i915_gem.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  41. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  42. int write);
  43. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  44. uint64_t offset,
  45. uint64_t size);
  46. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  47. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  48. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  49. unsigned alignment);
  50. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  55. static LIST_HEAD(shrink_list);
  56. static DEFINE_SPINLOCK(shrink_list_lock);
  57. static inline bool
  58. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  59. {
  60. return obj_priv->gtt_space &&
  61. !obj_priv->active &&
  62. obj_priv->pin_count == 0;
  63. }
  64. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  65. unsigned long end)
  66. {
  67. drm_i915_private_t *dev_priv = dev->dev_private;
  68. if (start >= end ||
  69. (start & (PAGE_SIZE - 1)) != 0 ||
  70. (end & (PAGE_SIZE - 1)) != 0) {
  71. return -EINVAL;
  72. }
  73. drm_mm_init(&dev_priv->mm.gtt_space, start,
  74. end - start);
  75. dev->gtt_total = (uint32_t) (end - start);
  76. return 0;
  77. }
  78. int
  79. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  80. struct drm_file *file_priv)
  81. {
  82. struct drm_i915_gem_init *args = data;
  83. int ret;
  84. mutex_lock(&dev->struct_mutex);
  85. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  86. mutex_unlock(&dev->struct_mutex);
  87. return ret;
  88. }
  89. int
  90. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  91. struct drm_file *file_priv)
  92. {
  93. struct drm_i915_gem_get_aperture *args = data;
  94. if (!(dev->driver->driver_features & DRIVER_GEM))
  95. return -ENODEV;
  96. args->aper_size = dev->gtt_total;
  97. args->aper_available_size = (args->aper_size -
  98. atomic_read(&dev->pin_memory));
  99. return 0;
  100. }
  101. /**
  102. * Creates a new mm object and returns a handle to it.
  103. */
  104. int
  105. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  106. struct drm_file *file_priv)
  107. {
  108. struct drm_i915_gem_create *args = data;
  109. struct drm_gem_object *obj;
  110. int ret;
  111. u32 handle;
  112. args->size = roundup(args->size, PAGE_SIZE);
  113. /* Allocate the new object */
  114. obj = i915_gem_alloc_object(dev, args->size);
  115. if (obj == NULL)
  116. return -ENOMEM;
  117. ret = drm_gem_handle_create(file_priv, obj, &handle);
  118. if (ret) {
  119. drm_gem_object_unreference_unlocked(obj);
  120. return ret;
  121. }
  122. /* Sink the floating reference from kref_init(handlecount) */
  123. drm_gem_object_handle_unreference_unlocked(obj);
  124. args->handle = handle;
  125. return 0;
  126. }
  127. static inline int
  128. fast_shmem_read(struct page **pages,
  129. loff_t page_base, int page_offset,
  130. char __user *data,
  131. int length)
  132. {
  133. char __iomem *vaddr;
  134. int unwritten;
  135. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  136. if (vaddr == NULL)
  137. return -ENOMEM;
  138. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  139. kunmap_atomic(vaddr, KM_USER0);
  140. if (unwritten)
  141. return -EFAULT;
  142. return 0;
  143. }
  144. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  145. {
  146. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  147. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  148. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  149. obj_priv->tiling_mode != I915_TILING_NONE;
  150. }
  151. static inline void
  152. slow_shmem_copy(struct page *dst_page,
  153. int dst_offset,
  154. struct page *src_page,
  155. int src_offset,
  156. int length)
  157. {
  158. char *dst_vaddr, *src_vaddr;
  159. dst_vaddr = kmap(dst_page);
  160. src_vaddr = kmap(src_page);
  161. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  162. kunmap(src_page);
  163. kunmap(dst_page);
  164. }
  165. static inline void
  166. slow_shmem_bit17_copy(struct page *gpu_page,
  167. int gpu_offset,
  168. struct page *cpu_page,
  169. int cpu_offset,
  170. int length,
  171. int is_read)
  172. {
  173. char *gpu_vaddr, *cpu_vaddr;
  174. /* Use the unswizzled path if this page isn't affected. */
  175. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  176. if (is_read)
  177. return slow_shmem_copy(cpu_page, cpu_offset,
  178. gpu_page, gpu_offset, length);
  179. else
  180. return slow_shmem_copy(gpu_page, gpu_offset,
  181. cpu_page, cpu_offset, length);
  182. }
  183. gpu_vaddr = kmap(gpu_page);
  184. cpu_vaddr = kmap(cpu_page);
  185. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  186. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  187. */
  188. while (length > 0) {
  189. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  190. int this_length = min(cacheline_end - gpu_offset, length);
  191. int swizzled_gpu_offset = gpu_offset ^ 64;
  192. if (is_read) {
  193. memcpy(cpu_vaddr + cpu_offset,
  194. gpu_vaddr + swizzled_gpu_offset,
  195. this_length);
  196. } else {
  197. memcpy(gpu_vaddr + swizzled_gpu_offset,
  198. cpu_vaddr + cpu_offset,
  199. this_length);
  200. }
  201. cpu_offset += this_length;
  202. gpu_offset += this_length;
  203. length -= this_length;
  204. }
  205. kunmap(cpu_page);
  206. kunmap(gpu_page);
  207. }
  208. /**
  209. * This is the fast shmem pread path, which attempts to copy_from_user directly
  210. * from the backing pages of the object to the user's address space. On a
  211. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  212. */
  213. static int
  214. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  219. ssize_t remain;
  220. loff_t offset, page_base;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. int ret;
  224. user_data = (char __user *) (uintptr_t) args->data_ptr;
  225. remain = args->size;
  226. mutex_lock(&dev->struct_mutex);
  227. ret = i915_gem_object_get_pages(obj, 0);
  228. if (ret != 0)
  229. goto fail_unlock;
  230. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  231. args->size);
  232. if (ret != 0)
  233. goto fail_put_pages;
  234. obj_priv = to_intel_bo(obj);
  235. offset = args->offset;
  236. while (remain > 0) {
  237. /* Operation in this page
  238. *
  239. * page_base = page offset within aperture
  240. * page_offset = offset within page
  241. * page_length = bytes to copy for this page
  242. */
  243. page_base = (offset & ~(PAGE_SIZE-1));
  244. page_offset = offset & (PAGE_SIZE-1);
  245. page_length = remain;
  246. if ((page_offset + remain) > PAGE_SIZE)
  247. page_length = PAGE_SIZE - page_offset;
  248. ret = fast_shmem_read(obj_priv->pages,
  249. page_base, page_offset,
  250. user_data, page_length);
  251. if (ret)
  252. goto fail_put_pages;
  253. remain -= page_length;
  254. user_data += page_length;
  255. offset += page_length;
  256. }
  257. fail_put_pages:
  258. i915_gem_object_put_pages(obj);
  259. fail_unlock:
  260. mutex_unlock(&dev->struct_mutex);
  261. return ret;
  262. }
  263. static int
  264. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  265. {
  266. int ret;
  267. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  268. /* If we've insufficient memory to map in the pages, attempt
  269. * to make some space by throwing out some old buffers.
  270. */
  271. if (ret == -ENOMEM) {
  272. struct drm_device *dev = obj->dev;
  273. ret = i915_gem_evict_something(dev, obj->size,
  274. i915_gem_get_gtt_alignment(obj));
  275. if (ret)
  276. return ret;
  277. ret = i915_gem_object_get_pages(obj, 0);
  278. }
  279. return ret;
  280. }
  281. /**
  282. * This is the fallback shmem pread path, which allocates temporary storage
  283. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  284. * can copy out of the object's backing pages while holding the struct mutex
  285. * and not take page faults.
  286. */
  287. static int
  288. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  289. struct drm_i915_gem_pread *args,
  290. struct drm_file *file_priv)
  291. {
  292. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  293. struct mm_struct *mm = current->mm;
  294. struct page **user_pages;
  295. ssize_t remain;
  296. loff_t offset, pinned_pages, i;
  297. loff_t first_data_page, last_data_page, num_pages;
  298. int shmem_page_index, shmem_page_offset;
  299. int data_page_index, data_page_offset;
  300. int page_length;
  301. int ret;
  302. uint64_t data_ptr = args->data_ptr;
  303. int do_bit17_swizzling;
  304. remain = args->size;
  305. /* Pin the user pages containing the data. We can't fault while
  306. * holding the struct mutex, yet we want to hold it while
  307. * dereferencing the user data.
  308. */
  309. first_data_page = data_ptr / PAGE_SIZE;
  310. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  311. num_pages = last_data_page - first_data_page + 1;
  312. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  313. if (user_pages == NULL)
  314. return -ENOMEM;
  315. down_read(&mm->mmap_sem);
  316. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  317. num_pages, 1, 0, user_pages, NULL);
  318. up_read(&mm->mmap_sem);
  319. if (pinned_pages < num_pages) {
  320. ret = -EFAULT;
  321. goto fail_put_user_pages;
  322. }
  323. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  324. mutex_lock(&dev->struct_mutex);
  325. ret = i915_gem_object_get_pages_or_evict(obj);
  326. if (ret)
  327. goto fail_unlock;
  328. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  329. args->size);
  330. if (ret != 0)
  331. goto fail_put_pages;
  332. obj_priv = to_intel_bo(obj);
  333. offset = args->offset;
  334. while (remain > 0) {
  335. /* Operation in this page
  336. *
  337. * shmem_page_index = page number within shmem file
  338. * shmem_page_offset = offset within page in shmem file
  339. * data_page_index = page number in get_user_pages return
  340. * data_page_offset = offset with data_page_index page.
  341. * page_length = bytes to copy for this page
  342. */
  343. shmem_page_index = offset / PAGE_SIZE;
  344. shmem_page_offset = offset & ~PAGE_MASK;
  345. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  346. data_page_offset = data_ptr & ~PAGE_MASK;
  347. page_length = remain;
  348. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  349. page_length = PAGE_SIZE - shmem_page_offset;
  350. if ((data_page_offset + page_length) > PAGE_SIZE)
  351. page_length = PAGE_SIZE - data_page_offset;
  352. if (do_bit17_swizzling) {
  353. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  354. shmem_page_offset,
  355. user_pages[data_page_index],
  356. data_page_offset,
  357. page_length,
  358. 1);
  359. } else {
  360. slow_shmem_copy(user_pages[data_page_index],
  361. data_page_offset,
  362. obj_priv->pages[shmem_page_index],
  363. shmem_page_offset,
  364. page_length);
  365. }
  366. remain -= page_length;
  367. data_ptr += page_length;
  368. offset += page_length;
  369. }
  370. fail_put_pages:
  371. i915_gem_object_put_pages(obj);
  372. fail_unlock:
  373. mutex_unlock(&dev->struct_mutex);
  374. fail_put_user_pages:
  375. for (i = 0; i < pinned_pages; i++) {
  376. SetPageDirty(user_pages[i]);
  377. page_cache_release(user_pages[i]);
  378. }
  379. drm_free_large(user_pages);
  380. return ret;
  381. }
  382. /**
  383. * Reads data from the object referenced by handle.
  384. *
  385. * On error, the contents of *data are undefined.
  386. */
  387. int
  388. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  389. struct drm_file *file_priv)
  390. {
  391. struct drm_i915_gem_pread *args = data;
  392. struct drm_gem_object *obj;
  393. struct drm_i915_gem_object *obj_priv;
  394. int ret;
  395. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  396. if (obj == NULL)
  397. return -ENOENT;
  398. obj_priv = to_intel_bo(obj);
  399. /* Bounds check source.
  400. *
  401. * XXX: This could use review for overflow issues...
  402. */
  403. if (args->offset > obj->size || args->size > obj->size ||
  404. args->offset + args->size > obj->size) {
  405. drm_gem_object_unreference_unlocked(obj);
  406. return -EINVAL;
  407. }
  408. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  409. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  410. } else {
  411. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  412. if (ret != 0)
  413. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  414. file_priv);
  415. }
  416. drm_gem_object_unreference_unlocked(obj);
  417. return ret;
  418. }
  419. /* This is the fast write path which cannot handle
  420. * page faults in the source data
  421. */
  422. static inline int
  423. fast_user_write(struct io_mapping *mapping,
  424. loff_t page_base, int page_offset,
  425. char __user *user_data,
  426. int length)
  427. {
  428. char *vaddr_atomic;
  429. unsigned long unwritten;
  430. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  431. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  432. user_data, length);
  433. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  434. if (unwritten)
  435. return -EFAULT;
  436. return 0;
  437. }
  438. /* Here's the write path which can sleep for
  439. * page faults
  440. */
  441. static inline void
  442. slow_kernel_write(struct io_mapping *mapping,
  443. loff_t gtt_base, int gtt_offset,
  444. struct page *user_page, int user_offset,
  445. int length)
  446. {
  447. char __iomem *dst_vaddr;
  448. char *src_vaddr;
  449. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  450. src_vaddr = kmap(user_page);
  451. memcpy_toio(dst_vaddr + gtt_offset,
  452. src_vaddr + user_offset,
  453. length);
  454. kunmap(user_page);
  455. io_mapping_unmap(dst_vaddr);
  456. }
  457. static inline int
  458. fast_shmem_write(struct page **pages,
  459. loff_t page_base, int page_offset,
  460. char __user *data,
  461. int length)
  462. {
  463. char __iomem *vaddr;
  464. unsigned long unwritten;
  465. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  466. if (vaddr == NULL)
  467. return -ENOMEM;
  468. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  469. kunmap_atomic(vaddr, KM_USER0);
  470. if (unwritten)
  471. return -EFAULT;
  472. return 0;
  473. }
  474. /**
  475. * This is the fast pwrite path, where we copy the data directly from the
  476. * user into the GTT, uncached.
  477. */
  478. static int
  479. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  480. struct drm_i915_gem_pwrite *args,
  481. struct drm_file *file_priv)
  482. {
  483. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  484. drm_i915_private_t *dev_priv = dev->dev_private;
  485. ssize_t remain;
  486. loff_t offset, page_base;
  487. char __user *user_data;
  488. int page_offset, page_length;
  489. int ret;
  490. user_data = (char __user *) (uintptr_t) args->data_ptr;
  491. remain = args->size;
  492. if (!access_ok(VERIFY_READ, user_data, remain))
  493. return -EFAULT;
  494. mutex_lock(&dev->struct_mutex);
  495. ret = i915_gem_object_pin(obj, 0);
  496. if (ret) {
  497. mutex_unlock(&dev->struct_mutex);
  498. return ret;
  499. }
  500. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  501. if (ret)
  502. goto fail;
  503. obj_priv = to_intel_bo(obj);
  504. offset = obj_priv->gtt_offset + args->offset;
  505. while (remain > 0) {
  506. /* Operation in this page
  507. *
  508. * page_base = page offset within aperture
  509. * page_offset = offset within page
  510. * page_length = bytes to copy for this page
  511. */
  512. page_base = (offset & ~(PAGE_SIZE-1));
  513. page_offset = offset & (PAGE_SIZE-1);
  514. page_length = remain;
  515. if ((page_offset + remain) > PAGE_SIZE)
  516. page_length = PAGE_SIZE - page_offset;
  517. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  518. page_offset, user_data, page_length);
  519. /* If we get a fault while copying data, then (presumably) our
  520. * source page isn't available. Return the error and we'll
  521. * retry in the slow path.
  522. */
  523. if (ret)
  524. goto fail;
  525. remain -= page_length;
  526. user_data += page_length;
  527. offset += page_length;
  528. }
  529. fail:
  530. i915_gem_object_unpin(obj);
  531. mutex_unlock(&dev->struct_mutex);
  532. return ret;
  533. }
  534. /**
  535. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  536. * the memory and maps it using kmap_atomic for copying.
  537. *
  538. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  539. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  540. */
  541. static int
  542. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  543. struct drm_i915_gem_pwrite *args,
  544. struct drm_file *file_priv)
  545. {
  546. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  547. drm_i915_private_t *dev_priv = dev->dev_private;
  548. ssize_t remain;
  549. loff_t gtt_page_base, offset;
  550. loff_t first_data_page, last_data_page, num_pages;
  551. loff_t pinned_pages, i;
  552. struct page **user_pages;
  553. struct mm_struct *mm = current->mm;
  554. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  555. int ret;
  556. uint64_t data_ptr = args->data_ptr;
  557. remain = args->size;
  558. /* Pin the user pages containing the data. We can't fault while
  559. * holding the struct mutex, and all of the pwrite implementations
  560. * want to hold it while dereferencing the user data.
  561. */
  562. first_data_page = data_ptr / PAGE_SIZE;
  563. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  564. num_pages = last_data_page - first_data_page + 1;
  565. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  566. if (user_pages == NULL)
  567. return -ENOMEM;
  568. down_read(&mm->mmap_sem);
  569. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  570. num_pages, 0, 0, user_pages, NULL);
  571. up_read(&mm->mmap_sem);
  572. if (pinned_pages < num_pages) {
  573. ret = -EFAULT;
  574. goto out_unpin_pages;
  575. }
  576. mutex_lock(&dev->struct_mutex);
  577. ret = i915_gem_object_pin(obj, 0);
  578. if (ret)
  579. goto out_unlock;
  580. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  581. if (ret)
  582. goto out_unpin_object;
  583. obj_priv = to_intel_bo(obj);
  584. offset = obj_priv->gtt_offset + args->offset;
  585. while (remain > 0) {
  586. /* Operation in this page
  587. *
  588. * gtt_page_base = page offset within aperture
  589. * gtt_page_offset = offset within page in aperture
  590. * data_page_index = page number in get_user_pages return
  591. * data_page_offset = offset with data_page_index page.
  592. * page_length = bytes to copy for this page
  593. */
  594. gtt_page_base = offset & PAGE_MASK;
  595. gtt_page_offset = offset & ~PAGE_MASK;
  596. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  597. data_page_offset = data_ptr & ~PAGE_MASK;
  598. page_length = remain;
  599. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  600. page_length = PAGE_SIZE - gtt_page_offset;
  601. if ((data_page_offset + page_length) > PAGE_SIZE)
  602. page_length = PAGE_SIZE - data_page_offset;
  603. slow_kernel_write(dev_priv->mm.gtt_mapping,
  604. gtt_page_base, gtt_page_offset,
  605. user_pages[data_page_index],
  606. data_page_offset,
  607. page_length);
  608. remain -= page_length;
  609. offset += page_length;
  610. data_ptr += page_length;
  611. }
  612. out_unpin_object:
  613. i915_gem_object_unpin(obj);
  614. out_unlock:
  615. mutex_unlock(&dev->struct_mutex);
  616. out_unpin_pages:
  617. for (i = 0; i < pinned_pages; i++)
  618. page_cache_release(user_pages[i]);
  619. drm_free_large(user_pages);
  620. return ret;
  621. }
  622. /**
  623. * This is the fast shmem pwrite path, which attempts to directly
  624. * copy_from_user into the kmapped pages backing the object.
  625. */
  626. static int
  627. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  628. struct drm_i915_gem_pwrite *args,
  629. struct drm_file *file_priv)
  630. {
  631. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  632. ssize_t remain;
  633. loff_t offset, page_base;
  634. char __user *user_data;
  635. int page_offset, page_length;
  636. int ret;
  637. user_data = (char __user *) (uintptr_t) args->data_ptr;
  638. remain = args->size;
  639. mutex_lock(&dev->struct_mutex);
  640. ret = i915_gem_object_get_pages(obj, 0);
  641. if (ret != 0)
  642. goto fail_unlock;
  643. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  644. if (ret != 0)
  645. goto fail_put_pages;
  646. obj_priv = to_intel_bo(obj);
  647. offset = args->offset;
  648. obj_priv->dirty = 1;
  649. while (remain > 0) {
  650. /* Operation in this page
  651. *
  652. * page_base = page offset within aperture
  653. * page_offset = offset within page
  654. * page_length = bytes to copy for this page
  655. */
  656. page_base = (offset & ~(PAGE_SIZE-1));
  657. page_offset = offset & (PAGE_SIZE-1);
  658. page_length = remain;
  659. if ((page_offset + remain) > PAGE_SIZE)
  660. page_length = PAGE_SIZE - page_offset;
  661. ret = fast_shmem_write(obj_priv->pages,
  662. page_base, page_offset,
  663. user_data, page_length);
  664. if (ret)
  665. goto fail_put_pages;
  666. remain -= page_length;
  667. user_data += page_length;
  668. offset += page_length;
  669. }
  670. fail_put_pages:
  671. i915_gem_object_put_pages(obj);
  672. fail_unlock:
  673. mutex_unlock(&dev->struct_mutex);
  674. return ret;
  675. }
  676. /**
  677. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  678. * the memory and maps it using kmap_atomic for copying.
  679. *
  680. * This avoids taking mmap_sem for faulting on the user's address while the
  681. * struct_mutex is held.
  682. */
  683. static int
  684. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  685. struct drm_i915_gem_pwrite *args,
  686. struct drm_file *file_priv)
  687. {
  688. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  689. struct mm_struct *mm = current->mm;
  690. struct page **user_pages;
  691. ssize_t remain;
  692. loff_t offset, pinned_pages, i;
  693. loff_t first_data_page, last_data_page, num_pages;
  694. int shmem_page_index, shmem_page_offset;
  695. int data_page_index, data_page_offset;
  696. int page_length;
  697. int ret;
  698. uint64_t data_ptr = args->data_ptr;
  699. int do_bit17_swizzling;
  700. remain = args->size;
  701. /* Pin the user pages containing the data. We can't fault while
  702. * holding the struct mutex, and all of the pwrite implementations
  703. * want to hold it while dereferencing the user data.
  704. */
  705. first_data_page = data_ptr / PAGE_SIZE;
  706. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  707. num_pages = last_data_page - first_data_page + 1;
  708. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  709. if (user_pages == NULL)
  710. return -ENOMEM;
  711. down_read(&mm->mmap_sem);
  712. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  713. num_pages, 0, 0, user_pages, NULL);
  714. up_read(&mm->mmap_sem);
  715. if (pinned_pages < num_pages) {
  716. ret = -EFAULT;
  717. goto fail_put_user_pages;
  718. }
  719. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  720. mutex_lock(&dev->struct_mutex);
  721. ret = i915_gem_object_get_pages_or_evict(obj);
  722. if (ret)
  723. goto fail_unlock;
  724. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  725. if (ret != 0)
  726. goto fail_put_pages;
  727. obj_priv = to_intel_bo(obj);
  728. offset = args->offset;
  729. obj_priv->dirty = 1;
  730. while (remain > 0) {
  731. /* Operation in this page
  732. *
  733. * shmem_page_index = page number within shmem file
  734. * shmem_page_offset = offset within page in shmem file
  735. * data_page_index = page number in get_user_pages return
  736. * data_page_offset = offset with data_page_index page.
  737. * page_length = bytes to copy for this page
  738. */
  739. shmem_page_index = offset / PAGE_SIZE;
  740. shmem_page_offset = offset & ~PAGE_MASK;
  741. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  742. data_page_offset = data_ptr & ~PAGE_MASK;
  743. page_length = remain;
  744. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  745. page_length = PAGE_SIZE - shmem_page_offset;
  746. if ((data_page_offset + page_length) > PAGE_SIZE)
  747. page_length = PAGE_SIZE - data_page_offset;
  748. if (do_bit17_swizzling) {
  749. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  750. shmem_page_offset,
  751. user_pages[data_page_index],
  752. data_page_offset,
  753. page_length,
  754. 0);
  755. } else {
  756. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  757. shmem_page_offset,
  758. user_pages[data_page_index],
  759. data_page_offset,
  760. page_length);
  761. }
  762. remain -= page_length;
  763. data_ptr += page_length;
  764. offset += page_length;
  765. }
  766. fail_put_pages:
  767. i915_gem_object_put_pages(obj);
  768. fail_unlock:
  769. mutex_unlock(&dev->struct_mutex);
  770. fail_put_user_pages:
  771. for (i = 0; i < pinned_pages; i++)
  772. page_cache_release(user_pages[i]);
  773. drm_free_large(user_pages);
  774. return ret;
  775. }
  776. /**
  777. * Writes data to the object referenced by handle.
  778. *
  779. * On error, the contents of the buffer that were to be modified are undefined.
  780. */
  781. int
  782. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  783. struct drm_file *file_priv)
  784. {
  785. struct drm_i915_gem_pwrite *args = data;
  786. struct drm_gem_object *obj;
  787. struct drm_i915_gem_object *obj_priv;
  788. int ret = 0;
  789. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  790. if (obj == NULL)
  791. return -ENOENT;
  792. obj_priv = to_intel_bo(obj);
  793. /* Bounds check destination.
  794. *
  795. * XXX: This could use review for overflow issues...
  796. */
  797. if (args->offset > obj->size || args->size > obj->size ||
  798. args->offset + args->size > obj->size) {
  799. drm_gem_object_unreference_unlocked(obj);
  800. return -EINVAL;
  801. }
  802. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  803. * it would end up going through the fenced access, and we'll get
  804. * different detiling behavior between reading and writing.
  805. * pread/pwrite currently are reading and writing from the CPU
  806. * perspective, requiring manual detiling by the client.
  807. */
  808. if (obj_priv->phys_obj)
  809. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  810. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  811. dev->gtt_total != 0 &&
  812. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  813. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  814. if (ret == -EFAULT) {
  815. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  816. file_priv);
  817. }
  818. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  819. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  820. } else {
  821. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  822. if (ret == -EFAULT) {
  823. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  824. file_priv);
  825. }
  826. }
  827. #if WATCH_PWRITE
  828. if (ret)
  829. DRM_INFO("pwrite failed %d\n", ret);
  830. #endif
  831. drm_gem_object_unreference_unlocked(obj);
  832. return ret;
  833. }
  834. /**
  835. * Called when user space prepares to use an object with the CPU, either
  836. * through the mmap ioctl's mapping or a GTT mapping.
  837. */
  838. int
  839. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  840. struct drm_file *file_priv)
  841. {
  842. struct drm_i915_private *dev_priv = dev->dev_private;
  843. struct drm_i915_gem_set_domain *args = data;
  844. struct drm_gem_object *obj;
  845. struct drm_i915_gem_object *obj_priv;
  846. uint32_t read_domains = args->read_domains;
  847. uint32_t write_domain = args->write_domain;
  848. int ret;
  849. if (!(dev->driver->driver_features & DRIVER_GEM))
  850. return -ENODEV;
  851. /* Only handle setting domains to types used by the CPU. */
  852. if (write_domain & I915_GEM_GPU_DOMAINS)
  853. return -EINVAL;
  854. if (read_domains & I915_GEM_GPU_DOMAINS)
  855. return -EINVAL;
  856. /* Having something in the write domain implies it's in the read
  857. * domain, and only that read domain. Enforce that in the request.
  858. */
  859. if (write_domain != 0 && read_domains != write_domain)
  860. return -EINVAL;
  861. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  862. if (obj == NULL)
  863. return -ENOENT;
  864. obj_priv = to_intel_bo(obj);
  865. mutex_lock(&dev->struct_mutex);
  866. intel_mark_busy(dev, obj);
  867. #if WATCH_BUF
  868. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  869. obj, obj->size, read_domains, write_domain);
  870. #endif
  871. if (read_domains & I915_GEM_DOMAIN_GTT) {
  872. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  873. /* Update the LRU on the fence for the CPU access that's
  874. * about to occur.
  875. */
  876. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  877. struct drm_i915_fence_reg *reg =
  878. &dev_priv->fence_regs[obj_priv->fence_reg];
  879. list_move_tail(&reg->lru_list,
  880. &dev_priv->mm.fence_list);
  881. }
  882. /* Silently promote "you're not bound, there was nothing to do"
  883. * to success, since the client was just asking us to
  884. * make sure everything was done.
  885. */
  886. if (ret == -EINVAL)
  887. ret = 0;
  888. } else {
  889. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  890. }
  891. /* Maintain LRU order of "inactive" objects */
  892. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  893. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  894. drm_gem_object_unreference(obj);
  895. mutex_unlock(&dev->struct_mutex);
  896. return ret;
  897. }
  898. /**
  899. * Called when user space has done writes to this buffer
  900. */
  901. int
  902. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  903. struct drm_file *file_priv)
  904. {
  905. struct drm_i915_gem_sw_finish *args = data;
  906. struct drm_gem_object *obj;
  907. struct drm_i915_gem_object *obj_priv;
  908. int ret = 0;
  909. if (!(dev->driver->driver_features & DRIVER_GEM))
  910. return -ENODEV;
  911. mutex_lock(&dev->struct_mutex);
  912. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  913. if (obj == NULL) {
  914. mutex_unlock(&dev->struct_mutex);
  915. return -ENOENT;
  916. }
  917. #if WATCH_BUF
  918. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  919. __func__, args->handle, obj, obj->size);
  920. #endif
  921. obj_priv = to_intel_bo(obj);
  922. /* Pinned buffers may be scanout, so flush the cache */
  923. if (obj_priv->pin_count)
  924. i915_gem_object_flush_cpu_write_domain(obj);
  925. drm_gem_object_unreference(obj);
  926. mutex_unlock(&dev->struct_mutex);
  927. return ret;
  928. }
  929. /**
  930. * Maps the contents of an object, returning the address it is mapped
  931. * into.
  932. *
  933. * While the mapping holds a reference on the contents of the object, it doesn't
  934. * imply a ref on the object itself.
  935. */
  936. int
  937. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  938. struct drm_file *file_priv)
  939. {
  940. struct drm_i915_gem_mmap *args = data;
  941. struct drm_gem_object *obj;
  942. loff_t offset;
  943. unsigned long addr;
  944. if (!(dev->driver->driver_features & DRIVER_GEM))
  945. return -ENODEV;
  946. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  947. if (obj == NULL)
  948. return -ENOENT;
  949. offset = args->offset;
  950. down_write(&current->mm->mmap_sem);
  951. addr = do_mmap(obj->filp, 0, args->size,
  952. PROT_READ | PROT_WRITE, MAP_SHARED,
  953. args->offset);
  954. up_write(&current->mm->mmap_sem);
  955. drm_gem_object_unreference_unlocked(obj);
  956. if (IS_ERR((void *)addr))
  957. return addr;
  958. args->addr_ptr = (uint64_t) addr;
  959. return 0;
  960. }
  961. /**
  962. * i915_gem_fault - fault a page into the GTT
  963. * vma: VMA in question
  964. * vmf: fault info
  965. *
  966. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  967. * from userspace. The fault handler takes care of binding the object to
  968. * the GTT (if needed), allocating and programming a fence register (again,
  969. * only if needed based on whether the old reg is still valid or the object
  970. * is tiled) and inserting a new PTE into the faulting process.
  971. *
  972. * Note that the faulting process may involve evicting existing objects
  973. * from the GTT and/or fence registers to make room. So performance may
  974. * suffer if the GTT working set is large or there are few fence registers
  975. * left.
  976. */
  977. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  978. {
  979. struct drm_gem_object *obj = vma->vm_private_data;
  980. struct drm_device *dev = obj->dev;
  981. drm_i915_private_t *dev_priv = dev->dev_private;
  982. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  983. pgoff_t page_offset;
  984. unsigned long pfn;
  985. int ret = 0;
  986. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  987. /* We don't use vmf->pgoff since that has the fake offset */
  988. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  989. PAGE_SHIFT;
  990. /* Now bind it into the GTT if needed */
  991. mutex_lock(&dev->struct_mutex);
  992. if (!obj_priv->gtt_space) {
  993. ret = i915_gem_object_bind_to_gtt(obj, 0);
  994. if (ret)
  995. goto unlock;
  996. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  997. if (ret)
  998. goto unlock;
  999. }
  1000. /* Need a new fence register? */
  1001. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1002. ret = i915_gem_object_get_fence_reg(obj);
  1003. if (ret)
  1004. goto unlock;
  1005. }
  1006. if (i915_gem_object_is_inactive(obj_priv))
  1007. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1008. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1009. page_offset;
  1010. /* Finally, remap it using the new GTT offset */
  1011. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1012. unlock:
  1013. mutex_unlock(&dev->struct_mutex);
  1014. switch (ret) {
  1015. case 0:
  1016. case -ERESTARTSYS:
  1017. return VM_FAULT_NOPAGE;
  1018. case -ENOMEM:
  1019. case -EAGAIN:
  1020. return VM_FAULT_OOM;
  1021. default:
  1022. return VM_FAULT_SIGBUS;
  1023. }
  1024. }
  1025. /**
  1026. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1027. * @obj: obj in question
  1028. *
  1029. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1030. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1031. * up the object based on the offset and sets up the various memory mapping
  1032. * structures.
  1033. *
  1034. * This routine allocates and attaches a fake offset for @obj.
  1035. */
  1036. static int
  1037. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1038. {
  1039. struct drm_device *dev = obj->dev;
  1040. struct drm_gem_mm *mm = dev->mm_private;
  1041. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1042. struct drm_map_list *list;
  1043. struct drm_local_map *map;
  1044. int ret = 0;
  1045. /* Set the object up for mmap'ing */
  1046. list = &obj->map_list;
  1047. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1048. if (!list->map)
  1049. return -ENOMEM;
  1050. map = list->map;
  1051. map->type = _DRM_GEM;
  1052. map->size = obj->size;
  1053. map->handle = obj;
  1054. /* Get a DRM GEM mmap offset allocated... */
  1055. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1056. obj->size / PAGE_SIZE, 0, 0);
  1057. if (!list->file_offset_node) {
  1058. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1059. ret = -ENOMEM;
  1060. goto out_free_list;
  1061. }
  1062. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1063. obj->size / PAGE_SIZE, 0);
  1064. if (!list->file_offset_node) {
  1065. ret = -ENOMEM;
  1066. goto out_free_list;
  1067. }
  1068. list->hash.key = list->file_offset_node->start;
  1069. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1070. DRM_ERROR("failed to add to map hash\n");
  1071. ret = -ENOMEM;
  1072. goto out_free_mm;
  1073. }
  1074. /* By now we should be all set, any drm_mmap request on the offset
  1075. * below will get to our mmap & fault handler */
  1076. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1077. return 0;
  1078. out_free_mm:
  1079. drm_mm_put_block(list->file_offset_node);
  1080. out_free_list:
  1081. kfree(list->map);
  1082. return ret;
  1083. }
  1084. /**
  1085. * i915_gem_release_mmap - remove physical page mappings
  1086. * @obj: obj in question
  1087. *
  1088. * Preserve the reservation of the mmapping with the DRM core code, but
  1089. * relinquish ownership of the pages back to the system.
  1090. *
  1091. * It is vital that we remove the page mapping if we have mapped a tiled
  1092. * object through the GTT and then lose the fence register due to
  1093. * resource pressure. Similarly if the object has been moved out of the
  1094. * aperture, than pages mapped into userspace must be revoked. Removing the
  1095. * mapping will then trigger a page fault on the next user access, allowing
  1096. * fixup by i915_gem_fault().
  1097. */
  1098. void
  1099. i915_gem_release_mmap(struct drm_gem_object *obj)
  1100. {
  1101. struct drm_device *dev = obj->dev;
  1102. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1103. if (dev->dev_mapping)
  1104. unmap_mapping_range(dev->dev_mapping,
  1105. obj_priv->mmap_offset, obj->size, 1);
  1106. }
  1107. static void
  1108. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1109. {
  1110. struct drm_device *dev = obj->dev;
  1111. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1112. struct drm_gem_mm *mm = dev->mm_private;
  1113. struct drm_map_list *list;
  1114. list = &obj->map_list;
  1115. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1116. if (list->file_offset_node) {
  1117. drm_mm_put_block(list->file_offset_node);
  1118. list->file_offset_node = NULL;
  1119. }
  1120. if (list->map) {
  1121. kfree(list->map);
  1122. list->map = NULL;
  1123. }
  1124. obj_priv->mmap_offset = 0;
  1125. }
  1126. /**
  1127. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1128. * @obj: object to check
  1129. *
  1130. * Return the required GTT alignment for an object, taking into account
  1131. * potential fence register mapping if needed.
  1132. */
  1133. static uint32_t
  1134. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1135. {
  1136. struct drm_device *dev = obj->dev;
  1137. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1138. int start, i;
  1139. /*
  1140. * Minimum alignment is 4k (GTT page size), but might be greater
  1141. * if a fence register is needed for the object.
  1142. */
  1143. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1144. return 4096;
  1145. /*
  1146. * Previous chips need to be aligned to the size of the smallest
  1147. * fence register that can contain the object.
  1148. */
  1149. if (IS_I9XX(dev))
  1150. start = 1024*1024;
  1151. else
  1152. start = 512*1024;
  1153. for (i = start; i < obj->size; i <<= 1)
  1154. ;
  1155. return i;
  1156. }
  1157. /**
  1158. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1159. * @dev: DRM device
  1160. * @data: GTT mapping ioctl data
  1161. * @file_priv: GEM object info
  1162. *
  1163. * Simply returns the fake offset to userspace so it can mmap it.
  1164. * The mmap call will end up in drm_gem_mmap(), which will set things
  1165. * up so we can get faults in the handler above.
  1166. *
  1167. * The fault handler will take care of binding the object into the GTT
  1168. * (since it may have been evicted to make room for something), allocating
  1169. * a fence register, and mapping the appropriate aperture address into
  1170. * userspace.
  1171. */
  1172. int
  1173. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1174. struct drm_file *file_priv)
  1175. {
  1176. struct drm_i915_gem_mmap_gtt *args = data;
  1177. struct drm_gem_object *obj;
  1178. struct drm_i915_gem_object *obj_priv;
  1179. int ret;
  1180. if (!(dev->driver->driver_features & DRIVER_GEM))
  1181. return -ENODEV;
  1182. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1183. if (obj == NULL)
  1184. return -ENOENT;
  1185. mutex_lock(&dev->struct_mutex);
  1186. obj_priv = to_intel_bo(obj);
  1187. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1188. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1189. drm_gem_object_unreference(obj);
  1190. mutex_unlock(&dev->struct_mutex);
  1191. return -EINVAL;
  1192. }
  1193. if (!obj_priv->mmap_offset) {
  1194. ret = i915_gem_create_mmap_offset(obj);
  1195. if (ret) {
  1196. drm_gem_object_unreference(obj);
  1197. mutex_unlock(&dev->struct_mutex);
  1198. return ret;
  1199. }
  1200. }
  1201. args->offset = obj_priv->mmap_offset;
  1202. /*
  1203. * Pull it into the GTT so that we have a page list (makes the
  1204. * initial fault faster and any subsequent flushing possible).
  1205. */
  1206. if (!obj_priv->agp_mem) {
  1207. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1208. if (ret) {
  1209. drm_gem_object_unreference(obj);
  1210. mutex_unlock(&dev->struct_mutex);
  1211. return ret;
  1212. }
  1213. }
  1214. drm_gem_object_unreference(obj);
  1215. mutex_unlock(&dev->struct_mutex);
  1216. return 0;
  1217. }
  1218. void
  1219. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1220. {
  1221. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1222. int page_count = obj->size / PAGE_SIZE;
  1223. int i;
  1224. BUG_ON(obj_priv->pages_refcount == 0);
  1225. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1226. if (--obj_priv->pages_refcount != 0)
  1227. return;
  1228. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1229. i915_gem_object_save_bit_17_swizzle(obj);
  1230. if (obj_priv->madv == I915_MADV_DONTNEED)
  1231. obj_priv->dirty = 0;
  1232. for (i = 0; i < page_count; i++) {
  1233. if (obj_priv->dirty)
  1234. set_page_dirty(obj_priv->pages[i]);
  1235. if (obj_priv->madv == I915_MADV_WILLNEED)
  1236. mark_page_accessed(obj_priv->pages[i]);
  1237. page_cache_release(obj_priv->pages[i]);
  1238. }
  1239. obj_priv->dirty = 0;
  1240. drm_free_large(obj_priv->pages);
  1241. obj_priv->pages = NULL;
  1242. }
  1243. static void
  1244. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
  1245. struct intel_ring_buffer *ring)
  1246. {
  1247. struct drm_device *dev = obj->dev;
  1248. drm_i915_private_t *dev_priv = dev->dev_private;
  1249. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1250. BUG_ON(ring == NULL);
  1251. obj_priv->ring = ring;
  1252. /* Add a reference if we're newly entering the active list. */
  1253. if (!obj_priv->active) {
  1254. drm_gem_object_reference(obj);
  1255. obj_priv->active = 1;
  1256. }
  1257. /* Move from whatever list we were on to the tail of execution. */
  1258. spin_lock(&dev_priv->mm.active_list_lock);
  1259. list_move_tail(&obj_priv->list, &ring->active_list);
  1260. spin_unlock(&dev_priv->mm.active_list_lock);
  1261. obj_priv->last_rendering_seqno = seqno;
  1262. }
  1263. static void
  1264. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1265. {
  1266. struct drm_device *dev = obj->dev;
  1267. drm_i915_private_t *dev_priv = dev->dev_private;
  1268. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1269. BUG_ON(!obj_priv->active);
  1270. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1271. obj_priv->last_rendering_seqno = 0;
  1272. }
  1273. /* Immediately discard the backing storage */
  1274. static void
  1275. i915_gem_object_truncate(struct drm_gem_object *obj)
  1276. {
  1277. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1278. struct inode *inode;
  1279. /* Our goal here is to return as much of the memory as
  1280. * is possible back to the system as we are called from OOM.
  1281. * To do this we must instruct the shmfs to drop all of its
  1282. * backing pages, *now*. Here we mirror the actions taken
  1283. * when by shmem_delete_inode() to release the backing store.
  1284. */
  1285. inode = obj->filp->f_path.dentry->d_inode;
  1286. truncate_inode_pages(inode->i_mapping, 0);
  1287. if (inode->i_op->truncate_range)
  1288. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1289. obj_priv->madv = __I915_MADV_PURGED;
  1290. }
  1291. static inline int
  1292. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1293. {
  1294. return obj_priv->madv == I915_MADV_DONTNEED;
  1295. }
  1296. static void
  1297. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1298. {
  1299. struct drm_device *dev = obj->dev;
  1300. drm_i915_private_t *dev_priv = dev->dev_private;
  1301. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1302. i915_verify_inactive(dev, __FILE__, __LINE__);
  1303. if (obj_priv->pin_count != 0)
  1304. list_del_init(&obj_priv->list);
  1305. else
  1306. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1307. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1308. obj_priv->last_rendering_seqno = 0;
  1309. obj_priv->ring = NULL;
  1310. if (obj_priv->active) {
  1311. obj_priv->active = 0;
  1312. drm_gem_object_unreference(obj);
  1313. }
  1314. i915_verify_inactive(dev, __FILE__, __LINE__);
  1315. }
  1316. static void
  1317. i915_gem_process_flushing_list(struct drm_device *dev,
  1318. uint32_t flush_domains, uint32_t seqno,
  1319. struct intel_ring_buffer *ring)
  1320. {
  1321. drm_i915_private_t *dev_priv = dev->dev_private;
  1322. struct drm_i915_gem_object *obj_priv, *next;
  1323. list_for_each_entry_safe(obj_priv, next,
  1324. &dev_priv->mm.gpu_write_list,
  1325. gpu_write_list) {
  1326. struct drm_gem_object *obj = &obj_priv->base;
  1327. if ((obj->write_domain & flush_domains) ==
  1328. obj->write_domain &&
  1329. obj_priv->ring->ring_flag == ring->ring_flag) {
  1330. uint32_t old_write_domain = obj->write_domain;
  1331. obj->write_domain = 0;
  1332. list_del_init(&obj_priv->gpu_write_list);
  1333. i915_gem_object_move_to_active(obj, seqno, ring);
  1334. /* update the fence lru list */
  1335. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1336. struct drm_i915_fence_reg *reg =
  1337. &dev_priv->fence_regs[obj_priv->fence_reg];
  1338. list_move_tail(&reg->lru_list,
  1339. &dev_priv->mm.fence_list);
  1340. }
  1341. trace_i915_gem_object_change_domain(obj,
  1342. obj->read_domains,
  1343. old_write_domain);
  1344. }
  1345. }
  1346. }
  1347. uint32_t
  1348. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1349. uint32_t flush_domains, struct intel_ring_buffer *ring)
  1350. {
  1351. drm_i915_private_t *dev_priv = dev->dev_private;
  1352. struct drm_i915_file_private *i915_file_priv = NULL;
  1353. struct drm_i915_gem_request *request;
  1354. uint32_t seqno;
  1355. int was_empty;
  1356. if (file_priv != NULL)
  1357. i915_file_priv = file_priv->driver_priv;
  1358. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1359. if (request == NULL)
  1360. return 0;
  1361. seqno = ring->add_request(dev, ring, file_priv, flush_domains);
  1362. request->seqno = seqno;
  1363. request->ring = ring;
  1364. request->emitted_jiffies = jiffies;
  1365. was_empty = list_empty(&ring->request_list);
  1366. list_add_tail(&request->list, &ring->request_list);
  1367. if (i915_file_priv) {
  1368. list_add_tail(&request->client_list,
  1369. &i915_file_priv->mm.request_list);
  1370. } else {
  1371. INIT_LIST_HEAD(&request->client_list);
  1372. }
  1373. /* Associate any objects on the flushing list matching the write
  1374. * domain we're flushing with our flush.
  1375. */
  1376. if (flush_domains != 0)
  1377. i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
  1378. if (!dev_priv->mm.suspended) {
  1379. mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
  1380. if (was_empty)
  1381. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1382. }
  1383. return seqno;
  1384. }
  1385. /**
  1386. * Command execution barrier
  1387. *
  1388. * Ensures that all commands in the ring are finished
  1389. * before signalling the CPU
  1390. */
  1391. static uint32_t
  1392. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1393. {
  1394. uint32_t flush_domains = 0;
  1395. /* The sampler always gets flushed on i965 (sigh) */
  1396. if (IS_I965G(dev))
  1397. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1398. ring->flush(dev, ring,
  1399. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1400. return flush_domains;
  1401. }
  1402. /**
  1403. * Moves buffers associated only with the given active seqno from the active
  1404. * to inactive list, potentially freeing them.
  1405. */
  1406. static void
  1407. i915_gem_retire_request(struct drm_device *dev,
  1408. struct drm_i915_gem_request *request)
  1409. {
  1410. drm_i915_private_t *dev_priv = dev->dev_private;
  1411. trace_i915_gem_request_retire(dev, request->seqno);
  1412. /* Move any buffers on the active list that are no longer referenced
  1413. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1414. */
  1415. spin_lock(&dev_priv->mm.active_list_lock);
  1416. while (!list_empty(&request->ring->active_list)) {
  1417. struct drm_gem_object *obj;
  1418. struct drm_i915_gem_object *obj_priv;
  1419. obj_priv = list_first_entry(&request->ring->active_list,
  1420. struct drm_i915_gem_object,
  1421. list);
  1422. obj = &obj_priv->base;
  1423. /* If the seqno being retired doesn't match the oldest in the
  1424. * list, then the oldest in the list must still be newer than
  1425. * this seqno.
  1426. */
  1427. if (obj_priv->last_rendering_seqno != request->seqno)
  1428. goto out;
  1429. #if WATCH_LRU
  1430. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1431. __func__, request->seqno, obj);
  1432. #endif
  1433. if (obj->write_domain != 0)
  1434. i915_gem_object_move_to_flushing(obj);
  1435. else {
  1436. /* Take a reference on the object so it won't be
  1437. * freed while the spinlock is held. The list
  1438. * protection for this spinlock is safe when breaking
  1439. * the lock like this since the next thing we do
  1440. * is just get the head of the list again.
  1441. */
  1442. drm_gem_object_reference(obj);
  1443. i915_gem_object_move_to_inactive(obj);
  1444. spin_unlock(&dev_priv->mm.active_list_lock);
  1445. drm_gem_object_unreference(obj);
  1446. spin_lock(&dev_priv->mm.active_list_lock);
  1447. }
  1448. }
  1449. out:
  1450. spin_unlock(&dev_priv->mm.active_list_lock);
  1451. }
  1452. /**
  1453. * Returns true if seq1 is later than seq2.
  1454. */
  1455. bool
  1456. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1457. {
  1458. return (int32_t)(seq1 - seq2) >= 0;
  1459. }
  1460. uint32_t
  1461. i915_get_gem_seqno(struct drm_device *dev,
  1462. struct intel_ring_buffer *ring)
  1463. {
  1464. return ring->get_gem_seqno(dev, ring);
  1465. }
  1466. /**
  1467. * This function clears the request list as sequence numbers are passed.
  1468. */
  1469. static void
  1470. i915_gem_retire_requests_ring(struct drm_device *dev,
  1471. struct intel_ring_buffer *ring)
  1472. {
  1473. drm_i915_private_t *dev_priv = dev->dev_private;
  1474. uint32_t seqno;
  1475. if (!ring->status_page.page_addr
  1476. || list_empty(&ring->request_list))
  1477. return;
  1478. seqno = i915_get_gem_seqno(dev, ring);
  1479. while (!list_empty(&ring->request_list)) {
  1480. struct drm_i915_gem_request *request;
  1481. uint32_t retiring_seqno;
  1482. request = list_first_entry(&ring->request_list,
  1483. struct drm_i915_gem_request,
  1484. list);
  1485. retiring_seqno = request->seqno;
  1486. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1487. atomic_read(&dev_priv->mm.wedged)) {
  1488. i915_gem_retire_request(dev, request);
  1489. list_del(&request->list);
  1490. list_del(&request->client_list);
  1491. kfree(request);
  1492. } else
  1493. break;
  1494. }
  1495. if (unlikely (dev_priv->trace_irq_seqno &&
  1496. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1497. ring->user_irq_put(dev, ring);
  1498. dev_priv->trace_irq_seqno = 0;
  1499. }
  1500. }
  1501. void
  1502. i915_gem_retire_requests(struct drm_device *dev)
  1503. {
  1504. drm_i915_private_t *dev_priv = dev->dev_private;
  1505. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1506. struct drm_i915_gem_object *obj_priv, *tmp;
  1507. /* We must be careful that during unbind() we do not
  1508. * accidentally infinitely recurse into retire requests.
  1509. * Currently:
  1510. * retire -> free -> unbind -> wait -> retire_ring
  1511. */
  1512. list_for_each_entry_safe(obj_priv, tmp,
  1513. &dev_priv->mm.deferred_free_list,
  1514. list)
  1515. i915_gem_free_object_tail(&obj_priv->base);
  1516. }
  1517. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1518. if (HAS_BSD(dev))
  1519. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1520. }
  1521. void
  1522. i915_gem_retire_work_handler(struct work_struct *work)
  1523. {
  1524. drm_i915_private_t *dev_priv;
  1525. struct drm_device *dev;
  1526. dev_priv = container_of(work, drm_i915_private_t,
  1527. mm.retire_work.work);
  1528. dev = dev_priv->dev;
  1529. mutex_lock(&dev->struct_mutex);
  1530. i915_gem_retire_requests(dev);
  1531. if (!dev_priv->mm.suspended &&
  1532. (!list_empty(&dev_priv->render_ring.request_list) ||
  1533. (HAS_BSD(dev) &&
  1534. !list_empty(&dev_priv->bsd_ring.request_list))))
  1535. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1536. mutex_unlock(&dev->struct_mutex);
  1537. }
  1538. int
  1539. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1540. int interruptible, struct intel_ring_buffer *ring)
  1541. {
  1542. drm_i915_private_t *dev_priv = dev->dev_private;
  1543. u32 ier;
  1544. int ret = 0;
  1545. BUG_ON(seqno == 0);
  1546. if (atomic_read(&dev_priv->mm.wedged))
  1547. return -EIO;
  1548. if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
  1549. if (HAS_PCH_SPLIT(dev))
  1550. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1551. else
  1552. ier = I915_READ(IER);
  1553. if (!ier) {
  1554. DRM_ERROR("something (likely vbetool) disabled "
  1555. "interrupts, re-enabling\n");
  1556. i915_driver_irq_preinstall(dev);
  1557. i915_driver_irq_postinstall(dev);
  1558. }
  1559. trace_i915_gem_request_wait_begin(dev, seqno);
  1560. ring->waiting_gem_seqno = seqno;
  1561. ring->user_irq_get(dev, ring);
  1562. if (interruptible)
  1563. ret = wait_event_interruptible(ring->irq_queue,
  1564. i915_seqno_passed(
  1565. ring->get_gem_seqno(dev, ring), seqno)
  1566. || atomic_read(&dev_priv->mm.wedged));
  1567. else
  1568. wait_event(ring->irq_queue,
  1569. i915_seqno_passed(
  1570. ring->get_gem_seqno(dev, ring), seqno)
  1571. || atomic_read(&dev_priv->mm.wedged));
  1572. ring->user_irq_put(dev, ring);
  1573. ring->waiting_gem_seqno = 0;
  1574. trace_i915_gem_request_wait_end(dev, seqno);
  1575. }
  1576. if (atomic_read(&dev_priv->mm.wedged))
  1577. ret = -EIO;
  1578. if (ret && ret != -ERESTARTSYS)
  1579. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1580. __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
  1581. /* Directly dispatch request retiring. While we have the work queue
  1582. * to handle this, the waiter on a request often wants an associated
  1583. * buffer to have made it to the inactive list, and we would need
  1584. * a separate wait queue to handle that.
  1585. */
  1586. if (ret == 0)
  1587. i915_gem_retire_requests_ring(dev, ring);
  1588. return ret;
  1589. }
  1590. /**
  1591. * Waits for a sequence number to be signaled, and cleans up the
  1592. * request and object lists appropriately for that event.
  1593. */
  1594. static int
  1595. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1596. struct intel_ring_buffer *ring)
  1597. {
  1598. return i915_do_wait_request(dev, seqno, 1, ring);
  1599. }
  1600. static void
  1601. i915_gem_flush(struct drm_device *dev,
  1602. uint32_t invalidate_domains,
  1603. uint32_t flush_domains)
  1604. {
  1605. drm_i915_private_t *dev_priv = dev->dev_private;
  1606. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1607. drm_agp_chipset_flush(dev);
  1608. dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
  1609. invalidate_domains,
  1610. flush_domains);
  1611. if (HAS_BSD(dev))
  1612. dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
  1613. invalidate_domains,
  1614. flush_domains);
  1615. }
  1616. /**
  1617. * Ensures that all rendering to the object has completed and the object is
  1618. * safe to unbind from the GTT or access from the CPU.
  1619. */
  1620. static int
  1621. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1622. {
  1623. struct drm_device *dev = obj->dev;
  1624. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1625. int ret;
  1626. /* This function only exists to support waiting for existing rendering,
  1627. * not for emitting required flushes.
  1628. */
  1629. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1630. /* If there is rendering queued on the buffer being evicted, wait for
  1631. * it.
  1632. */
  1633. if (obj_priv->active) {
  1634. #if WATCH_BUF
  1635. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1636. __func__, obj, obj_priv->last_rendering_seqno);
  1637. #endif
  1638. ret = i915_wait_request(dev,
  1639. obj_priv->last_rendering_seqno, obj_priv->ring);
  1640. if (ret != 0)
  1641. return ret;
  1642. }
  1643. return 0;
  1644. }
  1645. /**
  1646. * Unbinds an object from the GTT aperture.
  1647. */
  1648. int
  1649. i915_gem_object_unbind(struct drm_gem_object *obj)
  1650. {
  1651. struct drm_device *dev = obj->dev;
  1652. drm_i915_private_t *dev_priv = dev->dev_private;
  1653. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1654. int ret = 0;
  1655. #if WATCH_BUF
  1656. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1657. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1658. #endif
  1659. if (obj_priv->gtt_space == NULL)
  1660. return 0;
  1661. if (obj_priv->pin_count != 0) {
  1662. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1663. return -EINVAL;
  1664. }
  1665. /* blow away mappings if mapped through GTT */
  1666. i915_gem_release_mmap(obj);
  1667. /* Move the object to the CPU domain to ensure that
  1668. * any possible CPU writes while it's not in the GTT
  1669. * are flushed when we go to remap it. This will
  1670. * also ensure that all pending GPU writes are finished
  1671. * before we unbind.
  1672. */
  1673. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1674. if (ret == -ERESTARTSYS)
  1675. return ret;
  1676. /* Continue on if we fail due to EIO, the GPU is hung so we
  1677. * should be safe and we need to cleanup or else we might
  1678. * cause memory corruption through use-after-free.
  1679. */
  1680. /* release the fence reg _after_ flushing */
  1681. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1682. i915_gem_clear_fence_reg(obj);
  1683. if (obj_priv->agp_mem != NULL) {
  1684. drm_unbind_agp(obj_priv->agp_mem);
  1685. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1686. obj_priv->agp_mem = NULL;
  1687. }
  1688. i915_gem_object_put_pages(obj);
  1689. BUG_ON(obj_priv->pages_refcount);
  1690. if (obj_priv->gtt_space) {
  1691. atomic_dec(&dev->gtt_count);
  1692. atomic_sub(obj->size, &dev->gtt_memory);
  1693. drm_mm_put_block(obj_priv->gtt_space);
  1694. obj_priv->gtt_space = NULL;
  1695. }
  1696. /* Remove ourselves from the LRU list if present. */
  1697. spin_lock(&dev_priv->mm.active_list_lock);
  1698. if (!list_empty(&obj_priv->list))
  1699. list_del_init(&obj_priv->list);
  1700. spin_unlock(&dev_priv->mm.active_list_lock);
  1701. if (i915_gem_object_is_purgeable(obj_priv))
  1702. i915_gem_object_truncate(obj);
  1703. trace_i915_gem_object_unbind(obj);
  1704. return ret;
  1705. }
  1706. int
  1707. i915_gpu_idle(struct drm_device *dev)
  1708. {
  1709. drm_i915_private_t *dev_priv = dev->dev_private;
  1710. bool lists_empty;
  1711. uint32_t seqno1, seqno2;
  1712. int ret;
  1713. spin_lock(&dev_priv->mm.active_list_lock);
  1714. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1715. list_empty(&dev_priv->render_ring.active_list) &&
  1716. (!HAS_BSD(dev) ||
  1717. list_empty(&dev_priv->bsd_ring.active_list)));
  1718. spin_unlock(&dev_priv->mm.active_list_lock);
  1719. if (lists_empty)
  1720. return 0;
  1721. /* Flush everything onto the inactive list. */
  1722. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1723. seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1724. &dev_priv->render_ring);
  1725. if (seqno1 == 0)
  1726. return -ENOMEM;
  1727. ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
  1728. if (HAS_BSD(dev)) {
  1729. seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
  1730. &dev_priv->bsd_ring);
  1731. if (seqno2 == 0)
  1732. return -ENOMEM;
  1733. ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
  1734. if (ret)
  1735. return ret;
  1736. }
  1737. return ret;
  1738. }
  1739. int
  1740. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1741. gfp_t gfpmask)
  1742. {
  1743. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1744. int page_count, i;
  1745. struct address_space *mapping;
  1746. struct inode *inode;
  1747. struct page *page;
  1748. BUG_ON(obj_priv->pages_refcount
  1749. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1750. if (obj_priv->pages_refcount++ != 0)
  1751. return 0;
  1752. /* Get the list of pages out of our struct file. They'll be pinned
  1753. * at this point until we release them.
  1754. */
  1755. page_count = obj->size / PAGE_SIZE;
  1756. BUG_ON(obj_priv->pages != NULL);
  1757. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1758. if (obj_priv->pages == NULL) {
  1759. obj_priv->pages_refcount--;
  1760. return -ENOMEM;
  1761. }
  1762. inode = obj->filp->f_path.dentry->d_inode;
  1763. mapping = inode->i_mapping;
  1764. for (i = 0; i < page_count; i++) {
  1765. page = read_cache_page_gfp(mapping, i,
  1766. GFP_HIGHUSER |
  1767. __GFP_COLD |
  1768. __GFP_RECLAIMABLE |
  1769. gfpmask);
  1770. if (IS_ERR(page))
  1771. goto err_pages;
  1772. obj_priv->pages[i] = page;
  1773. }
  1774. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1775. i915_gem_object_do_bit_17_swizzle(obj);
  1776. return 0;
  1777. err_pages:
  1778. while (i--)
  1779. page_cache_release(obj_priv->pages[i]);
  1780. drm_free_large(obj_priv->pages);
  1781. obj_priv->pages = NULL;
  1782. obj_priv->pages_refcount--;
  1783. return PTR_ERR(page);
  1784. }
  1785. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1786. {
  1787. struct drm_gem_object *obj = reg->obj;
  1788. struct drm_device *dev = obj->dev;
  1789. drm_i915_private_t *dev_priv = dev->dev_private;
  1790. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1791. int regnum = obj_priv->fence_reg;
  1792. uint64_t val;
  1793. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1794. 0xfffff000) << 32;
  1795. val |= obj_priv->gtt_offset & 0xfffff000;
  1796. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1797. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1798. if (obj_priv->tiling_mode == I915_TILING_Y)
  1799. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1800. val |= I965_FENCE_REG_VALID;
  1801. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1802. }
  1803. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1804. {
  1805. struct drm_gem_object *obj = reg->obj;
  1806. struct drm_device *dev = obj->dev;
  1807. drm_i915_private_t *dev_priv = dev->dev_private;
  1808. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1809. int regnum = obj_priv->fence_reg;
  1810. uint64_t val;
  1811. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1812. 0xfffff000) << 32;
  1813. val |= obj_priv->gtt_offset & 0xfffff000;
  1814. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1815. if (obj_priv->tiling_mode == I915_TILING_Y)
  1816. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1817. val |= I965_FENCE_REG_VALID;
  1818. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1819. }
  1820. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1821. {
  1822. struct drm_gem_object *obj = reg->obj;
  1823. struct drm_device *dev = obj->dev;
  1824. drm_i915_private_t *dev_priv = dev->dev_private;
  1825. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1826. int regnum = obj_priv->fence_reg;
  1827. int tile_width;
  1828. uint32_t fence_reg, val;
  1829. uint32_t pitch_val;
  1830. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1831. (obj_priv->gtt_offset & (obj->size - 1))) {
  1832. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1833. __func__, obj_priv->gtt_offset, obj->size);
  1834. return;
  1835. }
  1836. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1837. HAS_128_BYTE_Y_TILING(dev))
  1838. tile_width = 128;
  1839. else
  1840. tile_width = 512;
  1841. /* Note: pitch better be a power of two tile widths */
  1842. pitch_val = obj_priv->stride / tile_width;
  1843. pitch_val = ffs(pitch_val) - 1;
  1844. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1845. HAS_128_BYTE_Y_TILING(dev))
  1846. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1847. else
  1848. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1849. val = obj_priv->gtt_offset;
  1850. if (obj_priv->tiling_mode == I915_TILING_Y)
  1851. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1852. val |= I915_FENCE_SIZE_BITS(obj->size);
  1853. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1854. val |= I830_FENCE_REG_VALID;
  1855. if (regnum < 8)
  1856. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1857. else
  1858. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1859. I915_WRITE(fence_reg, val);
  1860. }
  1861. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1862. {
  1863. struct drm_gem_object *obj = reg->obj;
  1864. struct drm_device *dev = obj->dev;
  1865. drm_i915_private_t *dev_priv = dev->dev_private;
  1866. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1867. int regnum = obj_priv->fence_reg;
  1868. uint32_t val;
  1869. uint32_t pitch_val;
  1870. uint32_t fence_size_bits;
  1871. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1872. (obj_priv->gtt_offset & (obj->size - 1))) {
  1873. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1874. __func__, obj_priv->gtt_offset);
  1875. return;
  1876. }
  1877. pitch_val = obj_priv->stride / 128;
  1878. pitch_val = ffs(pitch_val) - 1;
  1879. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1880. val = obj_priv->gtt_offset;
  1881. if (obj_priv->tiling_mode == I915_TILING_Y)
  1882. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1883. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1884. WARN_ON(fence_size_bits & ~0x00000f00);
  1885. val |= fence_size_bits;
  1886. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1887. val |= I830_FENCE_REG_VALID;
  1888. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1889. }
  1890. static int i915_find_fence_reg(struct drm_device *dev)
  1891. {
  1892. struct drm_i915_fence_reg *reg = NULL;
  1893. struct drm_i915_gem_object *obj_priv = NULL;
  1894. struct drm_i915_private *dev_priv = dev->dev_private;
  1895. struct drm_gem_object *obj = NULL;
  1896. int i, avail, ret;
  1897. /* First try to find a free reg */
  1898. avail = 0;
  1899. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1900. reg = &dev_priv->fence_regs[i];
  1901. if (!reg->obj)
  1902. return i;
  1903. obj_priv = to_intel_bo(reg->obj);
  1904. if (!obj_priv->pin_count)
  1905. avail++;
  1906. }
  1907. if (avail == 0)
  1908. return -ENOSPC;
  1909. /* None available, try to steal one or wait for a user to finish */
  1910. i = I915_FENCE_REG_NONE;
  1911. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  1912. lru_list) {
  1913. obj = reg->obj;
  1914. obj_priv = to_intel_bo(obj);
  1915. if (obj_priv->pin_count)
  1916. continue;
  1917. /* found one! */
  1918. i = obj_priv->fence_reg;
  1919. break;
  1920. }
  1921. BUG_ON(i == I915_FENCE_REG_NONE);
  1922. /* We only have a reference on obj from the active list. put_fence_reg
  1923. * might drop that one, causing a use-after-free in it. So hold a
  1924. * private reference to obj like the other callers of put_fence_reg
  1925. * (set_tiling ioctl) do. */
  1926. drm_gem_object_reference(obj);
  1927. ret = i915_gem_object_put_fence_reg(obj);
  1928. drm_gem_object_unreference(obj);
  1929. if (ret != 0)
  1930. return ret;
  1931. return i;
  1932. }
  1933. /**
  1934. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1935. * @obj: object to map through a fence reg
  1936. *
  1937. * When mapping objects through the GTT, userspace wants to be able to write
  1938. * to them without having to worry about swizzling if the object is tiled.
  1939. *
  1940. * This function walks the fence regs looking for a free one for @obj,
  1941. * stealing one if it can't find any.
  1942. *
  1943. * It then sets up the reg based on the object's properties: address, pitch
  1944. * and tiling format.
  1945. */
  1946. int
  1947. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1948. {
  1949. struct drm_device *dev = obj->dev;
  1950. struct drm_i915_private *dev_priv = dev->dev_private;
  1951. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1952. struct drm_i915_fence_reg *reg = NULL;
  1953. int ret;
  1954. /* Just update our place in the LRU if our fence is getting used. */
  1955. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1956. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1957. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1958. return 0;
  1959. }
  1960. switch (obj_priv->tiling_mode) {
  1961. case I915_TILING_NONE:
  1962. WARN(1, "allocating a fence for non-tiled object?\n");
  1963. break;
  1964. case I915_TILING_X:
  1965. if (!obj_priv->stride)
  1966. return -EINVAL;
  1967. WARN((obj_priv->stride & (512 - 1)),
  1968. "object 0x%08x is X tiled but has non-512B pitch\n",
  1969. obj_priv->gtt_offset);
  1970. break;
  1971. case I915_TILING_Y:
  1972. if (!obj_priv->stride)
  1973. return -EINVAL;
  1974. WARN((obj_priv->stride & (128 - 1)),
  1975. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1976. obj_priv->gtt_offset);
  1977. break;
  1978. }
  1979. ret = i915_find_fence_reg(dev);
  1980. if (ret < 0)
  1981. return ret;
  1982. obj_priv->fence_reg = ret;
  1983. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  1984. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  1985. reg->obj = obj;
  1986. switch (INTEL_INFO(dev)->gen) {
  1987. case 6:
  1988. sandybridge_write_fence_reg(reg);
  1989. break;
  1990. case 5:
  1991. case 4:
  1992. i965_write_fence_reg(reg);
  1993. break;
  1994. case 3:
  1995. i915_write_fence_reg(reg);
  1996. break;
  1997. case 2:
  1998. i830_write_fence_reg(reg);
  1999. break;
  2000. }
  2001. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2002. obj_priv->tiling_mode);
  2003. return 0;
  2004. }
  2005. /**
  2006. * i915_gem_clear_fence_reg - clear out fence register info
  2007. * @obj: object to clear
  2008. *
  2009. * Zeroes out the fence register itself and clears out the associated
  2010. * data structures in dev_priv and obj_priv.
  2011. */
  2012. static void
  2013. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2014. {
  2015. struct drm_device *dev = obj->dev;
  2016. drm_i915_private_t *dev_priv = dev->dev_private;
  2017. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2018. struct drm_i915_fence_reg *reg =
  2019. &dev_priv->fence_regs[obj_priv->fence_reg];
  2020. uint32_t fence_reg;
  2021. switch (INTEL_INFO(dev)->gen) {
  2022. case 6:
  2023. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2024. (obj_priv->fence_reg * 8), 0);
  2025. break;
  2026. case 5:
  2027. case 4:
  2028. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2029. break;
  2030. case 3:
  2031. if (obj_priv->fence_reg > 8)
  2032. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2033. else
  2034. case 2:
  2035. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2036. I915_WRITE(fence_reg, 0);
  2037. break;
  2038. }
  2039. reg->obj = NULL;
  2040. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2041. list_del_init(&reg->lru_list);
  2042. }
  2043. /**
  2044. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2045. * to the buffer to finish, and then resets the fence register.
  2046. * @obj: tiled object holding a fence register.
  2047. *
  2048. * Zeroes out the fence register itself and clears out the associated
  2049. * data structures in dev_priv and obj_priv.
  2050. */
  2051. int
  2052. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2053. {
  2054. struct drm_device *dev = obj->dev;
  2055. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2056. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2057. return 0;
  2058. /* If we've changed tiling, GTT-mappings of the object
  2059. * need to re-fault to ensure that the correct fence register
  2060. * setup is in place.
  2061. */
  2062. i915_gem_release_mmap(obj);
  2063. /* On the i915, GPU access to tiled buffers is via a fence,
  2064. * therefore we must wait for any outstanding access to complete
  2065. * before clearing the fence.
  2066. */
  2067. if (!IS_I965G(dev)) {
  2068. int ret;
  2069. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2070. if (ret != 0)
  2071. return ret;
  2072. ret = i915_gem_object_wait_rendering(obj);
  2073. if (ret != 0)
  2074. return ret;
  2075. }
  2076. i915_gem_object_flush_gtt_write_domain(obj);
  2077. i915_gem_clear_fence_reg (obj);
  2078. return 0;
  2079. }
  2080. /**
  2081. * Finds free space in the GTT aperture and binds the object there.
  2082. */
  2083. static int
  2084. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2085. {
  2086. struct drm_device *dev = obj->dev;
  2087. drm_i915_private_t *dev_priv = dev->dev_private;
  2088. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2089. struct drm_mm_node *free_space;
  2090. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2091. int ret;
  2092. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2093. DRM_ERROR("Attempting to bind a purgeable object\n");
  2094. return -EINVAL;
  2095. }
  2096. if (alignment == 0)
  2097. alignment = i915_gem_get_gtt_alignment(obj);
  2098. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2099. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2100. return -EINVAL;
  2101. }
  2102. /* If the object is bigger than the entire aperture, reject it early
  2103. * before evicting everything in a vain attempt to find space.
  2104. */
  2105. if (obj->size > dev->gtt_total) {
  2106. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2107. return -E2BIG;
  2108. }
  2109. search_free:
  2110. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2111. obj->size, alignment, 0);
  2112. if (free_space != NULL) {
  2113. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2114. alignment);
  2115. if (obj_priv->gtt_space != NULL)
  2116. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2117. }
  2118. if (obj_priv->gtt_space == NULL) {
  2119. /* If the gtt is empty and we're still having trouble
  2120. * fitting our object in, we're out of memory.
  2121. */
  2122. #if WATCH_LRU
  2123. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2124. #endif
  2125. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2126. if (ret)
  2127. return ret;
  2128. goto search_free;
  2129. }
  2130. #if WATCH_BUF
  2131. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2132. obj->size, obj_priv->gtt_offset);
  2133. #endif
  2134. ret = i915_gem_object_get_pages(obj, gfpmask);
  2135. if (ret) {
  2136. drm_mm_put_block(obj_priv->gtt_space);
  2137. obj_priv->gtt_space = NULL;
  2138. if (ret == -ENOMEM) {
  2139. /* first try to clear up some space from the GTT */
  2140. ret = i915_gem_evict_something(dev, obj->size,
  2141. alignment);
  2142. if (ret) {
  2143. /* now try to shrink everyone else */
  2144. if (gfpmask) {
  2145. gfpmask = 0;
  2146. goto search_free;
  2147. }
  2148. return ret;
  2149. }
  2150. goto search_free;
  2151. }
  2152. return ret;
  2153. }
  2154. /* Create an AGP memory structure pointing at our pages, and bind it
  2155. * into the GTT.
  2156. */
  2157. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2158. obj_priv->pages,
  2159. obj->size >> PAGE_SHIFT,
  2160. obj_priv->gtt_offset,
  2161. obj_priv->agp_type);
  2162. if (obj_priv->agp_mem == NULL) {
  2163. i915_gem_object_put_pages(obj);
  2164. drm_mm_put_block(obj_priv->gtt_space);
  2165. obj_priv->gtt_space = NULL;
  2166. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2167. if (ret)
  2168. return ret;
  2169. goto search_free;
  2170. }
  2171. atomic_inc(&dev->gtt_count);
  2172. atomic_add(obj->size, &dev->gtt_memory);
  2173. /* keep track of bounds object by adding it to the inactive list */
  2174. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2175. /* Assert that the object is not currently in any GPU domain. As it
  2176. * wasn't in the GTT, there shouldn't be any way it could have been in
  2177. * a GPU cache
  2178. */
  2179. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2180. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2181. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2182. return 0;
  2183. }
  2184. void
  2185. i915_gem_clflush_object(struct drm_gem_object *obj)
  2186. {
  2187. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2188. /* If we don't have a page list set up, then we're not pinned
  2189. * to GPU, and we can ignore the cache flush because it'll happen
  2190. * again at bind time.
  2191. */
  2192. if (obj_priv->pages == NULL)
  2193. return;
  2194. trace_i915_gem_object_clflush(obj);
  2195. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2196. }
  2197. /** Flushes any GPU write domain for the object if it's dirty. */
  2198. static int
  2199. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2200. {
  2201. struct drm_device *dev = obj->dev;
  2202. uint32_t old_write_domain;
  2203. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2204. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2205. return 0;
  2206. /* Queue the GPU write cache flushing we need. */
  2207. old_write_domain = obj->write_domain;
  2208. i915_gem_flush(dev, 0, obj->write_domain);
  2209. if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
  2210. return -ENOMEM;
  2211. trace_i915_gem_object_change_domain(obj,
  2212. obj->read_domains,
  2213. old_write_domain);
  2214. return 0;
  2215. }
  2216. /** Flushes the GTT write domain for the object if it's dirty. */
  2217. static void
  2218. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2219. {
  2220. uint32_t old_write_domain;
  2221. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2222. return;
  2223. /* No actual flushing is required for the GTT write domain. Writes
  2224. * to it immediately go to main memory as far as we know, so there's
  2225. * no chipset flush. It also doesn't land in render cache.
  2226. */
  2227. old_write_domain = obj->write_domain;
  2228. obj->write_domain = 0;
  2229. trace_i915_gem_object_change_domain(obj,
  2230. obj->read_domains,
  2231. old_write_domain);
  2232. }
  2233. /** Flushes the CPU write domain for the object if it's dirty. */
  2234. static void
  2235. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2236. {
  2237. struct drm_device *dev = obj->dev;
  2238. uint32_t old_write_domain;
  2239. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2240. return;
  2241. i915_gem_clflush_object(obj);
  2242. drm_agp_chipset_flush(dev);
  2243. old_write_domain = obj->write_domain;
  2244. obj->write_domain = 0;
  2245. trace_i915_gem_object_change_domain(obj,
  2246. obj->read_domains,
  2247. old_write_domain);
  2248. }
  2249. int
  2250. i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
  2251. {
  2252. int ret = 0;
  2253. switch (obj->write_domain) {
  2254. case I915_GEM_DOMAIN_GTT:
  2255. i915_gem_object_flush_gtt_write_domain(obj);
  2256. break;
  2257. case I915_GEM_DOMAIN_CPU:
  2258. i915_gem_object_flush_cpu_write_domain(obj);
  2259. break;
  2260. default:
  2261. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2262. break;
  2263. }
  2264. return ret;
  2265. }
  2266. /**
  2267. * Moves a single object to the GTT read, and possibly write domain.
  2268. *
  2269. * This function returns when the move is complete, including waiting on
  2270. * flushes to occur.
  2271. */
  2272. int
  2273. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2274. {
  2275. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2276. uint32_t old_write_domain, old_read_domains;
  2277. int ret;
  2278. /* Not valid to be called on unbound objects. */
  2279. if (obj_priv->gtt_space == NULL)
  2280. return -EINVAL;
  2281. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2282. if (ret != 0)
  2283. return ret;
  2284. /* Wait on any GPU rendering and flushing to occur. */
  2285. ret = i915_gem_object_wait_rendering(obj);
  2286. if (ret != 0)
  2287. return ret;
  2288. old_write_domain = obj->write_domain;
  2289. old_read_domains = obj->read_domains;
  2290. /* If we're writing through the GTT domain, then CPU and GPU caches
  2291. * will need to be invalidated at next use.
  2292. */
  2293. if (write)
  2294. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2295. i915_gem_object_flush_cpu_write_domain(obj);
  2296. /* It should now be out of any other write domains, and we can update
  2297. * the domain values for our changes.
  2298. */
  2299. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2300. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2301. if (write) {
  2302. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2303. obj_priv->dirty = 1;
  2304. }
  2305. trace_i915_gem_object_change_domain(obj,
  2306. old_read_domains,
  2307. old_write_domain);
  2308. return 0;
  2309. }
  2310. /*
  2311. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2312. * wait, as in modesetting process we're not supposed to be interrupted.
  2313. */
  2314. int
  2315. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
  2316. {
  2317. struct drm_device *dev = obj->dev;
  2318. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2319. uint32_t old_write_domain, old_read_domains;
  2320. int ret;
  2321. /* Not valid to be called on unbound objects. */
  2322. if (obj_priv->gtt_space == NULL)
  2323. return -EINVAL;
  2324. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2325. if (ret)
  2326. return ret;
  2327. /* Wait on any GPU rendering and flushing to occur. */
  2328. if (obj_priv->active) {
  2329. #if WATCH_BUF
  2330. DRM_INFO("%s: object %p wait for seqno %08x\n",
  2331. __func__, obj, obj_priv->last_rendering_seqno);
  2332. #endif
  2333. ret = i915_do_wait_request(dev,
  2334. obj_priv->last_rendering_seqno,
  2335. 0,
  2336. obj_priv->ring);
  2337. if (ret != 0)
  2338. return ret;
  2339. }
  2340. i915_gem_object_flush_cpu_write_domain(obj);
  2341. old_write_domain = obj->write_domain;
  2342. old_read_domains = obj->read_domains;
  2343. /* It should now be out of any other write domains, and we can update
  2344. * the domain values for our changes.
  2345. */
  2346. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2347. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2348. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2349. obj_priv->dirty = 1;
  2350. trace_i915_gem_object_change_domain(obj,
  2351. old_read_domains,
  2352. old_write_domain);
  2353. return 0;
  2354. }
  2355. /**
  2356. * Moves a single object to the CPU read, and possibly write domain.
  2357. *
  2358. * This function returns when the move is complete, including waiting on
  2359. * flushes to occur.
  2360. */
  2361. static int
  2362. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2363. {
  2364. uint32_t old_write_domain, old_read_domains;
  2365. int ret;
  2366. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2367. if (ret)
  2368. return ret;
  2369. /* Wait on any GPU rendering and flushing to occur. */
  2370. ret = i915_gem_object_wait_rendering(obj);
  2371. if (ret != 0)
  2372. return ret;
  2373. i915_gem_object_flush_gtt_write_domain(obj);
  2374. /* If we have a partially-valid cache of the object in the CPU,
  2375. * finish invalidating it and free the per-page flags.
  2376. */
  2377. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2378. old_write_domain = obj->write_domain;
  2379. old_read_domains = obj->read_domains;
  2380. /* Flush the CPU cache if it's still invalid. */
  2381. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2382. i915_gem_clflush_object(obj);
  2383. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2384. }
  2385. /* It should now be out of any other write domains, and we can update
  2386. * the domain values for our changes.
  2387. */
  2388. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2389. /* If we're writing through the CPU, then the GPU read domains will
  2390. * need to be invalidated at next use.
  2391. */
  2392. if (write) {
  2393. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2394. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2395. }
  2396. trace_i915_gem_object_change_domain(obj,
  2397. old_read_domains,
  2398. old_write_domain);
  2399. return 0;
  2400. }
  2401. /*
  2402. * Set the next domain for the specified object. This
  2403. * may not actually perform the necessary flushing/invaliding though,
  2404. * as that may want to be batched with other set_domain operations
  2405. *
  2406. * This is (we hope) the only really tricky part of gem. The goal
  2407. * is fairly simple -- track which caches hold bits of the object
  2408. * and make sure they remain coherent. A few concrete examples may
  2409. * help to explain how it works. For shorthand, we use the notation
  2410. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2411. * a pair of read and write domain masks.
  2412. *
  2413. * Case 1: the batch buffer
  2414. *
  2415. * 1. Allocated
  2416. * 2. Written by CPU
  2417. * 3. Mapped to GTT
  2418. * 4. Read by GPU
  2419. * 5. Unmapped from GTT
  2420. * 6. Freed
  2421. *
  2422. * Let's take these a step at a time
  2423. *
  2424. * 1. Allocated
  2425. * Pages allocated from the kernel may still have
  2426. * cache contents, so we set them to (CPU, CPU) always.
  2427. * 2. Written by CPU (using pwrite)
  2428. * The pwrite function calls set_domain (CPU, CPU) and
  2429. * this function does nothing (as nothing changes)
  2430. * 3. Mapped by GTT
  2431. * This function asserts that the object is not
  2432. * currently in any GPU-based read or write domains
  2433. * 4. Read by GPU
  2434. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2435. * As write_domain is zero, this function adds in the
  2436. * current read domains (CPU+COMMAND, 0).
  2437. * flush_domains is set to CPU.
  2438. * invalidate_domains is set to COMMAND
  2439. * clflush is run to get data out of the CPU caches
  2440. * then i915_dev_set_domain calls i915_gem_flush to
  2441. * emit an MI_FLUSH and drm_agp_chipset_flush
  2442. * 5. Unmapped from GTT
  2443. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2444. * flush_domains and invalidate_domains end up both zero
  2445. * so no flushing/invalidating happens
  2446. * 6. Freed
  2447. * yay, done
  2448. *
  2449. * Case 2: The shared render buffer
  2450. *
  2451. * 1. Allocated
  2452. * 2. Mapped to GTT
  2453. * 3. Read/written by GPU
  2454. * 4. set_domain to (CPU,CPU)
  2455. * 5. Read/written by CPU
  2456. * 6. Read/written by GPU
  2457. *
  2458. * 1. Allocated
  2459. * Same as last example, (CPU, CPU)
  2460. * 2. Mapped to GTT
  2461. * Nothing changes (assertions find that it is not in the GPU)
  2462. * 3. Read/written by GPU
  2463. * execbuffer calls set_domain (RENDER, RENDER)
  2464. * flush_domains gets CPU
  2465. * invalidate_domains gets GPU
  2466. * clflush (obj)
  2467. * MI_FLUSH and drm_agp_chipset_flush
  2468. * 4. set_domain (CPU, CPU)
  2469. * flush_domains gets GPU
  2470. * invalidate_domains gets CPU
  2471. * wait_rendering (obj) to make sure all drawing is complete.
  2472. * This will include an MI_FLUSH to get the data from GPU
  2473. * to memory
  2474. * clflush (obj) to invalidate the CPU cache
  2475. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2476. * 5. Read/written by CPU
  2477. * cache lines are loaded and dirtied
  2478. * 6. Read written by GPU
  2479. * Same as last GPU access
  2480. *
  2481. * Case 3: The constant buffer
  2482. *
  2483. * 1. Allocated
  2484. * 2. Written by CPU
  2485. * 3. Read by GPU
  2486. * 4. Updated (written) by CPU again
  2487. * 5. Read by GPU
  2488. *
  2489. * 1. Allocated
  2490. * (CPU, CPU)
  2491. * 2. Written by CPU
  2492. * (CPU, CPU)
  2493. * 3. Read by GPU
  2494. * (CPU+RENDER, 0)
  2495. * flush_domains = CPU
  2496. * invalidate_domains = RENDER
  2497. * clflush (obj)
  2498. * MI_FLUSH
  2499. * drm_agp_chipset_flush
  2500. * 4. Updated (written) by CPU again
  2501. * (CPU, CPU)
  2502. * flush_domains = 0 (no previous write domain)
  2503. * invalidate_domains = 0 (no new read domains)
  2504. * 5. Read by GPU
  2505. * (CPU+RENDER, 0)
  2506. * flush_domains = CPU
  2507. * invalidate_domains = RENDER
  2508. * clflush (obj)
  2509. * MI_FLUSH
  2510. * drm_agp_chipset_flush
  2511. */
  2512. static void
  2513. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2514. {
  2515. struct drm_device *dev = obj->dev;
  2516. drm_i915_private_t *dev_priv = dev->dev_private;
  2517. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2518. uint32_t invalidate_domains = 0;
  2519. uint32_t flush_domains = 0;
  2520. uint32_t old_read_domains;
  2521. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2522. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2523. intel_mark_busy(dev, obj);
  2524. #if WATCH_BUF
  2525. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2526. __func__, obj,
  2527. obj->read_domains, obj->pending_read_domains,
  2528. obj->write_domain, obj->pending_write_domain);
  2529. #endif
  2530. /*
  2531. * If the object isn't moving to a new write domain,
  2532. * let the object stay in multiple read domains
  2533. */
  2534. if (obj->pending_write_domain == 0)
  2535. obj->pending_read_domains |= obj->read_domains;
  2536. else
  2537. obj_priv->dirty = 1;
  2538. /*
  2539. * Flush the current write domain if
  2540. * the new read domains don't match. Invalidate
  2541. * any read domains which differ from the old
  2542. * write domain
  2543. */
  2544. if (obj->write_domain &&
  2545. obj->write_domain != obj->pending_read_domains) {
  2546. flush_domains |= obj->write_domain;
  2547. invalidate_domains |=
  2548. obj->pending_read_domains & ~obj->write_domain;
  2549. }
  2550. /*
  2551. * Invalidate any read caches which may have
  2552. * stale data. That is, any new read domains.
  2553. */
  2554. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2555. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2556. #if WATCH_BUF
  2557. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2558. __func__, flush_domains, invalidate_domains);
  2559. #endif
  2560. i915_gem_clflush_object(obj);
  2561. }
  2562. old_read_domains = obj->read_domains;
  2563. /* The actual obj->write_domain will be updated with
  2564. * pending_write_domain after we emit the accumulated flush for all
  2565. * of our domain changes in execbuffers (which clears objects'
  2566. * write_domains). So if we have a current write domain that we
  2567. * aren't changing, set pending_write_domain to that.
  2568. */
  2569. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2570. obj->pending_write_domain = obj->write_domain;
  2571. obj->read_domains = obj->pending_read_domains;
  2572. if (flush_domains & I915_GEM_GPU_DOMAINS) {
  2573. if (obj_priv->ring == &dev_priv->render_ring)
  2574. dev_priv->flush_rings |= FLUSH_RENDER_RING;
  2575. else if (obj_priv->ring == &dev_priv->bsd_ring)
  2576. dev_priv->flush_rings |= FLUSH_BSD_RING;
  2577. }
  2578. dev->invalidate_domains |= invalidate_domains;
  2579. dev->flush_domains |= flush_domains;
  2580. #if WATCH_BUF
  2581. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2582. __func__,
  2583. obj->read_domains, obj->write_domain,
  2584. dev->invalidate_domains, dev->flush_domains);
  2585. #endif
  2586. trace_i915_gem_object_change_domain(obj,
  2587. old_read_domains,
  2588. obj->write_domain);
  2589. }
  2590. /**
  2591. * Moves the object from a partially CPU read to a full one.
  2592. *
  2593. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2594. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2595. */
  2596. static void
  2597. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2598. {
  2599. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2600. if (!obj_priv->page_cpu_valid)
  2601. return;
  2602. /* If we're partially in the CPU read domain, finish moving it in.
  2603. */
  2604. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2605. int i;
  2606. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2607. if (obj_priv->page_cpu_valid[i])
  2608. continue;
  2609. drm_clflush_pages(obj_priv->pages + i, 1);
  2610. }
  2611. }
  2612. /* Free the page_cpu_valid mappings which are now stale, whether
  2613. * or not we've got I915_GEM_DOMAIN_CPU.
  2614. */
  2615. kfree(obj_priv->page_cpu_valid);
  2616. obj_priv->page_cpu_valid = NULL;
  2617. }
  2618. /**
  2619. * Set the CPU read domain on a range of the object.
  2620. *
  2621. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2622. * not entirely valid. The page_cpu_valid member of the object flags which
  2623. * pages have been flushed, and will be respected by
  2624. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2625. * of the whole object.
  2626. *
  2627. * This function returns when the move is complete, including waiting on
  2628. * flushes to occur.
  2629. */
  2630. static int
  2631. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2632. uint64_t offset, uint64_t size)
  2633. {
  2634. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2635. uint32_t old_read_domains;
  2636. int i, ret;
  2637. if (offset == 0 && size == obj->size)
  2638. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2639. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2640. if (ret)
  2641. return ret;
  2642. /* Wait on any GPU rendering and flushing to occur. */
  2643. ret = i915_gem_object_wait_rendering(obj);
  2644. if (ret != 0)
  2645. return ret;
  2646. i915_gem_object_flush_gtt_write_domain(obj);
  2647. /* If we're already fully in the CPU read domain, we're done. */
  2648. if (obj_priv->page_cpu_valid == NULL &&
  2649. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2650. return 0;
  2651. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2652. * newly adding I915_GEM_DOMAIN_CPU
  2653. */
  2654. if (obj_priv->page_cpu_valid == NULL) {
  2655. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2656. GFP_KERNEL);
  2657. if (obj_priv->page_cpu_valid == NULL)
  2658. return -ENOMEM;
  2659. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2660. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2661. /* Flush the cache on any pages that are still invalid from the CPU's
  2662. * perspective.
  2663. */
  2664. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2665. i++) {
  2666. if (obj_priv->page_cpu_valid[i])
  2667. continue;
  2668. drm_clflush_pages(obj_priv->pages + i, 1);
  2669. obj_priv->page_cpu_valid[i] = 1;
  2670. }
  2671. /* It should now be out of any other write domains, and we can update
  2672. * the domain values for our changes.
  2673. */
  2674. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2675. old_read_domains = obj->read_domains;
  2676. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2677. trace_i915_gem_object_change_domain(obj,
  2678. old_read_domains,
  2679. obj->write_domain);
  2680. return 0;
  2681. }
  2682. /**
  2683. * Pin an object to the GTT and evaluate the relocations landing in it.
  2684. */
  2685. static int
  2686. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2687. struct drm_file *file_priv,
  2688. struct drm_i915_gem_exec_object2 *entry,
  2689. struct drm_i915_gem_relocation_entry *relocs)
  2690. {
  2691. struct drm_device *dev = obj->dev;
  2692. drm_i915_private_t *dev_priv = dev->dev_private;
  2693. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2694. int i, ret;
  2695. void __iomem *reloc_page;
  2696. bool need_fence;
  2697. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2698. obj_priv->tiling_mode != I915_TILING_NONE;
  2699. /* Check fence reg constraints and rebind if necessary */
  2700. if (need_fence &&
  2701. !i915_gem_object_fence_offset_ok(obj,
  2702. obj_priv->tiling_mode)) {
  2703. ret = i915_gem_object_unbind(obj);
  2704. if (ret)
  2705. return ret;
  2706. }
  2707. /* Choose the GTT offset for our buffer and put it there. */
  2708. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2709. if (ret)
  2710. return ret;
  2711. /*
  2712. * Pre-965 chips need a fence register set up in order to
  2713. * properly handle blits to/from tiled surfaces.
  2714. */
  2715. if (need_fence) {
  2716. ret = i915_gem_object_get_fence_reg(obj);
  2717. if (ret != 0) {
  2718. i915_gem_object_unpin(obj);
  2719. return ret;
  2720. }
  2721. }
  2722. entry->offset = obj_priv->gtt_offset;
  2723. /* Apply the relocations, using the GTT aperture to avoid cache
  2724. * flushing requirements.
  2725. */
  2726. for (i = 0; i < entry->relocation_count; i++) {
  2727. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2728. struct drm_gem_object *target_obj;
  2729. struct drm_i915_gem_object *target_obj_priv;
  2730. uint32_t reloc_val, reloc_offset;
  2731. uint32_t __iomem *reloc_entry;
  2732. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2733. reloc->target_handle);
  2734. if (target_obj == NULL) {
  2735. i915_gem_object_unpin(obj);
  2736. return -ENOENT;
  2737. }
  2738. target_obj_priv = to_intel_bo(target_obj);
  2739. #if WATCH_RELOC
  2740. DRM_INFO("%s: obj %p offset %08x target %d "
  2741. "read %08x write %08x gtt %08x "
  2742. "presumed %08x delta %08x\n",
  2743. __func__,
  2744. obj,
  2745. (int) reloc->offset,
  2746. (int) reloc->target_handle,
  2747. (int) reloc->read_domains,
  2748. (int) reloc->write_domain,
  2749. (int) target_obj_priv->gtt_offset,
  2750. (int) reloc->presumed_offset,
  2751. reloc->delta);
  2752. #endif
  2753. /* The target buffer should have appeared before us in the
  2754. * exec_object list, so it should have a GTT space bound by now.
  2755. */
  2756. if (target_obj_priv->gtt_space == NULL) {
  2757. DRM_ERROR("No GTT space found for object %d\n",
  2758. reloc->target_handle);
  2759. drm_gem_object_unreference(target_obj);
  2760. i915_gem_object_unpin(obj);
  2761. return -EINVAL;
  2762. }
  2763. /* Validate that the target is in a valid r/w GPU domain */
  2764. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2765. DRM_ERROR("reloc with multiple write domains: "
  2766. "obj %p target %d offset %d "
  2767. "read %08x write %08x",
  2768. obj, reloc->target_handle,
  2769. (int) reloc->offset,
  2770. reloc->read_domains,
  2771. reloc->write_domain);
  2772. return -EINVAL;
  2773. }
  2774. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2775. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2776. DRM_ERROR("reloc with read/write CPU domains: "
  2777. "obj %p target %d offset %d "
  2778. "read %08x write %08x",
  2779. obj, reloc->target_handle,
  2780. (int) reloc->offset,
  2781. reloc->read_domains,
  2782. reloc->write_domain);
  2783. drm_gem_object_unreference(target_obj);
  2784. i915_gem_object_unpin(obj);
  2785. return -EINVAL;
  2786. }
  2787. if (reloc->write_domain && target_obj->pending_write_domain &&
  2788. reloc->write_domain != target_obj->pending_write_domain) {
  2789. DRM_ERROR("Write domain conflict: "
  2790. "obj %p target %d offset %d "
  2791. "new %08x old %08x\n",
  2792. obj, reloc->target_handle,
  2793. (int) reloc->offset,
  2794. reloc->write_domain,
  2795. target_obj->pending_write_domain);
  2796. drm_gem_object_unreference(target_obj);
  2797. i915_gem_object_unpin(obj);
  2798. return -EINVAL;
  2799. }
  2800. target_obj->pending_read_domains |= reloc->read_domains;
  2801. target_obj->pending_write_domain |= reloc->write_domain;
  2802. /* If the relocation already has the right value in it, no
  2803. * more work needs to be done.
  2804. */
  2805. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2806. drm_gem_object_unreference(target_obj);
  2807. continue;
  2808. }
  2809. /* Check that the relocation address is valid... */
  2810. if (reloc->offset > obj->size - 4) {
  2811. DRM_ERROR("Relocation beyond object bounds: "
  2812. "obj %p target %d offset %d size %d.\n",
  2813. obj, reloc->target_handle,
  2814. (int) reloc->offset, (int) obj->size);
  2815. drm_gem_object_unreference(target_obj);
  2816. i915_gem_object_unpin(obj);
  2817. return -EINVAL;
  2818. }
  2819. if (reloc->offset & 3) {
  2820. DRM_ERROR("Relocation not 4-byte aligned: "
  2821. "obj %p target %d offset %d.\n",
  2822. obj, reloc->target_handle,
  2823. (int) reloc->offset);
  2824. drm_gem_object_unreference(target_obj);
  2825. i915_gem_object_unpin(obj);
  2826. return -EINVAL;
  2827. }
  2828. /* and points to somewhere within the target object. */
  2829. if (reloc->delta >= target_obj->size) {
  2830. DRM_ERROR("Relocation beyond target object bounds: "
  2831. "obj %p target %d delta %d size %d.\n",
  2832. obj, reloc->target_handle,
  2833. (int) reloc->delta, (int) target_obj->size);
  2834. drm_gem_object_unreference(target_obj);
  2835. i915_gem_object_unpin(obj);
  2836. return -EINVAL;
  2837. }
  2838. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2839. if (ret != 0) {
  2840. drm_gem_object_unreference(target_obj);
  2841. i915_gem_object_unpin(obj);
  2842. return -EINVAL;
  2843. }
  2844. /* Map the page containing the relocation we're going to
  2845. * perform.
  2846. */
  2847. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2848. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2849. (reloc_offset &
  2850. ~(PAGE_SIZE - 1)),
  2851. KM_USER0);
  2852. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2853. (reloc_offset & (PAGE_SIZE - 1)));
  2854. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2855. #if WATCH_BUF
  2856. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2857. obj, (unsigned int) reloc->offset,
  2858. readl(reloc_entry), reloc_val);
  2859. #endif
  2860. writel(reloc_val, reloc_entry);
  2861. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2862. /* The updated presumed offset for this entry will be
  2863. * copied back out to the user.
  2864. */
  2865. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2866. drm_gem_object_unreference(target_obj);
  2867. }
  2868. #if WATCH_BUF
  2869. if (0)
  2870. i915_gem_dump_object(obj, 128, __func__, ~0);
  2871. #endif
  2872. return 0;
  2873. }
  2874. /* Throttle our rendering by waiting until the ring has completed our requests
  2875. * emitted over 20 msec ago.
  2876. *
  2877. * Note that if we were to use the current jiffies each time around the loop,
  2878. * we wouldn't escape the function with any frames outstanding if the time to
  2879. * render a frame was over 20ms.
  2880. *
  2881. * This should get us reasonable parallelism between CPU and GPU but also
  2882. * relatively low latency when blocking on a particular request to finish.
  2883. */
  2884. static int
  2885. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2886. {
  2887. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2888. int ret = 0;
  2889. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2890. mutex_lock(&dev->struct_mutex);
  2891. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2892. struct drm_i915_gem_request *request;
  2893. request = list_first_entry(&i915_file_priv->mm.request_list,
  2894. struct drm_i915_gem_request,
  2895. client_list);
  2896. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2897. break;
  2898. ret = i915_wait_request(dev, request->seqno, request->ring);
  2899. if (ret != 0)
  2900. break;
  2901. }
  2902. mutex_unlock(&dev->struct_mutex);
  2903. return ret;
  2904. }
  2905. static int
  2906. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
  2907. uint32_t buffer_count,
  2908. struct drm_i915_gem_relocation_entry **relocs)
  2909. {
  2910. uint32_t reloc_count = 0, reloc_index = 0, i;
  2911. int ret;
  2912. *relocs = NULL;
  2913. for (i = 0; i < buffer_count; i++) {
  2914. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2915. return -EINVAL;
  2916. reloc_count += exec_list[i].relocation_count;
  2917. }
  2918. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2919. if (*relocs == NULL) {
  2920. DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
  2921. return -ENOMEM;
  2922. }
  2923. for (i = 0; i < buffer_count; i++) {
  2924. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2925. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2926. ret = copy_from_user(&(*relocs)[reloc_index],
  2927. user_relocs,
  2928. exec_list[i].relocation_count *
  2929. sizeof(**relocs));
  2930. if (ret != 0) {
  2931. drm_free_large(*relocs);
  2932. *relocs = NULL;
  2933. return -EFAULT;
  2934. }
  2935. reloc_index += exec_list[i].relocation_count;
  2936. }
  2937. return 0;
  2938. }
  2939. static int
  2940. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
  2941. uint32_t buffer_count,
  2942. struct drm_i915_gem_relocation_entry *relocs)
  2943. {
  2944. uint32_t reloc_count = 0, i;
  2945. int ret = 0;
  2946. if (relocs == NULL)
  2947. return 0;
  2948. for (i = 0; i < buffer_count; i++) {
  2949. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2950. int unwritten;
  2951. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2952. unwritten = copy_to_user(user_relocs,
  2953. &relocs[reloc_count],
  2954. exec_list[i].relocation_count *
  2955. sizeof(*relocs));
  2956. if (unwritten) {
  2957. ret = -EFAULT;
  2958. goto err;
  2959. }
  2960. reloc_count += exec_list[i].relocation_count;
  2961. }
  2962. err:
  2963. drm_free_large(relocs);
  2964. return ret;
  2965. }
  2966. static int
  2967. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
  2968. uint64_t exec_offset)
  2969. {
  2970. uint32_t exec_start, exec_len;
  2971. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2972. exec_len = (uint32_t) exec->batch_len;
  2973. if ((exec_start | exec_len) & 0x7)
  2974. return -EINVAL;
  2975. if (!exec_start)
  2976. return -EINVAL;
  2977. return 0;
  2978. }
  2979. static int
  2980. i915_gem_wait_for_pending_flip(struct drm_device *dev,
  2981. struct drm_gem_object **object_list,
  2982. int count)
  2983. {
  2984. drm_i915_private_t *dev_priv = dev->dev_private;
  2985. struct drm_i915_gem_object *obj_priv;
  2986. DEFINE_WAIT(wait);
  2987. int i, ret = 0;
  2988. for (;;) {
  2989. prepare_to_wait(&dev_priv->pending_flip_queue,
  2990. &wait, TASK_INTERRUPTIBLE);
  2991. for (i = 0; i < count; i++) {
  2992. obj_priv = to_intel_bo(object_list[i]);
  2993. if (atomic_read(&obj_priv->pending_flip) > 0)
  2994. break;
  2995. }
  2996. if (i == count)
  2997. break;
  2998. if (!signal_pending(current)) {
  2999. mutex_unlock(&dev->struct_mutex);
  3000. schedule();
  3001. mutex_lock(&dev->struct_mutex);
  3002. continue;
  3003. }
  3004. ret = -ERESTARTSYS;
  3005. break;
  3006. }
  3007. finish_wait(&dev_priv->pending_flip_queue, &wait);
  3008. return ret;
  3009. }
  3010. int
  3011. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3012. struct drm_file *file_priv,
  3013. struct drm_i915_gem_execbuffer2 *args,
  3014. struct drm_i915_gem_exec_object2 *exec_list)
  3015. {
  3016. drm_i915_private_t *dev_priv = dev->dev_private;
  3017. struct drm_gem_object **object_list = NULL;
  3018. struct drm_gem_object *batch_obj;
  3019. struct drm_i915_gem_object *obj_priv;
  3020. struct drm_clip_rect *cliprects = NULL;
  3021. struct drm_i915_gem_relocation_entry *relocs = NULL;
  3022. int ret = 0, ret2, i, pinned = 0;
  3023. uint64_t exec_offset;
  3024. uint32_t seqno, flush_domains, reloc_index;
  3025. int pin_tries, flips;
  3026. struct intel_ring_buffer *ring = NULL;
  3027. #if WATCH_EXEC
  3028. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3029. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3030. #endif
  3031. if (args->flags & I915_EXEC_BSD) {
  3032. if (!HAS_BSD(dev)) {
  3033. DRM_ERROR("execbuf with wrong flag\n");
  3034. return -EINVAL;
  3035. }
  3036. ring = &dev_priv->bsd_ring;
  3037. } else {
  3038. ring = &dev_priv->render_ring;
  3039. }
  3040. if (args->buffer_count < 1) {
  3041. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3042. return -EINVAL;
  3043. }
  3044. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3045. if (object_list == NULL) {
  3046. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3047. args->buffer_count);
  3048. ret = -ENOMEM;
  3049. goto pre_mutex_err;
  3050. }
  3051. if (args->num_cliprects != 0) {
  3052. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3053. GFP_KERNEL);
  3054. if (cliprects == NULL) {
  3055. ret = -ENOMEM;
  3056. goto pre_mutex_err;
  3057. }
  3058. ret = copy_from_user(cliprects,
  3059. (struct drm_clip_rect __user *)
  3060. (uintptr_t) args->cliprects_ptr,
  3061. sizeof(*cliprects) * args->num_cliprects);
  3062. if (ret != 0) {
  3063. DRM_ERROR("copy %d cliprects failed: %d\n",
  3064. args->num_cliprects, ret);
  3065. ret = -EFAULT;
  3066. goto pre_mutex_err;
  3067. }
  3068. }
  3069. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  3070. &relocs);
  3071. if (ret != 0)
  3072. goto pre_mutex_err;
  3073. mutex_lock(&dev->struct_mutex);
  3074. i915_verify_inactive(dev, __FILE__, __LINE__);
  3075. if (atomic_read(&dev_priv->mm.wedged)) {
  3076. mutex_unlock(&dev->struct_mutex);
  3077. ret = -EIO;
  3078. goto pre_mutex_err;
  3079. }
  3080. if (dev_priv->mm.suspended) {
  3081. mutex_unlock(&dev->struct_mutex);
  3082. ret = -EBUSY;
  3083. goto pre_mutex_err;
  3084. }
  3085. /* Look up object handles */
  3086. flips = 0;
  3087. for (i = 0; i < args->buffer_count; i++) {
  3088. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3089. exec_list[i].handle);
  3090. if (object_list[i] == NULL) {
  3091. DRM_ERROR("Invalid object handle %d at index %d\n",
  3092. exec_list[i].handle, i);
  3093. /* prevent error path from reading uninitialized data */
  3094. args->buffer_count = i + 1;
  3095. ret = -ENOENT;
  3096. goto err;
  3097. }
  3098. obj_priv = to_intel_bo(object_list[i]);
  3099. if (obj_priv->in_execbuffer) {
  3100. DRM_ERROR("Object %p appears more than once in object list\n",
  3101. object_list[i]);
  3102. /* prevent error path from reading uninitialized data */
  3103. args->buffer_count = i + 1;
  3104. ret = -EINVAL;
  3105. goto err;
  3106. }
  3107. obj_priv->in_execbuffer = true;
  3108. flips += atomic_read(&obj_priv->pending_flip);
  3109. }
  3110. if (flips > 0) {
  3111. ret = i915_gem_wait_for_pending_flip(dev, object_list,
  3112. args->buffer_count);
  3113. if (ret)
  3114. goto err;
  3115. }
  3116. /* Pin and relocate */
  3117. for (pin_tries = 0; ; pin_tries++) {
  3118. ret = 0;
  3119. reloc_index = 0;
  3120. for (i = 0; i < args->buffer_count; i++) {
  3121. object_list[i]->pending_read_domains = 0;
  3122. object_list[i]->pending_write_domain = 0;
  3123. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3124. file_priv,
  3125. &exec_list[i],
  3126. &relocs[reloc_index]);
  3127. if (ret)
  3128. break;
  3129. pinned = i + 1;
  3130. reloc_index += exec_list[i].relocation_count;
  3131. }
  3132. /* success */
  3133. if (ret == 0)
  3134. break;
  3135. /* error other than GTT full, or we've already tried again */
  3136. if (ret != -ENOSPC || pin_tries >= 1) {
  3137. if (ret != -ERESTARTSYS) {
  3138. unsigned long long total_size = 0;
  3139. int num_fences = 0;
  3140. for (i = 0; i < args->buffer_count; i++) {
  3141. obj_priv = to_intel_bo(object_list[i]);
  3142. total_size += object_list[i]->size;
  3143. num_fences +=
  3144. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3145. obj_priv->tiling_mode != I915_TILING_NONE;
  3146. }
  3147. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3148. pinned+1, args->buffer_count,
  3149. total_size, num_fences,
  3150. ret);
  3151. DRM_ERROR("%d objects [%d pinned], "
  3152. "%d object bytes [%d pinned], "
  3153. "%d/%d gtt bytes\n",
  3154. atomic_read(&dev->object_count),
  3155. atomic_read(&dev->pin_count),
  3156. atomic_read(&dev->object_memory),
  3157. atomic_read(&dev->pin_memory),
  3158. atomic_read(&dev->gtt_memory),
  3159. dev->gtt_total);
  3160. }
  3161. goto err;
  3162. }
  3163. /* unpin all of our buffers */
  3164. for (i = 0; i < pinned; i++)
  3165. i915_gem_object_unpin(object_list[i]);
  3166. pinned = 0;
  3167. /* evict everyone we can from the aperture */
  3168. ret = i915_gem_evict_everything(dev);
  3169. if (ret && ret != -ENOSPC)
  3170. goto err;
  3171. }
  3172. /* Set the pending read domains for the batch buffer to COMMAND */
  3173. batch_obj = object_list[args->buffer_count-1];
  3174. if (batch_obj->pending_write_domain) {
  3175. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3176. ret = -EINVAL;
  3177. goto err;
  3178. }
  3179. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3180. /* Sanity check the batch buffer, prior to moving objects */
  3181. exec_offset = exec_list[args->buffer_count - 1].offset;
  3182. ret = i915_gem_check_execbuffer (args, exec_offset);
  3183. if (ret != 0) {
  3184. DRM_ERROR("execbuf with invalid offset/length\n");
  3185. goto err;
  3186. }
  3187. i915_verify_inactive(dev, __FILE__, __LINE__);
  3188. /* Zero the global flush/invalidate flags. These
  3189. * will be modified as new domains are computed
  3190. * for each object
  3191. */
  3192. dev->invalidate_domains = 0;
  3193. dev->flush_domains = 0;
  3194. dev_priv->flush_rings = 0;
  3195. for (i = 0; i < args->buffer_count; i++) {
  3196. struct drm_gem_object *obj = object_list[i];
  3197. /* Compute new gpu domains and update invalidate/flush */
  3198. i915_gem_object_set_to_gpu_domain(obj);
  3199. }
  3200. i915_verify_inactive(dev, __FILE__, __LINE__);
  3201. if (dev->invalidate_domains | dev->flush_domains) {
  3202. #if WATCH_EXEC
  3203. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3204. __func__,
  3205. dev->invalidate_domains,
  3206. dev->flush_domains);
  3207. #endif
  3208. i915_gem_flush(dev,
  3209. dev->invalidate_domains,
  3210. dev->flush_domains);
  3211. if (dev_priv->flush_rings & FLUSH_RENDER_RING)
  3212. (void)i915_add_request(dev, file_priv,
  3213. dev->flush_domains,
  3214. &dev_priv->render_ring);
  3215. if (dev_priv->flush_rings & FLUSH_BSD_RING)
  3216. (void)i915_add_request(dev, file_priv,
  3217. dev->flush_domains,
  3218. &dev_priv->bsd_ring);
  3219. }
  3220. for (i = 0; i < args->buffer_count; i++) {
  3221. struct drm_gem_object *obj = object_list[i];
  3222. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3223. uint32_t old_write_domain = obj->write_domain;
  3224. obj->write_domain = obj->pending_write_domain;
  3225. if (obj->write_domain)
  3226. list_move_tail(&obj_priv->gpu_write_list,
  3227. &dev_priv->mm.gpu_write_list);
  3228. else
  3229. list_del_init(&obj_priv->gpu_write_list);
  3230. trace_i915_gem_object_change_domain(obj,
  3231. obj->read_domains,
  3232. old_write_domain);
  3233. }
  3234. i915_verify_inactive(dev, __FILE__, __LINE__);
  3235. #if WATCH_COHERENCY
  3236. for (i = 0; i < args->buffer_count; i++) {
  3237. i915_gem_object_check_coherency(object_list[i],
  3238. exec_list[i].handle);
  3239. }
  3240. #endif
  3241. #if WATCH_EXEC
  3242. i915_gem_dump_object(batch_obj,
  3243. args->batch_len,
  3244. __func__,
  3245. ~0);
  3246. #endif
  3247. /* Exec the batchbuffer */
  3248. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3249. cliprects, exec_offset);
  3250. if (ret) {
  3251. DRM_ERROR("dispatch failed %d\n", ret);
  3252. goto err;
  3253. }
  3254. /*
  3255. * Ensure that the commands in the batch buffer are
  3256. * finished before the interrupt fires
  3257. */
  3258. flush_domains = i915_retire_commands(dev, ring);
  3259. i915_verify_inactive(dev, __FILE__, __LINE__);
  3260. /*
  3261. * Get a seqno representing the execution of the current buffer,
  3262. * which we can wait on. We would like to mitigate these interrupts,
  3263. * likely by only creating seqnos occasionally (so that we have
  3264. * *some* interrupts representing completion of buffers that we can
  3265. * wait on when trying to clear up gtt space).
  3266. */
  3267. seqno = i915_add_request(dev, file_priv, flush_domains, ring);
  3268. BUG_ON(seqno == 0);
  3269. for (i = 0; i < args->buffer_count; i++) {
  3270. struct drm_gem_object *obj = object_list[i];
  3271. obj_priv = to_intel_bo(obj);
  3272. i915_gem_object_move_to_active(obj, seqno, ring);
  3273. #if WATCH_LRU
  3274. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3275. #endif
  3276. }
  3277. #if WATCH_LRU
  3278. i915_dump_lru(dev, __func__);
  3279. #endif
  3280. i915_verify_inactive(dev, __FILE__, __LINE__);
  3281. err:
  3282. for (i = 0; i < pinned; i++)
  3283. i915_gem_object_unpin(object_list[i]);
  3284. for (i = 0; i < args->buffer_count; i++) {
  3285. if (object_list[i]) {
  3286. obj_priv = to_intel_bo(object_list[i]);
  3287. obj_priv->in_execbuffer = false;
  3288. }
  3289. drm_gem_object_unreference(object_list[i]);
  3290. }
  3291. mutex_unlock(&dev->struct_mutex);
  3292. pre_mutex_err:
  3293. /* Copy the updated relocations out regardless of current error
  3294. * state. Failure to update the relocs would mean that the next
  3295. * time userland calls execbuf, it would do so with presumed offset
  3296. * state that didn't match the actual object state.
  3297. */
  3298. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3299. relocs);
  3300. if (ret2 != 0) {
  3301. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3302. if (ret == 0)
  3303. ret = ret2;
  3304. }
  3305. drm_free_large(object_list);
  3306. kfree(cliprects);
  3307. return ret;
  3308. }
  3309. /*
  3310. * Legacy execbuffer just creates an exec2 list from the original exec object
  3311. * list array and passes it to the real function.
  3312. */
  3313. int
  3314. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3315. struct drm_file *file_priv)
  3316. {
  3317. struct drm_i915_gem_execbuffer *args = data;
  3318. struct drm_i915_gem_execbuffer2 exec2;
  3319. struct drm_i915_gem_exec_object *exec_list = NULL;
  3320. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3321. int ret, i;
  3322. #if WATCH_EXEC
  3323. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3324. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3325. #endif
  3326. if (args->buffer_count < 1) {
  3327. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3328. return -EINVAL;
  3329. }
  3330. /* Copy in the exec list from userland */
  3331. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3332. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3333. if (exec_list == NULL || exec2_list == NULL) {
  3334. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3335. args->buffer_count);
  3336. drm_free_large(exec_list);
  3337. drm_free_large(exec2_list);
  3338. return -ENOMEM;
  3339. }
  3340. ret = copy_from_user(exec_list,
  3341. (struct drm_i915_relocation_entry __user *)
  3342. (uintptr_t) args->buffers_ptr,
  3343. sizeof(*exec_list) * args->buffer_count);
  3344. if (ret != 0) {
  3345. DRM_ERROR("copy %d exec entries failed %d\n",
  3346. args->buffer_count, ret);
  3347. drm_free_large(exec_list);
  3348. drm_free_large(exec2_list);
  3349. return -EFAULT;
  3350. }
  3351. for (i = 0; i < args->buffer_count; i++) {
  3352. exec2_list[i].handle = exec_list[i].handle;
  3353. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3354. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3355. exec2_list[i].alignment = exec_list[i].alignment;
  3356. exec2_list[i].offset = exec_list[i].offset;
  3357. if (!IS_I965G(dev))
  3358. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3359. else
  3360. exec2_list[i].flags = 0;
  3361. }
  3362. exec2.buffers_ptr = args->buffers_ptr;
  3363. exec2.buffer_count = args->buffer_count;
  3364. exec2.batch_start_offset = args->batch_start_offset;
  3365. exec2.batch_len = args->batch_len;
  3366. exec2.DR1 = args->DR1;
  3367. exec2.DR4 = args->DR4;
  3368. exec2.num_cliprects = args->num_cliprects;
  3369. exec2.cliprects_ptr = args->cliprects_ptr;
  3370. exec2.flags = I915_EXEC_RENDER;
  3371. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3372. if (!ret) {
  3373. /* Copy the new buffer offsets back to the user's exec list. */
  3374. for (i = 0; i < args->buffer_count; i++)
  3375. exec_list[i].offset = exec2_list[i].offset;
  3376. /* ... and back out to userspace */
  3377. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3378. (uintptr_t) args->buffers_ptr,
  3379. exec_list,
  3380. sizeof(*exec_list) * args->buffer_count);
  3381. if (ret) {
  3382. ret = -EFAULT;
  3383. DRM_ERROR("failed to copy %d exec entries "
  3384. "back to user (%d)\n",
  3385. args->buffer_count, ret);
  3386. }
  3387. }
  3388. drm_free_large(exec_list);
  3389. drm_free_large(exec2_list);
  3390. return ret;
  3391. }
  3392. int
  3393. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3394. struct drm_file *file_priv)
  3395. {
  3396. struct drm_i915_gem_execbuffer2 *args = data;
  3397. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3398. int ret;
  3399. #if WATCH_EXEC
  3400. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3401. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3402. #endif
  3403. if (args->buffer_count < 1) {
  3404. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3405. return -EINVAL;
  3406. }
  3407. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3408. if (exec2_list == NULL) {
  3409. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3410. args->buffer_count);
  3411. return -ENOMEM;
  3412. }
  3413. ret = copy_from_user(exec2_list,
  3414. (struct drm_i915_relocation_entry __user *)
  3415. (uintptr_t) args->buffers_ptr,
  3416. sizeof(*exec2_list) * args->buffer_count);
  3417. if (ret != 0) {
  3418. DRM_ERROR("copy %d exec entries failed %d\n",
  3419. args->buffer_count, ret);
  3420. drm_free_large(exec2_list);
  3421. return -EFAULT;
  3422. }
  3423. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3424. if (!ret) {
  3425. /* Copy the new buffer offsets back to the user's exec list. */
  3426. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3427. (uintptr_t) args->buffers_ptr,
  3428. exec2_list,
  3429. sizeof(*exec2_list) * args->buffer_count);
  3430. if (ret) {
  3431. ret = -EFAULT;
  3432. DRM_ERROR("failed to copy %d exec entries "
  3433. "back to user (%d)\n",
  3434. args->buffer_count, ret);
  3435. }
  3436. }
  3437. drm_free_large(exec2_list);
  3438. return ret;
  3439. }
  3440. int
  3441. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3442. {
  3443. struct drm_device *dev = obj->dev;
  3444. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3445. int ret;
  3446. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3447. i915_verify_inactive(dev, __FILE__, __LINE__);
  3448. if (obj_priv->gtt_space != NULL) {
  3449. if (alignment == 0)
  3450. alignment = i915_gem_get_gtt_alignment(obj);
  3451. if (obj_priv->gtt_offset & (alignment - 1)) {
  3452. WARN(obj_priv->pin_count,
  3453. "bo is already pinned with incorrect alignment:"
  3454. " offset=%x, req.alignment=%x\n",
  3455. obj_priv->gtt_offset, alignment);
  3456. ret = i915_gem_object_unbind(obj);
  3457. if (ret)
  3458. return ret;
  3459. }
  3460. }
  3461. if (obj_priv->gtt_space == NULL) {
  3462. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3463. if (ret)
  3464. return ret;
  3465. }
  3466. obj_priv->pin_count++;
  3467. /* If the object is not active and not pending a flush,
  3468. * remove it from the inactive list
  3469. */
  3470. if (obj_priv->pin_count == 1) {
  3471. atomic_inc(&dev->pin_count);
  3472. atomic_add(obj->size, &dev->pin_memory);
  3473. if (!obj_priv->active &&
  3474. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3475. list_del_init(&obj_priv->list);
  3476. }
  3477. i915_verify_inactive(dev, __FILE__, __LINE__);
  3478. return 0;
  3479. }
  3480. void
  3481. i915_gem_object_unpin(struct drm_gem_object *obj)
  3482. {
  3483. struct drm_device *dev = obj->dev;
  3484. drm_i915_private_t *dev_priv = dev->dev_private;
  3485. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3486. i915_verify_inactive(dev, __FILE__, __LINE__);
  3487. obj_priv->pin_count--;
  3488. BUG_ON(obj_priv->pin_count < 0);
  3489. BUG_ON(obj_priv->gtt_space == NULL);
  3490. /* If the object is no longer pinned, and is
  3491. * neither active nor being flushed, then stick it on
  3492. * the inactive list
  3493. */
  3494. if (obj_priv->pin_count == 0) {
  3495. if (!obj_priv->active &&
  3496. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3497. list_move_tail(&obj_priv->list,
  3498. &dev_priv->mm.inactive_list);
  3499. atomic_dec(&dev->pin_count);
  3500. atomic_sub(obj->size, &dev->pin_memory);
  3501. }
  3502. i915_verify_inactive(dev, __FILE__, __LINE__);
  3503. }
  3504. int
  3505. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3506. struct drm_file *file_priv)
  3507. {
  3508. struct drm_i915_gem_pin *args = data;
  3509. struct drm_gem_object *obj;
  3510. struct drm_i915_gem_object *obj_priv;
  3511. int ret;
  3512. mutex_lock(&dev->struct_mutex);
  3513. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3514. if (obj == NULL) {
  3515. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3516. args->handle);
  3517. mutex_unlock(&dev->struct_mutex);
  3518. return -ENOENT;
  3519. }
  3520. obj_priv = to_intel_bo(obj);
  3521. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3522. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3523. drm_gem_object_unreference(obj);
  3524. mutex_unlock(&dev->struct_mutex);
  3525. return -EINVAL;
  3526. }
  3527. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3528. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3529. args->handle);
  3530. drm_gem_object_unreference(obj);
  3531. mutex_unlock(&dev->struct_mutex);
  3532. return -EINVAL;
  3533. }
  3534. obj_priv->user_pin_count++;
  3535. obj_priv->pin_filp = file_priv;
  3536. if (obj_priv->user_pin_count == 1) {
  3537. ret = i915_gem_object_pin(obj, args->alignment);
  3538. if (ret != 0) {
  3539. drm_gem_object_unreference(obj);
  3540. mutex_unlock(&dev->struct_mutex);
  3541. return ret;
  3542. }
  3543. }
  3544. /* XXX - flush the CPU caches for pinned objects
  3545. * as the X server doesn't manage domains yet
  3546. */
  3547. i915_gem_object_flush_cpu_write_domain(obj);
  3548. args->offset = obj_priv->gtt_offset;
  3549. drm_gem_object_unreference(obj);
  3550. mutex_unlock(&dev->struct_mutex);
  3551. return 0;
  3552. }
  3553. int
  3554. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3555. struct drm_file *file_priv)
  3556. {
  3557. struct drm_i915_gem_pin *args = data;
  3558. struct drm_gem_object *obj;
  3559. struct drm_i915_gem_object *obj_priv;
  3560. mutex_lock(&dev->struct_mutex);
  3561. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3562. if (obj == NULL) {
  3563. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3564. args->handle);
  3565. mutex_unlock(&dev->struct_mutex);
  3566. return -ENOENT;
  3567. }
  3568. obj_priv = to_intel_bo(obj);
  3569. if (obj_priv->pin_filp != file_priv) {
  3570. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3571. args->handle);
  3572. drm_gem_object_unreference(obj);
  3573. mutex_unlock(&dev->struct_mutex);
  3574. return -EINVAL;
  3575. }
  3576. obj_priv->user_pin_count--;
  3577. if (obj_priv->user_pin_count == 0) {
  3578. obj_priv->pin_filp = NULL;
  3579. i915_gem_object_unpin(obj);
  3580. }
  3581. drm_gem_object_unreference(obj);
  3582. mutex_unlock(&dev->struct_mutex);
  3583. return 0;
  3584. }
  3585. int
  3586. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3587. struct drm_file *file_priv)
  3588. {
  3589. struct drm_i915_gem_busy *args = data;
  3590. struct drm_gem_object *obj;
  3591. struct drm_i915_gem_object *obj_priv;
  3592. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3593. if (obj == NULL) {
  3594. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3595. args->handle);
  3596. return -ENOENT;
  3597. }
  3598. mutex_lock(&dev->struct_mutex);
  3599. /* Count all active objects as busy, even if they are currently not used
  3600. * by the gpu. Users of this interface expect objects to eventually
  3601. * become non-busy without any further actions, therefore emit any
  3602. * necessary flushes here.
  3603. */
  3604. obj_priv = to_intel_bo(obj);
  3605. args->busy = obj_priv->active;
  3606. if (args->busy) {
  3607. /* Unconditionally flush objects, even when the gpu still uses this
  3608. * object. Userspace calling this function indicates that it wants to
  3609. * use this buffer rather sooner than later, so issuing the required
  3610. * flush earlier is beneficial.
  3611. */
  3612. if (obj->write_domain) {
  3613. i915_gem_flush(dev, 0, obj->write_domain);
  3614. (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
  3615. }
  3616. /* Update the active list for the hardware's current position.
  3617. * Otherwise this only updates on a delayed timer or when irqs
  3618. * are actually unmasked, and our working set ends up being
  3619. * larger than required.
  3620. */
  3621. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3622. args->busy = obj_priv->active;
  3623. }
  3624. drm_gem_object_unreference(obj);
  3625. mutex_unlock(&dev->struct_mutex);
  3626. return 0;
  3627. }
  3628. int
  3629. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3630. struct drm_file *file_priv)
  3631. {
  3632. return i915_gem_ring_throttle(dev, file_priv);
  3633. }
  3634. int
  3635. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3636. struct drm_file *file_priv)
  3637. {
  3638. struct drm_i915_gem_madvise *args = data;
  3639. struct drm_gem_object *obj;
  3640. struct drm_i915_gem_object *obj_priv;
  3641. switch (args->madv) {
  3642. case I915_MADV_DONTNEED:
  3643. case I915_MADV_WILLNEED:
  3644. break;
  3645. default:
  3646. return -EINVAL;
  3647. }
  3648. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3649. if (obj == NULL) {
  3650. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3651. args->handle);
  3652. return -ENOENT;
  3653. }
  3654. mutex_lock(&dev->struct_mutex);
  3655. obj_priv = to_intel_bo(obj);
  3656. if (obj_priv->pin_count) {
  3657. drm_gem_object_unreference(obj);
  3658. mutex_unlock(&dev->struct_mutex);
  3659. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3660. return -EINVAL;
  3661. }
  3662. if (obj_priv->madv != __I915_MADV_PURGED)
  3663. obj_priv->madv = args->madv;
  3664. /* if the object is no longer bound, discard its backing storage */
  3665. if (i915_gem_object_is_purgeable(obj_priv) &&
  3666. obj_priv->gtt_space == NULL)
  3667. i915_gem_object_truncate(obj);
  3668. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3669. drm_gem_object_unreference(obj);
  3670. mutex_unlock(&dev->struct_mutex);
  3671. return 0;
  3672. }
  3673. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3674. size_t size)
  3675. {
  3676. struct drm_i915_gem_object *obj;
  3677. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3678. if (obj == NULL)
  3679. return NULL;
  3680. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3681. kfree(obj);
  3682. return NULL;
  3683. }
  3684. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3685. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3686. obj->agp_type = AGP_USER_MEMORY;
  3687. obj->base.driver_private = NULL;
  3688. obj->fence_reg = I915_FENCE_REG_NONE;
  3689. INIT_LIST_HEAD(&obj->list);
  3690. INIT_LIST_HEAD(&obj->gpu_write_list);
  3691. obj->madv = I915_MADV_WILLNEED;
  3692. trace_i915_gem_object_create(&obj->base);
  3693. return &obj->base;
  3694. }
  3695. int i915_gem_init_object(struct drm_gem_object *obj)
  3696. {
  3697. BUG();
  3698. return 0;
  3699. }
  3700. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3701. {
  3702. struct drm_device *dev = obj->dev;
  3703. drm_i915_private_t *dev_priv = dev->dev_private;
  3704. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3705. int ret;
  3706. ret = i915_gem_object_unbind(obj);
  3707. if (ret == -ERESTARTSYS) {
  3708. list_move(&obj_priv->list,
  3709. &dev_priv->mm.deferred_free_list);
  3710. return;
  3711. }
  3712. if (obj_priv->mmap_offset)
  3713. i915_gem_free_mmap_offset(obj);
  3714. drm_gem_object_release(obj);
  3715. kfree(obj_priv->page_cpu_valid);
  3716. kfree(obj_priv->bit_17);
  3717. kfree(obj_priv);
  3718. }
  3719. void i915_gem_free_object(struct drm_gem_object *obj)
  3720. {
  3721. struct drm_device *dev = obj->dev;
  3722. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3723. trace_i915_gem_object_destroy(obj);
  3724. while (obj_priv->pin_count > 0)
  3725. i915_gem_object_unpin(obj);
  3726. if (obj_priv->phys_obj)
  3727. i915_gem_detach_phys_object(dev, obj);
  3728. i915_gem_free_object_tail(obj);
  3729. }
  3730. int
  3731. i915_gem_idle(struct drm_device *dev)
  3732. {
  3733. drm_i915_private_t *dev_priv = dev->dev_private;
  3734. int ret;
  3735. mutex_lock(&dev->struct_mutex);
  3736. if (dev_priv->mm.suspended ||
  3737. (dev_priv->render_ring.gem_object == NULL) ||
  3738. (HAS_BSD(dev) &&
  3739. dev_priv->bsd_ring.gem_object == NULL)) {
  3740. mutex_unlock(&dev->struct_mutex);
  3741. return 0;
  3742. }
  3743. ret = i915_gpu_idle(dev);
  3744. if (ret) {
  3745. mutex_unlock(&dev->struct_mutex);
  3746. return ret;
  3747. }
  3748. /* Under UMS, be paranoid and evict. */
  3749. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3750. ret = i915_gem_evict_inactive(dev);
  3751. if (ret) {
  3752. mutex_unlock(&dev->struct_mutex);
  3753. return ret;
  3754. }
  3755. }
  3756. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3757. * We need to replace this with a semaphore, or something.
  3758. * And not confound mm.suspended!
  3759. */
  3760. dev_priv->mm.suspended = 1;
  3761. del_timer(&dev_priv->hangcheck_timer);
  3762. i915_kernel_lost_context(dev);
  3763. i915_gem_cleanup_ringbuffer(dev);
  3764. mutex_unlock(&dev->struct_mutex);
  3765. /* Cancel the retire work handler, which should be idle now. */
  3766. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3767. return 0;
  3768. }
  3769. /*
  3770. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3771. * over cache flushing.
  3772. */
  3773. static int
  3774. i915_gem_init_pipe_control(struct drm_device *dev)
  3775. {
  3776. drm_i915_private_t *dev_priv = dev->dev_private;
  3777. struct drm_gem_object *obj;
  3778. struct drm_i915_gem_object *obj_priv;
  3779. int ret;
  3780. obj = i915_gem_alloc_object(dev, 4096);
  3781. if (obj == NULL) {
  3782. DRM_ERROR("Failed to allocate seqno page\n");
  3783. ret = -ENOMEM;
  3784. goto err;
  3785. }
  3786. obj_priv = to_intel_bo(obj);
  3787. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3788. ret = i915_gem_object_pin(obj, 4096);
  3789. if (ret)
  3790. goto err_unref;
  3791. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3792. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3793. if (dev_priv->seqno_page == NULL)
  3794. goto err_unpin;
  3795. dev_priv->seqno_obj = obj;
  3796. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3797. return 0;
  3798. err_unpin:
  3799. i915_gem_object_unpin(obj);
  3800. err_unref:
  3801. drm_gem_object_unreference(obj);
  3802. err:
  3803. return ret;
  3804. }
  3805. static void
  3806. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3807. {
  3808. drm_i915_private_t *dev_priv = dev->dev_private;
  3809. struct drm_gem_object *obj;
  3810. struct drm_i915_gem_object *obj_priv;
  3811. obj = dev_priv->seqno_obj;
  3812. obj_priv = to_intel_bo(obj);
  3813. kunmap(obj_priv->pages[0]);
  3814. i915_gem_object_unpin(obj);
  3815. drm_gem_object_unreference(obj);
  3816. dev_priv->seqno_obj = NULL;
  3817. dev_priv->seqno_page = NULL;
  3818. }
  3819. int
  3820. i915_gem_init_ringbuffer(struct drm_device *dev)
  3821. {
  3822. drm_i915_private_t *dev_priv = dev->dev_private;
  3823. int ret;
  3824. dev_priv->render_ring = render_ring;
  3825. if (!I915_NEED_GFX_HWS(dev)) {
  3826. dev_priv->render_ring.status_page.page_addr
  3827. = dev_priv->status_page_dmah->vaddr;
  3828. memset(dev_priv->render_ring.status_page.page_addr,
  3829. 0, PAGE_SIZE);
  3830. }
  3831. if (HAS_PIPE_CONTROL(dev)) {
  3832. ret = i915_gem_init_pipe_control(dev);
  3833. if (ret)
  3834. return ret;
  3835. }
  3836. ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
  3837. if (ret)
  3838. goto cleanup_pipe_control;
  3839. if (HAS_BSD(dev)) {
  3840. dev_priv->bsd_ring = bsd_ring;
  3841. ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
  3842. if (ret)
  3843. goto cleanup_render_ring;
  3844. }
  3845. dev_priv->next_seqno = 1;
  3846. return 0;
  3847. cleanup_render_ring:
  3848. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3849. cleanup_pipe_control:
  3850. if (HAS_PIPE_CONTROL(dev))
  3851. i915_gem_cleanup_pipe_control(dev);
  3852. return ret;
  3853. }
  3854. void
  3855. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3856. {
  3857. drm_i915_private_t *dev_priv = dev->dev_private;
  3858. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3859. if (HAS_BSD(dev))
  3860. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3861. if (HAS_PIPE_CONTROL(dev))
  3862. i915_gem_cleanup_pipe_control(dev);
  3863. }
  3864. int
  3865. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3866. struct drm_file *file_priv)
  3867. {
  3868. drm_i915_private_t *dev_priv = dev->dev_private;
  3869. int ret;
  3870. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3871. return 0;
  3872. if (atomic_read(&dev_priv->mm.wedged)) {
  3873. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3874. atomic_set(&dev_priv->mm.wedged, 0);
  3875. }
  3876. mutex_lock(&dev->struct_mutex);
  3877. dev_priv->mm.suspended = 0;
  3878. ret = i915_gem_init_ringbuffer(dev);
  3879. if (ret != 0) {
  3880. mutex_unlock(&dev->struct_mutex);
  3881. return ret;
  3882. }
  3883. spin_lock(&dev_priv->mm.active_list_lock);
  3884. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3885. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3886. spin_unlock(&dev_priv->mm.active_list_lock);
  3887. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3888. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3889. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3890. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3891. mutex_unlock(&dev->struct_mutex);
  3892. ret = drm_irq_install(dev);
  3893. if (ret)
  3894. goto cleanup_ringbuffer;
  3895. return 0;
  3896. cleanup_ringbuffer:
  3897. mutex_lock(&dev->struct_mutex);
  3898. i915_gem_cleanup_ringbuffer(dev);
  3899. dev_priv->mm.suspended = 1;
  3900. mutex_unlock(&dev->struct_mutex);
  3901. return ret;
  3902. }
  3903. int
  3904. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3905. struct drm_file *file_priv)
  3906. {
  3907. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3908. return 0;
  3909. drm_irq_uninstall(dev);
  3910. return i915_gem_idle(dev);
  3911. }
  3912. void
  3913. i915_gem_lastclose(struct drm_device *dev)
  3914. {
  3915. int ret;
  3916. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3917. return;
  3918. ret = i915_gem_idle(dev);
  3919. if (ret)
  3920. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3921. }
  3922. void
  3923. i915_gem_load(struct drm_device *dev)
  3924. {
  3925. int i;
  3926. drm_i915_private_t *dev_priv = dev->dev_private;
  3927. spin_lock_init(&dev_priv->mm.active_list_lock);
  3928. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3929. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3930. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3931. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3932. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3933. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3934. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3935. if (HAS_BSD(dev)) {
  3936. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3937. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3938. }
  3939. for (i = 0; i < 16; i++)
  3940. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3941. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3942. i915_gem_retire_work_handler);
  3943. spin_lock(&shrink_list_lock);
  3944. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3945. spin_unlock(&shrink_list_lock);
  3946. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3947. if (IS_GEN3(dev)) {
  3948. u32 tmp = I915_READ(MI_ARB_STATE);
  3949. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3950. /* arb state is a masked write, so set bit + bit in mask */
  3951. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3952. I915_WRITE(MI_ARB_STATE, tmp);
  3953. }
  3954. }
  3955. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3956. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3957. dev_priv->fence_reg_start = 3;
  3958. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3959. dev_priv->num_fence_regs = 16;
  3960. else
  3961. dev_priv->num_fence_regs = 8;
  3962. /* Initialize fence registers to zero */
  3963. if (IS_I965G(dev)) {
  3964. for (i = 0; i < 16; i++)
  3965. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3966. } else {
  3967. for (i = 0; i < 8; i++)
  3968. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3969. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3970. for (i = 0; i < 8; i++)
  3971. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3972. }
  3973. i915_gem_detect_bit_6_swizzle(dev);
  3974. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3975. }
  3976. /*
  3977. * Create a physically contiguous memory object for this object
  3978. * e.g. for cursor + overlay regs
  3979. */
  3980. int i915_gem_init_phys_object(struct drm_device *dev,
  3981. int id, int size, int align)
  3982. {
  3983. drm_i915_private_t *dev_priv = dev->dev_private;
  3984. struct drm_i915_gem_phys_object *phys_obj;
  3985. int ret;
  3986. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3987. return 0;
  3988. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3989. if (!phys_obj)
  3990. return -ENOMEM;
  3991. phys_obj->id = id;
  3992. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3993. if (!phys_obj->handle) {
  3994. ret = -ENOMEM;
  3995. goto kfree_obj;
  3996. }
  3997. #ifdef CONFIG_X86
  3998. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3999. #endif
  4000. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4001. return 0;
  4002. kfree_obj:
  4003. kfree(phys_obj);
  4004. return ret;
  4005. }
  4006. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4007. {
  4008. drm_i915_private_t *dev_priv = dev->dev_private;
  4009. struct drm_i915_gem_phys_object *phys_obj;
  4010. if (!dev_priv->mm.phys_objs[id - 1])
  4011. return;
  4012. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4013. if (phys_obj->cur_obj) {
  4014. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4015. }
  4016. #ifdef CONFIG_X86
  4017. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4018. #endif
  4019. drm_pci_free(dev, phys_obj->handle);
  4020. kfree(phys_obj);
  4021. dev_priv->mm.phys_objs[id - 1] = NULL;
  4022. }
  4023. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4024. {
  4025. int i;
  4026. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4027. i915_gem_free_phys_object(dev, i);
  4028. }
  4029. void i915_gem_detach_phys_object(struct drm_device *dev,
  4030. struct drm_gem_object *obj)
  4031. {
  4032. struct drm_i915_gem_object *obj_priv;
  4033. int i;
  4034. int ret;
  4035. int page_count;
  4036. obj_priv = to_intel_bo(obj);
  4037. if (!obj_priv->phys_obj)
  4038. return;
  4039. ret = i915_gem_object_get_pages(obj, 0);
  4040. if (ret)
  4041. goto out;
  4042. page_count = obj->size / PAGE_SIZE;
  4043. for (i = 0; i < page_count; i++) {
  4044. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4045. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4046. memcpy(dst, src, PAGE_SIZE);
  4047. kunmap_atomic(dst, KM_USER0);
  4048. }
  4049. drm_clflush_pages(obj_priv->pages, page_count);
  4050. drm_agp_chipset_flush(dev);
  4051. i915_gem_object_put_pages(obj);
  4052. out:
  4053. obj_priv->phys_obj->cur_obj = NULL;
  4054. obj_priv->phys_obj = NULL;
  4055. }
  4056. int
  4057. i915_gem_attach_phys_object(struct drm_device *dev,
  4058. struct drm_gem_object *obj,
  4059. int id,
  4060. int align)
  4061. {
  4062. drm_i915_private_t *dev_priv = dev->dev_private;
  4063. struct drm_i915_gem_object *obj_priv;
  4064. int ret = 0;
  4065. int page_count;
  4066. int i;
  4067. if (id > I915_MAX_PHYS_OBJECT)
  4068. return -EINVAL;
  4069. obj_priv = to_intel_bo(obj);
  4070. if (obj_priv->phys_obj) {
  4071. if (obj_priv->phys_obj->id == id)
  4072. return 0;
  4073. i915_gem_detach_phys_object(dev, obj);
  4074. }
  4075. /* create a new object */
  4076. if (!dev_priv->mm.phys_objs[id - 1]) {
  4077. ret = i915_gem_init_phys_object(dev, id,
  4078. obj->size, align);
  4079. if (ret) {
  4080. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4081. goto out;
  4082. }
  4083. }
  4084. /* bind to the object */
  4085. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4086. obj_priv->phys_obj->cur_obj = obj;
  4087. ret = i915_gem_object_get_pages(obj, 0);
  4088. if (ret) {
  4089. DRM_ERROR("failed to get page list\n");
  4090. goto out;
  4091. }
  4092. page_count = obj->size / PAGE_SIZE;
  4093. for (i = 0; i < page_count; i++) {
  4094. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4095. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4096. memcpy(dst, src, PAGE_SIZE);
  4097. kunmap_atomic(src, KM_USER0);
  4098. }
  4099. i915_gem_object_put_pages(obj);
  4100. return 0;
  4101. out:
  4102. return ret;
  4103. }
  4104. static int
  4105. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4106. struct drm_i915_gem_pwrite *args,
  4107. struct drm_file *file_priv)
  4108. {
  4109. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4110. void *obj_addr;
  4111. int ret;
  4112. char __user *user_data;
  4113. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4114. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4115. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4116. ret = copy_from_user(obj_addr, user_data, args->size);
  4117. if (ret)
  4118. return -EFAULT;
  4119. drm_agp_chipset_flush(dev);
  4120. return 0;
  4121. }
  4122. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  4123. {
  4124. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  4125. /* Clean up our request list when the client is going away, so that
  4126. * later retire_requests won't dereference our soon-to-be-gone
  4127. * file_priv.
  4128. */
  4129. mutex_lock(&dev->struct_mutex);
  4130. while (!list_empty(&i915_file_priv->mm.request_list))
  4131. list_del_init(i915_file_priv->mm.request_list.next);
  4132. mutex_unlock(&dev->struct_mutex);
  4133. }
  4134. static int
  4135. i915_gpu_is_active(struct drm_device *dev)
  4136. {
  4137. drm_i915_private_t *dev_priv = dev->dev_private;
  4138. int lists_empty;
  4139. spin_lock(&dev_priv->mm.active_list_lock);
  4140. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4141. list_empty(&dev_priv->render_ring.active_list);
  4142. if (HAS_BSD(dev))
  4143. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4144. spin_unlock(&dev_priv->mm.active_list_lock);
  4145. return !lists_empty;
  4146. }
  4147. static int
  4148. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4149. {
  4150. drm_i915_private_t *dev_priv, *next_dev;
  4151. struct drm_i915_gem_object *obj_priv, *next_obj;
  4152. int cnt = 0;
  4153. int would_deadlock = 1;
  4154. /* "fast-path" to count number of available objects */
  4155. if (nr_to_scan == 0) {
  4156. spin_lock(&shrink_list_lock);
  4157. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4158. struct drm_device *dev = dev_priv->dev;
  4159. if (mutex_trylock(&dev->struct_mutex)) {
  4160. list_for_each_entry(obj_priv,
  4161. &dev_priv->mm.inactive_list,
  4162. list)
  4163. cnt++;
  4164. mutex_unlock(&dev->struct_mutex);
  4165. }
  4166. }
  4167. spin_unlock(&shrink_list_lock);
  4168. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4169. }
  4170. spin_lock(&shrink_list_lock);
  4171. rescan:
  4172. /* first scan for clean buffers */
  4173. list_for_each_entry_safe(dev_priv, next_dev,
  4174. &shrink_list, mm.shrink_list) {
  4175. struct drm_device *dev = dev_priv->dev;
  4176. if (! mutex_trylock(&dev->struct_mutex))
  4177. continue;
  4178. spin_unlock(&shrink_list_lock);
  4179. i915_gem_retire_requests(dev);
  4180. list_for_each_entry_safe(obj_priv, next_obj,
  4181. &dev_priv->mm.inactive_list,
  4182. list) {
  4183. if (i915_gem_object_is_purgeable(obj_priv)) {
  4184. i915_gem_object_unbind(&obj_priv->base);
  4185. if (--nr_to_scan <= 0)
  4186. break;
  4187. }
  4188. }
  4189. spin_lock(&shrink_list_lock);
  4190. mutex_unlock(&dev->struct_mutex);
  4191. would_deadlock = 0;
  4192. if (nr_to_scan <= 0)
  4193. break;
  4194. }
  4195. /* second pass, evict/count anything still on the inactive list */
  4196. list_for_each_entry_safe(dev_priv, next_dev,
  4197. &shrink_list, mm.shrink_list) {
  4198. struct drm_device *dev = dev_priv->dev;
  4199. if (! mutex_trylock(&dev->struct_mutex))
  4200. continue;
  4201. spin_unlock(&shrink_list_lock);
  4202. list_for_each_entry_safe(obj_priv, next_obj,
  4203. &dev_priv->mm.inactive_list,
  4204. list) {
  4205. if (nr_to_scan > 0) {
  4206. i915_gem_object_unbind(&obj_priv->base);
  4207. nr_to_scan--;
  4208. } else
  4209. cnt++;
  4210. }
  4211. spin_lock(&shrink_list_lock);
  4212. mutex_unlock(&dev->struct_mutex);
  4213. would_deadlock = 0;
  4214. }
  4215. if (nr_to_scan) {
  4216. int active = 0;
  4217. /*
  4218. * We are desperate for pages, so as a last resort, wait
  4219. * for the GPU to finish and discard whatever we can.
  4220. * This has a dramatic impact to reduce the number of
  4221. * OOM-killer events whilst running the GPU aggressively.
  4222. */
  4223. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4224. struct drm_device *dev = dev_priv->dev;
  4225. if (!mutex_trylock(&dev->struct_mutex))
  4226. continue;
  4227. spin_unlock(&shrink_list_lock);
  4228. if (i915_gpu_is_active(dev)) {
  4229. i915_gpu_idle(dev);
  4230. active++;
  4231. }
  4232. spin_lock(&shrink_list_lock);
  4233. mutex_unlock(&dev->struct_mutex);
  4234. }
  4235. if (active)
  4236. goto rescan;
  4237. }
  4238. spin_unlock(&shrink_list_lock);
  4239. if (would_deadlock)
  4240. return -1;
  4241. else if (cnt > 0)
  4242. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4243. else
  4244. return 0;
  4245. }
  4246. static struct shrinker shrinker = {
  4247. .shrink = i915_gem_shrink,
  4248. .seeks = DEFAULT_SEEKS,
  4249. };
  4250. __init void
  4251. i915_gem_shrinker_init(void)
  4252. {
  4253. register_shrinker(&shrinker);
  4254. }
  4255. __exit void
  4256. i915_gem_shrinker_exit(void)
  4257. {
  4258. unregister_shrinker(&shrinker);
  4259. }