fw-sbp2.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. /*
  2. * SBP2 driver (SCSI over IEEE1394)
  3. *
  4. * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. /*
  21. * The basic structure of this driver is based on the old storage driver,
  22. * drivers/ieee1394/sbp2.c, originally written by
  23. * James Goodwin <jamesg@filanet.com>
  24. * with later contributions and ongoing maintenance from
  25. * Ben Collins <bcollins@debian.org>,
  26. * Stefan Richter <stefanr@s5r6.in-berlin.de>
  27. * and many others.
  28. */
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/moduleparam.h>
  32. #include <linux/mod_devicetable.h>
  33. #include <linux/delay.h>
  34. #include <linux/device.h>
  35. #include <linux/scatterlist.h>
  36. #include <linux/dma-mapping.h>
  37. #include <linux/blkdev.h>
  38. #include <linux/string.h>
  39. #include <linux/stringify.h>
  40. #include <linux/timer.h>
  41. #include <linux/workqueue.h>
  42. #include <asm/system.h>
  43. #include <scsi/scsi.h>
  44. #include <scsi/scsi_cmnd.h>
  45. #include <scsi/scsi_device.h>
  46. #include <scsi/scsi_host.h>
  47. #include "fw-transaction.h"
  48. #include "fw-topology.h"
  49. #include "fw-device.h"
  50. /*
  51. * So far only bridges from Oxford Semiconductor are known to support
  52. * concurrent logins. Depending on firmware, four or two concurrent logins
  53. * are possible on OXFW911 and newer Oxsemi bridges.
  54. *
  55. * Concurrent logins are useful together with cluster filesystems.
  56. */
  57. static int sbp2_param_exclusive_login = 1;
  58. module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  59. MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  60. "(default = Y, use N for concurrent initiators)");
  61. /*
  62. * Flags for firmware oddities
  63. *
  64. * - 128kB max transfer
  65. * Limit transfer size. Necessary for some old bridges.
  66. *
  67. * - 36 byte inquiry
  68. * When scsi_mod probes the device, let the inquiry command look like that
  69. * from MS Windows.
  70. *
  71. * - skip mode page 8
  72. * Suppress sending of mode_sense for mode page 8 if the device pretends to
  73. * support the SCSI Primary Block commands instead of Reduced Block Commands.
  74. *
  75. * - fix capacity
  76. * Tell sd_mod to correct the last sector number reported by read_capacity.
  77. * Avoids access beyond actual disk limits on devices with an off-by-one bug.
  78. * Don't use this with devices which don't have this bug.
  79. *
  80. * - delay inquiry
  81. * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  82. *
  83. * - override internal blacklist
  84. * Instead of adding to the built-in blacklist, use only the workarounds
  85. * specified in the module load parameter.
  86. * Useful if a blacklist entry interfered with a non-broken device.
  87. */
  88. #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
  89. #define SBP2_WORKAROUND_INQUIRY_36 0x2
  90. #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
  91. #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
  92. #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
  93. #define SBP2_INQUIRY_DELAY 12
  94. #define SBP2_WORKAROUND_OVERRIDE 0x100
  95. static int sbp2_param_workarounds;
  96. module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
  97. MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
  98. ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
  99. ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
  100. ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
  101. ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
  102. ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
  103. ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
  104. ", or a combination)");
  105. /* I don't know why the SCSI stack doesn't define something like this... */
  106. typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
  107. static const char sbp2_driver_name[] = "sbp2";
  108. /*
  109. * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
  110. * and one struct scsi_device per sbp2_logical_unit.
  111. */
  112. struct sbp2_logical_unit {
  113. struct sbp2_target *tgt;
  114. struct list_head link;
  115. struct scsi_device *sdev;
  116. struct fw_address_handler address_handler;
  117. struct list_head orb_list;
  118. u64 command_block_agent_address;
  119. u16 lun;
  120. int login_id;
  121. /*
  122. * The generation is updated once we've logged in or reconnected
  123. * to the logical unit. Thus, I/O to the device will automatically
  124. * fail and get retried if it happens in a window where the device
  125. * is not ready, e.g. after a bus reset but before we reconnect.
  126. */
  127. int generation;
  128. int retries;
  129. struct delayed_work work;
  130. };
  131. /*
  132. * We create one struct sbp2_target per IEEE 1212 Unit Directory
  133. * and one struct Scsi_Host per sbp2_target.
  134. */
  135. struct sbp2_target {
  136. struct kref kref;
  137. struct fw_unit *unit;
  138. const char *bus_id;
  139. struct list_head lu_list;
  140. u64 management_agent_address;
  141. int directory_id;
  142. int node_id;
  143. int address_high;
  144. unsigned int workarounds;
  145. unsigned int mgt_orb_timeout;
  146. };
  147. /*
  148. * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
  149. * provided in the config rom. Most devices do provide a value, which
  150. * we'll use for login management orbs, but with some sane limits.
  151. */
  152. #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
  153. #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
  154. #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
  155. #define SBP2_ORB_NULL 0x80000000
  156. #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
  157. #define SBP2_DIRECTION_TO_MEDIA 0x0
  158. #define SBP2_DIRECTION_FROM_MEDIA 0x1
  159. /* Unit directory keys */
  160. #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
  161. #define SBP2_CSR_FIRMWARE_REVISION 0x3c
  162. #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
  163. #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
  164. /* Management orb opcodes */
  165. #define SBP2_LOGIN_REQUEST 0x0
  166. #define SBP2_QUERY_LOGINS_REQUEST 0x1
  167. #define SBP2_RECONNECT_REQUEST 0x3
  168. #define SBP2_SET_PASSWORD_REQUEST 0x4
  169. #define SBP2_LOGOUT_REQUEST 0x7
  170. #define SBP2_ABORT_TASK_REQUEST 0xb
  171. #define SBP2_ABORT_TASK_SET 0xc
  172. #define SBP2_LOGICAL_UNIT_RESET 0xe
  173. #define SBP2_TARGET_RESET_REQUEST 0xf
  174. /* Offsets for command block agent registers */
  175. #define SBP2_AGENT_STATE 0x00
  176. #define SBP2_AGENT_RESET 0x04
  177. #define SBP2_ORB_POINTER 0x08
  178. #define SBP2_DOORBELL 0x10
  179. #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
  180. /* Status write response codes */
  181. #define SBP2_STATUS_REQUEST_COMPLETE 0x0
  182. #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
  183. #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
  184. #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
  185. #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
  186. #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
  187. #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
  188. #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
  189. #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
  190. #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
  191. #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
  192. #define STATUS_GET_DATA(v) ((v).data)
  193. struct sbp2_status {
  194. u32 status;
  195. u32 orb_low;
  196. u8 data[24];
  197. };
  198. struct sbp2_pointer {
  199. u32 high;
  200. u32 low;
  201. };
  202. struct sbp2_orb {
  203. struct fw_transaction t;
  204. struct kref kref;
  205. dma_addr_t request_bus;
  206. int rcode;
  207. struct sbp2_pointer pointer;
  208. void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
  209. struct list_head link;
  210. };
  211. #define MANAGEMENT_ORB_LUN(v) ((v))
  212. #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
  213. #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
  214. #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
  215. #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
  216. #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
  217. #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
  218. #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
  219. struct sbp2_management_orb {
  220. struct sbp2_orb base;
  221. struct {
  222. struct sbp2_pointer password;
  223. struct sbp2_pointer response;
  224. u32 misc;
  225. u32 length;
  226. struct sbp2_pointer status_fifo;
  227. } request;
  228. __be32 response[4];
  229. dma_addr_t response_bus;
  230. struct completion done;
  231. struct sbp2_status status;
  232. };
  233. #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
  234. #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
  235. struct sbp2_login_response {
  236. u32 misc;
  237. struct sbp2_pointer command_block_agent;
  238. u32 reconnect_hold;
  239. };
  240. #define COMMAND_ORB_DATA_SIZE(v) ((v))
  241. #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
  242. #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
  243. #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
  244. #define COMMAND_ORB_SPEED(v) ((v) << 24)
  245. #define COMMAND_ORB_DIRECTION(v) ((v) << 27)
  246. #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
  247. #define COMMAND_ORB_NOTIFY ((1) << 31)
  248. struct sbp2_command_orb {
  249. struct sbp2_orb base;
  250. struct {
  251. struct sbp2_pointer next;
  252. struct sbp2_pointer data_descriptor;
  253. u32 misc;
  254. u8 command_block[12];
  255. } request;
  256. struct scsi_cmnd *cmd;
  257. scsi_done_fn_t done;
  258. struct sbp2_logical_unit *lu;
  259. struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
  260. dma_addr_t page_table_bus;
  261. };
  262. /*
  263. * List of devices with known bugs.
  264. *
  265. * The firmware_revision field, masked with 0xffff00, is the best
  266. * indicator for the type of bridge chip of a device. It yields a few
  267. * false positives but this did not break correctly behaving devices
  268. * so far. We use ~0 as a wildcard, since the 24 bit values we get
  269. * from the config rom can never match that.
  270. */
  271. static const struct {
  272. u32 firmware_revision;
  273. u32 model;
  274. unsigned int workarounds;
  275. } sbp2_workarounds_table[] = {
  276. /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
  277. .firmware_revision = 0x002800,
  278. .model = 0x001010,
  279. .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
  280. SBP2_WORKAROUND_MODE_SENSE_8,
  281. },
  282. /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
  283. .firmware_revision = 0x002800,
  284. .model = 0x000000,
  285. .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY,
  286. },
  287. /* Initio bridges, actually only needed for some older ones */ {
  288. .firmware_revision = 0x000200,
  289. .model = ~0,
  290. .workarounds = SBP2_WORKAROUND_INQUIRY_36,
  291. },
  292. /* Symbios bridge */ {
  293. .firmware_revision = 0xa0b800,
  294. .model = ~0,
  295. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
  296. },
  297. /*
  298. * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
  299. * these iPods do not feature the read_capacity bug according
  300. * to one report. Read_capacity behaviour as well as model_id
  301. * could change due to Apple-supplied firmware updates though.
  302. */
  303. /* iPod 4th generation. */ {
  304. .firmware_revision = 0x0a2700,
  305. .model = 0x000021,
  306. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  307. },
  308. /* iPod mini */ {
  309. .firmware_revision = 0x0a2700,
  310. .model = 0x000023,
  311. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  312. },
  313. /* iPod Photo */ {
  314. .firmware_revision = 0x0a2700,
  315. .model = 0x00007e,
  316. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  317. }
  318. };
  319. static void
  320. free_orb(struct kref *kref)
  321. {
  322. struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
  323. kfree(orb);
  324. }
  325. static void
  326. sbp2_status_write(struct fw_card *card, struct fw_request *request,
  327. int tcode, int destination, int source,
  328. int generation, int speed,
  329. unsigned long long offset,
  330. void *payload, size_t length, void *callback_data)
  331. {
  332. struct sbp2_logical_unit *lu = callback_data;
  333. struct sbp2_orb *orb;
  334. struct sbp2_status status;
  335. size_t header_size;
  336. unsigned long flags;
  337. if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
  338. length == 0 || length > sizeof(status)) {
  339. fw_send_response(card, request, RCODE_TYPE_ERROR);
  340. return;
  341. }
  342. header_size = min(length, 2 * sizeof(u32));
  343. fw_memcpy_from_be32(&status, payload, header_size);
  344. if (length > header_size)
  345. memcpy(status.data, payload + 8, length - header_size);
  346. if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
  347. fw_notify("non-orb related status write, not handled\n");
  348. fw_send_response(card, request, RCODE_COMPLETE);
  349. return;
  350. }
  351. /* Lookup the orb corresponding to this status write. */
  352. spin_lock_irqsave(&card->lock, flags);
  353. list_for_each_entry(orb, &lu->orb_list, link) {
  354. if (STATUS_GET_ORB_HIGH(status) == 0 &&
  355. STATUS_GET_ORB_LOW(status) == orb->request_bus) {
  356. orb->rcode = RCODE_COMPLETE;
  357. list_del(&orb->link);
  358. break;
  359. }
  360. }
  361. spin_unlock_irqrestore(&card->lock, flags);
  362. if (&orb->link != &lu->orb_list)
  363. orb->callback(orb, &status);
  364. else
  365. fw_error("status write for unknown orb\n");
  366. kref_put(&orb->kref, free_orb);
  367. fw_send_response(card, request, RCODE_COMPLETE);
  368. }
  369. static void
  370. complete_transaction(struct fw_card *card, int rcode,
  371. void *payload, size_t length, void *data)
  372. {
  373. struct sbp2_orb *orb = data;
  374. unsigned long flags;
  375. /*
  376. * This is a little tricky. We can get the status write for
  377. * the orb before we get this callback. The status write
  378. * handler above will assume the orb pointer transaction was
  379. * successful and set the rcode to RCODE_COMPLETE for the orb.
  380. * So this callback only sets the rcode if it hasn't already
  381. * been set and only does the cleanup if the transaction
  382. * failed and we didn't already get a status write.
  383. */
  384. spin_lock_irqsave(&card->lock, flags);
  385. if (orb->rcode == -1)
  386. orb->rcode = rcode;
  387. if (orb->rcode != RCODE_COMPLETE) {
  388. list_del(&orb->link);
  389. spin_unlock_irqrestore(&card->lock, flags);
  390. orb->callback(orb, NULL);
  391. } else {
  392. spin_unlock_irqrestore(&card->lock, flags);
  393. }
  394. kref_put(&orb->kref, free_orb);
  395. }
  396. static void
  397. sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
  398. int node_id, int generation, u64 offset)
  399. {
  400. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  401. unsigned long flags;
  402. orb->pointer.high = 0;
  403. orb->pointer.low = orb->request_bus;
  404. fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
  405. spin_lock_irqsave(&device->card->lock, flags);
  406. list_add_tail(&orb->link, &lu->orb_list);
  407. spin_unlock_irqrestore(&device->card->lock, flags);
  408. /* Take a ref for the orb list and for the transaction callback. */
  409. kref_get(&orb->kref);
  410. kref_get(&orb->kref);
  411. fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
  412. node_id, generation, device->max_speed, offset,
  413. &orb->pointer, sizeof(orb->pointer),
  414. complete_transaction, orb);
  415. }
  416. static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
  417. {
  418. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  419. struct sbp2_orb *orb, *next;
  420. struct list_head list;
  421. unsigned long flags;
  422. int retval = -ENOENT;
  423. INIT_LIST_HEAD(&list);
  424. spin_lock_irqsave(&device->card->lock, flags);
  425. list_splice_init(&lu->orb_list, &list);
  426. spin_unlock_irqrestore(&device->card->lock, flags);
  427. list_for_each_entry_safe(orb, next, &list, link) {
  428. retval = 0;
  429. if (fw_cancel_transaction(device->card, &orb->t) == 0)
  430. continue;
  431. orb->rcode = RCODE_CANCELLED;
  432. orb->callback(orb, NULL);
  433. }
  434. return retval;
  435. }
  436. static void
  437. complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
  438. {
  439. struct sbp2_management_orb *orb =
  440. container_of(base_orb, struct sbp2_management_orb, base);
  441. if (status)
  442. memcpy(&orb->status, status, sizeof(*status));
  443. complete(&orb->done);
  444. }
  445. static int
  446. sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
  447. int generation, int function, int lun_or_login_id,
  448. void *response)
  449. {
  450. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  451. struct sbp2_management_orb *orb;
  452. unsigned int timeout;
  453. int retval = -ENOMEM;
  454. if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
  455. return 0;
  456. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  457. if (orb == NULL)
  458. return -ENOMEM;
  459. kref_init(&orb->base.kref);
  460. orb->response_bus =
  461. dma_map_single(device->card->device, &orb->response,
  462. sizeof(orb->response), DMA_FROM_DEVICE);
  463. if (dma_mapping_error(orb->response_bus))
  464. goto fail_mapping_response;
  465. orb->request.response.high = 0;
  466. orb->request.response.low = orb->response_bus;
  467. orb->request.misc =
  468. MANAGEMENT_ORB_NOTIFY |
  469. MANAGEMENT_ORB_FUNCTION(function) |
  470. MANAGEMENT_ORB_LUN(lun_or_login_id);
  471. orb->request.length =
  472. MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
  473. orb->request.status_fifo.high = lu->address_handler.offset >> 32;
  474. orb->request.status_fifo.low = lu->address_handler.offset;
  475. if (function == SBP2_LOGIN_REQUEST) {
  476. /* Ask for 2^2 == 4 seconds reconnect grace period */
  477. orb->request.misc |=
  478. MANAGEMENT_ORB_RECONNECT(2) |
  479. MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
  480. timeout = lu->tgt->mgt_orb_timeout;
  481. } else {
  482. timeout = SBP2_ORB_TIMEOUT;
  483. }
  484. fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
  485. init_completion(&orb->done);
  486. orb->base.callback = complete_management_orb;
  487. orb->base.request_bus =
  488. dma_map_single(device->card->device, &orb->request,
  489. sizeof(orb->request), DMA_TO_DEVICE);
  490. if (dma_mapping_error(orb->base.request_bus))
  491. goto fail_mapping_request;
  492. sbp2_send_orb(&orb->base, lu, node_id, generation,
  493. lu->tgt->management_agent_address);
  494. wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
  495. retval = -EIO;
  496. if (sbp2_cancel_orbs(lu) == 0) {
  497. fw_error("%s: orb reply timed out, rcode=0x%02x\n",
  498. lu->tgt->bus_id, orb->base.rcode);
  499. goto out;
  500. }
  501. if (orb->base.rcode != RCODE_COMPLETE) {
  502. fw_error("%s: management write failed, rcode 0x%02x\n",
  503. lu->tgt->bus_id, orb->base.rcode);
  504. goto out;
  505. }
  506. if (STATUS_GET_RESPONSE(orb->status) != 0 ||
  507. STATUS_GET_SBP_STATUS(orb->status) != 0) {
  508. fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
  509. STATUS_GET_RESPONSE(orb->status),
  510. STATUS_GET_SBP_STATUS(orb->status));
  511. goto out;
  512. }
  513. retval = 0;
  514. out:
  515. dma_unmap_single(device->card->device, orb->base.request_bus,
  516. sizeof(orb->request), DMA_TO_DEVICE);
  517. fail_mapping_request:
  518. dma_unmap_single(device->card->device, orb->response_bus,
  519. sizeof(orb->response), DMA_FROM_DEVICE);
  520. fail_mapping_response:
  521. if (response)
  522. fw_memcpy_from_be32(response,
  523. orb->response, sizeof(orb->response));
  524. kref_put(&orb->base.kref, free_orb);
  525. return retval;
  526. }
  527. static void
  528. complete_agent_reset_write(struct fw_card *card, int rcode,
  529. void *payload, size_t length, void *done)
  530. {
  531. complete(done);
  532. }
  533. static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
  534. {
  535. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  536. DECLARE_COMPLETION_ONSTACK(done);
  537. struct fw_transaction t;
  538. static u32 z;
  539. fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
  540. lu->tgt->node_id, lu->generation, device->max_speed,
  541. lu->command_block_agent_address + SBP2_AGENT_RESET,
  542. &z, sizeof(z), complete_agent_reset_write, &done);
  543. wait_for_completion(&done);
  544. }
  545. static void
  546. complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
  547. void *payload, size_t length, void *data)
  548. {
  549. kfree(data);
  550. }
  551. static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
  552. {
  553. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  554. struct fw_transaction *t;
  555. static u32 z;
  556. t = kmalloc(sizeof(*t), GFP_ATOMIC);
  557. if (t == NULL)
  558. return;
  559. fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
  560. lu->tgt->node_id, lu->generation, device->max_speed,
  561. lu->command_block_agent_address + SBP2_AGENT_RESET,
  562. &z, sizeof(z), complete_agent_reset_write_no_wait, t);
  563. }
  564. static void sbp2_release_target(struct kref *kref)
  565. {
  566. struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
  567. struct sbp2_logical_unit *lu, *next;
  568. struct Scsi_Host *shost =
  569. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  570. list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
  571. if (lu->sdev)
  572. scsi_remove_device(lu->sdev);
  573. sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
  574. SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
  575. fw_core_remove_address_handler(&lu->address_handler);
  576. list_del(&lu->link);
  577. kfree(lu);
  578. }
  579. scsi_remove_host(shost);
  580. fw_notify("released %s\n", tgt->bus_id);
  581. put_device(&tgt->unit->device);
  582. scsi_host_put(shost);
  583. }
  584. static struct workqueue_struct *sbp2_wq;
  585. /*
  586. * Always get the target's kref when scheduling work on one its units.
  587. * Each workqueue job is responsible to call sbp2_target_put() upon return.
  588. */
  589. static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
  590. {
  591. if (queue_delayed_work(sbp2_wq, &lu->work, delay))
  592. kref_get(&lu->tgt->kref);
  593. }
  594. static void sbp2_target_put(struct sbp2_target *tgt)
  595. {
  596. kref_put(&tgt->kref, sbp2_release_target);
  597. }
  598. static void sbp2_reconnect(struct work_struct *work);
  599. static void sbp2_login(struct work_struct *work)
  600. {
  601. struct sbp2_logical_unit *lu =
  602. container_of(work, struct sbp2_logical_unit, work.work);
  603. struct sbp2_target *tgt = lu->tgt;
  604. struct fw_device *device = fw_device(tgt->unit->device.parent);
  605. struct Scsi_Host *shost;
  606. struct scsi_device *sdev;
  607. struct scsi_lun eight_bytes_lun;
  608. struct sbp2_login_response response;
  609. int generation, node_id, local_node_id;
  610. if (fw_device_is_shutdown(device))
  611. goto out;
  612. generation = device->generation;
  613. smp_rmb(); /* node_id must not be older than generation */
  614. node_id = device->node_id;
  615. local_node_id = device->card->node_id;
  616. if (sbp2_send_management_orb(lu, node_id, generation,
  617. SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
  618. if (lu->retries++ < 5)
  619. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  620. else
  621. fw_error("%s: failed to login to LUN %04x\n",
  622. tgt->bus_id, lu->lun);
  623. goto out;
  624. }
  625. lu->generation = generation;
  626. tgt->node_id = node_id;
  627. tgt->address_high = local_node_id << 16;
  628. /* Get command block agent offset and login id. */
  629. lu->command_block_agent_address =
  630. ((u64) (response.command_block_agent.high & 0xffff) << 32) |
  631. response.command_block_agent.low;
  632. lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
  633. fw_notify("%s: logged in to LUN %04x (%d retries)\n",
  634. tgt->bus_id, lu->lun, lu->retries);
  635. #if 0
  636. /* FIXME: The linux1394 sbp2 does this last step. */
  637. sbp2_set_busy_timeout(scsi_id);
  638. #endif
  639. PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
  640. sbp2_agent_reset(lu);
  641. /* This was a re-login. */
  642. if (lu->sdev) {
  643. sbp2_cancel_orbs(lu);
  644. goto out;
  645. }
  646. if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
  647. ssleep(SBP2_INQUIRY_DELAY);
  648. memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
  649. eight_bytes_lun.scsi_lun[0] = (lu->lun >> 8) & 0xff;
  650. eight_bytes_lun.scsi_lun[1] = lu->lun & 0xff;
  651. shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  652. sdev = __scsi_add_device(shost, 0, 0,
  653. scsilun_to_int(&eight_bytes_lun), lu);
  654. if (IS_ERR(sdev)) {
  655. smp_rmb(); /* generation may have changed */
  656. generation = device->generation;
  657. smp_rmb(); /* node_id must not be older than generation */
  658. sbp2_send_management_orb(lu, device->node_id, generation,
  659. SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
  660. /*
  661. * Set this back to sbp2_login so we fall back and
  662. * retry login on bus reset.
  663. */
  664. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  665. } else {
  666. lu->sdev = sdev;
  667. scsi_device_put(sdev);
  668. }
  669. out:
  670. sbp2_target_put(tgt);
  671. }
  672. static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
  673. {
  674. struct sbp2_logical_unit *lu;
  675. lu = kmalloc(sizeof(*lu), GFP_KERNEL);
  676. if (!lu)
  677. return -ENOMEM;
  678. lu->address_handler.length = 0x100;
  679. lu->address_handler.address_callback = sbp2_status_write;
  680. lu->address_handler.callback_data = lu;
  681. if (fw_core_add_address_handler(&lu->address_handler,
  682. &fw_high_memory_region) < 0) {
  683. kfree(lu);
  684. return -ENOMEM;
  685. }
  686. lu->tgt = tgt;
  687. lu->sdev = NULL;
  688. lu->lun = lun_entry & 0xffff;
  689. lu->retries = 0;
  690. INIT_LIST_HEAD(&lu->orb_list);
  691. INIT_DELAYED_WORK(&lu->work, sbp2_login);
  692. list_add_tail(&lu->link, &tgt->lu_list);
  693. return 0;
  694. }
  695. static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
  696. {
  697. struct fw_csr_iterator ci;
  698. int key, value;
  699. fw_csr_iterator_init(&ci, directory);
  700. while (fw_csr_iterator_next(&ci, &key, &value))
  701. if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
  702. sbp2_add_logical_unit(tgt, value) < 0)
  703. return -ENOMEM;
  704. return 0;
  705. }
  706. static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
  707. u32 *model, u32 *firmware_revision)
  708. {
  709. struct fw_csr_iterator ci;
  710. int key, value;
  711. unsigned int timeout;
  712. fw_csr_iterator_init(&ci, directory);
  713. while (fw_csr_iterator_next(&ci, &key, &value)) {
  714. switch (key) {
  715. case CSR_DEPENDENT_INFO | CSR_OFFSET:
  716. tgt->management_agent_address =
  717. CSR_REGISTER_BASE + 4 * value;
  718. break;
  719. case CSR_DIRECTORY_ID:
  720. tgt->directory_id = value;
  721. break;
  722. case CSR_MODEL:
  723. *model = value;
  724. break;
  725. case SBP2_CSR_FIRMWARE_REVISION:
  726. *firmware_revision = value;
  727. break;
  728. case SBP2_CSR_UNIT_CHARACTERISTICS:
  729. /* the timeout value is stored in 500ms units */
  730. timeout = ((unsigned int) value >> 8 & 0xff) * 500;
  731. timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
  732. tgt->mgt_orb_timeout =
  733. min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
  734. if (timeout > tgt->mgt_orb_timeout)
  735. fw_notify("%s: config rom contains %ds "
  736. "management ORB timeout, limiting "
  737. "to %ds\n", tgt->bus_id,
  738. timeout / 1000,
  739. tgt->mgt_orb_timeout / 1000);
  740. break;
  741. case SBP2_CSR_LOGICAL_UNIT_NUMBER:
  742. if (sbp2_add_logical_unit(tgt, value) < 0)
  743. return -ENOMEM;
  744. break;
  745. case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
  746. if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
  747. return -ENOMEM;
  748. break;
  749. }
  750. }
  751. return 0;
  752. }
  753. static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
  754. u32 firmware_revision)
  755. {
  756. int i;
  757. unsigned int w = sbp2_param_workarounds;
  758. if (w)
  759. fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
  760. "if you need the workarounds parameter for %s\n",
  761. tgt->bus_id);
  762. if (w & SBP2_WORKAROUND_OVERRIDE)
  763. goto out;
  764. for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
  765. if (sbp2_workarounds_table[i].firmware_revision !=
  766. (firmware_revision & 0xffffff00))
  767. continue;
  768. if (sbp2_workarounds_table[i].model != model &&
  769. sbp2_workarounds_table[i].model != ~0)
  770. continue;
  771. w |= sbp2_workarounds_table[i].workarounds;
  772. break;
  773. }
  774. out:
  775. if (w)
  776. fw_notify("Workarounds for %s: 0x%x "
  777. "(firmware_revision 0x%06x, model_id 0x%06x)\n",
  778. tgt->bus_id, w, firmware_revision, model);
  779. tgt->workarounds = w;
  780. }
  781. static struct scsi_host_template scsi_driver_template;
  782. static int sbp2_probe(struct device *dev)
  783. {
  784. struct fw_unit *unit = fw_unit(dev);
  785. struct fw_device *device = fw_device(unit->device.parent);
  786. struct sbp2_target *tgt;
  787. struct sbp2_logical_unit *lu;
  788. struct Scsi_Host *shost;
  789. u32 model, firmware_revision;
  790. shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
  791. if (shost == NULL)
  792. return -ENOMEM;
  793. tgt = (struct sbp2_target *)shost->hostdata;
  794. unit->device.driver_data = tgt;
  795. tgt->unit = unit;
  796. kref_init(&tgt->kref);
  797. INIT_LIST_HEAD(&tgt->lu_list);
  798. tgt->bus_id = unit->device.bus_id;
  799. if (fw_device_enable_phys_dma(device) < 0)
  800. goto fail_shost_put;
  801. if (scsi_add_host(shost, &unit->device) < 0)
  802. goto fail_shost_put;
  803. /* Initialize to values that won't match anything in our table. */
  804. firmware_revision = 0xff000000;
  805. model = 0xff000000;
  806. /* implicit directory ID */
  807. tgt->directory_id = ((unit->directory - device->config_rom) * 4
  808. + CSR_CONFIG_ROM) & 0xffffff;
  809. if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
  810. &firmware_revision) < 0)
  811. goto fail_tgt_put;
  812. sbp2_init_workarounds(tgt, model, firmware_revision);
  813. get_device(&unit->device);
  814. /* Do the login in a workqueue so we can easily reschedule retries. */
  815. list_for_each_entry(lu, &tgt->lu_list, link)
  816. sbp2_queue_work(lu, 0);
  817. return 0;
  818. fail_tgt_put:
  819. sbp2_target_put(tgt);
  820. return -ENOMEM;
  821. fail_shost_put:
  822. scsi_host_put(shost);
  823. return -ENOMEM;
  824. }
  825. static int sbp2_remove(struct device *dev)
  826. {
  827. struct fw_unit *unit = fw_unit(dev);
  828. struct sbp2_target *tgt = unit->device.driver_data;
  829. sbp2_target_put(tgt);
  830. return 0;
  831. }
  832. static void sbp2_reconnect(struct work_struct *work)
  833. {
  834. struct sbp2_logical_unit *lu =
  835. container_of(work, struct sbp2_logical_unit, work.work);
  836. struct sbp2_target *tgt = lu->tgt;
  837. struct fw_device *device = fw_device(tgt->unit->device.parent);
  838. int generation, node_id, local_node_id;
  839. if (fw_device_is_shutdown(device))
  840. goto out;
  841. generation = device->generation;
  842. smp_rmb(); /* node_id must not be older than generation */
  843. node_id = device->node_id;
  844. local_node_id = device->card->node_id;
  845. if (sbp2_send_management_orb(lu, node_id, generation,
  846. SBP2_RECONNECT_REQUEST,
  847. lu->login_id, NULL) < 0) {
  848. if (lu->retries++ >= 5) {
  849. fw_error("%s: failed to reconnect\n", tgt->bus_id);
  850. /* Fall back and try to log in again. */
  851. lu->retries = 0;
  852. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  853. }
  854. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  855. goto out;
  856. }
  857. lu->generation = generation;
  858. tgt->node_id = node_id;
  859. tgt->address_high = local_node_id << 16;
  860. fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
  861. tgt->bus_id, lu->lun, lu->retries);
  862. sbp2_agent_reset(lu);
  863. sbp2_cancel_orbs(lu);
  864. out:
  865. sbp2_target_put(tgt);
  866. }
  867. static void sbp2_update(struct fw_unit *unit)
  868. {
  869. struct sbp2_target *tgt = unit->device.driver_data;
  870. struct sbp2_logical_unit *lu;
  871. fw_device_enable_phys_dma(fw_device(unit->device.parent));
  872. /*
  873. * Fw-core serializes sbp2_update() against sbp2_remove().
  874. * Iteration over tgt->lu_list is therefore safe here.
  875. */
  876. list_for_each_entry(lu, &tgt->lu_list, link) {
  877. lu->retries = 0;
  878. sbp2_queue_work(lu, 0);
  879. }
  880. }
  881. #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
  882. #define SBP2_SW_VERSION_ENTRY 0x00010483
  883. static const struct fw_device_id sbp2_id_table[] = {
  884. {
  885. .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
  886. .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
  887. .version = SBP2_SW_VERSION_ENTRY,
  888. },
  889. { }
  890. };
  891. static struct fw_driver sbp2_driver = {
  892. .driver = {
  893. .owner = THIS_MODULE,
  894. .name = sbp2_driver_name,
  895. .bus = &fw_bus_type,
  896. .probe = sbp2_probe,
  897. .remove = sbp2_remove,
  898. },
  899. .update = sbp2_update,
  900. .id_table = sbp2_id_table,
  901. };
  902. static unsigned int
  903. sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
  904. {
  905. int sam_status;
  906. sense_data[0] = 0x70;
  907. sense_data[1] = 0x0;
  908. sense_data[2] = sbp2_status[1];
  909. sense_data[3] = sbp2_status[4];
  910. sense_data[4] = sbp2_status[5];
  911. sense_data[5] = sbp2_status[6];
  912. sense_data[6] = sbp2_status[7];
  913. sense_data[7] = 10;
  914. sense_data[8] = sbp2_status[8];
  915. sense_data[9] = sbp2_status[9];
  916. sense_data[10] = sbp2_status[10];
  917. sense_data[11] = sbp2_status[11];
  918. sense_data[12] = sbp2_status[2];
  919. sense_data[13] = sbp2_status[3];
  920. sense_data[14] = sbp2_status[12];
  921. sense_data[15] = sbp2_status[13];
  922. sam_status = sbp2_status[0] & 0x3f;
  923. switch (sam_status) {
  924. case SAM_STAT_GOOD:
  925. case SAM_STAT_CHECK_CONDITION:
  926. case SAM_STAT_CONDITION_MET:
  927. case SAM_STAT_BUSY:
  928. case SAM_STAT_RESERVATION_CONFLICT:
  929. case SAM_STAT_COMMAND_TERMINATED:
  930. return DID_OK << 16 | sam_status;
  931. default:
  932. return DID_ERROR << 16;
  933. }
  934. }
  935. static void
  936. complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
  937. {
  938. struct sbp2_command_orb *orb =
  939. container_of(base_orb, struct sbp2_command_orb, base);
  940. struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
  941. int result;
  942. if (status != NULL) {
  943. if (STATUS_GET_DEAD(*status))
  944. sbp2_agent_reset_no_wait(orb->lu);
  945. switch (STATUS_GET_RESPONSE(*status)) {
  946. case SBP2_STATUS_REQUEST_COMPLETE:
  947. result = DID_OK << 16;
  948. break;
  949. case SBP2_STATUS_TRANSPORT_FAILURE:
  950. result = DID_BUS_BUSY << 16;
  951. break;
  952. case SBP2_STATUS_ILLEGAL_REQUEST:
  953. case SBP2_STATUS_VENDOR_DEPENDENT:
  954. default:
  955. result = DID_ERROR << 16;
  956. break;
  957. }
  958. if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
  959. result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
  960. orb->cmd->sense_buffer);
  961. } else {
  962. /*
  963. * If the orb completes with status == NULL, something
  964. * went wrong, typically a bus reset happened mid-orb
  965. * or when sending the write (less likely).
  966. */
  967. result = DID_BUS_BUSY << 16;
  968. }
  969. dma_unmap_single(device->card->device, orb->base.request_bus,
  970. sizeof(orb->request), DMA_TO_DEVICE);
  971. if (scsi_sg_count(orb->cmd) > 0)
  972. dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
  973. scsi_sg_count(orb->cmd),
  974. orb->cmd->sc_data_direction);
  975. if (orb->page_table_bus != 0)
  976. dma_unmap_single(device->card->device, orb->page_table_bus,
  977. sizeof(orb->page_table), DMA_TO_DEVICE);
  978. orb->cmd->result = result;
  979. orb->done(orb->cmd);
  980. }
  981. static int
  982. sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
  983. struct sbp2_logical_unit *lu)
  984. {
  985. struct scatterlist *sg;
  986. int sg_len, l, i, j, count;
  987. dma_addr_t sg_addr;
  988. sg = scsi_sglist(orb->cmd);
  989. count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
  990. orb->cmd->sc_data_direction);
  991. if (count == 0)
  992. goto fail;
  993. /*
  994. * Handle the special case where there is only one element in
  995. * the scatter list by converting it to an immediate block
  996. * request. This is also a workaround for broken devices such
  997. * as the second generation iPod which doesn't support page
  998. * tables.
  999. */
  1000. if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
  1001. orb->request.data_descriptor.high = lu->tgt->address_high;
  1002. orb->request.data_descriptor.low = sg_dma_address(sg);
  1003. orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
  1004. return 0;
  1005. }
  1006. /*
  1007. * Convert the scatterlist to an sbp2 page table. If any
  1008. * scatterlist entries are too big for sbp2, we split them as we
  1009. * go. Even if we ask the block I/O layer to not give us sg
  1010. * elements larger than 65535 bytes, some IOMMUs may merge sg elements
  1011. * during DMA mapping, and Linux currently doesn't prevent this.
  1012. */
  1013. for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
  1014. sg_len = sg_dma_len(sg);
  1015. sg_addr = sg_dma_address(sg);
  1016. while (sg_len) {
  1017. /* FIXME: This won't get us out of the pinch. */
  1018. if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
  1019. fw_error("page table overflow\n");
  1020. goto fail_page_table;
  1021. }
  1022. l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
  1023. orb->page_table[j].low = sg_addr;
  1024. orb->page_table[j].high = (l << 16);
  1025. sg_addr += l;
  1026. sg_len -= l;
  1027. j++;
  1028. }
  1029. }
  1030. fw_memcpy_to_be32(orb->page_table, orb->page_table,
  1031. sizeof(orb->page_table[0]) * j);
  1032. orb->page_table_bus =
  1033. dma_map_single(device->card->device, orb->page_table,
  1034. sizeof(orb->page_table), DMA_TO_DEVICE);
  1035. if (dma_mapping_error(orb->page_table_bus))
  1036. goto fail_page_table;
  1037. /*
  1038. * The data_descriptor pointer is the one case where we need
  1039. * to fill in the node ID part of the address. All other
  1040. * pointers assume that the data referenced reside on the
  1041. * initiator (i.e. us), but data_descriptor can refer to data
  1042. * on other nodes so we need to put our ID in descriptor.high.
  1043. */
  1044. orb->request.data_descriptor.high = lu->tgt->address_high;
  1045. orb->request.data_descriptor.low = orb->page_table_bus;
  1046. orb->request.misc |=
  1047. COMMAND_ORB_PAGE_TABLE_PRESENT |
  1048. COMMAND_ORB_DATA_SIZE(j);
  1049. return 0;
  1050. fail_page_table:
  1051. dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
  1052. orb->cmd->sc_data_direction);
  1053. fail:
  1054. return -ENOMEM;
  1055. }
  1056. /* SCSI stack integration */
  1057. static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
  1058. {
  1059. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  1060. struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
  1061. struct sbp2_command_orb *orb;
  1062. unsigned int max_payload;
  1063. int retval = SCSI_MLQUEUE_HOST_BUSY;
  1064. /*
  1065. * Bidirectional commands are not yet implemented, and unknown
  1066. * transfer direction not handled.
  1067. */
  1068. if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
  1069. fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
  1070. cmd->result = DID_ERROR << 16;
  1071. done(cmd);
  1072. return 0;
  1073. }
  1074. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  1075. if (orb == NULL) {
  1076. fw_notify("failed to alloc orb\n");
  1077. return SCSI_MLQUEUE_HOST_BUSY;
  1078. }
  1079. /* Initialize rcode to something not RCODE_COMPLETE. */
  1080. orb->base.rcode = -1;
  1081. kref_init(&orb->base.kref);
  1082. orb->lu = lu;
  1083. orb->done = done;
  1084. orb->cmd = cmd;
  1085. orb->request.next.high = SBP2_ORB_NULL;
  1086. orb->request.next.low = 0x0;
  1087. /*
  1088. * At speed 100 we can do 512 bytes per packet, at speed 200,
  1089. * 1024 bytes per packet etc. The SBP-2 max_payload field
  1090. * specifies the max payload size as 2 ^ (max_payload + 2), so
  1091. * if we set this to max_speed + 7, we get the right value.
  1092. */
  1093. max_payload = min(device->max_speed + 7,
  1094. device->card->max_receive - 1);
  1095. orb->request.misc =
  1096. COMMAND_ORB_MAX_PAYLOAD(max_payload) |
  1097. COMMAND_ORB_SPEED(device->max_speed) |
  1098. COMMAND_ORB_NOTIFY;
  1099. if (cmd->sc_data_direction == DMA_FROM_DEVICE)
  1100. orb->request.misc |=
  1101. COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
  1102. else if (cmd->sc_data_direction == DMA_TO_DEVICE)
  1103. orb->request.misc |=
  1104. COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
  1105. if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
  1106. goto out;
  1107. fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
  1108. memset(orb->request.command_block,
  1109. 0, sizeof(orb->request.command_block));
  1110. memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
  1111. orb->base.callback = complete_command_orb;
  1112. orb->base.request_bus =
  1113. dma_map_single(device->card->device, &orb->request,
  1114. sizeof(orb->request), DMA_TO_DEVICE);
  1115. if (dma_mapping_error(orb->base.request_bus))
  1116. goto out;
  1117. sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
  1118. lu->command_block_agent_address + SBP2_ORB_POINTER);
  1119. retval = 0;
  1120. out:
  1121. kref_put(&orb->base.kref, free_orb);
  1122. return retval;
  1123. }
  1124. static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
  1125. {
  1126. struct sbp2_logical_unit *lu = sdev->hostdata;
  1127. sdev->allow_restart = 1;
  1128. /*
  1129. * Update the dma alignment (minimum alignment requirements for
  1130. * start and end of DMA transfers) to be a sector
  1131. */
  1132. blk_queue_update_dma_alignment(sdev->request_queue, 511);
  1133. if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
  1134. sdev->inquiry_len = 36;
  1135. return 0;
  1136. }
  1137. static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
  1138. {
  1139. struct sbp2_logical_unit *lu = sdev->hostdata;
  1140. sdev->use_10_for_rw = 1;
  1141. if (sdev->type == TYPE_ROM)
  1142. sdev->use_10_for_ms = 1;
  1143. if (sdev->type == TYPE_DISK &&
  1144. lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
  1145. sdev->skip_ms_page_8 = 1;
  1146. if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
  1147. sdev->fix_capacity = 1;
  1148. if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
  1149. blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
  1150. return 0;
  1151. }
  1152. /*
  1153. * Called by scsi stack when something has really gone wrong. Usually
  1154. * called when a command has timed-out for some reason.
  1155. */
  1156. static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
  1157. {
  1158. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  1159. fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
  1160. sbp2_agent_reset(lu);
  1161. sbp2_cancel_orbs(lu);
  1162. return SUCCESS;
  1163. }
  1164. /*
  1165. * Format of /sys/bus/scsi/devices/.../ieee1394_id:
  1166. * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
  1167. *
  1168. * This is the concatenation of target port identifier and logical unit
  1169. * identifier as per SAM-2...SAM-4 annex A.
  1170. */
  1171. static ssize_t
  1172. sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
  1173. char *buf)
  1174. {
  1175. struct scsi_device *sdev = to_scsi_device(dev);
  1176. struct sbp2_logical_unit *lu;
  1177. struct fw_device *device;
  1178. if (!sdev)
  1179. return 0;
  1180. lu = sdev->hostdata;
  1181. device = fw_device(lu->tgt->unit->device.parent);
  1182. return sprintf(buf, "%08x%08x:%06x:%04x\n",
  1183. device->config_rom[3], device->config_rom[4],
  1184. lu->tgt->directory_id, lu->lun);
  1185. }
  1186. static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
  1187. static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
  1188. &dev_attr_ieee1394_id,
  1189. NULL
  1190. };
  1191. static struct scsi_host_template scsi_driver_template = {
  1192. .module = THIS_MODULE,
  1193. .name = "SBP-2 IEEE-1394",
  1194. .proc_name = sbp2_driver_name,
  1195. .queuecommand = sbp2_scsi_queuecommand,
  1196. .slave_alloc = sbp2_scsi_slave_alloc,
  1197. .slave_configure = sbp2_scsi_slave_configure,
  1198. .eh_abort_handler = sbp2_scsi_abort,
  1199. .this_id = -1,
  1200. .sg_tablesize = SG_ALL,
  1201. .use_clustering = ENABLE_CLUSTERING,
  1202. .cmd_per_lun = 1,
  1203. .can_queue = 1,
  1204. .sdev_attrs = sbp2_scsi_sysfs_attrs,
  1205. };
  1206. MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
  1207. MODULE_DESCRIPTION("SCSI over IEEE1394");
  1208. MODULE_LICENSE("GPL");
  1209. MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
  1210. /* Provide a module alias so root-on-sbp2 initrds don't break. */
  1211. #ifndef CONFIG_IEEE1394_SBP2_MODULE
  1212. MODULE_ALIAS("sbp2");
  1213. #endif
  1214. static int __init sbp2_init(void)
  1215. {
  1216. sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
  1217. if (!sbp2_wq)
  1218. return -ENOMEM;
  1219. return driver_register(&sbp2_driver.driver);
  1220. }
  1221. static void __exit sbp2_cleanup(void)
  1222. {
  1223. driver_unregister(&sbp2_driver.driver);
  1224. destroy_workqueue(sbp2_wq);
  1225. }
  1226. module_init(sbp2_init);
  1227. module_exit(sbp2_cleanup);