!slabp)
  2042. return NULL;
  2043. } else {
  2044. slabp = objp + colour_off;
  2045. colour_off += cachep->slab_size;
  2046. }
  2047. slabp->inuse = 0;
  2048. slabp->colouroff = colour_off;
  2049. slabp->s_mem = objp + colour_off;
  2050. return slabp;
  2051. }
  2052. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2053. {
  2054. return (kmem_bufctl_t *) (slabp + 1);
  2055. }
  2056. static void cache_init_objs(struct kmem_cache *cachep,
  2057. struct slab *slabp, unsigned long ctor_flags)
  2058. {
  2059. int i;
  2060. for (i = 0; i < cachep->num; i++) {
  2061. void *objp = index_to_obj(cachep, slabp, i);
  2062. #if DEBUG
  2063. /* need to poison the objs? */
  2064. if (cachep->flags & SLAB_POISON)
  2065. poison_obj(cachep, objp, POISON_FREE);
  2066. if (cachep->flags & SLAB_STORE_USER)
  2067. *dbg_userword(cachep, objp) = NULL;
  2068. if (cachep->flags & SLAB_RED_ZONE) {
  2069. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2070. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2071. }
  2072. /*
  2073. * Constructors are not allowed to allocate memory from the same
  2074. * cache which they are a constructor for. Otherwise, deadlock.
  2075. * They must also be threaded.
  2076. */
  2077. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2078. cachep->ctor(objp + obj_offset(cachep), cachep,
  2079. ctor_flags);
  2080. if (cachep->flags & SLAB_RED_ZONE) {
  2081. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2082. slab_error(cachep, "constructor overwrote the"
  2083. " end of an object");
  2084. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2085. slab_error(cachep, "constructor overwrote the"
  2086. " start of an object");
  2087. }
  2088. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2089. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2090. kernel_map_pages(virt_to_page(objp),
  2091. cachep->buffer_size / PAGE_SIZE, 0);
  2092. #else
  2093. if (cachep->ctor)
  2094. cachep->ctor(objp, cachep, ctor_flags);
  2095. #endif
  2096. slab_bufctl(slabp)[i] = i + 1;
  2097. }
  2098. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2099. slabp->free = 0;
  2100. }
  2101. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2102. {
  2103. if (flags & SLAB_DMA)
  2104. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2105. else
  2106. BUG_ON(cachep->gfpflags & GFP_DMA);
  2107. }
  2108. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2109. int nodeid)
  2110. {
  2111. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2112. kmem_bufctl_t next;
  2113. slabp->inuse++;
  2114. next = slab_bufctl(slabp)[slabp->free];
  2115. #if DEBUG
  2116. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2117. WARN_ON(slabp->nodeid != nodeid);
  2118. #endif
  2119. slabp->free = next;
  2120. return objp;
  2121. }
  2122. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2123. void *objp, int nodeid)
  2124. {
  2125. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2126. #if DEBUG
  2127. /* Verify that the slab belongs to the intended node */
  2128. WARN_ON(slabp->nodeid != nodeid);
  2129. if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
  2130. printk(KERN_ERR "slab: double free detected in cache "
  2131. "'%s', objp %p\n", cachep->name, objp);
  2132. BUG();
  2133. }
  2134. #endif
  2135. slab_bufctl(slabp)[objnr] = slabp->free;
  2136. slabp->free = objnr;
  2137. slabp->inuse--;
  2138. }
  2139. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2140. void *objp)
  2141. {
  2142. int i;
  2143. struct page *page;
  2144. /* Nasty!!!!!! I hope this is OK. */
  2145. page = virt_to_page(objp);
  2146. i = 1;
  2147. if (likely(!PageCompound(page)))
  2148. i <<= cachep->gfporder;
  2149. do {
  2150. page_set_cache(page, cachep);
  2151. page_set_slab(page, slabp);
  2152. page++;
  2153. } while (--i);
  2154. }
  2155. /*
  2156. * Grow (by 1) the number of slabs within a cache. This is called by
  2157. * kmem_cache_alloc() when there are no active objs left in a cache.
  2158. */
  2159. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2160. {
  2161. struct slab *slabp;
  2162. void *objp;
  2163. size_t offset;
  2164. gfp_t local_flags;
  2165. unsigned long ctor_flags;
  2166. struct kmem_list3 *l3;
  2167. /*
  2168. * Be lazy and only check for valid flags here, keeping it out of the
  2169. * critical path in kmem_cache_alloc().
  2170. */
  2171. if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
  2172. BUG();
  2173. if (flags & SLAB_NO_GROW)
  2174. return 0;
  2175. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2176. local_flags = (flags & SLAB_LEVEL_MASK);
  2177. if (!(local_flags & __GFP_WAIT))
  2178. /*
  2179. * Not allowed to sleep. Need to tell a constructor about
  2180. * this - it might need to know...
  2181. */
  2182. ctor_flags |= SLAB_CTOR_ATOMIC;
  2183. /* Take the l3 list lock to change the colour_next on this node */
  2184. check_irq_off();
  2185. l3 = cachep->nodelists[nodeid];
  2186. spin_lock(&l3->list_lock);
  2187. /* Get colour for the slab, and cal the next value. */
  2188. offset = l3->colour_next;
  2189. l3->colour_next++;
  2190. if (l3->colour_next >= cachep->colour)
  2191. l3->colour_next = 0;
  2192. spin_unlock(&l3->list_lock);
  2193. offset *= cachep->colour_off;
  2194. if (local_flags & __GFP_WAIT)
  2195. local_irq_enable();
  2196. /*
  2197. * The test for missing atomic flag is performed here, rather than
  2198. * the more obvious place, simply to reduce the critical path length
  2199. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2200. * will eventually be caught here (where it matters).
  2201. */
  2202. kmem_flagcheck(cachep, flags);
  2203. /*
  2204. * Get mem for the objs. Attempt to allocate a physical page from
  2205. * 'nodeid'.
  2206. */
  2207. objp = kmem_getpages(cachep, flags, nodeid);
  2208. if (!objp)
  2209. goto failed;
  2210. /* Get slab management. */
  2211. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
  2212. if (!slabp)
  2213. goto opps1;
  2214. slabp->nodeid = nodeid;
  2215. set_slab_attr(cachep, slabp, objp);
  2216. cache_init_objs(cachep, slabp, ctor_flags);
  2217. if (local_flags & __GFP_WAIT)
  2218. local_irq_disable();
  2219. check_irq_off();
  2220. spin_lock(&l3->list_lock);
  2221. /* Make slab active. */
  2222. list_add_tail(&slabp->list, &(l3->slabs_free));
  2223. STATS_INC_GROWN(cachep);
  2224. l3->free_objects += cachep->num;
  2225. spin_unlock(&l3->list_lock);
  2226. return 1;
  2227. opps1:
  2228. kmem_freepages(cachep, objp);
  2229. failed:
  2230. if (local_flags & __GFP_WAIT)
  2231. local_irq_disable();
  2232. return 0;
  2233. }
  2234. #if DEBUG
  2235. /*
  2236. * Perform extra freeing checks:
  2237. * - detect bad pointers.
  2238. * - POISON/RED_ZONE checking
  2239. * - destructor calls, for caches with POISON+dtor
  2240. */
  2241. static void kfree_debugcheck(const void *objp)
  2242. {
  2243. struct page *page;
  2244. if (!virt_addr_valid(objp)) {
  2245. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2246. (unsigned long)objp);
  2247. BUG();
  2248. }
  2249. page = virt_to_page(objp);
  2250. if (!PageSlab(page)) {
  2251. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2252. (unsigned long)objp);
  2253. BUG();
  2254. }
  2255. }
  2256. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2257. void *caller)
  2258. {
  2259. struct page *page;
  2260. unsigned int objnr;
  2261. struct slab *slabp;
  2262. objp -= obj_offset(cachep);
  2263. kfree_debugcheck(objp);
  2264. page = virt_to_page(objp);
  2265. if (page_get_cache(page) != cachep) {
  2266. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2267. "cache %p, got %p\n",
  2268. page_get_cache(page), cachep);
  2269. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2270. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2271. page_get_cache(page)->name);
  2272. WARN_ON(1);
  2273. }
  2274. slabp = page_get_slab(page);
  2275. if (cachep->flags & SLAB_RED_ZONE) {
  2276. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2277. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2278. slab_error(cachep, "double free, or memory outside"
  2279. " object was overwritten");
  2280. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2281. "redzone 2:0x%lx.\n",
  2282. objp, *dbg_redzone1(cachep, objp),
  2283. *dbg_redzone2(cachep, objp));
  2284. }
  2285. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2286. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2287. }
  2288. if (cachep->flags & SLAB_STORE_USER)
  2289. *dbg_userword(cachep, objp) = caller;
  2290. objnr = obj_to_index(cachep, slabp, objp);
  2291. BUG_ON(objnr >= cachep->num);
  2292. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2293. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2294. /*
  2295. * Need to call the slab's constructor so the caller can
  2296. * perform a verify of its state (debugging). Called without
  2297. * the cache-lock held.
  2298. */
  2299. cachep->ctor(objp + obj_offset(cachep),
  2300. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2301. }
  2302. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2303. /* we want to cache poison the object,
  2304. * call the destruction callback
  2305. */
  2306. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2307. }
  2308. if (cachep->flags & SLAB_POISON) {
  2309. #ifdef CONFIG_DEBUG_PAGEALLOC
  2310. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2311. store_stackinfo(cachep, objp, (unsigned long)caller);
  2312. kernel_map_pages(virt_to_page(objp),
  2313. cachep->buffer_size / PAGE_SIZE, 0);
  2314. } else {
  2315. poison_obj(cachep, objp, POISON_FREE);
  2316. }
  2317. #else
  2318. poison_obj(cachep, objp, POISON_FREE);
  2319. #endif
  2320. }
  2321. return objp;
  2322. }
  2323. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2324. {
  2325. kmem_bufctl_t i;
  2326. int entries = 0;
  2327. /* Check slab's freelist to see if this obj is there. */
  2328. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2329. entries++;
  2330. if (entries > cachep->num || i >= cachep->num)
  2331. goto bad;
  2332. }
  2333. if (entries != cachep->num - slabp->inuse) {
  2334. bad:
  2335. printk(KERN_ERR "slab: Internal list corruption detected in "
  2336. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2337. cachep->name, cachep->num, slabp, slabp->inuse);
  2338. for (i = 0;
  2339. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2340. i++) {
  2341. if (i % 16 == 0)
  2342. printk("\n%03x:", i);
  2343. printk(" %02x", ((unsigned char *)slabp)[i]);
  2344. }
  2345. printk("\n");
  2346. BUG();
  2347. }
  2348. }
  2349. #else
  2350. #define kfree_debugcheck(x) do { } while(0)
  2351. #define cache_free_debugcheck(x,objp,z) (objp)
  2352. #define check_slabp(x,y) do { } while(0)
  2353. #endif
  2354. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2355. {
  2356. int batchcount;
  2357. struct kmem_list3 *l3;
  2358. struct array_cache *ac;
  2359. check_irq_off();
  2360. ac = cpu_cache_get(cachep);
  2361. retry:
  2362. batchcount = ac->batchcount;
  2363. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2364. /*
  2365. * If there was little recent activity on this cache, then
  2366. * perform only a partial refill. Otherwise we could generate
  2367. * refill bouncing.
  2368. */
  2369. batchcount = BATCHREFILL_LIMIT;
  2370. }
  2371. l3 = cachep->nodelists[numa_node_id()];
  2372. BUG_ON(ac->avail > 0 || !l3);
  2373. spin_lock(&l3->list_lock);
  2374. if (l3->shared) {
  2375. struct array_cache *shared_array = l3->shared;
  2376. if (shared_array->avail) {
  2377. if (batchcount > shared_array->avail)
  2378. batchcount = shared_array->avail;
  2379. shared_array->avail -= batchcount;
  2380. ac->avail = batchcount;
  2381. memcpy(ac->entry,
  2382. &(shared_array->entry[shared_array->avail]),
  2383. sizeof(void *) * batchcount);
  2384. shared_array->touched = 1;
  2385. goto alloc_done;
  2386. }
  2387. }
  2388. while (batchcount > 0) {
  2389. struct list_head *entry;
  2390. struct slab *slabp;
  2391. /* Get slab alloc is to come from. */
  2392. entry = l3->slabs_partial.next;
  2393. if (entry == &l3->slabs_partial) {
  2394. l3->free_touched = 1;
  2395. entry = l3->slabs_free.next;
  2396. if (entry == &l3->slabs_free)
  2397. goto must_grow;
  2398. }
  2399. slabp = list_entry(entry, struct slab, list);
  2400. check_slabp(cachep, slabp);
  2401. check_spinlock_acquired(cachep);
  2402. while (slabp->inuse < cachep->num && batchcount--) {
  2403. STATS_INC_ALLOCED(cachep);
  2404. STATS_INC_ACTIVE(cachep);
  2405. STATS_SET_HIGH(cachep);
  2406. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2407. numa_node_id());
  2408. }
  2409. check_slabp(cachep, slabp);
  2410. /* move slabp to correct slabp list: */
  2411. list_del(&slabp->list);
  2412. if (slabp->free == BUFCTL_END)
  2413. list_add(&slabp->list, &l3->slabs_full);
  2414. else
  2415. list_add(&slabp->list, &l3->slabs_partial);
  2416. }
  2417. must_grow:
  2418. l3->free_objects -= ac->avail;
  2419. alloc_done:
  2420. spin_unlock(&l3->list_lock);
  2421. if (unlikely(!ac->avail)) {
  2422. int x;
  2423. x = cache_grow(cachep, flags, numa_node_id());
  2424. /* cache_grow can reenable interrupts, then ac could change. */
  2425. ac = cpu_cache_get(cachep);
  2426. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2427. return NULL;
  2428. if (!ac->avail) /* objects refilled by interrupt? */
  2429. goto retry;
  2430. }
  2431. ac->touched = 1;
  2432. return ac->entry[--ac->avail];
  2433. }
  2434. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2435. gfp_t flags)
  2436. {
  2437. might_sleep_if(flags & __GFP_WAIT);
  2438. #if DEBUG
  2439. kmem_flagcheck(cachep, flags);
  2440. #endif
  2441. }
  2442. #if DEBUG
  2443. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2444. gfp_t flags, void *objp, void *caller)
  2445. {
  2446. if (!objp)
  2447. return objp;
  2448. if (cachep->flags & SLAB_POISON) {
  2449. #ifdef CONFIG_DEBUG_PAGEALLOC
  2450. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2451. kernel_map_pages(virt_to_page(objp),
  2452. cachep->buffer_size / PAGE_SIZE, 1);
  2453. else
  2454. check_poison_obj(cachep, objp);
  2455. #else
  2456. check_poison_obj(cachep, objp);
  2457. #endif
  2458. poison_obj(cachep, objp, POISON_INUSE);
  2459. }
  2460. if (cachep->flags & SLAB_STORE_USER)
  2461. *dbg_userword(cachep, objp) = caller;
  2462. if (cachep->flags & SLAB_RED_ZONE) {
  2463. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2464. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2465. slab_error(cachep, "double free, or memory outside"
  2466. " object was overwritten");
  2467. printk(KERN_ERR
  2468. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2469. objp, *dbg_redzone1(cachep, objp),
  2470. *dbg_redzone2(cachep, objp));
  2471. }
  2472. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2473. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2474. }
  2475. objp += obj_offset(cachep);
  2476. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2477. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2478. if (!(flags & __GFP_WAIT))
  2479. ctor_flags |= SLAB_CTOR_ATOMIC;
  2480. cachep->ctor(objp, cachep, ctor_flags);
  2481. }
  2482. return objp;
  2483. }
  2484. #else
  2485. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2486. #endif
  2487. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2488. {
  2489. void *objp;
  2490. struct array_cache *ac;
  2491. #ifdef CONFIG_NUMA
  2492. if (unlikely(current->mempolicy && !in_interrupt())) {
  2493. int nid = slab_node(current->mempolicy);
  2494. if (nid != numa_node_id())
  2495. return __cache_alloc_node(cachep, flags, nid);
  2496. }
  2497. if (unlikely(cpuset_do_slab_mem_spread() &&
  2498. (cachep->flags & SLAB_MEM_SPREAD) &&
  2499. !in_interrupt())) {
  2500. int nid = cpuset_mem_spread_node();
  2501. if (nid != numa_node_id())
  2502. return __cache_alloc_node(cachep, flags, nid);
  2503. }
  2504. #endif
  2505. check_irq_off();
  2506. ac = cpu_cache_get(cachep);
  2507. if (likely(ac->avail)) {
  2508. STATS_INC_ALLOCHIT(cachep);
  2509. ac->touched = 1;
  2510. objp = ac->entry[--ac->avail];
  2511. } else {
  2512. STATS_INC_ALLOCMISS(cachep);
  2513. objp = cache_alloc_refill(cachep, flags);
  2514. }
  2515. return objp;
  2516. }
  2517. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2518. gfp_t flags, void *caller)
  2519. {
  2520. unsigned long save_flags;
  2521. void *objp;
  2522. cache_alloc_debugcheck_before(cachep, flags);
  2523. local_irq_save(save_flags);
  2524. objp = ____cache_alloc(cachep, flags);
  2525. local_irq_restore(save_flags);
  2526. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2527. caller);
  2528. prefetchw(objp);
  2529. return objp;
  2530. }
  2531. #ifdef CONFIG_NUMA
  2532. /*
  2533. * A interface to enable slab creation on nodeid
  2534. */
  2535. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2536. int nodeid)
  2537. {
  2538. struct list_head *entry;
  2539. struct slab *slabp;
  2540. struct kmem_list3 *l3;
  2541. void *obj;
  2542. int x;
  2543. l3 = cachep->nodelists[nodeid];
  2544. BUG_ON(!l3);
  2545. retry:
  2546. check_irq_off();
  2547. spin_lock(&l3->list_lock);
  2548. entry = l3->slabs_partial.next;
  2549. if (entry == &l3->slabs_partial) {
  2550. l3->free_touched = 1;
  2551. entry = l3->slabs_free.next;
  2552. if (entry == &l3->slabs_free)
  2553. goto must_grow;
  2554. }
  2555. slabp = list_entry(entry, struct slab, list);
  2556. check_spinlock_acquired_node(cachep, nodeid);
  2557. check_slabp(cachep, slabp);
  2558. STATS_INC_NODEALLOCS(cachep);
  2559. STATS_INC_ACTIVE(cachep);
  2560. STATS_SET_HIGH(cachep);
  2561. BUG_ON(slabp->inuse == cachep->num);
  2562. obj = slab_get_obj(cachep, slabp, nodeid);
  2563. check_slabp(cachep, slabp);
  2564. l3->free_objects--;
  2565. /* move slabp to correct slabp list: */
  2566. list_del(&slabp->list);
  2567. if (slabp->free == BUFCTL_END)
  2568. list_add(&slabp->list, &l3->slabs_full);
  2569. else
  2570. list_add(&slabp->list, &l3->slabs_partial);
  2571. spin_unlock(&l3->list_lock);
  2572. goto done;
  2573. must_grow:
  2574. spin_unlock(&l3->list_lock);
  2575. x = cache_grow(cachep, flags, nodeid);
  2576. if (!x)
  2577. return NULL;
  2578. goto retry;
  2579. done:
  2580. return obj;
  2581. }
  2582. #endif
  2583. /*
  2584. * Caller needs to acquire correct kmem_list's list_lock
  2585. */
  2586. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2587. int node)
  2588. {
  2589. int i;
  2590. struct kmem_list3 *l3;
  2591. for (i = 0; i < nr_objects; i++) {
  2592. void *objp = objpp[i];
  2593. struct slab *slabp;
  2594. slabp = virt_to_slab(objp);
  2595. l3 = cachep->nodelists[node];
  2596. list_del(&slabp->list);
  2597. check_spinlock_acquired_node(cachep, node);
  2598. check_slabp(cachep, slabp);
  2599. slab_put_obj(cachep, slabp, objp, node);
  2600. STATS_DEC_ACTIVE(cachep);
  2601. l3->free_objects++;
  2602. check_slabp(cachep, slabp);
  2603. /* fixup slab chains */
  2604. if (slabp->inuse == 0) {
  2605. if (l3->free_objects > l3->free_limit) {
  2606. l3->free_objects -= cachep->num;
  2607. slab_destroy(cachep, slabp);
  2608. } else {
  2609. list_add(&slabp->list, &l3->slabs_free);
  2610. }
  2611. } else {
  2612. /* Unconditionally move a slab to the end of the
  2613. * partial list on free - maximum time for the
  2614. * other objects to be freed, too.
  2615. */
  2616. list_add_tail(&slabp->list, &l3->slabs_partial);
  2617. }
  2618. }
  2619. }
  2620. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2621. {
  2622. int batchcount;
  2623. struct kmem_list3 *l3;
  2624. int node = numa_node_id();
  2625. batchcount = ac->batchcount;
  2626. #if DEBUG
  2627. BUG_ON(!batchcount || batchcount > ac->avail);
  2628. #endif
  2629. check_irq_off();
  2630. l3 = cachep->nodelists[node];
  2631. spin_lock(&l3->list_lock);
  2632. if (l3->shared) {
  2633. struct array_cache *shared_array = l3->shared;
  2634. int max = shared_array->limit - shared_array->avail;
  2635. if (max) {
  2636. if (batchcount > max)
  2637. batchcount = max;
  2638. memcpy(&(shared_array->entry[shared_array->avail]),
  2639. ac->entry, sizeof(void *) * batchcount);
  2640. shared_array->avail += batchcount;
  2641. goto free_done;
  2642. }
  2643. }
  2644. free_block(cachep, ac->entry, batchcount, node);
  2645. free_done:
  2646. #if STATS
  2647. {
  2648. int i = 0;
  2649. struct list_head *p;
  2650. p = l3->slabs_free.next;
  2651. while (p != &(l3->slabs_free)) {
  2652. struct slab *slabp;
  2653. slabp = list_entry(p, struct slab, list);
  2654. BUG_ON(slabp->inuse);
  2655. i++;
  2656. p = p->next;
  2657. }
  2658. STATS_SET_FREEABLE(cachep, i);
  2659. }
  2660. #endif
  2661. spin_unlock(&l3->list_lock);
  2662. ac->avail -= batchcount;
  2663. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2664. }
  2665. /*
  2666. * Release an obj back to its cache. If the obj has a constructed state, it must
  2667. * be in this state _before_ it is released. Called with disabled ints.
  2668. */
  2669. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2670. {
  2671. struct array_cache *ac = cpu_cache_get(cachep);
  2672. check_irq_off();
  2673. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2674. /* Make sure we are not freeing a object from another
  2675. * node to the array cache on this cpu.
  2676. */
  2677. #ifdef CONFIG_NUMA
  2678. {
  2679. struct slab *slabp;
  2680. slabp = virt_to_slab(objp);
  2681. if (unlikely(slabp->nodeid != numa_node_id())) {
  2682. struct array_cache *alien = NULL;
  2683. int nodeid = slabp->nodeid;
  2684. struct kmem_list3 *l3;
  2685. l3 = cachep->nodelists[numa_node_id()];
  2686. STATS_INC_NODEFREES(cachep);
  2687. if (l3->alien && l3->alien[nodeid]) {
  2688. alien = l3->alien[nodeid];
  2689. spin_lock(&alien->lock);
  2690. if (unlikely(alien->avail == alien->limit))
  2691. __drain_alien_cache(cachep,
  2692. alien, nodeid);
  2693. alien->entry[alien->avail++] = objp;
  2694. spin_unlock(&alien->lock);
  2695. } else {
  2696. spin_lock(&(cachep->nodelists[nodeid])->
  2697. list_lock);
  2698. free_block(cachep, &objp, 1, nodeid);
  2699. spin_unlock(&(cachep->nodelists[nodeid])->
  2700. list_lock);
  2701. }
  2702. return;
  2703. }
  2704. }
  2705. #endif
  2706. if (likely(ac->avail < ac->limit)) {
  2707. STATS_INC_FREEHIT(cachep);
  2708. ac->entry[ac->avail++] = objp;
  2709. return;
  2710. } else {
  2711. STATS_INC_FREEMISS(cachep);
  2712. cache_flusharray(cachep, ac);
  2713. ac->entry[ac->avail++] = objp;
  2714. }
  2715. }
  2716. /**
  2717. * kmem_cache_alloc - Allocate an object
  2718. * @cachep: The cache to allocate from.
  2719. * @flags: See kmalloc().
  2720. *
  2721. * Allocate an object from this cache. The flags are only relevant
  2722. * if the cache has no available objects.
  2723. */
  2724. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2725. {
  2726. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2727. }
  2728. EXPORT_SYMBOL(kmem_cache_alloc);
  2729. /**
  2730. * kmem_ptr_validate - check if an untrusted pointer might
  2731. * be a slab entry.
  2732. * @cachep: the cache we're checking against
  2733. * @ptr: pointer to validate
  2734. *
  2735. * This verifies that the untrusted pointer looks sane:
  2736. * it is _not_ a guarantee that the pointer is actually
  2737. * part of the slab cache in question, but it at least
  2738. * validates that the pointer can be dereferenced and
  2739. * looks half-way sane.
  2740. *
  2741. * Currently only used for dentry validation.
  2742. */
  2743. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2744. {
  2745. unsigned long addr = (unsigned long)ptr;
  2746. unsigned long min_addr = PAGE_OFFSET;
  2747. unsigned long align_mask = BYTES_PER_WORD - 1;
  2748. unsigned long size = cachep->buffer_size;
  2749. struct page *page;
  2750. if (unlikely(addr < min_addr))
  2751. goto out;
  2752. if (unlikely(addr > (unsigned long)high_memory - size))
  2753. goto out;
  2754. if (unlikely(addr & align_mask))
  2755. goto out;
  2756. if (unlikely(!kern_addr_valid(addr)))
  2757. goto out;
  2758. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2759. goto out;
  2760. page = virt_to_page(ptr);
  2761. if (unlikely(!PageSlab(page)))
  2762. goto out;
  2763. if (unlikely(page_get_cache(page) != cachep))
  2764. goto out;
  2765. return 1;
  2766. out:
  2767. return 0;
  2768. }
  2769. #ifdef CONFIG_NUMA
  2770. /**
  2771. * kmem_cache_alloc_node - Allocate an object on the specified node
  2772. * @cachep: The cache to allocate from.
  2773. * @flags: See kmalloc().
  2774. * @nodeid: node number of the target node.
  2775. *
  2776. * Identical to kmem_cache_alloc, except that this function is slow
  2777. * and can sleep. And it will allocate memory on the given node, which
  2778. * can improve the performance for cpu bound structures.
  2779. * New and improved: it will now make sure that the object gets
  2780. * put on the correct node list so that there is no false sharing.
  2781. */
  2782. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2783. {
  2784. unsigned long save_flags;
  2785. void *ptr;
  2786. cache_alloc_debugcheck_before(cachep, flags);
  2787. local_irq_save(save_flags);
  2788. if (nodeid == -1 || nodeid == numa_node_id() ||
  2789. !cachep->nodelists[nodeid])
  2790. ptr = ____cache_alloc(cachep, flags);
  2791. else
  2792. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2793. local_irq_restore(save_flags);
  2794. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2795. __builtin_return_address(0));
  2796. return ptr;
  2797. }
  2798. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2799. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2800. {
  2801. struct kmem_cache *cachep;
  2802. cachep = kmem_find_general_cachep(size, flags);
  2803. if (unlikely(cachep == NULL))
  2804. return NULL;
  2805. return kmem_cache_alloc_node(cachep, flags, node);
  2806. }
  2807. EXPORT_SYMBOL(kmalloc_node);
  2808. #endif
  2809. /**
  2810. * kmalloc - allocate memory
  2811. * @size: how many bytes of memory are required.
  2812. * @flags: the type of memory to allocate.
  2813. * @caller: function caller for debug tracking of the caller
  2814. *
  2815. * kmalloc is the normal method of allocating memory
  2816. * in the kernel.
  2817. *
  2818. * The @flags argument may be one of:
  2819. *
  2820. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2821. *
  2822. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2823. *
  2824. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2825. *
  2826. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2827. * must be suitable for DMA. This can mean different things on different
  2828. * platforms. For example, on i386, it means that the memory must come
  2829. * from the first 16MB.
  2830. */
  2831. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2832. void *caller)
  2833. {
  2834. struct kmem_cache *cachep;
  2835. /* If you want to save a few bytes .text space: replace
  2836. * __ with kmem_.
  2837. * Then kmalloc uses the uninlined functions instead of the inline
  2838. * functions.
  2839. */
  2840. cachep = __find_general_cachep(size, flags);
  2841. if (unlikely(cachep == NULL))
  2842. return NULL;
  2843. return __cache_alloc(cachep, flags, caller);
  2844. }
  2845. #ifndef CONFIG_DEBUG_SLAB
  2846. void *__kmalloc(size_t size, gfp_t flags)
  2847. {
  2848. return __do_kmalloc(size, flags, NULL);
  2849. }
  2850. EXPORT_SYMBOL(__kmalloc);
  2851. #else
  2852. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2853. {
  2854. return __do_kmalloc(size, flags, caller);
  2855. }
  2856. EXPORT_SYMBOL(__kmalloc_track_caller);
  2857. #endif
  2858. #ifdef CONFIG_SMP
  2859. /**
  2860. * __alloc_percpu - allocate one copy of the object for every present
  2861. * cpu in the system, zeroing them.
  2862. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2863. *
  2864. * @size: how many bytes of memory are required.
  2865. */
  2866. void *__alloc_percpu(size_t size)
  2867. {
  2868. int i;
  2869. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2870. if (!pdata)
  2871. return NULL;
  2872. /*
  2873. * Cannot use for_each_online_cpu since a cpu may come online
  2874. * and we have no way of figuring out how to fix the array
  2875. * that we have allocated then....
  2876. */
  2877. for_each_cpu(i) {
  2878. int node = cpu_to_node(i);
  2879. if (node_online(node))
  2880. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2881. else
  2882. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2883. if (!pdata->ptrs[i])
  2884. goto unwind_oom;
  2885. memset(pdata->ptrs[i], 0, size);
  2886. }
  2887. /* Catch derefs w/o wrappers */
  2888. return (void *)(~(unsigned long)pdata);
  2889. unwind_oom:
  2890. while (--i >= 0) {
  2891. if (!cpu_possible(i))
  2892. continue;
  2893. kfree(pdata->ptrs[i]);
  2894. }
  2895. kfree(pdata);
  2896. return NULL;
  2897. }
  2898. EXPORT_SYMBOL(__alloc_percpu);
  2899. #endif
  2900. /**
  2901. * kmem_cache_free - Deallocate an object
  2902. * @cachep: The cache the allocation was from.
  2903. * @objp: The previously allocated object.
  2904. *
  2905. * Free an object which was previously allocated from this
  2906. * cache.
  2907. */
  2908. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2909. {
  2910. unsigned long flags;
  2911. local_irq_save(flags);
  2912. __cache_free(cachep, objp);
  2913. local_irq_restore(flags);
  2914. }
  2915. EXPORT_SYMBOL(kmem_cache_free);
  2916. /**
  2917. * kfree - free previously allocated memory
  2918. * @objp: pointer returned by kmalloc.
  2919. *
  2920. * If @objp is NULL, no operation is performed.
  2921. *
  2922. * Don't free memory not originally allocated by kmalloc()
  2923. * or you will run into trouble.
  2924. */
  2925. void kfree(const void *objp)
  2926. {
  2927. struct kmem_cache *c;
  2928. unsigned long flags;
  2929. if (unlikely(!objp))
  2930. return;
  2931. local_irq_save(flags);
  2932. kfree_debugcheck(objp);
  2933. c = virt_to_cache(objp);
  2934. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2935. __cache_free(c, (void *)objp);
  2936. local_irq_restore(flags);
  2937. }
  2938. EXPORT_SYMBOL(kfree);
  2939. #ifdef CONFIG_SMP
  2940. /**
  2941. * free_percpu - free previously allocated percpu memory
  2942. * @objp: pointer returned by alloc_percpu.
  2943. *
  2944. * Don't free memory not originally allocated by alloc_percpu()
  2945. * The complemented objp is to check for that.
  2946. */
  2947. void free_percpu(const void *objp)
  2948. {
  2949. int i;
  2950. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  2951. /*
  2952. * We allocate for all cpus so we cannot use for online cpu here.
  2953. */
  2954. for_each_cpu(i)
  2955. kfree(p->ptrs[i]);
  2956. kfree(p);
  2957. }
  2958. EXPORT_SYMBOL(free_percpu);
  2959. #endif
  2960. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  2961. {
  2962. return obj_size(cachep);
  2963. }
  2964. EXPORT_SYMBOL(kmem_cache_size);
  2965. const char *kmem_cache_name(struct kmem_cache *cachep)
  2966. {
  2967. return cachep->name;
  2968. }
  2969. EXPORT_SYMBOL_GPL(kmem_cache_name);
  2970. /*
  2971. * This initializes kmem_list3 for all nodes.
  2972. */
  2973. static int alloc_kmemlist(struct kmem_cache *cachep)
  2974. {
  2975. int node;
  2976. struct kmem_list3 *l3;
  2977. int err = 0;
  2978. for_each_online_node(node) {
  2979. struct array_cache *nc = NULL, *new;
  2980. struct array_cache **new_alien = NULL;
  2981. #ifdef CONFIG_NUMA
  2982. new_alien = alloc_alien_cache(node, cachep->limit);
  2983. if (!new_alien)
  2984. goto fail;
  2985. #endif
  2986. new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
  2987. 0xbaadf00d);
  2988. if (!new)
  2989. goto fail;
  2990. l3 = cachep->nodelists[node];
  2991. if (l3) {
  2992. spin_lock_irq(&l3->list_lock);
  2993. nc = cachep->nodelists[node]->shared;
  2994. if (nc)
  2995. free_block(cachep, nc->entry, nc->avail, node);
  2996. l3->shared = new;
  2997. if (!cachep->nodelists[node]->alien) {
  2998. l3->alien = new_alien;
  2999. new_alien = NULL;
  3000. }
  3001. l3->free_limit = (1 + nr_cpus_node(node)) *
  3002. cachep->batchcount + cachep->num;
  3003. spin_unlock_irq(&l3->list_lock);
  3004. kfree(nc);
  3005. free_alien_cache(new_alien);
  3006. continue;
  3007. }
  3008. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3009. if (!l3)
  3010. goto fail;
  3011. kmem_list3_init(l3);
  3012. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3013. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3014. l3->shared = new;
  3015. l3->alien = new_alien;
  3016. l3->free_limit = (1 + nr_cpus_node(node)) *
  3017. cachep->batchcount + cachep->num;
  3018. cachep->nodelists[node] = l3;
  3019. }
  3020. return err;
  3021. fail:
  3022. err = -ENOMEM;
  3023. return err;
  3024. }
  3025. struct ccupdate_struct {
  3026. struct kmem_cache *cachep;
  3027. struct array_cache *new[NR_CPUS];
  3028. };
  3029. static void do_ccupdate_local(void *info)
  3030. {
  3031. struct ccupdate_struct *new = info;
  3032. struct array_cache *old;
  3033. check_irq_off();
  3034. old = cpu_cache_get(new->cachep);
  3035. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3036. new->new[smp_processor_id()] = old;
  3037. }
  3038. /* Always called with the cache_chain_mutex held */
  3039. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3040. int batchcount, int shared)
  3041. {
  3042. struct ccupdate_struct new;
  3043. int i, err;
  3044. memset(&new.new, 0, sizeof(new.new));
  3045. for_each_online_cpu(i) {
  3046. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3047. batchcount);
  3048. if (!new.new[i]) {
  3049. for (i--; i >= 0; i--)
  3050. kfree(new.new[i]);
  3051. return -ENOMEM;
  3052. }
  3053. }
  3054. new.cachep = cachep;
  3055. on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
  3056. check_irq_on();
  3057. cachep->batchcount = batchcount;
  3058. cachep->limit = limit;
  3059. cachep->shared = shared;
  3060. for_each_online_cpu(i) {
  3061. struct array_cache *ccold = new.new[i];
  3062. if (!ccold)
  3063. continue;
  3064. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3065. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3066. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3067. kfree(ccold);
  3068. }
  3069. err = alloc_kmemlist(cachep);
  3070. if (err) {
  3071. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3072. cachep->name, -err);
  3073. BUG();
  3074. }
  3075. return 0;
  3076. }
  3077. /* Called with cache_chain_mutex held always */
  3078. static void enable_cpucache(struct kmem_cache *cachep)
  3079. {
  3080. int err;
  3081. int limit, shared;
  3082. /*
  3083. * The head array serves three purposes:
  3084. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3085. * - reduce the number of spinlock operations.
  3086. * - reduce the number of linked list operations on the slab and
  3087. * bufctl chains: array operations are cheaper.
  3088. * The numbers are guessed, we should auto-tune as described by
  3089. * Bonwick.
  3090. */
  3091. if (cachep->buffer_size > 131072)
  3092. limit = 1;
  3093. else if (cachep->buffer_size > PAGE_SIZE)
  3094. limit = 8;
  3095. else if (cachep->buffer_size > 1024)
  3096. limit = 24;
  3097. else if (cachep->buffer_size > 256)
  3098. limit = 54;
  3099. else
  3100. limit = 120;
  3101. /*
  3102. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3103. * allocation behaviour: Most allocs on one cpu, most free operations
  3104. * on another cpu. For these cases, an efficient object passing between
  3105. * cpus is necessary. This is provided by a shared array. The array
  3106. * replaces Bonwick's magazine layer.
  3107. * On uniprocessor, it's functionally equivalent (but less efficient)
  3108. * to a larger limit. Thus disabled by default.
  3109. */
  3110. shared = 0;
  3111. #ifdef CONFIG_SMP
  3112. if (cachep->buffer_size <= PAGE_SIZE)
  3113. shared = 8;
  3114. #endif
  3115. #if DEBUG
  3116. /*
  3117. * With debugging enabled, large batchcount lead to excessively long
  3118. * periods with disabled local interrupts. Limit the batchcount
  3119. */
  3120. if (limit > 32)
  3121. limit = 32;
  3122. #endif
  3123. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3124. if (err)
  3125. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3126. cachep->name, -err);
  3127. }
  3128. /*
  3129. * Drain an array if it contains any elements taking the l3 lock only if
  3130. * necessary. Note that the l3 listlock also protects the array_cache
  3131. * if drain_array() is used on the shared array.
  3132. */
  3133. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3134. struct array_cache *ac, int force, int node)
  3135. {
  3136. int tofree;
  3137. if (!ac || !ac->avail)
  3138. return;
  3139. if (ac->touched && !force) {
  3140. ac->touched = 0;
  3141. } else {
  3142. spin_lock_irq(&l3->list_lock);
  3143. if (ac->avail) {
  3144. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3145. if (tofree > ac->avail)
  3146. tofree = (ac->avail + 1) / 2;
  3147. free_block(cachep, ac->entry, tofree, node);
  3148. ac->avail -= tofree;
  3149. memmove(ac->entry, &(ac->entry[tofree]),
  3150. sizeof(void *) * ac->avail);
  3151. }
  3152. spin_unlock_irq(&l3->list_lock);
  3153. }
  3154. }
  3155. /**
  3156. * cache_reap - Reclaim memory from caches.
  3157. * @unused: unused parameter
  3158. *
  3159. * Called from workqueue/eventd every few seconds.
  3160. * Purpose:
  3161. * - clear the per-cpu caches for this CPU.
  3162. * - return freeable pages to the main free memory pool.
  3163. *
  3164. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3165. * again on the next iteration.
  3166. */
  3167. static void cache_reap(void *unused)
  3168. {
  3169. struct list_head *walk;
  3170. struct kmem_list3 *l3;
  3171. int node = numa_node_id();
  3172. if (!mutex_trylock(&cache_chain_mutex)) {
  3173. /* Give up. Setup the next iteration. */
  3174. schedule_delayed_work(&__get_cpu_var(reap_work),
  3175. REAPTIMEOUT_CPUC);
  3176. return;
  3177. }
  3178. list_for_each(walk, &cache_chain) {
  3179. struct kmem_cache *searchp;
  3180. struct list_head *p;
  3181. int tofree;
  3182. struct slab *slabp;
  3183. searchp = list_entry(walk, struct kmem_cache, next);
  3184. check_irq_on();
  3185. /*
  3186. * We only take the l3 lock if absolutely necessary and we
  3187. * have established with reasonable certainty that
  3188. * we can do some work if the lock was obtained.
  3189. */
  3190. l3 = searchp->nodelists[node];
  3191. reap_alien(searchp, l3);
  3192. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3193. /*
  3194. * These are racy checks but it does not matter
  3195. * if we skip one check or scan twice.
  3196. */
  3197. if (time_after(l3->next_reap, jiffies))
  3198. goto next;
  3199. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3200. drain_array(searchp, l3, l3->shared, 0, node);
  3201. if (l3->free_touched) {
  3202. l3->free_touched = 0;
  3203. goto next;
  3204. }
  3205. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3206. (5 * searchp->num);
  3207. do {
  3208. /*
  3209. * Do not lock if there are no free blocks.
  3210. */
  3211. if (list_empty(&l3->slabs_free))
  3212. break;
  3213. spin_lock_irq(&l3->list_lock);
  3214. p = l3->slabs_free.next;
  3215. if (p == &(l3->slabs_free)) {
  3216. spin_unlock_irq(&l3->list_lock);
  3217. break;
  3218. }
  3219. slabp = list_entry(p, struct slab, list);
  3220. BUG_ON(slabp->inuse);
  3221. list_del(&slabp->list);
  3222. STATS_INC_REAPED(searchp);
  3223. /*
  3224. * Safe to drop the lock. The slab is no longer linked
  3225. * to the cache. searchp cannot disappear, we hold
  3226. * cache_chain_lock
  3227. */
  3228. l3->free_objects -= searchp->num;
  3229. spin_unlock_irq(&l3->list_lock);
  3230. slab_destroy(searchp, slabp);
  3231. } while (--tofree > 0);
  3232. next:
  3233. cond_resched();
  3234. }
  3235. check_irq_on();
  3236. mutex_unlock(&cache_chain_mutex);
  3237. next_reap_node();
  3238. /* Set up the next iteration */
  3239. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3240. }
  3241. #ifdef CONFIG_PROC_FS
  3242. static void print_slabinfo_header(struct seq_file *m)
  3243. {
  3244. /*
  3245. * Output format version, so at least we can change it
  3246. * without _too_ many complaints.
  3247. */
  3248. #if STATS
  3249. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3250. #else
  3251. seq_puts(m, "slabinfo - version: 2.1\n");
  3252. #endif
  3253. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3254. "<objperslab> <pagesperslab>");
  3255. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3256. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3257. #if STATS
  3258. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3259. "<error> <maxfreeable> <nodeallocs> <remotefrees>");
  3260. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3261. #endif
  3262. seq_putc(m, '\n');
  3263. }
  3264. static void *s_start(struct seq_file *m, loff_t *pos)
  3265. {
  3266. loff_t n = *pos;
  3267. struct list_head *p;
  3268. mutex_lock(&cache_chain_mutex);
  3269. if (!n)
  3270. print_slabinfo_header(m);
  3271. p = cache_chain.next;
  3272. while (n--) {
  3273. p = p->next;
  3274. if (p == &cache_chain)
  3275. return NULL;
  3276. }
  3277. return list_entry(p, struct kmem_cache, next);
  3278. }
  3279. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3280. {
  3281. struct kmem_cache *cachep = p;
  3282. ++*pos;
  3283. return cachep->next.next == &cache_chain ?
  3284. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3285. }
  3286. static void s_stop(struct seq_file *m, void *p)
  3287. {
  3288. mutex_unlock(&cache_chain_mutex);
  3289. }
  3290. static int s_show(struct seq_file *m, void *p)
  3291. {
  3292. struct kmem_cache *cachep = p;
  3293. struct list_head *q;
  3294. struct slab *slabp;
  3295. unsigned long active_objs;
  3296. unsigned long num_objs;
  3297. unsigned long active_slabs = 0;
  3298. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3299. const char *name;
  3300. char *error = NULL;
  3301. int node;
  3302. struct kmem_list3 *l3;
  3303. active_objs = 0;
  3304. num_slabs = 0;
  3305. for_each_online_node(node) {
  3306. l3 = cachep->nodelists[node];
  3307. if (!l3)
  3308. continue;
  3309. check_irq_on();
  3310. spin_lock_irq(&l3->list_lock);
  3311. list_for_each(q, &l3->slabs_full) {
  3312. slabp = list_entry(q, struct slab, list);
  3313. if (slabp->inuse != cachep->num && !error)
  3314. error = "slabs_full accounting error";
  3315. active_objs += cachep->num;
  3316. active_slabs++;
  3317. }
  3318. list_for_each(q, &l3->slabs_partial) {
  3319. slabp = list_entry(q, struct slab, list);
  3320. if (slabp->inuse == cachep->num && !error)
  3321. error = "slabs_partial inuse accounting error";
  3322. if (!slabp->inuse && !error)
  3323. error = "slabs_partial/inuse accounting error";
  3324. active_objs += slabp->inuse;
  3325. active_slabs++;
  3326. }
  3327. list_for_each(q, &l3->slabs_free) {
  3328. slabp = list_entry(q, struct slab, list);
  3329. if (slabp->inuse && !error)
  3330. error = "slabs_free/inuse accounting error";
  3331. num_slabs++;
  3332. }
  3333. free_objects += l3->free_objects;
  3334. if (l3->shared)
  3335. shared_avail += l3->shared->avail;
  3336. spin_unlock_irq(&l3->list_lock);
  3337. }
  3338. num_slabs += active_slabs;
  3339. num_objs = num_slabs * cachep->num;
  3340. if (num_objs - active_objs != free_objects && !error)
  3341. error = "free_objects accounting error";
  3342. name = cachep->name;
  3343. if (error)
  3344. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3345. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3346. name, active_objs, num_objs, cachep->buffer_size,
  3347. cachep->num, (1 << cachep->gfporder));
  3348. seq_printf(m, " : tunables %4u %4u %4u",
  3349. cachep->limit, cachep->batchcount, cachep->shared);
  3350. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3351. active_slabs, num_slabs, shared_avail);
  3352. #if STATS
  3353. { /* list3 stats */
  3354. unsigned long high = cachep->high_mark;
  3355. unsigned long allocs = cachep->num_allocations;
  3356. unsigned long grown = cachep->grown;
  3357. unsigned long reaped = cachep->reaped;
  3358. unsigned long errors = cachep->errors;
  3359. unsigned long max_freeable = cachep->max_freeable;
  3360. unsigned long node_allocs = cachep->node_allocs;
  3361. unsigned long node_frees = cachep->node_frees;
  3362. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3363. %4lu %4lu %4lu %4lu", allocs, high, grown,
  3364. reaped, errors, max_freeable, node_allocs,
  3365. node_frees);
  3366. }
  3367. /* cpu stats */
  3368. {
  3369. unsigned long allochit = atomic_read(&cachep->allochit);
  3370. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3371. unsigned long freehit = atomic_read(&cachep->freehit);
  3372. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3373. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3374. allochit, allocmiss, freehit, freemiss);
  3375. }
  3376. #endif
  3377. seq_putc(m, '\n');
  3378. return 0;
  3379. }
  3380. /*
  3381. * slabinfo_op - iterator that generates /proc/slabinfo
  3382. *
  3383. * Output layout:
  3384. * cache-name
  3385. * num-active-objs
  3386. * total-objs
  3387. * object size
  3388. * num-active-slabs
  3389. * total-slabs
  3390. * num-pages-per-slab
  3391. * + further values on SMP and with statistics enabled
  3392. */
  3393. struct seq_operations slabinfo_op = {
  3394. .start = s_start,
  3395. .next = s_next,
  3396. .stop = s_stop,
  3397. .show = s_show,
  3398. };
  3399. #define MAX_SLABINFO_WRITE 128
  3400. /**
  3401. * slabinfo_write - Tuning for the slab allocator
  3402. * @file: unused
  3403. * @buffer: user buffer
  3404. * @count: data length
  3405. * @ppos: unused
  3406. */
  3407. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3408. size_t count, loff_t *ppos)
  3409. {
  3410. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3411. int limit, batchcount, shared, res;
  3412. struct list_head *p;
  3413. if (count > MAX_SLABINFO_WRITE)
  3414. return -EINVAL;
  3415. if (copy_from_user(&kbuf, buffer, count))
  3416. return -EFAULT;
  3417. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3418. tmp = strchr(kbuf, ' ');
  3419. if (!tmp)
  3420. return -EINVAL;
  3421. *tmp = '\0';
  3422. tmp++;
  3423. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3424. return -EINVAL;
  3425. /* Find the cache in the chain of caches. */
  3426. mutex_lock(&cache_chain_mutex);
  3427. res = -EINVAL;
  3428. list_for_each(p, &cache_chain) {
  3429. struct kmem_cache *cachep;
  3430. cachep = list_entry(p, struct kmem_cache, next);
  3431. if (!strcmp(cachep->name, kbuf)) {
  3432. if (limit < 1 || batchcount < 1 ||
  3433. batchcount > limit || shared < 0) {
  3434. res = 0;
  3435. } else {
  3436. res = do_tune_cpucache(cachep, limit,
  3437. batchcount, shared);
  3438. }
  3439. break;
  3440. }
  3441. }
  3442. mutex_unlock(&cache_chain_mutex);
  3443. if (res >= 0)
  3444. res = count;
  3445. return res;
  3446. }
  3447. #endif
  3448. /**
  3449. * ksize - get the actual amount of memory allocated for a given object
  3450. * @objp: Pointer to the object
  3451. *
  3452. * kmalloc may internally round up allocations and return more memory
  3453. * than requested. ksize() can be used to determine the actual amount of
  3454. * memory allocated. The caller may use this additional memory, even though
  3455. * a smaller amount of memory was initially specified with the kmalloc call.
  3456. * The caller must guarantee that objp points to a valid object previously
  3457. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3458. * must not be freed during the duration of the call.
  3459. */
  3460. unsigned int ksize(const void *objp)
  3461. {
  3462. if (unlikely(objp == NULL))
  3463. return 0;
  3464. return obj_size(virt_to_cache(objp));
  3465. }