e1000_main.c 124 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 6.0.58 4/20/05
  23. * o Accepted ethtool cleanup patch from Stephen Hemminger
  24. * 6.0.44+ 2/15/05
  25. * o applied Anton's patch to resolve tx hang in hardware
  26. * o Applied Andrew Mortons patch - e1000 stops working after resume
  27. */
  28. char e1000_driver_name[] = "e1000";
  29. static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  30. #ifndef CONFIG_E1000_NAPI
  31. #define DRIVERNAPI
  32. #else
  33. #define DRIVERNAPI "-NAPI"
  34. #endif
  35. #define DRV_VERSION "6.3.9-k2"DRIVERNAPI
  36. char e1000_driver_version[] = DRV_VERSION;
  37. static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
  38. /* e1000_pci_tbl - PCI Device ID Table
  39. *
  40. * Last entry must be all 0s
  41. *
  42. * Macro expands to...
  43. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  44. */
  45. static struct pci_device_id e1000_pci_tbl[] = {
  46. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  47. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  48. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  49. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  50. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  51. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  52. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  53. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  54. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  55. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  56. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  57. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  58. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  59. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  60. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  61. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  62. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  63. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  64. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  65. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  66. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  67. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  68. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  71. INTEL_E1000_ETHERNET_DEVICE(0x105E),
  72. INTEL_E1000_ETHERNET_DEVICE(0x105F),
  73. INTEL_E1000_ETHERNET_DEVICE(0x1060),
  74. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  75. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  76. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  77. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  78. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  79. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  80. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  81. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  82. INTEL_E1000_ETHERNET_DEVICE(0x107D),
  83. INTEL_E1000_ETHERNET_DEVICE(0x107E),
  84. INTEL_E1000_ETHERNET_DEVICE(0x107F),
  85. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  86. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  87. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  88. INTEL_E1000_ETHERNET_DEVICE(0x109A),
  89. /* required last entry */
  90. {0,}
  91. };
  92. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  93. int e1000_up(struct e1000_adapter *adapter);
  94. void e1000_down(struct e1000_adapter *adapter);
  95. void e1000_reset(struct e1000_adapter *adapter);
  96. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  97. int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98. int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99. void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  100. void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  101. static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  102. struct e1000_tx_ring *txdr);
  103. static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  104. struct e1000_rx_ring *rxdr);
  105. static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  106. struct e1000_tx_ring *tx_ring);
  107. static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  108. struct e1000_rx_ring *rx_ring);
  109. void e1000_update_stats(struct e1000_adapter *adapter);
  110. /* Local Function Prototypes */
  111. static int e1000_init_module(void);
  112. static void e1000_exit_module(void);
  113. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  114. static void __devexit e1000_remove(struct pci_dev *pdev);
  115. static int e1000_alloc_queues(struct e1000_adapter *adapter);
  116. #ifdef CONFIG_E1000_MQ
  117. static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
  118. #endif
  119. static int e1000_sw_init(struct e1000_adapter *adapter);
  120. static int e1000_open(struct net_device *netdev);
  121. static int e1000_close(struct net_device *netdev);
  122. static void e1000_configure_tx(struct e1000_adapter *adapter);
  123. static void e1000_configure_rx(struct e1000_adapter *adapter);
  124. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  125. static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  126. static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  127. static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  128. struct e1000_tx_ring *tx_ring);
  129. static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
  130. struct e1000_rx_ring *rx_ring);
  131. static void e1000_set_multi(struct net_device *netdev);
  132. static void e1000_update_phy_info(unsigned long data);
  133. static void e1000_watchdog(unsigned long data);
  134. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  135. static void e1000_82547_tx_fifo_stall(unsigned long data);
  136. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  137. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  138. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  139. static int e1000_set_mac(struct net_device *netdev, void *p);
  140. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  141. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
  142. struct e1000_tx_ring *tx_ring);
  143. #ifdef CONFIG_E1000_NAPI
  144. static int e1000_clean(struct net_device *poll_dev, int *budget);
  145. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  146. struct e1000_rx_ring *rx_ring,
  147. int *work_done, int work_to_do);
  148. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  149. struct e1000_rx_ring *rx_ring,
  150. int *work_done, int work_to_do);
  151. #else
  152. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  153. struct e1000_rx_ring *rx_ring);
  154. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  155. struct e1000_rx_ring *rx_ring);
  156. #endif
  157. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  158. struct e1000_rx_ring *rx_ring);
  159. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  160. struct e1000_rx_ring *rx_ring);
  161. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  162. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  163. int cmd);
  164. void e1000_set_ethtool_ops(struct net_device *netdev);
  165. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  166. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  167. static void e1000_tx_timeout(struct net_device *dev);
  168. static void e1000_tx_timeout_task(struct net_device *dev);
  169. static void e1000_smartspeed(struct e1000_adapter *adapter);
  170. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  171. struct sk_buff *skb);
  172. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  173. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  174. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  175. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  176. #ifdef CONFIG_PM
  177. static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  178. static int e1000_resume(struct pci_dev *pdev);
  179. #endif
  180. #ifdef CONFIG_NET_POLL_CONTROLLER
  181. /* for netdump / net console */
  182. static void e1000_netpoll (struct net_device *netdev);
  183. #endif
  184. #ifdef CONFIG_E1000_MQ
  185. /* for multiple Rx queues */
  186. void e1000_rx_schedule(void *data);
  187. #endif
  188. /* Exported from other modules */
  189. extern void e1000_check_options(struct e1000_adapter *adapter);
  190. static struct pci_driver e1000_driver = {
  191. .name = e1000_driver_name,
  192. .id_table = e1000_pci_tbl,
  193. .probe = e1000_probe,
  194. .remove = __devexit_p(e1000_remove),
  195. /* Power Managment Hooks */
  196. #ifdef CONFIG_PM
  197. .suspend = e1000_suspend,
  198. .resume = e1000_resume
  199. #endif
  200. };
  201. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  202. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  203. MODULE_LICENSE("GPL");
  204. MODULE_VERSION(DRV_VERSION);
  205. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  206. module_param(debug, int, 0);
  207. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  208. /**
  209. * e1000_init_module - Driver Registration Routine
  210. *
  211. * e1000_init_module is the first routine called when the driver is
  212. * loaded. All it does is register with the PCI subsystem.
  213. **/
  214. static int __init
  215. e1000_init_module(void)
  216. {
  217. int ret;
  218. printk(KERN_INFO "%s - version %s\n",
  219. e1000_driver_string, e1000_driver_version);
  220. printk(KERN_INFO "%s\n", e1000_copyright);
  221. ret = pci_module_init(&e1000_driver);
  222. return ret;
  223. }
  224. module_init(e1000_init_module);
  225. /**
  226. * e1000_exit_module - Driver Exit Cleanup Routine
  227. *
  228. * e1000_exit_module is called just before the driver is removed
  229. * from memory.
  230. **/
  231. static void __exit
  232. e1000_exit_module(void)
  233. {
  234. pci_unregister_driver(&e1000_driver);
  235. }
  236. module_exit(e1000_exit_module);
  237. /**
  238. * e1000_irq_disable - Mask off interrupt generation on the NIC
  239. * @adapter: board private structure
  240. **/
  241. static inline void
  242. e1000_irq_disable(struct e1000_adapter *adapter)
  243. {
  244. atomic_inc(&adapter->irq_sem);
  245. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  246. E1000_WRITE_FLUSH(&adapter->hw);
  247. synchronize_irq(adapter->pdev->irq);
  248. }
  249. /**
  250. * e1000_irq_enable - Enable default interrupt generation settings
  251. * @adapter: board private structure
  252. **/
  253. static inline void
  254. e1000_irq_enable(struct e1000_adapter *adapter)
  255. {
  256. if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
  257. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  258. E1000_WRITE_FLUSH(&adapter->hw);
  259. }
  260. }
  261. static void
  262. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  263. {
  264. struct net_device *netdev = adapter->netdev;
  265. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  266. uint16_t old_vid = adapter->mng_vlan_id;
  267. if(adapter->vlgrp) {
  268. if(!adapter->vlgrp->vlan_devices[vid]) {
  269. if(adapter->hw.mng_cookie.status &
  270. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  271. e1000_vlan_rx_add_vid(netdev, vid);
  272. adapter->mng_vlan_id = vid;
  273. } else
  274. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  275. if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  276. (vid != old_vid) &&
  277. !adapter->vlgrp->vlan_devices[old_vid])
  278. e1000_vlan_rx_kill_vid(netdev, old_vid);
  279. }
  280. }
  281. }
  282. /**
  283. * e1000_release_hw_control - release control of the h/w to f/w
  284. * @adapter: address of board private structure
  285. *
  286. * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  287. * For ASF and Pass Through versions of f/w this means that the
  288. * driver is no longer loaded. For AMT version (only with 82573) i
  289. * of the f/w this means that the netowrk i/f is closed.
  290. *
  291. **/
  292. static inline void
  293. e1000_release_hw_control(struct e1000_adapter *adapter)
  294. {
  295. uint32_t ctrl_ext;
  296. uint32_t swsm;
  297. /* Let firmware taken over control of h/w */
  298. switch (adapter->hw.mac_type) {
  299. case e1000_82571:
  300. case e1000_82572:
  301. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  302. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  303. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  304. break;
  305. case e1000_82573:
  306. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  307. E1000_WRITE_REG(&adapter->hw, SWSM,
  308. swsm & ~E1000_SWSM_DRV_LOAD);
  309. default:
  310. break;
  311. }
  312. }
  313. /**
  314. * e1000_get_hw_control - get control of the h/w from f/w
  315. * @adapter: address of board private structure
  316. *
  317. * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  318. * For ASF and Pass Through versions of f/w this means that
  319. * the driver is loaded. For AMT version (only with 82573)
  320. * of the f/w this means that the netowrk i/f is open.
  321. *
  322. **/
  323. static inline void
  324. e1000_get_hw_control(struct e1000_adapter *adapter)
  325. {
  326. uint32_t ctrl_ext;
  327. uint32_t swsm;
  328. /* Let firmware know the driver has taken over */
  329. switch (adapter->hw.mac_type) {
  330. case e1000_82571:
  331. case e1000_82572:
  332. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  333. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  334. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  335. break;
  336. case e1000_82573:
  337. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  338. E1000_WRITE_REG(&adapter->hw, SWSM,
  339. swsm | E1000_SWSM_DRV_LOAD);
  340. break;
  341. default:
  342. break;
  343. }
  344. }
  345. int
  346. e1000_up(struct e1000_adapter *adapter)
  347. {
  348. struct net_device *netdev = adapter->netdev;
  349. int i, err;
  350. /* hardware has been reset, we need to reload some things */
  351. /* Reset the PHY if it was previously powered down */
  352. if(adapter->hw.media_type == e1000_media_type_copper) {
  353. uint16_t mii_reg;
  354. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  355. if(mii_reg & MII_CR_POWER_DOWN)
  356. e1000_phy_reset(&adapter->hw);
  357. }
  358. e1000_set_multi(netdev);
  359. e1000_restore_vlan(adapter);
  360. e1000_configure_tx(adapter);
  361. e1000_setup_rctl(adapter);
  362. e1000_configure_rx(adapter);
  363. for (i = 0; i < adapter->num_rx_queues; i++) {
  364. adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
  365. }
  366. #ifdef CONFIG_PCI_MSI
  367. if(adapter->hw.mac_type > e1000_82547_rev_2) {
  368. adapter->have_msi = TRUE;
  369. if((err = pci_enable_msi(adapter->pdev))) {
  370. DPRINTK(PROBE, ERR,
  371. "Unable to allocate MSI interrupt Error: %d\n", err);
  372. adapter->have_msi = FALSE;
  373. }
  374. }
  375. #endif
  376. if((err = request_irq(adapter->pdev->irq, &e1000_intr,
  377. SA_SHIRQ | SA_SAMPLE_RANDOM,
  378. netdev->name, netdev))) {
  379. DPRINTK(PROBE, ERR,
  380. "Unable to allocate interrupt Error: %d\n", err);
  381. return err;
  382. }
  383. #ifdef CONFIG_E1000_MQ
  384. e1000_setup_queue_mapping(adapter);
  385. #endif
  386. adapter->tx_queue_len = netdev->tx_queue_len;
  387. mod_timer(&adapter->watchdog_timer, jiffies);
  388. #ifdef CONFIG_E1000_NAPI
  389. netif_poll_enable(netdev);
  390. #endif
  391. e1000_irq_enable(adapter);
  392. return 0;
  393. }
  394. void
  395. e1000_down(struct e1000_adapter *adapter)
  396. {
  397. struct net_device *netdev = adapter->netdev;
  398. boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
  399. e1000_check_mng_mode(&adapter->hw);
  400. e1000_irq_disable(adapter);
  401. #ifdef CONFIG_E1000_MQ
  402. while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
  403. #endif
  404. free_irq(adapter->pdev->irq, netdev);
  405. #ifdef CONFIG_PCI_MSI
  406. if(adapter->hw.mac_type > e1000_82547_rev_2 &&
  407. adapter->have_msi == TRUE)
  408. pci_disable_msi(adapter->pdev);
  409. #endif
  410. del_timer_sync(&adapter->tx_fifo_stall_timer);
  411. del_timer_sync(&adapter->watchdog_timer);
  412. del_timer_sync(&adapter->phy_info_timer);
  413. #ifdef CONFIG_E1000_NAPI
  414. netif_poll_disable(netdev);
  415. #endif
  416. netdev->tx_queue_len = adapter->tx_queue_len;
  417. adapter->link_speed = 0;
  418. adapter->link_duplex = 0;
  419. netif_carrier_off(netdev);
  420. netif_stop_queue(netdev);
  421. e1000_reset(adapter);
  422. e1000_clean_all_tx_rings(adapter);
  423. e1000_clean_all_rx_rings(adapter);
  424. /* Power down the PHY so no link is implied when interface is down *
  425. * The PHY cannot be powered down if any of the following is TRUE *
  426. * (a) WoL is enabled
  427. * (b) AMT is active
  428. * (c) SoL/IDER session is active */
  429. if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  430. adapter->hw.media_type == e1000_media_type_copper &&
  431. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
  432. !mng_mode_enabled &&
  433. !e1000_check_phy_reset_block(&adapter->hw)) {
  434. uint16_t mii_reg;
  435. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  436. mii_reg |= MII_CR_POWER_DOWN;
  437. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  438. mdelay(1);
  439. }
  440. }
  441. void
  442. e1000_reset(struct e1000_adapter *adapter)
  443. {
  444. uint32_t pba, manc;
  445. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  446. /* Repartition Pba for greater than 9k mtu
  447. * To take effect CTRL.RST is required.
  448. */
  449. switch (adapter->hw.mac_type) {
  450. case e1000_82547:
  451. case e1000_82547_rev_2:
  452. pba = E1000_PBA_30K;
  453. break;
  454. case e1000_82571:
  455. case e1000_82572:
  456. pba = E1000_PBA_38K;
  457. break;
  458. case e1000_82573:
  459. pba = E1000_PBA_12K;
  460. break;
  461. default:
  462. pba = E1000_PBA_48K;
  463. break;
  464. }
  465. if((adapter->hw.mac_type != e1000_82573) &&
  466. (adapter->netdev->mtu > E1000_RXBUFFER_8192))
  467. pba -= 8; /* allocate more FIFO for Tx */
  468. if(adapter->hw.mac_type == e1000_82547) {
  469. adapter->tx_fifo_head = 0;
  470. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  471. adapter->tx_fifo_size =
  472. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  473. atomic_set(&adapter->tx_fifo_stall, 0);
  474. }
  475. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  476. /* flow control settings */
  477. /* Set the FC high water mark to 90% of the FIFO size.
  478. * Required to clear last 3 LSB */
  479. fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
  480. adapter->hw.fc_high_water = fc_high_water_mark;
  481. adapter->hw.fc_low_water = fc_high_water_mark - 8;
  482. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  483. adapter->hw.fc_send_xon = 1;
  484. adapter->hw.fc = adapter->hw.original_fc;
  485. /* Allow time for pending master requests to run */
  486. e1000_reset_hw(&adapter->hw);
  487. if(adapter->hw.mac_type >= e1000_82544)
  488. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  489. if(e1000_init_hw(&adapter->hw))
  490. DPRINTK(PROBE, ERR, "Hardware Error\n");
  491. e1000_update_mng_vlan(adapter);
  492. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  493. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  494. e1000_reset_adaptive(&adapter->hw);
  495. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  496. if (adapter->en_mng_pt) {
  497. manc = E1000_READ_REG(&adapter->hw, MANC);
  498. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  499. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  500. }
  501. }
  502. /**
  503. * e1000_probe - Device Initialization Routine
  504. * @pdev: PCI device information struct
  505. * @ent: entry in e1000_pci_tbl
  506. *
  507. * Returns 0 on success, negative on failure
  508. *
  509. * e1000_probe initializes an adapter identified by a pci_dev structure.
  510. * The OS initialization, configuring of the adapter private structure,
  511. * and a hardware reset occur.
  512. **/
  513. static int __devinit
  514. e1000_probe(struct pci_dev *pdev,
  515. const struct pci_device_id *ent)
  516. {
  517. struct net_device *netdev;
  518. struct e1000_adapter *adapter;
  519. unsigned long mmio_start, mmio_len;
  520. static int cards_found = 0;
  521. int i, err, pci_using_dac;
  522. uint16_t eeprom_data;
  523. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  524. if((err = pci_enable_device(pdev)))
  525. return err;
  526. if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  527. pci_using_dac = 1;
  528. } else {
  529. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  530. E1000_ERR("No usable DMA configuration, aborting\n");
  531. return err;
  532. }
  533. pci_using_dac = 0;
  534. }
  535. if((err = pci_request_regions(pdev, e1000_driver_name)))
  536. return err;
  537. pci_set_master(pdev);
  538. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  539. if(!netdev) {
  540. err = -ENOMEM;
  541. goto err_alloc_etherdev;
  542. }
  543. SET_MODULE_OWNER(netdev);
  544. SET_NETDEV_DEV(netdev, &pdev->dev);
  545. pci_set_drvdata(pdev, netdev);
  546. adapter = netdev_priv(netdev);
  547. adapter->netdev = netdev;
  548. adapter->pdev = pdev;
  549. adapter->hw.back = adapter;
  550. adapter->msg_enable = (1 << debug) - 1;
  551. mmio_start = pci_resource_start(pdev, BAR_0);
  552. mmio_len = pci_resource_len(pdev, BAR_0);
  553. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  554. if(!adapter->hw.hw_addr) {
  555. err = -EIO;
  556. goto err_ioremap;
  557. }
  558. for(i = BAR_1; i <= BAR_5; i++) {
  559. if(pci_resource_len(pdev, i) == 0)
  560. continue;
  561. if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  562. adapter->hw.io_base = pci_resource_start(pdev, i);
  563. break;
  564. }
  565. }
  566. netdev->open = &e1000_open;
  567. netdev->stop = &e1000_close;
  568. netdev->hard_start_xmit = &e1000_xmit_frame;
  569. netdev->get_stats = &e1000_get_stats;
  570. netdev->set_multicast_list = &e1000_set_multi;
  571. netdev->set_mac_address = &e1000_set_mac;
  572. netdev->change_mtu = &e1000_change_mtu;
  573. netdev->do_ioctl = &e1000_ioctl;
  574. e1000_set_ethtool_ops(netdev);
  575. netdev->tx_timeout = &e1000_tx_timeout;
  576. netdev->watchdog_timeo = 5 * HZ;
  577. #ifdef CONFIG_E1000_NAPI
  578. netdev->poll = &e1000_clean;
  579. netdev->weight = 64;
  580. #endif
  581. netdev->vlan_rx_register = e1000_vlan_rx_register;
  582. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  583. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  584. #ifdef CONFIG_NET_POLL_CONTROLLER
  585. netdev->poll_controller = e1000_netpoll;
  586. #endif
  587. strcpy(netdev->name, pci_name(pdev));
  588. netdev->mem_start = mmio_start;
  589. netdev->mem_end = mmio_start + mmio_len;
  590. netdev->base_addr = adapter->hw.io_base;
  591. adapter->bd_number = cards_found;
  592. /* setup the private structure */
  593. if((err = e1000_sw_init(adapter)))
  594. goto err_sw_init;
  595. if((err = e1000_check_phy_reset_block(&adapter->hw)))
  596. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  597. if(adapter->hw.mac_type >= e1000_82543) {
  598. netdev->features = NETIF_F_SG |
  599. NETIF_F_HW_CSUM |
  600. NETIF_F_HW_VLAN_TX |
  601. NETIF_F_HW_VLAN_RX |
  602. NETIF_F_HW_VLAN_FILTER;
  603. }
  604. #ifdef NETIF_F_TSO
  605. if((adapter->hw.mac_type >= e1000_82544) &&
  606. (adapter->hw.mac_type != e1000_82547))
  607. netdev->features |= NETIF_F_TSO;
  608. #ifdef NETIF_F_TSO_IPV6
  609. if(adapter->hw.mac_type > e1000_82547_rev_2)
  610. netdev->features |= NETIF_F_TSO_IPV6;
  611. #endif
  612. #endif
  613. if(pci_using_dac)
  614. netdev->features |= NETIF_F_HIGHDMA;
  615. /* hard_start_xmit is safe against parallel locking */
  616. netdev->features |= NETIF_F_LLTX;
  617. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  618. /* before reading the EEPROM, reset the controller to
  619. * put the device in a known good starting state */
  620. e1000_reset_hw(&adapter->hw);
  621. /* make sure the EEPROM is good */
  622. if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  623. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  624. err = -EIO;
  625. goto err_eeprom;
  626. }
  627. /* copy the MAC address out of the EEPROM */
  628. if(e1000_read_mac_addr(&adapter->hw))
  629. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  630. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  631. memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
  632. if(!is_valid_ether_addr(netdev->perm_addr)) {
  633. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  634. err = -EIO;
  635. goto err_eeprom;
  636. }
  637. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  638. e1000_get_bus_info(&adapter->hw);
  639. init_timer(&adapter->tx_fifo_stall_timer);
  640. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  641. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  642. init_timer(&adapter->watchdog_timer);
  643. adapter->watchdog_timer.function = &e1000_watchdog;
  644. adapter->watchdog_timer.data = (unsigned long) adapter;
  645. INIT_WORK(&adapter->watchdog_task,
  646. (void (*)(void *))e1000_watchdog_task, adapter);
  647. init_timer(&adapter->phy_info_timer);
  648. adapter->phy_info_timer.function = &e1000_update_phy_info;
  649. adapter->phy_info_timer.data = (unsigned long) adapter;
  650. INIT_WORK(&adapter->tx_timeout_task,
  651. (void (*)(void *))e1000_tx_timeout_task, netdev);
  652. /* we're going to reset, so assume we have no link for now */
  653. netif_carrier_off(netdev);
  654. netif_stop_queue(netdev);
  655. e1000_check_options(adapter);
  656. /* Initial Wake on LAN setting
  657. * If APM wake is enabled in the EEPROM,
  658. * enable the ACPI Magic Packet filter
  659. */
  660. switch(adapter->hw.mac_type) {
  661. case e1000_82542_rev2_0:
  662. case e1000_82542_rev2_1:
  663. case e1000_82543:
  664. break;
  665. case e1000_82544:
  666. e1000_read_eeprom(&adapter->hw,
  667. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  668. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  669. break;
  670. case e1000_82546:
  671. case e1000_82546_rev_3:
  672. case e1000_82571:
  673. if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
  674. && (adapter->hw.media_type == e1000_media_type_copper)) {
  675. e1000_read_eeprom(&adapter->hw,
  676. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  677. break;
  678. }
  679. /* Fall Through */
  680. default:
  681. e1000_read_eeprom(&adapter->hw,
  682. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  683. break;
  684. }
  685. if(eeprom_data & eeprom_apme_mask)
  686. adapter->wol |= E1000_WUFC_MAG;
  687. /* reset the hardware with the new settings */
  688. e1000_reset(adapter);
  689. /* If the controller is 82573 and f/w is AMT, do not set
  690. * DRV_LOAD until the interface is up. For all other cases,
  691. * let the f/w know that the h/w is now under the control
  692. * of the driver. */
  693. if (adapter->hw.mac_type != e1000_82573 ||
  694. !e1000_check_mng_mode(&adapter->hw))
  695. e1000_get_hw_control(adapter);
  696. strcpy(netdev->name, "eth%d");
  697. if((err = register_netdev(netdev)))
  698. goto err_register;
  699. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  700. cards_found++;
  701. return 0;
  702. err_register:
  703. err_sw_init:
  704. err_eeprom:
  705. iounmap(adapter->hw.hw_addr);
  706. err_ioremap:
  707. free_netdev(netdev);
  708. err_alloc_etherdev:
  709. pci_release_regions(pdev);
  710. return err;
  711. }
  712. /**
  713. * e1000_remove - Device Removal Routine
  714. * @pdev: PCI device information struct
  715. *
  716. * e1000_remove is called by the PCI subsystem to alert the driver
  717. * that it should release a PCI device. The could be caused by a
  718. * Hot-Plug event, or because the driver is going to be removed from
  719. * memory.
  720. **/
  721. static void __devexit
  722. e1000_remove(struct pci_dev *pdev)
  723. {
  724. struct net_device *netdev = pci_get_drvdata(pdev);
  725. struct e1000_adapter *adapter = netdev_priv(netdev);
  726. uint32_t manc;
  727. #ifdef CONFIG_E1000_NAPI
  728. int i;
  729. #endif
  730. flush_scheduled_work();
  731. if(adapter->hw.mac_type >= e1000_82540 &&
  732. adapter->hw.media_type == e1000_media_type_copper) {
  733. manc = E1000_READ_REG(&adapter->hw, MANC);
  734. if(manc & E1000_MANC_SMBUS_EN) {
  735. manc |= E1000_MANC_ARP_EN;
  736. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  737. }
  738. }
  739. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  740. * would have already happened in close and is redundant. */
  741. e1000_release_hw_control(adapter);
  742. unregister_netdev(netdev);
  743. #ifdef CONFIG_E1000_NAPI
  744. for (i = 0; i < adapter->num_rx_queues; i++)
  745. __dev_put(&adapter->polling_netdev[i]);
  746. #endif
  747. if(!e1000_check_phy_reset_block(&adapter->hw))
  748. e1000_phy_hw_reset(&adapter->hw);
  749. kfree(adapter->tx_ring);
  750. kfree(adapter->rx_ring);
  751. #ifdef CONFIG_E1000_NAPI
  752. kfree(adapter->polling_netdev);
  753. #endif
  754. iounmap(adapter->hw.hw_addr);
  755. pci_release_regions(pdev);
  756. #ifdef CONFIG_E1000_MQ
  757. free_percpu(adapter->cpu_netdev);
  758. free_percpu(adapter->cpu_tx_ring);
  759. #endif
  760. free_netdev(netdev);
  761. pci_disable_device(pdev);
  762. }
  763. /**
  764. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  765. * @adapter: board private structure to initialize
  766. *
  767. * e1000_sw_init initializes the Adapter private data structure.
  768. * Fields are initialized based on PCI device information and
  769. * OS network device settings (MTU size).
  770. **/
  771. static int __devinit
  772. e1000_sw_init(struct e1000_adapter *adapter)
  773. {
  774. struct e1000_hw *hw = &adapter->hw;
  775. struct net_device *netdev = adapter->netdev;
  776. struct pci_dev *pdev = adapter->pdev;
  777. #ifdef CONFIG_E1000_NAPI
  778. int i;
  779. #endif
  780. /* PCI config space info */
  781. hw->vendor_id = pdev->vendor;
  782. hw->device_id = pdev->device;
  783. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  784. hw->subsystem_id = pdev->subsystem_device;
  785. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  786. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  787. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  788. adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
  789. hw->max_frame_size = netdev->mtu +
  790. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  791. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  792. /* identify the MAC */
  793. if(e1000_set_mac_type(hw)) {
  794. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  795. return -EIO;
  796. }
  797. /* initialize eeprom parameters */
  798. if(e1000_init_eeprom_params(hw)) {
  799. E1000_ERR("EEPROM initialization failed\n");
  800. return -EIO;
  801. }
  802. switch(hw->mac_type) {
  803. default:
  804. break;
  805. case e1000_82541:
  806. case e1000_82547:
  807. case e1000_82541_rev_2:
  808. case e1000_82547_rev_2:
  809. hw->phy_init_script = 1;
  810. break;
  811. }
  812. e1000_set_media_type(hw);
  813. hw->wait_autoneg_complete = FALSE;
  814. hw->tbi_compatibility_en = TRUE;
  815. hw->adaptive_ifs = TRUE;
  816. /* Copper options */
  817. if(hw->media_type == e1000_media_type_copper) {
  818. hw->mdix = AUTO_ALL_MODES;
  819. hw->disable_polarity_correction = FALSE;
  820. hw->master_slave = E1000_MASTER_SLAVE;
  821. }
  822. #ifdef CONFIG_E1000_MQ
  823. /* Number of supported queues */
  824. switch (hw->mac_type) {
  825. case e1000_82571:
  826. case e1000_82572:
  827. /* These controllers support 2 tx queues, but with a single
  828. * qdisc implementation, multiple tx queues aren't quite as
  829. * interesting. If we can find a logical way of mapping
  830. * flows to a queue, then perhaps we can up the num_tx_queue
  831. * count back to its default. Until then, we run the risk of
  832. * terrible performance due to SACK overload. */
  833. adapter->num_tx_queues = 1;
  834. adapter->num_rx_queues = 2;
  835. break;
  836. default:
  837. adapter->num_tx_queues = 1;
  838. adapter->num_rx_queues = 1;
  839. break;
  840. }
  841. adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus());
  842. adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus());
  843. DPRINTK(DRV, INFO, "Multiqueue Enabled: Rx Queue count = %u %s\n",
  844. adapter->num_rx_queues,
  845. ((adapter->num_rx_queues == 1)
  846. ? ((num_online_cpus() > 1)
  847. ? "(due to unsupported feature in current adapter)"
  848. : "(due to unsupported system configuration)")
  849. : ""));
  850. DPRINTK(DRV, INFO, "Multiqueue Enabled: Tx Queue count = %u\n",
  851. adapter->num_tx_queues);
  852. #else
  853. adapter->num_tx_queues = 1;
  854. adapter->num_rx_queues = 1;
  855. #endif
  856. if (e1000_alloc_queues(adapter)) {
  857. DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
  858. return -ENOMEM;
  859. }
  860. #ifdef CONFIG_E1000_NAPI
  861. for (i = 0; i < adapter->num_rx_queues; i++) {
  862. adapter->polling_netdev[i].priv = adapter;
  863. adapter->polling_netdev[i].poll = &e1000_clean;
  864. adapter->polling_netdev[i].weight = 64;
  865. dev_hold(&adapter->polling_netdev[i]);
  866. set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
  867. }
  868. spin_lock_init(&adapter->tx_queue_lock);
  869. #endif
  870. atomic_set(&adapter->irq_sem, 1);
  871. spin_lock_init(&adapter->stats_lock);
  872. return 0;
  873. }
  874. /**
  875. * e1000_alloc_queues - Allocate memory for all rings
  876. * @adapter: board private structure to initialize
  877. *
  878. * We allocate one ring per queue at run-time since we don't know the
  879. * number of queues at compile-time. The polling_netdev array is
  880. * intended for Multiqueue, but should work fine with a single queue.
  881. **/
  882. static int __devinit
  883. e1000_alloc_queues(struct e1000_adapter *adapter)
  884. {
  885. int size;
  886. size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  887. adapter->tx_ring = kmalloc(size, GFP_KERNEL);
  888. if (!adapter->tx_ring)
  889. return -ENOMEM;
  890. memset(adapter->tx_ring, 0, size);
  891. size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  892. adapter->rx_ring = kmalloc(size, GFP_KERNEL);
  893. if (!adapter->rx_ring) {
  894. kfree(adapter->tx_ring);
  895. return -ENOMEM;
  896. }
  897. memset(adapter->rx_ring, 0, size);
  898. #ifdef CONFIG_E1000_NAPI
  899. size = sizeof(struct net_device) * adapter->num_rx_queues;
  900. adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
  901. if (!adapter->polling_netdev) {
  902. kfree(adapter->tx_ring);
  903. kfree(adapter->rx_ring);
  904. return -ENOMEM;
  905. }
  906. memset(adapter->polling_netdev, 0, size);
  907. #endif
  908. #ifdef CONFIG_E1000_MQ
  909. adapter->rx_sched_call_data.func = e1000_rx_schedule;
  910. adapter->rx_sched_call_data.info = adapter->netdev;
  911. adapter->cpu_netdev = alloc_percpu(struct net_device *);
  912. adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
  913. #endif
  914. return E1000_SUCCESS;
  915. }
  916. #ifdef CONFIG_E1000_MQ
  917. static void __devinit
  918. e1000_setup_queue_mapping(struct e1000_adapter *adapter)
  919. {
  920. int i, cpu;
  921. adapter->rx_sched_call_data.func = e1000_rx_schedule;
  922. adapter->rx_sched_call_data.info = adapter->netdev;
  923. cpus_clear(adapter->rx_sched_call_data.cpumask);
  924. adapter->cpu_netdev = alloc_percpu(struct net_device *);
  925. adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
  926. lock_cpu_hotplug();
  927. i = 0;
  928. for_each_online_cpu(cpu) {
  929. *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_tx_queues];
  930. /* This is incomplete because we'd like to assign separate
  931. * physical cpus to these netdev polling structures and
  932. * avoid saturating a subset of cpus.
  933. */
  934. if (i < adapter->num_rx_queues) {
  935. *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
  936. adapter->rx_ring[i].cpu = cpu;
  937. cpu_set(cpu, adapter->cpumask);
  938. } else
  939. *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
  940. i++;
  941. }
  942. unlock_cpu_hotplug();
  943. }
  944. #endif
  945. /**
  946. * e1000_open - Called when a network interface is made active
  947. * @netdev: network interface device structure
  948. *
  949. * Returns 0 on success, negative value on failure
  950. *
  951. * The open entry point is called when a network interface is made
  952. * active by the system (IFF_UP). At this point all resources needed
  953. * for transmit and receive operations are allocated, the interrupt
  954. * handler is registered with the OS, the watchdog timer is started,
  955. * and the stack is notified that the interface is ready.
  956. **/
  957. static int
  958. e1000_open(struct net_device *netdev)
  959. {
  960. struct e1000_adapter *adapter = netdev_priv(netdev);
  961. int err;
  962. /* allocate transmit descriptors */
  963. if ((err = e1000_setup_all_tx_resources(adapter)))
  964. goto err_setup_tx;
  965. /* allocate receive descriptors */
  966. if ((err = e1000_setup_all_rx_resources(adapter)))
  967. goto err_setup_rx;
  968. if((err = e1000_up(adapter)))
  969. goto err_up;
  970. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  971. if((adapter->hw.mng_cookie.status &
  972. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  973. e1000_update_mng_vlan(adapter);
  974. }
  975. /* If AMT is enabled, let the firmware know that the network
  976. * interface is now open */
  977. if (adapter->hw.mac_type == e1000_82573 &&
  978. e1000_check_mng_mode(&adapter->hw))
  979. e1000_get_hw_control(adapter);
  980. return E1000_SUCCESS;
  981. err_up:
  982. e1000_free_all_rx_resources(adapter);
  983. err_setup_rx:
  984. e1000_free_all_tx_resources(adapter);
  985. err_setup_tx:
  986. e1000_reset(adapter);
  987. return err;
  988. }
  989. /**
  990. * e1000_close - Disables a network interface
  991. * @netdev: network interface device structure
  992. *
  993. * Returns 0, this is not allowed to fail
  994. *
  995. * The close entry point is called when an interface is de-activated
  996. * by the OS. The hardware is still under the drivers control, but
  997. * needs to be disabled. A global MAC reset is issued to stop the
  998. * hardware, and all transmit and receive resources are freed.
  999. **/
  1000. static int
  1001. e1000_close(struct net_device *netdev)
  1002. {
  1003. struct e1000_adapter *adapter = netdev_priv(netdev);
  1004. e1000_down(adapter);
  1005. e1000_free_all_tx_resources(adapter);
  1006. e1000_free_all_rx_resources(adapter);
  1007. if((adapter->hw.mng_cookie.status &
  1008. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  1009. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  1010. }
  1011. /* If AMT is enabled, let the firmware know that the network
  1012. * interface is now closed */
  1013. if (adapter->hw.mac_type == e1000_82573 &&
  1014. e1000_check_mng_mode(&adapter->hw))
  1015. e1000_release_hw_control(adapter);
  1016. return 0;
  1017. }
  1018. /**
  1019. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  1020. * @adapter: address of board private structure
  1021. * @start: address of beginning of memory
  1022. * @len: length of memory
  1023. **/
  1024. static inline boolean_t
  1025. e1000_check_64k_bound(struct e1000_adapter *adapter,
  1026. void *start, unsigned long len)
  1027. {
  1028. unsigned long begin = (unsigned long) start;
  1029. unsigned long end = begin + len;
  1030. /* First rev 82545 and 82546 need to not allow any memory
  1031. * write location to cross 64k boundary due to errata 23 */
  1032. if (adapter->hw.mac_type == e1000_82545 ||
  1033. adapter->hw.mac_type == e1000_82546) {
  1034. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  1035. }
  1036. return TRUE;
  1037. }
  1038. /**
  1039. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  1040. * @adapter: board private structure
  1041. * @txdr: tx descriptor ring (for a specific queue) to setup
  1042. *
  1043. * Return 0 on success, negative on failure
  1044. **/
  1045. static int
  1046. e1000_setup_tx_resources(struct e1000_adapter *adapter,
  1047. struct e1000_tx_ring *txdr)
  1048. {
  1049. struct pci_dev *pdev = adapter->pdev;
  1050. int size;
  1051. size = sizeof(struct e1000_buffer) * txdr->count;
  1052. txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1053. if(!txdr->buffer_info) {
  1054. DPRINTK(PROBE, ERR,
  1055. "Unable to allocate memory for the transmit descriptor ring\n");
  1056. return -ENOMEM;
  1057. }
  1058. memset(txdr->buffer_info, 0, size);
  1059. /* round up to nearest 4K */
  1060. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  1061. E1000_ROUNDUP(txdr->size, 4096);
  1062. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1063. if(!txdr->desc) {
  1064. setup_tx_desc_die:
  1065. vfree(txdr->buffer_info);
  1066. DPRINTK(PROBE, ERR,
  1067. "Unable to allocate memory for the transmit descriptor ring\n");
  1068. return -ENOMEM;
  1069. }
  1070. /* Fix for errata 23, can't cross 64kB boundary */
  1071. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1072. void *olddesc = txdr->desc;
  1073. dma_addr_t olddma = txdr->dma;
  1074. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  1075. "at %p\n", txdr->size, txdr->desc);
  1076. /* Try again, without freeing the previous */
  1077. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1078. if(!txdr->desc) {
  1079. /* Failed allocation, critical failure */
  1080. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1081. goto setup_tx_desc_die;
  1082. }
  1083. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1084. /* give up */
  1085. pci_free_consistent(pdev, txdr->size, txdr->desc,
  1086. txdr->dma);
  1087. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1088. DPRINTK(PROBE, ERR,
  1089. "Unable to allocate aligned memory "
  1090. "for the transmit descriptor ring\n");
  1091. vfree(txdr->buffer_info);
  1092. return -ENOMEM;
  1093. } else {
  1094. /* Free old allocation, new allocation was successful */
  1095. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1096. }
  1097. }
  1098. memset(txdr->desc, 0, txdr->size);
  1099. txdr->next_to_use = 0;
  1100. txdr->next_to_clean = 0;
  1101. spin_lock_init(&txdr->tx_lock);
  1102. return 0;
  1103. }
  1104. /**
  1105. * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
  1106. * (Descriptors) for all queues
  1107. * @adapter: board private structure
  1108. *
  1109. * If this function returns with an error, then it's possible one or
  1110. * more of the rings is populated (while the rest are not). It is the
  1111. * callers duty to clean those orphaned rings.
  1112. *
  1113. * Return 0 on success, negative on failure
  1114. **/
  1115. int
  1116. e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
  1117. {
  1118. int i, err = 0;
  1119. for (i = 0; i < adapter->num_tx_queues; i++) {
  1120. err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  1121. if (err) {
  1122. DPRINTK(PROBE, ERR,
  1123. "Allocation for Tx Queue %u failed\n", i);
  1124. break;
  1125. }
  1126. }
  1127. return err;
  1128. }
  1129. /**
  1130. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  1131. * @adapter: board private structure
  1132. *
  1133. * Configure the Tx unit of the MAC after a reset.
  1134. **/
  1135. static void
  1136. e1000_configure_tx(struct e1000_adapter *adapter)
  1137. {
  1138. uint64_t tdba;
  1139. struct e1000_hw *hw = &adapter->hw;
  1140. uint32_t tdlen, tctl, tipg, tarc;
  1141. uint32_t ipgr1, ipgr2;
  1142. /* Setup the HW Tx Head and Tail descriptor pointers */
  1143. switch (adapter->num_tx_queues) {
  1144. case 2:
  1145. tdba = adapter->tx_ring[1].dma;
  1146. tdlen = adapter->tx_ring[1].count *
  1147. sizeof(struct e1000_tx_desc);
  1148. E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
  1149. E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
  1150. E1000_WRITE_REG(hw, TDLEN1, tdlen);
  1151. E1000_WRITE_REG(hw, TDH1, 0);
  1152. E1000_WRITE_REG(hw, TDT1, 0);
  1153. adapter->tx_ring[1].tdh = E1000_TDH1;
  1154. adapter->tx_ring[1].tdt = E1000_TDT1;
  1155. /* Fall Through */
  1156. case 1:
  1157. default:
  1158. tdba = adapter->tx_ring[0].dma;
  1159. tdlen = adapter->tx_ring[0].count *
  1160. sizeof(struct e1000_tx_desc);
  1161. E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  1162. E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
  1163. E1000_WRITE_REG(hw, TDLEN, tdlen);
  1164. E1000_WRITE_REG(hw, TDH, 0);
  1165. E1000_WRITE_REG(hw, TDT, 0);
  1166. adapter->tx_ring[0].tdh = E1000_TDH;
  1167. adapter->tx_ring[0].tdt = E1000_TDT;
  1168. break;
  1169. }
  1170. /* Set the default values for the Tx Inter Packet Gap timer */
  1171. if (hw->media_type == e1000_media_type_fiber ||
  1172. hw->media_type == e1000_media_type_internal_serdes)
  1173. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  1174. else
  1175. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  1176. switch (hw->mac_type) {
  1177. case e1000_82542_rev2_0:
  1178. case e1000_82542_rev2_1:
  1179. tipg = DEFAULT_82542_TIPG_IPGT;
  1180. ipgr1 = DEFAULT_82542_TIPG_IPGR1;
  1181. ipgr2 = DEFAULT_82542_TIPG_IPGR2;
  1182. break;
  1183. default:
  1184. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1185. ipgr2 = DEFAULT_82543_TIPG_IPGR2;
  1186. break;
  1187. }
  1188. tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
  1189. tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
  1190. E1000_WRITE_REG(hw, TIPG, tipg);
  1191. /* Set the Tx Interrupt Delay register */
  1192. E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
  1193. if (hw->mac_type >= e1000_82540)
  1194. E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
  1195. /* Program the Transmit Control Register */
  1196. tctl = E1000_READ_REG(hw, TCTL);
  1197. tctl &= ~E1000_TCTL_CT;
  1198. tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
  1199. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  1200. E1000_WRITE_REG(hw, TCTL, tctl);
  1201. if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
  1202. tarc = E1000_READ_REG(hw, TARC0);
  1203. tarc |= ((1 << 25) | (1 << 21));
  1204. E1000_WRITE_REG(hw, TARC0, tarc);
  1205. tarc = E1000_READ_REG(hw, TARC1);
  1206. tarc |= (1 << 25);
  1207. if (tctl & E1000_TCTL_MULR)
  1208. tarc &= ~(1 << 28);
  1209. else
  1210. tarc |= (1 << 28);
  1211. E1000_WRITE_REG(hw, TARC1, tarc);
  1212. }
  1213. e1000_config_collision_dist(hw);
  1214. /* Setup Transmit Descriptor Settings for eop descriptor */
  1215. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  1216. E1000_TXD_CMD_IFCS;
  1217. if (hw->mac_type < e1000_82543)
  1218. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  1219. else
  1220. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  1221. /* Cache if we're 82544 running in PCI-X because we'll
  1222. * need this to apply a workaround later in the send path. */
  1223. if (hw->mac_type == e1000_82544 &&
  1224. hw->bus_type == e1000_bus_type_pcix)
  1225. adapter->pcix_82544 = 1;
  1226. }
  1227. /**
  1228. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  1229. * @adapter: board private structure
  1230. * @rxdr: rx descriptor ring (for a specific queue) to setup
  1231. *
  1232. * Returns 0 on success, negative on failure
  1233. **/
  1234. static int
  1235. e1000_setup_rx_resources(struct e1000_adapter *adapter,
  1236. struct e1000_rx_ring *rxdr)
  1237. {
  1238. struct pci_dev *pdev = adapter->pdev;
  1239. int size, desc_len;
  1240. size = sizeof(struct e1000_buffer) * rxdr->count;
  1241. rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1242. if (!rxdr->buffer_info) {
  1243. DPRINTK(PROBE, ERR,
  1244. "Unable to allocate memory for the receive descriptor ring\n");
  1245. return -ENOMEM;
  1246. }
  1247. memset(rxdr->buffer_info, 0, size);
  1248. size = sizeof(struct e1000_ps_page) * rxdr->count;
  1249. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  1250. if(!rxdr->ps_page) {
  1251. vfree(rxdr->buffer_info);
  1252. DPRINTK(PROBE, ERR,
  1253. "Unable to allocate memory for the receive descriptor ring\n");
  1254. return -ENOMEM;
  1255. }
  1256. memset(rxdr->ps_page, 0, size);
  1257. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  1258. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  1259. if(!rxdr->ps_page_dma) {
  1260. vfree(rxdr->buffer_info);
  1261. kfree(rxdr->ps_page);
  1262. DPRINTK(PROBE, ERR,
  1263. "Unable to allocate memory for the receive descriptor ring\n");
  1264. return -ENOMEM;
  1265. }
  1266. memset(rxdr->ps_page_dma, 0, size);
  1267. if(adapter->hw.mac_type <= e1000_82547_rev_2)
  1268. desc_len = sizeof(struct e1000_rx_desc);
  1269. else
  1270. desc_len = sizeof(union e1000_rx_desc_packet_split);
  1271. /* Round up to nearest 4K */
  1272. rxdr->size = rxdr->count * desc_len;
  1273. E1000_ROUNDUP(rxdr->size, 4096);
  1274. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1275. if (!rxdr->desc) {
  1276. DPRINTK(PROBE, ERR,
  1277. "Unable to allocate memory for the receive descriptor ring\n");
  1278. setup_rx_desc_die:
  1279. vfree(rxdr->buffer_info);
  1280. kfree(rxdr->ps_page);
  1281. kfree(rxdr->ps_page_dma);
  1282. return -ENOMEM;
  1283. }
  1284. /* Fix for errata 23, can't cross 64kB boundary */
  1285. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1286. void *olddesc = rxdr->desc;
  1287. dma_addr_t olddma = rxdr->dma;
  1288. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  1289. "at %p\n", rxdr->size, rxdr->desc);
  1290. /* Try again, without freeing the previous */
  1291. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1292. /* Failed allocation, critical failure */
  1293. if (!rxdr->desc) {
  1294. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1295. DPRINTK(PROBE, ERR,
  1296. "Unable to allocate memory "
  1297. "for the receive descriptor ring\n");
  1298. goto setup_rx_desc_die;
  1299. }
  1300. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1301. /* give up */
  1302. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  1303. rxdr->dma);
  1304. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1305. DPRINTK(PROBE, ERR,
  1306. "Unable to allocate aligned memory "
  1307. "for the receive descriptor ring\n");
  1308. goto setup_rx_desc_die;
  1309. } else {
  1310. /* Free old allocation, new allocation was successful */
  1311. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1312. }
  1313. }
  1314. memset(rxdr->desc, 0, rxdr->size);
  1315. rxdr->next_to_clean = 0;
  1316. rxdr->next_to_use = 0;
  1317. rxdr->rx_skb_top = NULL;
  1318. rxdr->rx_skb_prev = NULL;
  1319. return 0;
  1320. }
  1321. /**
  1322. * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
  1323. * (Descriptors) for all queues
  1324. * @adapter: board private structure
  1325. *
  1326. * If this function returns with an error, then it's possible one or
  1327. * more of the rings is populated (while the rest are not). It is the
  1328. * callers duty to clean those orphaned rings.
  1329. *
  1330. * Return 0 on success, negative on failure
  1331. **/
  1332. int
  1333. e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
  1334. {
  1335. int i, err = 0;
  1336. for (i = 0; i < adapter->num_rx_queues; i++) {
  1337. err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  1338. if (err) {
  1339. DPRINTK(PROBE, ERR,
  1340. "Allocation for Rx Queue %u failed\n", i);
  1341. break;
  1342. }
  1343. }
  1344. return err;
  1345. }
  1346. /**
  1347. * e1000_setup_rctl - configure the receive control registers
  1348. * @adapter: Board private structure
  1349. **/
  1350. #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
  1351. (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
  1352. static void
  1353. e1000_setup_rctl(struct e1000_adapter *adapter)
  1354. {
  1355. uint32_t rctl, rfctl;
  1356. uint32_t psrctl = 0;
  1357. #ifdef CONFIG_E1000_PACKET_SPLIT
  1358. uint32_t pages = 0;
  1359. #endif
  1360. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1361. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1362. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1363. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1364. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1365. if (adapter->hw.mac_type > e1000_82543)
  1366. rctl |= E1000_RCTL_SECRC;
  1367. if (adapter->hw.tbi_compatibility_on == 1)
  1368. rctl |= E1000_RCTL_SBP;
  1369. else
  1370. rctl &= ~E1000_RCTL_SBP;
  1371. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1372. rctl &= ~E1000_RCTL_LPE;
  1373. else
  1374. rctl |= E1000_RCTL_LPE;
  1375. /* Setup buffer sizes */
  1376. if(adapter->hw.mac_type >= e1000_82571) {
  1377. /* We can now specify buffers in 1K increments.
  1378. * BSIZE and BSEX are ignored in this case. */
  1379. rctl |= adapter->rx_buffer_len << 0x11;
  1380. } else {
  1381. rctl &= ~E1000_RCTL_SZ_4096;
  1382. rctl |= E1000_RCTL_BSEX;
  1383. switch (adapter->rx_buffer_len) {
  1384. case E1000_RXBUFFER_2048:
  1385. default:
  1386. rctl |= E1000_RCTL_SZ_2048;
  1387. rctl &= ~E1000_RCTL_BSEX;
  1388. break;
  1389. case E1000_RXBUFFER_4096:
  1390. rctl |= E1000_RCTL_SZ_4096;
  1391. break;
  1392. case E1000_RXBUFFER_8192:
  1393. rctl |= E1000_RCTL_SZ_8192;
  1394. break;
  1395. case E1000_RXBUFFER_16384:
  1396. rctl |= E1000_RCTL_SZ_16384;
  1397. break;
  1398. }
  1399. }
  1400. #ifdef CONFIG_E1000_PACKET_SPLIT
  1401. /* 82571 and greater support packet-split where the protocol
  1402. * header is placed in skb->data and the packet data is
  1403. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1404. * In the case of a non-split, skb->data is linearly filled,
  1405. * followed by the page buffers. Therefore, skb->data is
  1406. * sized to hold the largest protocol header.
  1407. */
  1408. pages = PAGE_USE_COUNT(adapter->netdev->mtu);
  1409. if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
  1410. PAGE_SIZE <= 16384)
  1411. adapter->rx_ps_pages = pages;
  1412. else
  1413. adapter->rx_ps_pages = 0;
  1414. #endif
  1415. if (adapter->rx_ps_pages) {
  1416. /* Configure extra packet-split registers */
  1417. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1418. rfctl |= E1000_RFCTL_EXTEN;
  1419. /* disable IPv6 packet split support */
  1420. rfctl |= E1000_RFCTL_IPV6_DIS;
  1421. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1422. rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
  1423. psrctl |= adapter->rx_ps_bsize0 >>
  1424. E1000_PSRCTL_BSIZE0_SHIFT;
  1425. switch (adapter->rx_ps_pages) {
  1426. case 3:
  1427. psrctl |= PAGE_SIZE <<
  1428. E1000_PSRCTL_BSIZE3_SHIFT;
  1429. case 2:
  1430. psrctl |= PAGE_SIZE <<
  1431. E1000_PSRCTL_BSIZE2_SHIFT;
  1432. case 1:
  1433. psrctl |= PAGE_SIZE >>
  1434. E1000_PSRCTL_BSIZE1_SHIFT;
  1435. break;
  1436. }
  1437. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1438. }
  1439. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1440. }
  1441. /**
  1442. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1443. * @adapter: board private structure
  1444. *
  1445. * Configure the Rx unit of the MAC after a reset.
  1446. **/
  1447. static void
  1448. e1000_configure_rx(struct e1000_adapter *adapter)
  1449. {
  1450. uint64_t rdba;
  1451. struct e1000_hw *hw = &adapter->hw;
  1452. uint32_t rdlen, rctl, rxcsum, ctrl_ext;
  1453. #ifdef CONFIG_E1000_MQ
  1454. uint32_t reta, mrqc;
  1455. int i;
  1456. #endif
  1457. if (adapter->rx_ps_pages) {
  1458. rdlen = adapter->rx_ring[0].count *
  1459. sizeof(union e1000_rx_desc_packet_split);
  1460. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1461. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1462. } else {
  1463. rdlen = adapter->rx_ring[0].count *
  1464. sizeof(struct e1000_rx_desc);
  1465. adapter->clean_rx = e1000_clean_rx_irq;
  1466. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1467. }
  1468. /* disable receives while setting up the descriptors */
  1469. rctl = E1000_READ_REG(hw, RCTL);
  1470. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  1471. /* set the Receive Delay Timer Register */
  1472. E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
  1473. if (hw->mac_type >= e1000_82540) {
  1474. E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
  1475. if(adapter->itr > 1)
  1476. E1000_WRITE_REG(hw, ITR,
  1477. 1000000000 / (adapter->itr * 256));
  1478. }
  1479. if (hw->mac_type >= e1000_82571) {
  1480. /* Reset delay timers after every interrupt */
  1481. ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
  1482. ctrl_ext |= E1000_CTRL_EXT_CANC;
  1483. E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
  1484. E1000_WRITE_FLUSH(hw);
  1485. }
  1486. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1487. * the Base and Length of the Rx Descriptor Ring */
  1488. switch (adapter->num_rx_queues) {
  1489. #ifdef CONFIG_E1000_MQ
  1490. case 2:
  1491. rdba = adapter->rx_ring[1].dma;
  1492. E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
  1493. E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
  1494. E1000_WRITE_REG(hw, RDLEN1, rdlen);
  1495. E1000_WRITE_REG(hw, RDH1, 0);
  1496. E1000_WRITE_REG(hw, RDT1, 0);
  1497. adapter->rx_ring[1].rdh = E1000_RDH1;
  1498. adapter->rx_ring[1].rdt = E1000_RDT1;
  1499. /* Fall Through */
  1500. #endif
  1501. case 1:
  1502. default:
  1503. rdba = adapter->rx_ring[0].dma;
  1504. E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1505. E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
  1506. E1000_WRITE_REG(hw, RDLEN, rdlen);
  1507. E1000_WRITE_REG(hw, RDH, 0);
  1508. E1000_WRITE_REG(hw, RDT, 0);
  1509. adapter->rx_ring[0].rdh = E1000_RDH;
  1510. adapter->rx_ring[0].rdt = E1000_RDT;
  1511. break;
  1512. }
  1513. #ifdef CONFIG_E1000_MQ
  1514. if (adapter->num_rx_queues > 1) {
  1515. uint32_t random[10];
  1516. get_random_bytes(&random[0], 40);
  1517. if (hw->mac_type <= e1000_82572) {
  1518. E1000_WRITE_REG(hw, RSSIR, 0);
  1519. E1000_WRITE_REG(hw, RSSIM, 0);
  1520. }
  1521. switch (adapter->num_rx_queues) {
  1522. case 2:
  1523. default:
  1524. reta = 0x00800080;
  1525. mrqc = E1000_MRQC_ENABLE_RSS_2Q;
  1526. break;
  1527. }
  1528. /* Fill out redirection table */
  1529. for (i = 0; i < 32; i++)
  1530. E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
  1531. /* Fill out hash function seeds */
  1532. for (i = 0; i < 10; i++)
  1533. E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
  1534. mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
  1535. E1000_MRQC_RSS_FIELD_IPV4_TCP);
  1536. E1000_WRITE_REG(hw, MRQC, mrqc);
  1537. }
  1538. /* Multiqueue and packet checksumming are mutually exclusive. */
  1539. if (hw->mac_type >= e1000_82571) {
  1540. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1541. rxcsum |= E1000_RXCSUM_PCSD;
  1542. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1543. }
  1544. #else
  1545. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1546. if (hw->mac_type >= e1000_82543) {
  1547. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1548. if(adapter->rx_csum == TRUE) {
  1549. rxcsum |= E1000_RXCSUM_TUOFL;
  1550. /* Enable 82571 IPv4 payload checksum for UDP fragments
  1551. * Must be used in conjunction with packet-split. */
  1552. if ((hw->mac_type >= e1000_82571) &&
  1553. (adapter->rx_ps_pages)) {
  1554. rxcsum |= E1000_RXCSUM_IPPCSE;
  1555. }
  1556. } else {
  1557. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1558. /* don't need to clear IPPCSE as it defaults to 0 */
  1559. }
  1560. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1561. }
  1562. #endif /* CONFIG_E1000_MQ */
  1563. if (hw->mac_type == e1000_82573)
  1564. E1000_WRITE_REG(hw, ERT, 0x0100);
  1565. /* Enable Receives */
  1566. E1000_WRITE_REG(hw, RCTL, rctl);
  1567. }
  1568. /**
  1569. * e1000_free_tx_resources - Free Tx Resources per Queue
  1570. * @adapter: board private structure
  1571. * @tx_ring: Tx descriptor ring for a specific queue
  1572. *
  1573. * Free all transmit software resources
  1574. **/
  1575. static void
  1576. e1000_free_tx_resources(struct e1000_adapter *adapter,
  1577. struct e1000_tx_ring *tx_ring)
  1578. {
  1579. struct pci_dev *pdev = adapter->pdev;
  1580. e1000_clean_tx_ring(adapter, tx_ring);
  1581. vfree(tx_ring->buffer_info);
  1582. tx_ring->buffer_info = NULL;
  1583. pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
  1584. tx_ring->desc = NULL;
  1585. }
  1586. /**
  1587. * e1000_free_all_tx_resources - Free Tx Resources for All Queues
  1588. * @adapter: board private structure
  1589. *
  1590. * Free all transmit software resources
  1591. **/
  1592. void
  1593. e1000_free_all_tx_resources(struct e1000_adapter *adapter)
  1594. {
  1595. int i;
  1596. for (i = 0; i < adapter->num_tx_queues; i++)
  1597. e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
  1598. }
  1599. static inline void
  1600. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1601. struct e1000_buffer *buffer_info)
  1602. {
  1603. if(buffer_info->dma) {
  1604. pci_unmap_page(adapter->pdev,
  1605. buffer_info->dma,
  1606. buffer_info->length,
  1607. PCI_DMA_TODEVICE);
  1608. buffer_info->dma = 0;
  1609. }
  1610. if(buffer_info->skb) {
  1611. dev_kfree_skb_any(buffer_info->skb);
  1612. buffer_info->skb = NULL;
  1613. }
  1614. }
  1615. /**
  1616. * e1000_clean_tx_ring - Free Tx Buffers
  1617. * @adapter: board private structure
  1618. * @tx_ring: ring to be cleaned
  1619. **/
  1620. static void
  1621. e1000_clean_tx_ring(struct e1000_adapter *adapter,
  1622. struct e1000_tx_ring *tx_ring)
  1623. {
  1624. struct e1000_buffer *buffer_info;
  1625. unsigned long size;
  1626. unsigned int i;
  1627. /* Free all the Tx ring sk_buffs */
  1628. for(i = 0; i < tx_ring->count; i++) {
  1629. buffer_info = &tx_ring->buffer_info[i];
  1630. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1631. }
  1632. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1633. memset(tx_ring->buffer_info, 0, size);
  1634. /* Zero out the descriptor ring */
  1635. memset(tx_ring->desc, 0, tx_ring->size);
  1636. tx_ring->next_to_use = 0;
  1637. tx_ring->next_to_clean = 0;
  1638. tx_ring->last_tx_tso = 0;
  1639. writel(0, adapter->hw.hw_addr + tx_ring->tdh);
  1640. writel(0, adapter->hw.hw_addr + tx_ring->tdt);
  1641. }
  1642. /**
  1643. * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
  1644. * @adapter: board private structure
  1645. **/
  1646. static void
  1647. e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
  1648. {
  1649. int i;
  1650. for (i = 0; i < adapter->num_tx_queues; i++)
  1651. e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1652. }
  1653. /**
  1654. * e1000_free_rx_resources - Free Rx Resources
  1655. * @adapter: board private structure
  1656. * @rx_ring: ring to clean the resources from
  1657. *
  1658. * Free all receive software resources
  1659. **/
  1660. static void
  1661. e1000_free_rx_resources(struct e1000_adapter *adapter,
  1662. struct e1000_rx_ring *rx_ring)
  1663. {
  1664. struct pci_dev *pdev = adapter->pdev;
  1665. e1000_clean_rx_ring(adapter, rx_ring);
  1666. vfree(rx_ring->buffer_info);
  1667. rx_ring->buffer_info = NULL;
  1668. kfree(rx_ring->ps_page);
  1669. rx_ring->ps_page = NULL;
  1670. kfree(rx_ring->ps_page_dma);
  1671. rx_ring->ps_page_dma = NULL;
  1672. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1673. rx_ring->desc = NULL;
  1674. }
  1675. /**
  1676. * e1000_free_all_rx_resources - Free Rx Resources for All Queues
  1677. * @adapter: board private structure
  1678. *
  1679. * Free all receive software resources
  1680. **/
  1681. void
  1682. e1000_free_all_rx_resources(struct e1000_adapter *adapter)
  1683. {
  1684. int i;
  1685. for (i = 0; i < adapter->num_rx_queues; i++)
  1686. e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
  1687. }
  1688. /**
  1689. * e1000_clean_rx_ring - Free Rx Buffers per Queue
  1690. * @adapter: board private structure
  1691. * @rx_ring: ring to free buffers from
  1692. **/
  1693. static void
  1694. e1000_clean_rx_ring(struct e1000_adapter *adapter,
  1695. struct e1000_rx_ring *rx_ring)
  1696. {
  1697. struct e1000_buffer *buffer_info;
  1698. struct e1000_ps_page *ps_page;
  1699. struct e1000_ps_page_dma *ps_page_dma;
  1700. struct pci_dev *pdev = adapter->pdev;
  1701. unsigned long size;
  1702. unsigned int i, j;
  1703. /* Free all the Rx ring sk_buffs */
  1704. for(i = 0; i < rx_ring->count; i++) {
  1705. buffer_info = &rx_ring->buffer_info[i];
  1706. if(buffer_info->skb) {
  1707. ps_page = &rx_ring->ps_page[i];
  1708. ps_page_dma = &rx_ring->ps_page_dma[i];
  1709. pci_unmap_single(pdev,
  1710. buffer_info->dma,
  1711. buffer_info->length,
  1712. PCI_DMA_FROMDEVICE);
  1713. dev_kfree_skb(buffer_info->skb);
  1714. buffer_info->skb = NULL;
  1715. }
  1716. ps_page = &rx_ring->ps_page[i];
  1717. ps_page_dma = &rx_ring->ps_page_dma[i];
  1718. for (j = 0; j < adapter->rx_ps_pages; j++) {
  1719. if (!ps_page->ps_page[j]) break;
  1720. pci_unmap_page(pdev,
  1721. ps_page_dma->ps_page_dma[j],
  1722. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1723. ps_page_dma->ps_page_dma[j] = 0;
  1724. put_page(ps_page->ps_page[j]);
  1725. ps_page->ps_page[j] = NULL;
  1726. }
  1727. }
  1728. /* there also may be some cached data in our adapter */
  1729. if (rx_ring->rx_skb_top) {
  1730. dev_kfree_skb(rx_ring->rx_skb_top);
  1731. /* rx_skb_prev will be wiped out by rx_skb_top */
  1732. rx_ring->rx_skb_top = NULL;
  1733. rx_ring->rx_skb_prev = NULL;
  1734. }
  1735. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1736. memset(rx_ring->buffer_info, 0, size);
  1737. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1738. memset(rx_ring->ps_page, 0, size);
  1739. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1740. memset(rx_ring->ps_page_dma, 0, size);
  1741. /* Zero out the descriptor ring */
  1742. memset(rx_ring->desc, 0, rx_ring->size);
  1743. rx_ring->next_to_clean = 0;
  1744. rx_ring->next_to_use = 0;
  1745. writel(0, adapter->hw.hw_addr + rx_ring->rdh);
  1746. writel(0, adapter->hw.hw_addr + rx_ring->rdt);
  1747. }
  1748. /**
  1749. * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
  1750. * @adapter: board private structure
  1751. **/
  1752. static void
  1753. e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
  1754. {
  1755. int i;
  1756. for (i = 0; i < adapter->num_rx_queues; i++)
  1757. e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1758. }
  1759. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1760. * and memory write and invalidate disabled for certain operations
  1761. */
  1762. static void
  1763. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1764. {
  1765. struct net_device *netdev = adapter->netdev;
  1766. uint32_t rctl;
  1767. e1000_pci_clear_mwi(&adapter->hw);
  1768. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1769. rctl |= E1000_RCTL_RST;
  1770. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1771. E1000_WRITE_FLUSH(&adapter->hw);
  1772. mdelay(5);
  1773. if(netif_running(netdev))
  1774. e1000_clean_all_rx_rings(adapter);
  1775. }
  1776. static void
  1777. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1778. {
  1779. struct net_device *netdev = adapter->netdev;
  1780. uint32_t rctl;
  1781. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1782. rctl &= ~E1000_RCTL_RST;
  1783. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1784. E1000_WRITE_FLUSH(&adapter->hw);
  1785. mdelay(5);
  1786. if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1787. e1000_pci_set_mwi(&adapter->hw);
  1788. if(netif_running(netdev)) {
  1789. e1000_configure_rx(adapter);
  1790. e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
  1791. }
  1792. }
  1793. /**
  1794. * e1000_set_mac - Change the Ethernet Address of the NIC
  1795. * @netdev: network interface device structure
  1796. * @p: pointer to an address structure
  1797. *
  1798. * Returns 0 on success, negative on failure
  1799. **/
  1800. static int
  1801. e1000_set_mac(struct net_device *netdev, void *p)
  1802. {
  1803. struct e1000_adapter *adapter = netdev_priv(netdev);
  1804. struct sockaddr *addr = p;
  1805. if(!is_valid_ether_addr(addr->sa_data))
  1806. return -EADDRNOTAVAIL;
  1807. /* 82542 2.0 needs to be in reset to write receive address registers */
  1808. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1809. e1000_enter_82542_rst(adapter);
  1810. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1811. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1812. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1813. /* With 82571 controllers, LAA may be overwritten (with the default)
  1814. * due to controller reset from the other port. */
  1815. if (adapter->hw.mac_type == e1000_82571) {
  1816. /* activate the work around */
  1817. adapter->hw.laa_is_present = 1;
  1818. /* Hold a copy of the LAA in RAR[14] This is done so that
  1819. * between the time RAR[0] gets clobbered and the time it
  1820. * gets fixed (in e1000_watchdog), the actual LAA is in one
  1821. * of the RARs and no incoming packets directed to this port
  1822. * are dropped. Eventaully the LAA will be in RAR[0] and
  1823. * RAR[14] */
  1824. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
  1825. E1000_RAR_ENTRIES - 1);
  1826. }
  1827. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1828. e1000_leave_82542_rst(adapter);
  1829. return 0;
  1830. }
  1831. /**
  1832. * e1000_set_multi - Multicast and Promiscuous mode set
  1833. * @netdev: network interface device structure
  1834. *
  1835. * The set_multi entry point is called whenever the multicast address
  1836. * list or the network interface flags are updated. This routine is
  1837. * responsible for configuring the hardware for proper multicast,
  1838. * promiscuous mode, and all-multi behavior.
  1839. **/
  1840. static void
  1841. e1000_set_multi(struct net_device *netdev)
  1842. {
  1843. struct e1000_adapter *adapter = netdev_priv(netdev);
  1844. struct e1000_hw *hw = &adapter->hw;
  1845. struct dev_mc_list *mc_ptr;
  1846. uint32_t rctl;
  1847. uint32_t hash_value;
  1848. int i, rar_entries = E1000_RAR_ENTRIES;
  1849. /* reserve RAR[14] for LAA over-write work-around */
  1850. if (adapter->hw.mac_type == e1000_82571)
  1851. rar_entries--;
  1852. /* Check for Promiscuous and All Multicast modes */
  1853. rctl = E1000_READ_REG(hw, RCTL);
  1854. if(netdev->flags & IFF_PROMISC) {
  1855. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1856. } else if(netdev->flags & IFF_ALLMULTI) {
  1857. rctl |= E1000_RCTL_MPE;
  1858. rctl &= ~E1000_RCTL_UPE;
  1859. } else {
  1860. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1861. }
  1862. E1000_WRITE_REG(hw, RCTL, rctl);
  1863. /* 82542 2.0 needs to be in reset to write receive address registers */
  1864. if(hw->mac_type == e1000_82542_rev2_0)
  1865. e1000_enter_82542_rst(adapter);
  1866. /* load the first 14 multicast address into the exact filters 1-14
  1867. * RAR 0 is used for the station MAC adddress
  1868. * if there are not 14 addresses, go ahead and clear the filters
  1869. * -- with 82571 controllers only 0-13 entries are filled here
  1870. */
  1871. mc_ptr = netdev->mc_list;
  1872. for(i = 1; i < rar_entries; i++) {
  1873. if (mc_ptr) {
  1874. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1875. mc_ptr = mc_ptr->next;
  1876. } else {
  1877. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1878. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1879. }
  1880. }
  1881. /* clear the old settings from the multicast hash table */
  1882. for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1883. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1884. /* load any remaining addresses into the hash table */
  1885. for(; mc_ptr; mc_ptr = mc_ptr->next) {
  1886. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1887. e1000_mta_set(hw, hash_value);
  1888. }
  1889. if(hw->mac_type == e1000_82542_rev2_0)
  1890. e1000_leave_82542_rst(adapter);
  1891. }
  1892. /* Need to wait a few seconds after link up to get diagnostic information from
  1893. * the phy */
  1894. static void
  1895. e1000_update_phy_info(unsigned long data)
  1896. {
  1897. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1898. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1899. }
  1900. /**
  1901. * e1000_82547_tx_fifo_stall - Timer Call-back
  1902. * @data: pointer to adapter cast into an unsigned long
  1903. **/
  1904. static void
  1905. e1000_82547_tx_fifo_stall(unsigned long data)
  1906. {
  1907. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1908. struct net_device *netdev = adapter->netdev;
  1909. uint32_t tctl;
  1910. if(atomic_read(&adapter->tx_fifo_stall)) {
  1911. if((E1000_READ_REG(&adapter->hw, TDT) ==
  1912. E1000_READ_REG(&adapter->hw, TDH)) &&
  1913. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1914. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1915. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1916. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1917. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1918. E1000_WRITE_REG(&adapter->hw, TCTL,
  1919. tctl & ~E1000_TCTL_EN);
  1920. E1000_WRITE_REG(&adapter->hw, TDFT,
  1921. adapter->tx_head_addr);
  1922. E1000_WRITE_REG(&adapter->hw, TDFH,
  1923. adapter->tx_head_addr);
  1924. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1925. adapter->tx_head_addr);
  1926. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1927. adapter->tx_head_addr);
  1928. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1929. E1000_WRITE_FLUSH(&adapter->hw);
  1930. adapter->tx_fifo_head = 0;
  1931. atomic_set(&adapter->tx_fifo_stall, 0);
  1932. netif_wake_queue(netdev);
  1933. } else {
  1934. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1935. }
  1936. }
  1937. }
  1938. /**
  1939. * e1000_watchdog - Timer Call-back
  1940. * @data: pointer to adapter cast into an unsigned long
  1941. **/
  1942. static void
  1943. e1000_watchdog(unsigned long data)
  1944. {
  1945. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1946. /* Do the rest outside of interrupt context */
  1947. schedule_work(&adapter->watchdog_task);
  1948. }
  1949. static void
  1950. e1000_watchdog_task(struct e1000_adapter *adapter)
  1951. {
  1952. struct net_device *netdev = adapter->netdev;
  1953. struct e1000_tx_ring *txdr = adapter->tx_ring;
  1954. uint32_t link;
  1955. e1000_check_for_link(&adapter->hw);
  1956. if (adapter->hw.mac_type == e1000_82573) {
  1957. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1958. if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1959. e1000_update_mng_vlan(adapter);
  1960. }
  1961. if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1962. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1963. link = !adapter->hw.serdes_link_down;
  1964. else
  1965. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1966. if(link) {
  1967. if(!netif_carrier_ok(netdev)) {
  1968. e1000_get_speed_and_duplex(&adapter->hw,
  1969. &adapter->link_speed,
  1970. &adapter->link_duplex);
  1971. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1972. adapter->link_speed,
  1973. adapter->link_duplex == FULL_DUPLEX ?
  1974. "Full Duplex" : "Half Duplex");
  1975. /* tweak tx_queue_len according to speed/duplex */
  1976. netdev->tx_queue_len = adapter->tx_queue_len;
  1977. adapter->tx_timeout_factor = 1;
  1978. if (adapter->link_duplex == HALF_DUPLEX) {
  1979. switch (adapter->link_speed) {
  1980. case SPEED_10:
  1981. netdev->tx_queue_len = 10;
  1982. adapter->tx_timeout_factor = 8;
  1983. break;
  1984. case SPEED_100:
  1985. netdev->tx_queue_len = 100;
  1986. break;
  1987. }
  1988. }
  1989. netif_carrier_on(netdev);
  1990. netif_wake_queue(netdev);
  1991. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1992. adapter->smartspeed = 0;
  1993. }
  1994. } else {
  1995. if(netif_carrier_ok(netdev)) {
  1996. adapter->link_speed = 0;
  1997. adapter->link_duplex = 0;
  1998. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1999. netif_carrier_off(netdev);
  2000. netif_stop_queue(netdev);
  2001. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  2002. }
  2003. e1000_smartspeed(adapter);
  2004. }
  2005. e1000_update_stats(adapter);
  2006. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  2007. adapter->tpt_old = adapter->stats.tpt;
  2008. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  2009. adapter->colc_old = adapter->stats.colc;
  2010. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  2011. adapter->gorcl_old = adapter->stats.gorcl;
  2012. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  2013. adapter->gotcl_old = adapter->stats.gotcl;
  2014. e1000_update_adaptive(&adapter->hw);
  2015. #ifdef CONFIG_E1000_MQ
  2016. txdr = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
  2017. #endif
  2018. if (!netif_carrier_ok(netdev)) {
  2019. if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  2020. /* We've lost link, so the controller stops DMA,
  2021. * but we've got queued Tx work that's never going
  2022. * to get done, so reset controller to flush Tx.
  2023. * (Do the reset outside of interrupt context). */
  2024. schedule_work(&adapter->tx_timeout_task);
  2025. }
  2026. }
  2027. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  2028. if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  2029. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  2030. * asymmetrical Tx or Rx gets ITR=8000; everyone
  2031. * else is between 2000-8000. */
  2032. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  2033. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  2034. adapter->gotcl - adapter->gorcl :
  2035. adapter->gorcl - adapter->gotcl) / 10000;
  2036. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  2037. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  2038. }
  2039. /* Cause software interrupt to ensure rx ring is cleaned */
  2040. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  2041. /* Force detection of hung controller every watchdog period */
  2042. adapter->detect_tx_hung = TRUE;
  2043. /* With 82571 controllers, LAA may be overwritten due to controller
  2044. * reset from the other port. Set the appropriate LAA in RAR[0] */
  2045. if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
  2046. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  2047. /* Reset the timer */
  2048. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  2049. }
  2050. #define E1000_TX_FLAGS_CSUM 0x00000001
  2051. #define E1000_TX_FLAGS_VLAN 0x00000002
  2052. #define E1000_TX_FLAGS_TSO 0x00000004
  2053. #define E1000_TX_FLAGS_IPV4 0x00000008
  2054. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  2055. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  2056. static inline int
  2057. e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2058. struct sk_buff *skb)
  2059. {
  2060. #ifdef NETIF_F_TSO
  2061. struct e1000_context_desc *context_desc;
  2062. struct e1000_buffer *buffer_info;
  2063. unsigned int i;
  2064. uint32_t cmd_length = 0;
  2065. uint16_t ipcse = 0, tucse, mss;
  2066. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  2067. int err;
  2068. if(skb_shinfo(skb)->tso_size) {
  2069. if (skb_header_cloned(skb)) {
  2070. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2071. if (err)
  2072. return err;
  2073. }
  2074. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2075. mss = skb_shinfo(skb)->tso_size;
  2076. if(skb->protocol == ntohs(ETH_P_IP)) {
  2077. skb->nh.iph->tot_len = 0;
  2078. skb->nh.iph->check = 0;
  2079. skb->h.th->check =
  2080. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  2081. skb->nh.iph->daddr,
  2082. 0,
  2083. IPPROTO_TCP,
  2084. 0);
  2085. cmd_length = E1000_TXD_CMD_IP;
  2086. ipcse = skb->h.raw - skb->data - 1;
  2087. #ifdef NETIF_F_TSO_IPV6
  2088. } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
  2089. skb->nh.ipv6h->payload_len = 0;
  2090. skb->h.th->check =
  2091. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  2092. &skb->nh.ipv6h->daddr,
  2093. 0,
  2094. IPPROTO_TCP,
  2095. 0);
  2096. ipcse = 0;
  2097. #endif
  2098. }
  2099. ipcss = skb->nh.raw - skb->data;
  2100. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  2101. tucss = skb->h.raw - skb->data;
  2102. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  2103. tucse = 0;
  2104. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  2105. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  2106. i = tx_ring->next_to_use;
  2107. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2108. buffer_info = &tx_ring->buffer_info[i];
  2109. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  2110. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  2111. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  2112. context_desc->upper_setup.tcp_fields.tucss = tucss;
  2113. context_desc->upper_setup.tcp_fields.tucso = tucso;
  2114. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  2115. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  2116. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  2117. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  2118. buffer_info->time_stamp = jiffies;
  2119. if (++i == tx_ring->count) i = 0;
  2120. tx_ring->next_to_use = i;
  2121. return 1;
  2122. }
  2123. #endif
  2124. return 0;
  2125. }
  2126. static inline boolean_t
  2127. e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2128. struct sk_buff *skb)
  2129. {
  2130. struct e1000_context_desc *context_desc;
  2131. struct e1000_buffer *buffer_info;
  2132. unsigned int i;
  2133. uint8_t css;
  2134. if(likely(skb->ip_summed == CHECKSUM_HW)) {
  2135. css = skb->h.raw - skb->data;
  2136. i = tx_ring->next_to_use;
  2137. buffer_info = &tx_ring->buffer_info[i];
  2138. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2139. context_desc->upper_setup.tcp_fields.tucss = css;
  2140. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  2141. context_desc->upper_setup.tcp_fields.tucse = 0;
  2142. context_desc->tcp_seg_setup.data = 0;
  2143. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  2144. buffer_info->time_stamp = jiffies;
  2145. if (unlikely(++i == tx_ring->count)) i = 0;
  2146. tx_ring->next_to_use = i;
  2147. return TRUE;
  2148. }
  2149. return FALSE;
  2150. }
  2151. #define E1000_MAX_TXD_PWR 12
  2152. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  2153. static inline int
  2154. e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2155. struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
  2156. unsigned int nr_frags, unsigned int mss)
  2157. {
  2158. struct e1000_buffer *buffer_info;
  2159. unsigned int len = skb->len;
  2160. unsigned int offset = 0, size, count = 0, i;
  2161. unsigned int f;
  2162. len -= skb->data_len;
  2163. i = tx_ring->next_to_use;
  2164. while(len) {
  2165. buffer_info = &tx_ring->buffer_info[i];
  2166. size = min(len, max_per_txd);
  2167. #ifdef NETIF_F_TSO
  2168. /* Workaround for Controller erratum --
  2169. * descriptor for non-tso packet in a linear SKB that follows a
  2170. * tso gets written back prematurely before the data is fully
  2171. * DMAd to the controller */
  2172. if (!skb->data_len && tx_ring->last_tx_tso &&
  2173. !skb_shinfo(skb)->tso_size) {
  2174. tx_ring->last_tx_tso = 0;
  2175. size -= 4;
  2176. }
  2177. /* Workaround for premature desc write-backs
  2178. * in TSO mode. Append 4-byte sentinel desc */
  2179. if(unlikely(mss && !nr_frags && size == len && size > 8))
  2180. size -= 4;
  2181. #endif
  2182. /* work-around for errata 10 and it applies
  2183. * to all controllers in PCI-X mode
  2184. * The fix is to make sure that the first descriptor of a
  2185. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  2186. */
  2187. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2188. (size > 2015) && count == 0))
  2189. size = 2015;
  2190. /* Workaround for potential 82544 hang in PCI-X. Avoid
  2191. * terminating buffers within evenly-aligned dwords. */
  2192. if(unlikely(adapter->pcix_82544 &&
  2193. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  2194. size > 4))
  2195. size -= 4;
  2196. buffer_info->length = size;
  2197. buffer_info->dma =
  2198. pci_map_single(adapter->pdev,
  2199. skb->data + offset,
  2200. size,
  2201. PCI_DMA_TODEVICE);
  2202. buffer_info->time_stamp = jiffies;
  2203. len -= size;
  2204. offset += size;
  2205. count++;
  2206. if(unlikely(++i == tx_ring->count)) i = 0;
  2207. }
  2208. for(f = 0; f < nr_frags; f++) {
  2209. struct skb_frag_struct *frag;
  2210. frag = &skb_shinfo(skb)->frags[f];
  2211. len = frag->size;
  2212. offset = frag->page_offset;
  2213. while(len) {
  2214. buffer_info = &tx_ring->buffer_info[i];
  2215. size = min(len, max_per_txd);
  2216. #ifdef NETIF_F_TSO
  2217. /* Workaround for premature desc write-backs
  2218. * in TSO mode. Append 4-byte sentinel desc */
  2219. if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  2220. size -= 4;
  2221. #endif
  2222. /* Workaround for potential 82544 hang in PCI-X.
  2223. * Avoid terminating buffers within evenly-aligned
  2224. * dwords. */
  2225. if(unlikely(adapter->pcix_82544 &&
  2226. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  2227. size > 4))
  2228. size -= 4;
  2229. buffer_info->length = size;
  2230. buffer_info->dma =
  2231. pci_map_page(adapter->pdev,
  2232. frag->page,
  2233. offset,
  2234. size,
  2235. PCI_DMA_TODEVICE);
  2236. buffer_info->time_stamp = jiffies;
  2237. len -= size;
  2238. offset += size;
  2239. count++;
  2240. if(unlikely(++i == tx_ring->count)) i = 0;
  2241. }
  2242. }
  2243. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  2244. tx_ring->buffer_info[i].skb = skb;
  2245. tx_ring->buffer_info[first].next_to_watch = i;
  2246. return count;
  2247. }
  2248. static inline void
  2249. e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2250. int tx_flags, int count)
  2251. {
  2252. struct e1000_tx_desc *tx_desc = NULL;
  2253. struct e1000_buffer *buffer_info;
  2254. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  2255. unsigned int i;
  2256. if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  2257. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  2258. E1000_TXD_CMD_TSE;
  2259. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2260. if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
  2261. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  2262. }
  2263. if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  2264. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  2265. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2266. }
  2267. if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  2268. txd_lower |= E1000_TXD_CMD_VLE;
  2269. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  2270. }
  2271. i = tx_ring->next_to_use;
  2272. while(count--) {
  2273. buffer_info = &tx_ring->buffer_info[i];
  2274. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2275. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2276. tx_desc->lower.data =
  2277. cpu_to_le32(txd_lower | buffer_info->length);
  2278. tx_desc->upper.data = cpu_to_le32(txd_upper);
  2279. if(unlikely(++i == tx_ring->count)) i = 0;
  2280. }
  2281. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  2282. /* Force memory writes to complete before letting h/w
  2283. * know there are new descriptors to fetch. (Only
  2284. * applicable for weak-ordered memory model archs,
  2285. * such as IA-64). */
  2286. wmb();
  2287. tx_ring->next_to_use = i;
  2288. writel(i, adapter->hw.hw_addr + tx_ring->tdt);
  2289. }
  2290. /**
  2291. * 82547 workaround to avoid controller hang in half-duplex environment.
  2292. * The workaround is to avoid queuing a large packet that would span
  2293. * the internal Tx FIFO ring boundary by notifying the stack to resend
  2294. * the packet at a later time. This gives the Tx FIFO an opportunity to
  2295. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  2296. * to the beginning of the Tx FIFO.
  2297. **/
  2298. #define E1000_FIFO_HDR 0x10
  2299. #define E1000_82547_PAD_LEN 0x3E0
  2300. static inline int
  2301. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  2302. {
  2303. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  2304. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  2305. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  2306. if(adapter->link_duplex != HALF_DUPLEX)
  2307. goto no_fifo_stall_required;
  2308. if(atomic_read(&adapter->tx_fifo_stall))
  2309. return 1;
  2310. if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  2311. atomic_set(&adapter->tx_fifo_stall, 1);
  2312. return 1;
  2313. }
  2314. no_fifo_stall_required:
  2315. adapter->tx_fifo_head += skb_fifo_len;
  2316. if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
  2317. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  2318. return 0;
  2319. }
  2320. #define MINIMUM_DHCP_PACKET_SIZE 282
  2321. static inline int
  2322. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  2323. {
  2324. struct e1000_hw *hw = &adapter->hw;
  2325. uint16_t length, offset;
  2326. if(vlan_tx_tag_present(skb)) {
  2327. if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  2328. ( adapter->hw.mng_cookie.status &
  2329. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  2330. return 0;
  2331. }
  2332. if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
  2333. struct ethhdr *eth = (struct ethhdr *) skb->data;
  2334. if((htons(ETH_P_IP) == eth->h_proto)) {
  2335. const struct iphdr *ip =
  2336. (struct iphdr *)((uint8_t *)skb->data+14);
  2337. if(IPPROTO_UDP == ip->protocol) {
  2338. struct udphdr *udp =
  2339. (struct udphdr *)((uint8_t *)ip +
  2340. (ip->ihl << 2));
  2341. if(ntohs(udp->dest) == 67) {
  2342. offset = (uint8_t *)udp + 8 - skb->data;
  2343. length = skb->len - offset;
  2344. return e1000_mng_write_dhcp_info(hw,
  2345. (uint8_t *)udp + 8,
  2346. length);
  2347. }
  2348. }
  2349. }
  2350. }
  2351. return 0;
  2352. }
  2353. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  2354. static int
  2355. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2356. {
  2357. struct e1000_adapter *adapter = netdev_priv(netdev);
  2358. struct e1000_tx_ring *tx_ring;
  2359. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  2360. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  2361. unsigned int tx_flags = 0;
  2362. unsigned int len = skb->len;
  2363. unsigned long flags;
  2364. unsigned int nr_frags = 0;
  2365. unsigned int mss = 0;
  2366. int count = 0;
  2367. int tso;
  2368. unsigned int f;
  2369. len -= skb->data_len;
  2370. #ifdef CONFIG_E1000_MQ
  2371. tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
  2372. #else
  2373. tx_ring = adapter->tx_ring;
  2374. #endif
  2375. if (unlikely(skb->len <= 0)) {
  2376. dev_kfree_skb_any(skb);
  2377. return NETDEV_TX_OK;
  2378. }
  2379. #ifdef NETIF_F_TSO
  2380. mss = skb_shinfo(skb)->tso_size;
  2381. /* The controller does a simple calculation to
  2382. * make sure there is enough room in the FIFO before
  2383. * initiating the DMA for each buffer. The calc is:
  2384. * 4 = ceil(buffer len/mss). To make sure we don't
  2385. * overrun the FIFO, adjust the max buffer len if mss
  2386. * drops. */
  2387. if(mss) {
  2388. uint8_t hdr_len;
  2389. max_per_txd = min(mss << 2, max_per_txd);
  2390. max_txd_pwr = fls(max_per_txd) - 1;
  2391. /* TSO Workaround for 82571/2 Controllers -- if skb->data
  2392. * points to just header, pull a few bytes of payload from
  2393. * frags into skb->data */
  2394. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2395. if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
  2396. (adapter->hw.mac_type == e1000_82571 ||
  2397. adapter->hw.mac_type == e1000_82572)) {
  2398. len = skb->len - skb->data_len;
  2399. }
  2400. }
  2401. if((mss) || (skb->ip_summed == CHECKSUM_HW))
  2402. /* reserve a descriptor for the offload context */
  2403. count++;
  2404. count++;
  2405. #else
  2406. if(skb->ip_summed == CHECKSUM_HW)
  2407. count++;
  2408. #endif
  2409. #ifdef NETIF_F_TSO
  2410. /* Controller Erratum workaround */
  2411. if (!skb->data_len && tx_ring->last_tx_tso &&
  2412. !skb_shinfo(skb)->tso_size)
  2413. count++;
  2414. #endif
  2415. count += TXD_USE_COUNT(len, max_txd_pwr);
  2416. if(adapter->pcix_82544)
  2417. count++;
  2418. /* work-around for errata 10 and it applies to all controllers
  2419. * in PCI-X mode, so add one more descriptor to the count
  2420. */
  2421. if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2422. (len > 2015)))
  2423. count++;
  2424. nr_frags = skb_shinfo(skb)->nr_frags;
  2425. for(f = 0; f < nr_frags; f++)
  2426. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  2427. max_txd_pwr);
  2428. if(adapter->pcix_82544)
  2429. count += nr_frags;
  2430. unsigned int pull_size;
  2431. pull_size = min((unsigned int)4, skb->data_len);
  2432. if (!__pskb_pull_tail(skb, pull_size)) {
  2433. printk(KERN_ERR "__pskb_pull_tail failed.\n");
  2434. dev_kfree_skb_any(skb);
  2435. return -EFAULT;
  2436. }
  2437. if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
  2438. e1000_transfer_dhcp_info(adapter, skb);
  2439. local_irq_save(flags);
  2440. if (!spin_trylock(&tx_ring->tx_lock)) {
  2441. /* Collision - tell upper layer to requeue */
  2442. local_irq_restore(flags);
  2443. return NETDEV_TX_LOCKED;
  2444. }
  2445. /* need: count + 2 desc gap to keep tail from touching
  2446. * head, otherwise try next time */
  2447. if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
  2448. netif_stop_queue(netdev);
  2449. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2450. return NETDEV_TX_BUSY;
  2451. }
  2452. if(unlikely(adapter->hw.mac_type == e1000_82547)) {
  2453. if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  2454. netif_stop_queue(netdev);
  2455. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  2456. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2457. return NETDEV_TX_BUSY;
  2458. }
  2459. }
  2460. if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  2461. tx_flags |= E1000_TX_FLAGS_VLAN;
  2462. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  2463. }
  2464. first = tx_ring->next_to_use;
  2465. tso = e1000_tso(adapter, tx_ring, skb);
  2466. if (tso < 0) {
  2467. dev_kfree_skb_any(skb);
  2468. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2469. return NETDEV_TX_OK;
  2470. }
  2471. if (likely(tso)) {
  2472. tx_ring->last_tx_tso = 1;
  2473. tx_flags |= E1000_TX_FLAGS_TSO;
  2474. } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
  2475. tx_flags |= E1000_TX_FLAGS_CSUM;
  2476. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  2477. * 82571 hardware supports TSO capabilities for IPv6 as well...
  2478. * no longer assume, we must. */
  2479. if (likely(skb->protocol == ntohs(ETH_P_IP)))
  2480. tx_flags |= E1000_TX_FLAGS_IPV4;
  2481. e1000_tx_queue(adapter, tx_ring, tx_flags,
  2482. e1000_tx_map(adapter, tx_ring, skb, first,
  2483. max_per_txd, nr_frags, mss));
  2484. netdev->trans_start = jiffies;
  2485. /* Make sure there is space in the ring for the next send. */
  2486. if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
  2487. netif_stop_queue(netdev);
  2488. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2489. return NETDEV_TX_OK;
  2490. }
  2491. /**
  2492. * e1000_tx_timeout - Respond to a Tx Hang
  2493. * @netdev: network interface device structure
  2494. **/
  2495. static void
  2496. e1000_tx_timeout(struct net_device *netdev)
  2497. {
  2498. struct e1000_adapter *adapter = netdev_priv(netdev);
  2499. /* Do the reset outside of interrupt context */
  2500. schedule_work(&adapter->tx_timeout_task);
  2501. }
  2502. static void
  2503. e1000_tx_timeout_task(struct net_device *netdev)
  2504. {
  2505. struct e1000_adapter *adapter = netdev_priv(netdev);
  2506. adapter->tx_timeout_count++;
  2507. e1000_down(adapter);
  2508. e1000_up(adapter);
  2509. }
  2510. /**
  2511. * e1000_get_stats - Get System Network Statistics
  2512. * @netdev: network interface device structure
  2513. *
  2514. * Returns the address of the device statistics structure.
  2515. * The statistics are actually updated from the timer callback.
  2516. **/
  2517. static struct net_device_stats *
  2518. e1000_get_stats(struct net_device *netdev)
  2519. {
  2520. struct e1000_adapter *adapter = netdev_priv(netdev);
  2521. /* only return the current stats */
  2522. return &adapter->net_stats;
  2523. }
  2524. /**
  2525. * e1000_change_mtu - Change the Maximum Transfer Unit
  2526. * @netdev: network interface device structure
  2527. * @new_mtu: new value for maximum frame size
  2528. *
  2529. * Returns 0 on success, negative on failure
  2530. **/
  2531. static int
  2532. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  2533. {
  2534. struct e1000_adapter *adapter = netdev_priv(netdev);
  2535. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  2536. if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  2537. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2538. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  2539. return -EINVAL;
  2540. }
  2541. /* Adapter-specific max frame size limits. */
  2542. switch (adapter->hw.mac_type) {
  2543. case e1000_82542_rev2_0:
  2544. case e1000_82542_rev2_1:
  2545. case e1000_82573:
  2546. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2547. DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
  2548. return -EINVAL;
  2549. }
  2550. break;
  2551. case e1000_82571:
  2552. case e1000_82572:
  2553. #define MAX_STD_JUMBO_FRAME_SIZE 9234
  2554. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  2555. DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
  2556. return -EINVAL;
  2557. }
  2558. break;
  2559. default:
  2560. /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
  2561. break;
  2562. }
  2563. /* since the driver code now supports splitting a packet across
  2564. * multiple descriptors, most of the fifo related limitations on
  2565. * jumbo frame traffic have gone away.
  2566. * simply use 2k descriptors for everything.
  2567. *
  2568. * NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
  2569. * means we reserve 2 more, this pushes us to allocate from the next
  2570. * larger slab size
  2571. * i.e. RXBUFFER_2048 --> size-4096 slab */
  2572. /* recent hardware supports 1KB granularity */
  2573. if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2574. adapter->rx_buffer_len =
  2575. ((max_frame < E1000_RXBUFFER_2048) ?
  2576. max_frame : E1000_RXBUFFER_2048);
  2577. E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
  2578. } else
  2579. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2580. netdev->mtu = new_mtu;
  2581. if(netif_running(netdev)) {
  2582. e1000_down(adapter);
  2583. e1000_up(adapter);
  2584. }
  2585. adapter->hw.max_frame_size = max_frame;
  2586. return 0;
  2587. }
  2588. /**
  2589. * e1000_update_stats - Update the board statistics counters
  2590. * @adapter: board private structure
  2591. **/
  2592. void
  2593. e1000_update_stats(struct e1000_adapter *adapter)
  2594. {
  2595. struct e1000_hw *hw = &adapter->hw;
  2596. unsigned long flags;
  2597. uint16_t phy_tmp;
  2598. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2599. spin_lock_irqsave(&adapter->stats_lock, flags);
  2600. /* these counters are modified from e1000_adjust_tbi_stats,
  2601. * called from the interrupt context, so they must only
  2602. * be written while holding adapter->stats_lock
  2603. */
  2604. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2605. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2606. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2607. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2608. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2609. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2610. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2611. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2612. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2613. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2614. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2615. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2616. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2617. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2618. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2619. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2620. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2621. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2622. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2623. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2624. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2625. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2626. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2627. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2628. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2629. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2630. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2631. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2632. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2633. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2634. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2635. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2636. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2637. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2638. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2639. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2640. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2641. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2642. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2643. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2644. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2645. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2646. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2647. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2648. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2649. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2650. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2651. /* used for adaptive IFS */
  2652. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2653. adapter->stats.tpt += hw->tx_packet_delta;
  2654. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2655. adapter->stats.colc += hw->collision_delta;
  2656. if(hw->mac_type >= e1000_82543) {
  2657. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2658. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2659. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2660. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2661. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2662. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2663. }
  2664. if(hw->mac_type > e1000_82547_rev_2) {
  2665. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2666. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2667. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2668. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2669. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2670. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2671. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2672. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2673. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2674. }
  2675. /* Fill out the OS statistics structure */
  2676. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2677. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2678. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2679. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2680. adapter->net_stats.multicast = adapter->stats.mprc;
  2681. adapter->net_stats.collisions = adapter->stats.colc;
  2682. /* Rx Errors */
  2683. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2684. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2685. adapter->stats.rlec + adapter->stats.cexterr;
  2686. adapter->net_stats.rx_dropped = 0;
  2687. adapter->net_stats.rx_length_errors = adapter->stats.rlec;
  2688. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2689. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2690. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2691. /* Tx Errors */
  2692. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2693. adapter->stats.latecol;
  2694. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2695. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2696. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2697. /* Tx Dropped needs to be maintained elsewhere */
  2698. /* Phy Stats */
  2699. if(hw->media_type == e1000_media_type_copper) {
  2700. if((adapter->link_speed == SPEED_1000) &&
  2701. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2702. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2703. adapter->phy_stats.idle_errors += phy_tmp;
  2704. }
  2705. if((hw->mac_type <= e1000_82546) &&
  2706. (hw->phy_type == e1000_phy_m88) &&
  2707. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2708. adapter->phy_stats.receive_errors += phy_tmp;
  2709. }
  2710. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2711. }
  2712. #ifdef CONFIG_E1000_MQ
  2713. void
  2714. e1000_rx_schedule(void *data)
  2715. {
  2716. struct net_device *poll_dev, *netdev = data;
  2717. struct e1000_adapter *adapter = netdev->priv;
  2718. int this_cpu = get_cpu();
  2719. poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
  2720. if (poll_dev == NULL) {
  2721. put_cpu();
  2722. return;
  2723. }
  2724. if (likely(netif_rx_schedule_prep(poll_dev)))
  2725. __netif_rx_schedule(poll_dev);
  2726. else
  2727. e1000_irq_enable(adapter);
  2728. put_cpu();
  2729. }
  2730. #endif
  2731. /**
  2732. * e1000_intr - Interrupt Handler
  2733. * @irq: interrupt number
  2734. * @data: pointer to a network interface device structure
  2735. * @pt_regs: CPU registers structure
  2736. **/
  2737. static irqreturn_t
  2738. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2739. {
  2740. struct net_device *netdev = data;
  2741. struct e1000_adapter *adapter = netdev_priv(netdev);
  2742. struct e1000_hw *hw = &adapter->hw;
  2743. uint32_t icr = E1000_READ_REG(hw, ICR);
  2744. #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
  2745. int i;
  2746. #endif
  2747. if(unlikely(!icr))
  2748. return IRQ_NONE; /* Not our interrupt */
  2749. if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2750. hw->get_link_status = 1;
  2751. mod_timer(&adapter->watchdog_timer, jiffies);
  2752. }
  2753. #ifdef CONFIG_E1000_NAPI
  2754. atomic_inc(&adapter->irq_sem);
  2755. E1000_WRITE_REG(hw, IMC, ~0);
  2756. E1000_WRITE_FLUSH(hw);
  2757. #ifdef CONFIG_E1000_MQ
  2758. if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
  2759. /* We must setup the cpumask once count == 0 since
  2760. * each cpu bit is cleared when the work is done. */
  2761. adapter->rx_sched_call_data.cpumask = adapter->cpumask;
  2762. atomic_add(adapter->num_rx_queues - 1, &adapter->irq_sem);
  2763. atomic_set(&adapter->rx_sched_call_data.count,
  2764. adapter->num_rx_queues);
  2765. smp_call_async_mask(&adapter->rx_sched_call_data);
  2766. } else {
  2767. printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
  2768. }
  2769. #else /* if !CONFIG_E1000_MQ */
  2770. if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
  2771. __netif_rx_schedule(&adapter->polling_netdev[0]);
  2772. else
  2773. e1000_irq_enable(adapter);
  2774. #endif /* CONFIG_E1000_MQ */
  2775. #else /* if !CONFIG_E1000_NAPI */
  2776. /* Writing IMC and IMS is needed for 82547.
  2777. Due to Hub Link bus being occupied, an interrupt
  2778. de-assertion message is not able to be sent.
  2779. When an interrupt assertion message is generated later,
  2780. two messages are re-ordered and sent out.
  2781. That causes APIC to think 82547 is in de-assertion
  2782. state, while 82547 is in assertion state, resulting
  2783. in dead lock. Writing IMC forces 82547 into
  2784. de-assertion state.
  2785. */
  2786. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
  2787. atomic_inc(&adapter->irq_sem);
  2788. E1000_WRITE_REG(hw, IMC, ~0);
  2789. }
  2790. for(i = 0; i < E1000_MAX_INTR; i++)
  2791. if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
  2792. !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
  2793. break;
  2794. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2795. e1000_irq_enable(adapter);
  2796. #endif /* CONFIG_E1000_NAPI */
  2797. return IRQ_HANDLED;
  2798. }
  2799. #ifdef CONFIG_E1000_NAPI
  2800. /**
  2801. * e1000_clean - NAPI Rx polling callback
  2802. * @adapter: board private structure
  2803. **/
  2804. static int
  2805. e1000_clean(struct net_device *poll_dev, int *budget)
  2806. {
  2807. struct e1000_adapter *adapter;
  2808. int work_to_do = min(*budget, poll_dev->quota);
  2809. int tx_cleaned, i = 0, work_done = 0;
  2810. /* Must NOT use netdev_priv macro here. */
  2811. adapter = poll_dev->priv;
  2812. /* Keep link state information with original netdev */
  2813. if (!netif_carrier_ok(adapter->netdev))
  2814. goto quit_polling;
  2815. while (poll_dev != &adapter->polling_netdev[i]) {
  2816. i++;
  2817. if (unlikely(i == adapter->num_rx_queues))
  2818. BUG();
  2819. }
  2820. tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
  2821. adapter->clean_rx(adapter, &adapter->rx_ring[i],
  2822. &work_done, work_to_do);
  2823. *budget -= work_done;
  2824. poll_dev->quota -= work_done;
  2825. /* If no Tx and not enough Rx work done, exit the polling mode */
  2826. if((!tx_cleaned && (work_done == 0)) ||
  2827. !netif_running(adapter->netdev)) {
  2828. quit_polling:
  2829. netif_rx_complete(poll_dev);
  2830. e1000_irq_enable(adapter);
  2831. return 0;
  2832. }
  2833. return 1;
  2834. }
  2835. #endif
  2836. /**
  2837. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2838. * @adapter: board private structure
  2839. **/
  2840. static boolean_t
  2841. e1000_clean_tx_irq(struct e1000_adapter *adapter,
  2842. struct e1000_tx_ring *tx_ring)
  2843. {
  2844. struct net_device *netdev = adapter->netdev;
  2845. struct e1000_tx_desc *tx_desc, *eop_desc;
  2846. struct e1000_buffer *buffer_info;
  2847. unsigned int i, eop;
  2848. boolean_t cleaned = FALSE;
  2849. i = tx_ring->next_to_clean;
  2850. eop = tx_ring->buffer_info[i].next_to_watch;
  2851. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2852. while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2853. for(cleaned = FALSE; !cleaned; ) {
  2854. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2855. buffer_info = &tx_ring->buffer_info[i];
  2856. cleaned = (i == eop);
  2857. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  2858. tx_desc->buffer_addr = 0;
  2859. tx_desc->lower.data = 0;
  2860. tx_desc->upper.data = 0;
  2861. if(unlikely(++i == tx_ring->count)) i = 0;
  2862. }
  2863. #ifdef CONFIG_E1000_MQ
  2864. tx_ring->tx_stats.packets++;
  2865. #endif
  2866. eop = tx_ring->buffer_info[i].next_to_watch;
  2867. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2868. }
  2869. tx_ring->next_to_clean = i;
  2870. spin_lock(&tx_ring->tx_lock);
  2871. if(unlikely(cleaned && netif_queue_stopped(netdev) &&
  2872. netif_carrier_ok(netdev)))
  2873. netif_wake_queue(netdev);
  2874. spin_unlock(&tx_ring->tx_lock);
  2875. if (adapter->detect_tx_hung) {
  2876. /* Detect a transmit hang in hardware, this serializes the
  2877. * check with the clearing of time_stamp and movement of i */
  2878. adapter->detect_tx_hung = FALSE;
  2879. if (tx_ring->buffer_info[eop].dma &&
  2880. time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
  2881. adapter->tx_timeout_factor * HZ)
  2882. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2883. E1000_STATUS_TXOFF)) {
  2884. /* detected Tx unit hang */
  2885. DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
  2886. " Tx Queue <%lu>\n"
  2887. " TDH <%x>\n"
  2888. " TDT <%x>\n"
  2889. " next_to_use <%x>\n"
  2890. " next_to_clean <%x>\n"
  2891. "buffer_info[next_to_clean]\n"
  2892. " time_stamp <%lx>\n"
  2893. " next_to_watch <%x>\n"
  2894. " jiffies <%lx>\n"
  2895. " next_to_watch.status <%x>\n",
  2896. (unsigned long)((tx_ring - adapter->tx_ring) /
  2897. sizeof(struct e1000_tx_ring)),
  2898. readl(adapter->hw.hw_addr + tx_ring->tdh),
  2899. readl(adapter->hw.hw_addr + tx_ring->tdt),
  2900. tx_ring->next_to_use,
  2901. tx_ring->next_to_clean,
  2902. tx_ring->buffer_info[eop].time_stamp,
  2903. eop,
  2904. jiffies,
  2905. eop_desc->upper.fields.status);
  2906. netif_stop_queue(netdev);
  2907. }
  2908. }
  2909. return cleaned;
  2910. }
  2911. /**
  2912. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2913. * @adapter: board private structure
  2914. * @status_err: receive descriptor status and error fields
  2915. * @csum: receive descriptor csum field
  2916. * @sk_buff: socket buffer with received data
  2917. **/
  2918. static inline void
  2919. e1000_rx_checksum(struct e1000_adapter *adapter,
  2920. uint32_t status_err, uint32_t csum,
  2921. struct sk_buff *skb)
  2922. {
  2923. uint16_t status = (uint16_t)status_err;
  2924. uint8_t errors = (uint8_t)(status_err >> 24);
  2925. skb->ip_summed = CHECKSUM_NONE;
  2926. /* 82543 or newer only */
  2927. if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2928. /* Ignore Checksum bit is set */
  2929. if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2930. /* TCP/UDP checksum error bit is set */
  2931. if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2932. /* let the stack verify checksum errors */
  2933. adapter->hw_csum_err++;
  2934. return;
  2935. }
  2936. /* TCP/UDP Checksum has not been calculated */
  2937. if(adapter->hw.mac_type <= e1000_82547_rev_2) {
  2938. if(!(status & E1000_RXD_STAT_TCPCS))
  2939. return;
  2940. } else {
  2941. if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2942. return;
  2943. }
  2944. /* It must be a TCP or UDP packet with a valid checksum */
  2945. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  2946. /* TCP checksum is good */
  2947. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2948. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2949. /* IP fragment with UDP payload */
  2950. /* Hardware complements the payload checksum, so we undo it
  2951. * and then put the value in host order for further stack use.
  2952. */
  2953. csum = ntohl(csum ^ 0xFFFF);
  2954. skb->csum = csum;
  2955. skb->ip_summed = CHECKSUM_HW;
  2956. }
  2957. adapter->hw_csum_good++;
  2958. }
  2959. /**
  2960. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  2961. * @adapter: board private structure
  2962. **/
  2963. static boolean_t
  2964. #ifdef CONFIG_E1000_NAPI
  2965. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2966. struct e1000_rx_ring *rx_ring,
  2967. int *work_done, int work_to_do)
  2968. #else
  2969. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2970. struct e1000_rx_ring *rx_ring)
  2971. #endif
  2972. {
  2973. struct net_device *netdev = adapter->netdev;
  2974. struct pci_dev *pdev = adapter->pdev;
  2975. struct e1000_rx_desc *rx_desc;
  2976. struct e1000_buffer *buffer_info;
  2977. struct sk_buff *skb;
  2978. unsigned long flags;
  2979. uint32_t length;
  2980. uint8_t last_byte;
  2981. unsigned int i;
  2982. boolean_t cleaned = FALSE;
  2983. i = rx_ring->next_to_clean;
  2984. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2985. while(rx_desc->status & E1000_RXD_STAT_DD) {
  2986. buffer_info = &rx_ring->buffer_info[i];
  2987. #ifdef CONFIG_E1000_NAPI
  2988. if(*work_done >= work_to_do)
  2989. break;
  2990. (*work_done)++;
  2991. #endif
  2992. cleaned = TRUE;
  2993. pci_unmap_single(pdev,
  2994. buffer_info->dma,
  2995. buffer_info->length,
  2996. PCI_DMA_FROMDEVICE);
  2997. skb = buffer_info->skb;
  2998. length = le16_to_cpu(rx_desc->length);
  2999. if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
  3000. /* All receives must fit into a single buffer */
  3001. E1000_DBG("%s: Receive packet consumed multiple"
  3002. " buffers\n", netdev->name);
  3003. dev_kfree_skb_irq(skb);
  3004. goto next_desc;
  3005. }
  3006. if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  3007. last_byte = *(skb->data + length - 1);
  3008. if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
  3009. rx_desc->errors, length, last_byte)) {
  3010. spin_lock_irqsave(&adapter->stats_lock, flags);
  3011. e1000_tbi_adjust_stats(&adapter->hw,
  3012. &adapter->stats,
  3013. length, skb->data);
  3014. spin_unlock_irqrestore(&adapter->stats_lock,
  3015. flags);
  3016. length--;
  3017. } else {
  3018. dev_kfree_skb_irq(skb);
  3019. goto next_desc;
  3020. }
  3021. }
  3022. /* Good Receive */
  3023. skb_put(skb, length - ETHERNET_FCS_SIZE);
  3024. /* Receive Checksum Offload */
  3025. e1000_rx_checksum(adapter,
  3026. (uint32_t)(rx_desc->status) |
  3027. ((uint32_t)(rx_desc->errors) << 24),
  3028. rx_desc->csum, skb);
  3029. skb->protocol = eth_type_trans(skb, netdev);
  3030. #ifdef CONFIG_E1000_NAPI
  3031. if(unlikely(adapter->vlgrp &&
  3032. (rx_desc->status & E1000_RXD_STAT_VP))) {
  3033. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3034. le16_to_cpu(rx_desc->special) &
  3035. E1000_RXD_SPC_VLAN_MASK);
  3036. } else {
  3037. netif_receive_skb(skb);
  3038. }
  3039. #else /* CONFIG_E1000_NAPI */
  3040. if(unlikely(adapter->vlgrp &&
  3041. (rx_desc->status & E1000_RXD_STAT_VP))) {
  3042. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3043. le16_to_cpu(rx_desc->special) &
  3044. E1000_RXD_SPC_VLAN_MASK);
  3045. } else {
  3046. netif_rx(skb);
  3047. }
  3048. #endif /* CONFIG_E1000_NAPI */
  3049. netdev->last_rx = jiffies;
  3050. #ifdef CONFIG_E1000_MQ
  3051. rx_ring->rx_stats.packets++;
  3052. rx_ring->rx_stats.bytes += length;
  3053. #endif
  3054. next_desc:
  3055. rx_desc->status = 0;
  3056. buffer_info->skb = NULL;
  3057. if(unlikely(++i == rx_ring->count)) i = 0;
  3058. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3059. }
  3060. rx_ring->next_to_clean = i;
  3061. adapter->alloc_rx_buf(adapter, rx_ring);
  3062. return cleaned;
  3063. }
  3064. /**
  3065. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  3066. * @adapter: board private structure
  3067. **/
  3068. static boolean_t
  3069. #ifdef CONFIG_E1000_NAPI
  3070. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3071. struct e1000_rx_ring *rx_ring,
  3072. int *work_done, int work_to_do)
  3073. #else
  3074. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3075. struct e1000_rx_ring *rx_ring)
  3076. #endif
  3077. {
  3078. union e1000_rx_desc_packet_split *rx_desc;
  3079. struct net_device *netdev = adapter->netdev;
  3080. struct pci_dev *pdev = adapter->pdev;
  3081. struct e1000_buffer *buffer_info;
  3082. struct e1000_ps_page *ps_page;
  3083. struct e1000_ps_page_dma *ps_page_dma;
  3084. struct sk_buff *skb;
  3085. unsigned int i, j;
  3086. uint32_t length, staterr;
  3087. boolean_t cleaned = FALSE;
  3088. i = rx_ring->next_to_clean;
  3089. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3090. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3091. while(staterr & E1000_RXD_STAT_DD) {
  3092. buffer_info = &rx_ring->buffer_info[i];
  3093. ps_page = &rx_ring->ps_page[i];
  3094. ps_page_dma = &rx_ring->ps_page_dma[i];
  3095. #ifdef CONFIG_E1000_NAPI
  3096. if(unlikely(*work_done >= work_to_do))
  3097. break;
  3098. (*work_done)++;
  3099. #endif
  3100. cleaned = TRUE;
  3101. pci_unmap_single(pdev, buffer_info->dma,
  3102. buffer_info->length,
  3103. PCI_DMA_FROMDEVICE);
  3104. skb = buffer_info->skb;
  3105. if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  3106. E1000_DBG("%s: Packet Split buffers didn't pick up"
  3107. " the full packet\n", netdev->name);
  3108. dev_kfree_skb_irq(skb);
  3109. goto next_desc;
  3110. }
  3111. if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  3112. dev_kfree_skb_irq(skb);
  3113. goto next_desc;
  3114. }
  3115. length = le16_to_cpu(rx_desc->wb.middle.length0);
  3116. if(unlikely(!length)) {
  3117. E1000_DBG("%s: Last part of the packet spanning"
  3118. " multiple descriptors\n", netdev->name);
  3119. dev_kfree_skb_irq(skb);
  3120. goto next_desc;
  3121. }
  3122. /* Good Receive */
  3123. skb_put(skb, length);
  3124. for(j = 0; j < adapter->rx_ps_pages; j++) {
  3125. if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
  3126. break;
  3127. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  3128. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3129. ps_page_dma->ps_page_dma[j] = 0;
  3130. skb_shinfo(skb)->frags[j].page =
  3131. ps_page->ps_page[j];
  3132. ps_page->ps_page[j] = NULL;
  3133. skb_shinfo(skb)->frags[j].page_offset = 0;
  3134. skb_shinfo(skb)->frags[j].size = length;
  3135. skb_shinfo(skb)->nr_frags++;
  3136. skb->len += length;
  3137. skb->data_len += length;
  3138. }
  3139. e1000_rx_checksum(adapter, staterr,
  3140. rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
  3141. skb->protocol = eth_type_trans(skb, netdev);
  3142. if(likely(rx_desc->wb.upper.header_status &
  3143. E1000_RXDPS_HDRSTAT_HDRSP)) {
  3144. adapter->rx_hdr_split++;
  3145. #ifdef HAVE_RX_ZERO_COPY
  3146. skb_shinfo(skb)->zero_copy = TRUE;
  3147. #endif
  3148. }
  3149. #ifdef CONFIG_E1000_NAPI
  3150. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3151. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3152. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3153. E1000_RXD_SPC_VLAN_MASK);
  3154. } else {
  3155. netif_receive_skb(skb);
  3156. }
  3157. #else /* CONFIG_E1000_NAPI */
  3158. if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3159. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3160. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3161. E1000_RXD_SPC_VLAN_MASK);
  3162. } else {
  3163. netif_rx(skb);
  3164. }
  3165. #endif /* CONFIG_E1000_NAPI */
  3166. netdev->last_rx = jiffies;
  3167. #ifdef CONFIG_E1000_MQ
  3168. rx_ring->rx_stats.packets++;
  3169. rx_ring->rx_stats.bytes += length;
  3170. #endif
  3171. next_desc:
  3172. rx_desc->wb.middle.status_error &= ~0xFF;
  3173. buffer_info->skb = NULL;
  3174. if(unlikely(++i == rx_ring->count)) i = 0;
  3175. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3176. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3177. }
  3178. rx_ring->next_to_clean = i;
  3179. adapter->alloc_rx_buf(adapter, rx_ring);
  3180. return cleaned;
  3181. }
  3182. /**
  3183. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  3184. * @adapter: address of board private structure
  3185. **/
  3186. static void
  3187. e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  3188. struct e1000_rx_ring *rx_ring)
  3189. {
  3190. struct net_device *netdev = adapter->netdev;
  3191. struct pci_dev *pdev = adapter->pdev;
  3192. struct e1000_rx_desc *rx_desc;
  3193. struct e1000_buffer *buffer_info;
  3194. struct sk_buff *skb;
  3195. unsigned int i;
  3196. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  3197. i = rx_ring->next_to_use;
  3198. buffer_info = &rx_ring->buffer_info[i];
  3199. while(!buffer_info->skb) {
  3200. skb = dev_alloc_skb(bufsz);
  3201. if(unlikely(!skb)) {
  3202. /* Better luck next round */
  3203. break;
  3204. }
  3205. /* Fix for errata 23, can't cross 64kB boundary */
  3206. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3207. struct sk_buff *oldskb = skb;
  3208. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  3209. "at %p\n", bufsz, skb->data);
  3210. /* Try again, without freeing the previous */
  3211. skb = dev_alloc_skb(bufsz);
  3212. /* Failed allocation, critical failure */
  3213. if (!skb) {
  3214. dev_kfree_skb(oldskb);
  3215. break;
  3216. }
  3217. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3218. /* give up */
  3219. dev_kfree_skb(skb);
  3220. dev_kfree_skb(oldskb);
  3221. break; /* while !buffer_info->skb */
  3222. } else {
  3223. /* Use new allocation */
  3224. dev_kfree_skb(oldskb);
  3225. }
  3226. }
  3227. /* Make buffer alignment 2 beyond a 16 byte boundary
  3228. * this will result in a 16 byte aligned IP header after
  3229. * the 14 byte MAC header is removed
  3230. */
  3231. skb_reserve(skb, NET_IP_ALIGN);
  3232. skb->dev = netdev;
  3233. buffer_info->skb = skb;
  3234. buffer_info->length = adapter->rx_buffer_len;
  3235. buffer_info->dma = pci_map_single(pdev,
  3236. skb->data,
  3237. adapter->rx_buffer_len,
  3238. PCI_DMA_FROMDEVICE);
  3239. /* Fix for errata 23, can't cross 64kB boundary */
  3240. if (!e1000_check_64k_bound(adapter,
  3241. (void *)(unsigned long)buffer_info->dma,
  3242. adapter->rx_buffer_len)) {
  3243. DPRINTK(RX_ERR, ERR,
  3244. "dma align check failed: %u bytes at %p\n",
  3245. adapter->rx_buffer_len,
  3246. (void *)(unsigned long)buffer_info->dma);
  3247. dev_kfree_skb(skb);
  3248. buffer_info->skb = NULL;
  3249. pci_unmap_single(pdev, buffer_info->dma,
  3250. adapter->rx_buffer_len,
  3251. PCI_DMA_FROMDEVICE);
  3252. break; /* while !buffer_info->skb */
  3253. }
  3254. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3255. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  3256. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  3257. /* Force memory writes to complete before letting h/w
  3258. * know there are new descriptors to fetch. (Only
  3259. * applicable for weak-ordered memory model archs,
  3260. * such as IA-64). */
  3261. wmb();
  3262. writel(i, adapter->hw.hw_addr + rx_ring->rdt);
  3263. }
  3264. if(unlikely(++i == rx_ring->count)) i = 0;
  3265. buffer_info = &rx_ring->buffer_info[i];
  3266. }
  3267. rx_ring->next_to_use = i;
  3268. }
  3269. /**
  3270. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  3271. * @adapter: address of board private structure
  3272. **/
  3273. static void
  3274. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  3275. struct e1000_rx_ring *rx_ring)
  3276. {
  3277. struct net_device *netdev = adapter->netdev;
  3278. struct pci_dev *pdev = adapter->pdev;
  3279. union e1000_rx_desc_packet_split *rx_desc;
  3280. struct e1000_buffer *buffer_info;
  3281. struct e1000_ps_page *ps_page;
  3282. struct e1000_ps_page_dma *ps_page_dma;
  3283. struct sk_buff *skb;
  3284. unsigned int i, j;
  3285. i = rx_ring->next_to_use;
  3286. buffer_info = &rx_ring->buffer_info[i];
  3287. ps_page = &rx_ring->ps_page[i];
  3288. ps_page_dma = &rx_ring->ps_page_dma[i];
  3289. while(!buffer_info->skb) {
  3290. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3291. for(j = 0; j < PS_PAGE_BUFFERS; j++) {
  3292. if (j < adapter->rx_ps_pages) {
  3293. if (likely(!ps_page->ps_page[j])) {
  3294. ps_page->ps_page[j] =
  3295. alloc_page(GFP_ATOMIC);
  3296. if (unlikely(!ps_page->ps_page[j]))
  3297. goto no_buffers;
  3298. ps_page_dma->ps_page_dma[j] =
  3299. pci_map_page(pdev,
  3300. ps_page->ps_page[j],
  3301. 0, PAGE_SIZE,
  3302. PCI_DMA_FROMDEVICE);
  3303. }
  3304. /* Refresh the desc even if buffer_addrs didn't
  3305. * change because each write-back erases
  3306. * this info.
  3307. */
  3308. rx_desc->read.buffer_addr[j+1] =
  3309. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  3310. } else
  3311. rx_desc->read.buffer_addr[j+1] = ~0;
  3312. }
  3313. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  3314. if(unlikely(!skb))
  3315. break;
  3316. /* Make buffer alignment 2 beyond a 16 byte boundary
  3317. * this will result in a 16 byte aligned IP header after
  3318. * the 14 byte MAC header is removed
  3319. */
  3320. skb_reserve(skb, NET_IP_ALIGN);
  3321. skb->dev = netdev;
  3322. buffer_info->skb = skb;
  3323. buffer_info->length = adapter->rx_ps_bsize0;
  3324. buffer_info->dma = pci_map_single(pdev, skb->data,
  3325. adapter->rx_ps_bsize0,
  3326. PCI_DMA_FROMDEVICE);
  3327. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  3328. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  3329. /* Force memory writes to complete before letting h/w
  3330. * know there are new descriptors to fetch. (Only
  3331. * applicable for weak-ordered memory model archs,
  3332. * such as IA-64). */
  3333. wmb();
  3334. /* Hardware increments by 16 bytes, but packet split
  3335. * descriptors are 32 bytes...so we increment tail
  3336. * twice as much.
  3337. */
  3338. writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
  3339. }
  3340. if(unlikely(++i == rx_ring->count)) i = 0;
  3341. buffer_info = &rx_ring->buffer_info[i];
  3342. ps_page = &rx_ring->ps_page[i];
  3343. ps_page_dma = &rx_ring->ps_page_dma[i];
  3344. }
  3345. no_buffers:
  3346. rx_ring->next_to_use = i;
  3347. }
  3348. /**
  3349. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  3350. * @adapter:
  3351. **/
  3352. static void
  3353. e1000_smartspeed(struct e1000_adapter *adapter)
  3354. {
  3355. uint16_t phy_status;
  3356. uint16_t phy_ctrl;
  3357. if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  3358. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  3359. return;
  3360. if(adapter->smartspeed == 0) {
  3361. /* If Master/Slave config fault is asserted twice,
  3362. * we assume back-to-back */
  3363. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3364. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3365. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3366. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3367. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3368. if(phy_ctrl & CR_1000T_MS_ENABLE) {
  3369. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  3370. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  3371. phy_ctrl);
  3372. adapter->smartspeed++;
  3373. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  3374. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  3375. &phy_ctrl)) {
  3376. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3377. MII_CR_RESTART_AUTO_NEG);
  3378. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  3379. phy_ctrl);
  3380. }
  3381. }
  3382. return;
  3383. } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  3384. /* If still no link, perhaps using 2/3 pair cable */
  3385. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3386. phy_ctrl |= CR_1000T_MS_ENABLE;
  3387. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  3388. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  3389. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  3390. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3391. MII_CR_RESTART_AUTO_NEG);
  3392. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  3393. }
  3394. }
  3395. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  3396. if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  3397. adapter->smartspeed = 0;
  3398. }
  3399. /**
  3400. * e1000_ioctl -
  3401. * @netdev:
  3402. * @ifreq:
  3403. * @cmd:
  3404. **/
  3405. static int
  3406. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3407. {
  3408. switch (cmd) {
  3409. case SIOCGMIIPHY:
  3410. case SIOCGMIIREG:
  3411. case SIOCSMIIREG:
  3412. return e1000_mii_ioctl(netdev, ifr, cmd);
  3413. default:
  3414. return -EOPNOTSUPP;
  3415. }
  3416. }
  3417. /**
  3418. * e1000_mii_ioctl -
  3419. * @netdev:
  3420. * @ifreq:
  3421. * @cmd:
  3422. **/
  3423. static int
  3424. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3425. {
  3426. struct e1000_adapter *adapter = netdev_priv(netdev);
  3427. struct mii_ioctl_data *data = if_mii(ifr);
  3428. int retval;
  3429. uint16_t mii_reg;
  3430. uint16_t spddplx;
  3431. unsigned long flags;
  3432. if(adapter->hw.media_type != e1000_media_type_copper)
  3433. return -EOPNOTSUPP;
  3434. switch (cmd) {
  3435. case SIOCGMIIPHY:
  3436. data->phy_id = adapter->hw.phy_addr;
  3437. break;
  3438. case SIOCGMIIREG:
  3439. if(!capable(CAP_NET_ADMIN))
  3440. return -EPERM;
  3441. spin_lock_irqsave(&adapter->stats_lock, flags);
  3442. if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  3443. &data->val_out)) {
  3444. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3445. return -EIO;
  3446. }
  3447. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3448. break;
  3449. case SIOCSMIIREG:
  3450. if(!capable(CAP_NET_ADMIN))
  3451. return -EPERM;
  3452. if(data->reg_num & ~(0x1F))
  3453. return -EFAULT;
  3454. mii_reg = data->val_in;
  3455. spin_lock_irqsave(&adapter->stats_lock, flags);
  3456. if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
  3457. mii_reg)) {
  3458. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3459. return -EIO;
  3460. }
  3461. if(adapter->hw.phy_type == e1000_phy_m88) {
  3462. switch (data->reg_num) {
  3463. case PHY_CTRL:
  3464. if(mii_reg & MII_CR_POWER_DOWN)
  3465. break;
  3466. if(mii_reg & MII_CR_AUTO_NEG_EN) {
  3467. adapter->hw.autoneg = 1;
  3468. adapter->hw.autoneg_advertised = 0x2F;
  3469. } else {
  3470. if (mii_reg & 0x40)
  3471. spddplx = SPEED_1000;
  3472. else if (mii_reg & 0x2000)
  3473. spddplx = SPEED_100;
  3474. else
  3475. spddplx = SPEED_10;
  3476. spddplx += (mii_reg & 0x100)
  3477. ? FULL_DUPLEX :
  3478. HALF_DUPLEX;
  3479. retval = e1000_set_spd_dplx(adapter,
  3480. spddplx);
  3481. if(retval) {
  3482. spin_unlock_irqrestore(
  3483. &adapter->stats_lock,
  3484. flags);
  3485. return retval;
  3486. }
  3487. }
  3488. if(netif_running(adapter->netdev)) {
  3489. e1000_down(adapter);
  3490. e1000_up(adapter);
  3491. } else
  3492. e1000_reset(adapter);
  3493. break;
  3494. case M88E1000_PHY_SPEC_CTRL:
  3495. case M88E1000_EXT_PHY_SPEC_CTRL:
  3496. if(e1000_phy_reset(&adapter->hw)) {
  3497. spin_unlock_irqrestore(
  3498. &adapter->stats_lock, flags);
  3499. return -EIO;
  3500. }
  3501. break;
  3502. }
  3503. } else {
  3504. switch (data->reg_num) {
  3505. case PHY_CTRL:
  3506. if(mii_reg & MII_CR_POWER_DOWN)
  3507. break;
  3508. if(netif_running(adapter->netdev)) {
  3509. e1000_down(adapter);
  3510. e1000_up(adapter);
  3511. } else
  3512. e1000_reset(adapter);
  3513. break;
  3514. }
  3515. }
  3516. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3517. break;
  3518. default:
  3519. return -EOPNOTSUPP;
  3520. }
  3521. return E1000_SUCCESS;
  3522. }
  3523. void
  3524. e1000_pci_set_mwi(struct e1000_hw *hw)
  3525. {
  3526. struct e1000_adapter *adapter = hw->back;
  3527. int ret_val = pci_set_mwi(adapter->pdev);
  3528. if(ret_val)
  3529. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  3530. }
  3531. void
  3532. e1000_pci_clear_mwi(struct e1000_hw *hw)
  3533. {
  3534. struct e1000_adapter *adapter = hw->back;
  3535. pci_clear_mwi(adapter->pdev);
  3536. }
  3537. void
  3538. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3539. {
  3540. struct e1000_adapter *adapter = hw->back;
  3541. pci_read_config_word(adapter->pdev, reg, value);
  3542. }
  3543. void
  3544. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3545. {
  3546. struct e1000_adapter *adapter = hw->back;
  3547. pci_write_config_word(adapter->pdev, reg, *value);
  3548. }
  3549. uint32_t
  3550. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  3551. {
  3552. return inl(port);
  3553. }
  3554. void
  3555. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  3556. {
  3557. outl(value, port);
  3558. }
  3559. static void
  3560. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  3561. {
  3562. struct e1000_adapter *adapter = netdev_priv(netdev);
  3563. uint32_t ctrl, rctl;
  3564. e1000_irq_disable(adapter);
  3565. adapter->vlgrp = grp;
  3566. if(grp) {
  3567. /* enable VLAN tag insert/strip */
  3568. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3569. ctrl |= E1000_CTRL_VME;
  3570. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3571. /* enable VLAN receive filtering */
  3572. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3573. rctl |= E1000_RCTL_VFE;
  3574. rctl &= ~E1000_RCTL_CFIEN;
  3575. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3576. e1000_update_mng_vlan(adapter);
  3577. } else {
  3578. /* disable VLAN tag insert/strip */
  3579. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3580. ctrl &= ~E1000_CTRL_VME;
  3581. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3582. /* disable VLAN filtering */
  3583. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3584. rctl &= ~E1000_RCTL_VFE;
  3585. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3586. if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  3587. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  3588. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  3589. }
  3590. }
  3591. e1000_irq_enable(adapter);
  3592. }
  3593. static void
  3594. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  3595. {
  3596. struct e1000_adapter *adapter = netdev_priv(netdev);
  3597. uint32_t vfta, index;
  3598. if((adapter->hw.mng_cookie.status &
  3599. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3600. (vid == adapter->mng_vlan_id))
  3601. return;
  3602. /* add VID to filter table */
  3603. index = (vid >> 5) & 0x7F;
  3604. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3605. vfta |= (1 << (vid & 0x1F));
  3606. e1000_write_vfta(&adapter->hw, index, vfta);
  3607. }
  3608. static void
  3609. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3610. {
  3611. struct e1000_adapter *adapter = netdev_priv(netdev);
  3612. uint32_t vfta, index;
  3613. e1000_irq_disable(adapter);
  3614. if(adapter->vlgrp)
  3615. adapter->vlgrp->vlan_devices[vid] = NULL;
  3616. e1000_irq_enable(adapter);
  3617. if((adapter->hw.mng_cookie.status &
  3618. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3619. (vid == adapter->mng_vlan_id))
  3620. return;
  3621. /* remove VID from filter table */
  3622. index = (vid >> 5) & 0x7F;
  3623. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3624. vfta &= ~(1 << (vid & 0x1F));
  3625. e1000_write_vfta(&adapter->hw, index, vfta);
  3626. }
  3627. static void
  3628. e1000_restore_vlan(struct e1000_adapter *adapter)
  3629. {
  3630. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3631. if(adapter->vlgrp) {
  3632. uint16_t vid;
  3633. for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3634. if(!adapter->vlgrp->vlan_devices[vid])
  3635. continue;
  3636. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3637. }
  3638. }
  3639. }
  3640. int
  3641. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3642. {
  3643. adapter->hw.autoneg = 0;
  3644. /* Fiber NICs only allow 1000 gbps Full duplex */
  3645. if((adapter->hw.media_type == e1000_media_type_fiber) &&
  3646. spddplx != (SPEED_1000 + DUPLEX_FULL)) {
  3647. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3648. return -EINVAL;
  3649. }
  3650. switch(spddplx) {
  3651. case SPEED_10 + DUPLEX_HALF:
  3652. adapter->hw.forced_speed_duplex = e1000_10_half;
  3653. break;
  3654. case SPEED_10 + DUPLEX_FULL:
  3655. adapter->hw.forced_speed_duplex = e1000_10_full;
  3656. break;
  3657. case SPEED_100 + DUPLEX_HALF:
  3658. adapter->hw.forced_speed_duplex = e1000_100_half;
  3659. break;
  3660. case SPEED_100 + DUPLEX_FULL:
  3661. adapter->hw.forced_speed_duplex = e1000_100_full;
  3662. break;
  3663. case SPEED_1000 + DUPLEX_FULL:
  3664. adapter->hw.autoneg = 1;
  3665. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3666. break;
  3667. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3668. default:
  3669. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3670. return -EINVAL;
  3671. }
  3672. return 0;
  3673. }
  3674. #ifdef CONFIG_PM
  3675. static int
  3676. e1000_suspend(struct pci_dev *pdev, pm_message_t state)
  3677. {
  3678. struct net_device *netdev = pci_get_drvdata(pdev);
  3679. struct e1000_adapter *adapter = netdev_priv(netdev);
  3680. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  3681. uint32_t wufc = adapter->wol;
  3682. netif_device_detach(netdev);
  3683. if(netif_running(netdev))
  3684. e1000_down(adapter);
  3685. status = E1000_READ_REG(&adapter->hw, STATUS);
  3686. if(status & E1000_STATUS_LU)
  3687. wufc &= ~E1000_WUFC_LNKC;
  3688. if(wufc) {
  3689. e1000_setup_rctl(adapter);
  3690. e1000_set_multi(netdev);
  3691. /* turn on all-multi mode if wake on multicast is enabled */
  3692. if(adapter->wol & E1000_WUFC_MC) {
  3693. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3694. rctl |= E1000_RCTL_MPE;
  3695. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3696. }
  3697. if(adapter->hw.mac_type >= e1000_82540) {
  3698. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3699. /* advertise wake from D3Cold */
  3700. #define E1000_CTRL_ADVD3WUC 0x00100000
  3701. /* phy power management enable */
  3702. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3703. ctrl |= E1000_CTRL_ADVD3WUC |
  3704. E1000_CTRL_EN_PHY_PWR_MGMT;
  3705. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3706. }
  3707. if(adapter->hw.media_type == e1000_media_type_fiber ||
  3708. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3709. /* keep the laser running in D3 */
  3710. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3711. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3712. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3713. }
  3714. /* Allow time for pending master requests to run */
  3715. e1000_disable_pciex_master(&adapter->hw);
  3716. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3717. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3718. pci_enable_wake(pdev, 3, 1);
  3719. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3720. } else {
  3721. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3722. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3723. pci_enable_wake(pdev, 3, 0);
  3724. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  3725. }
  3726. pci_save_state(pdev);
  3727. if(adapter->hw.mac_type >= e1000_82540 &&
  3728. adapter->hw.media_type == e1000_media_type_copper) {
  3729. manc = E1000_READ_REG(&adapter->hw, MANC);
  3730. if(manc & E1000_MANC_SMBUS_EN) {
  3731. manc |= E1000_MANC_ARP_EN;
  3732. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3733. pci_enable_wake(pdev, 3, 1);
  3734. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  3735. }
  3736. }
  3737. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  3738. * would have already happened in close and is redundant. */
  3739. e1000_release_hw_control(adapter);
  3740. pci_disable_device(pdev);
  3741. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3742. return 0;
  3743. }
  3744. static int
  3745. e1000_resume(struct pci_dev *pdev)
  3746. {
  3747. struct net_device *netdev = pci_get_drvdata(pdev);
  3748. struct e1000_adapter *adapter = netdev_priv(netdev);
  3749. uint32_t manc, ret_val;
  3750. pci_set_power_state(pdev, PCI_D0);
  3751. pci_restore_state(pdev);
  3752. ret_val = pci_enable_device(pdev);
  3753. pci_set_master(pdev);
  3754. pci_enable_wake(pdev, PCI_D3hot, 0);
  3755. pci_enable_wake(pdev, PCI_D3cold, 0);
  3756. e1000_reset(adapter);
  3757. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3758. if(netif_running(netdev))
  3759. e1000_up(adapter);
  3760. netif_device_attach(netdev);
  3761. if(adapter->hw.mac_type >= e1000_82540 &&
  3762. adapter->hw.media_type == e1000_media_type_copper) {
  3763. manc = E1000_READ_REG(&adapter->hw, MANC);
  3764. manc &= ~(E1000_MANC_ARP_EN);
  3765. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3766. }
  3767. /* If the controller is 82573 and f/w is AMT, do not set
  3768. * DRV_LOAD until the interface is up. For all other cases,
  3769. * let the f/w know that the h/w is now under the control
  3770. * of the driver. */
  3771. if (adapter->hw.mac_type != e1000_82573 ||
  3772. !e1000_check_mng_mode(&adapter->hw))
  3773. e1000_get_hw_control(adapter);
  3774. return 0;
  3775. }
  3776. #endif
  3777. #ifdef CONFIG_NET_POLL_CONTROLLER
  3778. /*
  3779. * Polling 'interrupt' - used by things like netconsole to send skbs
  3780. * without having to re-enable interrupts. It's not called while
  3781. * the interrupt routine is executing.
  3782. */
  3783. static void
  3784. e1000_netpoll(struct net_device *netdev)
  3785. {
  3786. struct e1000_adapter *adapter = netdev_priv(netdev);
  3787. disable_irq(adapter->pdev->irq);
  3788. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3789. e1000_clean_tx_irq(adapter, adapter->tx_ring);
  3790. enable_irq(adapter->pdev->irq);
  3791. }
  3792. #endif
  3793. /* e1000_main.c */