x86.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "kvm.h"
  17. #include "x86.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <linux/mman.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/msr.h>
  28. #define MAX_IO_MSRS 256
  29. #define CR0_RESERVED_BITS \
  30. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  31. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  32. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  33. #define CR4_RESERVED_BITS \
  34. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  35. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  36. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  37. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  38. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  39. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  40. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  41. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  42. struct kvm_x86_ops *kvm_x86_ops;
  43. struct kvm_stats_debugfs_item debugfs_entries[] = {
  44. { "pf_fixed", VCPU_STAT(pf_fixed) },
  45. { "pf_guest", VCPU_STAT(pf_guest) },
  46. { "tlb_flush", VCPU_STAT(tlb_flush) },
  47. { "invlpg", VCPU_STAT(invlpg) },
  48. { "exits", VCPU_STAT(exits) },
  49. { "io_exits", VCPU_STAT(io_exits) },
  50. { "mmio_exits", VCPU_STAT(mmio_exits) },
  51. { "signal_exits", VCPU_STAT(signal_exits) },
  52. { "irq_window", VCPU_STAT(irq_window_exits) },
  53. { "halt_exits", VCPU_STAT(halt_exits) },
  54. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  55. { "request_irq", VCPU_STAT(request_irq_exits) },
  56. { "irq_exits", VCPU_STAT(irq_exits) },
  57. { "host_state_reload", VCPU_STAT(host_state_reload) },
  58. { "efer_reload", VCPU_STAT(efer_reload) },
  59. { "fpu_reload", VCPU_STAT(fpu_reload) },
  60. { "insn_emulation", VCPU_STAT(insn_emulation) },
  61. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  62. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  63. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  64. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  65. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  66. { "mmu_flooded", VM_STAT(mmu_flooded) },
  67. { "mmu_recycled", VM_STAT(mmu_recycled) },
  68. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  69. { NULL }
  70. };
  71. unsigned long segment_base(u16 selector)
  72. {
  73. struct descriptor_table gdt;
  74. struct segment_descriptor *d;
  75. unsigned long table_base;
  76. unsigned long v;
  77. if (selector == 0)
  78. return 0;
  79. asm("sgdt %0" : "=m"(gdt));
  80. table_base = gdt.base;
  81. if (selector & 4) { /* from ldt */
  82. u16 ldt_selector;
  83. asm("sldt %0" : "=g"(ldt_selector));
  84. table_base = segment_base(ldt_selector);
  85. }
  86. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  87. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  88. ((unsigned long)d->base_high << 24);
  89. #ifdef CONFIG_X86_64
  90. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  91. v |= ((unsigned long) \
  92. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  93. #endif
  94. return v;
  95. }
  96. EXPORT_SYMBOL_GPL(segment_base);
  97. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  98. {
  99. if (irqchip_in_kernel(vcpu->kvm))
  100. return vcpu->apic_base;
  101. else
  102. return vcpu->apic_base;
  103. }
  104. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  105. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  106. {
  107. /* TODO: reserve bits check */
  108. if (irqchip_in_kernel(vcpu->kvm))
  109. kvm_lapic_set_base(vcpu, data);
  110. else
  111. vcpu->apic_base = data;
  112. }
  113. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  114. static void inject_gp(struct kvm_vcpu *vcpu)
  115. {
  116. kvm_x86_ops->inject_gp(vcpu, 0);
  117. }
  118. /*
  119. * Load the pae pdptrs. Return true is they are all valid.
  120. */
  121. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  122. {
  123. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  124. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  125. int i;
  126. int ret;
  127. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  128. mutex_lock(&vcpu->kvm->lock);
  129. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  130. offset * sizeof(u64), sizeof(pdpte));
  131. if (ret < 0) {
  132. ret = 0;
  133. goto out;
  134. }
  135. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  136. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  137. ret = 0;
  138. goto out;
  139. }
  140. }
  141. ret = 1;
  142. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  143. out:
  144. mutex_unlock(&vcpu->kvm->lock);
  145. return ret;
  146. }
  147. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  148. {
  149. if (cr0 & CR0_RESERVED_BITS) {
  150. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  151. cr0, vcpu->cr0);
  152. inject_gp(vcpu);
  153. return;
  154. }
  155. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  156. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  157. inject_gp(vcpu);
  158. return;
  159. }
  160. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  161. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  162. "and a clear PE flag\n");
  163. inject_gp(vcpu);
  164. return;
  165. }
  166. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  167. #ifdef CONFIG_X86_64
  168. if ((vcpu->shadow_efer & EFER_LME)) {
  169. int cs_db, cs_l;
  170. if (!is_pae(vcpu)) {
  171. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  172. "in long mode while PAE is disabled\n");
  173. inject_gp(vcpu);
  174. return;
  175. }
  176. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  177. if (cs_l) {
  178. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  179. "in long mode while CS.L == 1\n");
  180. inject_gp(vcpu);
  181. return;
  182. }
  183. } else
  184. #endif
  185. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  186. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  187. "reserved bits\n");
  188. inject_gp(vcpu);
  189. return;
  190. }
  191. }
  192. kvm_x86_ops->set_cr0(vcpu, cr0);
  193. vcpu->cr0 = cr0;
  194. mutex_lock(&vcpu->kvm->lock);
  195. kvm_mmu_reset_context(vcpu);
  196. mutex_unlock(&vcpu->kvm->lock);
  197. return;
  198. }
  199. EXPORT_SYMBOL_GPL(set_cr0);
  200. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  201. {
  202. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  203. }
  204. EXPORT_SYMBOL_GPL(lmsw);
  205. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  206. {
  207. if (cr4 & CR4_RESERVED_BITS) {
  208. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  209. inject_gp(vcpu);
  210. return;
  211. }
  212. if (is_long_mode(vcpu)) {
  213. if (!(cr4 & X86_CR4_PAE)) {
  214. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  215. "in long mode\n");
  216. inject_gp(vcpu);
  217. return;
  218. }
  219. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  220. && !load_pdptrs(vcpu, vcpu->cr3)) {
  221. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  222. inject_gp(vcpu);
  223. return;
  224. }
  225. if (cr4 & X86_CR4_VMXE) {
  226. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  227. inject_gp(vcpu);
  228. return;
  229. }
  230. kvm_x86_ops->set_cr4(vcpu, cr4);
  231. vcpu->cr4 = cr4;
  232. mutex_lock(&vcpu->kvm->lock);
  233. kvm_mmu_reset_context(vcpu);
  234. mutex_unlock(&vcpu->kvm->lock);
  235. }
  236. EXPORT_SYMBOL_GPL(set_cr4);
  237. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  238. {
  239. if (is_long_mode(vcpu)) {
  240. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  241. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  242. inject_gp(vcpu);
  243. return;
  244. }
  245. } else {
  246. if (is_pae(vcpu)) {
  247. if (cr3 & CR3_PAE_RESERVED_BITS) {
  248. printk(KERN_DEBUG
  249. "set_cr3: #GP, reserved bits\n");
  250. inject_gp(vcpu);
  251. return;
  252. }
  253. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  254. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  255. "reserved bits\n");
  256. inject_gp(vcpu);
  257. return;
  258. }
  259. }
  260. /*
  261. * We don't check reserved bits in nonpae mode, because
  262. * this isn't enforced, and VMware depends on this.
  263. */
  264. }
  265. mutex_lock(&vcpu->kvm->lock);
  266. /*
  267. * Does the new cr3 value map to physical memory? (Note, we
  268. * catch an invalid cr3 even in real-mode, because it would
  269. * cause trouble later on when we turn on paging anyway.)
  270. *
  271. * A real CPU would silently accept an invalid cr3 and would
  272. * attempt to use it - with largely undefined (and often hard
  273. * to debug) behavior on the guest side.
  274. */
  275. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  276. inject_gp(vcpu);
  277. else {
  278. vcpu->cr3 = cr3;
  279. vcpu->mmu.new_cr3(vcpu);
  280. }
  281. mutex_unlock(&vcpu->kvm->lock);
  282. }
  283. EXPORT_SYMBOL_GPL(set_cr3);
  284. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  285. {
  286. if (cr8 & CR8_RESERVED_BITS) {
  287. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  288. inject_gp(vcpu);
  289. return;
  290. }
  291. if (irqchip_in_kernel(vcpu->kvm))
  292. kvm_lapic_set_tpr(vcpu, cr8);
  293. else
  294. vcpu->cr8 = cr8;
  295. }
  296. EXPORT_SYMBOL_GPL(set_cr8);
  297. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  298. {
  299. if (irqchip_in_kernel(vcpu->kvm))
  300. return kvm_lapic_get_cr8(vcpu);
  301. else
  302. return vcpu->cr8;
  303. }
  304. EXPORT_SYMBOL_GPL(get_cr8);
  305. /*
  306. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  307. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  308. *
  309. * This list is modified at module load time to reflect the
  310. * capabilities of the host cpu.
  311. */
  312. static u32 msrs_to_save[] = {
  313. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  314. MSR_K6_STAR,
  315. #ifdef CONFIG_X86_64
  316. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  317. #endif
  318. MSR_IA32_TIME_STAMP_COUNTER,
  319. };
  320. static unsigned num_msrs_to_save;
  321. static u32 emulated_msrs[] = {
  322. MSR_IA32_MISC_ENABLE,
  323. };
  324. #ifdef CONFIG_X86_64
  325. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  326. {
  327. if (efer & EFER_RESERVED_BITS) {
  328. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  329. efer);
  330. inject_gp(vcpu);
  331. return;
  332. }
  333. if (is_paging(vcpu)
  334. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  335. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  336. inject_gp(vcpu);
  337. return;
  338. }
  339. kvm_x86_ops->set_efer(vcpu, efer);
  340. efer &= ~EFER_LMA;
  341. efer |= vcpu->shadow_efer & EFER_LMA;
  342. vcpu->shadow_efer = efer;
  343. }
  344. #endif
  345. /*
  346. * Writes msr value into into the appropriate "register".
  347. * Returns 0 on success, non-0 otherwise.
  348. * Assumes vcpu_load() was already called.
  349. */
  350. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  351. {
  352. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  353. }
  354. /*
  355. * Adapt set_msr() to msr_io()'s calling convention
  356. */
  357. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  358. {
  359. return kvm_set_msr(vcpu, index, *data);
  360. }
  361. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  362. {
  363. switch (msr) {
  364. #ifdef CONFIG_X86_64
  365. case MSR_EFER:
  366. set_efer(vcpu, data);
  367. break;
  368. #endif
  369. case MSR_IA32_MC0_STATUS:
  370. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  371. __FUNCTION__, data);
  372. break;
  373. case MSR_IA32_MCG_STATUS:
  374. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  375. __FUNCTION__, data);
  376. break;
  377. case MSR_IA32_UCODE_REV:
  378. case MSR_IA32_UCODE_WRITE:
  379. case 0x200 ... 0x2ff: /* MTRRs */
  380. break;
  381. case MSR_IA32_APICBASE:
  382. kvm_set_apic_base(vcpu, data);
  383. break;
  384. case MSR_IA32_MISC_ENABLE:
  385. vcpu->ia32_misc_enable_msr = data;
  386. break;
  387. default:
  388. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  389. return 1;
  390. }
  391. return 0;
  392. }
  393. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  394. /*
  395. * Reads an msr value (of 'msr_index') into 'pdata'.
  396. * Returns 0 on success, non-0 otherwise.
  397. * Assumes vcpu_load() was already called.
  398. */
  399. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  400. {
  401. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  402. }
  403. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  404. {
  405. u64 data;
  406. switch (msr) {
  407. case 0xc0010010: /* SYSCFG */
  408. case 0xc0010015: /* HWCR */
  409. case MSR_IA32_PLATFORM_ID:
  410. case MSR_IA32_P5_MC_ADDR:
  411. case MSR_IA32_P5_MC_TYPE:
  412. case MSR_IA32_MC0_CTL:
  413. case MSR_IA32_MCG_STATUS:
  414. case MSR_IA32_MCG_CAP:
  415. case MSR_IA32_MC0_MISC:
  416. case MSR_IA32_MC0_MISC+4:
  417. case MSR_IA32_MC0_MISC+8:
  418. case MSR_IA32_MC0_MISC+12:
  419. case MSR_IA32_MC0_MISC+16:
  420. case MSR_IA32_UCODE_REV:
  421. case MSR_IA32_PERF_STATUS:
  422. case MSR_IA32_EBL_CR_POWERON:
  423. /* MTRR registers */
  424. case 0xfe:
  425. case 0x200 ... 0x2ff:
  426. data = 0;
  427. break;
  428. case 0xcd: /* fsb frequency */
  429. data = 3;
  430. break;
  431. case MSR_IA32_APICBASE:
  432. data = kvm_get_apic_base(vcpu);
  433. break;
  434. case MSR_IA32_MISC_ENABLE:
  435. data = vcpu->ia32_misc_enable_msr;
  436. break;
  437. #ifdef CONFIG_X86_64
  438. case MSR_EFER:
  439. data = vcpu->shadow_efer;
  440. break;
  441. #endif
  442. default:
  443. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  444. return 1;
  445. }
  446. *pdata = data;
  447. return 0;
  448. }
  449. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  450. /*
  451. * Read or write a bunch of msrs. All parameters are kernel addresses.
  452. *
  453. * @return number of msrs set successfully.
  454. */
  455. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  456. struct kvm_msr_entry *entries,
  457. int (*do_msr)(struct kvm_vcpu *vcpu,
  458. unsigned index, u64 *data))
  459. {
  460. int i;
  461. vcpu_load(vcpu);
  462. for (i = 0; i < msrs->nmsrs; ++i)
  463. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  464. break;
  465. vcpu_put(vcpu);
  466. return i;
  467. }
  468. /*
  469. * Read or write a bunch of msrs. Parameters are user addresses.
  470. *
  471. * @return number of msrs set successfully.
  472. */
  473. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  474. int (*do_msr)(struct kvm_vcpu *vcpu,
  475. unsigned index, u64 *data),
  476. int writeback)
  477. {
  478. struct kvm_msrs msrs;
  479. struct kvm_msr_entry *entries;
  480. int r, n;
  481. unsigned size;
  482. r = -EFAULT;
  483. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  484. goto out;
  485. r = -E2BIG;
  486. if (msrs.nmsrs >= MAX_IO_MSRS)
  487. goto out;
  488. r = -ENOMEM;
  489. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  490. entries = vmalloc(size);
  491. if (!entries)
  492. goto out;
  493. r = -EFAULT;
  494. if (copy_from_user(entries, user_msrs->entries, size))
  495. goto out_free;
  496. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  497. if (r < 0)
  498. goto out_free;
  499. r = -EFAULT;
  500. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  501. goto out_free;
  502. r = n;
  503. out_free:
  504. vfree(entries);
  505. out:
  506. return r;
  507. }
  508. /*
  509. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  510. * cached on it.
  511. */
  512. void decache_vcpus_on_cpu(int cpu)
  513. {
  514. struct kvm *vm;
  515. struct kvm_vcpu *vcpu;
  516. int i;
  517. spin_lock(&kvm_lock);
  518. list_for_each_entry(vm, &vm_list, vm_list)
  519. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  520. vcpu = vm->vcpus[i];
  521. if (!vcpu)
  522. continue;
  523. /*
  524. * If the vcpu is locked, then it is running on some
  525. * other cpu and therefore it is not cached on the
  526. * cpu in question.
  527. *
  528. * If it's not locked, check the last cpu it executed
  529. * on.
  530. */
  531. if (mutex_trylock(&vcpu->mutex)) {
  532. if (vcpu->cpu == cpu) {
  533. kvm_x86_ops->vcpu_decache(vcpu);
  534. vcpu->cpu = -1;
  535. }
  536. mutex_unlock(&vcpu->mutex);
  537. }
  538. }
  539. spin_unlock(&kvm_lock);
  540. }
  541. int kvm_dev_ioctl_check_extension(long ext)
  542. {
  543. int r;
  544. switch (ext) {
  545. case KVM_CAP_IRQCHIP:
  546. case KVM_CAP_HLT:
  547. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  548. case KVM_CAP_USER_MEMORY:
  549. case KVM_CAP_SET_TSS_ADDR:
  550. r = 1;
  551. break;
  552. default:
  553. r = 0;
  554. break;
  555. }
  556. return r;
  557. }
  558. long kvm_arch_dev_ioctl(struct file *filp,
  559. unsigned int ioctl, unsigned long arg)
  560. {
  561. void __user *argp = (void __user *)arg;
  562. long r;
  563. switch (ioctl) {
  564. case KVM_GET_MSR_INDEX_LIST: {
  565. struct kvm_msr_list __user *user_msr_list = argp;
  566. struct kvm_msr_list msr_list;
  567. unsigned n;
  568. r = -EFAULT;
  569. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  570. goto out;
  571. n = msr_list.nmsrs;
  572. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  573. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  574. goto out;
  575. r = -E2BIG;
  576. if (n < num_msrs_to_save)
  577. goto out;
  578. r = -EFAULT;
  579. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  580. num_msrs_to_save * sizeof(u32)))
  581. goto out;
  582. if (copy_to_user(user_msr_list->indices
  583. + num_msrs_to_save * sizeof(u32),
  584. &emulated_msrs,
  585. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  586. goto out;
  587. r = 0;
  588. break;
  589. }
  590. default:
  591. r = -EINVAL;
  592. }
  593. out:
  594. return r;
  595. }
  596. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  597. {
  598. kvm_x86_ops->vcpu_load(vcpu, cpu);
  599. }
  600. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  601. {
  602. kvm_x86_ops->vcpu_put(vcpu);
  603. kvm_put_guest_fpu(vcpu);
  604. }
  605. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  606. {
  607. u64 efer;
  608. int i;
  609. struct kvm_cpuid_entry *e, *entry;
  610. rdmsrl(MSR_EFER, efer);
  611. entry = NULL;
  612. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  613. e = &vcpu->cpuid_entries[i];
  614. if (e->function == 0x80000001) {
  615. entry = e;
  616. break;
  617. }
  618. }
  619. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  620. entry->edx &= ~(1 << 20);
  621. printk(KERN_INFO "kvm: guest NX capability removed\n");
  622. }
  623. }
  624. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  625. struct kvm_cpuid *cpuid,
  626. struct kvm_cpuid_entry __user *entries)
  627. {
  628. int r;
  629. r = -E2BIG;
  630. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  631. goto out;
  632. r = -EFAULT;
  633. if (copy_from_user(&vcpu->cpuid_entries, entries,
  634. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  635. goto out;
  636. vcpu->cpuid_nent = cpuid->nent;
  637. cpuid_fix_nx_cap(vcpu);
  638. return 0;
  639. out:
  640. return r;
  641. }
  642. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  643. struct kvm_lapic_state *s)
  644. {
  645. vcpu_load(vcpu);
  646. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  647. vcpu_put(vcpu);
  648. return 0;
  649. }
  650. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  651. struct kvm_lapic_state *s)
  652. {
  653. vcpu_load(vcpu);
  654. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  655. kvm_apic_post_state_restore(vcpu);
  656. vcpu_put(vcpu);
  657. return 0;
  658. }
  659. long kvm_arch_vcpu_ioctl(struct file *filp,
  660. unsigned int ioctl, unsigned long arg)
  661. {
  662. struct kvm_vcpu *vcpu = filp->private_data;
  663. void __user *argp = (void __user *)arg;
  664. int r;
  665. switch (ioctl) {
  666. case KVM_GET_LAPIC: {
  667. struct kvm_lapic_state lapic;
  668. memset(&lapic, 0, sizeof lapic);
  669. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  670. if (r)
  671. goto out;
  672. r = -EFAULT;
  673. if (copy_to_user(argp, &lapic, sizeof lapic))
  674. goto out;
  675. r = 0;
  676. break;
  677. }
  678. case KVM_SET_LAPIC: {
  679. struct kvm_lapic_state lapic;
  680. r = -EFAULT;
  681. if (copy_from_user(&lapic, argp, sizeof lapic))
  682. goto out;
  683. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  684. if (r)
  685. goto out;
  686. r = 0;
  687. break;
  688. }
  689. case KVM_SET_CPUID: {
  690. struct kvm_cpuid __user *cpuid_arg = argp;
  691. struct kvm_cpuid cpuid;
  692. r = -EFAULT;
  693. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  694. goto out;
  695. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  696. if (r)
  697. goto out;
  698. break;
  699. }
  700. case KVM_GET_MSRS:
  701. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  702. break;
  703. case KVM_SET_MSRS:
  704. r = msr_io(vcpu, argp, do_set_msr, 0);
  705. break;
  706. default:
  707. r = -EINVAL;
  708. }
  709. out:
  710. return r;
  711. }
  712. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  713. {
  714. int ret;
  715. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  716. return -1;
  717. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  718. return ret;
  719. }
  720. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  721. u32 kvm_nr_mmu_pages)
  722. {
  723. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  724. return -EINVAL;
  725. mutex_lock(&kvm->lock);
  726. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  727. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  728. mutex_unlock(&kvm->lock);
  729. return 0;
  730. }
  731. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  732. {
  733. return kvm->n_alloc_mmu_pages;
  734. }
  735. /*
  736. * Set a new alias region. Aliases map a portion of physical memory into
  737. * another portion. This is useful for memory windows, for example the PC
  738. * VGA region.
  739. */
  740. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  741. struct kvm_memory_alias *alias)
  742. {
  743. int r, n;
  744. struct kvm_mem_alias *p;
  745. r = -EINVAL;
  746. /* General sanity checks */
  747. if (alias->memory_size & (PAGE_SIZE - 1))
  748. goto out;
  749. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  750. goto out;
  751. if (alias->slot >= KVM_ALIAS_SLOTS)
  752. goto out;
  753. if (alias->guest_phys_addr + alias->memory_size
  754. < alias->guest_phys_addr)
  755. goto out;
  756. if (alias->target_phys_addr + alias->memory_size
  757. < alias->target_phys_addr)
  758. goto out;
  759. mutex_lock(&kvm->lock);
  760. p = &kvm->aliases[alias->slot];
  761. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  762. p->npages = alias->memory_size >> PAGE_SHIFT;
  763. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  764. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  765. if (kvm->aliases[n - 1].npages)
  766. break;
  767. kvm->naliases = n;
  768. kvm_mmu_zap_all(kvm);
  769. mutex_unlock(&kvm->lock);
  770. return 0;
  771. out:
  772. return r;
  773. }
  774. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  775. {
  776. int r;
  777. r = 0;
  778. switch (chip->chip_id) {
  779. case KVM_IRQCHIP_PIC_MASTER:
  780. memcpy(&chip->chip.pic,
  781. &pic_irqchip(kvm)->pics[0],
  782. sizeof(struct kvm_pic_state));
  783. break;
  784. case KVM_IRQCHIP_PIC_SLAVE:
  785. memcpy(&chip->chip.pic,
  786. &pic_irqchip(kvm)->pics[1],
  787. sizeof(struct kvm_pic_state));
  788. break;
  789. case KVM_IRQCHIP_IOAPIC:
  790. memcpy(&chip->chip.ioapic,
  791. ioapic_irqchip(kvm),
  792. sizeof(struct kvm_ioapic_state));
  793. break;
  794. default:
  795. r = -EINVAL;
  796. break;
  797. }
  798. return r;
  799. }
  800. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  801. {
  802. int r;
  803. r = 0;
  804. switch (chip->chip_id) {
  805. case KVM_IRQCHIP_PIC_MASTER:
  806. memcpy(&pic_irqchip(kvm)->pics[0],
  807. &chip->chip.pic,
  808. sizeof(struct kvm_pic_state));
  809. break;
  810. case KVM_IRQCHIP_PIC_SLAVE:
  811. memcpy(&pic_irqchip(kvm)->pics[1],
  812. &chip->chip.pic,
  813. sizeof(struct kvm_pic_state));
  814. break;
  815. case KVM_IRQCHIP_IOAPIC:
  816. memcpy(ioapic_irqchip(kvm),
  817. &chip->chip.ioapic,
  818. sizeof(struct kvm_ioapic_state));
  819. break;
  820. default:
  821. r = -EINVAL;
  822. break;
  823. }
  824. kvm_pic_update_irq(pic_irqchip(kvm));
  825. return r;
  826. }
  827. /*
  828. * Get (and clear) the dirty memory log for a memory slot.
  829. */
  830. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  831. struct kvm_dirty_log *log)
  832. {
  833. int r;
  834. int n;
  835. struct kvm_memory_slot *memslot;
  836. int is_dirty = 0;
  837. mutex_lock(&kvm->lock);
  838. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  839. if (r)
  840. goto out;
  841. /* If nothing is dirty, don't bother messing with page tables. */
  842. if (is_dirty) {
  843. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  844. kvm_flush_remote_tlbs(kvm);
  845. memslot = &kvm->memslots[log->slot];
  846. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  847. memset(memslot->dirty_bitmap, 0, n);
  848. }
  849. r = 0;
  850. out:
  851. mutex_unlock(&kvm->lock);
  852. return r;
  853. }
  854. long kvm_arch_vm_ioctl(struct file *filp,
  855. unsigned int ioctl, unsigned long arg)
  856. {
  857. struct kvm *kvm = filp->private_data;
  858. void __user *argp = (void __user *)arg;
  859. int r = -EINVAL;
  860. switch (ioctl) {
  861. case KVM_SET_TSS_ADDR:
  862. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  863. if (r < 0)
  864. goto out;
  865. break;
  866. case KVM_SET_MEMORY_REGION: {
  867. struct kvm_memory_region kvm_mem;
  868. struct kvm_userspace_memory_region kvm_userspace_mem;
  869. r = -EFAULT;
  870. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  871. goto out;
  872. kvm_userspace_mem.slot = kvm_mem.slot;
  873. kvm_userspace_mem.flags = kvm_mem.flags;
  874. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  875. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  876. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  877. if (r)
  878. goto out;
  879. break;
  880. }
  881. case KVM_SET_NR_MMU_PAGES:
  882. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  883. if (r)
  884. goto out;
  885. break;
  886. case KVM_GET_NR_MMU_PAGES:
  887. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  888. break;
  889. case KVM_SET_MEMORY_ALIAS: {
  890. struct kvm_memory_alias alias;
  891. r = -EFAULT;
  892. if (copy_from_user(&alias, argp, sizeof alias))
  893. goto out;
  894. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  895. if (r)
  896. goto out;
  897. break;
  898. }
  899. case KVM_CREATE_IRQCHIP:
  900. r = -ENOMEM;
  901. kvm->vpic = kvm_create_pic(kvm);
  902. if (kvm->vpic) {
  903. r = kvm_ioapic_init(kvm);
  904. if (r) {
  905. kfree(kvm->vpic);
  906. kvm->vpic = NULL;
  907. goto out;
  908. }
  909. } else
  910. goto out;
  911. break;
  912. case KVM_IRQ_LINE: {
  913. struct kvm_irq_level irq_event;
  914. r = -EFAULT;
  915. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  916. goto out;
  917. if (irqchip_in_kernel(kvm)) {
  918. mutex_lock(&kvm->lock);
  919. if (irq_event.irq < 16)
  920. kvm_pic_set_irq(pic_irqchip(kvm),
  921. irq_event.irq,
  922. irq_event.level);
  923. kvm_ioapic_set_irq(kvm->vioapic,
  924. irq_event.irq,
  925. irq_event.level);
  926. mutex_unlock(&kvm->lock);
  927. r = 0;
  928. }
  929. break;
  930. }
  931. case KVM_GET_IRQCHIP: {
  932. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  933. struct kvm_irqchip chip;
  934. r = -EFAULT;
  935. if (copy_from_user(&chip, argp, sizeof chip))
  936. goto out;
  937. r = -ENXIO;
  938. if (!irqchip_in_kernel(kvm))
  939. goto out;
  940. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  941. if (r)
  942. goto out;
  943. r = -EFAULT;
  944. if (copy_to_user(argp, &chip, sizeof chip))
  945. goto out;
  946. r = 0;
  947. break;
  948. }
  949. case KVM_SET_IRQCHIP: {
  950. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  951. struct kvm_irqchip chip;
  952. r = -EFAULT;
  953. if (copy_from_user(&chip, argp, sizeof chip))
  954. goto out;
  955. r = -ENXIO;
  956. if (!irqchip_in_kernel(kvm))
  957. goto out;
  958. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  959. if (r)
  960. goto out;
  961. r = 0;
  962. break;
  963. }
  964. default:
  965. ;
  966. }
  967. out:
  968. return r;
  969. }
  970. static void kvm_init_msr_list(void)
  971. {
  972. u32 dummy[2];
  973. unsigned i, j;
  974. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  975. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  976. continue;
  977. if (j < i)
  978. msrs_to_save[j] = msrs_to_save[i];
  979. j++;
  980. }
  981. num_msrs_to_save = j;
  982. }
  983. /*
  984. * Only apic need an MMIO device hook, so shortcut now..
  985. */
  986. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  987. gpa_t addr)
  988. {
  989. struct kvm_io_device *dev;
  990. if (vcpu->apic) {
  991. dev = &vcpu->apic->dev;
  992. if (dev->in_range(dev, addr))
  993. return dev;
  994. }
  995. return NULL;
  996. }
  997. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  998. gpa_t addr)
  999. {
  1000. struct kvm_io_device *dev;
  1001. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1002. if (dev == NULL)
  1003. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1004. return dev;
  1005. }
  1006. int emulator_read_std(unsigned long addr,
  1007. void *val,
  1008. unsigned int bytes,
  1009. struct kvm_vcpu *vcpu)
  1010. {
  1011. void *data = val;
  1012. while (bytes) {
  1013. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1014. unsigned offset = addr & (PAGE_SIZE-1);
  1015. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1016. int ret;
  1017. if (gpa == UNMAPPED_GVA)
  1018. return X86EMUL_PROPAGATE_FAULT;
  1019. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1020. if (ret < 0)
  1021. return X86EMUL_UNHANDLEABLE;
  1022. bytes -= tocopy;
  1023. data += tocopy;
  1024. addr += tocopy;
  1025. }
  1026. return X86EMUL_CONTINUE;
  1027. }
  1028. EXPORT_SYMBOL_GPL(emulator_read_std);
  1029. static int emulator_read_emulated(unsigned long addr,
  1030. void *val,
  1031. unsigned int bytes,
  1032. struct kvm_vcpu *vcpu)
  1033. {
  1034. struct kvm_io_device *mmio_dev;
  1035. gpa_t gpa;
  1036. if (vcpu->mmio_read_completed) {
  1037. memcpy(val, vcpu->mmio_data, bytes);
  1038. vcpu->mmio_read_completed = 0;
  1039. return X86EMUL_CONTINUE;
  1040. }
  1041. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1042. /* For APIC access vmexit */
  1043. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1044. goto mmio;
  1045. if (emulator_read_std(addr, val, bytes, vcpu)
  1046. == X86EMUL_CONTINUE)
  1047. return X86EMUL_CONTINUE;
  1048. if (gpa == UNMAPPED_GVA)
  1049. return X86EMUL_PROPAGATE_FAULT;
  1050. mmio:
  1051. /*
  1052. * Is this MMIO handled locally?
  1053. */
  1054. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1055. if (mmio_dev) {
  1056. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1057. return X86EMUL_CONTINUE;
  1058. }
  1059. vcpu->mmio_needed = 1;
  1060. vcpu->mmio_phys_addr = gpa;
  1061. vcpu->mmio_size = bytes;
  1062. vcpu->mmio_is_write = 0;
  1063. return X86EMUL_UNHANDLEABLE;
  1064. }
  1065. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1066. const void *val, int bytes)
  1067. {
  1068. int ret;
  1069. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1070. if (ret < 0)
  1071. return 0;
  1072. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1073. return 1;
  1074. }
  1075. static int emulator_write_emulated_onepage(unsigned long addr,
  1076. const void *val,
  1077. unsigned int bytes,
  1078. struct kvm_vcpu *vcpu)
  1079. {
  1080. struct kvm_io_device *mmio_dev;
  1081. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1082. if (gpa == UNMAPPED_GVA) {
  1083. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1084. return X86EMUL_PROPAGATE_FAULT;
  1085. }
  1086. /* For APIC access vmexit */
  1087. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1088. goto mmio;
  1089. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1090. return X86EMUL_CONTINUE;
  1091. mmio:
  1092. /*
  1093. * Is this MMIO handled locally?
  1094. */
  1095. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1096. if (mmio_dev) {
  1097. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1098. return X86EMUL_CONTINUE;
  1099. }
  1100. vcpu->mmio_needed = 1;
  1101. vcpu->mmio_phys_addr = gpa;
  1102. vcpu->mmio_size = bytes;
  1103. vcpu->mmio_is_write = 1;
  1104. memcpy(vcpu->mmio_data, val, bytes);
  1105. return X86EMUL_CONTINUE;
  1106. }
  1107. int emulator_write_emulated(unsigned long addr,
  1108. const void *val,
  1109. unsigned int bytes,
  1110. struct kvm_vcpu *vcpu)
  1111. {
  1112. /* Crossing a page boundary? */
  1113. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1114. int rc, now;
  1115. now = -addr & ~PAGE_MASK;
  1116. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1117. if (rc != X86EMUL_CONTINUE)
  1118. return rc;
  1119. addr += now;
  1120. val += now;
  1121. bytes -= now;
  1122. }
  1123. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1124. }
  1125. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1126. static int emulator_cmpxchg_emulated(unsigned long addr,
  1127. const void *old,
  1128. const void *new,
  1129. unsigned int bytes,
  1130. struct kvm_vcpu *vcpu)
  1131. {
  1132. static int reported;
  1133. if (!reported) {
  1134. reported = 1;
  1135. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1136. }
  1137. return emulator_write_emulated(addr, new, bytes, vcpu);
  1138. }
  1139. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1140. {
  1141. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1142. }
  1143. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1144. {
  1145. return X86EMUL_CONTINUE;
  1146. }
  1147. int emulate_clts(struct kvm_vcpu *vcpu)
  1148. {
  1149. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1150. return X86EMUL_CONTINUE;
  1151. }
  1152. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1153. {
  1154. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1155. switch (dr) {
  1156. case 0 ... 3:
  1157. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1158. return X86EMUL_CONTINUE;
  1159. default:
  1160. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1161. return X86EMUL_UNHANDLEABLE;
  1162. }
  1163. }
  1164. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1165. {
  1166. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1167. int exception;
  1168. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1169. if (exception) {
  1170. /* FIXME: better handling */
  1171. return X86EMUL_UNHANDLEABLE;
  1172. }
  1173. return X86EMUL_CONTINUE;
  1174. }
  1175. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1176. {
  1177. static int reported;
  1178. u8 opcodes[4];
  1179. unsigned long rip = vcpu->rip;
  1180. unsigned long rip_linear;
  1181. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1182. if (reported)
  1183. return;
  1184. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1185. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1186. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1187. reported = 1;
  1188. }
  1189. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1190. struct x86_emulate_ops emulate_ops = {
  1191. .read_std = emulator_read_std,
  1192. .read_emulated = emulator_read_emulated,
  1193. .write_emulated = emulator_write_emulated,
  1194. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1195. };
  1196. int emulate_instruction(struct kvm_vcpu *vcpu,
  1197. struct kvm_run *run,
  1198. unsigned long cr2,
  1199. u16 error_code,
  1200. int no_decode)
  1201. {
  1202. int r;
  1203. vcpu->mmio_fault_cr2 = cr2;
  1204. kvm_x86_ops->cache_regs(vcpu);
  1205. vcpu->mmio_is_write = 0;
  1206. vcpu->pio.string = 0;
  1207. if (!no_decode) {
  1208. int cs_db, cs_l;
  1209. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1210. vcpu->emulate_ctxt.vcpu = vcpu;
  1211. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1212. vcpu->emulate_ctxt.cr2 = cr2;
  1213. vcpu->emulate_ctxt.mode =
  1214. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1215. ? X86EMUL_MODE_REAL : cs_l
  1216. ? X86EMUL_MODE_PROT64 : cs_db
  1217. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1218. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1219. vcpu->emulate_ctxt.cs_base = 0;
  1220. vcpu->emulate_ctxt.ds_base = 0;
  1221. vcpu->emulate_ctxt.es_base = 0;
  1222. vcpu->emulate_ctxt.ss_base = 0;
  1223. } else {
  1224. vcpu->emulate_ctxt.cs_base =
  1225. get_segment_base(vcpu, VCPU_SREG_CS);
  1226. vcpu->emulate_ctxt.ds_base =
  1227. get_segment_base(vcpu, VCPU_SREG_DS);
  1228. vcpu->emulate_ctxt.es_base =
  1229. get_segment_base(vcpu, VCPU_SREG_ES);
  1230. vcpu->emulate_ctxt.ss_base =
  1231. get_segment_base(vcpu, VCPU_SREG_SS);
  1232. }
  1233. vcpu->emulate_ctxt.gs_base =
  1234. get_segment_base(vcpu, VCPU_SREG_GS);
  1235. vcpu->emulate_ctxt.fs_base =
  1236. get_segment_base(vcpu, VCPU_SREG_FS);
  1237. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1238. ++vcpu->stat.insn_emulation;
  1239. if (r) {
  1240. ++vcpu->stat.insn_emulation_fail;
  1241. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1242. return EMULATE_DONE;
  1243. return EMULATE_FAIL;
  1244. }
  1245. }
  1246. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1247. if (vcpu->pio.string)
  1248. return EMULATE_DO_MMIO;
  1249. if ((r || vcpu->mmio_is_write) && run) {
  1250. run->exit_reason = KVM_EXIT_MMIO;
  1251. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1252. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1253. run->mmio.len = vcpu->mmio_size;
  1254. run->mmio.is_write = vcpu->mmio_is_write;
  1255. }
  1256. if (r) {
  1257. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1258. return EMULATE_DONE;
  1259. if (!vcpu->mmio_needed) {
  1260. kvm_report_emulation_failure(vcpu, "mmio");
  1261. return EMULATE_FAIL;
  1262. }
  1263. return EMULATE_DO_MMIO;
  1264. }
  1265. kvm_x86_ops->decache_regs(vcpu);
  1266. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1267. if (vcpu->mmio_is_write) {
  1268. vcpu->mmio_needed = 0;
  1269. return EMULATE_DO_MMIO;
  1270. }
  1271. return EMULATE_DONE;
  1272. }
  1273. EXPORT_SYMBOL_GPL(emulate_instruction);
  1274. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1275. {
  1276. int i;
  1277. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  1278. if (vcpu->pio.guest_pages[i]) {
  1279. kvm_release_page_dirty(vcpu->pio.guest_pages[i]);
  1280. vcpu->pio.guest_pages[i] = NULL;
  1281. }
  1282. }
  1283. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1284. {
  1285. void *p = vcpu->pio_data;
  1286. void *q;
  1287. unsigned bytes;
  1288. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1289. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1290. PAGE_KERNEL);
  1291. if (!q) {
  1292. free_pio_guest_pages(vcpu);
  1293. return -ENOMEM;
  1294. }
  1295. q += vcpu->pio.guest_page_offset;
  1296. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1297. if (vcpu->pio.in)
  1298. memcpy(q, p, bytes);
  1299. else
  1300. memcpy(p, q, bytes);
  1301. q -= vcpu->pio.guest_page_offset;
  1302. vunmap(q);
  1303. free_pio_guest_pages(vcpu);
  1304. return 0;
  1305. }
  1306. int complete_pio(struct kvm_vcpu *vcpu)
  1307. {
  1308. struct kvm_pio_request *io = &vcpu->pio;
  1309. long delta;
  1310. int r;
  1311. kvm_x86_ops->cache_regs(vcpu);
  1312. if (!io->string) {
  1313. if (io->in)
  1314. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1315. io->size);
  1316. } else {
  1317. if (io->in) {
  1318. r = pio_copy_data(vcpu);
  1319. if (r) {
  1320. kvm_x86_ops->cache_regs(vcpu);
  1321. return r;
  1322. }
  1323. }
  1324. delta = 1;
  1325. if (io->rep) {
  1326. delta *= io->cur_count;
  1327. /*
  1328. * The size of the register should really depend on
  1329. * current address size.
  1330. */
  1331. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1332. }
  1333. if (io->down)
  1334. delta = -delta;
  1335. delta *= io->size;
  1336. if (io->in)
  1337. vcpu->regs[VCPU_REGS_RDI] += delta;
  1338. else
  1339. vcpu->regs[VCPU_REGS_RSI] += delta;
  1340. }
  1341. kvm_x86_ops->decache_regs(vcpu);
  1342. io->count -= io->cur_count;
  1343. io->cur_count = 0;
  1344. return 0;
  1345. }
  1346. static void kernel_pio(struct kvm_io_device *pio_dev,
  1347. struct kvm_vcpu *vcpu,
  1348. void *pd)
  1349. {
  1350. /* TODO: String I/O for in kernel device */
  1351. mutex_lock(&vcpu->kvm->lock);
  1352. if (vcpu->pio.in)
  1353. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1354. vcpu->pio.size,
  1355. pd);
  1356. else
  1357. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1358. vcpu->pio.size,
  1359. pd);
  1360. mutex_unlock(&vcpu->kvm->lock);
  1361. }
  1362. static void pio_string_write(struct kvm_io_device *pio_dev,
  1363. struct kvm_vcpu *vcpu)
  1364. {
  1365. struct kvm_pio_request *io = &vcpu->pio;
  1366. void *pd = vcpu->pio_data;
  1367. int i;
  1368. mutex_lock(&vcpu->kvm->lock);
  1369. for (i = 0; i < io->cur_count; i++) {
  1370. kvm_iodevice_write(pio_dev, io->port,
  1371. io->size,
  1372. pd);
  1373. pd += io->size;
  1374. }
  1375. mutex_unlock(&vcpu->kvm->lock);
  1376. }
  1377. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1378. gpa_t addr)
  1379. {
  1380. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1381. }
  1382. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1383. int size, unsigned port)
  1384. {
  1385. struct kvm_io_device *pio_dev;
  1386. vcpu->run->exit_reason = KVM_EXIT_IO;
  1387. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1388. vcpu->run->io.size = vcpu->pio.size = size;
  1389. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1390. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1391. vcpu->run->io.port = vcpu->pio.port = port;
  1392. vcpu->pio.in = in;
  1393. vcpu->pio.string = 0;
  1394. vcpu->pio.down = 0;
  1395. vcpu->pio.guest_page_offset = 0;
  1396. vcpu->pio.rep = 0;
  1397. kvm_x86_ops->cache_regs(vcpu);
  1398. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1399. kvm_x86_ops->decache_regs(vcpu);
  1400. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1401. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1402. if (pio_dev) {
  1403. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1404. complete_pio(vcpu);
  1405. return 1;
  1406. }
  1407. return 0;
  1408. }
  1409. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1410. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1411. int size, unsigned long count, int down,
  1412. gva_t address, int rep, unsigned port)
  1413. {
  1414. unsigned now, in_page;
  1415. int i, ret = 0;
  1416. int nr_pages = 1;
  1417. struct page *page;
  1418. struct kvm_io_device *pio_dev;
  1419. vcpu->run->exit_reason = KVM_EXIT_IO;
  1420. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1421. vcpu->run->io.size = vcpu->pio.size = size;
  1422. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1423. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1424. vcpu->run->io.port = vcpu->pio.port = port;
  1425. vcpu->pio.in = in;
  1426. vcpu->pio.string = 1;
  1427. vcpu->pio.down = down;
  1428. vcpu->pio.guest_page_offset = offset_in_page(address);
  1429. vcpu->pio.rep = rep;
  1430. if (!count) {
  1431. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1432. return 1;
  1433. }
  1434. if (!down)
  1435. in_page = PAGE_SIZE - offset_in_page(address);
  1436. else
  1437. in_page = offset_in_page(address) + size;
  1438. now = min(count, (unsigned long)in_page / size);
  1439. if (!now) {
  1440. /*
  1441. * String I/O straddles page boundary. Pin two guest pages
  1442. * so that we satisfy atomicity constraints. Do just one
  1443. * transaction to avoid complexity.
  1444. */
  1445. nr_pages = 2;
  1446. now = 1;
  1447. }
  1448. if (down) {
  1449. /*
  1450. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1451. */
  1452. pr_unimpl(vcpu, "guest string pio down\n");
  1453. inject_gp(vcpu);
  1454. return 1;
  1455. }
  1456. vcpu->run->io.count = now;
  1457. vcpu->pio.cur_count = now;
  1458. if (vcpu->pio.cur_count == vcpu->pio.count)
  1459. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1460. for (i = 0; i < nr_pages; ++i) {
  1461. mutex_lock(&vcpu->kvm->lock);
  1462. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1463. vcpu->pio.guest_pages[i] = page;
  1464. mutex_unlock(&vcpu->kvm->lock);
  1465. if (!page) {
  1466. inject_gp(vcpu);
  1467. free_pio_guest_pages(vcpu);
  1468. return 1;
  1469. }
  1470. }
  1471. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1472. if (!vcpu->pio.in) {
  1473. /* string PIO write */
  1474. ret = pio_copy_data(vcpu);
  1475. if (ret >= 0 && pio_dev) {
  1476. pio_string_write(pio_dev, vcpu);
  1477. complete_pio(vcpu);
  1478. if (vcpu->pio.count == 0)
  1479. ret = 1;
  1480. }
  1481. } else if (pio_dev)
  1482. pr_unimpl(vcpu, "no string pio read support yet, "
  1483. "port %x size %d count %ld\n",
  1484. port, size, count);
  1485. return ret;
  1486. }
  1487. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1488. int kvm_arch_init(void *opaque)
  1489. {
  1490. int r;
  1491. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  1492. r = kvm_mmu_module_init();
  1493. if (r)
  1494. goto out_fail;
  1495. kvm_init_msr_list();
  1496. if (kvm_x86_ops) {
  1497. printk(KERN_ERR "kvm: already loaded the other module\n");
  1498. r = -EEXIST;
  1499. goto out;
  1500. }
  1501. if (!ops->cpu_has_kvm_support()) {
  1502. printk(KERN_ERR "kvm: no hardware support\n");
  1503. r = -EOPNOTSUPP;
  1504. goto out;
  1505. }
  1506. if (ops->disabled_by_bios()) {
  1507. printk(KERN_ERR "kvm: disabled by bios\n");
  1508. r = -EOPNOTSUPP;
  1509. goto out;
  1510. }
  1511. kvm_x86_ops = ops;
  1512. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1513. return 0;
  1514. out:
  1515. kvm_mmu_module_exit();
  1516. out_fail:
  1517. return r;
  1518. }
  1519. void kvm_arch_exit(void)
  1520. {
  1521. kvm_x86_ops = NULL;
  1522. kvm_mmu_module_exit();
  1523. }
  1524. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1525. {
  1526. ++vcpu->stat.halt_exits;
  1527. if (irqchip_in_kernel(vcpu->kvm)) {
  1528. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1529. kvm_vcpu_block(vcpu);
  1530. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1531. return -EINTR;
  1532. return 1;
  1533. } else {
  1534. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1535. return 0;
  1536. }
  1537. }
  1538. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1539. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1540. {
  1541. unsigned long nr, a0, a1, a2, a3, ret;
  1542. kvm_x86_ops->cache_regs(vcpu);
  1543. nr = vcpu->regs[VCPU_REGS_RAX];
  1544. a0 = vcpu->regs[VCPU_REGS_RBX];
  1545. a1 = vcpu->regs[VCPU_REGS_RCX];
  1546. a2 = vcpu->regs[VCPU_REGS_RDX];
  1547. a3 = vcpu->regs[VCPU_REGS_RSI];
  1548. if (!is_long_mode(vcpu)) {
  1549. nr &= 0xFFFFFFFF;
  1550. a0 &= 0xFFFFFFFF;
  1551. a1 &= 0xFFFFFFFF;
  1552. a2 &= 0xFFFFFFFF;
  1553. a3 &= 0xFFFFFFFF;
  1554. }
  1555. switch (nr) {
  1556. default:
  1557. ret = -KVM_ENOSYS;
  1558. break;
  1559. }
  1560. vcpu->regs[VCPU_REGS_RAX] = ret;
  1561. kvm_x86_ops->decache_regs(vcpu);
  1562. return 0;
  1563. }
  1564. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1565. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1566. {
  1567. char instruction[3];
  1568. int ret = 0;
  1569. mutex_lock(&vcpu->kvm->lock);
  1570. /*
  1571. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1572. * to ensure that the updated hypercall appears atomically across all
  1573. * VCPUs.
  1574. */
  1575. kvm_mmu_zap_all(vcpu->kvm);
  1576. kvm_x86_ops->cache_regs(vcpu);
  1577. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1578. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1579. != X86EMUL_CONTINUE)
  1580. ret = -EFAULT;
  1581. mutex_unlock(&vcpu->kvm->lock);
  1582. return ret;
  1583. }
  1584. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1585. {
  1586. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1587. }
  1588. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1589. {
  1590. struct descriptor_table dt = { limit, base };
  1591. kvm_x86_ops->set_gdt(vcpu, &dt);
  1592. }
  1593. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1594. {
  1595. struct descriptor_table dt = { limit, base };
  1596. kvm_x86_ops->set_idt(vcpu, &dt);
  1597. }
  1598. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1599. unsigned long *rflags)
  1600. {
  1601. lmsw(vcpu, msw);
  1602. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1603. }
  1604. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1605. {
  1606. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1607. switch (cr) {
  1608. case 0:
  1609. return vcpu->cr0;
  1610. case 2:
  1611. return vcpu->cr2;
  1612. case 3:
  1613. return vcpu->cr3;
  1614. case 4:
  1615. return vcpu->cr4;
  1616. default:
  1617. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1618. return 0;
  1619. }
  1620. }
  1621. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1622. unsigned long *rflags)
  1623. {
  1624. switch (cr) {
  1625. case 0:
  1626. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1627. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1628. break;
  1629. case 2:
  1630. vcpu->cr2 = val;
  1631. break;
  1632. case 3:
  1633. set_cr3(vcpu, val);
  1634. break;
  1635. case 4:
  1636. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1637. break;
  1638. default:
  1639. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1640. }
  1641. }
  1642. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1643. {
  1644. int i;
  1645. u32 function;
  1646. struct kvm_cpuid_entry *e, *best;
  1647. kvm_x86_ops->cache_regs(vcpu);
  1648. function = vcpu->regs[VCPU_REGS_RAX];
  1649. vcpu->regs[VCPU_REGS_RAX] = 0;
  1650. vcpu->regs[VCPU_REGS_RBX] = 0;
  1651. vcpu->regs[VCPU_REGS_RCX] = 0;
  1652. vcpu->regs[VCPU_REGS_RDX] = 0;
  1653. best = NULL;
  1654. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1655. e = &vcpu->cpuid_entries[i];
  1656. if (e->function == function) {
  1657. best = e;
  1658. break;
  1659. }
  1660. /*
  1661. * Both basic or both extended?
  1662. */
  1663. if (((e->function ^ function) & 0x80000000) == 0)
  1664. if (!best || e->function > best->function)
  1665. best = e;
  1666. }
  1667. if (best) {
  1668. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1669. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1670. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1671. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1672. }
  1673. kvm_x86_ops->decache_regs(vcpu);
  1674. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1675. }
  1676. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1677. /*
  1678. * Check if userspace requested an interrupt window, and that the
  1679. * interrupt window is open.
  1680. *
  1681. * No need to exit to userspace if we already have an interrupt queued.
  1682. */
  1683. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1684. struct kvm_run *kvm_run)
  1685. {
  1686. return (!vcpu->irq_summary &&
  1687. kvm_run->request_interrupt_window &&
  1688. vcpu->interrupt_window_open &&
  1689. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1690. }
  1691. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1692. struct kvm_run *kvm_run)
  1693. {
  1694. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1695. kvm_run->cr8 = get_cr8(vcpu);
  1696. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1697. if (irqchip_in_kernel(vcpu->kvm))
  1698. kvm_run->ready_for_interrupt_injection = 1;
  1699. else
  1700. kvm_run->ready_for_interrupt_injection =
  1701. (vcpu->interrupt_window_open &&
  1702. vcpu->irq_summary == 0);
  1703. }
  1704. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1705. {
  1706. int r;
  1707. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1708. pr_debug("vcpu %d received sipi with vector # %x\n",
  1709. vcpu->vcpu_id, vcpu->sipi_vector);
  1710. kvm_lapic_reset(vcpu);
  1711. r = kvm_x86_ops->vcpu_reset(vcpu);
  1712. if (r)
  1713. return r;
  1714. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1715. }
  1716. preempted:
  1717. if (vcpu->guest_debug.enabled)
  1718. kvm_x86_ops->guest_debug_pre(vcpu);
  1719. again:
  1720. r = kvm_mmu_reload(vcpu);
  1721. if (unlikely(r))
  1722. goto out;
  1723. kvm_inject_pending_timer_irqs(vcpu);
  1724. preempt_disable();
  1725. kvm_x86_ops->prepare_guest_switch(vcpu);
  1726. kvm_load_guest_fpu(vcpu);
  1727. local_irq_disable();
  1728. if (signal_pending(current)) {
  1729. local_irq_enable();
  1730. preempt_enable();
  1731. r = -EINTR;
  1732. kvm_run->exit_reason = KVM_EXIT_INTR;
  1733. ++vcpu->stat.signal_exits;
  1734. goto out;
  1735. }
  1736. if (irqchip_in_kernel(vcpu->kvm))
  1737. kvm_x86_ops->inject_pending_irq(vcpu);
  1738. else if (!vcpu->mmio_read_completed)
  1739. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1740. vcpu->guest_mode = 1;
  1741. kvm_guest_enter();
  1742. if (vcpu->requests)
  1743. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1744. kvm_x86_ops->tlb_flush(vcpu);
  1745. kvm_x86_ops->run(vcpu, kvm_run);
  1746. vcpu->guest_mode = 0;
  1747. local_irq_enable();
  1748. ++vcpu->stat.exits;
  1749. /*
  1750. * We must have an instruction between local_irq_enable() and
  1751. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1752. * the interrupt shadow. The stat.exits increment will do nicely.
  1753. * But we need to prevent reordering, hence this barrier():
  1754. */
  1755. barrier();
  1756. kvm_guest_exit();
  1757. preempt_enable();
  1758. /*
  1759. * Profile KVM exit RIPs:
  1760. */
  1761. if (unlikely(prof_on == KVM_PROFILING)) {
  1762. kvm_x86_ops->cache_regs(vcpu);
  1763. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1764. }
  1765. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1766. if (r > 0) {
  1767. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1768. r = -EINTR;
  1769. kvm_run->exit_reason = KVM_EXIT_INTR;
  1770. ++vcpu->stat.request_irq_exits;
  1771. goto out;
  1772. }
  1773. if (!need_resched())
  1774. goto again;
  1775. }
  1776. out:
  1777. if (r > 0) {
  1778. kvm_resched(vcpu);
  1779. goto preempted;
  1780. }
  1781. post_kvm_run_save(vcpu, kvm_run);
  1782. return r;
  1783. }
  1784. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1785. {
  1786. int r;
  1787. sigset_t sigsaved;
  1788. vcpu_load(vcpu);
  1789. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1790. kvm_vcpu_block(vcpu);
  1791. vcpu_put(vcpu);
  1792. return -EAGAIN;
  1793. }
  1794. if (vcpu->sigset_active)
  1795. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1796. /* re-sync apic's tpr */
  1797. if (!irqchip_in_kernel(vcpu->kvm))
  1798. set_cr8(vcpu, kvm_run->cr8);
  1799. if (vcpu->pio.cur_count) {
  1800. r = complete_pio(vcpu);
  1801. if (r)
  1802. goto out;
  1803. }
  1804. #if CONFIG_HAS_IOMEM
  1805. if (vcpu->mmio_needed) {
  1806. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1807. vcpu->mmio_read_completed = 1;
  1808. vcpu->mmio_needed = 0;
  1809. r = emulate_instruction(vcpu, kvm_run,
  1810. vcpu->mmio_fault_cr2, 0, 1);
  1811. if (r == EMULATE_DO_MMIO) {
  1812. /*
  1813. * Read-modify-write. Back to userspace.
  1814. */
  1815. r = 0;
  1816. goto out;
  1817. }
  1818. }
  1819. #endif
  1820. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1821. kvm_x86_ops->cache_regs(vcpu);
  1822. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1823. kvm_x86_ops->decache_regs(vcpu);
  1824. }
  1825. r = __vcpu_run(vcpu, kvm_run);
  1826. out:
  1827. if (vcpu->sigset_active)
  1828. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1829. vcpu_put(vcpu);
  1830. return r;
  1831. }
  1832. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1833. {
  1834. vcpu_load(vcpu);
  1835. kvm_x86_ops->cache_regs(vcpu);
  1836. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1837. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1838. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1839. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1840. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1841. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1842. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1843. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1844. #ifdef CONFIG_X86_64
  1845. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1846. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1847. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1848. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1849. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1850. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1851. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1852. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1853. #endif
  1854. regs->rip = vcpu->rip;
  1855. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1856. /*
  1857. * Don't leak debug flags in case they were set for guest debugging
  1858. */
  1859. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1860. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1861. vcpu_put(vcpu);
  1862. return 0;
  1863. }
  1864. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1865. {
  1866. vcpu_load(vcpu);
  1867. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1868. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1869. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1870. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1871. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1872. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1873. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1874. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1875. #ifdef CONFIG_X86_64
  1876. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1877. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1878. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1879. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1880. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1881. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1882. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1883. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1884. #endif
  1885. vcpu->rip = regs->rip;
  1886. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1887. kvm_x86_ops->decache_regs(vcpu);
  1888. vcpu_put(vcpu);
  1889. return 0;
  1890. }
  1891. static void get_segment(struct kvm_vcpu *vcpu,
  1892. struct kvm_segment *var, int seg)
  1893. {
  1894. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1895. }
  1896. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1897. {
  1898. struct kvm_segment cs;
  1899. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1900. *db = cs.db;
  1901. *l = cs.l;
  1902. }
  1903. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1904. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1905. struct kvm_sregs *sregs)
  1906. {
  1907. struct descriptor_table dt;
  1908. int pending_vec;
  1909. vcpu_load(vcpu);
  1910. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1911. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1912. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1913. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1914. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1915. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1916. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1917. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1918. kvm_x86_ops->get_idt(vcpu, &dt);
  1919. sregs->idt.limit = dt.limit;
  1920. sregs->idt.base = dt.base;
  1921. kvm_x86_ops->get_gdt(vcpu, &dt);
  1922. sregs->gdt.limit = dt.limit;
  1923. sregs->gdt.base = dt.base;
  1924. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1925. sregs->cr0 = vcpu->cr0;
  1926. sregs->cr2 = vcpu->cr2;
  1927. sregs->cr3 = vcpu->cr3;
  1928. sregs->cr4 = vcpu->cr4;
  1929. sregs->cr8 = get_cr8(vcpu);
  1930. sregs->efer = vcpu->shadow_efer;
  1931. sregs->apic_base = kvm_get_apic_base(vcpu);
  1932. if (irqchip_in_kernel(vcpu->kvm)) {
  1933. memset(sregs->interrupt_bitmap, 0,
  1934. sizeof sregs->interrupt_bitmap);
  1935. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1936. if (pending_vec >= 0)
  1937. set_bit(pending_vec,
  1938. (unsigned long *)sregs->interrupt_bitmap);
  1939. } else
  1940. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1941. sizeof sregs->interrupt_bitmap);
  1942. vcpu_put(vcpu);
  1943. return 0;
  1944. }
  1945. static void set_segment(struct kvm_vcpu *vcpu,
  1946. struct kvm_segment *var, int seg)
  1947. {
  1948. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1949. }
  1950. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1951. struct kvm_sregs *sregs)
  1952. {
  1953. int mmu_reset_needed = 0;
  1954. int i, pending_vec, max_bits;
  1955. struct descriptor_table dt;
  1956. vcpu_load(vcpu);
  1957. dt.limit = sregs->idt.limit;
  1958. dt.base = sregs->idt.base;
  1959. kvm_x86_ops->set_idt(vcpu, &dt);
  1960. dt.limit = sregs->gdt.limit;
  1961. dt.base = sregs->gdt.base;
  1962. kvm_x86_ops->set_gdt(vcpu, &dt);
  1963. vcpu->cr2 = sregs->cr2;
  1964. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1965. vcpu->cr3 = sregs->cr3;
  1966. set_cr8(vcpu, sregs->cr8);
  1967. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1968. #ifdef CONFIG_X86_64
  1969. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1970. #endif
  1971. kvm_set_apic_base(vcpu, sregs->apic_base);
  1972. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1973. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1974. vcpu->cr0 = sregs->cr0;
  1975. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1976. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1977. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1978. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1979. load_pdptrs(vcpu, vcpu->cr3);
  1980. if (mmu_reset_needed)
  1981. kvm_mmu_reset_context(vcpu);
  1982. if (!irqchip_in_kernel(vcpu->kvm)) {
  1983. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1984. sizeof vcpu->irq_pending);
  1985. vcpu->irq_summary = 0;
  1986. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1987. if (vcpu->irq_pending[i])
  1988. __set_bit(i, &vcpu->irq_summary);
  1989. } else {
  1990. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1991. pending_vec = find_first_bit(
  1992. (const unsigned long *)sregs->interrupt_bitmap,
  1993. max_bits);
  1994. /* Only pending external irq is handled here */
  1995. if (pending_vec < max_bits) {
  1996. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1997. pr_debug("Set back pending irq %d\n",
  1998. pending_vec);
  1999. }
  2000. }
  2001. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2002. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2003. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2004. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2005. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2006. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2007. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2008. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2009. vcpu_put(vcpu);
  2010. return 0;
  2011. }
  2012. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2013. struct kvm_debug_guest *dbg)
  2014. {
  2015. int r;
  2016. vcpu_load(vcpu);
  2017. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2018. vcpu_put(vcpu);
  2019. return r;
  2020. }
  2021. /*
  2022. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2023. * we have asm/x86/processor.h
  2024. */
  2025. struct fxsave {
  2026. u16 cwd;
  2027. u16 swd;
  2028. u16 twd;
  2029. u16 fop;
  2030. u64 rip;
  2031. u64 rdp;
  2032. u32 mxcsr;
  2033. u32 mxcsr_mask;
  2034. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2035. #ifdef CONFIG_X86_64
  2036. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2037. #else
  2038. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2039. #endif
  2040. };
  2041. /*
  2042. * Translate a guest virtual address to a guest physical address.
  2043. */
  2044. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2045. struct kvm_translation *tr)
  2046. {
  2047. unsigned long vaddr = tr->linear_address;
  2048. gpa_t gpa;
  2049. vcpu_load(vcpu);
  2050. mutex_lock(&vcpu->kvm->lock);
  2051. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2052. tr->physical_address = gpa;
  2053. tr->valid = gpa != UNMAPPED_GVA;
  2054. tr->writeable = 1;
  2055. tr->usermode = 0;
  2056. mutex_unlock(&vcpu->kvm->lock);
  2057. vcpu_put(vcpu);
  2058. return 0;
  2059. }
  2060. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2061. {
  2062. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2063. vcpu_load(vcpu);
  2064. memcpy(fpu->fpr, fxsave->st_space, 128);
  2065. fpu->fcw = fxsave->cwd;
  2066. fpu->fsw = fxsave->swd;
  2067. fpu->ftwx = fxsave->twd;
  2068. fpu->last_opcode = fxsave->fop;
  2069. fpu->last_ip = fxsave->rip;
  2070. fpu->last_dp = fxsave->rdp;
  2071. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2072. vcpu_put(vcpu);
  2073. return 0;
  2074. }
  2075. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2076. {
  2077. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2078. vcpu_load(vcpu);
  2079. memcpy(fxsave->st_space, fpu->fpr, 128);
  2080. fxsave->cwd = fpu->fcw;
  2081. fxsave->swd = fpu->fsw;
  2082. fxsave->twd = fpu->ftwx;
  2083. fxsave->fop = fpu->last_opcode;
  2084. fxsave->rip = fpu->last_ip;
  2085. fxsave->rdp = fpu->last_dp;
  2086. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2087. vcpu_put(vcpu);
  2088. return 0;
  2089. }
  2090. void fx_init(struct kvm_vcpu *vcpu)
  2091. {
  2092. unsigned after_mxcsr_mask;
  2093. /* Initialize guest FPU by resetting ours and saving into guest's */
  2094. preempt_disable();
  2095. fx_save(&vcpu->host_fx_image);
  2096. fpu_init();
  2097. fx_save(&vcpu->guest_fx_image);
  2098. fx_restore(&vcpu->host_fx_image);
  2099. preempt_enable();
  2100. vcpu->cr0 |= X86_CR0_ET;
  2101. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2102. vcpu->guest_fx_image.mxcsr = 0x1f80;
  2103. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  2104. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2105. }
  2106. EXPORT_SYMBOL_GPL(fx_init);
  2107. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2108. {
  2109. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2110. return;
  2111. vcpu->guest_fpu_loaded = 1;
  2112. fx_save(&vcpu->host_fx_image);
  2113. fx_restore(&vcpu->guest_fx_image);
  2114. }
  2115. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2116. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2117. {
  2118. if (!vcpu->guest_fpu_loaded)
  2119. return;
  2120. vcpu->guest_fpu_loaded = 0;
  2121. fx_save(&vcpu->guest_fx_image);
  2122. fx_restore(&vcpu->host_fx_image);
  2123. ++vcpu->stat.fpu_reload;
  2124. }
  2125. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2126. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2127. {
  2128. kvm_x86_ops->vcpu_free(vcpu);
  2129. }
  2130. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2131. unsigned int id)
  2132. {
  2133. return kvm_x86_ops->vcpu_create(kvm, id);
  2134. }
  2135. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  2136. {
  2137. int r;
  2138. /* We do fxsave: this must be aligned. */
  2139. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2140. vcpu_load(vcpu);
  2141. r = kvm_arch_vcpu_reset(vcpu);
  2142. if (r == 0)
  2143. r = kvm_mmu_setup(vcpu);
  2144. vcpu_put(vcpu);
  2145. if (r < 0)
  2146. goto free_vcpu;
  2147. return 0;
  2148. free_vcpu:
  2149. kvm_x86_ops->vcpu_free(vcpu);
  2150. return r;
  2151. }
  2152. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2153. {
  2154. vcpu_load(vcpu);
  2155. kvm_mmu_unload(vcpu);
  2156. vcpu_put(vcpu);
  2157. kvm_x86_ops->vcpu_free(vcpu);
  2158. }
  2159. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2160. {
  2161. return kvm_x86_ops->vcpu_reset(vcpu);
  2162. }
  2163. void kvm_arch_hardware_enable(void *garbage)
  2164. {
  2165. kvm_x86_ops->hardware_enable(garbage);
  2166. }
  2167. void kvm_arch_hardware_disable(void *garbage)
  2168. {
  2169. kvm_x86_ops->hardware_disable(garbage);
  2170. }
  2171. int kvm_arch_hardware_setup(void)
  2172. {
  2173. return kvm_x86_ops->hardware_setup();
  2174. }
  2175. void kvm_arch_hardware_unsetup(void)
  2176. {
  2177. kvm_x86_ops->hardware_unsetup();
  2178. }
  2179. void kvm_arch_check_processor_compat(void *rtn)
  2180. {
  2181. kvm_x86_ops->check_processor_compatibility(rtn);
  2182. }
  2183. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2184. {
  2185. struct page *page;
  2186. struct kvm *kvm;
  2187. int r;
  2188. BUG_ON(vcpu->kvm == NULL);
  2189. kvm = vcpu->kvm;
  2190. vcpu->mmu.root_hpa = INVALID_PAGE;
  2191. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2192. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  2193. else
  2194. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2195. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2196. if (!page) {
  2197. r = -ENOMEM;
  2198. goto fail;
  2199. }
  2200. vcpu->pio_data = page_address(page);
  2201. r = kvm_mmu_create(vcpu);
  2202. if (r < 0)
  2203. goto fail_free_pio_data;
  2204. if (irqchip_in_kernel(kvm)) {
  2205. r = kvm_create_lapic(vcpu);
  2206. if (r < 0)
  2207. goto fail_mmu_destroy;
  2208. }
  2209. return 0;
  2210. fail_mmu_destroy:
  2211. kvm_mmu_destroy(vcpu);
  2212. fail_free_pio_data:
  2213. free_page((unsigned long)vcpu->pio_data);
  2214. fail:
  2215. return r;
  2216. }
  2217. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2218. {
  2219. kvm_free_lapic(vcpu);
  2220. kvm_mmu_destroy(vcpu);
  2221. free_page((unsigned long)vcpu->pio_data);
  2222. }
  2223. struct kvm *kvm_arch_create_vm(void)
  2224. {
  2225. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2226. if (!kvm)
  2227. return ERR_PTR(-ENOMEM);
  2228. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  2229. return kvm;
  2230. }
  2231. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2232. {
  2233. vcpu_load(vcpu);
  2234. kvm_mmu_unload(vcpu);
  2235. vcpu_put(vcpu);
  2236. }
  2237. static void kvm_free_vcpus(struct kvm *kvm)
  2238. {
  2239. unsigned int i;
  2240. /*
  2241. * Unpin any mmu pages first.
  2242. */
  2243. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2244. if (kvm->vcpus[i])
  2245. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2246. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2247. if (kvm->vcpus[i]) {
  2248. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2249. kvm->vcpus[i] = NULL;
  2250. }
  2251. }
  2252. }
  2253. void kvm_arch_destroy_vm(struct kvm *kvm)
  2254. {
  2255. kfree(kvm->vpic);
  2256. kfree(kvm->vioapic);
  2257. kvm_free_vcpus(kvm);
  2258. kvm_free_physmem(kvm);
  2259. kfree(kvm);
  2260. }
  2261. int kvm_arch_set_memory_region(struct kvm *kvm,
  2262. struct kvm_userspace_memory_region *mem,
  2263. struct kvm_memory_slot old,
  2264. int user_alloc)
  2265. {
  2266. int npages = mem->memory_size >> PAGE_SHIFT;
  2267. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  2268. /*To keep backward compatibility with older userspace,
  2269. *x86 needs to hanlde !user_alloc case.
  2270. */
  2271. if (!user_alloc) {
  2272. if (npages && !old.rmap) {
  2273. down_write(&current->mm->mmap_sem);
  2274. memslot->userspace_addr = do_mmap(NULL, 0,
  2275. npages * PAGE_SIZE,
  2276. PROT_READ | PROT_WRITE,
  2277. MAP_SHARED | MAP_ANONYMOUS,
  2278. 0);
  2279. up_write(&current->mm->mmap_sem);
  2280. if (IS_ERR((void *)memslot->userspace_addr))
  2281. return PTR_ERR((void *)memslot->userspace_addr);
  2282. } else {
  2283. if (!old.user_alloc && old.rmap) {
  2284. int ret;
  2285. down_write(&current->mm->mmap_sem);
  2286. ret = do_munmap(current->mm, old.userspace_addr,
  2287. old.npages * PAGE_SIZE);
  2288. up_write(&current->mm->mmap_sem);
  2289. if (ret < 0)
  2290. printk(KERN_WARNING
  2291. "kvm_vm_ioctl_set_memory_region: "
  2292. "failed to munmap memory\n");
  2293. }
  2294. }
  2295. }
  2296. if (!kvm->n_requested_mmu_pages) {
  2297. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  2298. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  2299. }
  2300. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  2301. kvm_flush_remote_tlbs(kvm);
  2302. return 0;
  2303. }