i915_gem.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. struct change_domains {
  38. uint32_t invalidate_domains;
  39. uint32_t flush_domains;
  40. uint32_t flush_rings;
  41. };
  42. static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
  43. static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
  44. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  45. bool pipelined);
  46. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  47. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  49. int write);
  50. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  51. uint64_t offset,
  52. uint64_t size);
  53. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  54. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  55. bool interruptible);
  56. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  57. unsigned alignment,
  58. bool mappable,
  59. bool need_fence);
  60. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  61. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  62. struct drm_i915_gem_pwrite *args,
  63. struct drm_file *file_priv);
  64. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  65. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  66. int nr_to_scan,
  67. gfp_t gfp_mask);
  68. /* some bookkeeping */
  69. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  70. size_t size)
  71. {
  72. dev_priv->mm.object_count++;
  73. dev_priv->mm.object_memory += size;
  74. }
  75. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  76. size_t size)
  77. {
  78. dev_priv->mm.object_count--;
  79. dev_priv->mm.object_memory -= size;
  80. }
  81. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  82. struct drm_i915_gem_object *obj)
  83. {
  84. dev_priv->mm.gtt_count++;
  85. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  86. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  87. dev_priv->mm.mappable_gtt_used +=
  88. min_t(size_t, obj->gtt_space->size,
  89. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  90. }
  91. }
  92. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  93. struct drm_i915_gem_object *obj)
  94. {
  95. dev_priv->mm.gtt_count--;
  96. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  97. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  98. dev_priv->mm.mappable_gtt_used -=
  99. min_t(size_t, obj->gtt_space->size,
  100. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  101. }
  102. }
  103. /**
  104. * Update the mappable working set counters. Call _only_ when there is a change
  105. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  106. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  107. */
  108. static void
  109. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  110. struct drm_i915_gem_object *obj,
  111. bool mappable)
  112. {
  113. if (mappable) {
  114. if (obj->pin_mappable && obj->fault_mappable)
  115. /* Combined state was already mappable. */
  116. return;
  117. dev_priv->mm.gtt_mappable_count++;
  118. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  119. } else {
  120. if (obj->pin_mappable || obj->fault_mappable)
  121. /* Combined state still mappable. */
  122. return;
  123. dev_priv->mm.gtt_mappable_count--;
  124. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  125. }
  126. }
  127. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  128. struct drm_i915_gem_object *obj,
  129. bool mappable)
  130. {
  131. dev_priv->mm.pin_count++;
  132. dev_priv->mm.pin_memory += obj->gtt_space->size;
  133. if (mappable) {
  134. obj->pin_mappable = true;
  135. i915_gem_info_update_mappable(dev_priv, obj, true);
  136. }
  137. }
  138. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  139. struct drm_i915_gem_object *obj)
  140. {
  141. dev_priv->mm.pin_count--;
  142. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  143. if (obj->pin_mappable) {
  144. obj->pin_mappable = false;
  145. i915_gem_info_update_mappable(dev_priv, obj, false);
  146. }
  147. }
  148. int
  149. i915_gem_check_is_wedged(struct drm_device *dev)
  150. {
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. struct completion *x = &dev_priv->error_completion;
  153. unsigned long flags;
  154. int ret;
  155. if (!atomic_read(&dev_priv->mm.wedged))
  156. return 0;
  157. ret = wait_for_completion_interruptible(x);
  158. if (ret)
  159. return ret;
  160. /* Success, we reset the GPU! */
  161. if (!atomic_read(&dev_priv->mm.wedged))
  162. return 0;
  163. /* GPU is hung, bump the completion count to account for
  164. * the token we just consumed so that we never hit zero and
  165. * end up waiting upon a subsequent completion event that
  166. * will never happen.
  167. */
  168. spin_lock_irqsave(&x->wait.lock, flags);
  169. x->done++;
  170. spin_unlock_irqrestore(&x->wait.lock, flags);
  171. return -EIO;
  172. }
  173. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  174. {
  175. struct drm_i915_private *dev_priv = dev->dev_private;
  176. int ret;
  177. ret = i915_gem_check_is_wedged(dev);
  178. if (ret)
  179. return ret;
  180. ret = mutex_lock_interruptible(&dev->struct_mutex);
  181. if (ret)
  182. return ret;
  183. if (atomic_read(&dev_priv->mm.wedged)) {
  184. mutex_unlock(&dev->struct_mutex);
  185. return -EAGAIN;
  186. }
  187. WARN_ON(i915_verify_lists(dev));
  188. return 0;
  189. }
  190. static inline bool
  191. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  192. {
  193. return obj_priv->gtt_space &&
  194. !obj_priv->active &&
  195. obj_priv->pin_count == 0;
  196. }
  197. int i915_gem_do_init(struct drm_device *dev,
  198. unsigned long start,
  199. unsigned long mappable_end,
  200. unsigned long end)
  201. {
  202. drm_i915_private_t *dev_priv = dev->dev_private;
  203. if (start >= end ||
  204. (start & (PAGE_SIZE - 1)) != 0 ||
  205. (end & (PAGE_SIZE - 1)) != 0) {
  206. return -EINVAL;
  207. }
  208. drm_mm_init(&dev_priv->mm.gtt_space, start,
  209. end - start);
  210. dev_priv->mm.gtt_total = end - start;
  211. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  212. dev_priv->mm.gtt_mappable_end = mappable_end;
  213. return 0;
  214. }
  215. int
  216. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  217. struct drm_file *file_priv)
  218. {
  219. struct drm_i915_gem_init *args = data;
  220. int ret;
  221. mutex_lock(&dev->struct_mutex);
  222. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  223. mutex_unlock(&dev->struct_mutex);
  224. return ret;
  225. }
  226. int
  227. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  228. struct drm_file *file_priv)
  229. {
  230. struct drm_i915_private *dev_priv = dev->dev_private;
  231. struct drm_i915_gem_get_aperture *args = data;
  232. if (!(dev->driver->driver_features & DRIVER_GEM))
  233. return -ENODEV;
  234. mutex_lock(&dev->struct_mutex);
  235. args->aper_size = dev_priv->mm.gtt_total;
  236. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  237. mutex_unlock(&dev->struct_mutex);
  238. return 0;
  239. }
  240. /**
  241. * Creates a new mm object and returns a handle to it.
  242. */
  243. int
  244. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  245. struct drm_file *file_priv)
  246. {
  247. struct drm_i915_gem_create *args = data;
  248. struct drm_gem_object *obj;
  249. int ret;
  250. u32 handle;
  251. args->size = roundup(args->size, PAGE_SIZE);
  252. /* Allocate the new object */
  253. obj = i915_gem_alloc_object(dev, args->size);
  254. if (obj == NULL)
  255. return -ENOMEM;
  256. ret = drm_gem_handle_create(file_priv, obj, &handle);
  257. if (ret) {
  258. drm_gem_object_release(obj);
  259. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  260. kfree(obj);
  261. return ret;
  262. }
  263. /* drop reference from allocate - handle holds it now */
  264. drm_gem_object_unreference(obj);
  265. trace_i915_gem_object_create(obj);
  266. args->handle = handle;
  267. return 0;
  268. }
  269. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  270. {
  271. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  272. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  273. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  274. obj_priv->tiling_mode != I915_TILING_NONE;
  275. }
  276. static inline void
  277. slow_shmem_copy(struct page *dst_page,
  278. int dst_offset,
  279. struct page *src_page,
  280. int src_offset,
  281. int length)
  282. {
  283. char *dst_vaddr, *src_vaddr;
  284. dst_vaddr = kmap(dst_page);
  285. src_vaddr = kmap(src_page);
  286. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  287. kunmap(src_page);
  288. kunmap(dst_page);
  289. }
  290. static inline void
  291. slow_shmem_bit17_copy(struct page *gpu_page,
  292. int gpu_offset,
  293. struct page *cpu_page,
  294. int cpu_offset,
  295. int length,
  296. int is_read)
  297. {
  298. char *gpu_vaddr, *cpu_vaddr;
  299. /* Use the unswizzled path if this page isn't affected. */
  300. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  301. if (is_read)
  302. return slow_shmem_copy(cpu_page, cpu_offset,
  303. gpu_page, gpu_offset, length);
  304. else
  305. return slow_shmem_copy(gpu_page, gpu_offset,
  306. cpu_page, cpu_offset, length);
  307. }
  308. gpu_vaddr = kmap(gpu_page);
  309. cpu_vaddr = kmap(cpu_page);
  310. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  311. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  312. */
  313. while (length > 0) {
  314. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  315. int this_length = min(cacheline_end - gpu_offset, length);
  316. int swizzled_gpu_offset = gpu_offset ^ 64;
  317. if (is_read) {
  318. memcpy(cpu_vaddr + cpu_offset,
  319. gpu_vaddr + swizzled_gpu_offset,
  320. this_length);
  321. } else {
  322. memcpy(gpu_vaddr + swizzled_gpu_offset,
  323. cpu_vaddr + cpu_offset,
  324. this_length);
  325. }
  326. cpu_offset += this_length;
  327. gpu_offset += this_length;
  328. length -= this_length;
  329. }
  330. kunmap(cpu_page);
  331. kunmap(gpu_page);
  332. }
  333. /**
  334. * This is the fast shmem pread path, which attempts to copy_from_user directly
  335. * from the backing pages of the object to the user's address space. On a
  336. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  337. */
  338. static int
  339. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  340. struct drm_i915_gem_pread *args,
  341. struct drm_file *file_priv)
  342. {
  343. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  344. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  345. ssize_t remain;
  346. loff_t offset;
  347. char __user *user_data;
  348. int page_offset, page_length;
  349. user_data = (char __user *) (uintptr_t) args->data_ptr;
  350. remain = args->size;
  351. obj_priv = to_intel_bo(obj);
  352. offset = args->offset;
  353. while (remain > 0) {
  354. struct page *page;
  355. char *vaddr;
  356. int ret;
  357. /* Operation in this page
  358. *
  359. * page_offset = offset within page
  360. * page_length = bytes to copy for this page
  361. */
  362. page_offset = offset & (PAGE_SIZE-1);
  363. page_length = remain;
  364. if ((page_offset + remain) > PAGE_SIZE)
  365. page_length = PAGE_SIZE - page_offset;
  366. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  367. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  368. if (IS_ERR(page))
  369. return PTR_ERR(page);
  370. vaddr = kmap_atomic(page);
  371. ret = __copy_to_user_inatomic(user_data,
  372. vaddr + page_offset,
  373. page_length);
  374. kunmap_atomic(vaddr);
  375. mark_page_accessed(page);
  376. page_cache_release(page);
  377. if (ret)
  378. return -EFAULT;
  379. remain -= page_length;
  380. user_data += page_length;
  381. offset += page_length;
  382. }
  383. return 0;
  384. }
  385. /**
  386. * This is the fallback shmem pread path, which allocates temporary storage
  387. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  388. * can copy out of the object's backing pages while holding the struct mutex
  389. * and not take page faults.
  390. */
  391. static int
  392. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  393. struct drm_i915_gem_pread *args,
  394. struct drm_file *file_priv)
  395. {
  396. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  397. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  398. struct mm_struct *mm = current->mm;
  399. struct page **user_pages;
  400. ssize_t remain;
  401. loff_t offset, pinned_pages, i;
  402. loff_t first_data_page, last_data_page, num_pages;
  403. int shmem_page_offset;
  404. int data_page_index, data_page_offset;
  405. int page_length;
  406. int ret;
  407. uint64_t data_ptr = args->data_ptr;
  408. int do_bit17_swizzling;
  409. remain = args->size;
  410. /* Pin the user pages containing the data. We can't fault while
  411. * holding the struct mutex, yet we want to hold it while
  412. * dereferencing the user data.
  413. */
  414. first_data_page = data_ptr / PAGE_SIZE;
  415. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  416. num_pages = last_data_page - first_data_page + 1;
  417. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  418. if (user_pages == NULL)
  419. return -ENOMEM;
  420. mutex_unlock(&dev->struct_mutex);
  421. down_read(&mm->mmap_sem);
  422. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  423. num_pages, 1, 0, user_pages, NULL);
  424. up_read(&mm->mmap_sem);
  425. mutex_lock(&dev->struct_mutex);
  426. if (pinned_pages < num_pages) {
  427. ret = -EFAULT;
  428. goto out;
  429. }
  430. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  431. args->offset,
  432. args->size);
  433. if (ret)
  434. goto out;
  435. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  436. obj_priv = to_intel_bo(obj);
  437. offset = args->offset;
  438. while (remain > 0) {
  439. struct page *page;
  440. /* Operation in this page
  441. *
  442. * shmem_page_offset = offset within page in shmem file
  443. * data_page_index = page number in get_user_pages return
  444. * data_page_offset = offset with data_page_index page.
  445. * page_length = bytes to copy for this page
  446. */
  447. shmem_page_offset = offset & ~PAGE_MASK;
  448. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  449. data_page_offset = data_ptr & ~PAGE_MASK;
  450. page_length = remain;
  451. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  452. page_length = PAGE_SIZE - shmem_page_offset;
  453. if ((data_page_offset + page_length) > PAGE_SIZE)
  454. page_length = PAGE_SIZE - data_page_offset;
  455. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  456. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  457. if (IS_ERR(page))
  458. return PTR_ERR(page);
  459. if (do_bit17_swizzling) {
  460. slow_shmem_bit17_copy(page,
  461. shmem_page_offset,
  462. user_pages[data_page_index],
  463. data_page_offset,
  464. page_length,
  465. 1);
  466. } else {
  467. slow_shmem_copy(user_pages[data_page_index],
  468. data_page_offset,
  469. page,
  470. shmem_page_offset,
  471. page_length);
  472. }
  473. mark_page_accessed(page);
  474. page_cache_release(page);
  475. remain -= page_length;
  476. data_ptr += page_length;
  477. offset += page_length;
  478. }
  479. out:
  480. for (i = 0; i < pinned_pages; i++) {
  481. SetPageDirty(user_pages[i]);
  482. mark_page_accessed(user_pages[i]);
  483. page_cache_release(user_pages[i]);
  484. }
  485. drm_free_large(user_pages);
  486. return ret;
  487. }
  488. /**
  489. * Reads data from the object referenced by handle.
  490. *
  491. * On error, the contents of *data are undefined.
  492. */
  493. int
  494. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  495. struct drm_file *file_priv)
  496. {
  497. struct drm_i915_gem_pread *args = data;
  498. struct drm_gem_object *obj;
  499. struct drm_i915_gem_object *obj_priv;
  500. int ret = 0;
  501. ret = i915_mutex_lock_interruptible(dev);
  502. if (ret)
  503. return ret;
  504. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  505. if (obj == NULL) {
  506. ret = -ENOENT;
  507. goto unlock;
  508. }
  509. obj_priv = to_intel_bo(obj);
  510. /* Bounds check source. */
  511. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  512. ret = -EINVAL;
  513. goto out;
  514. }
  515. if (args->size == 0)
  516. goto out;
  517. if (!access_ok(VERIFY_WRITE,
  518. (char __user *)(uintptr_t)args->data_ptr,
  519. args->size)) {
  520. ret = -EFAULT;
  521. goto out;
  522. }
  523. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  524. args->size);
  525. if (ret) {
  526. ret = -EFAULT;
  527. goto out;
  528. }
  529. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  530. args->offset,
  531. args->size);
  532. if (ret)
  533. goto out;
  534. ret = -EFAULT;
  535. if (!i915_gem_object_needs_bit17_swizzle(obj))
  536. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  537. if (ret == -EFAULT)
  538. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  539. out:
  540. drm_gem_object_unreference(obj);
  541. unlock:
  542. mutex_unlock(&dev->struct_mutex);
  543. return ret;
  544. }
  545. /* This is the fast write path which cannot handle
  546. * page faults in the source data
  547. */
  548. static inline int
  549. fast_user_write(struct io_mapping *mapping,
  550. loff_t page_base, int page_offset,
  551. char __user *user_data,
  552. int length)
  553. {
  554. char *vaddr_atomic;
  555. unsigned long unwritten;
  556. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  557. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  558. user_data, length);
  559. io_mapping_unmap_atomic(vaddr_atomic);
  560. return unwritten;
  561. }
  562. /* Here's the write path which can sleep for
  563. * page faults
  564. */
  565. static inline void
  566. slow_kernel_write(struct io_mapping *mapping,
  567. loff_t gtt_base, int gtt_offset,
  568. struct page *user_page, int user_offset,
  569. int length)
  570. {
  571. char __iomem *dst_vaddr;
  572. char *src_vaddr;
  573. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  574. src_vaddr = kmap(user_page);
  575. memcpy_toio(dst_vaddr + gtt_offset,
  576. src_vaddr + user_offset,
  577. length);
  578. kunmap(user_page);
  579. io_mapping_unmap(dst_vaddr);
  580. }
  581. /**
  582. * This is the fast pwrite path, where we copy the data directly from the
  583. * user into the GTT, uncached.
  584. */
  585. static int
  586. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  587. struct drm_i915_gem_pwrite *args,
  588. struct drm_file *file_priv)
  589. {
  590. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  591. drm_i915_private_t *dev_priv = dev->dev_private;
  592. ssize_t remain;
  593. loff_t offset, page_base;
  594. char __user *user_data;
  595. int page_offset, page_length;
  596. user_data = (char __user *) (uintptr_t) args->data_ptr;
  597. remain = args->size;
  598. obj_priv = to_intel_bo(obj);
  599. offset = obj_priv->gtt_offset + args->offset;
  600. while (remain > 0) {
  601. /* Operation in this page
  602. *
  603. * page_base = page offset within aperture
  604. * page_offset = offset within page
  605. * page_length = bytes to copy for this page
  606. */
  607. page_base = (offset & ~(PAGE_SIZE-1));
  608. page_offset = offset & (PAGE_SIZE-1);
  609. page_length = remain;
  610. if ((page_offset + remain) > PAGE_SIZE)
  611. page_length = PAGE_SIZE - page_offset;
  612. /* If we get a fault while copying data, then (presumably) our
  613. * source page isn't available. Return the error and we'll
  614. * retry in the slow path.
  615. */
  616. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  617. page_offset, user_data, page_length))
  618. return -EFAULT;
  619. remain -= page_length;
  620. user_data += page_length;
  621. offset += page_length;
  622. }
  623. return 0;
  624. }
  625. /**
  626. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  627. * the memory and maps it using kmap_atomic for copying.
  628. *
  629. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  630. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  631. */
  632. static int
  633. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  634. struct drm_i915_gem_pwrite *args,
  635. struct drm_file *file_priv)
  636. {
  637. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  638. drm_i915_private_t *dev_priv = dev->dev_private;
  639. ssize_t remain;
  640. loff_t gtt_page_base, offset;
  641. loff_t first_data_page, last_data_page, num_pages;
  642. loff_t pinned_pages, i;
  643. struct page **user_pages;
  644. struct mm_struct *mm = current->mm;
  645. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  646. int ret;
  647. uint64_t data_ptr = args->data_ptr;
  648. remain = args->size;
  649. /* Pin the user pages containing the data. We can't fault while
  650. * holding the struct mutex, and all of the pwrite implementations
  651. * want to hold it while dereferencing the user data.
  652. */
  653. first_data_page = data_ptr / PAGE_SIZE;
  654. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  655. num_pages = last_data_page - first_data_page + 1;
  656. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  657. if (user_pages == NULL)
  658. return -ENOMEM;
  659. mutex_unlock(&dev->struct_mutex);
  660. down_read(&mm->mmap_sem);
  661. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  662. num_pages, 0, 0, user_pages, NULL);
  663. up_read(&mm->mmap_sem);
  664. mutex_lock(&dev->struct_mutex);
  665. if (pinned_pages < num_pages) {
  666. ret = -EFAULT;
  667. goto out_unpin_pages;
  668. }
  669. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  670. if (ret)
  671. goto out_unpin_pages;
  672. obj_priv = to_intel_bo(obj);
  673. offset = obj_priv->gtt_offset + args->offset;
  674. while (remain > 0) {
  675. /* Operation in this page
  676. *
  677. * gtt_page_base = page offset within aperture
  678. * gtt_page_offset = offset within page in aperture
  679. * data_page_index = page number in get_user_pages return
  680. * data_page_offset = offset with data_page_index page.
  681. * page_length = bytes to copy for this page
  682. */
  683. gtt_page_base = offset & PAGE_MASK;
  684. gtt_page_offset = offset & ~PAGE_MASK;
  685. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  686. data_page_offset = data_ptr & ~PAGE_MASK;
  687. page_length = remain;
  688. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  689. page_length = PAGE_SIZE - gtt_page_offset;
  690. if ((data_page_offset + page_length) > PAGE_SIZE)
  691. page_length = PAGE_SIZE - data_page_offset;
  692. slow_kernel_write(dev_priv->mm.gtt_mapping,
  693. gtt_page_base, gtt_page_offset,
  694. user_pages[data_page_index],
  695. data_page_offset,
  696. page_length);
  697. remain -= page_length;
  698. offset += page_length;
  699. data_ptr += page_length;
  700. }
  701. out_unpin_pages:
  702. for (i = 0; i < pinned_pages; i++)
  703. page_cache_release(user_pages[i]);
  704. drm_free_large(user_pages);
  705. return ret;
  706. }
  707. /**
  708. * This is the fast shmem pwrite path, which attempts to directly
  709. * copy_from_user into the kmapped pages backing the object.
  710. */
  711. static int
  712. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  713. struct drm_i915_gem_pwrite *args,
  714. struct drm_file *file_priv)
  715. {
  716. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  717. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  718. ssize_t remain;
  719. loff_t offset;
  720. char __user *user_data;
  721. int page_offset, page_length;
  722. user_data = (char __user *) (uintptr_t) args->data_ptr;
  723. remain = args->size;
  724. obj_priv = to_intel_bo(obj);
  725. offset = args->offset;
  726. obj_priv->dirty = 1;
  727. while (remain > 0) {
  728. struct page *page;
  729. char *vaddr;
  730. int ret;
  731. /* Operation in this page
  732. *
  733. * page_offset = offset within page
  734. * page_length = bytes to copy for this page
  735. */
  736. page_offset = offset & (PAGE_SIZE-1);
  737. page_length = remain;
  738. if ((page_offset + remain) > PAGE_SIZE)
  739. page_length = PAGE_SIZE - page_offset;
  740. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  741. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  742. if (IS_ERR(page))
  743. return PTR_ERR(page);
  744. vaddr = kmap_atomic(page, KM_USER0);
  745. ret = __copy_from_user_inatomic(vaddr + page_offset,
  746. user_data,
  747. page_length);
  748. kunmap_atomic(vaddr, KM_USER0);
  749. set_page_dirty(page);
  750. mark_page_accessed(page);
  751. page_cache_release(page);
  752. /* If we get a fault while copying data, then (presumably) our
  753. * source page isn't available. Return the error and we'll
  754. * retry in the slow path.
  755. */
  756. if (ret)
  757. return -EFAULT;
  758. remain -= page_length;
  759. user_data += page_length;
  760. offset += page_length;
  761. }
  762. return 0;
  763. }
  764. /**
  765. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  766. * the memory and maps it using kmap_atomic for copying.
  767. *
  768. * This avoids taking mmap_sem for faulting on the user's address while the
  769. * struct_mutex is held.
  770. */
  771. static int
  772. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  773. struct drm_i915_gem_pwrite *args,
  774. struct drm_file *file_priv)
  775. {
  776. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  777. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  778. struct mm_struct *mm = current->mm;
  779. struct page **user_pages;
  780. ssize_t remain;
  781. loff_t offset, pinned_pages, i;
  782. loff_t first_data_page, last_data_page, num_pages;
  783. int shmem_page_offset;
  784. int data_page_index, data_page_offset;
  785. int page_length;
  786. int ret;
  787. uint64_t data_ptr = args->data_ptr;
  788. int do_bit17_swizzling;
  789. remain = args->size;
  790. /* Pin the user pages containing the data. We can't fault while
  791. * holding the struct mutex, and all of the pwrite implementations
  792. * want to hold it while dereferencing the user data.
  793. */
  794. first_data_page = data_ptr / PAGE_SIZE;
  795. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  796. num_pages = last_data_page - first_data_page + 1;
  797. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  798. if (user_pages == NULL)
  799. return -ENOMEM;
  800. mutex_unlock(&dev->struct_mutex);
  801. down_read(&mm->mmap_sem);
  802. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  803. num_pages, 0, 0, user_pages, NULL);
  804. up_read(&mm->mmap_sem);
  805. mutex_lock(&dev->struct_mutex);
  806. if (pinned_pages < num_pages) {
  807. ret = -EFAULT;
  808. goto out;
  809. }
  810. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  811. if (ret)
  812. goto out;
  813. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  814. obj_priv = to_intel_bo(obj);
  815. offset = args->offset;
  816. obj_priv->dirty = 1;
  817. while (remain > 0) {
  818. struct page *page;
  819. /* Operation in this page
  820. *
  821. * shmem_page_offset = offset within page in shmem file
  822. * data_page_index = page number in get_user_pages return
  823. * data_page_offset = offset with data_page_index page.
  824. * page_length = bytes to copy for this page
  825. */
  826. shmem_page_offset = offset & ~PAGE_MASK;
  827. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  828. data_page_offset = data_ptr & ~PAGE_MASK;
  829. page_length = remain;
  830. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  831. page_length = PAGE_SIZE - shmem_page_offset;
  832. if ((data_page_offset + page_length) > PAGE_SIZE)
  833. page_length = PAGE_SIZE - data_page_offset;
  834. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  835. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  836. if (IS_ERR(page)) {
  837. ret = PTR_ERR(page);
  838. goto out;
  839. }
  840. if (do_bit17_swizzling) {
  841. slow_shmem_bit17_copy(page,
  842. shmem_page_offset,
  843. user_pages[data_page_index],
  844. data_page_offset,
  845. page_length,
  846. 0);
  847. } else {
  848. slow_shmem_copy(page,
  849. shmem_page_offset,
  850. user_pages[data_page_index],
  851. data_page_offset,
  852. page_length);
  853. }
  854. set_page_dirty(page);
  855. mark_page_accessed(page);
  856. page_cache_release(page);
  857. remain -= page_length;
  858. data_ptr += page_length;
  859. offset += page_length;
  860. }
  861. out:
  862. for (i = 0; i < pinned_pages; i++)
  863. page_cache_release(user_pages[i]);
  864. drm_free_large(user_pages);
  865. return ret;
  866. }
  867. /**
  868. * Writes data to the object referenced by handle.
  869. *
  870. * On error, the contents of the buffer that were to be modified are undefined.
  871. */
  872. int
  873. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  874. struct drm_file *file)
  875. {
  876. struct drm_i915_gem_pwrite *args = data;
  877. struct drm_gem_object *obj;
  878. struct drm_i915_gem_object *obj_priv;
  879. int ret = 0;
  880. ret = i915_mutex_lock_interruptible(dev);
  881. if (ret)
  882. return ret;
  883. obj = drm_gem_object_lookup(dev, file, args->handle);
  884. if (obj == NULL) {
  885. ret = -ENOENT;
  886. goto unlock;
  887. }
  888. obj_priv = to_intel_bo(obj);
  889. /* Bounds check destination. */
  890. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  891. ret = -EINVAL;
  892. goto out;
  893. }
  894. if (args->size == 0)
  895. goto out;
  896. if (!access_ok(VERIFY_READ,
  897. (char __user *)(uintptr_t)args->data_ptr,
  898. args->size)) {
  899. ret = -EFAULT;
  900. goto out;
  901. }
  902. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  903. args->size);
  904. if (ret) {
  905. ret = -EFAULT;
  906. goto out;
  907. }
  908. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  909. * it would end up going through the fenced access, and we'll get
  910. * different detiling behavior between reading and writing.
  911. * pread/pwrite currently are reading and writing from the CPU
  912. * perspective, requiring manual detiling by the client.
  913. */
  914. if (obj_priv->phys_obj)
  915. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  916. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  917. obj_priv->gtt_space &&
  918. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  919. ret = i915_gem_object_pin(obj, 0, true, false);
  920. if (ret)
  921. goto out;
  922. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  923. if (ret)
  924. goto out_unpin;
  925. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  926. if (ret == -EFAULT)
  927. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  928. out_unpin:
  929. i915_gem_object_unpin(obj);
  930. } else {
  931. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  932. if (ret)
  933. goto out;
  934. ret = -EFAULT;
  935. if (!i915_gem_object_needs_bit17_swizzle(obj))
  936. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  937. if (ret == -EFAULT)
  938. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  939. }
  940. out:
  941. drm_gem_object_unreference(obj);
  942. unlock:
  943. mutex_unlock(&dev->struct_mutex);
  944. return ret;
  945. }
  946. /**
  947. * Called when user space prepares to use an object with the CPU, either
  948. * through the mmap ioctl's mapping or a GTT mapping.
  949. */
  950. int
  951. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  952. struct drm_file *file_priv)
  953. {
  954. struct drm_i915_private *dev_priv = dev->dev_private;
  955. struct drm_i915_gem_set_domain *args = data;
  956. struct drm_gem_object *obj;
  957. struct drm_i915_gem_object *obj_priv;
  958. uint32_t read_domains = args->read_domains;
  959. uint32_t write_domain = args->write_domain;
  960. int ret;
  961. if (!(dev->driver->driver_features & DRIVER_GEM))
  962. return -ENODEV;
  963. /* Only handle setting domains to types used by the CPU. */
  964. if (write_domain & I915_GEM_GPU_DOMAINS)
  965. return -EINVAL;
  966. if (read_domains & I915_GEM_GPU_DOMAINS)
  967. return -EINVAL;
  968. /* Having something in the write domain implies it's in the read
  969. * domain, and only that read domain. Enforce that in the request.
  970. */
  971. if (write_domain != 0 && read_domains != write_domain)
  972. return -EINVAL;
  973. ret = i915_mutex_lock_interruptible(dev);
  974. if (ret)
  975. return ret;
  976. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  977. if (obj == NULL) {
  978. ret = -ENOENT;
  979. goto unlock;
  980. }
  981. obj_priv = to_intel_bo(obj);
  982. intel_mark_busy(dev, obj);
  983. if (read_domains & I915_GEM_DOMAIN_GTT) {
  984. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  985. /* Update the LRU on the fence for the CPU access that's
  986. * about to occur.
  987. */
  988. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  989. struct drm_i915_fence_reg *reg =
  990. &dev_priv->fence_regs[obj_priv->fence_reg];
  991. list_move_tail(&reg->lru_list,
  992. &dev_priv->mm.fence_list);
  993. }
  994. /* Silently promote "you're not bound, there was nothing to do"
  995. * to success, since the client was just asking us to
  996. * make sure everything was done.
  997. */
  998. if (ret == -EINVAL)
  999. ret = 0;
  1000. } else {
  1001. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1002. }
  1003. /* Maintain LRU order of "inactive" objects */
  1004. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1005. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1006. drm_gem_object_unreference(obj);
  1007. unlock:
  1008. mutex_unlock(&dev->struct_mutex);
  1009. return ret;
  1010. }
  1011. /**
  1012. * Called when user space has done writes to this buffer
  1013. */
  1014. int
  1015. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1016. struct drm_file *file_priv)
  1017. {
  1018. struct drm_i915_gem_sw_finish *args = data;
  1019. struct drm_gem_object *obj;
  1020. int ret = 0;
  1021. if (!(dev->driver->driver_features & DRIVER_GEM))
  1022. return -ENODEV;
  1023. ret = i915_mutex_lock_interruptible(dev);
  1024. if (ret)
  1025. return ret;
  1026. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1027. if (obj == NULL) {
  1028. ret = -ENOENT;
  1029. goto unlock;
  1030. }
  1031. /* Pinned buffers may be scanout, so flush the cache */
  1032. if (to_intel_bo(obj)->pin_count)
  1033. i915_gem_object_flush_cpu_write_domain(obj);
  1034. drm_gem_object_unreference(obj);
  1035. unlock:
  1036. mutex_unlock(&dev->struct_mutex);
  1037. return ret;
  1038. }
  1039. /**
  1040. * Maps the contents of an object, returning the address it is mapped
  1041. * into.
  1042. *
  1043. * While the mapping holds a reference on the contents of the object, it doesn't
  1044. * imply a ref on the object itself.
  1045. */
  1046. int
  1047. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1048. struct drm_file *file_priv)
  1049. {
  1050. struct drm_i915_private *dev_priv = dev->dev_private;
  1051. struct drm_i915_gem_mmap *args = data;
  1052. struct drm_gem_object *obj;
  1053. loff_t offset;
  1054. unsigned long addr;
  1055. if (!(dev->driver->driver_features & DRIVER_GEM))
  1056. return -ENODEV;
  1057. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1058. if (obj == NULL)
  1059. return -ENOENT;
  1060. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1061. drm_gem_object_unreference_unlocked(obj);
  1062. return -E2BIG;
  1063. }
  1064. offset = args->offset;
  1065. down_write(&current->mm->mmap_sem);
  1066. addr = do_mmap(obj->filp, 0, args->size,
  1067. PROT_READ | PROT_WRITE, MAP_SHARED,
  1068. args->offset);
  1069. up_write(&current->mm->mmap_sem);
  1070. drm_gem_object_unreference_unlocked(obj);
  1071. if (IS_ERR((void *)addr))
  1072. return addr;
  1073. args->addr_ptr = (uint64_t) addr;
  1074. return 0;
  1075. }
  1076. /**
  1077. * i915_gem_fault - fault a page into the GTT
  1078. * vma: VMA in question
  1079. * vmf: fault info
  1080. *
  1081. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1082. * from userspace. The fault handler takes care of binding the object to
  1083. * the GTT (if needed), allocating and programming a fence register (again,
  1084. * only if needed based on whether the old reg is still valid or the object
  1085. * is tiled) and inserting a new PTE into the faulting process.
  1086. *
  1087. * Note that the faulting process may involve evicting existing objects
  1088. * from the GTT and/or fence registers to make room. So performance may
  1089. * suffer if the GTT working set is large or there are few fence registers
  1090. * left.
  1091. */
  1092. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1093. {
  1094. struct drm_gem_object *obj = vma->vm_private_data;
  1095. struct drm_device *dev = obj->dev;
  1096. drm_i915_private_t *dev_priv = dev->dev_private;
  1097. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1098. pgoff_t page_offset;
  1099. unsigned long pfn;
  1100. int ret = 0;
  1101. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1102. /* We don't use vmf->pgoff since that has the fake offset */
  1103. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1104. PAGE_SHIFT;
  1105. /* Now bind it into the GTT if needed */
  1106. mutex_lock(&dev->struct_mutex);
  1107. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1108. if (obj_priv->gtt_space) {
  1109. if (!obj_priv->mappable ||
  1110. (obj_priv->tiling_mode && !obj_priv->fenceable)) {
  1111. ret = i915_gem_object_unbind(obj);
  1112. if (ret)
  1113. goto unlock;
  1114. }
  1115. }
  1116. if (!obj_priv->gtt_space) {
  1117. ret = i915_gem_object_bind_to_gtt(obj, 0,
  1118. true, obj_priv->tiling_mode);
  1119. if (ret)
  1120. goto unlock;
  1121. }
  1122. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1123. if (ret)
  1124. goto unlock;
  1125. if (!obj_priv->fault_mappable) {
  1126. obj_priv->fault_mappable = true;
  1127. i915_gem_info_update_mappable(dev_priv, obj_priv, true);
  1128. }
  1129. /* Need a new fence register? */
  1130. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1131. ret = i915_gem_object_get_fence_reg(obj, true);
  1132. if (ret)
  1133. goto unlock;
  1134. }
  1135. if (i915_gem_object_is_inactive(obj_priv))
  1136. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1137. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1138. page_offset;
  1139. /* Finally, remap it using the new GTT offset */
  1140. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1141. unlock:
  1142. mutex_unlock(&dev->struct_mutex);
  1143. switch (ret) {
  1144. case 0:
  1145. case -ERESTARTSYS:
  1146. return VM_FAULT_NOPAGE;
  1147. case -ENOMEM:
  1148. case -EAGAIN:
  1149. return VM_FAULT_OOM;
  1150. default:
  1151. return VM_FAULT_SIGBUS;
  1152. }
  1153. }
  1154. /**
  1155. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1156. * @obj: obj in question
  1157. *
  1158. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1159. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1160. * up the object based on the offset and sets up the various memory mapping
  1161. * structures.
  1162. *
  1163. * This routine allocates and attaches a fake offset for @obj.
  1164. */
  1165. static int
  1166. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1167. {
  1168. struct drm_device *dev = obj->dev;
  1169. struct drm_gem_mm *mm = dev->mm_private;
  1170. struct drm_map_list *list;
  1171. struct drm_local_map *map;
  1172. int ret = 0;
  1173. /* Set the object up for mmap'ing */
  1174. list = &obj->map_list;
  1175. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1176. if (!list->map)
  1177. return -ENOMEM;
  1178. map = list->map;
  1179. map->type = _DRM_GEM;
  1180. map->size = obj->size;
  1181. map->handle = obj;
  1182. /* Get a DRM GEM mmap offset allocated... */
  1183. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1184. obj->size / PAGE_SIZE, 0, 0);
  1185. if (!list->file_offset_node) {
  1186. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1187. ret = -ENOSPC;
  1188. goto out_free_list;
  1189. }
  1190. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1191. obj->size / PAGE_SIZE, 0);
  1192. if (!list->file_offset_node) {
  1193. ret = -ENOMEM;
  1194. goto out_free_list;
  1195. }
  1196. list->hash.key = list->file_offset_node->start;
  1197. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1198. if (ret) {
  1199. DRM_ERROR("failed to add to map hash\n");
  1200. goto out_free_mm;
  1201. }
  1202. return 0;
  1203. out_free_mm:
  1204. drm_mm_put_block(list->file_offset_node);
  1205. out_free_list:
  1206. kfree(list->map);
  1207. list->map = NULL;
  1208. return ret;
  1209. }
  1210. /**
  1211. * i915_gem_release_mmap - remove physical page mappings
  1212. * @obj: obj in question
  1213. *
  1214. * Preserve the reservation of the mmapping with the DRM core code, but
  1215. * relinquish ownership of the pages back to the system.
  1216. *
  1217. * It is vital that we remove the page mapping if we have mapped a tiled
  1218. * object through the GTT and then lose the fence register due to
  1219. * resource pressure. Similarly if the object has been moved out of the
  1220. * aperture, than pages mapped into userspace must be revoked. Removing the
  1221. * mapping will then trigger a page fault on the next user access, allowing
  1222. * fixup by i915_gem_fault().
  1223. */
  1224. void
  1225. i915_gem_release_mmap(struct drm_gem_object *obj)
  1226. {
  1227. struct drm_device *dev = obj->dev;
  1228. struct drm_i915_private *dev_priv = dev->dev_private;
  1229. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1230. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1231. unmap_mapping_range(dev->dev_mapping,
  1232. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1233. obj->size, 1);
  1234. if (obj_priv->fault_mappable) {
  1235. obj_priv->fault_mappable = false;
  1236. i915_gem_info_update_mappable(dev_priv, obj_priv, false);
  1237. }
  1238. }
  1239. static void
  1240. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1241. {
  1242. struct drm_device *dev = obj->dev;
  1243. struct drm_gem_mm *mm = dev->mm_private;
  1244. struct drm_map_list *list = &obj->map_list;
  1245. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1246. drm_mm_put_block(list->file_offset_node);
  1247. kfree(list->map);
  1248. list->map = NULL;
  1249. }
  1250. /**
  1251. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1252. * @obj: object to check
  1253. *
  1254. * Return the required GTT alignment for an object, taking into account
  1255. * potential fence register mapping if needed.
  1256. */
  1257. static uint32_t
  1258. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1259. {
  1260. struct drm_device *dev = obj_priv->base.dev;
  1261. /*
  1262. * Minimum alignment is 4k (GTT page size), but might be greater
  1263. * if a fence register is needed for the object.
  1264. */
  1265. if (INTEL_INFO(dev)->gen >= 4 ||
  1266. obj_priv->tiling_mode == I915_TILING_NONE)
  1267. return 4096;
  1268. /*
  1269. * Previous chips need to be aligned to the size of the smallest
  1270. * fence register that can contain the object.
  1271. */
  1272. return i915_gem_get_gtt_size(obj_priv);
  1273. }
  1274. static uint32_t
  1275. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
  1276. {
  1277. struct drm_device *dev = obj_priv->base.dev;
  1278. uint32_t size;
  1279. /*
  1280. * Minimum alignment is 4k (GTT page size), but might be greater
  1281. * if a fence register is needed for the object.
  1282. */
  1283. if (INTEL_INFO(dev)->gen >= 4)
  1284. return obj_priv->base.size;
  1285. /*
  1286. * Previous chips need to be aligned to the size of the smallest
  1287. * fence register that can contain the object.
  1288. */
  1289. if (INTEL_INFO(dev)->gen == 3)
  1290. size = 1024*1024;
  1291. else
  1292. size = 512*1024;
  1293. while (size < obj_priv->base.size)
  1294. size <<= 1;
  1295. return size;
  1296. }
  1297. /**
  1298. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1299. * @dev: DRM device
  1300. * @data: GTT mapping ioctl data
  1301. * @file_priv: GEM object info
  1302. *
  1303. * Simply returns the fake offset to userspace so it can mmap it.
  1304. * The mmap call will end up in drm_gem_mmap(), which will set things
  1305. * up so we can get faults in the handler above.
  1306. *
  1307. * The fault handler will take care of binding the object into the GTT
  1308. * (since it may have been evicted to make room for something), allocating
  1309. * a fence register, and mapping the appropriate aperture address into
  1310. * userspace.
  1311. */
  1312. int
  1313. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1314. struct drm_file *file_priv)
  1315. {
  1316. struct drm_i915_private *dev_priv = dev->dev_private;
  1317. struct drm_i915_gem_mmap_gtt *args = data;
  1318. struct drm_gem_object *obj;
  1319. struct drm_i915_gem_object *obj_priv;
  1320. int ret;
  1321. if (!(dev->driver->driver_features & DRIVER_GEM))
  1322. return -ENODEV;
  1323. ret = i915_mutex_lock_interruptible(dev);
  1324. if (ret)
  1325. return ret;
  1326. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1327. if (obj == NULL) {
  1328. ret = -ENOENT;
  1329. goto unlock;
  1330. }
  1331. obj_priv = to_intel_bo(obj);
  1332. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1333. ret = -E2BIG;
  1334. goto unlock;
  1335. }
  1336. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1337. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1338. ret = -EINVAL;
  1339. goto out;
  1340. }
  1341. if (!obj->map_list.map) {
  1342. ret = i915_gem_create_mmap_offset(obj);
  1343. if (ret)
  1344. goto out;
  1345. }
  1346. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1347. out:
  1348. drm_gem_object_unreference(obj);
  1349. unlock:
  1350. mutex_unlock(&dev->struct_mutex);
  1351. return ret;
  1352. }
  1353. static int
  1354. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1355. gfp_t gfpmask)
  1356. {
  1357. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1358. int page_count, i;
  1359. struct address_space *mapping;
  1360. struct inode *inode;
  1361. struct page *page;
  1362. /* Get the list of pages out of our struct file. They'll be pinned
  1363. * at this point until we release them.
  1364. */
  1365. page_count = obj->size / PAGE_SIZE;
  1366. BUG_ON(obj_priv->pages != NULL);
  1367. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1368. if (obj_priv->pages == NULL)
  1369. return -ENOMEM;
  1370. inode = obj->filp->f_path.dentry->d_inode;
  1371. mapping = inode->i_mapping;
  1372. for (i = 0; i < page_count; i++) {
  1373. page = read_cache_page_gfp(mapping, i,
  1374. GFP_HIGHUSER |
  1375. __GFP_COLD |
  1376. __GFP_RECLAIMABLE |
  1377. gfpmask);
  1378. if (IS_ERR(page))
  1379. goto err_pages;
  1380. obj_priv->pages[i] = page;
  1381. }
  1382. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1383. i915_gem_object_do_bit_17_swizzle(obj);
  1384. return 0;
  1385. err_pages:
  1386. while (i--)
  1387. page_cache_release(obj_priv->pages[i]);
  1388. drm_free_large(obj_priv->pages);
  1389. obj_priv->pages = NULL;
  1390. return PTR_ERR(page);
  1391. }
  1392. static void
  1393. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1394. {
  1395. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1396. int page_count = obj->size / PAGE_SIZE;
  1397. int i;
  1398. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1399. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1400. i915_gem_object_save_bit_17_swizzle(obj);
  1401. if (obj_priv->madv == I915_MADV_DONTNEED)
  1402. obj_priv->dirty = 0;
  1403. for (i = 0; i < page_count; i++) {
  1404. if (obj_priv->dirty)
  1405. set_page_dirty(obj_priv->pages[i]);
  1406. if (obj_priv->madv == I915_MADV_WILLNEED)
  1407. mark_page_accessed(obj_priv->pages[i]);
  1408. page_cache_release(obj_priv->pages[i]);
  1409. }
  1410. obj_priv->dirty = 0;
  1411. drm_free_large(obj_priv->pages);
  1412. obj_priv->pages = NULL;
  1413. }
  1414. static uint32_t
  1415. i915_gem_next_request_seqno(struct drm_device *dev,
  1416. struct intel_ring_buffer *ring)
  1417. {
  1418. drm_i915_private_t *dev_priv = dev->dev_private;
  1419. ring->outstanding_lazy_request = true;
  1420. return dev_priv->next_seqno;
  1421. }
  1422. static void
  1423. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1424. struct intel_ring_buffer *ring)
  1425. {
  1426. struct drm_device *dev = obj->dev;
  1427. struct drm_i915_private *dev_priv = dev->dev_private;
  1428. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1429. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1430. BUG_ON(ring == NULL);
  1431. obj_priv->ring = ring;
  1432. /* Add a reference if we're newly entering the active list. */
  1433. if (!obj_priv->active) {
  1434. drm_gem_object_reference(obj);
  1435. obj_priv->active = 1;
  1436. }
  1437. /* Move from whatever list we were on to the tail of execution. */
  1438. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1439. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1440. obj_priv->last_rendering_seqno = seqno;
  1441. }
  1442. static void
  1443. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1444. {
  1445. struct drm_device *dev = obj->dev;
  1446. drm_i915_private_t *dev_priv = dev->dev_private;
  1447. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1448. BUG_ON(!obj_priv->active);
  1449. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1450. list_del_init(&obj_priv->ring_list);
  1451. obj_priv->last_rendering_seqno = 0;
  1452. }
  1453. /* Immediately discard the backing storage */
  1454. static void
  1455. i915_gem_object_truncate(struct drm_gem_object *obj)
  1456. {
  1457. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1458. struct inode *inode;
  1459. /* Our goal here is to return as much of the memory as
  1460. * is possible back to the system as we are called from OOM.
  1461. * To do this we must instruct the shmfs to drop all of its
  1462. * backing pages, *now*. Here we mirror the actions taken
  1463. * when by shmem_delete_inode() to release the backing store.
  1464. */
  1465. inode = obj->filp->f_path.dentry->d_inode;
  1466. truncate_inode_pages(inode->i_mapping, 0);
  1467. if (inode->i_op->truncate_range)
  1468. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1469. obj_priv->madv = __I915_MADV_PURGED;
  1470. }
  1471. static inline int
  1472. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1473. {
  1474. return obj_priv->madv == I915_MADV_DONTNEED;
  1475. }
  1476. static void
  1477. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1478. {
  1479. struct drm_device *dev = obj->dev;
  1480. drm_i915_private_t *dev_priv = dev->dev_private;
  1481. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1482. if (obj_priv->pin_count != 0)
  1483. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1484. else
  1485. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1486. list_del_init(&obj_priv->ring_list);
  1487. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1488. obj_priv->last_rendering_seqno = 0;
  1489. obj_priv->ring = NULL;
  1490. if (obj_priv->active) {
  1491. obj_priv->active = 0;
  1492. drm_gem_object_unreference(obj);
  1493. }
  1494. WARN_ON(i915_verify_lists(dev));
  1495. }
  1496. static void
  1497. i915_gem_process_flushing_list(struct drm_device *dev,
  1498. uint32_t flush_domains,
  1499. struct intel_ring_buffer *ring)
  1500. {
  1501. drm_i915_private_t *dev_priv = dev->dev_private;
  1502. struct drm_i915_gem_object *obj_priv, *next;
  1503. list_for_each_entry_safe(obj_priv, next,
  1504. &ring->gpu_write_list,
  1505. gpu_write_list) {
  1506. struct drm_gem_object *obj = &obj_priv->base;
  1507. if (obj->write_domain & flush_domains) {
  1508. uint32_t old_write_domain = obj->write_domain;
  1509. obj->write_domain = 0;
  1510. list_del_init(&obj_priv->gpu_write_list);
  1511. i915_gem_object_move_to_active(obj, ring);
  1512. /* update the fence lru list */
  1513. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1514. struct drm_i915_fence_reg *reg =
  1515. &dev_priv->fence_regs[obj_priv->fence_reg];
  1516. list_move_tail(&reg->lru_list,
  1517. &dev_priv->mm.fence_list);
  1518. }
  1519. trace_i915_gem_object_change_domain(obj,
  1520. obj->read_domains,
  1521. old_write_domain);
  1522. }
  1523. }
  1524. }
  1525. int
  1526. i915_add_request(struct drm_device *dev,
  1527. struct drm_file *file,
  1528. struct drm_i915_gem_request *request,
  1529. struct intel_ring_buffer *ring)
  1530. {
  1531. drm_i915_private_t *dev_priv = dev->dev_private;
  1532. struct drm_i915_file_private *file_priv = NULL;
  1533. uint32_t seqno;
  1534. int was_empty;
  1535. int ret;
  1536. BUG_ON(request == NULL);
  1537. if (file != NULL)
  1538. file_priv = file->driver_priv;
  1539. ret = ring->add_request(ring, &seqno);
  1540. if (ret)
  1541. return ret;
  1542. ring->outstanding_lazy_request = false;
  1543. request->seqno = seqno;
  1544. request->ring = ring;
  1545. request->emitted_jiffies = jiffies;
  1546. was_empty = list_empty(&ring->request_list);
  1547. list_add_tail(&request->list, &ring->request_list);
  1548. if (file_priv) {
  1549. spin_lock(&file_priv->mm.lock);
  1550. request->file_priv = file_priv;
  1551. list_add_tail(&request->client_list,
  1552. &file_priv->mm.request_list);
  1553. spin_unlock(&file_priv->mm.lock);
  1554. }
  1555. if (!dev_priv->mm.suspended) {
  1556. mod_timer(&dev_priv->hangcheck_timer,
  1557. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1558. if (was_empty)
  1559. queue_delayed_work(dev_priv->wq,
  1560. &dev_priv->mm.retire_work, HZ);
  1561. }
  1562. return 0;
  1563. }
  1564. /**
  1565. * Command execution barrier
  1566. *
  1567. * Ensures that all commands in the ring are finished
  1568. * before signalling the CPU
  1569. */
  1570. static void
  1571. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1572. {
  1573. uint32_t flush_domains = 0;
  1574. /* The sampler always gets flushed on i965 (sigh) */
  1575. if (INTEL_INFO(dev)->gen >= 4)
  1576. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1577. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1578. }
  1579. static inline void
  1580. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1581. {
  1582. struct drm_i915_file_private *file_priv = request->file_priv;
  1583. if (!file_priv)
  1584. return;
  1585. spin_lock(&file_priv->mm.lock);
  1586. list_del(&request->client_list);
  1587. request->file_priv = NULL;
  1588. spin_unlock(&file_priv->mm.lock);
  1589. }
  1590. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1591. struct intel_ring_buffer *ring)
  1592. {
  1593. while (!list_empty(&ring->request_list)) {
  1594. struct drm_i915_gem_request *request;
  1595. request = list_first_entry(&ring->request_list,
  1596. struct drm_i915_gem_request,
  1597. list);
  1598. list_del(&request->list);
  1599. i915_gem_request_remove_from_client(request);
  1600. kfree(request);
  1601. }
  1602. while (!list_empty(&ring->active_list)) {
  1603. struct drm_i915_gem_object *obj_priv;
  1604. obj_priv = list_first_entry(&ring->active_list,
  1605. struct drm_i915_gem_object,
  1606. ring_list);
  1607. obj_priv->base.write_domain = 0;
  1608. list_del_init(&obj_priv->gpu_write_list);
  1609. i915_gem_object_move_to_inactive(&obj_priv->base);
  1610. }
  1611. }
  1612. void i915_gem_reset(struct drm_device *dev)
  1613. {
  1614. struct drm_i915_private *dev_priv = dev->dev_private;
  1615. struct drm_i915_gem_object *obj_priv;
  1616. int i;
  1617. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1618. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1619. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1620. /* Remove anything from the flushing lists. The GPU cache is likely
  1621. * to be lost on reset along with the data, so simply move the
  1622. * lost bo to the inactive list.
  1623. */
  1624. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1625. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1626. struct drm_i915_gem_object,
  1627. mm_list);
  1628. obj_priv->base.write_domain = 0;
  1629. list_del_init(&obj_priv->gpu_write_list);
  1630. i915_gem_object_move_to_inactive(&obj_priv->base);
  1631. }
  1632. /* Move everything out of the GPU domains to ensure we do any
  1633. * necessary invalidation upon reuse.
  1634. */
  1635. list_for_each_entry(obj_priv,
  1636. &dev_priv->mm.inactive_list,
  1637. mm_list)
  1638. {
  1639. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1640. }
  1641. /* The fence registers are invalidated so clear them out */
  1642. for (i = 0; i < 16; i++) {
  1643. struct drm_i915_fence_reg *reg;
  1644. reg = &dev_priv->fence_regs[i];
  1645. if (!reg->obj)
  1646. continue;
  1647. i915_gem_clear_fence_reg(reg->obj);
  1648. }
  1649. }
  1650. /**
  1651. * This function clears the request list as sequence numbers are passed.
  1652. */
  1653. static void
  1654. i915_gem_retire_requests_ring(struct drm_device *dev,
  1655. struct intel_ring_buffer *ring)
  1656. {
  1657. drm_i915_private_t *dev_priv = dev->dev_private;
  1658. uint32_t seqno;
  1659. if (!ring->status_page.page_addr ||
  1660. list_empty(&ring->request_list))
  1661. return;
  1662. WARN_ON(i915_verify_lists(dev));
  1663. seqno = ring->get_seqno(ring);
  1664. while (!list_empty(&ring->request_list)) {
  1665. struct drm_i915_gem_request *request;
  1666. request = list_first_entry(&ring->request_list,
  1667. struct drm_i915_gem_request,
  1668. list);
  1669. if (!i915_seqno_passed(seqno, request->seqno))
  1670. break;
  1671. trace_i915_gem_request_retire(dev, request->seqno);
  1672. list_del(&request->list);
  1673. i915_gem_request_remove_from_client(request);
  1674. kfree(request);
  1675. }
  1676. /* Move any buffers on the active list that are no longer referenced
  1677. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1678. */
  1679. while (!list_empty(&ring->active_list)) {
  1680. struct drm_gem_object *obj;
  1681. struct drm_i915_gem_object *obj_priv;
  1682. obj_priv = list_first_entry(&ring->active_list,
  1683. struct drm_i915_gem_object,
  1684. ring_list);
  1685. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1686. break;
  1687. obj = &obj_priv->base;
  1688. if (obj->write_domain != 0)
  1689. i915_gem_object_move_to_flushing(obj);
  1690. else
  1691. i915_gem_object_move_to_inactive(obj);
  1692. }
  1693. if (unlikely (dev_priv->trace_irq_seqno &&
  1694. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1695. ring->user_irq_put(ring);
  1696. dev_priv->trace_irq_seqno = 0;
  1697. }
  1698. WARN_ON(i915_verify_lists(dev));
  1699. }
  1700. void
  1701. i915_gem_retire_requests(struct drm_device *dev)
  1702. {
  1703. drm_i915_private_t *dev_priv = dev->dev_private;
  1704. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1705. struct drm_i915_gem_object *obj_priv, *tmp;
  1706. /* We must be careful that during unbind() we do not
  1707. * accidentally infinitely recurse into retire requests.
  1708. * Currently:
  1709. * retire -> free -> unbind -> wait -> retire_ring
  1710. */
  1711. list_for_each_entry_safe(obj_priv, tmp,
  1712. &dev_priv->mm.deferred_free_list,
  1713. mm_list)
  1714. i915_gem_free_object_tail(&obj_priv->base);
  1715. }
  1716. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1717. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1718. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1719. }
  1720. static void
  1721. i915_gem_retire_work_handler(struct work_struct *work)
  1722. {
  1723. drm_i915_private_t *dev_priv;
  1724. struct drm_device *dev;
  1725. dev_priv = container_of(work, drm_i915_private_t,
  1726. mm.retire_work.work);
  1727. dev = dev_priv->dev;
  1728. /* Come back later if the device is busy... */
  1729. if (!mutex_trylock(&dev->struct_mutex)) {
  1730. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1731. return;
  1732. }
  1733. i915_gem_retire_requests(dev);
  1734. if (!dev_priv->mm.suspended &&
  1735. (!list_empty(&dev_priv->render_ring.request_list) ||
  1736. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1737. !list_empty(&dev_priv->blt_ring.request_list)))
  1738. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1739. mutex_unlock(&dev->struct_mutex);
  1740. }
  1741. int
  1742. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1743. bool interruptible, struct intel_ring_buffer *ring)
  1744. {
  1745. drm_i915_private_t *dev_priv = dev->dev_private;
  1746. u32 ier;
  1747. int ret = 0;
  1748. BUG_ON(seqno == 0);
  1749. if (atomic_read(&dev_priv->mm.wedged))
  1750. return -EAGAIN;
  1751. if (ring->outstanding_lazy_request) {
  1752. struct drm_i915_gem_request *request;
  1753. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1754. if (request == NULL)
  1755. return -ENOMEM;
  1756. ret = i915_add_request(dev, NULL, request, ring);
  1757. if (ret) {
  1758. kfree(request);
  1759. return ret;
  1760. }
  1761. seqno = request->seqno;
  1762. }
  1763. BUG_ON(seqno == dev_priv->next_seqno);
  1764. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1765. if (HAS_PCH_SPLIT(dev))
  1766. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1767. else
  1768. ier = I915_READ(IER);
  1769. if (!ier) {
  1770. DRM_ERROR("something (likely vbetool) disabled "
  1771. "interrupts, re-enabling\n");
  1772. i915_driver_irq_preinstall(dev);
  1773. i915_driver_irq_postinstall(dev);
  1774. }
  1775. trace_i915_gem_request_wait_begin(dev, seqno);
  1776. ring->waiting_seqno = seqno;
  1777. ring->user_irq_get(ring);
  1778. if (interruptible)
  1779. ret = wait_event_interruptible(ring->irq_queue,
  1780. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1781. || atomic_read(&dev_priv->mm.wedged));
  1782. else
  1783. wait_event(ring->irq_queue,
  1784. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1785. || atomic_read(&dev_priv->mm.wedged));
  1786. ring->user_irq_put(ring);
  1787. ring->waiting_seqno = 0;
  1788. trace_i915_gem_request_wait_end(dev, seqno);
  1789. }
  1790. if (atomic_read(&dev_priv->mm.wedged))
  1791. ret = -EAGAIN;
  1792. if (ret && ret != -ERESTARTSYS)
  1793. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1794. __func__, ret, seqno, ring->get_seqno(ring),
  1795. dev_priv->next_seqno);
  1796. /* Directly dispatch request retiring. While we have the work queue
  1797. * to handle this, the waiter on a request often wants an associated
  1798. * buffer to have made it to the inactive list, and we would need
  1799. * a separate wait queue to handle that.
  1800. */
  1801. if (ret == 0)
  1802. i915_gem_retire_requests_ring(dev, ring);
  1803. return ret;
  1804. }
  1805. /**
  1806. * Waits for a sequence number to be signaled, and cleans up the
  1807. * request and object lists appropriately for that event.
  1808. */
  1809. static int
  1810. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1811. struct intel_ring_buffer *ring)
  1812. {
  1813. return i915_do_wait_request(dev, seqno, 1, ring);
  1814. }
  1815. static void
  1816. i915_gem_flush_ring(struct drm_device *dev,
  1817. struct drm_file *file_priv,
  1818. struct intel_ring_buffer *ring,
  1819. uint32_t invalidate_domains,
  1820. uint32_t flush_domains)
  1821. {
  1822. ring->flush(ring, invalidate_domains, flush_domains);
  1823. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1824. }
  1825. static void
  1826. i915_gem_flush(struct drm_device *dev,
  1827. struct drm_file *file_priv,
  1828. uint32_t invalidate_domains,
  1829. uint32_t flush_domains,
  1830. uint32_t flush_rings)
  1831. {
  1832. drm_i915_private_t *dev_priv = dev->dev_private;
  1833. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1834. drm_agp_chipset_flush(dev);
  1835. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1836. if (flush_rings & RING_RENDER)
  1837. i915_gem_flush_ring(dev, file_priv,
  1838. &dev_priv->render_ring,
  1839. invalidate_domains, flush_domains);
  1840. if (flush_rings & RING_BSD)
  1841. i915_gem_flush_ring(dev, file_priv,
  1842. &dev_priv->bsd_ring,
  1843. invalidate_domains, flush_domains);
  1844. if (flush_rings & RING_BLT)
  1845. i915_gem_flush_ring(dev, file_priv,
  1846. &dev_priv->blt_ring,
  1847. invalidate_domains, flush_domains);
  1848. }
  1849. }
  1850. /**
  1851. * Ensures that all rendering to the object has completed and the object is
  1852. * safe to unbind from the GTT or access from the CPU.
  1853. */
  1854. static int
  1855. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1856. bool interruptible)
  1857. {
  1858. struct drm_device *dev = obj->dev;
  1859. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1860. int ret;
  1861. /* This function only exists to support waiting for existing rendering,
  1862. * not for emitting required flushes.
  1863. */
  1864. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1865. /* If there is rendering queued on the buffer being evicted, wait for
  1866. * it.
  1867. */
  1868. if (obj_priv->active) {
  1869. ret = i915_do_wait_request(dev,
  1870. obj_priv->last_rendering_seqno,
  1871. interruptible,
  1872. obj_priv->ring);
  1873. if (ret)
  1874. return ret;
  1875. }
  1876. return 0;
  1877. }
  1878. /**
  1879. * Unbinds an object from the GTT aperture.
  1880. */
  1881. int
  1882. i915_gem_object_unbind(struct drm_gem_object *obj)
  1883. {
  1884. struct drm_device *dev = obj->dev;
  1885. struct drm_i915_private *dev_priv = dev->dev_private;
  1886. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1887. int ret = 0;
  1888. if (obj_priv->gtt_space == NULL)
  1889. return 0;
  1890. if (obj_priv->pin_count != 0) {
  1891. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1892. return -EINVAL;
  1893. }
  1894. /* blow away mappings if mapped through GTT */
  1895. i915_gem_release_mmap(obj);
  1896. /* Move the object to the CPU domain to ensure that
  1897. * any possible CPU writes while it's not in the GTT
  1898. * are flushed when we go to remap it. This will
  1899. * also ensure that all pending GPU writes are finished
  1900. * before we unbind.
  1901. */
  1902. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1903. if (ret == -ERESTARTSYS)
  1904. return ret;
  1905. /* Continue on if we fail due to EIO, the GPU is hung so we
  1906. * should be safe and we need to cleanup or else we might
  1907. * cause memory corruption through use-after-free.
  1908. */
  1909. if (ret) {
  1910. i915_gem_clflush_object(obj);
  1911. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1912. }
  1913. /* release the fence reg _after_ flushing */
  1914. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1915. i915_gem_clear_fence_reg(obj);
  1916. drm_unbind_agp(obj_priv->agp_mem);
  1917. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1918. i915_gem_object_put_pages_gtt(obj);
  1919. i915_gem_info_remove_gtt(dev_priv, obj_priv);
  1920. list_del_init(&obj_priv->mm_list);
  1921. obj_priv->fenceable = true;
  1922. obj_priv->mappable = true;
  1923. drm_mm_put_block(obj_priv->gtt_space);
  1924. obj_priv->gtt_space = NULL;
  1925. obj_priv->gtt_offset = 0;
  1926. if (i915_gem_object_is_purgeable(obj_priv))
  1927. i915_gem_object_truncate(obj);
  1928. trace_i915_gem_object_unbind(obj);
  1929. return ret;
  1930. }
  1931. static int i915_ring_idle(struct drm_device *dev,
  1932. struct intel_ring_buffer *ring)
  1933. {
  1934. if (list_empty(&ring->gpu_write_list))
  1935. return 0;
  1936. i915_gem_flush_ring(dev, NULL, ring,
  1937. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1938. return i915_wait_request(dev,
  1939. i915_gem_next_request_seqno(dev, ring),
  1940. ring);
  1941. }
  1942. int
  1943. i915_gpu_idle(struct drm_device *dev)
  1944. {
  1945. drm_i915_private_t *dev_priv = dev->dev_private;
  1946. bool lists_empty;
  1947. int ret;
  1948. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1949. list_empty(&dev_priv->render_ring.active_list) &&
  1950. list_empty(&dev_priv->bsd_ring.active_list) &&
  1951. list_empty(&dev_priv->blt_ring.active_list));
  1952. if (lists_empty)
  1953. return 0;
  1954. /* Flush everything onto the inactive list. */
  1955. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1956. if (ret)
  1957. return ret;
  1958. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1959. if (ret)
  1960. return ret;
  1961. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1962. if (ret)
  1963. return ret;
  1964. return 0;
  1965. }
  1966. static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
  1967. {
  1968. struct drm_device *dev = obj->dev;
  1969. drm_i915_private_t *dev_priv = dev->dev_private;
  1970. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1971. u32 size = i915_gem_get_gtt_size(obj_priv);
  1972. int regnum = obj_priv->fence_reg;
  1973. uint64_t val;
  1974. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1975. 0xfffff000) << 32;
  1976. val |= obj_priv->gtt_offset & 0xfffff000;
  1977. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1978. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1979. if (obj_priv->tiling_mode == I915_TILING_Y)
  1980. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1981. val |= I965_FENCE_REG_VALID;
  1982. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1983. }
  1984. static void i965_write_fence_reg(struct drm_gem_object *obj)
  1985. {
  1986. struct drm_device *dev = obj->dev;
  1987. drm_i915_private_t *dev_priv = dev->dev_private;
  1988. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1989. u32 size = i915_gem_get_gtt_size(obj_priv);
  1990. int regnum = obj_priv->fence_reg;
  1991. uint64_t val;
  1992. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1993. 0xfffff000) << 32;
  1994. val |= obj_priv->gtt_offset & 0xfffff000;
  1995. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1996. if (obj_priv->tiling_mode == I915_TILING_Y)
  1997. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1998. val |= I965_FENCE_REG_VALID;
  1999. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  2000. }
  2001. static void i915_write_fence_reg(struct drm_gem_object *obj)
  2002. {
  2003. struct drm_device *dev = obj->dev;
  2004. drm_i915_private_t *dev_priv = dev->dev_private;
  2005. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2006. u32 size = i915_gem_get_gtt_size(obj_priv);
  2007. uint32_t fence_reg, val, pitch_val;
  2008. int tile_width;
  2009. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2010. (obj_priv->gtt_offset & (size - 1))) {
  2011. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  2012. __func__, obj_priv->gtt_offset, obj_priv->fenceable, size,
  2013. obj_priv->gtt_space->start, obj_priv->gtt_space->size);
  2014. return;
  2015. }
  2016. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2017. HAS_128_BYTE_Y_TILING(dev))
  2018. tile_width = 128;
  2019. else
  2020. tile_width = 512;
  2021. /* Note: pitch better be a power of two tile widths */
  2022. pitch_val = obj_priv->stride / tile_width;
  2023. pitch_val = ffs(pitch_val) - 1;
  2024. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2025. HAS_128_BYTE_Y_TILING(dev))
  2026. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2027. else
  2028. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2029. val = obj_priv->gtt_offset;
  2030. if (obj_priv->tiling_mode == I915_TILING_Y)
  2031. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2032. val |= I915_FENCE_SIZE_BITS(size);
  2033. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2034. val |= I830_FENCE_REG_VALID;
  2035. fence_reg = obj_priv->fence_reg;
  2036. if (fence_reg < 8)
  2037. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2038. else
  2039. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2040. I915_WRITE(fence_reg, val);
  2041. }
  2042. static void i830_write_fence_reg(struct drm_gem_object *obj)
  2043. {
  2044. struct drm_device *dev = obj->dev;
  2045. drm_i915_private_t *dev_priv = dev->dev_private;
  2046. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2047. u32 size = i915_gem_get_gtt_size(obj_priv);
  2048. int regnum = obj_priv->fence_reg;
  2049. uint32_t val;
  2050. uint32_t pitch_val;
  2051. uint32_t fence_size_bits;
  2052. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2053. (obj_priv->gtt_offset & (obj->size - 1))) {
  2054. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2055. __func__, obj_priv->gtt_offset);
  2056. return;
  2057. }
  2058. pitch_val = obj_priv->stride / 128;
  2059. pitch_val = ffs(pitch_val) - 1;
  2060. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2061. val = obj_priv->gtt_offset;
  2062. if (obj_priv->tiling_mode == I915_TILING_Y)
  2063. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2064. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2065. WARN_ON(fence_size_bits & ~0x00000f00);
  2066. val |= fence_size_bits;
  2067. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2068. val |= I830_FENCE_REG_VALID;
  2069. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2070. }
  2071. static int i915_find_fence_reg(struct drm_device *dev,
  2072. bool interruptible)
  2073. {
  2074. struct drm_i915_private *dev_priv = dev->dev_private;
  2075. struct drm_i915_fence_reg *reg;
  2076. struct drm_i915_gem_object *obj_priv = NULL;
  2077. int i, avail, ret;
  2078. /* First try to find a free reg */
  2079. avail = 0;
  2080. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2081. reg = &dev_priv->fence_regs[i];
  2082. if (!reg->obj)
  2083. return i;
  2084. obj_priv = to_intel_bo(reg->obj);
  2085. if (!obj_priv->pin_count)
  2086. avail++;
  2087. }
  2088. if (avail == 0)
  2089. return -ENOSPC;
  2090. /* None available, try to steal one or wait for a user to finish */
  2091. avail = I915_FENCE_REG_NONE;
  2092. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2093. lru_list) {
  2094. obj_priv = to_intel_bo(reg->obj);
  2095. if (obj_priv->pin_count)
  2096. continue;
  2097. /* found one! */
  2098. avail = obj_priv->fence_reg;
  2099. break;
  2100. }
  2101. BUG_ON(avail == I915_FENCE_REG_NONE);
  2102. /* We only have a reference on obj from the active list. put_fence_reg
  2103. * might drop that one, causing a use-after-free in it. So hold a
  2104. * private reference to obj like the other callers of put_fence_reg
  2105. * (set_tiling ioctl) do. */
  2106. drm_gem_object_reference(&obj_priv->base);
  2107. ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
  2108. drm_gem_object_unreference(&obj_priv->base);
  2109. if (ret != 0)
  2110. return ret;
  2111. return avail;
  2112. }
  2113. /**
  2114. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2115. * @obj: object to map through a fence reg
  2116. *
  2117. * When mapping objects through the GTT, userspace wants to be able to write
  2118. * to them without having to worry about swizzling if the object is tiled.
  2119. *
  2120. * This function walks the fence regs looking for a free one for @obj,
  2121. * stealing one if it can't find any.
  2122. *
  2123. * It then sets up the reg based on the object's properties: address, pitch
  2124. * and tiling format.
  2125. */
  2126. int
  2127. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2128. bool interruptible)
  2129. {
  2130. struct drm_device *dev = obj->dev;
  2131. struct drm_i915_private *dev_priv = dev->dev_private;
  2132. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2133. struct drm_i915_fence_reg *reg = NULL;
  2134. int ret;
  2135. /* Just update our place in the LRU if our fence is getting used. */
  2136. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2137. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2138. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2139. return 0;
  2140. }
  2141. switch (obj_priv->tiling_mode) {
  2142. case I915_TILING_NONE:
  2143. WARN(1, "allocating a fence for non-tiled object?\n");
  2144. break;
  2145. case I915_TILING_X:
  2146. if (!obj_priv->stride)
  2147. return -EINVAL;
  2148. WARN((obj_priv->stride & (512 - 1)),
  2149. "object 0x%08x is X tiled but has non-512B pitch\n",
  2150. obj_priv->gtt_offset);
  2151. break;
  2152. case I915_TILING_Y:
  2153. if (!obj_priv->stride)
  2154. return -EINVAL;
  2155. WARN((obj_priv->stride & (128 - 1)),
  2156. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2157. obj_priv->gtt_offset);
  2158. break;
  2159. }
  2160. ret = i915_find_fence_reg(dev, interruptible);
  2161. if (ret < 0)
  2162. return ret;
  2163. obj_priv->fence_reg = ret;
  2164. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2165. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2166. reg->obj = obj;
  2167. switch (INTEL_INFO(dev)->gen) {
  2168. case 6:
  2169. sandybridge_write_fence_reg(obj);
  2170. break;
  2171. case 5:
  2172. case 4:
  2173. i965_write_fence_reg(obj);
  2174. break;
  2175. case 3:
  2176. i915_write_fence_reg(obj);
  2177. break;
  2178. case 2:
  2179. i830_write_fence_reg(obj);
  2180. break;
  2181. }
  2182. trace_i915_gem_object_get_fence(obj,
  2183. obj_priv->fence_reg,
  2184. obj_priv->tiling_mode);
  2185. return 0;
  2186. }
  2187. /**
  2188. * i915_gem_clear_fence_reg - clear out fence register info
  2189. * @obj: object to clear
  2190. *
  2191. * Zeroes out the fence register itself and clears out the associated
  2192. * data structures in dev_priv and obj_priv.
  2193. */
  2194. static void
  2195. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2196. {
  2197. struct drm_device *dev = obj->dev;
  2198. drm_i915_private_t *dev_priv = dev->dev_private;
  2199. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2200. struct drm_i915_fence_reg *reg =
  2201. &dev_priv->fence_regs[obj_priv->fence_reg];
  2202. uint32_t fence_reg;
  2203. switch (INTEL_INFO(dev)->gen) {
  2204. case 6:
  2205. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2206. (obj_priv->fence_reg * 8), 0);
  2207. break;
  2208. case 5:
  2209. case 4:
  2210. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2211. break;
  2212. case 3:
  2213. if (obj_priv->fence_reg >= 8)
  2214. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2215. else
  2216. case 2:
  2217. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2218. I915_WRITE(fence_reg, 0);
  2219. break;
  2220. }
  2221. reg->obj = NULL;
  2222. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2223. list_del_init(&reg->lru_list);
  2224. }
  2225. /**
  2226. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2227. * to the buffer to finish, and then resets the fence register.
  2228. * @obj: tiled object holding a fence register.
  2229. * @bool: whether the wait upon the fence is interruptible
  2230. *
  2231. * Zeroes out the fence register itself and clears out the associated
  2232. * data structures in dev_priv and obj_priv.
  2233. */
  2234. int
  2235. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2236. bool interruptible)
  2237. {
  2238. struct drm_device *dev = obj->dev;
  2239. struct drm_i915_private *dev_priv = dev->dev_private;
  2240. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2241. struct drm_i915_fence_reg *reg;
  2242. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2243. return 0;
  2244. /* If we've changed tiling, GTT-mappings of the object
  2245. * need to re-fault to ensure that the correct fence register
  2246. * setup is in place.
  2247. */
  2248. i915_gem_release_mmap(obj);
  2249. /* On the i915, GPU access to tiled buffers is via a fence,
  2250. * therefore we must wait for any outstanding access to complete
  2251. * before clearing the fence.
  2252. */
  2253. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2254. if (reg->gpu) {
  2255. int ret;
  2256. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2257. if (ret)
  2258. return ret;
  2259. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2260. if (ret)
  2261. return ret;
  2262. reg->gpu = false;
  2263. }
  2264. i915_gem_object_flush_gtt_write_domain(obj);
  2265. i915_gem_clear_fence_reg(obj);
  2266. return 0;
  2267. }
  2268. /**
  2269. * Finds free space in the GTT aperture and binds the object there.
  2270. */
  2271. static int
  2272. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2273. unsigned alignment,
  2274. bool mappable,
  2275. bool need_fence)
  2276. {
  2277. struct drm_device *dev = obj->dev;
  2278. drm_i915_private_t *dev_priv = dev->dev_private;
  2279. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2280. struct drm_mm_node *free_space;
  2281. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2282. u32 size, fence_size, fence_alignment;
  2283. int ret;
  2284. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2285. DRM_ERROR("Attempting to bind a purgeable object\n");
  2286. return -EINVAL;
  2287. }
  2288. fence_size = i915_gem_get_gtt_size(obj_priv);
  2289. fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
  2290. if (alignment == 0)
  2291. alignment = need_fence ? fence_alignment : 4096;
  2292. if (need_fence && alignment & (fence_alignment - 1)) {
  2293. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2294. return -EINVAL;
  2295. }
  2296. size = need_fence ? fence_size : obj->size;
  2297. /* If the object is bigger than the entire aperture, reject it early
  2298. * before evicting everything in a vain attempt to find space.
  2299. */
  2300. if (obj->size >
  2301. (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2302. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2303. return -E2BIG;
  2304. }
  2305. search_free:
  2306. if (mappable)
  2307. free_space =
  2308. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2309. size, alignment, 0,
  2310. dev_priv->mm.gtt_mappable_end,
  2311. 0);
  2312. else
  2313. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2314. size, alignment, 0);
  2315. if (free_space != NULL) {
  2316. if (mappable)
  2317. obj_priv->gtt_space =
  2318. drm_mm_get_block_range_generic(free_space,
  2319. size, alignment, 0,
  2320. dev_priv->mm.gtt_mappable_end,
  2321. 0);
  2322. else
  2323. obj_priv->gtt_space =
  2324. drm_mm_get_block(free_space, size, alignment);
  2325. }
  2326. if (obj_priv->gtt_space == NULL) {
  2327. /* If the gtt is empty and we're still having trouble
  2328. * fitting our object in, we're out of memory.
  2329. */
  2330. ret = i915_gem_evict_something(dev, size, alignment, mappable);
  2331. if (ret)
  2332. return ret;
  2333. goto search_free;
  2334. }
  2335. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2336. if (ret) {
  2337. drm_mm_put_block(obj_priv->gtt_space);
  2338. obj_priv->gtt_space = NULL;
  2339. if (ret == -ENOMEM) {
  2340. /* first try to clear up some space from the GTT */
  2341. ret = i915_gem_evict_something(dev, size,
  2342. alignment, mappable);
  2343. if (ret) {
  2344. /* now try to shrink everyone else */
  2345. if (gfpmask) {
  2346. gfpmask = 0;
  2347. goto search_free;
  2348. }
  2349. return ret;
  2350. }
  2351. goto search_free;
  2352. }
  2353. return ret;
  2354. }
  2355. /* Create an AGP memory structure pointing at our pages, and bind it
  2356. * into the GTT.
  2357. */
  2358. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2359. obj_priv->pages,
  2360. obj->size >> PAGE_SHIFT,
  2361. obj_priv->gtt_space->start,
  2362. obj_priv->agp_type);
  2363. if (obj_priv->agp_mem == NULL) {
  2364. i915_gem_object_put_pages_gtt(obj);
  2365. drm_mm_put_block(obj_priv->gtt_space);
  2366. obj_priv->gtt_space = NULL;
  2367. ret = i915_gem_evict_something(dev, size,
  2368. alignment, mappable);
  2369. if (ret)
  2370. return ret;
  2371. goto search_free;
  2372. }
  2373. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2374. /* keep track of bounds object by adding it to the inactive list */
  2375. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2376. i915_gem_info_add_gtt(dev_priv, obj_priv);
  2377. /* Assert that the object is not currently in any GPU domain. As it
  2378. * wasn't in the GTT, there shouldn't be any way it could have been in
  2379. * a GPU cache
  2380. */
  2381. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2382. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2383. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
  2384. obj_priv->fenceable =
  2385. obj_priv->gtt_space->size == fence_size &&
  2386. (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
  2387. obj_priv->mappable =
  2388. obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
  2389. return 0;
  2390. }
  2391. void
  2392. i915_gem_clflush_object(struct drm_gem_object *obj)
  2393. {
  2394. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2395. /* If we don't have a page list set up, then we're not pinned
  2396. * to GPU, and we can ignore the cache flush because it'll happen
  2397. * again at bind time.
  2398. */
  2399. if (obj_priv->pages == NULL)
  2400. return;
  2401. trace_i915_gem_object_clflush(obj);
  2402. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2403. }
  2404. /** Flushes any GPU write domain for the object if it's dirty. */
  2405. static int
  2406. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2407. bool pipelined)
  2408. {
  2409. struct drm_device *dev = obj->dev;
  2410. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2411. return 0;
  2412. /* Queue the GPU write cache flushing we need. */
  2413. i915_gem_flush_ring(dev, NULL,
  2414. to_intel_bo(obj)->ring,
  2415. 0, obj->write_domain);
  2416. BUG_ON(obj->write_domain);
  2417. if (pipelined)
  2418. return 0;
  2419. return i915_gem_object_wait_rendering(obj, true);
  2420. }
  2421. /** Flushes the GTT write domain for the object if it's dirty. */
  2422. static void
  2423. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2424. {
  2425. uint32_t old_write_domain;
  2426. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2427. return;
  2428. /* No actual flushing is required for the GTT write domain. Writes
  2429. * to it immediately go to main memory as far as we know, so there's
  2430. * no chipset flush. It also doesn't land in render cache.
  2431. */
  2432. i915_gem_release_mmap(obj);
  2433. old_write_domain = obj->write_domain;
  2434. obj->write_domain = 0;
  2435. trace_i915_gem_object_change_domain(obj,
  2436. obj->read_domains,
  2437. old_write_domain);
  2438. }
  2439. /** Flushes the CPU write domain for the object if it's dirty. */
  2440. static void
  2441. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2442. {
  2443. struct drm_device *dev = obj->dev;
  2444. uint32_t old_write_domain;
  2445. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2446. return;
  2447. i915_gem_clflush_object(obj);
  2448. drm_agp_chipset_flush(dev);
  2449. old_write_domain = obj->write_domain;
  2450. obj->write_domain = 0;
  2451. trace_i915_gem_object_change_domain(obj,
  2452. obj->read_domains,
  2453. old_write_domain);
  2454. }
  2455. /**
  2456. * Moves a single object to the GTT read, and possibly write domain.
  2457. *
  2458. * This function returns when the move is complete, including waiting on
  2459. * flushes to occur.
  2460. */
  2461. int
  2462. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2463. {
  2464. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2465. uint32_t old_write_domain, old_read_domains;
  2466. int ret;
  2467. /* Not valid to be called on unbound objects. */
  2468. if (obj_priv->gtt_space == NULL)
  2469. return -EINVAL;
  2470. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2471. if (ret != 0)
  2472. return ret;
  2473. i915_gem_object_flush_cpu_write_domain(obj);
  2474. if (write) {
  2475. ret = i915_gem_object_wait_rendering(obj, true);
  2476. if (ret)
  2477. return ret;
  2478. }
  2479. old_write_domain = obj->write_domain;
  2480. old_read_domains = obj->read_domains;
  2481. /* It should now be out of any other write domains, and we can update
  2482. * the domain values for our changes.
  2483. */
  2484. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2485. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2486. if (write) {
  2487. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2488. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2489. obj_priv->dirty = 1;
  2490. }
  2491. trace_i915_gem_object_change_domain(obj,
  2492. old_read_domains,
  2493. old_write_domain);
  2494. return 0;
  2495. }
  2496. /*
  2497. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2498. * wait, as in modesetting process we're not supposed to be interrupted.
  2499. */
  2500. int
  2501. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2502. bool pipelined)
  2503. {
  2504. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2505. uint32_t old_read_domains;
  2506. int ret;
  2507. /* Not valid to be called on unbound objects. */
  2508. if (obj_priv->gtt_space == NULL)
  2509. return -EINVAL;
  2510. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2511. if (ret)
  2512. return ret;
  2513. /* Currently, we are always called from an non-interruptible context. */
  2514. if (!pipelined) {
  2515. ret = i915_gem_object_wait_rendering(obj, false);
  2516. if (ret)
  2517. return ret;
  2518. }
  2519. i915_gem_object_flush_cpu_write_domain(obj);
  2520. old_read_domains = obj->read_domains;
  2521. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2522. trace_i915_gem_object_change_domain(obj,
  2523. old_read_domains,
  2524. obj->write_domain);
  2525. return 0;
  2526. }
  2527. /**
  2528. * Moves a single object to the CPU read, and possibly write domain.
  2529. *
  2530. * This function returns when the move is complete, including waiting on
  2531. * flushes to occur.
  2532. */
  2533. static int
  2534. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2535. {
  2536. uint32_t old_write_domain, old_read_domains;
  2537. int ret;
  2538. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2539. if (ret != 0)
  2540. return ret;
  2541. i915_gem_object_flush_gtt_write_domain(obj);
  2542. /* If we have a partially-valid cache of the object in the CPU,
  2543. * finish invalidating it and free the per-page flags.
  2544. */
  2545. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2546. if (write) {
  2547. ret = i915_gem_object_wait_rendering(obj, true);
  2548. if (ret)
  2549. return ret;
  2550. }
  2551. old_write_domain = obj->write_domain;
  2552. old_read_domains = obj->read_domains;
  2553. /* Flush the CPU cache if it's still invalid. */
  2554. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2555. i915_gem_clflush_object(obj);
  2556. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2557. }
  2558. /* It should now be out of any other write domains, and we can update
  2559. * the domain values for our changes.
  2560. */
  2561. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2562. /* If we're writing through the CPU, then the GPU read domains will
  2563. * need to be invalidated at next use.
  2564. */
  2565. if (write) {
  2566. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2567. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2568. }
  2569. trace_i915_gem_object_change_domain(obj,
  2570. old_read_domains,
  2571. old_write_domain);
  2572. return 0;
  2573. }
  2574. /*
  2575. * Set the next domain for the specified object. This
  2576. * may not actually perform the necessary flushing/invaliding though,
  2577. * as that may want to be batched with other set_domain operations
  2578. *
  2579. * This is (we hope) the only really tricky part of gem. The goal
  2580. * is fairly simple -- track which caches hold bits of the object
  2581. * and make sure they remain coherent. A few concrete examples may
  2582. * help to explain how it works. For shorthand, we use the notation
  2583. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2584. * a pair of read and write domain masks.
  2585. *
  2586. * Case 1: the batch buffer
  2587. *
  2588. * 1. Allocated
  2589. * 2. Written by CPU
  2590. * 3. Mapped to GTT
  2591. * 4. Read by GPU
  2592. * 5. Unmapped from GTT
  2593. * 6. Freed
  2594. *
  2595. * Let's take these a step at a time
  2596. *
  2597. * 1. Allocated
  2598. * Pages allocated from the kernel may still have
  2599. * cache contents, so we set them to (CPU, CPU) always.
  2600. * 2. Written by CPU (using pwrite)
  2601. * The pwrite function calls set_domain (CPU, CPU) and
  2602. * this function does nothing (as nothing changes)
  2603. * 3. Mapped by GTT
  2604. * This function asserts that the object is not
  2605. * currently in any GPU-based read or write domains
  2606. * 4. Read by GPU
  2607. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2608. * As write_domain is zero, this function adds in the
  2609. * current read domains (CPU+COMMAND, 0).
  2610. * flush_domains is set to CPU.
  2611. * invalidate_domains is set to COMMAND
  2612. * clflush is run to get data out of the CPU caches
  2613. * then i915_dev_set_domain calls i915_gem_flush to
  2614. * emit an MI_FLUSH and drm_agp_chipset_flush
  2615. * 5. Unmapped from GTT
  2616. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2617. * flush_domains and invalidate_domains end up both zero
  2618. * so no flushing/invalidating happens
  2619. * 6. Freed
  2620. * yay, done
  2621. *
  2622. * Case 2: The shared render buffer
  2623. *
  2624. * 1. Allocated
  2625. * 2. Mapped to GTT
  2626. * 3. Read/written by GPU
  2627. * 4. set_domain to (CPU,CPU)
  2628. * 5. Read/written by CPU
  2629. * 6. Read/written by GPU
  2630. *
  2631. * 1. Allocated
  2632. * Same as last example, (CPU, CPU)
  2633. * 2. Mapped to GTT
  2634. * Nothing changes (assertions find that it is not in the GPU)
  2635. * 3. Read/written by GPU
  2636. * execbuffer calls set_domain (RENDER, RENDER)
  2637. * flush_domains gets CPU
  2638. * invalidate_domains gets GPU
  2639. * clflush (obj)
  2640. * MI_FLUSH and drm_agp_chipset_flush
  2641. * 4. set_domain (CPU, CPU)
  2642. * flush_domains gets GPU
  2643. * invalidate_domains gets CPU
  2644. * wait_rendering (obj) to make sure all drawing is complete.
  2645. * This will include an MI_FLUSH to get the data from GPU
  2646. * to memory
  2647. * clflush (obj) to invalidate the CPU cache
  2648. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2649. * 5. Read/written by CPU
  2650. * cache lines are loaded and dirtied
  2651. * 6. Read written by GPU
  2652. * Same as last GPU access
  2653. *
  2654. * Case 3: The constant buffer
  2655. *
  2656. * 1. Allocated
  2657. * 2. Written by CPU
  2658. * 3. Read by GPU
  2659. * 4. Updated (written) by CPU again
  2660. * 5. Read by GPU
  2661. *
  2662. * 1. Allocated
  2663. * (CPU, CPU)
  2664. * 2. Written by CPU
  2665. * (CPU, CPU)
  2666. * 3. Read by GPU
  2667. * (CPU+RENDER, 0)
  2668. * flush_domains = CPU
  2669. * invalidate_domains = RENDER
  2670. * clflush (obj)
  2671. * MI_FLUSH
  2672. * drm_agp_chipset_flush
  2673. * 4. Updated (written) by CPU again
  2674. * (CPU, CPU)
  2675. * flush_domains = 0 (no previous write domain)
  2676. * invalidate_domains = 0 (no new read domains)
  2677. * 5. Read by GPU
  2678. * (CPU+RENDER, 0)
  2679. * flush_domains = CPU
  2680. * invalidate_domains = RENDER
  2681. * clflush (obj)
  2682. * MI_FLUSH
  2683. * drm_agp_chipset_flush
  2684. */
  2685. static void
  2686. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2687. struct intel_ring_buffer *ring,
  2688. struct change_domains *cd)
  2689. {
  2690. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2691. uint32_t invalidate_domains = 0;
  2692. uint32_t flush_domains = 0;
  2693. /*
  2694. * If the object isn't moving to a new write domain,
  2695. * let the object stay in multiple read domains
  2696. */
  2697. if (obj->pending_write_domain == 0)
  2698. obj->pending_read_domains |= obj->read_domains;
  2699. /*
  2700. * Flush the current write domain if
  2701. * the new read domains don't match. Invalidate
  2702. * any read domains which differ from the old
  2703. * write domain
  2704. */
  2705. if (obj->write_domain &&
  2706. (obj->write_domain != obj->pending_read_domains ||
  2707. obj_priv->ring != ring)) {
  2708. flush_domains |= obj->write_domain;
  2709. invalidate_domains |=
  2710. obj->pending_read_domains & ~obj->write_domain;
  2711. }
  2712. /*
  2713. * Invalidate any read caches which may have
  2714. * stale data. That is, any new read domains.
  2715. */
  2716. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2717. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2718. i915_gem_clflush_object(obj);
  2719. /* blow away mappings if mapped through GTT */
  2720. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2721. i915_gem_release_mmap(obj);
  2722. /* The actual obj->write_domain will be updated with
  2723. * pending_write_domain after we emit the accumulated flush for all
  2724. * of our domain changes in execbuffers (which clears objects'
  2725. * write_domains). So if we have a current write domain that we
  2726. * aren't changing, set pending_write_domain to that.
  2727. */
  2728. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2729. obj->pending_write_domain = obj->write_domain;
  2730. cd->invalidate_domains |= invalidate_domains;
  2731. cd->flush_domains |= flush_domains;
  2732. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2733. cd->flush_rings |= obj_priv->ring->id;
  2734. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2735. cd->flush_rings |= ring->id;
  2736. }
  2737. /**
  2738. * Moves the object from a partially CPU read to a full one.
  2739. *
  2740. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2741. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2742. */
  2743. static void
  2744. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2745. {
  2746. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2747. if (!obj_priv->page_cpu_valid)
  2748. return;
  2749. /* If we're partially in the CPU read domain, finish moving it in.
  2750. */
  2751. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2752. int i;
  2753. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2754. if (obj_priv->page_cpu_valid[i])
  2755. continue;
  2756. drm_clflush_pages(obj_priv->pages + i, 1);
  2757. }
  2758. }
  2759. /* Free the page_cpu_valid mappings which are now stale, whether
  2760. * or not we've got I915_GEM_DOMAIN_CPU.
  2761. */
  2762. kfree(obj_priv->page_cpu_valid);
  2763. obj_priv->page_cpu_valid = NULL;
  2764. }
  2765. /**
  2766. * Set the CPU read domain on a range of the object.
  2767. *
  2768. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2769. * not entirely valid. The page_cpu_valid member of the object flags which
  2770. * pages have been flushed, and will be respected by
  2771. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2772. * of the whole object.
  2773. *
  2774. * This function returns when the move is complete, including waiting on
  2775. * flushes to occur.
  2776. */
  2777. static int
  2778. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2779. uint64_t offset, uint64_t size)
  2780. {
  2781. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2782. uint32_t old_read_domains;
  2783. int i, ret;
  2784. if (offset == 0 && size == obj->size)
  2785. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2786. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2787. if (ret != 0)
  2788. return ret;
  2789. i915_gem_object_flush_gtt_write_domain(obj);
  2790. /* If we're already fully in the CPU read domain, we're done. */
  2791. if (obj_priv->page_cpu_valid == NULL &&
  2792. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2793. return 0;
  2794. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2795. * newly adding I915_GEM_DOMAIN_CPU
  2796. */
  2797. if (obj_priv->page_cpu_valid == NULL) {
  2798. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2799. GFP_KERNEL);
  2800. if (obj_priv->page_cpu_valid == NULL)
  2801. return -ENOMEM;
  2802. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2803. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2804. /* Flush the cache on any pages that are still invalid from the CPU's
  2805. * perspective.
  2806. */
  2807. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2808. i++) {
  2809. if (obj_priv->page_cpu_valid[i])
  2810. continue;
  2811. drm_clflush_pages(obj_priv->pages + i, 1);
  2812. obj_priv->page_cpu_valid[i] = 1;
  2813. }
  2814. /* It should now be out of any other write domains, and we can update
  2815. * the domain values for our changes.
  2816. */
  2817. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2818. old_read_domains = obj->read_domains;
  2819. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2820. trace_i915_gem_object_change_domain(obj,
  2821. old_read_domains,
  2822. obj->write_domain);
  2823. return 0;
  2824. }
  2825. /**
  2826. * Pin an object to the GTT and evaluate the relocations landing in it.
  2827. */
  2828. static int
  2829. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2830. struct drm_file *file_priv,
  2831. struct drm_i915_gem_exec_object2 *entry)
  2832. {
  2833. struct drm_device *dev = obj->base.dev;
  2834. drm_i915_private_t *dev_priv = dev->dev_private;
  2835. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2836. struct drm_gem_object *target_obj = NULL;
  2837. uint32_t target_handle = 0;
  2838. int i, ret = 0;
  2839. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2840. for (i = 0; i < entry->relocation_count; i++) {
  2841. struct drm_i915_gem_relocation_entry reloc;
  2842. uint32_t target_offset;
  2843. if (__copy_from_user_inatomic(&reloc,
  2844. user_relocs+i,
  2845. sizeof(reloc))) {
  2846. ret = -EFAULT;
  2847. break;
  2848. }
  2849. if (reloc.target_handle != target_handle) {
  2850. drm_gem_object_unreference(target_obj);
  2851. target_obj = drm_gem_object_lookup(dev, file_priv,
  2852. reloc.target_handle);
  2853. if (target_obj == NULL) {
  2854. ret = -ENOENT;
  2855. break;
  2856. }
  2857. target_handle = reloc.target_handle;
  2858. }
  2859. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2860. #if WATCH_RELOC
  2861. DRM_INFO("%s: obj %p offset %08x target %d "
  2862. "read %08x write %08x gtt %08x "
  2863. "presumed %08x delta %08x\n",
  2864. __func__,
  2865. obj,
  2866. (int) reloc.offset,
  2867. (int) reloc.target_handle,
  2868. (int) reloc.read_domains,
  2869. (int) reloc.write_domain,
  2870. (int) target_offset,
  2871. (int) reloc.presumed_offset,
  2872. reloc.delta);
  2873. #endif
  2874. /* The target buffer should have appeared before us in the
  2875. * exec_object list, so it should have a GTT space bound by now.
  2876. */
  2877. if (target_offset == 0) {
  2878. DRM_ERROR("No GTT space found for object %d\n",
  2879. reloc.target_handle);
  2880. ret = -EINVAL;
  2881. break;
  2882. }
  2883. /* Validate that the target is in a valid r/w GPU domain */
  2884. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2885. DRM_ERROR("reloc with multiple write domains: "
  2886. "obj %p target %d offset %d "
  2887. "read %08x write %08x",
  2888. obj, reloc.target_handle,
  2889. (int) reloc.offset,
  2890. reloc.read_domains,
  2891. reloc.write_domain);
  2892. ret = -EINVAL;
  2893. break;
  2894. }
  2895. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2896. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2897. DRM_ERROR("reloc with read/write CPU domains: "
  2898. "obj %p target %d offset %d "
  2899. "read %08x write %08x",
  2900. obj, reloc.target_handle,
  2901. (int) reloc.offset,
  2902. reloc.read_domains,
  2903. reloc.write_domain);
  2904. ret = -EINVAL;
  2905. break;
  2906. }
  2907. if (reloc.write_domain && target_obj->pending_write_domain &&
  2908. reloc.write_domain != target_obj->pending_write_domain) {
  2909. DRM_ERROR("Write domain conflict: "
  2910. "obj %p target %d offset %d "
  2911. "new %08x old %08x\n",
  2912. obj, reloc.target_handle,
  2913. (int) reloc.offset,
  2914. reloc.write_domain,
  2915. target_obj->pending_write_domain);
  2916. ret = -EINVAL;
  2917. break;
  2918. }
  2919. target_obj->pending_read_domains |= reloc.read_domains;
  2920. target_obj->pending_write_domain |= reloc.write_domain;
  2921. /* If the relocation already has the right value in it, no
  2922. * more work needs to be done.
  2923. */
  2924. if (target_offset == reloc.presumed_offset)
  2925. continue;
  2926. /* Check that the relocation address is valid... */
  2927. if (reloc.offset > obj->base.size - 4) {
  2928. DRM_ERROR("Relocation beyond object bounds: "
  2929. "obj %p target %d offset %d size %d.\n",
  2930. obj, reloc.target_handle,
  2931. (int) reloc.offset, (int) obj->base.size);
  2932. ret = -EINVAL;
  2933. break;
  2934. }
  2935. if (reloc.offset & 3) {
  2936. DRM_ERROR("Relocation not 4-byte aligned: "
  2937. "obj %p target %d offset %d.\n",
  2938. obj, reloc.target_handle,
  2939. (int) reloc.offset);
  2940. ret = -EINVAL;
  2941. break;
  2942. }
  2943. /* and points to somewhere within the target object. */
  2944. if (reloc.delta >= target_obj->size) {
  2945. DRM_ERROR("Relocation beyond target object bounds: "
  2946. "obj %p target %d delta %d size %d.\n",
  2947. obj, reloc.target_handle,
  2948. (int) reloc.delta, (int) target_obj->size);
  2949. ret = -EINVAL;
  2950. break;
  2951. }
  2952. reloc.delta += target_offset;
  2953. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2954. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2955. char *vaddr;
  2956. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2957. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2958. kunmap_atomic(vaddr);
  2959. } else {
  2960. uint32_t __iomem *reloc_entry;
  2961. void __iomem *reloc_page;
  2962. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2963. if (ret)
  2964. break;
  2965. /* Map the page containing the relocation we're going to perform. */
  2966. reloc.offset += obj->gtt_offset;
  2967. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2968. reloc.offset & PAGE_MASK);
  2969. reloc_entry = (uint32_t __iomem *)
  2970. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2971. iowrite32(reloc.delta, reloc_entry);
  2972. io_mapping_unmap_atomic(reloc_page);
  2973. }
  2974. /* and update the user's relocation entry */
  2975. reloc.presumed_offset = target_offset;
  2976. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2977. &reloc.presumed_offset,
  2978. sizeof(reloc.presumed_offset))) {
  2979. ret = -EFAULT;
  2980. break;
  2981. }
  2982. }
  2983. drm_gem_object_unreference(target_obj);
  2984. return ret;
  2985. }
  2986. static int
  2987. i915_gem_execbuffer_pin(struct drm_device *dev,
  2988. struct drm_file *file,
  2989. struct drm_gem_object **object_list,
  2990. struct drm_i915_gem_exec_object2 *exec_list,
  2991. int count)
  2992. {
  2993. struct drm_i915_private *dev_priv = dev->dev_private;
  2994. int ret, i, retry;
  2995. /* attempt to pin all of the buffers into the GTT */
  2996. retry = 0;
  2997. do {
  2998. ret = 0;
  2999. for (i = 0; i < count; i++) {
  3000. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3001. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3002. bool need_fence =
  3003. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3004. obj->tiling_mode != I915_TILING_NONE;
  3005. /* g33/pnv can't fence buffers in the unmappable part */
  3006. bool need_mappable =
  3007. entry->relocation_count ? true : need_fence;
  3008. /* Check fence reg constraints and rebind if necessary */
  3009. if ((need_fence && !obj->fenceable) ||
  3010. (need_mappable && !obj->mappable)) {
  3011. ret = i915_gem_object_unbind(&obj->base);
  3012. if (ret)
  3013. break;
  3014. }
  3015. ret = i915_gem_object_pin(&obj->base,
  3016. entry->alignment,
  3017. need_mappable,
  3018. need_fence);
  3019. if (ret)
  3020. break;
  3021. /*
  3022. * Pre-965 chips need a fence register set up in order
  3023. * to properly handle blits to/from tiled surfaces.
  3024. */
  3025. if (need_fence) {
  3026. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3027. if (ret) {
  3028. i915_gem_object_unpin(&obj->base);
  3029. break;
  3030. }
  3031. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3032. }
  3033. entry->offset = obj->gtt_offset;
  3034. }
  3035. while (i--)
  3036. i915_gem_object_unpin(object_list[i]);
  3037. if (ret != -ENOSPC || retry > 1)
  3038. return ret;
  3039. /* First attempt, just clear anything that is purgeable.
  3040. * Second attempt, clear the entire GTT.
  3041. */
  3042. ret = i915_gem_evict_everything(dev, retry == 0);
  3043. if (ret)
  3044. return ret;
  3045. retry++;
  3046. } while (1);
  3047. }
  3048. static int
  3049. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3050. struct drm_file *file,
  3051. struct intel_ring_buffer *ring,
  3052. struct drm_gem_object **objects,
  3053. int count)
  3054. {
  3055. struct change_domains cd;
  3056. int ret, i;
  3057. cd.invalidate_domains = 0;
  3058. cd.flush_domains = 0;
  3059. cd.flush_rings = 0;
  3060. for (i = 0; i < count; i++)
  3061. i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
  3062. if (cd.invalidate_domains | cd.flush_domains) {
  3063. #if WATCH_EXEC
  3064. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3065. __func__,
  3066. cd.invalidate_domains,
  3067. cd.flush_domains);
  3068. #endif
  3069. i915_gem_flush(dev, file,
  3070. cd.invalidate_domains,
  3071. cd.flush_domains,
  3072. cd.flush_rings);
  3073. }
  3074. for (i = 0; i < count; i++) {
  3075. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  3076. /* XXX replace with semaphores */
  3077. if (obj->ring && ring != obj->ring) {
  3078. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3079. if (ret)
  3080. return ret;
  3081. }
  3082. }
  3083. return 0;
  3084. }
  3085. /* Throttle our rendering by waiting until the ring has completed our requests
  3086. * emitted over 20 msec ago.
  3087. *
  3088. * Note that if we were to use the current jiffies each time around the loop,
  3089. * we wouldn't escape the function with any frames outstanding if the time to
  3090. * render a frame was over 20ms.
  3091. *
  3092. * This should get us reasonable parallelism between CPU and GPU but also
  3093. * relatively low latency when blocking on a particular request to finish.
  3094. */
  3095. static int
  3096. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3097. {
  3098. struct drm_i915_private *dev_priv = dev->dev_private;
  3099. struct drm_i915_file_private *file_priv = file->driver_priv;
  3100. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3101. struct drm_i915_gem_request *request;
  3102. struct intel_ring_buffer *ring = NULL;
  3103. u32 seqno = 0;
  3104. int ret;
  3105. spin_lock(&file_priv->mm.lock);
  3106. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3107. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3108. break;
  3109. ring = request->ring;
  3110. seqno = request->seqno;
  3111. }
  3112. spin_unlock(&file_priv->mm.lock);
  3113. if (seqno == 0)
  3114. return 0;
  3115. ret = 0;
  3116. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3117. /* And wait for the seqno passing without holding any locks and
  3118. * causing extra latency for others. This is safe as the irq
  3119. * generation is designed to be run atomically and so is
  3120. * lockless.
  3121. */
  3122. ring->user_irq_get(ring);
  3123. ret = wait_event_interruptible(ring->irq_queue,
  3124. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3125. || atomic_read(&dev_priv->mm.wedged));
  3126. ring->user_irq_put(ring);
  3127. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3128. ret = -EIO;
  3129. }
  3130. if (ret == 0)
  3131. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3132. return ret;
  3133. }
  3134. static int
  3135. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3136. uint64_t exec_offset)
  3137. {
  3138. uint32_t exec_start, exec_len;
  3139. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3140. exec_len = (uint32_t) exec->batch_len;
  3141. if ((exec_start | exec_len) & 0x7)
  3142. return -EINVAL;
  3143. if (!exec_start)
  3144. return -EINVAL;
  3145. return 0;
  3146. }
  3147. static int
  3148. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3149. int count)
  3150. {
  3151. int i;
  3152. for (i = 0; i < count; i++) {
  3153. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3154. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3155. if (!access_ok(VERIFY_READ, ptr, length))
  3156. return -EFAULT;
  3157. /* we may also need to update the presumed offsets */
  3158. if (!access_ok(VERIFY_WRITE, ptr, length))
  3159. return -EFAULT;
  3160. if (fault_in_pages_readable(ptr, length))
  3161. return -EFAULT;
  3162. }
  3163. return 0;
  3164. }
  3165. static int
  3166. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3167. struct drm_file *file,
  3168. struct drm_i915_gem_execbuffer2 *args,
  3169. struct drm_i915_gem_exec_object2 *exec_list)
  3170. {
  3171. drm_i915_private_t *dev_priv = dev->dev_private;
  3172. struct drm_gem_object **object_list = NULL;
  3173. struct drm_gem_object *batch_obj;
  3174. struct drm_clip_rect *cliprects = NULL;
  3175. struct drm_i915_gem_request *request = NULL;
  3176. int ret, i, flips;
  3177. uint64_t exec_offset;
  3178. struct intel_ring_buffer *ring = NULL;
  3179. ret = i915_gem_check_is_wedged(dev);
  3180. if (ret)
  3181. return ret;
  3182. ret = validate_exec_list(exec_list, args->buffer_count);
  3183. if (ret)
  3184. return ret;
  3185. #if WATCH_EXEC
  3186. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3187. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3188. #endif
  3189. switch (args->flags & I915_EXEC_RING_MASK) {
  3190. case I915_EXEC_DEFAULT:
  3191. case I915_EXEC_RENDER:
  3192. ring = &dev_priv->render_ring;
  3193. break;
  3194. case I915_EXEC_BSD:
  3195. if (!HAS_BSD(dev)) {
  3196. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3197. return -EINVAL;
  3198. }
  3199. ring = &dev_priv->bsd_ring;
  3200. break;
  3201. case I915_EXEC_BLT:
  3202. if (!HAS_BLT(dev)) {
  3203. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3204. return -EINVAL;
  3205. }
  3206. ring = &dev_priv->blt_ring;
  3207. break;
  3208. default:
  3209. DRM_ERROR("execbuf with unknown ring: %d\n",
  3210. (int)(args->flags & I915_EXEC_RING_MASK));
  3211. return -EINVAL;
  3212. }
  3213. if (args->buffer_count < 1) {
  3214. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3215. return -EINVAL;
  3216. }
  3217. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3218. if (object_list == NULL) {
  3219. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3220. args->buffer_count);
  3221. ret = -ENOMEM;
  3222. goto pre_mutex_err;
  3223. }
  3224. if (args->num_cliprects != 0) {
  3225. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3226. GFP_KERNEL);
  3227. if (cliprects == NULL) {
  3228. ret = -ENOMEM;
  3229. goto pre_mutex_err;
  3230. }
  3231. ret = copy_from_user(cliprects,
  3232. (struct drm_clip_rect __user *)
  3233. (uintptr_t) args->cliprects_ptr,
  3234. sizeof(*cliprects) * args->num_cliprects);
  3235. if (ret != 0) {
  3236. DRM_ERROR("copy %d cliprects failed: %d\n",
  3237. args->num_cliprects, ret);
  3238. ret = -EFAULT;
  3239. goto pre_mutex_err;
  3240. }
  3241. }
  3242. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3243. if (request == NULL) {
  3244. ret = -ENOMEM;
  3245. goto pre_mutex_err;
  3246. }
  3247. ret = i915_mutex_lock_interruptible(dev);
  3248. if (ret)
  3249. goto pre_mutex_err;
  3250. if (dev_priv->mm.suspended) {
  3251. mutex_unlock(&dev->struct_mutex);
  3252. ret = -EBUSY;
  3253. goto pre_mutex_err;
  3254. }
  3255. /* Look up object handles */
  3256. for (i = 0; i < args->buffer_count; i++) {
  3257. struct drm_i915_gem_object *obj_priv;
  3258. object_list[i] = drm_gem_object_lookup(dev, file,
  3259. exec_list[i].handle);
  3260. if (object_list[i] == NULL) {
  3261. DRM_ERROR("Invalid object handle %d at index %d\n",
  3262. exec_list[i].handle, i);
  3263. /* prevent error path from reading uninitialized data */
  3264. args->buffer_count = i + 1;
  3265. ret = -ENOENT;
  3266. goto err;
  3267. }
  3268. obj_priv = to_intel_bo(object_list[i]);
  3269. if (obj_priv->in_execbuffer) {
  3270. DRM_ERROR("Object %p appears more than once in object list\n",
  3271. object_list[i]);
  3272. /* prevent error path from reading uninitialized data */
  3273. args->buffer_count = i + 1;
  3274. ret = -EINVAL;
  3275. goto err;
  3276. }
  3277. obj_priv->in_execbuffer = true;
  3278. }
  3279. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3280. ret = i915_gem_execbuffer_pin(dev, file,
  3281. object_list, exec_list,
  3282. args->buffer_count);
  3283. if (ret)
  3284. goto err;
  3285. /* The objects are in their final locations, apply the relocations. */
  3286. for (i = 0; i < args->buffer_count; i++) {
  3287. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3288. obj->base.pending_read_domains = 0;
  3289. obj->base.pending_write_domain = 0;
  3290. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3291. if (ret)
  3292. goto err;
  3293. }
  3294. /* Set the pending read domains for the batch buffer to COMMAND */
  3295. batch_obj = object_list[args->buffer_count-1];
  3296. if (batch_obj->pending_write_domain) {
  3297. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3298. ret = -EINVAL;
  3299. goto err;
  3300. }
  3301. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3302. /* Sanity check the batch buffer */
  3303. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3304. ret = i915_gem_check_execbuffer(args, exec_offset);
  3305. if (ret != 0) {
  3306. DRM_ERROR("execbuf with invalid offset/length\n");
  3307. goto err;
  3308. }
  3309. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3310. object_list, args->buffer_count);
  3311. if (ret)
  3312. goto err;
  3313. #if WATCH_COHERENCY
  3314. for (i = 0; i < args->buffer_count; i++) {
  3315. i915_gem_object_check_coherency(object_list[i],
  3316. exec_list[i].handle);
  3317. }
  3318. #endif
  3319. #if WATCH_EXEC
  3320. i915_gem_dump_object(batch_obj,
  3321. args->batch_len,
  3322. __func__,
  3323. ~0);
  3324. #endif
  3325. /* Check for any pending flips. As we only maintain a flip queue depth
  3326. * of 1, we can simply insert a WAIT for the next display flip prior
  3327. * to executing the batch and avoid stalling the CPU.
  3328. */
  3329. flips = 0;
  3330. for (i = 0; i < args->buffer_count; i++) {
  3331. if (object_list[i]->write_domain)
  3332. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3333. }
  3334. if (flips) {
  3335. int plane, flip_mask;
  3336. for (plane = 0; flips >> plane; plane++) {
  3337. if (((flips >> plane) & 1) == 0)
  3338. continue;
  3339. if (plane)
  3340. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3341. else
  3342. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3343. ret = intel_ring_begin(ring, 2);
  3344. if (ret)
  3345. goto err;
  3346. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3347. intel_ring_emit(ring, MI_NOOP);
  3348. intel_ring_advance(ring);
  3349. }
  3350. }
  3351. /* Exec the batchbuffer */
  3352. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3353. if (ret) {
  3354. DRM_ERROR("dispatch failed %d\n", ret);
  3355. goto err;
  3356. }
  3357. for (i = 0; i < args->buffer_count; i++) {
  3358. struct drm_gem_object *obj = object_list[i];
  3359. obj->read_domains = obj->pending_read_domains;
  3360. obj->write_domain = obj->pending_write_domain;
  3361. i915_gem_object_move_to_active(obj, ring);
  3362. if (obj->write_domain) {
  3363. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3364. obj_priv->dirty = 1;
  3365. list_move_tail(&obj_priv->gpu_write_list,
  3366. &ring->gpu_write_list);
  3367. intel_mark_busy(dev, obj);
  3368. }
  3369. trace_i915_gem_object_change_domain(obj,
  3370. obj->read_domains,
  3371. obj->write_domain);
  3372. }
  3373. /*
  3374. * Ensure that the commands in the batch buffer are
  3375. * finished before the interrupt fires
  3376. */
  3377. i915_retire_commands(dev, ring);
  3378. if (i915_add_request(dev, file, request, ring))
  3379. ring->outstanding_lazy_request = true;
  3380. else
  3381. request = NULL;
  3382. err:
  3383. for (i = 0; i < args->buffer_count; i++) {
  3384. if (object_list[i] == NULL)
  3385. break;
  3386. to_intel_bo(object_list[i])->in_execbuffer = false;
  3387. drm_gem_object_unreference(object_list[i]);
  3388. }
  3389. mutex_unlock(&dev->struct_mutex);
  3390. pre_mutex_err:
  3391. drm_free_large(object_list);
  3392. kfree(cliprects);
  3393. kfree(request);
  3394. return ret;
  3395. }
  3396. /*
  3397. * Legacy execbuffer just creates an exec2 list from the original exec object
  3398. * list array and passes it to the real function.
  3399. */
  3400. int
  3401. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3402. struct drm_file *file_priv)
  3403. {
  3404. struct drm_i915_gem_execbuffer *args = data;
  3405. struct drm_i915_gem_execbuffer2 exec2;
  3406. struct drm_i915_gem_exec_object *exec_list = NULL;
  3407. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3408. int ret, i;
  3409. #if WATCH_EXEC
  3410. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3411. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3412. #endif
  3413. if (args->buffer_count < 1) {
  3414. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3415. return -EINVAL;
  3416. }
  3417. /* Copy in the exec list from userland */
  3418. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3419. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3420. if (exec_list == NULL || exec2_list == NULL) {
  3421. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3422. args->buffer_count);
  3423. drm_free_large(exec_list);
  3424. drm_free_large(exec2_list);
  3425. return -ENOMEM;
  3426. }
  3427. ret = copy_from_user(exec_list,
  3428. (struct drm_i915_relocation_entry __user *)
  3429. (uintptr_t) args->buffers_ptr,
  3430. sizeof(*exec_list) * args->buffer_count);
  3431. if (ret != 0) {
  3432. DRM_ERROR("copy %d exec entries failed %d\n",
  3433. args->buffer_count, ret);
  3434. drm_free_large(exec_list);
  3435. drm_free_large(exec2_list);
  3436. return -EFAULT;
  3437. }
  3438. for (i = 0; i < args->buffer_count; i++) {
  3439. exec2_list[i].handle = exec_list[i].handle;
  3440. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3441. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3442. exec2_list[i].alignment = exec_list[i].alignment;
  3443. exec2_list[i].offset = exec_list[i].offset;
  3444. if (INTEL_INFO(dev)->gen < 4)
  3445. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3446. else
  3447. exec2_list[i].flags = 0;
  3448. }
  3449. exec2.buffers_ptr = args->buffers_ptr;
  3450. exec2.buffer_count = args->buffer_count;
  3451. exec2.batch_start_offset = args->batch_start_offset;
  3452. exec2.batch_len = args->batch_len;
  3453. exec2.DR1 = args->DR1;
  3454. exec2.DR4 = args->DR4;
  3455. exec2.num_cliprects = args->num_cliprects;
  3456. exec2.cliprects_ptr = args->cliprects_ptr;
  3457. exec2.flags = I915_EXEC_RENDER;
  3458. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3459. if (!ret) {
  3460. /* Copy the new buffer offsets back to the user's exec list. */
  3461. for (i = 0; i < args->buffer_count; i++)
  3462. exec_list[i].offset = exec2_list[i].offset;
  3463. /* ... and back out to userspace */
  3464. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3465. (uintptr_t) args->buffers_ptr,
  3466. exec_list,
  3467. sizeof(*exec_list) * args->buffer_count);
  3468. if (ret) {
  3469. ret = -EFAULT;
  3470. DRM_ERROR("failed to copy %d exec entries "
  3471. "back to user (%d)\n",
  3472. args->buffer_count, ret);
  3473. }
  3474. }
  3475. drm_free_large(exec_list);
  3476. drm_free_large(exec2_list);
  3477. return ret;
  3478. }
  3479. int
  3480. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3481. struct drm_file *file_priv)
  3482. {
  3483. struct drm_i915_gem_execbuffer2 *args = data;
  3484. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3485. int ret;
  3486. #if WATCH_EXEC
  3487. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3488. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3489. #endif
  3490. if (args->buffer_count < 1) {
  3491. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3492. return -EINVAL;
  3493. }
  3494. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3495. if (exec2_list == NULL) {
  3496. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3497. args->buffer_count);
  3498. return -ENOMEM;
  3499. }
  3500. ret = copy_from_user(exec2_list,
  3501. (struct drm_i915_relocation_entry __user *)
  3502. (uintptr_t) args->buffers_ptr,
  3503. sizeof(*exec2_list) * args->buffer_count);
  3504. if (ret != 0) {
  3505. DRM_ERROR("copy %d exec entries failed %d\n",
  3506. args->buffer_count, ret);
  3507. drm_free_large(exec2_list);
  3508. return -EFAULT;
  3509. }
  3510. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3511. if (!ret) {
  3512. /* Copy the new buffer offsets back to the user's exec list. */
  3513. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3514. (uintptr_t) args->buffers_ptr,
  3515. exec2_list,
  3516. sizeof(*exec2_list) * args->buffer_count);
  3517. if (ret) {
  3518. ret = -EFAULT;
  3519. DRM_ERROR("failed to copy %d exec entries "
  3520. "back to user (%d)\n",
  3521. args->buffer_count, ret);
  3522. }
  3523. }
  3524. drm_free_large(exec2_list);
  3525. return ret;
  3526. }
  3527. int
  3528. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3529. bool mappable, bool need_fence)
  3530. {
  3531. struct drm_device *dev = obj->dev;
  3532. struct drm_i915_private *dev_priv = dev->dev_private;
  3533. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3534. int ret;
  3535. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3536. WARN_ON(i915_verify_lists(dev));
  3537. if (obj_priv->gtt_space != NULL) {
  3538. if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
  3539. (need_fence && !obj_priv->fenceable) ||
  3540. (mappable && !obj_priv->mappable)) {
  3541. WARN(obj_priv->pin_count,
  3542. "bo is already pinned with incorrect alignment:"
  3543. " offset=%x, req.alignment=%x, need_fence=%d, fenceable=%d, mappable=%d, cpu_accessible=%d\n",
  3544. obj_priv->gtt_offset, alignment,
  3545. need_fence, obj_priv->fenceable,
  3546. mappable, obj_priv->mappable);
  3547. ret = i915_gem_object_unbind(obj);
  3548. if (ret)
  3549. return ret;
  3550. }
  3551. }
  3552. if (obj_priv->gtt_space == NULL) {
  3553. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3554. mappable, need_fence);
  3555. if (ret)
  3556. return ret;
  3557. }
  3558. if (obj_priv->pin_count++ == 0) {
  3559. i915_gem_info_add_pin(dev_priv, obj_priv, mappable);
  3560. if (!obj_priv->active)
  3561. list_move_tail(&obj_priv->mm_list,
  3562. &dev_priv->mm.pinned_list);
  3563. }
  3564. BUG_ON(!obj_priv->pin_mappable && mappable);
  3565. WARN_ON(i915_verify_lists(dev));
  3566. return 0;
  3567. }
  3568. void
  3569. i915_gem_object_unpin(struct drm_gem_object *obj)
  3570. {
  3571. struct drm_device *dev = obj->dev;
  3572. drm_i915_private_t *dev_priv = dev->dev_private;
  3573. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3574. WARN_ON(i915_verify_lists(dev));
  3575. BUG_ON(obj_priv->pin_count == 0);
  3576. BUG_ON(obj_priv->gtt_space == NULL);
  3577. if (--obj_priv->pin_count == 0) {
  3578. if (!obj_priv->active)
  3579. list_move_tail(&obj_priv->mm_list,
  3580. &dev_priv->mm.inactive_list);
  3581. i915_gem_info_remove_pin(dev_priv, obj_priv);
  3582. }
  3583. WARN_ON(i915_verify_lists(dev));
  3584. }
  3585. int
  3586. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3587. struct drm_file *file_priv)
  3588. {
  3589. struct drm_i915_gem_pin *args = data;
  3590. struct drm_gem_object *obj;
  3591. struct drm_i915_gem_object *obj_priv;
  3592. int ret;
  3593. ret = i915_mutex_lock_interruptible(dev);
  3594. if (ret)
  3595. return ret;
  3596. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3597. if (obj == NULL) {
  3598. ret = -ENOENT;
  3599. goto unlock;
  3600. }
  3601. obj_priv = to_intel_bo(obj);
  3602. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3603. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3604. ret = -EINVAL;
  3605. goto out;
  3606. }
  3607. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3608. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3609. args->handle);
  3610. ret = -EINVAL;
  3611. goto out;
  3612. }
  3613. obj_priv->user_pin_count++;
  3614. obj_priv->pin_filp = file_priv;
  3615. if (obj_priv->user_pin_count == 1) {
  3616. ret = i915_gem_object_pin(obj, args->alignment,
  3617. true, obj_priv->tiling_mode);
  3618. if (ret)
  3619. goto out;
  3620. }
  3621. /* XXX - flush the CPU caches for pinned objects
  3622. * as the X server doesn't manage domains yet
  3623. */
  3624. i915_gem_object_flush_cpu_write_domain(obj);
  3625. args->offset = obj_priv->gtt_offset;
  3626. out:
  3627. drm_gem_object_unreference(obj);
  3628. unlock:
  3629. mutex_unlock(&dev->struct_mutex);
  3630. return ret;
  3631. }
  3632. int
  3633. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3634. struct drm_file *file_priv)
  3635. {
  3636. struct drm_i915_gem_pin *args = data;
  3637. struct drm_gem_object *obj;
  3638. struct drm_i915_gem_object *obj_priv;
  3639. int ret;
  3640. ret = i915_mutex_lock_interruptible(dev);
  3641. if (ret)
  3642. return ret;
  3643. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3644. if (obj == NULL) {
  3645. ret = -ENOENT;
  3646. goto unlock;
  3647. }
  3648. obj_priv = to_intel_bo(obj);
  3649. if (obj_priv->pin_filp != file_priv) {
  3650. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3651. args->handle);
  3652. ret = -EINVAL;
  3653. goto out;
  3654. }
  3655. obj_priv->user_pin_count--;
  3656. if (obj_priv->user_pin_count == 0) {
  3657. obj_priv->pin_filp = NULL;
  3658. i915_gem_object_unpin(obj);
  3659. }
  3660. out:
  3661. drm_gem_object_unreference(obj);
  3662. unlock:
  3663. mutex_unlock(&dev->struct_mutex);
  3664. return ret;
  3665. }
  3666. int
  3667. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3668. struct drm_file *file_priv)
  3669. {
  3670. struct drm_i915_gem_busy *args = data;
  3671. struct drm_gem_object *obj;
  3672. struct drm_i915_gem_object *obj_priv;
  3673. int ret;
  3674. ret = i915_mutex_lock_interruptible(dev);
  3675. if (ret)
  3676. return ret;
  3677. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3678. if (obj == NULL) {
  3679. ret = -ENOENT;
  3680. goto unlock;
  3681. }
  3682. obj_priv = to_intel_bo(obj);
  3683. /* Count all active objects as busy, even if they are currently not used
  3684. * by the gpu. Users of this interface expect objects to eventually
  3685. * become non-busy without any further actions, therefore emit any
  3686. * necessary flushes here.
  3687. */
  3688. args->busy = obj_priv->active;
  3689. if (args->busy) {
  3690. /* Unconditionally flush objects, even when the gpu still uses this
  3691. * object. Userspace calling this function indicates that it wants to
  3692. * use this buffer rather sooner than later, so issuing the required
  3693. * flush earlier is beneficial.
  3694. */
  3695. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3696. i915_gem_flush_ring(dev, file_priv,
  3697. obj_priv->ring,
  3698. 0, obj->write_domain);
  3699. /* Update the active list for the hardware's current position.
  3700. * Otherwise this only updates on a delayed timer or when irqs
  3701. * are actually unmasked, and our working set ends up being
  3702. * larger than required.
  3703. */
  3704. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3705. args->busy = obj_priv->active;
  3706. }
  3707. drm_gem_object_unreference(obj);
  3708. unlock:
  3709. mutex_unlock(&dev->struct_mutex);
  3710. return ret;
  3711. }
  3712. int
  3713. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3714. struct drm_file *file_priv)
  3715. {
  3716. return i915_gem_ring_throttle(dev, file_priv);
  3717. }
  3718. int
  3719. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3720. struct drm_file *file_priv)
  3721. {
  3722. struct drm_i915_gem_madvise *args = data;
  3723. struct drm_gem_object *obj;
  3724. struct drm_i915_gem_object *obj_priv;
  3725. int ret;
  3726. switch (args->madv) {
  3727. case I915_MADV_DONTNEED:
  3728. case I915_MADV_WILLNEED:
  3729. break;
  3730. default:
  3731. return -EINVAL;
  3732. }
  3733. ret = i915_mutex_lock_interruptible(dev);
  3734. if (ret)
  3735. return ret;
  3736. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3737. if (obj == NULL) {
  3738. ret = -ENOENT;
  3739. goto unlock;
  3740. }
  3741. obj_priv = to_intel_bo(obj);
  3742. if (obj_priv->pin_count) {
  3743. ret = -EINVAL;
  3744. goto out;
  3745. }
  3746. if (obj_priv->madv != __I915_MADV_PURGED)
  3747. obj_priv->madv = args->madv;
  3748. /* if the object is no longer bound, discard its backing storage */
  3749. if (i915_gem_object_is_purgeable(obj_priv) &&
  3750. obj_priv->gtt_space == NULL)
  3751. i915_gem_object_truncate(obj);
  3752. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3753. out:
  3754. drm_gem_object_unreference(obj);
  3755. unlock:
  3756. mutex_unlock(&dev->struct_mutex);
  3757. return ret;
  3758. }
  3759. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3760. size_t size)
  3761. {
  3762. struct drm_i915_private *dev_priv = dev->dev_private;
  3763. struct drm_i915_gem_object *obj;
  3764. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3765. if (obj == NULL)
  3766. return NULL;
  3767. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3768. kfree(obj);
  3769. return NULL;
  3770. }
  3771. i915_gem_info_add_obj(dev_priv, size);
  3772. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3773. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3774. obj->agp_type = AGP_USER_MEMORY;
  3775. obj->base.driver_private = NULL;
  3776. obj->fence_reg = I915_FENCE_REG_NONE;
  3777. INIT_LIST_HEAD(&obj->mm_list);
  3778. INIT_LIST_HEAD(&obj->ring_list);
  3779. INIT_LIST_HEAD(&obj->gpu_write_list);
  3780. obj->madv = I915_MADV_WILLNEED;
  3781. obj->fenceable = true;
  3782. obj->mappable = true;
  3783. return &obj->base;
  3784. }
  3785. int i915_gem_init_object(struct drm_gem_object *obj)
  3786. {
  3787. BUG();
  3788. return 0;
  3789. }
  3790. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3791. {
  3792. struct drm_device *dev = obj->dev;
  3793. drm_i915_private_t *dev_priv = dev->dev_private;
  3794. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3795. int ret;
  3796. ret = i915_gem_object_unbind(obj);
  3797. if (ret == -ERESTARTSYS) {
  3798. list_move(&obj_priv->mm_list,
  3799. &dev_priv->mm.deferred_free_list);
  3800. return;
  3801. }
  3802. if (obj->map_list.map)
  3803. i915_gem_free_mmap_offset(obj);
  3804. drm_gem_object_release(obj);
  3805. i915_gem_info_remove_obj(dev_priv, obj->size);
  3806. kfree(obj_priv->page_cpu_valid);
  3807. kfree(obj_priv->bit_17);
  3808. kfree(obj_priv);
  3809. }
  3810. void i915_gem_free_object(struct drm_gem_object *obj)
  3811. {
  3812. struct drm_device *dev = obj->dev;
  3813. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3814. trace_i915_gem_object_destroy(obj);
  3815. while (obj_priv->pin_count > 0)
  3816. i915_gem_object_unpin(obj);
  3817. if (obj_priv->phys_obj)
  3818. i915_gem_detach_phys_object(dev, obj);
  3819. i915_gem_free_object_tail(obj);
  3820. }
  3821. int
  3822. i915_gem_idle(struct drm_device *dev)
  3823. {
  3824. drm_i915_private_t *dev_priv = dev->dev_private;
  3825. int ret;
  3826. mutex_lock(&dev->struct_mutex);
  3827. if (dev_priv->mm.suspended) {
  3828. mutex_unlock(&dev->struct_mutex);
  3829. return 0;
  3830. }
  3831. ret = i915_gpu_idle(dev);
  3832. if (ret) {
  3833. mutex_unlock(&dev->struct_mutex);
  3834. return ret;
  3835. }
  3836. /* Under UMS, be paranoid and evict. */
  3837. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3838. ret = i915_gem_evict_inactive(dev, false);
  3839. if (ret) {
  3840. mutex_unlock(&dev->struct_mutex);
  3841. return ret;
  3842. }
  3843. }
  3844. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3845. * We need to replace this with a semaphore, or something.
  3846. * And not confound mm.suspended!
  3847. */
  3848. dev_priv->mm.suspended = 1;
  3849. del_timer_sync(&dev_priv->hangcheck_timer);
  3850. i915_kernel_lost_context(dev);
  3851. i915_gem_cleanup_ringbuffer(dev);
  3852. mutex_unlock(&dev->struct_mutex);
  3853. /* Cancel the retire work handler, which should be idle now. */
  3854. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3855. return 0;
  3856. }
  3857. /*
  3858. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3859. * over cache flushing.
  3860. */
  3861. static int
  3862. i915_gem_init_pipe_control(struct drm_device *dev)
  3863. {
  3864. drm_i915_private_t *dev_priv = dev->dev_private;
  3865. struct drm_gem_object *obj;
  3866. struct drm_i915_gem_object *obj_priv;
  3867. int ret;
  3868. obj = i915_gem_alloc_object(dev, 4096);
  3869. if (obj == NULL) {
  3870. DRM_ERROR("Failed to allocate seqno page\n");
  3871. ret = -ENOMEM;
  3872. goto err;
  3873. }
  3874. obj_priv = to_intel_bo(obj);
  3875. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3876. ret = i915_gem_object_pin(obj, 4096, true, false);
  3877. if (ret)
  3878. goto err_unref;
  3879. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3880. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3881. if (dev_priv->seqno_page == NULL)
  3882. goto err_unpin;
  3883. dev_priv->seqno_obj = obj;
  3884. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3885. return 0;
  3886. err_unpin:
  3887. i915_gem_object_unpin(obj);
  3888. err_unref:
  3889. drm_gem_object_unreference(obj);
  3890. err:
  3891. return ret;
  3892. }
  3893. static void
  3894. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3895. {
  3896. drm_i915_private_t *dev_priv = dev->dev_private;
  3897. struct drm_gem_object *obj;
  3898. struct drm_i915_gem_object *obj_priv;
  3899. obj = dev_priv->seqno_obj;
  3900. obj_priv = to_intel_bo(obj);
  3901. kunmap(obj_priv->pages[0]);
  3902. i915_gem_object_unpin(obj);
  3903. drm_gem_object_unreference(obj);
  3904. dev_priv->seqno_obj = NULL;
  3905. dev_priv->seqno_page = NULL;
  3906. }
  3907. int
  3908. i915_gem_init_ringbuffer(struct drm_device *dev)
  3909. {
  3910. drm_i915_private_t *dev_priv = dev->dev_private;
  3911. int ret;
  3912. if (HAS_PIPE_CONTROL(dev)) {
  3913. ret = i915_gem_init_pipe_control(dev);
  3914. if (ret)
  3915. return ret;
  3916. }
  3917. ret = intel_init_render_ring_buffer(dev);
  3918. if (ret)
  3919. goto cleanup_pipe_control;
  3920. if (HAS_BSD(dev)) {
  3921. ret = intel_init_bsd_ring_buffer(dev);
  3922. if (ret)
  3923. goto cleanup_render_ring;
  3924. }
  3925. if (HAS_BLT(dev)) {
  3926. ret = intel_init_blt_ring_buffer(dev);
  3927. if (ret)
  3928. goto cleanup_bsd_ring;
  3929. }
  3930. dev_priv->next_seqno = 1;
  3931. return 0;
  3932. cleanup_bsd_ring:
  3933. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3934. cleanup_render_ring:
  3935. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3936. cleanup_pipe_control:
  3937. if (HAS_PIPE_CONTROL(dev))
  3938. i915_gem_cleanup_pipe_control(dev);
  3939. return ret;
  3940. }
  3941. void
  3942. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3943. {
  3944. drm_i915_private_t *dev_priv = dev->dev_private;
  3945. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3946. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3947. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3948. if (HAS_PIPE_CONTROL(dev))
  3949. i915_gem_cleanup_pipe_control(dev);
  3950. }
  3951. int
  3952. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3953. struct drm_file *file_priv)
  3954. {
  3955. drm_i915_private_t *dev_priv = dev->dev_private;
  3956. int ret;
  3957. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3958. return 0;
  3959. if (atomic_read(&dev_priv->mm.wedged)) {
  3960. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3961. atomic_set(&dev_priv->mm.wedged, 0);
  3962. }
  3963. mutex_lock(&dev->struct_mutex);
  3964. dev_priv->mm.suspended = 0;
  3965. ret = i915_gem_init_ringbuffer(dev);
  3966. if (ret != 0) {
  3967. mutex_unlock(&dev->struct_mutex);
  3968. return ret;
  3969. }
  3970. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3971. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3972. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3973. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3974. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3975. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3976. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3977. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3978. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3979. mutex_unlock(&dev->struct_mutex);
  3980. ret = drm_irq_install(dev);
  3981. if (ret)
  3982. goto cleanup_ringbuffer;
  3983. return 0;
  3984. cleanup_ringbuffer:
  3985. mutex_lock(&dev->struct_mutex);
  3986. i915_gem_cleanup_ringbuffer(dev);
  3987. dev_priv->mm.suspended = 1;
  3988. mutex_unlock(&dev->struct_mutex);
  3989. return ret;
  3990. }
  3991. int
  3992. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3993. struct drm_file *file_priv)
  3994. {
  3995. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3996. return 0;
  3997. drm_irq_uninstall(dev);
  3998. return i915_gem_idle(dev);
  3999. }
  4000. void
  4001. i915_gem_lastclose(struct drm_device *dev)
  4002. {
  4003. int ret;
  4004. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4005. return;
  4006. ret = i915_gem_idle(dev);
  4007. if (ret)
  4008. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4009. }
  4010. static void
  4011. init_ring_lists(struct intel_ring_buffer *ring)
  4012. {
  4013. INIT_LIST_HEAD(&ring->active_list);
  4014. INIT_LIST_HEAD(&ring->request_list);
  4015. INIT_LIST_HEAD(&ring->gpu_write_list);
  4016. }
  4017. void
  4018. i915_gem_load(struct drm_device *dev)
  4019. {
  4020. int i;
  4021. drm_i915_private_t *dev_priv = dev->dev_private;
  4022. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4023. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4024. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4025. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4026. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4027. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4028. init_ring_lists(&dev_priv->render_ring);
  4029. init_ring_lists(&dev_priv->bsd_ring);
  4030. init_ring_lists(&dev_priv->blt_ring);
  4031. for (i = 0; i < 16; i++)
  4032. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4033. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4034. i915_gem_retire_work_handler);
  4035. init_completion(&dev_priv->error_completion);
  4036. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4037. if (IS_GEN3(dev)) {
  4038. u32 tmp = I915_READ(MI_ARB_STATE);
  4039. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4040. /* arb state is a masked write, so set bit + bit in mask */
  4041. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4042. I915_WRITE(MI_ARB_STATE, tmp);
  4043. }
  4044. }
  4045. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4046. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4047. dev_priv->fence_reg_start = 3;
  4048. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4049. dev_priv->num_fence_regs = 16;
  4050. else
  4051. dev_priv->num_fence_regs = 8;
  4052. /* Initialize fence registers to zero */
  4053. switch (INTEL_INFO(dev)->gen) {
  4054. case 6:
  4055. for (i = 0; i < 16; i++)
  4056. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4057. break;
  4058. case 5:
  4059. case 4:
  4060. for (i = 0; i < 16; i++)
  4061. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4062. break;
  4063. case 3:
  4064. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4065. for (i = 0; i < 8; i++)
  4066. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4067. case 2:
  4068. for (i = 0; i < 8; i++)
  4069. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4070. break;
  4071. }
  4072. i915_gem_detect_bit_6_swizzle(dev);
  4073. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4074. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4075. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4076. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4077. }
  4078. /*
  4079. * Create a physically contiguous memory object for this object
  4080. * e.g. for cursor + overlay regs
  4081. */
  4082. static int i915_gem_init_phys_object(struct drm_device *dev,
  4083. int id, int size, int align)
  4084. {
  4085. drm_i915_private_t *dev_priv = dev->dev_private;
  4086. struct drm_i915_gem_phys_object *phys_obj;
  4087. int ret;
  4088. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4089. return 0;
  4090. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4091. if (!phys_obj)
  4092. return -ENOMEM;
  4093. phys_obj->id = id;
  4094. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4095. if (!phys_obj->handle) {
  4096. ret = -ENOMEM;
  4097. goto kfree_obj;
  4098. }
  4099. #ifdef CONFIG_X86
  4100. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4101. #endif
  4102. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4103. return 0;
  4104. kfree_obj:
  4105. kfree(phys_obj);
  4106. return ret;
  4107. }
  4108. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4109. {
  4110. drm_i915_private_t *dev_priv = dev->dev_private;
  4111. struct drm_i915_gem_phys_object *phys_obj;
  4112. if (!dev_priv->mm.phys_objs[id - 1])
  4113. return;
  4114. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4115. if (phys_obj->cur_obj) {
  4116. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4117. }
  4118. #ifdef CONFIG_X86
  4119. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4120. #endif
  4121. drm_pci_free(dev, phys_obj->handle);
  4122. kfree(phys_obj);
  4123. dev_priv->mm.phys_objs[id - 1] = NULL;
  4124. }
  4125. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4126. {
  4127. int i;
  4128. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4129. i915_gem_free_phys_object(dev, i);
  4130. }
  4131. void i915_gem_detach_phys_object(struct drm_device *dev,
  4132. struct drm_gem_object *obj)
  4133. {
  4134. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4135. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4136. char *vaddr;
  4137. int i;
  4138. int page_count;
  4139. if (!obj_priv->phys_obj)
  4140. return;
  4141. vaddr = obj_priv->phys_obj->handle->vaddr;
  4142. page_count = obj->size / PAGE_SIZE;
  4143. for (i = 0; i < page_count; i++) {
  4144. struct page *page = read_cache_page_gfp(mapping, i,
  4145. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4146. if (!IS_ERR(page)) {
  4147. char *dst = kmap_atomic(page);
  4148. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4149. kunmap_atomic(dst);
  4150. drm_clflush_pages(&page, 1);
  4151. set_page_dirty(page);
  4152. mark_page_accessed(page);
  4153. page_cache_release(page);
  4154. }
  4155. }
  4156. drm_agp_chipset_flush(dev);
  4157. obj_priv->phys_obj->cur_obj = NULL;
  4158. obj_priv->phys_obj = NULL;
  4159. }
  4160. int
  4161. i915_gem_attach_phys_object(struct drm_device *dev,
  4162. struct drm_gem_object *obj,
  4163. int id,
  4164. int align)
  4165. {
  4166. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4167. drm_i915_private_t *dev_priv = dev->dev_private;
  4168. struct drm_i915_gem_object *obj_priv;
  4169. int ret = 0;
  4170. int page_count;
  4171. int i;
  4172. if (id > I915_MAX_PHYS_OBJECT)
  4173. return -EINVAL;
  4174. obj_priv = to_intel_bo(obj);
  4175. if (obj_priv->phys_obj) {
  4176. if (obj_priv->phys_obj->id == id)
  4177. return 0;
  4178. i915_gem_detach_phys_object(dev, obj);
  4179. }
  4180. /* create a new object */
  4181. if (!dev_priv->mm.phys_objs[id - 1]) {
  4182. ret = i915_gem_init_phys_object(dev, id,
  4183. obj->size, align);
  4184. if (ret) {
  4185. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4186. return ret;
  4187. }
  4188. }
  4189. /* bind to the object */
  4190. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4191. obj_priv->phys_obj->cur_obj = obj;
  4192. page_count = obj->size / PAGE_SIZE;
  4193. for (i = 0; i < page_count; i++) {
  4194. struct page *page;
  4195. char *dst, *src;
  4196. page = read_cache_page_gfp(mapping, i,
  4197. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4198. if (IS_ERR(page))
  4199. return PTR_ERR(page);
  4200. src = kmap_atomic(page);
  4201. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4202. memcpy(dst, src, PAGE_SIZE);
  4203. kunmap_atomic(src);
  4204. mark_page_accessed(page);
  4205. page_cache_release(page);
  4206. }
  4207. return 0;
  4208. }
  4209. static int
  4210. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4211. struct drm_i915_gem_pwrite *args,
  4212. struct drm_file *file_priv)
  4213. {
  4214. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4215. void *obj_addr;
  4216. int ret;
  4217. char __user *user_data;
  4218. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4219. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4220. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4221. ret = copy_from_user(obj_addr, user_data, args->size);
  4222. if (ret)
  4223. return -EFAULT;
  4224. drm_agp_chipset_flush(dev);
  4225. return 0;
  4226. }
  4227. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4228. {
  4229. struct drm_i915_file_private *file_priv = file->driver_priv;
  4230. /* Clean up our request list when the client is going away, so that
  4231. * later retire_requests won't dereference our soon-to-be-gone
  4232. * file_priv.
  4233. */
  4234. spin_lock(&file_priv->mm.lock);
  4235. while (!list_empty(&file_priv->mm.request_list)) {
  4236. struct drm_i915_gem_request *request;
  4237. request = list_first_entry(&file_priv->mm.request_list,
  4238. struct drm_i915_gem_request,
  4239. client_list);
  4240. list_del(&request->client_list);
  4241. request->file_priv = NULL;
  4242. }
  4243. spin_unlock(&file_priv->mm.lock);
  4244. }
  4245. static int
  4246. i915_gpu_is_active(struct drm_device *dev)
  4247. {
  4248. drm_i915_private_t *dev_priv = dev->dev_private;
  4249. int lists_empty;
  4250. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4251. list_empty(&dev_priv->mm.active_list);
  4252. return !lists_empty;
  4253. }
  4254. static int
  4255. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4256. int nr_to_scan,
  4257. gfp_t gfp_mask)
  4258. {
  4259. struct drm_i915_private *dev_priv =
  4260. container_of(shrinker,
  4261. struct drm_i915_private,
  4262. mm.inactive_shrinker);
  4263. struct drm_device *dev = dev_priv->dev;
  4264. struct drm_i915_gem_object *obj, *next;
  4265. int cnt;
  4266. if (!mutex_trylock(&dev->struct_mutex))
  4267. return 0;
  4268. /* "fast-path" to count number of available objects */
  4269. if (nr_to_scan == 0) {
  4270. cnt = 0;
  4271. list_for_each_entry(obj,
  4272. &dev_priv->mm.inactive_list,
  4273. mm_list)
  4274. cnt++;
  4275. mutex_unlock(&dev->struct_mutex);
  4276. return cnt / 100 * sysctl_vfs_cache_pressure;
  4277. }
  4278. rescan:
  4279. /* first scan for clean buffers */
  4280. i915_gem_retire_requests(dev);
  4281. list_for_each_entry_safe(obj, next,
  4282. &dev_priv->mm.inactive_list,
  4283. mm_list) {
  4284. if (i915_gem_object_is_purgeable(obj)) {
  4285. i915_gem_object_unbind(&obj->base);
  4286. if (--nr_to_scan == 0)
  4287. break;
  4288. }
  4289. }
  4290. /* second pass, evict/count anything still on the inactive list */
  4291. cnt = 0;
  4292. list_for_each_entry_safe(obj, next,
  4293. &dev_priv->mm.inactive_list,
  4294. mm_list) {
  4295. if (nr_to_scan) {
  4296. i915_gem_object_unbind(&obj->base);
  4297. nr_to_scan--;
  4298. } else
  4299. cnt++;
  4300. }
  4301. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4302. /*
  4303. * We are desperate for pages, so as a last resort, wait
  4304. * for the GPU to finish and discard whatever we can.
  4305. * This has a dramatic impact to reduce the number of
  4306. * OOM-killer events whilst running the GPU aggressively.
  4307. */
  4308. if (i915_gpu_idle(dev) == 0)
  4309. goto rescan;
  4310. }
  4311. mutex_unlock(&dev->struct_mutex);
  4312. return cnt / 100 * sysctl_vfs_cache_pressure;
  4313. }