inode.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. /*
  2. * fs/f2fs/inode.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/writeback.h>
  15. #include "f2fs.h"
  16. #include "node.h"
  17. void f2fs_set_inode_flags(struct inode *inode)
  18. {
  19. unsigned int flags = F2FS_I(inode)->i_flags;
  20. inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE |
  21. S_NOATIME | S_DIRSYNC);
  22. if (flags & FS_SYNC_FL)
  23. inode->i_flags |= S_SYNC;
  24. if (flags & FS_APPEND_FL)
  25. inode->i_flags |= S_APPEND;
  26. if (flags & FS_IMMUTABLE_FL)
  27. inode->i_flags |= S_IMMUTABLE;
  28. if (flags & FS_NOATIME_FL)
  29. inode->i_flags |= S_NOATIME;
  30. if (flags & FS_DIRSYNC_FL)
  31. inode->i_flags |= S_DIRSYNC;
  32. }
  33. static int do_read_inode(struct inode *inode)
  34. {
  35. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  36. struct f2fs_inode_info *fi = F2FS_I(inode);
  37. struct page *node_page;
  38. struct f2fs_node *rn;
  39. struct f2fs_inode *ri;
  40. /* Check if ino is within scope */
  41. if (check_nid_range(sbi, inode->i_ino)) {
  42. f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
  43. (unsigned long) inode->i_ino);
  44. return -EINVAL;
  45. }
  46. node_page = get_node_page(sbi, inode->i_ino);
  47. if (IS_ERR(node_page))
  48. return PTR_ERR(node_page);
  49. rn = page_address(node_page);
  50. ri = &(rn->i);
  51. inode->i_mode = le16_to_cpu(ri->i_mode);
  52. i_uid_write(inode, le32_to_cpu(ri->i_uid));
  53. i_gid_write(inode, le32_to_cpu(ri->i_gid));
  54. set_nlink(inode, le32_to_cpu(ri->i_links));
  55. inode->i_size = le64_to_cpu(ri->i_size);
  56. inode->i_blocks = le64_to_cpu(ri->i_blocks);
  57. inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
  58. inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
  59. inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
  60. inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
  61. inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
  62. inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
  63. inode->i_generation = le32_to_cpu(ri->i_generation);
  64. if (ri->i_addr[0])
  65. inode->i_rdev = old_decode_dev(le32_to_cpu(ri->i_addr[0]));
  66. else
  67. inode->i_rdev = new_decode_dev(le32_to_cpu(ri->i_addr[1]));
  68. fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
  69. fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
  70. fi->i_flags = le32_to_cpu(ri->i_flags);
  71. fi->flags = 0;
  72. fi->i_advise = ri->i_advise;
  73. fi->i_pino = le32_to_cpu(ri->i_pino);
  74. get_extent_info(&fi->ext, ri->i_ext);
  75. f2fs_put_page(node_page, 1);
  76. return 0;
  77. }
  78. struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
  79. {
  80. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  81. struct inode *inode;
  82. int ret;
  83. inode = iget_locked(sb, ino);
  84. if (!inode)
  85. return ERR_PTR(-ENOMEM);
  86. if (!(inode->i_state & I_NEW))
  87. return inode;
  88. if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
  89. goto make_now;
  90. ret = do_read_inode(inode);
  91. if (ret)
  92. goto bad_inode;
  93. if (!sbi->por_doing && inode->i_nlink == 0) {
  94. ret = -ENOENT;
  95. goto bad_inode;
  96. }
  97. make_now:
  98. if (ino == F2FS_NODE_INO(sbi)) {
  99. inode->i_mapping->a_ops = &f2fs_node_aops;
  100. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  101. } else if (ino == F2FS_META_INO(sbi)) {
  102. inode->i_mapping->a_ops = &f2fs_meta_aops;
  103. mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
  104. } else if (S_ISREG(inode->i_mode)) {
  105. inode->i_op = &f2fs_file_inode_operations;
  106. inode->i_fop = &f2fs_file_operations;
  107. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  108. } else if (S_ISDIR(inode->i_mode)) {
  109. inode->i_op = &f2fs_dir_inode_operations;
  110. inode->i_fop = &f2fs_dir_operations;
  111. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  112. mapping_set_gfp_mask(inode->i_mapping, GFP_HIGHUSER_MOVABLE |
  113. __GFP_ZERO);
  114. } else if (S_ISLNK(inode->i_mode)) {
  115. inode->i_op = &f2fs_symlink_inode_operations;
  116. inode->i_mapping->a_ops = &f2fs_dblock_aops;
  117. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  118. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  119. inode->i_op = &f2fs_special_inode_operations;
  120. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  121. } else {
  122. ret = -EIO;
  123. goto bad_inode;
  124. }
  125. unlock_new_inode(inode);
  126. return inode;
  127. bad_inode:
  128. iget_failed(inode);
  129. return ERR_PTR(ret);
  130. }
  131. void update_inode(struct inode *inode, struct page *node_page)
  132. {
  133. struct f2fs_node *rn;
  134. struct f2fs_inode *ri;
  135. wait_on_page_writeback(node_page);
  136. rn = page_address(node_page);
  137. ri = &(rn->i);
  138. ri->i_mode = cpu_to_le16(inode->i_mode);
  139. ri->i_advise = F2FS_I(inode)->i_advise;
  140. ri->i_uid = cpu_to_le32(i_uid_read(inode));
  141. ri->i_gid = cpu_to_le32(i_gid_read(inode));
  142. ri->i_links = cpu_to_le32(inode->i_nlink);
  143. ri->i_size = cpu_to_le64(i_size_read(inode));
  144. ri->i_blocks = cpu_to_le64(inode->i_blocks);
  145. set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
  146. ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
  147. ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
  148. ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
  149. ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
  150. ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
  151. ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
  152. ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
  153. ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
  154. ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
  155. ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
  156. ri->i_generation = cpu_to_le32(inode->i_generation);
  157. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  158. if (old_valid_dev(inode->i_rdev)) {
  159. ri->i_addr[0] =
  160. cpu_to_le32(old_encode_dev(inode->i_rdev));
  161. ri->i_addr[1] = 0;
  162. } else {
  163. ri->i_addr[0] = 0;
  164. ri->i_addr[1] =
  165. cpu_to_le32(new_encode_dev(inode->i_rdev));
  166. ri->i_addr[2] = 0;
  167. }
  168. }
  169. set_cold_node(inode, node_page);
  170. set_page_dirty(node_page);
  171. }
  172. int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
  173. {
  174. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  175. struct page *node_page;
  176. bool need_lock = false;
  177. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  178. inode->i_ino == F2FS_META_INO(sbi))
  179. return 0;
  180. if (wbc)
  181. f2fs_balance_fs(sbi);
  182. node_page = get_node_page(sbi, inode->i_ino);
  183. if (IS_ERR(node_page))
  184. return PTR_ERR(node_page);
  185. if (!PageDirty(node_page)) {
  186. need_lock = true;
  187. f2fs_put_page(node_page, 1);
  188. mutex_lock(&sbi->write_inode);
  189. node_page = get_node_page(sbi, inode->i_ino);
  190. if (IS_ERR(node_page)) {
  191. mutex_unlock(&sbi->write_inode);
  192. return PTR_ERR(node_page);
  193. }
  194. }
  195. update_inode(inode, node_page);
  196. f2fs_put_page(node_page, 1);
  197. if (need_lock)
  198. mutex_unlock(&sbi->write_inode);
  199. return 0;
  200. }
  201. /*
  202. * Called at the last iput() if i_nlink is zero
  203. */
  204. void f2fs_evict_inode(struct inode *inode)
  205. {
  206. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  207. truncate_inode_pages(&inode->i_data, 0);
  208. if (inode->i_ino == F2FS_NODE_INO(sbi) ||
  209. inode->i_ino == F2FS_META_INO(sbi))
  210. goto no_delete;
  211. BUG_ON(atomic_read(&F2FS_I(inode)->dirty_dents));
  212. remove_dirty_dir_inode(inode);
  213. if (inode->i_nlink || is_bad_inode(inode))
  214. goto no_delete;
  215. sb_start_intwrite(inode->i_sb);
  216. set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
  217. i_size_write(inode, 0);
  218. if (F2FS_HAS_BLOCKS(inode))
  219. f2fs_truncate(inode);
  220. remove_inode_page(inode);
  221. sb_end_intwrite(inode->i_sb);
  222. no_delete:
  223. clear_inode(inode);
  224. }