qla3xxx.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.02.00-k36"
  40. #define PFX DRV_NAME " "
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. MODULE_AUTHOR("QLogic Corporation");
  44. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  45. MODULE_LICENSE("GPL");
  46. MODULE_VERSION(DRV_VERSION);
  47. static const u32 default_msg
  48. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  49. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  50. static int debug = -1; /* defaults above */
  51. module_param(debug, int, 0);
  52. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  53. static int msi;
  54. module_param(msi, int, 0);
  55. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  56. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  59. /* required last entry */
  60. {0,}
  61. };
  62. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  63. /*
  64. * Caller must take hw_lock.
  65. */
  66. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  67. u32 sem_mask, u32 sem_bits)
  68. {
  69. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  70. u32 value;
  71. unsigned int seconds = 3;
  72. do {
  73. writel((sem_mask | sem_bits),
  74. &port_regs->CommonRegs.semaphoreReg);
  75. value = readl(&port_regs->CommonRegs.semaphoreReg);
  76. if ((value & (sem_mask >> 16)) == sem_bits)
  77. return 0;
  78. ssleep(1);
  79. } while(--seconds);
  80. return -1;
  81. }
  82. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  83. {
  84. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  85. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  86. readl(&port_regs->CommonRegs.semaphoreReg);
  87. }
  88. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  89. {
  90. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  91. u32 value;
  92. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  93. value = readl(&port_regs->CommonRegs.semaphoreReg);
  94. return ((value & (sem_mask >> 16)) == sem_bits);
  95. }
  96. /*
  97. * Caller holds hw_lock.
  98. */
  99. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  100. {
  101. int i = 0;
  102. while (1) {
  103. if (!ql_sem_lock(qdev,
  104. QL_DRVR_SEM_MASK,
  105. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  106. * 2) << 1)) {
  107. if (i < 10) {
  108. ssleep(1);
  109. i++;
  110. } else {
  111. printk(KERN_ERR PFX "%s: Timed out waiting for "
  112. "driver lock...\n",
  113. qdev->ndev->name);
  114. return 0;
  115. }
  116. } else {
  117. printk(KERN_DEBUG PFX
  118. "%s: driver lock acquired.\n",
  119. qdev->ndev->name);
  120. return 1;
  121. }
  122. }
  123. }
  124. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  125. {
  126. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  127. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  128. &port_regs->CommonRegs.ispControlStatus);
  129. readl(&port_regs->CommonRegs.ispControlStatus);
  130. qdev->current_page = page;
  131. }
  132. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  133. u32 __iomem * reg)
  134. {
  135. u32 value;
  136. unsigned long hw_flags;
  137. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  138. value = readl(reg);
  139. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  140. return value;
  141. }
  142. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  143. u32 __iomem * reg)
  144. {
  145. return readl(reg);
  146. }
  147. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  148. {
  149. u32 value;
  150. unsigned long hw_flags;
  151. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  152. if (qdev->current_page != 0)
  153. ql_set_register_page(qdev,0);
  154. value = readl(reg);
  155. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  156. return value;
  157. }
  158. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  159. {
  160. if (qdev->current_page != 0)
  161. ql_set_register_page(qdev,0);
  162. return readl(reg);
  163. }
  164. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  165. u32 __iomem *reg, u32 value)
  166. {
  167. unsigned long hw_flags;
  168. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  169. writel(value, reg);
  170. readl(reg);
  171. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  172. return;
  173. }
  174. static void ql_write_common_reg(struct ql3_adapter *qdev,
  175. u32 __iomem *reg, u32 value)
  176. {
  177. writel(value, reg);
  178. readl(reg);
  179. return;
  180. }
  181. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  182. u32 __iomem *reg, u32 value)
  183. {
  184. writel(value, reg);
  185. readl(reg);
  186. udelay(1);
  187. return;
  188. }
  189. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  190. u32 __iomem *reg, u32 value)
  191. {
  192. if (qdev->current_page != 0)
  193. ql_set_register_page(qdev,0);
  194. writel(value, reg);
  195. readl(reg);
  196. return;
  197. }
  198. /*
  199. * Caller holds hw_lock. Only called during init.
  200. */
  201. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  202. u32 __iomem *reg, u32 value)
  203. {
  204. if (qdev->current_page != 1)
  205. ql_set_register_page(qdev,1);
  206. writel(value, reg);
  207. readl(reg);
  208. return;
  209. }
  210. /*
  211. * Caller holds hw_lock. Only called during init.
  212. */
  213. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  214. u32 __iomem *reg, u32 value)
  215. {
  216. if (qdev->current_page != 2)
  217. ql_set_register_page(qdev,2);
  218. writel(value, reg);
  219. readl(reg);
  220. return;
  221. }
  222. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  223. {
  224. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  225. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  226. (ISP_IMR_ENABLE_INT << 16));
  227. }
  228. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  229. {
  230. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  231. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  232. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  233. }
  234. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  235. struct ql_rcv_buf_cb *lrg_buf_cb)
  236. {
  237. dma_addr_t map;
  238. int err;
  239. lrg_buf_cb->next = NULL;
  240. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  241. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  242. } else {
  243. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  244. qdev->lrg_buf_free_tail = lrg_buf_cb;
  245. }
  246. if (!lrg_buf_cb->skb) {
  247. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  248. qdev->lrg_buffer_len);
  249. if (unlikely(!lrg_buf_cb->skb)) {
  250. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  251. qdev->ndev->name);
  252. qdev->lrg_buf_skb_check++;
  253. } else {
  254. /*
  255. * We save some space to copy the ethhdr from first
  256. * buffer
  257. */
  258. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  259. map = pci_map_single(qdev->pdev,
  260. lrg_buf_cb->skb->data,
  261. qdev->lrg_buffer_len -
  262. QL_HEADER_SPACE,
  263. PCI_DMA_FROMDEVICE);
  264. err = pci_dma_mapping_error(map);
  265. if(err) {
  266. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  267. qdev->ndev->name, err);
  268. dev_kfree_skb(lrg_buf_cb->skb);
  269. lrg_buf_cb->skb = NULL;
  270. qdev->lrg_buf_skb_check++;
  271. return;
  272. }
  273. lrg_buf_cb->buf_phy_addr_low =
  274. cpu_to_le32(LS_64BITS(map));
  275. lrg_buf_cb->buf_phy_addr_high =
  276. cpu_to_le32(MS_64BITS(map));
  277. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  278. pci_unmap_len_set(lrg_buf_cb, maplen,
  279. qdev->lrg_buffer_len -
  280. QL_HEADER_SPACE);
  281. }
  282. }
  283. qdev->lrg_buf_free_count++;
  284. }
  285. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  286. *qdev)
  287. {
  288. struct ql_rcv_buf_cb *lrg_buf_cb;
  289. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  290. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  291. qdev->lrg_buf_free_tail = NULL;
  292. qdev->lrg_buf_free_count--;
  293. }
  294. return lrg_buf_cb;
  295. }
  296. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  297. static u32 dataBits = EEPROM_NO_DATA_BITS;
  298. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  299. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  300. unsigned short *value);
  301. /*
  302. * Caller holds hw_lock.
  303. */
  304. static void fm93c56a_select(struct ql3_adapter *qdev)
  305. {
  306. struct ql3xxx_port_registers __iomem *port_regs =
  307. qdev->mem_map_registers;
  308. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  309. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  310. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  311. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  312. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  313. }
  314. /*
  315. * Caller holds hw_lock.
  316. */
  317. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  318. {
  319. int i;
  320. u32 mask;
  321. u32 dataBit;
  322. u32 previousBit;
  323. struct ql3xxx_port_registers __iomem *port_regs =
  324. qdev->mem_map_registers;
  325. /* Clock in a zero, then do the start bit */
  326. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  327. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  328. AUBURN_EEPROM_DO_1);
  329. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  330. ISP_NVRAM_MASK | qdev->
  331. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  332. AUBURN_EEPROM_CLK_RISE);
  333. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  334. ISP_NVRAM_MASK | qdev->
  335. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  336. AUBURN_EEPROM_CLK_FALL);
  337. mask = 1 << (FM93C56A_CMD_BITS - 1);
  338. /* Force the previous data bit to be different */
  339. previousBit = 0xffff;
  340. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  341. dataBit =
  342. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  343. if (previousBit != dataBit) {
  344. /*
  345. * If the bit changed, then change the DO state to
  346. * match
  347. */
  348. ql_write_nvram_reg(qdev,
  349. &port_regs->CommonRegs.
  350. serialPortInterfaceReg,
  351. ISP_NVRAM_MASK | qdev->
  352. eeprom_cmd_data | dataBit);
  353. previousBit = dataBit;
  354. }
  355. ql_write_nvram_reg(qdev,
  356. &port_regs->CommonRegs.
  357. serialPortInterfaceReg,
  358. ISP_NVRAM_MASK | qdev->
  359. eeprom_cmd_data | dataBit |
  360. AUBURN_EEPROM_CLK_RISE);
  361. ql_write_nvram_reg(qdev,
  362. &port_regs->CommonRegs.
  363. serialPortInterfaceReg,
  364. ISP_NVRAM_MASK | qdev->
  365. eeprom_cmd_data | dataBit |
  366. AUBURN_EEPROM_CLK_FALL);
  367. cmd = cmd << 1;
  368. }
  369. mask = 1 << (addrBits - 1);
  370. /* Force the previous data bit to be different */
  371. previousBit = 0xffff;
  372. for (i = 0; i < addrBits; i++) {
  373. dataBit =
  374. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  375. AUBURN_EEPROM_DO_0;
  376. if (previousBit != dataBit) {
  377. /*
  378. * If the bit changed, then change the DO state to
  379. * match
  380. */
  381. ql_write_nvram_reg(qdev,
  382. &port_regs->CommonRegs.
  383. serialPortInterfaceReg,
  384. ISP_NVRAM_MASK | qdev->
  385. eeprom_cmd_data | dataBit);
  386. previousBit = dataBit;
  387. }
  388. ql_write_nvram_reg(qdev,
  389. &port_regs->CommonRegs.
  390. serialPortInterfaceReg,
  391. ISP_NVRAM_MASK | qdev->
  392. eeprom_cmd_data | dataBit |
  393. AUBURN_EEPROM_CLK_RISE);
  394. ql_write_nvram_reg(qdev,
  395. &port_regs->CommonRegs.
  396. serialPortInterfaceReg,
  397. ISP_NVRAM_MASK | qdev->
  398. eeprom_cmd_data | dataBit |
  399. AUBURN_EEPROM_CLK_FALL);
  400. eepromAddr = eepromAddr << 1;
  401. }
  402. }
  403. /*
  404. * Caller holds hw_lock.
  405. */
  406. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  407. {
  408. struct ql3xxx_port_registers __iomem *port_regs =
  409. qdev->mem_map_registers;
  410. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  411. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  412. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  413. }
  414. /*
  415. * Caller holds hw_lock.
  416. */
  417. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  418. {
  419. int i;
  420. u32 data = 0;
  421. u32 dataBit;
  422. struct ql3xxx_port_registers __iomem *port_regs =
  423. qdev->mem_map_registers;
  424. /* Read the data bits */
  425. /* The first bit is a dummy. Clock right over it. */
  426. for (i = 0; i < dataBits; i++) {
  427. ql_write_nvram_reg(qdev,
  428. &port_regs->CommonRegs.
  429. serialPortInterfaceReg,
  430. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  431. AUBURN_EEPROM_CLK_RISE);
  432. ql_write_nvram_reg(qdev,
  433. &port_regs->CommonRegs.
  434. serialPortInterfaceReg,
  435. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  436. AUBURN_EEPROM_CLK_FALL);
  437. dataBit =
  438. (ql_read_common_reg
  439. (qdev,
  440. &port_regs->CommonRegs.
  441. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  442. data = (data << 1) | dataBit;
  443. }
  444. *value = (u16) data;
  445. }
  446. /*
  447. * Caller holds hw_lock.
  448. */
  449. static void eeprom_readword(struct ql3_adapter *qdev,
  450. u32 eepromAddr, unsigned short *value)
  451. {
  452. fm93c56a_select(qdev);
  453. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  454. fm93c56a_datain(qdev, value);
  455. fm93c56a_deselect(qdev);
  456. }
  457. static void ql_swap_mac_addr(u8 * macAddress)
  458. {
  459. #ifdef __BIG_ENDIAN
  460. u8 temp;
  461. temp = macAddress[0];
  462. macAddress[0] = macAddress[1];
  463. macAddress[1] = temp;
  464. temp = macAddress[2];
  465. macAddress[2] = macAddress[3];
  466. macAddress[3] = temp;
  467. temp = macAddress[4];
  468. macAddress[4] = macAddress[5];
  469. macAddress[5] = temp;
  470. #endif
  471. }
  472. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  473. {
  474. u16 *pEEPROMData;
  475. u16 checksum = 0;
  476. u32 index;
  477. unsigned long hw_flags;
  478. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  479. pEEPROMData = (u16 *) & qdev->nvram_data;
  480. qdev->eeprom_cmd_data = 0;
  481. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  482. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  483. 2) << 10)) {
  484. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  485. __func__);
  486. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  487. return -1;
  488. }
  489. for (index = 0; index < EEPROM_SIZE; index++) {
  490. eeprom_readword(qdev, index, pEEPROMData);
  491. checksum += *pEEPROMData;
  492. pEEPROMData++;
  493. }
  494. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  495. if (checksum != 0) {
  496. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  497. qdev->ndev->name, checksum);
  498. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  499. return -1;
  500. }
  501. /*
  502. * We have a problem with endianness for the MAC addresses
  503. * and the two 8-bit values version, and numPorts. We
  504. * have to swap them on big endian systems.
  505. */
  506. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  507. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  508. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  509. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  510. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  511. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  512. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  513. return checksum;
  514. }
  515. static const u32 PHYAddr[2] = {
  516. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  517. };
  518. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  519. {
  520. struct ql3xxx_port_registers __iomem *port_regs =
  521. qdev->mem_map_registers;
  522. u32 temp;
  523. int count = 1000;
  524. while (count) {
  525. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  526. if (!(temp & MAC_MII_STATUS_BSY))
  527. return 0;
  528. udelay(10);
  529. count--;
  530. }
  531. return -1;
  532. }
  533. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  534. {
  535. struct ql3xxx_port_registers __iomem *port_regs =
  536. qdev->mem_map_registers;
  537. u32 scanControl;
  538. if (qdev->numPorts > 1) {
  539. /* Auto scan will cycle through multiple ports */
  540. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  541. } else {
  542. scanControl = MAC_MII_CONTROL_SC;
  543. }
  544. /*
  545. * Scan register 1 of PHY/PETBI,
  546. * Set up to scan both devices
  547. * The autoscan starts from the first register, completes
  548. * the last one before rolling over to the first
  549. */
  550. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  551. PHYAddr[0] | MII_SCAN_REGISTER);
  552. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  553. (scanControl) |
  554. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  555. }
  556. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  557. {
  558. u8 ret;
  559. struct ql3xxx_port_registers __iomem *port_regs =
  560. qdev->mem_map_registers;
  561. /* See if scan mode is enabled before we turn it off */
  562. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  563. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  564. /* Scan is enabled */
  565. ret = 1;
  566. } else {
  567. /* Scan is disabled */
  568. ret = 0;
  569. }
  570. /*
  571. * When disabling scan mode you must first change the MII register
  572. * address
  573. */
  574. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  575. PHYAddr[0] | MII_SCAN_REGISTER);
  576. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  577. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  578. MAC_MII_CONTROL_RC) << 16));
  579. return ret;
  580. }
  581. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  582. u16 regAddr, u16 value, u32 mac_index)
  583. {
  584. struct ql3xxx_port_registers __iomem *port_regs =
  585. qdev->mem_map_registers;
  586. u8 scanWasEnabled;
  587. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  588. if (ql_wait_for_mii_ready(qdev)) {
  589. if (netif_msg_link(qdev))
  590. printk(KERN_WARNING PFX
  591. "%s Timed out waiting for management port to "
  592. "get free before issuing command.\n",
  593. qdev->ndev->name);
  594. return -1;
  595. }
  596. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  597. PHYAddr[mac_index] | regAddr);
  598. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  599. /* Wait for write to complete 9/10/04 SJP */
  600. if (ql_wait_for_mii_ready(qdev)) {
  601. if (netif_msg_link(qdev))
  602. printk(KERN_WARNING PFX
  603. "%s: Timed out waiting for management port to"
  604. "get free before issuing command.\n",
  605. qdev->ndev->name);
  606. return -1;
  607. }
  608. if (scanWasEnabled)
  609. ql_mii_enable_scan_mode(qdev);
  610. return 0;
  611. }
  612. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  613. u16 * value, u32 mac_index)
  614. {
  615. struct ql3xxx_port_registers __iomem *port_regs =
  616. qdev->mem_map_registers;
  617. u8 scanWasEnabled;
  618. u32 temp;
  619. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  620. if (ql_wait_for_mii_ready(qdev)) {
  621. if (netif_msg_link(qdev))
  622. printk(KERN_WARNING PFX
  623. "%s: Timed out waiting for management port to "
  624. "get free before issuing command.\n",
  625. qdev->ndev->name);
  626. return -1;
  627. }
  628. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  629. PHYAddr[mac_index] | regAddr);
  630. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  631. (MAC_MII_CONTROL_RC << 16));
  632. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  633. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  634. /* Wait for the read to complete */
  635. if (ql_wait_for_mii_ready(qdev)) {
  636. if (netif_msg_link(qdev))
  637. printk(KERN_WARNING PFX
  638. "%s: Timed out waiting for management port to "
  639. "get free after issuing command.\n",
  640. qdev->ndev->name);
  641. return -1;
  642. }
  643. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  644. *value = (u16) temp;
  645. if (scanWasEnabled)
  646. ql_mii_enable_scan_mode(qdev);
  647. return 0;
  648. }
  649. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  650. {
  651. struct ql3xxx_port_registers __iomem *port_regs =
  652. qdev->mem_map_registers;
  653. ql_mii_disable_scan_mode(qdev);
  654. if (ql_wait_for_mii_ready(qdev)) {
  655. if (netif_msg_link(qdev))
  656. printk(KERN_WARNING PFX
  657. "%s: Timed out waiting for management port to "
  658. "get free before issuing command.\n",
  659. qdev->ndev->name);
  660. return -1;
  661. }
  662. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  663. qdev->PHYAddr | regAddr);
  664. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  665. /* Wait for write to complete. */
  666. if (ql_wait_for_mii_ready(qdev)) {
  667. if (netif_msg_link(qdev))
  668. printk(KERN_WARNING PFX
  669. "%s: Timed out waiting for management port to "
  670. "get free before issuing command.\n",
  671. qdev->ndev->name);
  672. return -1;
  673. }
  674. ql_mii_enable_scan_mode(qdev);
  675. return 0;
  676. }
  677. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  678. {
  679. u32 temp;
  680. struct ql3xxx_port_registers __iomem *port_regs =
  681. qdev->mem_map_registers;
  682. ql_mii_disable_scan_mode(qdev);
  683. if (ql_wait_for_mii_ready(qdev)) {
  684. if (netif_msg_link(qdev))
  685. printk(KERN_WARNING PFX
  686. "%s: Timed out waiting for management port to "
  687. "get free before issuing command.\n",
  688. qdev->ndev->name);
  689. return -1;
  690. }
  691. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  692. qdev->PHYAddr | regAddr);
  693. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  694. (MAC_MII_CONTROL_RC << 16));
  695. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  696. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  697. /* Wait for the read to complete */
  698. if (ql_wait_for_mii_ready(qdev)) {
  699. if (netif_msg_link(qdev))
  700. printk(KERN_WARNING PFX
  701. "%s: Timed out waiting for management port to "
  702. "get free before issuing command.\n",
  703. qdev->ndev->name);
  704. return -1;
  705. }
  706. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  707. *value = (u16) temp;
  708. ql_mii_enable_scan_mode(qdev);
  709. return 0;
  710. }
  711. static void ql_petbi_reset(struct ql3_adapter *qdev)
  712. {
  713. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  714. }
  715. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  716. {
  717. u16 reg;
  718. /* Enable Auto-negotiation sense */
  719. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  720. reg |= PETBI_TBI_AUTO_SENSE;
  721. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  722. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  723. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  724. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  725. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  726. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  727. }
  728. static void ql_petbi_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  729. {
  730. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  731. mac_index);
  732. }
  733. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  734. {
  735. u16 reg;
  736. /* Enable Auto-negotiation sense */
  737. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg, mac_index);
  738. reg |= PETBI_TBI_AUTO_SENSE;
  739. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg, mac_index);
  740. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  741. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX, mac_index);
  742. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  743. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  744. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  745. mac_index);
  746. }
  747. static void ql_petbi_init(struct ql3_adapter *qdev)
  748. {
  749. ql_petbi_reset(qdev);
  750. ql_petbi_start_neg(qdev);
  751. }
  752. static void ql_petbi_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  753. {
  754. ql_petbi_reset_ex(qdev, mac_index);
  755. ql_petbi_start_neg_ex(qdev, mac_index);
  756. }
  757. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  758. {
  759. u16 reg;
  760. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  761. return 0;
  762. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  763. }
  764. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  765. {
  766. u16 reg;
  767. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  768. return 0;
  769. reg = (((reg & 0x18) >> 3) & 3);
  770. if (reg == 2)
  771. return SPEED_1000;
  772. else if (reg == 1)
  773. return SPEED_100;
  774. else if (reg == 0)
  775. return SPEED_10;
  776. else
  777. return -1;
  778. }
  779. static int ql_is_full_dup(struct ql3_adapter *qdev)
  780. {
  781. u16 reg;
  782. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  783. return 0;
  784. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  785. }
  786. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  787. {
  788. u16 reg;
  789. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  790. return 0;
  791. return (reg & PHY_NEG_PAUSE) != 0;
  792. }
  793. /*
  794. * Caller holds hw_lock.
  795. */
  796. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  797. {
  798. struct ql3xxx_port_registers __iomem *port_regs =
  799. qdev->mem_map_registers;
  800. u32 value;
  801. if (enable)
  802. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  803. else
  804. value = (MAC_CONFIG_REG_PE << 16);
  805. if (qdev->mac_index)
  806. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  807. else
  808. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  809. }
  810. /*
  811. * Caller holds hw_lock.
  812. */
  813. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  814. {
  815. struct ql3xxx_port_registers __iomem *port_regs =
  816. qdev->mem_map_registers;
  817. u32 value;
  818. if (enable)
  819. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  820. else
  821. value = (MAC_CONFIG_REG_SR << 16);
  822. if (qdev->mac_index)
  823. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  824. else
  825. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  826. }
  827. /*
  828. * Caller holds hw_lock.
  829. */
  830. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  831. {
  832. struct ql3xxx_port_registers __iomem *port_regs =
  833. qdev->mem_map_registers;
  834. u32 value;
  835. if (enable)
  836. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  837. else
  838. value = (MAC_CONFIG_REG_GM << 16);
  839. if (qdev->mac_index)
  840. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  841. else
  842. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  843. }
  844. /*
  845. * Caller holds hw_lock.
  846. */
  847. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  848. {
  849. struct ql3xxx_port_registers __iomem *port_regs =
  850. qdev->mem_map_registers;
  851. u32 value;
  852. if (enable)
  853. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  854. else
  855. value = (MAC_CONFIG_REG_FD << 16);
  856. if (qdev->mac_index)
  857. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  858. else
  859. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  860. }
  861. /*
  862. * Caller holds hw_lock.
  863. */
  864. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  865. {
  866. struct ql3xxx_port_registers __iomem *port_regs =
  867. qdev->mem_map_registers;
  868. u32 value;
  869. if (enable)
  870. value =
  871. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  872. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  873. else
  874. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  875. if (qdev->mac_index)
  876. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  877. else
  878. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  879. }
  880. /*
  881. * Caller holds hw_lock.
  882. */
  883. static int ql_is_fiber(struct ql3_adapter *qdev)
  884. {
  885. struct ql3xxx_port_registers __iomem *port_regs =
  886. qdev->mem_map_registers;
  887. u32 bitToCheck = 0;
  888. u32 temp;
  889. switch (qdev->mac_index) {
  890. case 0:
  891. bitToCheck = PORT_STATUS_SM0;
  892. break;
  893. case 1:
  894. bitToCheck = PORT_STATUS_SM1;
  895. break;
  896. }
  897. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  898. return (temp & bitToCheck) != 0;
  899. }
  900. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  901. {
  902. u16 reg;
  903. ql_mii_read_reg(qdev, 0x00, &reg);
  904. return (reg & 0x1000) != 0;
  905. }
  906. /*
  907. * Caller holds hw_lock.
  908. */
  909. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  910. {
  911. struct ql3xxx_port_registers __iomem *port_regs =
  912. qdev->mem_map_registers;
  913. u32 bitToCheck = 0;
  914. u32 temp;
  915. switch (qdev->mac_index) {
  916. case 0:
  917. bitToCheck = PORT_STATUS_AC0;
  918. break;
  919. case 1:
  920. bitToCheck = PORT_STATUS_AC1;
  921. break;
  922. }
  923. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  924. if (temp & bitToCheck) {
  925. if (netif_msg_link(qdev))
  926. printk(KERN_INFO PFX
  927. "%s: Auto-Negotiate complete.\n",
  928. qdev->ndev->name);
  929. return 1;
  930. } else {
  931. if (netif_msg_link(qdev))
  932. printk(KERN_WARNING PFX
  933. "%s: Auto-Negotiate incomplete.\n",
  934. qdev->ndev->name);
  935. return 0;
  936. }
  937. }
  938. /*
  939. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  940. */
  941. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  942. {
  943. if (ql_is_fiber(qdev))
  944. return ql_is_petbi_neg_pause(qdev);
  945. else
  946. return ql_is_phy_neg_pause(qdev);
  947. }
  948. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  949. {
  950. struct ql3xxx_port_registers __iomem *port_regs =
  951. qdev->mem_map_registers;
  952. u32 bitToCheck = 0;
  953. u32 temp;
  954. switch (qdev->mac_index) {
  955. case 0:
  956. bitToCheck = PORT_STATUS_AE0;
  957. break;
  958. case 1:
  959. bitToCheck = PORT_STATUS_AE1;
  960. break;
  961. }
  962. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  963. return (temp & bitToCheck) != 0;
  964. }
  965. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  966. {
  967. if (ql_is_fiber(qdev))
  968. return SPEED_1000;
  969. else
  970. return ql_phy_get_speed(qdev);
  971. }
  972. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  973. {
  974. if (ql_is_fiber(qdev))
  975. return 1;
  976. else
  977. return ql_is_full_dup(qdev);
  978. }
  979. /*
  980. * Caller holds hw_lock.
  981. */
  982. static int ql_link_down_detect(struct ql3_adapter *qdev)
  983. {
  984. struct ql3xxx_port_registers __iomem *port_regs =
  985. qdev->mem_map_registers;
  986. u32 bitToCheck = 0;
  987. u32 temp;
  988. switch (qdev->mac_index) {
  989. case 0:
  990. bitToCheck = ISP_CONTROL_LINK_DN_0;
  991. break;
  992. case 1:
  993. bitToCheck = ISP_CONTROL_LINK_DN_1;
  994. break;
  995. }
  996. temp =
  997. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  998. return (temp & bitToCheck) != 0;
  999. }
  1000. /*
  1001. * Caller holds hw_lock.
  1002. */
  1003. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1004. {
  1005. struct ql3xxx_port_registers __iomem *port_regs =
  1006. qdev->mem_map_registers;
  1007. switch (qdev->mac_index) {
  1008. case 0:
  1009. ql_write_common_reg(qdev,
  1010. &port_regs->CommonRegs.ispControlStatus,
  1011. (ISP_CONTROL_LINK_DN_0) |
  1012. (ISP_CONTROL_LINK_DN_0 << 16));
  1013. break;
  1014. case 1:
  1015. ql_write_common_reg(qdev,
  1016. &port_regs->CommonRegs.ispControlStatus,
  1017. (ISP_CONTROL_LINK_DN_1) |
  1018. (ISP_CONTROL_LINK_DN_1 << 16));
  1019. break;
  1020. default:
  1021. return 1;
  1022. }
  1023. return 0;
  1024. }
  1025. /*
  1026. * Caller holds hw_lock.
  1027. */
  1028. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev,
  1029. u32 mac_index)
  1030. {
  1031. struct ql3xxx_port_registers __iomem *port_regs =
  1032. qdev->mem_map_registers;
  1033. u32 bitToCheck = 0;
  1034. u32 temp;
  1035. switch (mac_index) {
  1036. case 0:
  1037. bitToCheck = PORT_STATUS_F1_ENABLED;
  1038. break;
  1039. case 1:
  1040. bitToCheck = PORT_STATUS_F3_ENABLED;
  1041. break;
  1042. default:
  1043. break;
  1044. }
  1045. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1046. if (temp & bitToCheck) {
  1047. if (netif_msg_link(qdev))
  1048. printk(KERN_DEBUG PFX
  1049. "%s: is not link master.\n", qdev->ndev->name);
  1050. return 0;
  1051. } else {
  1052. if (netif_msg_link(qdev))
  1053. printk(KERN_DEBUG PFX
  1054. "%s: is link master.\n", qdev->ndev->name);
  1055. return 1;
  1056. }
  1057. }
  1058. static void ql_phy_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  1059. {
  1060. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET, mac_index);
  1061. }
  1062. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  1063. {
  1064. u16 reg;
  1065. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER,
  1066. PHY_NEG_PAUSE | PHY_NEG_ADV_SPEED | 1, mac_index);
  1067. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, mac_index);
  1068. ql_mii_write_reg_ex(qdev, CONTROL_REG, reg | PHY_CTRL_RESTART_NEG,
  1069. mac_index);
  1070. }
  1071. static void ql_phy_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  1072. {
  1073. ql_phy_reset_ex(qdev, mac_index);
  1074. ql_phy_start_neg_ex(qdev, mac_index);
  1075. }
  1076. /*
  1077. * Caller holds hw_lock.
  1078. */
  1079. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1080. {
  1081. struct ql3xxx_port_registers __iomem *port_regs =
  1082. qdev->mem_map_registers;
  1083. u32 bitToCheck = 0;
  1084. u32 temp, linkState;
  1085. switch (qdev->mac_index) {
  1086. case 0:
  1087. bitToCheck = PORT_STATUS_UP0;
  1088. break;
  1089. case 1:
  1090. bitToCheck = PORT_STATUS_UP1;
  1091. break;
  1092. }
  1093. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1094. if (temp & bitToCheck) {
  1095. linkState = LS_UP;
  1096. } else {
  1097. linkState = LS_DOWN;
  1098. if (netif_msg_link(qdev))
  1099. printk(KERN_WARNING PFX
  1100. "%s: Link is down.\n", qdev->ndev->name);
  1101. }
  1102. return linkState;
  1103. }
  1104. static int ql_port_start(struct ql3_adapter *qdev)
  1105. {
  1106. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1107. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1108. 2) << 7))
  1109. return -1;
  1110. if (ql_is_fiber(qdev)) {
  1111. ql_petbi_init(qdev);
  1112. } else {
  1113. /* Copper port */
  1114. ql_phy_init_ex(qdev, qdev->mac_index);
  1115. }
  1116. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1117. return 0;
  1118. }
  1119. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1120. {
  1121. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1122. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1123. 2) << 7))
  1124. return -1;
  1125. if (!ql_auto_neg_error(qdev)) {
  1126. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1127. /* configure the MAC */
  1128. if (netif_msg_link(qdev))
  1129. printk(KERN_DEBUG PFX
  1130. "%s: Configuring link.\n",
  1131. qdev->ndev->
  1132. name);
  1133. ql_mac_cfg_soft_reset(qdev, 1);
  1134. ql_mac_cfg_gig(qdev,
  1135. (ql_get_link_speed
  1136. (qdev) ==
  1137. SPEED_1000));
  1138. ql_mac_cfg_full_dup(qdev,
  1139. ql_is_link_full_dup
  1140. (qdev));
  1141. ql_mac_cfg_pause(qdev,
  1142. ql_is_neg_pause
  1143. (qdev));
  1144. ql_mac_cfg_soft_reset(qdev, 0);
  1145. /* enable the MAC */
  1146. if (netif_msg_link(qdev))
  1147. printk(KERN_DEBUG PFX
  1148. "%s: Enabling mac.\n",
  1149. qdev->ndev->
  1150. name);
  1151. ql_mac_enable(qdev, 1);
  1152. }
  1153. if (netif_msg_link(qdev))
  1154. printk(KERN_DEBUG PFX
  1155. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1156. qdev->ndev->name);
  1157. qdev->port_link_state = LS_UP;
  1158. netif_start_queue(qdev->ndev);
  1159. netif_carrier_on(qdev->ndev);
  1160. if (netif_msg_link(qdev))
  1161. printk(KERN_INFO PFX
  1162. "%s: Link is up at %d Mbps, %s duplex.\n",
  1163. qdev->ndev->name,
  1164. ql_get_link_speed(qdev),
  1165. ql_is_link_full_dup(qdev)
  1166. ? "full" : "half");
  1167. } else { /* Remote error detected */
  1168. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1169. if (netif_msg_link(qdev))
  1170. printk(KERN_DEBUG PFX
  1171. "%s: Remote error detected. "
  1172. "Calling ql_port_start().\n",
  1173. qdev->ndev->
  1174. name);
  1175. /*
  1176. * ql_port_start() is shared code and needs
  1177. * to lock the PHY on it's own.
  1178. */
  1179. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1180. if(ql_port_start(qdev)) {/* Restart port */
  1181. return -1;
  1182. } else
  1183. return 0;
  1184. }
  1185. }
  1186. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1187. return 0;
  1188. }
  1189. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1190. {
  1191. u32 curr_link_state;
  1192. unsigned long hw_flags;
  1193. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1194. curr_link_state = ql_get_link_state(qdev);
  1195. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1196. if (netif_msg_link(qdev))
  1197. printk(KERN_INFO PFX
  1198. "%s: Reset in progress, skip processing link "
  1199. "state.\n", qdev->ndev->name);
  1200. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1201. return;
  1202. }
  1203. switch (qdev->port_link_state) {
  1204. default:
  1205. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1206. ql_port_start(qdev);
  1207. }
  1208. qdev->port_link_state = LS_DOWN;
  1209. /* Fall Through */
  1210. case LS_DOWN:
  1211. if (netif_msg_link(qdev))
  1212. printk(KERN_DEBUG PFX
  1213. "%s: port_link_state = LS_DOWN.\n",
  1214. qdev->ndev->name);
  1215. if (curr_link_state == LS_UP) {
  1216. if (netif_msg_link(qdev))
  1217. printk(KERN_DEBUG PFX
  1218. "%s: curr_link_state = LS_UP.\n",
  1219. qdev->ndev->name);
  1220. if (ql_is_auto_neg_complete(qdev))
  1221. ql_finish_auto_neg(qdev);
  1222. if (qdev->port_link_state == LS_UP)
  1223. ql_link_down_detect_clear(qdev);
  1224. }
  1225. break;
  1226. case LS_UP:
  1227. /*
  1228. * See if the link is currently down or went down and came
  1229. * back up
  1230. */
  1231. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1232. if (netif_msg_link(qdev))
  1233. printk(KERN_INFO PFX "%s: Link is down.\n",
  1234. qdev->ndev->name);
  1235. qdev->port_link_state = LS_DOWN;
  1236. }
  1237. break;
  1238. }
  1239. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1240. }
  1241. /*
  1242. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1243. */
  1244. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1245. {
  1246. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1247. set_bit(QL_LINK_MASTER,&qdev->flags);
  1248. else
  1249. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1250. }
  1251. /*
  1252. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1253. */
  1254. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1255. {
  1256. ql_mii_enable_scan_mode(qdev);
  1257. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1258. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1259. ql_petbi_init_ex(qdev, qdev->mac_index);
  1260. } else {
  1261. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1262. ql_phy_init_ex(qdev, qdev->mac_index);
  1263. }
  1264. }
  1265. /*
  1266. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1267. * management interface clock speed can be set properly. It would be better if
  1268. * we had a way to disable MDC until after the PHY is out of reset, but we
  1269. * don't have that capability.
  1270. */
  1271. static int ql_mii_setup(struct ql3_adapter *qdev)
  1272. {
  1273. u32 reg;
  1274. struct ql3xxx_port_registers __iomem *port_regs =
  1275. qdev->mem_map_registers;
  1276. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1277. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1278. 2) << 7))
  1279. return -1;
  1280. if (qdev->device_id == QL3032_DEVICE_ID)
  1281. ql_write_page0_reg(qdev,
  1282. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1283. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1284. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1285. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1286. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1287. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1288. return 0;
  1289. }
  1290. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1291. {
  1292. u32 supported;
  1293. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1294. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1295. | SUPPORTED_Autoneg;
  1296. } else {
  1297. supported = SUPPORTED_10baseT_Half
  1298. | SUPPORTED_10baseT_Full
  1299. | SUPPORTED_100baseT_Half
  1300. | SUPPORTED_100baseT_Full
  1301. | SUPPORTED_1000baseT_Half
  1302. | SUPPORTED_1000baseT_Full
  1303. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1304. }
  1305. return supported;
  1306. }
  1307. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1308. {
  1309. int status;
  1310. unsigned long hw_flags;
  1311. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1312. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1313. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1314. 2) << 7)) {
  1315. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1316. return 0;
  1317. }
  1318. status = ql_is_auto_cfg(qdev);
  1319. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1320. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1321. return status;
  1322. }
  1323. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1324. {
  1325. u32 status;
  1326. unsigned long hw_flags;
  1327. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1328. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1329. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1330. 2) << 7)) {
  1331. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1332. return 0;
  1333. }
  1334. status = ql_get_link_speed(qdev);
  1335. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1336. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1337. return status;
  1338. }
  1339. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1340. {
  1341. int status;
  1342. unsigned long hw_flags;
  1343. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1344. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1345. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1346. 2) << 7)) {
  1347. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1348. return 0;
  1349. }
  1350. status = ql_is_link_full_dup(qdev);
  1351. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1352. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1353. return status;
  1354. }
  1355. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1356. {
  1357. struct ql3_adapter *qdev = netdev_priv(ndev);
  1358. ecmd->transceiver = XCVR_INTERNAL;
  1359. ecmd->supported = ql_supported_modes(qdev);
  1360. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1361. ecmd->port = PORT_FIBRE;
  1362. } else {
  1363. ecmd->port = PORT_TP;
  1364. ecmd->phy_address = qdev->PHYAddr;
  1365. }
  1366. ecmd->advertising = ql_supported_modes(qdev);
  1367. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1368. ecmd->speed = ql_get_speed(qdev);
  1369. ecmd->duplex = ql_get_full_dup(qdev);
  1370. return 0;
  1371. }
  1372. static void ql_get_drvinfo(struct net_device *ndev,
  1373. struct ethtool_drvinfo *drvinfo)
  1374. {
  1375. struct ql3_adapter *qdev = netdev_priv(ndev);
  1376. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1377. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1378. strncpy(drvinfo->fw_version, "N/A", 32);
  1379. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1380. drvinfo->n_stats = 0;
  1381. drvinfo->testinfo_len = 0;
  1382. drvinfo->regdump_len = 0;
  1383. drvinfo->eedump_len = 0;
  1384. }
  1385. static u32 ql_get_msglevel(struct net_device *ndev)
  1386. {
  1387. struct ql3_adapter *qdev = netdev_priv(ndev);
  1388. return qdev->msg_enable;
  1389. }
  1390. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1391. {
  1392. struct ql3_adapter *qdev = netdev_priv(ndev);
  1393. qdev->msg_enable = value;
  1394. }
  1395. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1396. .get_settings = ql_get_settings,
  1397. .get_drvinfo = ql_get_drvinfo,
  1398. .get_perm_addr = ethtool_op_get_perm_addr,
  1399. .get_link = ethtool_op_get_link,
  1400. .get_msglevel = ql_get_msglevel,
  1401. .set_msglevel = ql_set_msglevel,
  1402. };
  1403. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1404. {
  1405. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1406. dma_addr_t map;
  1407. int err;
  1408. while (lrg_buf_cb) {
  1409. if (!lrg_buf_cb->skb) {
  1410. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1411. qdev->lrg_buffer_len);
  1412. if (unlikely(!lrg_buf_cb->skb)) {
  1413. printk(KERN_DEBUG PFX
  1414. "%s: Failed netdev_alloc_skb().\n",
  1415. qdev->ndev->name);
  1416. break;
  1417. } else {
  1418. /*
  1419. * We save some space to copy the ethhdr from
  1420. * first buffer
  1421. */
  1422. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1423. map = pci_map_single(qdev->pdev,
  1424. lrg_buf_cb->skb->data,
  1425. qdev->lrg_buffer_len -
  1426. QL_HEADER_SPACE,
  1427. PCI_DMA_FROMDEVICE);
  1428. err = pci_dma_mapping_error(map);
  1429. if(err) {
  1430. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1431. qdev->ndev->name, err);
  1432. dev_kfree_skb(lrg_buf_cb->skb);
  1433. lrg_buf_cb->skb = NULL;
  1434. break;
  1435. }
  1436. lrg_buf_cb->buf_phy_addr_low =
  1437. cpu_to_le32(LS_64BITS(map));
  1438. lrg_buf_cb->buf_phy_addr_high =
  1439. cpu_to_le32(MS_64BITS(map));
  1440. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1441. pci_unmap_len_set(lrg_buf_cb, maplen,
  1442. qdev->lrg_buffer_len -
  1443. QL_HEADER_SPACE);
  1444. --qdev->lrg_buf_skb_check;
  1445. if (!qdev->lrg_buf_skb_check)
  1446. return 1;
  1447. }
  1448. }
  1449. lrg_buf_cb = lrg_buf_cb->next;
  1450. }
  1451. return 0;
  1452. }
  1453. /*
  1454. * Caller holds hw_lock.
  1455. */
  1456. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1457. {
  1458. struct bufq_addr_element *lrg_buf_q_ele;
  1459. int i;
  1460. struct ql_rcv_buf_cb *lrg_buf_cb;
  1461. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1462. if ((qdev->lrg_buf_free_count >= 8)
  1463. && (qdev->lrg_buf_release_cnt >= 16)) {
  1464. if (qdev->lrg_buf_skb_check)
  1465. if (!ql_populate_free_queue(qdev))
  1466. return;
  1467. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1468. while ((qdev->lrg_buf_release_cnt >= 16)
  1469. && (qdev->lrg_buf_free_count >= 8)) {
  1470. for (i = 0; i < 8; i++) {
  1471. lrg_buf_cb =
  1472. ql_get_from_lrg_buf_free_list(qdev);
  1473. lrg_buf_q_ele->addr_high =
  1474. lrg_buf_cb->buf_phy_addr_high;
  1475. lrg_buf_q_ele->addr_low =
  1476. lrg_buf_cb->buf_phy_addr_low;
  1477. lrg_buf_q_ele++;
  1478. qdev->lrg_buf_release_cnt--;
  1479. }
  1480. qdev->lrg_buf_q_producer_index++;
  1481. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1482. qdev->lrg_buf_q_producer_index = 0;
  1483. if (qdev->lrg_buf_q_producer_index ==
  1484. (qdev->num_lbufq_entries - 1)) {
  1485. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1486. }
  1487. }
  1488. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1489. ql_write_common_reg(qdev,
  1490. &port_regs->CommonRegs.
  1491. rxLargeQProducerIndex,
  1492. qdev->lrg_buf_q_producer_index);
  1493. }
  1494. }
  1495. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1496. struct ob_mac_iocb_rsp *mac_rsp)
  1497. {
  1498. struct ql_tx_buf_cb *tx_cb;
  1499. int i;
  1500. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1501. pci_unmap_single(qdev->pdev,
  1502. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1503. pci_unmap_len(&tx_cb->map[0], maplen),
  1504. PCI_DMA_TODEVICE);
  1505. tx_cb->seg_count--;
  1506. if (tx_cb->seg_count) {
  1507. for (i = 1; i < tx_cb->seg_count; i++) {
  1508. pci_unmap_page(qdev->pdev,
  1509. pci_unmap_addr(&tx_cb->map[i],
  1510. mapaddr),
  1511. pci_unmap_len(&tx_cb->map[i], maplen),
  1512. PCI_DMA_TODEVICE);
  1513. }
  1514. }
  1515. qdev->stats.tx_packets++;
  1516. qdev->stats.tx_bytes += tx_cb->skb->len;
  1517. dev_kfree_skb_irq(tx_cb->skb);
  1518. tx_cb->skb = NULL;
  1519. atomic_inc(&qdev->tx_count);
  1520. }
  1521. void ql_get_sbuf(struct ql3_adapter *qdev)
  1522. {
  1523. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1524. qdev->small_buf_index = 0;
  1525. qdev->small_buf_release_cnt++;
  1526. }
  1527. struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1528. {
  1529. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1530. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1531. qdev->lrg_buf_release_cnt++;
  1532. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1533. qdev->lrg_buf_index = 0;
  1534. return(lrg_buf_cb);
  1535. }
  1536. /*
  1537. * The difference between 3022 and 3032 for inbound completions:
  1538. * 3022 uses two buffers per completion. The first buffer contains
  1539. * (some) header info, the second the remainder of the headers plus
  1540. * the data. For this chip we reserve some space at the top of the
  1541. * receive buffer so that the header info in buffer one can be
  1542. * prepended to the buffer two. Buffer two is the sent up while
  1543. * buffer one is returned to the hardware to be reused.
  1544. * 3032 receives all of it's data and headers in one buffer for a
  1545. * simpler process. 3032 also supports checksum verification as
  1546. * can be seen in ql_process_macip_rx_intr().
  1547. */
  1548. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1549. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1550. {
  1551. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1552. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1553. struct sk_buff *skb;
  1554. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1555. /*
  1556. * Get the inbound address list (small buffer).
  1557. */
  1558. ql_get_sbuf(qdev);
  1559. if (qdev->device_id == QL3022_DEVICE_ID)
  1560. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1561. /* start of second buffer */
  1562. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1563. skb = lrg_buf_cb2->skb;
  1564. qdev->stats.rx_packets++;
  1565. qdev->stats.rx_bytes += length;
  1566. skb_put(skb, length);
  1567. pci_unmap_single(qdev->pdev,
  1568. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1569. pci_unmap_len(lrg_buf_cb2, maplen),
  1570. PCI_DMA_FROMDEVICE);
  1571. prefetch(skb->data);
  1572. skb->dev = qdev->ndev;
  1573. skb->ip_summed = CHECKSUM_NONE;
  1574. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1575. netif_receive_skb(skb);
  1576. qdev->ndev->last_rx = jiffies;
  1577. lrg_buf_cb2->skb = NULL;
  1578. if (qdev->device_id == QL3022_DEVICE_ID)
  1579. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1580. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1581. }
  1582. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1583. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1584. {
  1585. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1586. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1587. struct sk_buff *skb1 = NULL, *skb2;
  1588. struct net_device *ndev = qdev->ndev;
  1589. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1590. u16 size = 0;
  1591. /*
  1592. * Get the inbound address list (small buffer).
  1593. */
  1594. ql_get_sbuf(qdev);
  1595. if (qdev->device_id == QL3022_DEVICE_ID) {
  1596. /* start of first buffer on 3022 */
  1597. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1598. skb1 = lrg_buf_cb1->skb;
  1599. size = ETH_HLEN;
  1600. if (*((u16 *) skb1->data) != 0xFFFF)
  1601. size += VLAN_ETH_HLEN - ETH_HLEN;
  1602. }
  1603. /* start of second buffer */
  1604. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1605. skb2 = lrg_buf_cb2->skb;
  1606. skb_put(skb2, length); /* Just the second buffer length here. */
  1607. pci_unmap_single(qdev->pdev,
  1608. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1609. pci_unmap_len(lrg_buf_cb2, maplen),
  1610. PCI_DMA_FROMDEVICE);
  1611. prefetch(skb2->data);
  1612. skb2->ip_summed = CHECKSUM_NONE;
  1613. if (qdev->device_id == QL3022_DEVICE_ID) {
  1614. /*
  1615. * Copy the ethhdr from first buffer to second. This
  1616. * is necessary for 3022 IP completions.
  1617. */
  1618. memcpy(skb_push(skb2, size), skb1->data + VLAN_ID_LEN, size);
  1619. } else {
  1620. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1621. if (checksum &
  1622. (IB_IP_IOCB_RSP_3032_ICE |
  1623. IB_IP_IOCB_RSP_3032_CE |
  1624. IB_IP_IOCB_RSP_3032_NUC)) {
  1625. printk(KERN_ERR
  1626. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1627. __func__,
  1628. ((checksum &
  1629. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1630. "UDP"),checksum);
  1631. } else if (checksum & IB_IP_IOCB_RSP_3032_TCP) {
  1632. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1633. }
  1634. }
  1635. skb2->dev = qdev->ndev;
  1636. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1637. netif_receive_skb(skb2);
  1638. qdev->stats.rx_packets++;
  1639. qdev->stats.rx_bytes += length;
  1640. ndev->last_rx = jiffies;
  1641. lrg_buf_cb2->skb = NULL;
  1642. if (qdev->device_id == QL3022_DEVICE_ID)
  1643. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1644. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1645. }
  1646. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1647. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1648. {
  1649. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1650. struct net_rsp_iocb *net_rsp;
  1651. struct net_device *ndev = qdev->ndev;
  1652. unsigned long hw_flags;
  1653. /* While there are entries in the completion queue. */
  1654. while ((cpu_to_le32(*(qdev->prsp_producer_index)) !=
  1655. qdev->rsp_consumer_index) && (*rx_cleaned < work_to_do)) {
  1656. net_rsp = qdev->rsp_current;
  1657. switch (net_rsp->opcode) {
  1658. case OPCODE_OB_MAC_IOCB_FN0:
  1659. case OPCODE_OB_MAC_IOCB_FN2:
  1660. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1661. net_rsp);
  1662. (*tx_cleaned)++;
  1663. break;
  1664. case OPCODE_IB_MAC_IOCB:
  1665. case OPCODE_IB_3032_MAC_IOCB:
  1666. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1667. net_rsp);
  1668. (*rx_cleaned)++;
  1669. break;
  1670. case OPCODE_IB_IP_IOCB:
  1671. case OPCODE_IB_3032_IP_IOCB:
  1672. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1673. net_rsp);
  1674. (*rx_cleaned)++;
  1675. break;
  1676. default:
  1677. {
  1678. u32 *tmp = (u32 *) net_rsp;
  1679. printk(KERN_ERR PFX
  1680. "%s: Hit default case, not "
  1681. "handled!\n"
  1682. " dropping the packet, opcode = "
  1683. "%x.\n",
  1684. ndev->name, net_rsp->opcode);
  1685. printk(KERN_ERR PFX
  1686. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1687. (unsigned long int)tmp[0],
  1688. (unsigned long int)tmp[1],
  1689. (unsigned long int)tmp[2],
  1690. (unsigned long int)tmp[3]);
  1691. }
  1692. }
  1693. qdev->rsp_consumer_index++;
  1694. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1695. qdev->rsp_consumer_index = 0;
  1696. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1697. } else {
  1698. qdev->rsp_current++;
  1699. }
  1700. }
  1701. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1702. ql_update_lrg_bufq_prod_index(qdev);
  1703. if (qdev->small_buf_release_cnt >= 16) {
  1704. while (qdev->small_buf_release_cnt >= 16) {
  1705. qdev->small_buf_q_producer_index++;
  1706. if (qdev->small_buf_q_producer_index ==
  1707. NUM_SBUFQ_ENTRIES)
  1708. qdev->small_buf_q_producer_index = 0;
  1709. qdev->small_buf_release_cnt -= 8;
  1710. }
  1711. ql_write_common_reg(qdev,
  1712. &port_regs->CommonRegs.
  1713. rxSmallQProducerIndex,
  1714. qdev->small_buf_q_producer_index);
  1715. }
  1716. ql_write_common_reg(qdev,
  1717. &port_regs->CommonRegs.rspQConsumerIndex,
  1718. qdev->rsp_consumer_index);
  1719. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1720. if (unlikely(netif_queue_stopped(qdev->ndev))) {
  1721. if (netif_queue_stopped(qdev->ndev) &&
  1722. (atomic_read(&qdev->tx_count) > (NUM_REQ_Q_ENTRIES / 4)))
  1723. netif_wake_queue(qdev->ndev);
  1724. }
  1725. return *tx_cleaned + *rx_cleaned;
  1726. }
  1727. static int ql_poll(struct net_device *ndev, int *budget)
  1728. {
  1729. struct ql3_adapter *qdev = netdev_priv(ndev);
  1730. int work_to_do = min(*budget, ndev->quota);
  1731. int rx_cleaned = 0, tx_cleaned = 0;
  1732. if (!netif_carrier_ok(ndev))
  1733. goto quit_polling;
  1734. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, work_to_do);
  1735. *budget -= rx_cleaned;
  1736. ndev->quota -= rx_cleaned;
  1737. if ((!tx_cleaned && !rx_cleaned) || !netif_running(ndev)) {
  1738. quit_polling:
  1739. netif_rx_complete(ndev);
  1740. ql_enable_interrupts(qdev);
  1741. return 0;
  1742. }
  1743. return 1;
  1744. }
  1745. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1746. {
  1747. struct net_device *ndev = dev_id;
  1748. struct ql3_adapter *qdev = netdev_priv(ndev);
  1749. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1750. u32 value;
  1751. int handled = 1;
  1752. u32 var;
  1753. port_regs = qdev->mem_map_registers;
  1754. value =
  1755. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  1756. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1757. spin_lock(&qdev->adapter_lock);
  1758. netif_stop_queue(qdev->ndev);
  1759. netif_carrier_off(qdev->ndev);
  1760. ql_disable_interrupts(qdev);
  1761. qdev->port_link_state = LS_DOWN;
  1762. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  1763. if (value & ISP_CONTROL_FE) {
  1764. /*
  1765. * Chip Fatal Error.
  1766. */
  1767. var =
  1768. ql_read_page0_reg_l(qdev,
  1769. &port_regs->PortFatalErrStatus);
  1770. printk(KERN_WARNING PFX
  1771. "%s: Resetting chip. PortFatalErrStatus "
  1772. "register = 0x%x\n", ndev->name, var);
  1773. set_bit(QL_RESET_START,&qdev->flags) ;
  1774. } else {
  1775. /*
  1776. * Soft Reset Requested.
  1777. */
  1778. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  1779. printk(KERN_ERR PFX
  1780. "%s: Another function issued a reset to the "
  1781. "chip. ISR value = %x.\n", ndev->name, value);
  1782. }
  1783. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1784. spin_unlock(&qdev->adapter_lock);
  1785. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1786. ql_disable_interrupts(qdev);
  1787. if (likely(netif_rx_schedule_prep(ndev)))
  1788. __netif_rx_schedule(ndev);
  1789. else
  1790. ql_enable_interrupts(qdev);
  1791. } else {
  1792. return IRQ_NONE;
  1793. }
  1794. return IRQ_RETVAL(handled);
  1795. }
  1796. /*
  1797. * Get the total number of segments needed for the
  1798. * given number of fragments. This is necessary because
  1799. * outbound address lists (OAL) will be used when more than
  1800. * two frags are given. Each address list has 5 addr/len
  1801. * pairs. The 5th pair in each AOL is used to point to
  1802. * the next AOL if more frags are coming.
  1803. * That is why the frags:segment count ratio is not linear.
  1804. */
  1805. static int ql_get_seg_count(unsigned short frags)
  1806. {
  1807. switch(frags) {
  1808. case 0: return 1; /* just the skb->data seg */
  1809. case 1: return 2; /* skb->data + 1 frag */
  1810. case 2: return 3; /* skb->data + 2 frags */
  1811. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  1812. case 4: return 6;
  1813. case 5: return 7;
  1814. case 6: return 8;
  1815. case 7: return 10;
  1816. case 8: return 11;
  1817. case 9: return 12;
  1818. case 10: return 13;
  1819. case 11: return 15;
  1820. case 12: return 16;
  1821. case 13: return 17;
  1822. case 14: return 18;
  1823. case 15: return 20;
  1824. case 16: return 21;
  1825. case 17: return 22;
  1826. case 18: return 23;
  1827. }
  1828. return -1;
  1829. }
  1830. static void ql_hw_csum_setup(struct sk_buff *skb,
  1831. struct ob_mac_iocb_req *mac_iocb_ptr)
  1832. {
  1833. struct ethhdr *eth;
  1834. struct iphdr *ip = NULL;
  1835. u8 offset = ETH_HLEN;
  1836. eth = (struct ethhdr *)(skb->data);
  1837. if (eth->h_proto == __constant_htons(ETH_P_IP)) {
  1838. ip = (struct iphdr *)&skb->data[ETH_HLEN];
  1839. } else if (eth->h_proto == htons(ETH_P_8021Q) &&
  1840. ((struct vlan_ethhdr *)skb->data)->
  1841. h_vlan_encapsulated_proto == __constant_htons(ETH_P_IP)) {
  1842. ip = (struct iphdr *)&skb->data[VLAN_ETH_HLEN];
  1843. offset = VLAN_ETH_HLEN;
  1844. }
  1845. if (ip) {
  1846. if (ip->protocol == IPPROTO_TCP) {
  1847. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1848. OB_3032MAC_IOCB_REQ_IC;
  1849. mac_iocb_ptr->ip_hdr_off = offset;
  1850. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1851. } else if (ip->protocol == IPPROTO_UDP) {
  1852. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1853. OB_3032MAC_IOCB_REQ_IC;
  1854. mac_iocb_ptr->ip_hdr_off = offset;
  1855. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1856. }
  1857. }
  1858. }
  1859. /*
  1860. * Map the buffers for this transmit. This will return
  1861. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1862. */
  1863. static int ql_send_map(struct ql3_adapter *qdev,
  1864. struct ob_mac_iocb_req *mac_iocb_ptr,
  1865. struct ql_tx_buf_cb *tx_cb,
  1866. struct sk_buff *skb)
  1867. {
  1868. struct oal *oal;
  1869. struct oal_entry *oal_entry;
  1870. int len = skb_headlen(skb);
  1871. dma_addr_t map;
  1872. int err;
  1873. int completed_segs, i;
  1874. int seg_cnt, seg = 0;
  1875. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1876. seg_cnt = tx_cb->seg_count = ql_get_seg_count((skb_shinfo(skb)->nr_frags));
  1877. if(seg_cnt == -1) {
  1878. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  1879. return NETDEV_TX_BUSY;
  1880. }
  1881. /*
  1882. * Map the skb buffer first.
  1883. */
  1884. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1885. err = pci_dma_mapping_error(map);
  1886. if(err) {
  1887. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1888. qdev->ndev->name, err);
  1889. return NETDEV_TX_BUSY;
  1890. }
  1891. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1892. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1893. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1894. oal_entry->len = cpu_to_le32(len);
  1895. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1896. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1897. seg++;
  1898. if (!skb_shinfo(skb)->nr_frags) {
  1899. /* Terminate the last segment. */
  1900. oal_entry->len =
  1901. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1902. } else {
  1903. oal = tx_cb->oal;
  1904. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  1905. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1906. oal_entry++;
  1907. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  1908. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  1909. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  1910. (seg == 17 && seg_cnt > 18)) {
  1911. /* Continuation entry points to outbound address list. */
  1912. map = pci_map_single(qdev->pdev, oal,
  1913. sizeof(struct oal),
  1914. PCI_DMA_TODEVICE);
  1915. err = pci_dma_mapping_error(map);
  1916. if(err) {
  1917. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  1918. qdev->ndev->name, err);
  1919. goto map_error;
  1920. }
  1921. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1922. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1923. oal_entry->len =
  1924. cpu_to_le32(sizeof(struct oal) |
  1925. OAL_CONT_ENTRY);
  1926. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  1927. map);
  1928. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1929. len);
  1930. oal_entry = (struct oal_entry *)oal;
  1931. oal++;
  1932. seg++;
  1933. }
  1934. map =
  1935. pci_map_page(qdev->pdev, frag->page,
  1936. frag->page_offset, frag->size,
  1937. PCI_DMA_TODEVICE);
  1938. err = pci_dma_mapping_error(map);
  1939. if(err) {
  1940. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  1941. qdev->ndev->name, err);
  1942. goto map_error;
  1943. }
  1944. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1945. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1946. oal_entry->len = cpu_to_le32(frag->size);
  1947. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1948. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1949. frag->size);
  1950. }
  1951. /* Terminate the last segment. */
  1952. oal_entry->len =
  1953. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1954. }
  1955. return NETDEV_TX_OK;
  1956. map_error:
  1957. /* A PCI mapping failed and now we will need to back out
  1958. * We need to traverse through the oal's and associated pages which
  1959. * have been mapped and now we must unmap them to clean up properly
  1960. */
  1961. seg = 1;
  1962. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1963. oal = tx_cb->oal;
  1964. for (i=0; i<completed_segs; i++,seg++) {
  1965. oal_entry++;
  1966. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  1967. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  1968. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  1969. (seg == 17 && seg_cnt > 18)) {
  1970. pci_unmap_single(qdev->pdev,
  1971. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  1972. pci_unmap_len(&tx_cb->map[seg], maplen),
  1973. PCI_DMA_TODEVICE);
  1974. oal++;
  1975. seg++;
  1976. }
  1977. pci_unmap_page(qdev->pdev,
  1978. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  1979. pci_unmap_len(&tx_cb->map[seg], maplen),
  1980. PCI_DMA_TODEVICE);
  1981. }
  1982. pci_unmap_single(qdev->pdev,
  1983. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1984. pci_unmap_addr(&tx_cb->map[0], maplen),
  1985. PCI_DMA_TODEVICE);
  1986. return NETDEV_TX_BUSY;
  1987. }
  1988. /*
  1989. * The difference between 3022 and 3032 sends:
  1990. * 3022 only supports a simple single segment transmission.
  1991. * 3032 supports checksumming and scatter/gather lists (fragments).
  1992. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  1993. * in the IOCB plus a chain of outbound address lists (OAL) that
  1994. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  1995. * will used to point to an OAL when more ALP entries are required.
  1996. * The IOCB is always the top of the chain followed by one or more
  1997. * OALs (when necessary).
  1998. */
  1999. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2000. {
  2001. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2002. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2003. struct ql_tx_buf_cb *tx_cb;
  2004. u32 tot_len = skb->len;
  2005. struct ob_mac_iocb_req *mac_iocb_ptr;
  2006. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2007. if (!netif_queue_stopped(ndev))
  2008. netif_stop_queue(ndev);
  2009. return NETDEV_TX_BUSY;
  2010. }
  2011. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2012. if((tx_cb->seg_count = ql_get_seg_count((skb_shinfo(skb)->nr_frags))) == -1) {
  2013. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2014. return NETDEV_TX_OK;
  2015. }
  2016. mac_iocb_ptr = tx_cb->queue_entry;
  2017. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2018. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2019. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2020. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2021. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2022. tx_cb->skb = skb;
  2023. if (skb->ip_summed == CHECKSUM_PARTIAL)
  2024. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2025. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2026. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2027. return NETDEV_TX_BUSY;
  2028. }
  2029. wmb();
  2030. qdev->req_producer_index++;
  2031. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2032. qdev->req_producer_index = 0;
  2033. wmb();
  2034. ql_write_common_reg_l(qdev,
  2035. &port_regs->CommonRegs.reqQProducerIndex,
  2036. qdev->req_producer_index);
  2037. ndev->trans_start = jiffies;
  2038. if (netif_msg_tx_queued(qdev))
  2039. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2040. ndev->name, qdev->req_producer_index, skb->len);
  2041. atomic_dec(&qdev->tx_count);
  2042. return NETDEV_TX_OK;
  2043. }
  2044. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2045. {
  2046. qdev->req_q_size =
  2047. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2048. qdev->req_q_virt_addr =
  2049. pci_alloc_consistent(qdev->pdev,
  2050. (size_t) qdev->req_q_size,
  2051. &qdev->req_q_phy_addr);
  2052. if ((qdev->req_q_virt_addr == NULL) ||
  2053. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2054. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2055. qdev->ndev->name);
  2056. return -ENOMEM;
  2057. }
  2058. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2059. qdev->rsp_q_virt_addr =
  2060. pci_alloc_consistent(qdev->pdev,
  2061. (size_t) qdev->rsp_q_size,
  2062. &qdev->rsp_q_phy_addr);
  2063. if ((qdev->rsp_q_virt_addr == NULL) ||
  2064. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2065. printk(KERN_ERR PFX
  2066. "%s: rspQ allocation failed\n",
  2067. qdev->ndev->name);
  2068. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2069. qdev->req_q_virt_addr,
  2070. qdev->req_q_phy_addr);
  2071. return -ENOMEM;
  2072. }
  2073. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2074. return 0;
  2075. }
  2076. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2077. {
  2078. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2079. printk(KERN_INFO PFX
  2080. "%s: Already done.\n", qdev->ndev->name);
  2081. return;
  2082. }
  2083. pci_free_consistent(qdev->pdev,
  2084. qdev->req_q_size,
  2085. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2086. qdev->req_q_virt_addr = NULL;
  2087. pci_free_consistent(qdev->pdev,
  2088. qdev->rsp_q_size,
  2089. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2090. qdev->rsp_q_virt_addr = NULL;
  2091. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2092. }
  2093. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2094. {
  2095. /* Create Large Buffer Queue */
  2096. qdev->lrg_buf_q_size =
  2097. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2098. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2099. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2100. else
  2101. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2102. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2103. if (qdev->lrg_buf == NULL) {
  2104. printk(KERN_ERR PFX
  2105. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2106. return -ENOMEM;
  2107. }
  2108. qdev->lrg_buf_q_alloc_virt_addr =
  2109. pci_alloc_consistent(qdev->pdev,
  2110. qdev->lrg_buf_q_alloc_size,
  2111. &qdev->lrg_buf_q_alloc_phy_addr);
  2112. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2113. printk(KERN_ERR PFX
  2114. "%s: lBufQ failed\n", qdev->ndev->name);
  2115. return -ENOMEM;
  2116. }
  2117. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2118. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2119. /* Create Small Buffer Queue */
  2120. qdev->small_buf_q_size =
  2121. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2122. if (qdev->small_buf_q_size < PAGE_SIZE)
  2123. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2124. else
  2125. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2126. qdev->small_buf_q_alloc_virt_addr =
  2127. pci_alloc_consistent(qdev->pdev,
  2128. qdev->small_buf_q_alloc_size,
  2129. &qdev->small_buf_q_alloc_phy_addr);
  2130. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2131. printk(KERN_ERR PFX
  2132. "%s: Small Buffer Queue allocation failed.\n",
  2133. qdev->ndev->name);
  2134. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2135. qdev->lrg_buf_q_alloc_virt_addr,
  2136. qdev->lrg_buf_q_alloc_phy_addr);
  2137. return -ENOMEM;
  2138. }
  2139. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2140. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2141. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2142. return 0;
  2143. }
  2144. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2145. {
  2146. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2147. printk(KERN_INFO PFX
  2148. "%s: Already done.\n", qdev->ndev->name);
  2149. return;
  2150. }
  2151. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2152. pci_free_consistent(qdev->pdev,
  2153. qdev->lrg_buf_q_alloc_size,
  2154. qdev->lrg_buf_q_alloc_virt_addr,
  2155. qdev->lrg_buf_q_alloc_phy_addr);
  2156. qdev->lrg_buf_q_virt_addr = NULL;
  2157. pci_free_consistent(qdev->pdev,
  2158. qdev->small_buf_q_alloc_size,
  2159. qdev->small_buf_q_alloc_virt_addr,
  2160. qdev->small_buf_q_alloc_phy_addr);
  2161. qdev->small_buf_q_virt_addr = NULL;
  2162. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2163. }
  2164. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2165. {
  2166. int i;
  2167. struct bufq_addr_element *small_buf_q_entry;
  2168. /* Currently we allocate on one of memory and use it for smallbuffers */
  2169. qdev->small_buf_total_size =
  2170. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2171. QL_SMALL_BUFFER_SIZE);
  2172. qdev->small_buf_virt_addr =
  2173. pci_alloc_consistent(qdev->pdev,
  2174. qdev->small_buf_total_size,
  2175. &qdev->small_buf_phy_addr);
  2176. if (qdev->small_buf_virt_addr == NULL) {
  2177. printk(KERN_ERR PFX
  2178. "%s: Failed to get small buffer memory.\n",
  2179. qdev->ndev->name);
  2180. return -ENOMEM;
  2181. }
  2182. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2183. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2184. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2185. /* Initialize the small buffer queue. */
  2186. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2187. small_buf_q_entry->addr_high =
  2188. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2189. small_buf_q_entry->addr_low =
  2190. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2191. (i * QL_SMALL_BUFFER_SIZE));
  2192. small_buf_q_entry++;
  2193. }
  2194. qdev->small_buf_index = 0;
  2195. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2196. return 0;
  2197. }
  2198. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2199. {
  2200. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2201. printk(KERN_INFO PFX
  2202. "%s: Already done.\n", qdev->ndev->name);
  2203. return;
  2204. }
  2205. if (qdev->small_buf_virt_addr != NULL) {
  2206. pci_free_consistent(qdev->pdev,
  2207. qdev->small_buf_total_size,
  2208. qdev->small_buf_virt_addr,
  2209. qdev->small_buf_phy_addr);
  2210. qdev->small_buf_virt_addr = NULL;
  2211. }
  2212. }
  2213. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2214. {
  2215. int i = 0;
  2216. struct ql_rcv_buf_cb *lrg_buf_cb;
  2217. for (i = 0; i < qdev->num_large_buffers; i++) {
  2218. lrg_buf_cb = &qdev->lrg_buf[i];
  2219. if (lrg_buf_cb->skb) {
  2220. dev_kfree_skb(lrg_buf_cb->skb);
  2221. pci_unmap_single(qdev->pdev,
  2222. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2223. pci_unmap_len(lrg_buf_cb, maplen),
  2224. PCI_DMA_FROMDEVICE);
  2225. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2226. } else {
  2227. break;
  2228. }
  2229. }
  2230. }
  2231. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2232. {
  2233. int i;
  2234. struct ql_rcv_buf_cb *lrg_buf_cb;
  2235. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2236. for (i = 0; i < qdev->num_large_buffers; i++) {
  2237. lrg_buf_cb = &qdev->lrg_buf[i];
  2238. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2239. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2240. buf_addr_ele++;
  2241. }
  2242. qdev->lrg_buf_index = 0;
  2243. qdev->lrg_buf_skb_check = 0;
  2244. }
  2245. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2246. {
  2247. int i;
  2248. struct ql_rcv_buf_cb *lrg_buf_cb;
  2249. struct sk_buff *skb;
  2250. dma_addr_t map;
  2251. int err;
  2252. for (i = 0; i < qdev->num_large_buffers; i++) {
  2253. skb = netdev_alloc_skb(qdev->ndev,
  2254. qdev->lrg_buffer_len);
  2255. if (unlikely(!skb)) {
  2256. /* Better luck next round */
  2257. printk(KERN_ERR PFX
  2258. "%s: large buff alloc failed, "
  2259. "for %d bytes at index %d.\n",
  2260. qdev->ndev->name,
  2261. qdev->lrg_buffer_len * 2, i);
  2262. ql_free_large_buffers(qdev);
  2263. return -ENOMEM;
  2264. } else {
  2265. lrg_buf_cb = &qdev->lrg_buf[i];
  2266. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2267. lrg_buf_cb->index = i;
  2268. lrg_buf_cb->skb = skb;
  2269. /*
  2270. * We save some space to copy the ethhdr from first
  2271. * buffer
  2272. */
  2273. skb_reserve(skb, QL_HEADER_SPACE);
  2274. map = pci_map_single(qdev->pdev,
  2275. skb->data,
  2276. qdev->lrg_buffer_len -
  2277. QL_HEADER_SPACE,
  2278. PCI_DMA_FROMDEVICE);
  2279. err = pci_dma_mapping_error(map);
  2280. if(err) {
  2281. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2282. qdev->ndev->name, err);
  2283. ql_free_large_buffers(qdev);
  2284. return -ENOMEM;
  2285. }
  2286. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2287. pci_unmap_len_set(lrg_buf_cb, maplen,
  2288. qdev->lrg_buffer_len -
  2289. QL_HEADER_SPACE);
  2290. lrg_buf_cb->buf_phy_addr_low =
  2291. cpu_to_le32(LS_64BITS(map));
  2292. lrg_buf_cb->buf_phy_addr_high =
  2293. cpu_to_le32(MS_64BITS(map));
  2294. }
  2295. }
  2296. return 0;
  2297. }
  2298. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2299. {
  2300. struct ql_tx_buf_cb *tx_cb;
  2301. int i;
  2302. tx_cb = &qdev->tx_buf[0];
  2303. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2304. if (tx_cb->oal) {
  2305. kfree(tx_cb->oal);
  2306. tx_cb->oal = NULL;
  2307. }
  2308. tx_cb++;
  2309. }
  2310. }
  2311. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2312. {
  2313. struct ql_tx_buf_cb *tx_cb;
  2314. int i;
  2315. struct ob_mac_iocb_req *req_q_curr =
  2316. qdev->req_q_virt_addr;
  2317. /* Create free list of transmit buffers */
  2318. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2319. tx_cb = &qdev->tx_buf[i];
  2320. tx_cb->skb = NULL;
  2321. tx_cb->queue_entry = req_q_curr;
  2322. req_q_curr++;
  2323. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2324. if (tx_cb->oal == NULL)
  2325. return -1;
  2326. }
  2327. return 0;
  2328. }
  2329. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2330. {
  2331. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2332. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2333. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2334. }
  2335. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2336. /*
  2337. * Bigger buffers, so less of them.
  2338. */
  2339. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2340. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2341. } else {
  2342. printk(KERN_ERR PFX
  2343. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2344. qdev->ndev->name);
  2345. return -ENOMEM;
  2346. }
  2347. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2348. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2349. qdev->max_frame_size =
  2350. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2351. /*
  2352. * First allocate a page of shared memory and use it for shadow
  2353. * locations of Network Request Queue Consumer Address Register and
  2354. * Network Completion Queue Producer Index Register
  2355. */
  2356. qdev->shadow_reg_virt_addr =
  2357. pci_alloc_consistent(qdev->pdev,
  2358. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2359. if (qdev->shadow_reg_virt_addr != NULL) {
  2360. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2361. qdev->req_consumer_index_phy_addr_high =
  2362. MS_64BITS(qdev->shadow_reg_phy_addr);
  2363. qdev->req_consumer_index_phy_addr_low =
  2364. LS_64BITS(qdev->shadow_reg_phy_addr);
  2365. qdev->prsp_producer_index =
  2366. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2367. qdev->rsp_producer_index_phy_addr_high =
  2368. qdev->req_consumer_index_phy_addr_high;
  2369. qdev->rsp_producer_index_phy_addr_low =
  2370. qdev->req_consumer_index_phy_addr_low + 8;
  2371. } else {
  2372. printk(KERN_ERR PFX
  2373. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2374. return -ENOMEM;
  2375. }
  2376. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2377. printk(KERN_ERR PFX
  2378. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2379. qdev->ndev->name);
  2380. goto err_req_rsp;
  2381. }
  2382. if (ql_alloc_buffer_queues(qdev) != 0) {
  2383. printk(KERN_ERR PFX
  2384. "%s: ql_alloc_buffer_queues failed.\n",
  2385. qdev->ndev->name);
  2386. goto err_buffer_queues;
  2387. }
  2388. if (ql_alloc_small_buffers(qdev) != 0) {
  2389. printk(KERN_ERR PFX
  2390. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2391. goto err_small_buffers;
  2392. }
  2393. if (ql_alloc_large_buffers(qdev) != 0) {
  2394. printk(KERN_ERR PFX
  2395. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2396. goto err_small_buffers;
  2397. }
  2398. /* Initialize the large buffer queue. */
  2399. ql_init_large_buffers(qdev);
  2400. if (ql_create_send_free_list(qdev))
  2401. goto err_free_list;
  2402. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2403. return 0;
  2404. err_free_list:
  2405. ql_free_send_free_list(qdev);
  2406. err_small_buffers:
  2407. ql_free_buffer_queues(qdev);
  2408. err_buffer_queues:
  2409. ql_free_net_req_rsp_queues(qdev);
  2410. err_req_rsp:
  2411. pci_free_consistent(qdev->pdev,
  2412. PAGE_SIZE,
  2413. qdev->shadow_reg_virt_addr,
  2414. qdev->shadow_reg_phy_addr);
  2415. return -ENOMEM;
  2416. }
  2417. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2418. {
  2419. ql_free_send_free_list(qdev);
  2420. ql_free_large_buffers(qdev);
  2421. ql_free_small_buffers(qdev);
  2422. ql_free_buffer_queues(qdev);
  2423. ql_free_net_req_rsp_queues(qdev);
  2424. if (qdev->shadow_reg_virt_addr != NULL) {
  2425. pci_free_consistent(qdev->pdev,
  2426. PAGE_SIZE,
  2427. qdev->shadow_reg_virt_addr,
  2428. qdev->shadow_reg_phy_addr);
  2429. qdev->shadow_reg_virt_addr = NULL;
  2430. }
  2431. }
  2432. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2433. {
  2434. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2435. (void __iomem *)qdev->mem_map_registers;
  2436. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2437. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2438. 2) << 4))
  2439. return -1;
  2440. ql_write_page2_reg(qdev,
  2441. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2442. ql_write_page2_reg(qdev,
  2443. &local_ram->maxBufletCount,
  2444. qdev->nvram_data.bufletCount);
  2445. ql_write_page2_reg(qdev,
  2446. &local_ram->freeBufletThresholdLow,
  2447. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2448. (qdev->nvram_data.tcpWindowThreshold0));
  2449. ql_write_page2_reg(qdev,
  2450. &local_ram->freeBufletThresholdHigh,
  2451. qdev->nvram_data.tcpWindowThreshold50);
  2452. ql_write_page2_reg(qdev,
  2453. &local_ram->ipHashTableBase,
  2454. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2455. qdev->nvram_data.ipHashTableBaseLo);
  2456. ql_write_page2_reg(qdev,
  2457. &local_ram->ipHashTableCount,
  2458. qdev->nvram_data.ipHashTableSize);
  2459. ql_write_page2_reg(qdev,
  2460. &local_ram->tcpHashTableBase,
  2461. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2462. qdev->nvram_data.tcpHashTableBaseLo);
  2463. ql_write_page2_reg(qdev,
  2464. &local_ram->tcpHashTableCount,
  2465. qdev->nvram_data.tcpHashTableSize);
  2466. ql_write_page2_reg(qdev,
  2467. &local_ram->ncbBase,
  2468. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2469. qdev->nvram_data.ncbTableBaseLo);
  2470. ql_write_page2_reg(qdev,
  2471. &local_ram->maxNcbCount,
  2472. qdev->nvram_data.ncbTableSize);
  2473. ql_write_page2_reg(qdev,
  2474. &local_ram->drbBase,
  2475. (qdev->nvram_data.drbTableBaseHi << 16) |
  2476. qdev->nvram_data.drbTableBaseLo);
  2477. ql_write_page2_reg(qdev,
  2478. &local_ram->maxDrbCount,
  2479. qdev->nvram_data.drbTableSize);
  2480. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2481. return 0;
  2482. }
  2483. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2484. {
  2485. u32 value;
  2486. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2487. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2488. (void __iomem *)port_regs;
  2489. u32 delay = 10;
  2490. int status = 0;
  2491. if(ql_mii_setup(qdev))
  2492. return -1;
  2493. /* Bring out PHY out of reset */
  2494. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2495. (ISP_SERIAL_PORT_IF_WE |
  2496. (ISP_SERIAL_PORT_IF_WE << 16)));
  2497. qdev->port_link_state = LS_DOWN;
  2498. netif_carrier_off(qdev->ndev);
  2499. /* V2 chip fix for ARS-39168. */
  2500. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2501. (ISP_SERIAL_PORT_IF_SDE |
  2502. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2503. /* Request Queue Registers */
  2504. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2505. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2506. qdev->req_producer_index = 0;
  2507. ql_write_page1_reg(qdev,
  2508. &hmem_regs->reqConsumerIndexAddrHigh,
  2509. qdev->req_consumer_index_phy_addr_high);
  2510. ql_write_page1_reg(qdev,
  2511. &hmem_regs->reqConsumerIndexAddrLow,
  2512. qdev->req_consumer_index_phy_addr_low);
  2513. ql_write_page1_reg(qdev,
  2514. &hmem_regs->reqBaseAddrHigh,
  2515. MS_64BITS(qdev->req_q_phy_addr));
  2516. ql_write_page1_reg(qdev,
  2517. &hmem_regs->reqBaseAddrLow,
  2518. LS_64BITS(qdev->req_q_phy_addr));
  2519. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2520. /* Response Queue Registers */
  2521. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2522. qdev->rsp_consumer_index = 0;
  2523. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2524. ql_write_page1_reg(qdev,
  2525. &hmem_regs->rspProducerIndexAddrHigh,
  2526. qdev->rsp_producer_index_phy_addr_high);
  2527. ql_write_page1_reg(qdev,
  2528. &hmem_regs->rspProducerIndexAddrLow,
  2529. qdev->rsp_producer_index_phy_addr_low);
  2530. ql_write_page1_reg(qdev,
  2531. &hmem_regs->rspBaseAddrHigh,
  2532. MS_64BITS(qdev->rsp_q_phy_addr));
  2533. ql_write_page1_reg(qdev,
  2534. &hmem_regs->rspBaseAddrLow,
  2535. LS_64BITS(qdev->rsp_q_phy_addr));
  2536. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2537. /* Large Buffer Queue */
  2538. ql_write_page1_reg(qdev,
  2539. &hmem_regs->rxLargeQBaseAddrHigh,
  2540. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2541. ql_write_page1_reg(qdev,
  2542. &hmem_regs->rxLargeQBaseAddrLow,
  2543. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2544. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2545. ql_write_page1_reg(qdev,
  2546. &hmem_regs->rxLargeBufferLength,
  2547. qdev->lrg_buffer_len);
  2548. /* Small Buffer Queue */
  2549. ql_write_page1_reg(qdev,
  2550. &hmem_regs->rxSmallQBaseAddrHigh,
  2551. MS_64BITS(qdev->small_buf_q_phy_addr));
  2552. ql_write_page1_reg(qdev,
  2553. &hmem_regs->rxSmallQBaseAddrLow,
  2554. LS_64BITS(qdev->small_buf_q_phy_addr));
  2555. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2556. ql_write_page1_reg(qdev,
  2557. &hmem_regs->rxSmallBufferLength,
  2558. QL_SMALL_BUFFER_SIZE);
  2559. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2560. qdev->small_buf_release_cnt = 8;
  2561. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2562. qdev->lrg_buf_release_cnt = 8;
  2563. qdev->lrg_buf_next_free =
  2564. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2565. qdev->small_buf_index = 0;
  2566. qdev->lrg_buf_index = 0;
  2567. qdev->lrg_buf_free_count = 0;
  2568. qdev->lrg_buf_free_head = NULL;
  2569. qdev->lrg_buf_free_tail = NULL;
  2570. ql_write_common_reg(qdev,
  2571. &port_regs->CommonRegs.
  2572. rxSmallQProducerIndex,
  2573. qdev->small_buf_q_producer_index);
  2574. ql_write_common_reg(qdev,
  2575. &port_regs->CommonRegs.
  2576. rxLargeQProducerIndex,
  2577. qdev->lrg_buf_q_producer_index);
  2578. /*
  2579. * Find out if the chip has already been initialized. If it has, then
  2580. * we skip some of the initialization.
  2581. */
  2582. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2583. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2584. if ((value & PORT_STATUS_IC) == 0) {
  2585. /* Chip has not been configured yet, so let it rip. */
  2586. if(ql_init_misc_registers(qdev)) {
  2587. status = -1;
  2588. goto out;
  2589. }
  2590. if (qdev->mac_index)
  2591. ql_write_page0_reg(qdev,
  2592. &port_regs->mac1MaxFrameLengthReg,
  2593. qdev->max_frame_size);
  2594. else
  2595. ql_write_page0_reg(qdev,
  2596. &port_regs->mac0MaxFrameLengthReg,
  2597. qdev->max_frame_size);
  2598. value = qdev->nvram_data.tcpMaxWindowSize;
  2599. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2600. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2601. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2602. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2603. * 2) << 13)) {
  2604. status = -1;
  2605. goto out;
  2606. }
  2607. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2608. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2609. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2610. 16) | (INTERNAL_CHIP_SD |
  2611. INTERNAL_CHIP_WE)));
  2612. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2613. }
  2614. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2615. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2616. 2) << 7)) {
  2617. status = -1;
  2618. goto out;
  2619. }
  2620. ql_init_scan_mode(qdev);
  2621. ql_get_phy_owner(qdev);
  2622. /* Load the MAC Configuration */
  2623. /* Program lower 32 bits of the MAC address */
  2624. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2625. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2626. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2627. ((qdev->ndev->dev_addr[2] << 24)
  2628. | (qdev->ndev->dev_addr[3] << 16)
  2629. | (qdev->ndev->dev_addr[4] << 8)
  2630. | qdev->ndev->dev_addr[5]));
  2631. /* Program top 16 bits of the MAC address */
  2632. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2633. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2634. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2635. ((qdev->ndev->dev_addr[0] << 8)
  2636. | qdev->ndev->dev_addr[1]));
  2637. /* Enable Primary MAC */
  2638. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2639. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2640. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2641. /* Clear Primary and Secondary IP addresses */
  2642. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2643. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2644. (qdev->mac_index << 2)));
  2645. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2646. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2647. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2648. ((qdev->mac_index << 2) + 1)));
  2649. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2650. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2651. /* Indicate Configuration Complete */
  2652. ql_write_page0_reg(qdev,
  2653. &port_regs->portControl,
  2654. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2655. do {
  2656. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2657. if (value & PORT_STATUS_IC)
  2658. break;
  2659. msleep(500);
  2660. } while (--delay);
  2661. if (delay == 0) {
  2662. printk(KERN_ERR PFX
  2663. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2664. status = -1;
  2665. goto out;
  2666. }
  2667. /* Enable Ethernet Function */
  2668. if (qdev->device_id == QL3032_DEVICE_ID) {
  2669. value =
  2670. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2671. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4);
  2672. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2673. ((value << 16) | value));
  2674. } else {
  2675. value =
  2676. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2677. PORT_CONTROL_HH);
  2678. ql_write_page0_reg(qdev, &port_regs->portControl,
  2679. ((value << 16) | value));
  2680. }
  2681. out:
  2682. return status;
  2683. }
  2684. /*
  2685. * Caller holds hw_lock.
  2686. */
  2687. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2688. {
  2689. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2690. int status = 0;
  2691. u16 value;
  2692. int max_wait_time;
  2693. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2694. clear_bit(QL_RESET_DONE, &qdev->flags);
  2695. /*
  2696. * Issue soft reset to chip.
  2697. */
  2698. printk(KERN_DEBUG PFX
  2699. "%s: Issue soft reset to chip.\n",
  2700. qdev->ndev->name);
  2701. ql_write_common_reg(qdev,
  2702. &port_regs->CommonRegs.ispControlStatus,
  2703. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2704. /* Wait 3 seconds for reset to complete. */
  2705. printk(KERN_DEBUG PFX
  2706. "%s: Wait 10 milliseconds for reset to complete.\n",
  2707. qdev->ndev->name);
  2708. /* Wait until the firmware tells us the Soft Reset is done */
  2709. max_wait_time = 5;
  2710. do {
  2711. value =
  2712. ql_read_common_reg(qdev,
  2713. &port_regs->CommonRegs.ispControlStatus);
  2714. if ((value & ISP_CONTROL_SR) == 0)
  2715. break;
  2716. ssleep(1);
  2717. } while ((--max_wait_time));
  2718. /*
  2719. * Also, make sure that the Network Reset Interrupt bit has been
  2720. * cleared after the soft reset has taken place.
  2721. */
  2722. value =
  2723. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2724. if (value & ISP_CONTROL_RI) {
  2725. printk(KERN_DEBUG PFX
  2726. "ql_adapter_reset: clearing RI after reset.\n");
  2727. ql_write_common_reg(qdev,
  2728. &port_regs->CommonRegs.
  2729. ispControlStatus,
  2730. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2731. }
  2732. if (max_wait_time == 0) {
  2733. /* Issue Force Soft Reset */
  2734. ql_write_common_reg(qdev,
  2735. &port_regs->CommonRegs.
  2736. ispControlStatus,
  2737. ((ISP_CONTROL_FSR << 16) |
  2738. ISP_CONTROL_FSR));
  2739. /*
  2740. * Wait until the firmware tells us the Force Soft Reset is
  2741. * done
  2742. */
  2743. max_wait_time = 5;
  2744. do {
  2745. value =
  2746. ql_read_common_reg(qdev,
  2747. &port_regs->CommonRegs.
  2748. ispControlStatus);
  2749. if ((value & ISP_CONTROL_FSR) == 0) {
  2750. break;
  2751. }
  2752. ssleep(1);
  2753. } while ((--max_wait_time));
  2754. }
  2755. if (max_wait_time == 0)
  2756. status = 1;
  2757. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2758. set_bit(QL_RESET_DONE, &qdev->flags);
  2759. return status;
  2760. }
  2761. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2762. {
  2763. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2764. u32 value, port_status;
  2765. u8 func_number;
  2766. /* Get the function number */
  2767. value =
  2768. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2769. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2770. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2771. switch (value & ISP_CONTROL_FN_MASK) {
  2772. case ISP_CONTROL_FN0_NET:
  2773. qdev->mac_index = 0;
  2774. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2775. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2776. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2777. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2778. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2779. if (port_status & PORT_STATUS_SM0)
  2780. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2781. else
  2782. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2783. break;
  2784. case ISP_CONTROL_FN1_NET:
  2785. qdev->mac_index = 1;
  2786. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2787. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2788. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2789. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2790. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2791. if (port_status & PORT_STATUS_SM1)
  2792. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2793. else
  2794. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2795. break;
  2796. case ISP_CONTROL_FN0_SCSI:
  2797. case ISP_CONTROL_FN1_SCSI:
  2798. default:
  2799. printk(KERN_DEBUG PFX
  2800. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  2801. qdev->ndev->name,value);
  2802. break;
  2803. }
  2804. qdev->numPorts = qdev->nvram_data.numPorts;
  2805. }
  2806. static void ql_display_dev_info(struct net_device *ndev)
  2807. {
  2808. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2809. struct pci_dev *pdev = qdev->pdev;
  2810. printk(KERN_INFO PFX
  2811. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  2812. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2813. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  2814. qdev->pci_slot);
  2815. printk(KERN_INFO PFX
  2816. "%s Interface.\n",
  2817. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  2818. /*
  2819. * Print PCI bus width/type.
  2820. */
  2821. printk(KERN_INFO PFX
  2822. "Bus interface is %s %s.\n",
  2823. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2824. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2825. printk(KERN_INFO PFX
  2826. "mem IO base address adjusted = 0x%p\n",
  2827. qdev->mem_map_registers);
  2828. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  2829. if (netif_msg_probe(qdev))
  2830. printk(KERN_INFO PFX
  2831. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  2832. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  2833. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  2834. ndev->dev_addr[5]);
  2835. }
  2836. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2837. {
  2838. struct net_device *ndev = qdev->ndev;
  2839. int retval = 0;
  2840. netif_stop_queue(ndev);
  2841. netif_carrier_off(ndev);
  2842. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  2843. clear_bit(QL_LINK_MASTER,&qdev->flags);
  2844. ql_disable_interrupts(qdev);
  2845. free_irq(qdev->pdev->irq, ndev);
  2846. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2847. printk(KERN_INFO PFX
  2848. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  2849. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2850. pci_disable_msi(qdev->pdev);
  2851. }
  2852. del_timer_sync(&qdev->adapter_timer);
  2853. netif_poll_disable(ndev);
  2854. if (do_reset) {
  2855. int soft_reset;
  2856. unsigned long hw_flags;
  2857. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2858. if (ql_wait_for_drvr_lock(qdev)) {
  2859. if ((soft_reset = ql_adapter_reset(qdev))) {
  2860. printk(KERN_ERR PFX
  2861. "%s: ql_adapter_reset(%d) FAILED!\n",
  2862. ndev->name, qdev->index);
  2863. }
  2864. printk(KERN_ERR PFX
  2865. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  2866. } else {
  2867. printk(KERN_ERR PFX
  2868. "%s: Could not acquire driver lock to do "
  2869. "reset!\n", ndev->name);
  2870. retval = -1;
  2871. }
  2872. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2873. }
  2874. ql_free_mem_resources(qdev);
  2875. return retval;
  2876. }
  2877. static int ql_adapter_up(struct ql3_adapter *qdev)
  2878. {
  2879. struct net_device *ndev = qdev->ndev;
  2880. int err;
  2881. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  2882. unsigned long hw_flags;
  2883. if (ql_alloc_mem_resources(qdev)) {
  2884. printk(KERN_ERR PFX
  2885. "%s Unable to allocate buffers.\n", ndev->name);
  2886. return -ENOMEM;
  2887. }
  2888. if (qdev->msi) {
  2889. if (pci_enable_msi(qdev->pdev)) {
  2890. printk(KERN_ERR PFX
  2891. "%s: User requested MSI, but MSI failed to "
  2892. "initialize. Continuing without MSI.\n",
  2893. qdev->ndev->name);
  2894. qdev->msi = 0;
  2895. } else {
  2896. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  2897. set_bit(QL_MSI_ENABLED,&qdev->flags);
  2898. irq_flags &= ~IRQF_SHARED;
  2899. }
  2900. }
  2901. if ((err = request_irq(qdev->pdev->irq,
  2902. ql3xxx_isr,
  2903. irq_flags, ndev->name, ndev))) {
  2904. printk(KERN_ERR PFX
  2905. "%s: Failed to reserve interrupt %d already in use.\n",
  2906. ndev->name, qdev->pdev->irq);
  2907. goto err_irq;
  2908. }
  2909. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2910. if ((err = ql_wait_for_drvr_lock(qdev))) {
  2911. if ((err = ql_adapter_initialize(qdev))) {
  2912. printk(KERN_ERR PFX
  2913. "%s: Unable to initialize adapter.\n",
  2914. ndev->name);
  2915. goto err_init;
  2916. }
  2917. printk(KERN_ERR PFX
  2918. "%s: Releaseing driver lock.\n",ndev->name);
  2919. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2920. } else {
  2921. printk(KERN_ERR PFX
  2922. "%s: Could not aquire driver lock.\n",
  2923. ndev->name);
  2924. goto err_lock;
  2925. }
  2926. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2927. set_bit(QL_ADAPTER_UP,&qdev->flags);
  2928. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2929. netif_poll_enable(ndev);
  2930. ql_enable_interrupts(qdev);
  2931. return 0;
  2932. err_init:
  2933. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2934. err_lock:
  2935. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2936. free_irq(qdev->pdev->irq, ndev);
  2937. err_irq:
  2938. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2939. printk(KERN_INFO PFX
  2940. "%s: calling pci_disable_msi().\n",
  2941. qdev->ndev->name);
  2942. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2943. pci_disable_msi(qdev->pdev);
  2944. }
  2945. return err;
  2946. }
  2947. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  2948. {
  2949. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  2950. printk(KERN_ERR PFX
  2951. "%s: Driver up/down cycle failed, "
  2952. "closing device\n",qdev->ndev->name);
  2953. dev_close(qdev->ndev);
  2954. return -1;
  2955. }
  2956. return 0;
  2957. }
  2958. static int ql3xxx_close(struct net_device *ndev)
  2959. {
  2960. struct ql3_adapter *qdev = netdev_priv(ndev);
  2961. /*
  2962. * Wait for device to recover from a reset.
  2963. * (Rarely happens, but possible.)
  2964. */
  2965. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  2966. msleep(50);
  2967. ql_adapter_down(qdev,QL_DO_RESET);
  2968. return 0;
  2969. }
  2970. static int ql3xxx_open(struct net_device *ndev)
  2971. {
  2972. struct ql3_adapter *qdev = netdev_priv(ndev);
  2973. return (ql_adapter_up(qdev));
  2974. }
  2975. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  2976. {
  2977. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  2978. return &qdev->stats;
  2979. }
  2980. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  2981. {
  2982. /*
  2983. * We are manually parsing the list in the net_device structure.
  2984. */
  2985. return;
  2986. }
  2987. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  2988. {
  2989. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2990. struct ql3xxx_port_registers __iomem *port_regs =
  2991. qdev->mem_map_registers;
  2992. struct sockaddr *addr = p;
  2993. unsigned long hw_flags;
  2994. if (netif_running(ndev))
  2995. return -EBUSY;
  2996. if (!is_valid_ether_addr(addr->sa_data))
  2997. return -EADDRNOTAVAIL;
  2998. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  2999. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3000. /* Program lower 32 bits of the MAC address */
  3001. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3002. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3003. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3004. ((ndev->dev_addr[2] << 24) | (ndev->
  3005. dev_addr[3] << 16) |
  3006. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3007. /* Program top 16 bits of the MAC address */
  3008. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3009. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3010. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3011. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3012. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3013. return 0;
  3014. }
  3015. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3016. {
  3017. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3018. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3019. /*
  3020. * Stop the queues, we've got a problem.
  3021. */
  3022. netif_stop_queue(ndev);
  3023. /*
  3024. * Wake up the worker to process this event.
  3025. */
  3026. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3027. }
  3028. static void ql_reset_work(struct work_struct *work)
  3029. {
  3030. struct ql3_adapter *qdev =
  3031. container_of(work, struct ql3_adapter, reset_work.work);
  3032. struct net_device *ndev = qdev->ndev;
  3033. u32 value;
  3034. struct ql_tx_buf_cb *tx_cb;
  3035. int max_wait_time, i;
  3036. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3037. unsigned long hw_flags;
  3038. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3039. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3040. /*
  3041. * Loop through the active list and return the skb.
  3042. */
  3043. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3044. int j;
  3045. tx_cb = &qdev->tx_buf[i];
  3046. if (tx_cb->skb) {
  3047. printk(KERN_DEBUG PFX
  3048. "%s: Freeing lost SKB.\n",
  3049. qdev->ndev->name);
  3050. pci_unmap_single(qdev->pdev,
  3051. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3052. pci_unmap_len(&tx_cb->map[0], maplen),
  3053. PCI_DMA_TODEVICE);
  3054. for(j=1;j<tx_cb->seg_count;j++) {
  3055. pci_unmap_page(qdev->pdev,
  3056. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3057. pci_unmap_len(&tx_cb->map[j],maplen),
  3058. PCI_DMA_TODEVICE);
  3059. }
  3060. dev_kfree_skb(tx_cb->skb);
  3061. tx_cb->skb = NULL;
  3062. }
  3063. }
  3064. printk(KERN_ERR PFX
  3065. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3066. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3067. ql_write_common_reg(qdev,
  3068. &port_regs->CommonRegs.
  3069. ispControlStatus,
  3070. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3071. /*
  3072. * Wait the for Soft Reset to Complete.
  3073. */
  3074. max_wait_time = 10;
  3075. do {
  3076. value = ql_read_common_reg(qdev,
  3077. &port_regs->CommonRegs.
  3078. ispControlStatus);
  3079. if ((value & ISP_CONTROL_SR) == 0) {
  3080. printk(KERN_DEBUG PFX
  3081. "%s: reset completed.\n",
  3082. qdev->ndev->name);
  3083. break;
  3084. }
  3085. if (value & ISP_CONTROL_RI) {
  3086. printk(KERN_DEBUG PFX
  3087. "%s: clearing NRI after reset.\n",
  3088. qdev->ndev->name);
  3089. ql_write_common_reg(qdev,
  3090. &port_regs->
  3091. CommonRegs.
  3092. ispControlStatus,
  3093. ((ISP_CONTROL_RI <<
  3094. 16) | ISP_CONTROL_RI));
  3095. }
  3096. ssleep(1);
  3097. } while (--max_wait_time);
  3098. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3099. if (value & ISP_CONTROL_SR) {
  3100. /*
  3101. * Set the reset flags and clear the board again.
  3102. * Nothing else to do...
  3103. */
  3104. printk(KERN_ERR PFX
  3105. "%s: Timed out waiting for reset to "
  3106. "complete.\n", ndev->name);
  3107. printk(KERN_ERR PFX
  3108. "%s: Do a reset.\n", ndev->name);
  3109. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3110. clear_bit(QL_RESET_START,&qdev->flags);
  3111. ql_cycle_adapter(qdev,QL_DO_RESET);
  3112. return;
  3113. }
  3114. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3115. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3116. clear_bit(QL_RESET_START,&qdev->flags);
  3117. ql_cycle_adapter(qdev,QL_NO_RESET);
  3118. }
  3119. }
  3120. static void ql_tx_timeout_work(struct work_struct *work)
  3121. {
  3122. struct ql3_adapter *qdev =
  3123. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3124. ql_cycle_adapter(qdev, QL_DO_RESET);
  3125. }
  3126. static void ql_get_board_info(struct ql3_adapter *qdev)
  3127. {
  3128. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3129. u32 value;
  3130. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3131. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3132. if (value & PORT_STATUS_64)
  3133. qdev->pci_width = 64;
  3134. else
  3135. qdev->pci_width = 32;
  3136. if (value & PORT_STATUS_X)
  3137. qdev->pci_x = 1;
  3138. else
  3139. qdev->pci_x = 0;
  3140. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3141. }
  3142. static void ql3xxx_timer(unsigned long ptr)
  3143. {
  3144. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3145. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3146. printk(KERN_DEBUG PFX
  3147. "%s: Reset in progress.\n",
  3148. qdev->ndev->name);
  3149. goto end;
  3150. }
  3151. ql_link_state_machine(qdev);
  3152. /* Restart timer on 2 second interval. */
  3153. end:
  3154. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3155. }
  3156. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3157. const struct pci_device_id *pci_entry)
  3158. {
  3159. struct net_device *ndev = NULL;
  3160. struct ql3_adapter *qdev = NULL;
  3161. static int cards_found = 0;
  3162. int pci_using_dac, err;
  3163. err = pci_enable_device(pdev);
  3164. if (err) {
  3165. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3166. pci_name(pdev));
  3167. goto err_out;
  3168. }
  3169. err = pci_request_regions(pdev, DRV_NAME);
  3170. if (err) {
  3171. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3172. pci_name(pdev));
  3173. goto err_out_disable_pdev;
  3174. }
  3175. pci_set_master(pdev);
  3176. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3177. pci_using_dac = 1;
  3178. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3179. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3180. pci_using_dac = 0;
  3181. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3182. }
  3183. if (err) {
  3184. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3185. pci_name(pdev));
  3186. goto err_out_free_regions;
  3187. }
  3188. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3189. if (!ndev) {
  3190. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3191. pci_name(pdev));
  3192. err = -ENOMEM;
  3193. goto err_out_free_regions;
  3194. }
  3195. SET_MODULE_OWNER(ndev);
  3196. SET_NETDEV_DEV(ndev, &pdev->dev);
  3197. pci_set_drvdata(pdev, ndev);
  3198. qdev = netdev_priv(ndev);
  3199. qdev->index = cards_found;
  3200. qdev->ndev = ndev;
  3201. qdev->pdev = pdev;
  3202. qdev->device_id = pci_entry->device;
  3203. qdev->port_link_state = LS_DOWN;
  3204. if (msi)
  3205. qdev->msi = 1;
  3206. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3207. if (pci_using_dac)
  3208. ndev->features |= NETIF_F_HIGHDMA;
  3209. if (qdev->device_id == QL3032_DEVICE_ID)
  3210. ndev->features |= (NETIF_F_HW_CSUM | NETIF_F_SG);
  3211. qdev->mem_map_registers =
  3212. ioremap_nocache(pci_resource_start(pdev, 1),
  3213. pci_resource_len(qdev->pdev, 1));
  3214. if (!qdev->mem_map_registers) {
  3215. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3216. pci_name(pdev));
  3217. err = -EIO;
  3218. goto err_out_free_ndev;
  3219. }
  3220. spin_lock_init(&qdev->adapter_lock);
  3221. spin_lock_init(&qdev->hw_lock);
  3222. /* Set driver entry points */
  3223. ndev->open = ql3xxx_open;
  3224. ndev->hard_start_xmit = ql3xxx_send;
  3225. ndev->stop = ql3xxx_close;
  3226. ndev->get_stats = ql3xxx_get_stats;
  3227. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3228. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3229. ndev->set_mac_address = ql3xxx_set_mac_address;
  3230. ndev->tx_timeout = ql3xxx_tx_timeout;
  3231. ndev->watchdog_timeo = 5 * HZ;
  3232. ndev->poll = &ql_poll;
  3233. ndev->weight = 64;
  3234. ndev->irq = pdev->irq;
  3235. /* make sure the EEPROM is good */
  3236. if (ql_get_nvram_params(qdev)) {
  3237. printk(KERN_ALERT PFX
  3238. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3239. qdev->index);
  3240. err = -EIO;
  3241. goto err_out_iounmap;
  3242. }
  3243. ql_set_mac_info(qdev);
  3244. /* Validate and set parameters */
  3245. if (qdev->mac_index) {
  3246. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3247. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3248. ETH_ALEN);
  3249. } else {
  3250. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3251. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3252. ETH_ALEN);
  3253. }
  3254. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3255. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3256. /* Turn off support for multicasting */
  3257. ndev->flags &= ~IFF_MULTICAST;
  3258. /* Record PCI bus information. */
  3259. ql_get_board_info(qdev);
  3260. /*
  3261. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3262. * jumbo frames.
  3263. */
  3264. if (qdev->pci_x) {
  3265. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3266. }
  3267. err = register_netdev(ndev);
  3268. if (err) {
  3269. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3270. pci_name(pdev));
  3271. goto err_out_iounmap;
  3272. }
  3273. /* we're going to reset, so assume we have no link for now */
  3274. netif_carrier_off(ndev);
  3275. netif_stop_queue(ndev);
  3276. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3277. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3278. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3279. init_timer(&qdev->adapter_timer);
  3280. qdev->adapter_timer.function = ql3xxx_timer;
  3281. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3282. qdev->adapter_timer.data = (unsigned long)qdev;
  3283. if(!cards_found) {
  3284. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3285. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3286. DRV_NAME, DRV_VERSION);
  3287. }
  3288. ql_display_dev_info(ndev);
  3289. cards_found++;
  3290. return 0;
  3291. err_out_iounmap:
  3292. iounmap(qdev->mem_map_registers);
  3293. err_out_free_ndev:
  3294. free_netdev(ndev);
  3295. err_out_free_regions:
  3296. pci_release_regions(pdev);
  3297. err_out_disable_pdev:
  3298. pci_disable_device(pdev);
  3299. pci_set_drvdata(pdev, NULL);
  3300. err_out:
  3301. return err;
  3302. }
  3303. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3304. {
  3305. struct net_device *ndev = pci_get_drvdata(pdev);
  3306. struct ql3_adapter *qdev = netdev_priv(ndev);
  3307. unregister_netdev(ndev);
  3308. qdev = netdev_priv(ndev);
  3309. ql_disable_interrupts(qdev);
  3310. if (qdev->workqueue) {
  3311. cancel_delayed_work(&qdev->reset_work);
  3312. cancel_delayed_work(&qdev->tx_timeout_work);
  3313. destroy_workqueue(qdev->workqueue);
  3314. qdev->workqueue = NULL;
  3315. }
  3316. iounmap(qdev->mem_map_registers);
  3317. pci_release_regions(pdev);
  3318. pci_set_drvdata(pdev, NULL);
  3319. free_netdev(ndev);
  3320. }
  3321. static struct pci_driver ql3xxx_driver = {
  3322. .name = DRV_NAME,
  3323. .id_table = ql3xxx_pci_tbl,
  3324. .probe = ql3xxx_probe,
  3325. .remove = __devexit_p(ql3xxx_remove),
  3326. };
  3327. static int __init ql3xxx_init_module(void)
  3328. {
  3329. return pci_register_driver(&ql3xxx_driver);
  3330. }
  3331. static void __exit ql3xxx_exit(void)
  3332. {
  3333. pci_unregister_driver(&ql3xxx_driver);
  3334. }
  3335. module_init(ql3xxx_init_module);
  3336. module_exit(ql3xxx_exit);