rmap.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <linux/hugetlb.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  65. }
  66. void anon_vma_free(struct anon_vma *anon_vma)
  67. {
  68. kmem_cache_free(anon_vma_cachep, anon_vma);
  69. }
  70. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  71. {
  72. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  73. }
  74. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  75. {
  76. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  77. }
  78. /**
  79. * anon_vma_prepare - attach an anon_vma to a memory region
  80. * @vma: the memory region in question
  81. *
  82. * This makes sure the memory mapping described by 'vma' has
  83. * an 'anon_vma' attached to it, so that we can associate the
  84. * anonymous pages mapped into it with that anon_vma.
  85. *
  86. * The common case will be that we already have one, but if
  87. * if not we either need to find an adjacent mapping that we
  88. * can re-use the anon_vma from (very common when the only
  89. * reason for splitting a vma has been mprotect()), or we
  90. * allocate a new one.
  91. *
  92. * Anon-vma allocations are very subtle, because we may have
  93. * optimistically looked up an anon_vma in page_lock_anon_vma()
  94. * and that may actually touch the spinlock even in the newly
  95. * allocated vma (it depends on RCU to make sure that the
  96. * anon_vma isn't actually destroyed).
  97. *
  98. * As a result, we need to do proper anon_vma locking even
  99. * for the new allocation. At the same time, we do not want
  100. * to do any locking for the common case of already having
  101. * an anon_vma.
  102. *
  103. * This must be called with the mmap_sem held for reading.
  104. */
  105. int anon_vma_prepare(struct vm_area_struct *vma)
  106. {
  107. struct anon_vma *anon_vma = vma->anon_vma;
  108. struct anon_vma_chain *avc;
  109. might_sleep();
  110. if (unlikely(!anon_vma)) {
  111. struct mm_struct *mm = vma->vm_mm;
  112. struct anon_vma *allocated;
  113. avc = anon_vma_chain_alloc();
  114. if (!avc)
  115. goto out_enomem;
  116. anon_vma = find_mergeable_anon_vma(vma);
  117. allocated = NULL;
  118. if (!anon_vma) {
  119. anon_vma = anon_vma_alloc();
  120. if (unlikely(!anon_vma))
  121. goto out_enomem_free_avc;
  122. allocated = anon_vma;
  123. }
  124. spin_lock(&anon_vma->lock);
  125. /* page_table_lock to protect against threads */
  126. spin_lock(&mm->page_table_lock);
  127. if (likely(!vma->anon_vma)) {
  128. vma->anon_vma = anon_vma;
  129. avc->anon_vma = anon_vma;
  130. avc->vma = vma;
  131. list_add(&avc->same_vma, &vma->anon_vma_chain);
  132. list_add(&avc->same_anon_vma, &anon_vma->head);
  133. allocated = NULL;
  134. avc = NULL;
  135. }
  136. spin_unlock(&mm->page_table_lock);
  137. spin_unlock(&anon_vma->lock);
  138. if (unlikely(allocated))
  139. anon_vma_free(allocated);
  140. if (unlikely(avc))
  141. anon_vma_chain_free(avc);
  142. }
  143. return 0;
  144. out_enomem_free_avc:
  145. anon_vma_chain_free(avc);
  146. out_enomem:
  147. return -ENOMEM;
  148. }
  149. static void anon_vma_chain_link(struct vm_area_struct *vma,
  150. struct anon_vma_chain *avc,
  151. struct anon_vma *anon_vma)
  152. {
  153. avc->vma = vma;
  154. avc->anon_vma = anon_vma;
  155. list_add(&avc->same_vma, &vma->anon_vma_chain);
  156. spin_lock(&anon_vma->lock);
  157. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  158. spin_unlock(&anon_vma->lock);
  159. }
  160. /*
  161. * Attach the anon_vmas from src to dst.
  162. * Returns 0 on success, -ENOMEM on failure.
  163. */
  164. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  165. {
  166. struct anon_vma_chain *avc, *pavc;
  167. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  168. avc = anon_vma_chain_alloc();
  169. if (!avc)
  170. goto enomem_failure;
  171. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  172. }
  173. return 0;
  174. enomem_failure:
  175. unlink_anon_vmas(dst);
  176. return -ENOMEM;
  177. }
  178. /*
  179. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  180. * the corresponding VMA in the parent process is attached to.
  181. * Returns 0 on success, non-zero on failure.
  182. */
  183. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  184. {
  185. struct anon_vma_chain *avc;
  186. struct anon_vma *anon_vma;
  187. /* Don't bother if the parent process has no anon_vma here. */
  188. if (!pvma->anon_vma)
  189. return 0;
  190. /*
  191. * First, attach the new VMA to the parent VMA's anon_vmas,
  192. * so rmap can find non-COWed pages in child processes.
  193. */
  194. if (anon_vma_clone(vma, pvma))
  195. return -ENOMEM;
  196. /* Then add our own anon_vma. */
  197. anon_vma = anon_vma_alloc();
  198. if (!anon_vma)
  199. goto out_error;
  200. avc = anon_vma_chain_alloc();
  201. if (!avc)
  202. goto out_error_free_anon_vma;
  203. anon_vma_chain_link(vma, avc, anon_vma);
  204. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  205. vma->anon_vma = anon_vma;
  206. return 0;
  207. out_error_free_anon_vma:
  208. anon_vma_free(anon_vma);
  209. out_error:
  210. unlink_anon_vmas(vma);
  211. return -ENOMEM;
  212. }
  213. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  214. {
  215. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  216. int empty;
  217. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  218. if (!anon_vma)
  219. return;
  220. spin_lock(&anon_vma->lock);
  221. list_del(&anon_vma_chain->same_anon_vma);
  222. /* We must garbage collect the anon_vma if it's empty */
  223. empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
  224. spin_unlock(&anon_vma->lock);
  225. if (empty)
  226. anon_vma_free(anon_vma);
  227. }
  228. void unlink_anon_vmas(struct vm_area_struct *vma)
  229. {
  230. struct anon_vma_chain *avc, *next;
  231. /* Unlink each anon_vma chained to the VMA. */
  232. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  233. anon_vma_unlink(avc);
  234. list_del(&avc->same_vma);
  235. anon_vma_chain_free(avc);
  236. }
  237. }
  238. static void anon_vma_ctor(void *data)
  239. {
  240. struct anon_vma *anon_vma = data;
  241. spin_lock_init(&anon_vma->lock);
  242. anonvma_external_refcount_init(anon_vma);
  243. INIT_LIST_HEAD(&anon_vma->head);
  244. }
  245. void __init anon_vma_init(void)
  246. {
  247. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  248. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  249. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  250. }
  251. /*
  252. * Getting a lock on a stable anon_vma from a page off the LRU is
  253. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  254. */
  255. struct anon_vma *page_lock_anon_vma(struct page *page)
  256. {
  257. struct anon_vma *anon_vma;
  258. unsigned long anon_mapping;
  259. rcu_read_lock();
  260. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  261. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  262. goto out;
  263. if (!page_mapped(page))
  264. goto out;
  265. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  266. spin_lock(&anon_vma->lock);
  267. return anon_vma;
  268. out:
  269. rcu_read_unlock();
  270. return NULL;
  271. }
  272. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  273. {
  274. spin_unlock(&anon_vma->lock);
  275. rcu_read_unlock();
  276. }
  277. /*
  278. * At what user virtual address is page expected in @vma?
  279. * Returns virtual address or -EFAULT if page's index/offset is not
  280. * within the range mapped the @vma.
  281. */
  282. static inline unsigned long
  283. vma_address(struct page *page, struct vm_area_struct *vma)
  284. {
  285. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  286. unsigned long address;
  287. if (unlikely(is_vm_hugetlb_page(vma)))
  288. pgoff = page->index << huge_page_order(page_hstate(page));
  289. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  290. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  291. /* page should be within @vma mapping range */
  292. return -EFAULT;
  293. }
  294. return address;
  295. }
  296. /*
  297. * At what user virtual address is page expected in vma?
  298. * Caller should check the page is actually part of the vma.
  299. */
  300. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  301. {
  302. if (PageAnon(page))
  303. ;
  304. else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  305. if (!vma->vm_file ||
  306. vma->vm_file->f_mapping != page->mapping)
  307. return -EFAULT;
  308. } else
  309. return -EFAULT;
  310. return vma_address(page, vma);
  311. }
  312. /*
  313. * Check that @page is mapped at @address into @mm.
  314. *
  315. * If @sync is false, page_check_address may perform a racy check to avoid
  316. * the page table lock when the pte is not present (helpful when reclaiming
  317. * highly shared pages).
  318. *
  319. * On success returns with pte mapped and locked.
  320. */
  321. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  322. unsigned long address, spinlock_t **ptlp, int sync)
  323. {
  324. pgd_t *pgd;
  325. pud_t *pud;
  326. pmd_t *pmd;
  327. pte_t *pte;
  328. spinlock_t *ptl;
  329. if (unlikely(PageHuge(page))) {
  330. pte = huge_pte_offset(mm, address);
  331. ptl = &mm->page_table_lock;
  332. goto check;
  333. }
  334. pgd = pgd_offset(mm, address);
  335. if (!pgd_present(*pgd))
  336. return NULL;
  337. pud = pud_offset(pgd, address);
  338. if (!pud_present(*pud))
  339. return NULL;
  340. pmd = pmd_offset(pud, address);
  341. if (!pmd_present(*pmd))
  342. return NULL;
  343. pte = pte_offset_map(pmd, address);
  344. /* Make a quick check before getting the lock */
  345. if (!sync && !pte_present(*pte)) {
  346. pte_unmap(pte);
  347. return NULL;
  348. }
  349. ptl = pte_lockptr(mm, pmd);
  350. check:
  351. spin_lock(ptl);
  352. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  353. *ptlp = ptl;
  354. return pte;
  355. }
  356. pte_unmap_unlock(pte, ptl);
  357. return NULL;
  358. }
  359. /**
  360. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  361. * @page: the page to test
  362. * @vma: the VMA to test
  363. *
  364. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  365. * if the page is not mapped into the page tables of this VMA. Only
  366. * valid for normal file or anonymous VMAs.
  367. */
  368. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  369. {
  370. unsigned long address;
  371. pte_t *pte;
  372. spinlock_t *ptl;
  373. address = vma_address(page, vma);
  374. if (address == -EFAULT) /* out of vma range */
  375. return 0;
  376. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  377. if (!pte) /* the page is not in this mm */
  378. return 0;
  379. pte_unmap_unlock(pte, ptl);
  380. return 1;
  381. }
  382. /*
  383. * Subfunctions of page_referenced: page_referenced_one called
  384. * repeatedly from either page_referenced_anon or page_referenced_file.
  385. */
  386. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  387. unsigned long address, unsigned int *mapcount,
  388. unsigned long *vm_flags)
  389. {
  390. struct mm_struct *mm = vma->vm_mm;
  391. pte_t *pte;
  392. spinlock_t *ptl;
  393. int referenced = 0;
  394. pte = page_check_address(page, mm, address, &ptl, 0);
  395. if (!pte)
  396. goto out;
  397. /*
  398. * Don't want to elevate referenced for mlocked page that gets this far,
  399. * in order that it progresses to try_to_unmap and is moved to the
  400. * unevictable list.
  401. */
  402. if (vma->vm_flags & VM_LOCKED) {
  403. *mapcount = 1; /* break early from loop */
  404. *vm_flags |= VM_LOCKED;
  405. goto out_unmap;
  406. }
  407. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  408. /*
  409. * Don't treat a reference through a sequentially read
  410. * mapping as such. If the page has been used in
  411. * another mapping, we will catch it; if this other
  412. * mapping is already gone, the unmap path will have
  413. * set PG_referenced or activated the page.
  414. */
  415. if (likely(!VM_SequentialReadHint(vma)))
  416. referenced++;
  417. }
  418. /* Pretend the page is referenced if the task has the
  419. swap token and is in the middle of a page fault. */
  420. if (mm != current->mm && has_swap_token(mm) &&
  421. rwsem_is_locked(&mm->mmap_sem))
  422. referenced++;
  423. out_unmap:
  424. (*mapcount)--;
  425. pte_unmap_unlock(pte, ptl);
  426. if (referenced)
  427. *vm_flags |= vma->vm_flags;
  428. out:
  429. return referenced;
  430. }
  431. static int page_referenced_anon(struct page *page,
  432. struct mem_cgroup *mem_cont,
  433. unsigned long *vm_flags)
  434. {
  435. unsigned int mapcount;
  436. struct anon_vma *anon_vma;
  437. struct anon_vma_chain *avc;
  438. int referenced = 0;
  439. anon_vma = page_lock_anon_vma(page);
  440. if (!anon_vma)
  441. return referenced;
  442. mapcount = page_mapcount(page);
  443. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  444. struct vm_area_struct *vma = avc->vma;
  445. unsigned long address = vma_address(page, vma);
  446. if (address == -EFAULT)
  447. continue;
  448. /*
  449. * If we are reclaiming on behalf of a cgroup, skip
  450. * counting on behalf of references from different
  451. * cgroups
  452. */
  453. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  454. continue;
  455. referenced += page_referenced_one(page, vma, address,
  456. &mapcount, vm_flags);
  457. if (!mapcount)
  458. break;
  459. }
  460. page_unlock_anon_vma(anon_vma);
  461. return referenced;
  462. }
  463. /**
  464. * page_referenced_file - referenced check for object-based rmap
  465. * @page: the page we're checking references on.
  466. * @mem_cont: target memory controller
  467. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  468. *
  469. * For an object-based mapped page, find all the places it is mapped and
  470. * check/clear the referenced flag. This is done by following the page->mapping
  471. * pointer, then walking the chain of vmas it holds. It returns the number
  472. * of references it found.
  473. *
  474. * This function is only called from page_referenced for object-based pages.
  475. */
  476. static int page_referenced_file(struct page *page,
  477. struct mem_cgroup *mem_cont,
  478. unsigned long *vm_flags)
  479. {
  480. unsigned int mapcount;
  481. struct address_space *mapping = page->mapping;
  482. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  483. struct vm_area_struct *vma;
  484. struct prio_tree_iter iter;
  485. int referenced = 0;
  486. /*
  487. * The caller's checks on page->mapping and !PageAnon have made
  488. * sure that this is a file page: the check for page->mapping
  489. * excludes the case just before it gets set on an anon page.
  490. */
  491. BUG_ON(PageAnon(page));
  492. /*
  493. * The page lock not only makes sure that page->mapping cannot
  494. * suddenly be NULLified by truncation, it makes sure that the
  495. * structure at mapping cannot be freed and reused yet,
  496. * so we can safely take mapping->i_mmap_lock.
  497. */
  498. BUG_ON(!PageLocked(page));
  499. spin_lock(&mapping->i_mmap_lock);
  500. /*
  501. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  502. * is more likely to be accurate if we note it after spinning.
  503. */
  504. mapcount = page_mapcount(page);
  505. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  506. unsigned long address = vma_address(page, vma);
  507. if (address == -EFAULT)
  508. continue;
  509. /*
  510. * If we are reclaiming on behalf of a cgroup, skip
  511. * counting on behalf of references from different
  512. * cgroups
  513. */
  514. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  515. continue;
  516. referenced += page_referenced_one(page, vma, address,
  517. &mapcount, vm_flags);
  518. if (!mapcount)
  519. break;
  520. }
  521. spin_unlock(&mapping->i_mmap_lock);
  522. return referenced;
  523. }
  524. /**
  525. * page_referenced - test if the page was referenced
  526. * @page: the page to test
  527. * @is_locked: caller holds lock on the page
  528. * @mem_cont: target memory controller
  529. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  530. *
  531. * Quick test_and_clear_referenced for all mappings to a page,
  532. * returns the number of ptes which referenced the page.
  533. */
  534. int page_referenced(struct page *page,
  535. int is_locked,
  536. struct mem_cgroup *mem_cont,
  537. unsigned long *vm_flags)
  538. {
  539. int referenced = 0;
  540. int we_locked = 0;
  541. *vm_flags = 0;
  542. if (page_mapped(page) && page_rmapping(page)) {
  543. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  544. we_locked = trylock_page(page);
  545. if (!we_locked) {
  546. referenced++;
  547. goto out;
  548. }
  549. }
  550. if (unlikely(PageKsm(page)))
  551. referenced += page_referenced_ksm(page, mem_cont,
  552. vm_flags);
  553. else if (PageAnon(page))
  554. referenced += page_referenced_anon(page, mem_cont,
  555. vm_flags);
  556. else if (page->mapping)
  557. referenced += page_referenced_file(page, mem_cont,
  558. vm_flags);
  559. if (we_locked)
  560. unlock_page(page);
  561. }
  562. out:
  563. if (page_test_and_clear_young(page))
  564. referenced++;
  565. return referenced;
  566. }
  567. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  568. unsigned long address)
  569. {
  570. struct mm_struct *mm = vma->vm_mm;
  571. pte_t *pte;
  572. spinlock_t *ptl;
  573. int ret = 0;
  574. pte = page_check_address(page, mm, address, &ptl, 1);
  575. if (!pte)
  576. goto out;
  577. if (pte_dirty(*pte) || pte_write(*pte)) {
  578. pte_t entry;
  579. flush_cache_page(vma, address, pte_pfn(*pte));
  580. entry = ptep_clear_flush_notify(vma, address, pte);
  581. entry = pte_wrprotect(entry);
  582. entry = pte_mkclean(entry);
  583. set_pte_at(mm, address, pte, entry);
  584. ret = 1;
  585. }
  586. pte_unmap_unlock(pte, ptl);
  587. out:
  588. return ret;
  589. }
  590. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  591. {
  592. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  593. struct vm_area_struct *vma;
  594. struct prio_tree_iter iter;
  595. int ret = 0;
  596. BUG_ON(PageAnon(page));
  597. spin_lock(&mapping->i_mmap_lock);
  598. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  599. if (vma->vm_flags & VM_SHARED) {
  600. unsigned long address = vma_address(page, vma);
  601. if (address == -EFAULT)
  602. continue;
  603. ret += page_mkclean_one(page, vma, address);
  604. }
  605. }
  606. spin_unlock(&mapping->i_mmap_lock);
  607. return ret;
  608. }
  609. int page_mkclean(struct page *page)
  610. {
  611. int ret = 0;
  612. BUG_ON(!PageLocked(page));
  613. if (page_mapped(page)) {
  614. struct address_space *mapping = page_mapping(page);
  615. if (mapping) {
  616. ret = page_mkclean_file(mapping, page);
  617. if (page_test_dirty(page)) {
  618. page_clear_dirty(page);
  619. ret = 1;
  620. }
  621. }
  622. }
  623. return ret;
  624. }
  625. EXPORT_SYMBOL_GPL(page_mkclean);
  626. /**
  627. * page_move_anon_rmap - move a page to our anon_vma
  628. * @page: the page to move to our anon_vma
  629. * @vma: the vma the page belongs to
  630. * @address: the user virtual address mapped
  631. *
  632. * When a page belongs exclusively to one process after a COW event,
  633. * that page can be moved into the anon_vma that belongs to just that
  634. * process, so the rmap code will not search the parent or sibling
  635. * processes.
  636. */
  637. void page_move_anon_rmap(struct page *page,
  638. struct vm_area_struct *vma, unsigned long address)
  639. {
  640. struct anon_vma *anon_vma = vma->anon_vma;
  641. VM_BUG_ON(!PageLocked(page));
  642. VM_BUG_ON(!anon_vma);
  643. VM_BUG_ON(page->index != linear_page_index(vma, address));
  644. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  645. page->mapping = (struct address_space *) anon_vma;
  646. }
  647. /**
  648. * __page_set_anon_rmap - setup new anonymous rmap
  649. * @page: the page to add the mapping to
  650. * @vma: the vm area in which the mapping is added
  651. * @address: the user virtual address mapped
  652. * @exclusive: the page is exclusively owned by the current process
  653. */
  654. static void __page_set_anon_rmap(struct page *page,
  655. struct vm_area_struct *vma, unsigned long address, int exclusive)
  656. {
  657. struct anon_vma *anon_vma = vma->anon_vma;
  658. BUG_ON(!anon_vma);
  659. /*
  660. * If the page isn't exclusively mapped into this vma,
  661. * we must use the _oldest_ possible anon_vma for the
  662. * page mapping!
  663. *
  664. * So take the last AVC chain entry in the vma, which is
  665. * the deepest ancestor, and use the anon_vma from that.
  666. */
  667. if (!exclusive) {
  668. struct anon_vma_chain *avc;
  669. avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
  670. anon_vma = avc->anon_vma;
  671. }
  672. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  673. page->mapping = (struct address_space *) anon_vma;
  674. page->index = linear_page_index(vma, address);
  675. }
  676. /**
  677. * __page_check_anon_rmap - sanity check anonymous rmap addition
  678. * @page: the page to add the mapping to
  679. * @vma: the vm area in which the mapping is added
  680. * @address: the user virtual address mapped
  681. */
  682. static void __page_check_anon_rmap(struct page *page,
  683. struct vm_area_struct *vma, unsigned long address)
  684. {
  685. #ifdef CONFIG_DEBUG_VM
  686. /*
  687. * The page's anon-rmap details (mapping and index) are guaranteed to
  688. * be set up correctly at this point.
  689. *
  690. * We have exclusion against page_add_anon_rmap because the caller
  691. * always holds the page locked, except if called from page_dup_rmap,
  692. * in which case the page is already known to be setup.
  693. *
  694. * We have exclusion against page_add_new_anon_rmap because those pages
  695. * are initially only visible via the pagetables, and the pte is locked
  696. * over the call to page_add_new_anon_rmap.
  697. */
  698. BUG_ON(page->index != linear_page_index(vma, address));
  699. #endif
  700. }
  701. /**
  702. * page_add_anon_rmap - add pte mapping to an anonymous page
  703. * @page: the page to add the mapping to
  704. * @vma: the vm area in which the mapping is added
  705. * @address: the user virtual address mapped
  706. *
  707. * The caller needs to hold the pte lock, and the page must be locked in
  708. * the anon_vma case: to serialize mapping,index checking after setting,
  709. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  710. * (but PageKsm is never downgraded to PageAnon).
  711. */
  712. void page_add_anon_rmap(struct page *page,
  713. struct vm_area_struct *vma, unsigned long address)
  714. {
  715. int first = atomic_inc_and_test(&page->_mapcount);
  716. if (first)
  717. __inc_zone_page_state(page, NR_ANON_PAGES);
  718. if (unlikely(PageKsm(page)))
  719. return;
  720. VM_BUG_ON(!PageLocked(page));
  721. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  722. if (first)
  723. __page_set_anon_rmap(page, vma, address, 0);
  724. else
  725. __page_check_anon_rmap(page, vma, address);
  726. }
  727. /**
  728. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  729. * @page: the page to add the mapping to
  730. * @vma: the vm area in which the mapping is added
  731. * @address: the user virtual address mapped
  732. *
  733. * Same as page_add_anon_rmap but must only be called on *new* pages.
  734. * This means the inc-and-test can be bypassed.
  735. * Page does not have to be locked.
  736. */
  737. void page_add_new_anon_rmap(struct page *page,
  738. struct vm_area_struct *vma, unsigned long address)
  739. {
  740. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  741. SetPageSwapBacked(page);
  742. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  743. __inc_zone_page_state(page, NR_ANON_PAGES);
  744. __page_set_anon_rmap(page, vma, address, 1);
  745. if (page_evictable(page, vma))
  746. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  747. else
  748. add_page_to_unevictable_list(page);
  749. }
  750. /**
  751. * page_add_file_rmap - add pte mapping to a file page
  752. * @page: the page to add the mapping to
  753. *
  754. * The caller needs to hold the pte lock.
  755. */
  756. void page_add_file_rmap(struct page *page)
  757. {
  758. if (atomic_inc_and_test(&page->_mapcount)) {
  759. __inc_zone_page_state(page, NR_FILE_MAPPED);
  760. mem_cgroup_update_file_mapped(page, 1);
  761. }
  762. }
  763. /**
  764. * page_remove_rmap - take down pte mapping from a page
  765. * @page: page to remove mapping from
  766. *
  767. * The caller needs to hold the pte lock.
  768. */
  769. void page_remove_rmap(struct page *page)
  770. {
  771. /* page still mapped by someone else? */
  772. if (!atomic_add_negative(-1, &page->_mapcount))
  773. return;
  774. /*
  775. * Now that the last pte has gone, s390 must transfer dirty
  776. * flag from storage key to struct page. We can usually skip
  777. * this if the page is anon, so about to be freed; but perhaps
  778. * not if it's in swapcache - there might be another pte slot
  779. * containing the swap entry, but page not yet written to swap.
  780. */
  781. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  782. page_clear_dirty(page);
  783. set_page_dirty(page);
  784. }
  785. /*
  786. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  787. * and not charged by memcg for now.
  788. */
  789. if (unlikely(PageHuge(page)))
  790. return;
  791. if (PageAnon(page)) {
  792. mem_cgroup_uncharge_page(page);
  793. __dec_zone_page_state(page, NR_ANON_PAGES);
  794. } else {
  795. __dec_zone_page_state(page, NR_FILE_MAPPED);
  796. mem_cgroup_update_file_mapped(page, -1);
  797. }
  798. /*
  799. * It would be tidy to reset the PageAnon mapping here,
  800. * but that might overwrite a racing page_add_anon_rmap
  801. * which increments mapcount after us but sets mapping
  802. * before us: so leave the reset to free_hot_cold_page,
  803. * and remember that it's only reliable while mapped.
  804. * Leaving it set also helps swapoff to reinstate ptes
  805. * faster for those pages still in swapcache.
  806. */
  807. }
  808. /*
  809. * Subfunctions of try_to_unmap: try_to_unmap_one called
  810. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  811. */
  812. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  813. unsigned long address, enum ttu_flags flags)
  814. {
  815. struct mm_struct *mm = vma->vm_mm;
  816. pte_t *pte;
  817. pte_t pteval;
  818. spinlock_t *ptl;
  819. int ret = SWAP_AGAIN;
  820. pte = page_check_address(page, mm, address, &ptl, 0);
  821. if (!pte)
  822. goto out;
  823. /*
  824. * If the page is mlock()d, we cannot swap it out.
  825. * If it's recently referenced (perhaps page_referenced
  826. * skipped over this mm) then we should reactivate it.
  827. */
  828. if (!(flags & TTU_IGNORE_MLOCK)) {
  829. if (vma->vm_flags & VM_LOCKED)
  830. goto out_mlock;
  831. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  832. goto out_unmap;
  833. }
  834. if (!(flags & TTU_IGNORE_ACCESS)) {
  835. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  836. ret = SWAP_FAIL;
  837. goto out_unmap;
  838. }
  839. }
  840. /* Nuke the page table entry. */
  841. flush_cache_page(vma, address, page_to_pfn(page));
  842. pteval = ptep_clear_flush_notify(vma, address, pte);
  843. /* Move the dirty bit to the physical page now the pte is gone. */
  844. if (pte_dirty(pteval))
  845. set_page_dirty(page);
  846. /* Update high watermark before we lower rss */
  847. update_hiwater_rss(mm);
  848. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  849. if (PageAnon(page))
  850. dec_mm_counter(mm, MM_ANONPAGES);
  851. else
  852. dec_mm_counter(mm, MM_FILEPAGES);
  853. set_pte_at(mm, address, pte,
  854. swp_entry_to_pte(make_hwpoison_entry(page)));
  855. } else if (PageAnon(page)) {
  856. swp_entry_t entry = { .val = page_private(page) };
  857. if (PageSwapCache(page)) {
  858. /*
  859. * Store the swap location in the pte.
  860. * See handle_pte_fault() ...
  861. */
  862. if (swap_duplicate(entry) < 0) {
  863. set_pte_at(mm, address, pte, pteval);
  864. ret = SWAP_FAIL;
  865. goto out_unmap;
  866. }
  867. if (list_empty(&mm->mmlist)) {
  868. spin_lock(&mmlist_lock);
  869. if (list_empty(&mm->mmlist))
  870. list_add(&mm->mmlist, &init_mm.mmlist);
  871. spin_unlock(&mmlist_lock);
  872. }
  873. dec_mm_counter(mm, MM_ANONPAGES);
  874. inc_mm_counter(mm, MM_SWAPENTS);
  875. } else if (PAGE_MIGRATION) {
  876. /*
  877. * Store the pfn of the page in a special migration
  878. * pte. do_swap_page() will wait until the migration
  879. * pte is removed and then restart fault handling.
  880. */
  881. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  882. entry = make_migration_entry(page, pte_write(pteval));
  883. }
  884. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  885. BUG_ON(pte_file(*pte));
  886. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  887. /* Establish migration entry for a file page */
  888. swp_entry_t entry;
  889. entry = make_migration_entry(page, pte_write(pteval));
  890. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  891. } else
  892. dec_mm_counter(mm, MM_FILEPAGES);
  893. page_remove_rmap(page);
  894. page_cache_release(page);
  895. out_unmap:
  896. pte_unmap_unlock(pte, ptl);
  897. out:
  898. return ret;
  899. out_mlock:
  900. pte_unmap_unlock(pte, ptl);
  901. /*
  902. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  903. * unstable result and race. Plus, We can't wait here because
  904. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  905. * if trylock failed, the page remain in evictable lru and later
  906. * vmscan could retry to move the page to unevictable lru if the
  907. * page is actually mlocked.
  908. */
  909. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  910. if (vma->vm_flags & VM_LOCKED) {
  911. mlock_vma_page(page);
  912. ret = SWAP_MLOCK;
  913. }
  914. up_read(&vma->vm_mm->mmap_sem);
  915. }
  916. return ret;
  917. }
  918. /*
  919. * objrmap doesn't work for nonlinear VMAs because the assumption that
  920. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  921. * Consequently, given a particular page and its ->index, we cannot locate the
  922. * ptes which are mapping that page without an exhaustive linear search.
  923. *
  924. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  925. * maps the file to which the target page belongs. The ->vm_private_data field
  926. * holds the current cursor into that scan. Successive searches will circulate
  927. * around the vma's virtual address space.
  928. *
  929. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  930. * more scanning pressure is placed against them as well. Eventually pages
  931. * will become fully unmapped and are eligible for eviction.
  932. *
  933. * For very sparsely populated VMAs this is a little inefficient - chances are
  934. * there there won't be many ptes located within the scan cluster. In this case
  935. * maybe we could scan further - to the end of the pte page, perhaps.
  936. *
  937. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  938. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  939. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  940. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  941. */
  942. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  943. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  944. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  945. struct vm_area_struct *vma, struct page *check_page)
  946. {
  947. struct mm_struct *mm = vma->vm_mm;
  948. pgd_t *pgd;
  949. pud_t *pud;
  950. pmd_t *pmd;
  951. pte_t *pte;
  952. pte_t pteval;
  953. spinlock_t *ptl;
  954. struct page *page;
  955. unsigned long address;
  956. unsigned long end;
  957. int ret = SWAP_AGAIN;
  958. int locked_vma = 0;
  959. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  960. end = address + CLUSTER_SIZE;
  961. if (address < vma->vm_start)
  962. address = vma->vm_start;
  963. if (end > vma->vm_end)
  964. end = vma->vm_end;
  965. pgd = pgd_offset(mm, address);
  966. if (!pgd_present(*pgd))
  967. return ret;
  968. pud = pud_offset(pgd, address);
  969. if (!pud_present(*pud))
  970. return ret;
  971. pmd = pmd_offset(pud, address);
  972. if (!pmd_present(*pmd))
  973. return ret;
  974. /*
  975. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  976. * keep the sem while scanning the cluster for mlocking pages.
  977. */
  978. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  979. locked_vma = (vma->vm_flags & VM_LOCKED);
  980. if (!locked_vma)
  981. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  982. }
  983. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  984. /* Update high watermark before we lower rss */
  985. update_hiwater_rss(mm);
  986. for (; address < end; pte++, address += PAGE_SIZE) {
  987. if (!pte_present(*pte))
  988. continue;
  989. page = vm_normal_page(vma, address, *pte);
  990. BUG_ON(!page || PageAnon(page));
  991. if (locked_vma) {
  992. mlock_vma_page(page); /* no-op if already mlocked */
  993. if (page == check_page)
  994. ret = SWAP_MLOCK;
  995. continue; /* don't unmap */
  996. }
  997. if (ptep_clear_flush_young_notify(vma, address, pte))
  998. continue;
  999. /* Nuke the page table entry. */
  1000. flush_cache_page(vma, address, pte_pfn(*pte));
  1001. pteval = ptep_clear_flush_notify(vma, address, pte);
  1002. /* If nonlinear, store the file page offset in the pte. */
  1003. if (page->index != linear_page_index(vma, address))
  1004. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1005. /* Move the dirty bit to the physical page now the pte is gone. */
  1006. if (pte_dirty(pteval))
  1007. set_page_dirty(page);
  1008. page_remove_rmap(page);
  1009. page_cache_release(page);
  1010. dec_mm_counter(mm, MM_FILEPAGES);
  1011. (*mapcount)--;
  1012. }
  1013. pte_unmap_unlock(pte - 1, ptl);
  1014. if (locked_vma)
  1015. up_read(&vma->vm_mm->mmap_sem);
  1016. return ret;
  1017. }
  1018. static bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1019. {
  1020. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1021. if (!maybe_stack)
  1022. return false;
  1023. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1024. VM_STACK_INCOMPLETE_SETUP)
  1025. return true;
  1026. return false;
  1027. }
  1028. /**
  1029. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1030. * rmap method
  1031. * @page: the page to unmap/unlock
  1032. * @flags: action and flags
  1033. *
  1034. * Find all the mappings of a page using the mapping pointer and the vma chains
  1035. * contained in the anon_vma struct it points to.
  1036. *
  1037. * This function is only called from try_to_unmap/try_to_munlock for
  1038. * anonymous pages.
  1039. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1040. * where the page was found will be held for write. So, we won't recheck
  1041. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1042. * 'LOCKED.
  1043. */
  1044. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1045. {
  1046. struct anon_vma *anon_vma;
  1047. struct anon_vma_chain *avc;
  1048. int ret = SWAP_AGAIN;
  1049. anon_vma = page_lock_anon_vma(page);
  1050. if (!anon_vma)
  1051. return ret;
  1052. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1053. struct vm_area_struct *vma = avc->vma;
  1054. unsigned long address;
  1055. /*
  1056. * During exec, a temporary VMA is setup and later moved.
  1057. * The VMA is moved under the anon_vma lock but not the
  1058. * page tables leading to a race where migration cannot
  1059. * find the migration ptes. Rather than increasing the
  1060. * locking requirements of exec(), migration skips
  1061. * temporary VMAs until after exec() completes.
  1062. */
  1063. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1064. is_vma_temporary_stack(vma))
  1065. continue;
  1066. address = vma_address(page, vma);
  1067. if (address == -EFAULT)
  1068. continue;
  1069. ret = try_to_unmap_one(page, vma, address, flags);
  1070. if (ret != SWAP_AGAIN || !page_mapped(page))
  1071. break;
  1072. }
  1073. page_unlock_anon_vma(anon_vma);
  1074. return ret;
  1075. }
  1076. /**
  1077. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1078. * @page: the page to unmap/unlock
  1079. * @flags: action and flags
  1080. *
  1081. * Find all the mappings of a page using the mapping pointer and the vma chains
  1082. * contained in the address_space struct it points to.
  1083. *
  1084. * This function is only called from try_to_unmap/try_to_munlock for
  1085. * object-based pages.
  1086. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1087. * where the page was found will be held for write. So, we won't recheck
  1088. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1089. * 'LOCKED.
  1090. */
  1091. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1092. {
  1093. struct address_space *mapping = page->mapping;
  1094. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1095. struct vm_area_struct *vma;
  1096. struct prio_tree_iter iter;
  1097. int ret = SWAP_AGAIN;
  1098. unsigned long cursor;
  1099. unsigned long max_nl_cursor = 0;
  1100. unsigned long max_nl_size = 0;
  1101. unsigned int mapcount;
  1102. spin_lock(&mapping->i_mmap_lock);
  1103. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1104. unsigned long address = vma_address(page, vma);
  1105. if (address == -EFAULT)
  1106. continue;
  1107. ret = try_to_unmap_one(page, vma, address, flags);
  1108. if (ret != SWAP_AGAIN || !page_mapped(page))
  1109. goto out;
  1110. }
  1111. if (list_empty(&mapping->i_mmap_nonlinear))
  1112. goto out;
  1113. /*
  1114. * We don't bother to try to find the munlocked page in nonlinears.
  1115. * It's costly. Instead, later, page reclaim logic may call
  1116. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1117. */
  1118. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1119. goto out;
  1120. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1121. shared.vm_set.list) {
  1122. cursor = (unsigned long) vma->vm_private_data;
  1123. if (cursor > max_nl_cursor)
  1124. max_nl_cursor = cursor;
  1125. cursor = vma->vm_end - vma->vm_start;
  1126. if (cursor > max_nl_size)
  1127. max_nl_size = cursor;
  1128. }
  1129. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1130. ret = SWAP_FAIL;
  1131. goto out;
  1132. }
  1133. /*
  1134. * We don't try to search for this page in the nonlinear vmas,
  1135. * and page_referenced wouldn't have found it anyway. Instead
  1136. * just walk the nonlinear vmas trying to age and unmap some.
  1137. * The mapcount of the page we came in with is irrelevant,
  1138. * but even so use it as a guide to how hard we should try?
  1139. */
  1140. mapcount = page_mapcount(page);
  1141. if (!mapcount)
  1142. goto out;
  1143. cond_resched_lock(&mapping->i_mmap_lock);
  1144. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1145. if (max_nl_cursor == 0)
  1146. max_nl_cursor = CLUSTER_SIZE;
  1147. do {
  1148. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1149. shared.vm_set.list) {
  1150. cursor = (unsigned long) vma->vm_private_data;
  1151. while ( cursor < max_nl_cursor &&
  1152. cursor < vma->vm_end - vma->vm_start) {
  1153. if (try_to_unmap_cluster(cursor, &mapcount,
  1154. vma, page) == SWAP_MLOCK)
  1155. ret = SWAP_MLOCK;
  1156. cursor += CLUSTER_SIZE;
  1157. vma->vm_private_data = (void *) cursor;
  1158. if ((int)mapcount <= 0)
  1159. goto out;
  1160. }
  1161. vma->vm_private_data = (void *) max_nl_cursor;
  1162. }
  1163. cond_resched_lock(&mapping->i_mmap_lock);
  1164. max_nl_cursor += CLUSTER_SIZE;
  1165. } while (max_nl_cursor <= max_nl_size);
  1166. /*
  1167. * Don't loop forever (perhaps all the remaining pages are
  1168. * in locked vmas). Reset cursor on all unreserved nonlinear
  1169. * vmas, now forgetting on which ones it had fallen behind.
  1170. */
  1171. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1172. vma->vm_private_data = NULL;
  1173. out:
  1174. spin_unlock(&mapping->i_mmap_lock);
  1175. return ret;
  1176. }
  1177. /**
  1178. * try_to_unmap - try to remove all page table mappings to a page
  1179. * @page: the page to get unmapped
  1180. * @flags: action and flags
  1181. *
  1182. * Tries to remove all the page table entries which are mapping this
  1183. * page, used in the pageout path. Caller must hold the page lock.
  1184. * Return values are:
  1185. *
  1186. * SWAP_SUCCESS - we succeeded in removing all mappings
  1187. * SWAP_AGAIN - we missed a mapping, try again later
  1188. * SWAP_FAIL - the page is unswappable
  1189. * SWAP_MLOCK - page is mlocked.
  1190. */
  1191. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1192. {
  1193. int ret;
  1194. BUG_ON(!PageLocked(page));
  1195. if (unlikely(PageKsm(page)))
  1196. ret = try_to_unmap_ksm(page, flags);
  1197. else if (PageAnon(page))
  1198. ret = try_to_unmap_anon(page, flags);
  1199. else
  1200. ret = try_to_unmap_file(page, flags);
  1201. if (ret != SWAP_MLOCK && !page_mapped(page))
  1202. ret = SWAP_SUCCESS;
  1203. return ret;
  1204. }
  1205. /**
  1206. * try_to_munlock - try to munlock a page
  1207. * @page: the page to be munlocked
  1208. *
  1209. * Called from munlock code. Checks all of the VMAs mapping the page
  1210. * to make sure nobody else has this page mlocked. The page will be
  1211. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1212. *
  1213. * Return values are:
  1214. *
  1215. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1216. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1217. * SWAP_FAIL - page cannot be located at present
  1218. * SWAP_MLOCK - page is now mlocked.
  1219. */
  1220. int try_to_munlock(struct page *page)
  1221. {
  1222. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1223. if (unlikely(PageKsm(page)))
  1224. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1225. else if (PageAnon(page))
  1226. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1227. else
  1228. return try_to_unmap_file(page, TTU_MUNLOCK);
  1229. }
  1230. #ifdef CONFIG_MIGRATION
  1231. /*
  1232. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1233. * Called by migrate.c to remove migration ptes, but might be used more later.
  1234. */
  1235. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1236. struct vm_area_struct *, unsigned long, void *), void *arg)
  1237. {
  1238. struct anon_vma *anon_vma;
  1239. struct anon_vma_chain *avc;
  1240. int ret = SWAP_AGAIN;
  1241. /*
  1242. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1243. * because that depends on page_mapped(); but not all its usages
  1244. * are holding mmap_sem. Users without mmap_sem are required to
  1245. * take a reference count to prevent the anon_vma disappearing
  1246. */
  1247. anon_vma = page_anon_vma(page);
  1248. if (!anon_vma)
  1249. return ret;
  1250. spin_lock(&anon_vma->lock);
  1251. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1252. struct vm_area_struct *vma = avc->vma;
  1253. unsigned long address = vma_address(page, vma);
  1254. if (address == -EFAULT)
  1255. continue;
  1256. ret = rmap_one(page, vma, address, arg);
  1257. if (ret != SWAP_AGAIN)
  1258. break;
  1259. }
  1260. spin_unlock(&anon_vma->lock);
  1261. return ret;
  1262. }
  1263. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1264. struct vm_area_struct *, unsigned long, void *), void *arg)
  1265. {
  1266. struct address_space *mapping = page->mapping;
  1267. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1268. struct vm_area_struct *vma;
  1269. struct prio_tree_iter iter;
  1270. int ret = SWAP_AGAIN;
  1271. if (!mapping)
  1272. return ret;
  1273. spin_lock(&mapping->i_mmap_lock);
  1274. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1275. unsigned long address = vma_address(page, vma);
  1276. if (address == -EFAULT)
  1277. continue;
  1278. ret = rmap_one(page, vma, address, arg);
  1279. if (ret != SWAP_AGAIN)
  1280. break;
  1281. }
  1282. /*
  1283. * No nonlinear handling: being always shared, nonlinear vmas
  1284. * never contain migration ptes. Decide what to do about this
  1285. * limitation to linear when we need rmap_walk() on nonlinear.
  1286. */
  1287. spin_unlock(&mapping->i_mmap_lock);
  1288. return ret;
  1289. }
  1290. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1291. struct vm_area_struct *, unsigned long, void *), void *arg)
  1292. {
  1293. VM_BUG_ON(!PageLocked(page));
  1294. if (unlikely(PageKsm(page)))
  1295. return rmap_walk_ksm(page, rmap_one, arg);
  1296. else if (PageAnon(page))
  1297. return rmap_walk_anon(page, rmap_one, arg);
  1298. else
  1299. return rmap_walk_file(page, rmap_one, arg);
  1300. }
  1301. #endif /* CONFIG_MIGRATION */
  1302. #ifdef CONFIG_HUGETLBFS
  1303. /*
  1304. * The following three functions are for anonymous (private mapped) hugepages.
  1305. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1306. * and no lru code, because we handle hugepages differently from common pages.
  1307. */
  1308. static void __hugepage_set_anon_rmap(struct page *page,
  1309. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1310. {
  1311. struct anon_vma *anon_vma = vma->anon_vma;
  1312. BUG_ON(!anon_vma);
  1313. if (!exclusive) {
  1314. struct anon_vma_chain *avc;
  1315. avc = list_entry(vma->anon_vma_chain.prev,
  1316. struct anon_vma_chain, same_vma);
  1317. anon_vma = avc->anon_vma;
  1318. }
  1319. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1320. page->mapping = (struct address_space *) anon_vma;
  1321. page->index = linear_page_index(vma, address);
  1322. }
  1323. void hugepage_add_anon_rmap(struct page *page,
  1324. struct vm_area_struct *vma, unsigned long address)
  1325. {
  1326. struct anon_vma *anon_vma = vma->anon_vma;
  1327. int first;
  1328. BUG_ON(!anon_vma);
  1329. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1330. first = atomic_inc_and_test(&page->_mapcount);
  1331. if (first)
  1332. __hugepage_set_anon_rmap(page, vma, address, 0);
  1333. }
  1334. void hugepage_add_new_anon_rmap(struct page *page,
  1335. struct vm_area_struct *vma, unsigned long address)
  1336. {
  1337. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1338. atomic_set(&page->_mapcount, 0);
  1339. __hugepage_set_anon_rmap(page, vma, address, 1);
  1340. }
  1341. #endif /* CONFIG_HUGETLBFS */