kvm_main.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. #include <asm/pgtable.h>
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. DEFINE_SPINLOCK(kvm_lock);
  50. LIST_HEAD(vm_list);
  51. static cpumask_t cpus_hardware_enabled;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. static struct dentry *debugfs_dir;
  56. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  57. unsigned long arg);
  58. static inline int valid_vcpu(int n)
  59. {
  60. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  61. }
  62. /*
  63. * Switches to specified vcpu, until a matching vcpu_put()
  64. */
  65. void vcpu_load(struct kvm_vcpu *vcpu)
  66. {
  67. int cpu;
  68. mutex_lock(&vcpu->mutex);
  69. cpu = get_cpu();
  70. preempt_notifier_register(&vcpu->preempt_notifier);
  71. kvm_arch_vcpu_load(vcpu, cpu);
  72. put_cpu();
  73. }
  74. void vcpu_put(struct kvm_vcpu *vcpu)
  75. {
  76. preempt_disable();
  77. kvm_arch_vcpu_put(vcpu);
  78. preempt_notifier_unregister(&vcpu->preempt_notifier);
  79. preempt_enable();
  80. mutex_unlock(&vcpu->mutex);
  81. }
  82. static void ack_flush(void *_completed)
  83. {
  84. }
  85. void kvm_flush_remote_tlbs(struct kvm *kvm)
  86. {
  87. int i, cpu;
  88. cpumask_t cpus;
  89. struct kvm_vcpu *vcpu;
  90. cpus_clear(cpus);
  91. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  92. vcpu = kvm->vcpus[i];
  93. if (!vcpu)
  94. continue;
  95. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  96. continue;
  97. cpu = vcpu->cpu;
  98. if (cpu != -1 && cpu != raw_smp_processor_id())
  99. cpu_set(cpu, cpus);
  100. }
  101. if (cpus_empty(cpus))
  102. return;
  103. ++kvm->stat.remote_tlb_flush;
  104. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  105. }
  106. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  107. {
  108. struct page *page;
  109. int r;
  110. mutex_init(&vcpu->mutex);
  111. vcpu->cpu = -1;
  112. vcpu->kvm = kvm;
  113. vcpu->vcpu_id = id;
  114. init_waitqueue_head(&vcpu->wq);
  115. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  116. if (!page) {
  117. r = -ENOMEM;
  118. goto fail;
  119. }
  120. vcpu->run = page_address(page);
  121. r = kvm_arch_vcpu_init(vcpu);
  122. if (r < 0)
  123. goto fail_free_run;
  124. return 0;
  125. fail_free_run:
  126. free_page((unsigned long)vcpu->run);
  127. fail:
  128. return r;
  129. }
  130. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  131. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  132. {
  133. kvm_arch_vcpu_uninit(vcpu);
  134. free_page((unsigned long)vcpu->run);
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  137. static struct kvm *kvm_create_vm(void)
  138. {
  139. struct kvm *kvm = kvm_arch_create_vm();
  140. if (IS_ERR(kvm))
  141. goto out;
  142. kvm_io_bus_init(&kvm->pio_bus);
  143. mutex_init(&kvm->lock);
  144. kvm_io_bus_init(&kvm->mmio_bus);
  145. spin_lock(&kvm_lock);
  146. list_add(&kvm->vm_list, &vm_list);
  147. spin_unlock(&kvm_lock);
  148. out:
  149. return kvm;
  150. }
  151. /*
  152. * Free any memory in @free but not in @dont.
  153. */
  154. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  155. struct kvm_memory_slot *dont)
  156. {
  157. if (!dont || free->rmap != dont->rmap)
  158. vfree(free->rmap);
  159. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  160. vfree(free->dirty_bitmap);
  161. free->npages = 0;
  162. free->dirty_bitmap = NULL;
  163. free->rmap = NULL;
  164. }
  165. void kvm_free_physmem(struct kvm *kvm)
  166. {
  167. int i;
  168. for (i = 0; i < kvm->nmemslots; ++i)
  169. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  170. }
  171. static void kvm_destroy_vm(struct kvm *kvm)
  172. {
  173. spin_lock(&kvm_lock);
  174. list_del(&kvm->vm_list);
  175. spin_unlock(&kvm_lock);
  176. kvm_io_bus_destroy(&kvm->pio_bus);
  177. kvm_io_bus_destroy(&kvm->mmio_bus);
  178. kvm_arch_destroy_vm(kvm);
  179. }
  180. static int kvm_vm_release(struct inode *inode, struct file *filp)
  181. {
  182. struct kvm *kvm = filp->private_data;
  183. kvm_destroy_vm(kvm);
  184. return 0;
  185. }
  186. /*
  187. * Allocate some memory and give it an address in the guest physical address
  188. * space.
  189. *
  190. * Discontiguous memory is allowed, mostly for framebuffers.
  191. *
  192. * Must be called holding kvm->lock.
  193. */
  194. int __kvm_set_memory_region(struct kvm *kvm,
  195. struct kvm_userspace_memory_region *mem,
  196. int user_alloc)
  197. {
  198. int r;
  199. gfn_t base_gfn;
  200. unsigned long npages;
  201. unsigned long i;
  202. struct kvm_memory_slot *memslot;
  203. struct kvm_memory_slot old, new;
  204. r = -EINVAL;
  205. /* General sanity checks */
  206. if (mem->memory_size & (PAGE_SIZE - 1))
  207. goto out;
  208. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  209. goto out;
  210. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  211. goto out;
  212. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  213. goto out;
  214. memslot = &kvm->memslots[mem->slot];
  215. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  216. npages = mem->memory_size >> PAGE_SHIFT;
  217. if (!npages)
  218. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  219. new = old = *memslot;
  220. new.base_gfn = base_gfn;
  221. new.npages = npages;
  222. new.flags = mem->flags;
  223. /* Disallow changing a memory slot's size. */
  224. r = -EINVAL;
  225. if (npages && old.npages && npages != old.npages)
  226. goto out_free;
  227. /* Check for overlaps */
  228. r = -EEXIST;
  229. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  230. struct kvm_memory_slot *s = &kvm->memslots[i];
  231. if (s == memslot)
  232. continue;
  233. if (!((base_gfn + npages <= s->base_gfn) ||
  234. (base_gfn >= s->base_gfn + s->npages)))
  235. goto out_free;
  236. }
  237. /* Free page dirty bitmap if unneeded */
  238. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  239. new.dirty_bitmap = NULL;
  240. r = -ENOMEM;
  241. /* Allocate if a slot is being created */
  242. if (npages && !new.rmap) {
  243. new.rmap = vmalloc(npages * sizeof(struct page *));
  244. if (!new.rmap)
  245. goto out_free;
  246. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  247. new.user_alloc = user_alloc;
  248. new.userspace_addr = mem->userspace_addr;
  249. }
  250. /* Allocate page dirty bitmap if needed */
  251. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  252. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  253. new.dirty_bitmap = vmalloc(dirty_bytes);
  254. if (!new.dirty_bitmap)
  255. goto out_free;
  256. memset(new.dirty_bitmap, 0, dirty_bytes);
  257. }
  258. if (mem->slot >= kvm->nmemslots)
  259. kvm->nmemslots = mem->slot + 1;
  260. *memslot = new;
  261. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  262. if (r) {
  263. *memslot = old;
  264. goto out_free;
  265. }
  266. kvm_free_physmem_slot(&old, &new);
  267. return 0;
  268. out_free:
  269. kvm_free_physmem_slot(&new, &old);
  270. out:
  271. return r;
  272. }
  273. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  274. int kvm_set_memory_region(struct kvm *kvm,
  275. struct kvm_userspace_memory_region *mem,
  276. int user_alloc)
  277. {
  278. int r;
  279. mutex_lock(&kvm->lock);
  280. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  281. mutex_unlock(&kvm->lock);
  282. return r;
  283. }
  284. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  285. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  286. struct
  287. kvm_userspace_memory_region *mem,
  288. int user_alloc)
  289. {
  290. if (mem->slot >= KVM_MEMORY_SLOTS)
  291. return -EINVAL;
  292. return kvm_set_memory_region(kvm, mem, user_alloc);
  293. }
  294. int kvm_get_dirty_log(struct kvm *kvm,
  295. struct kvm_dirty_log *log, int *is_dirty)
  296. {
  297. struct kvm_memory_slot *memslot;
  298. int r, i;
  299. int n;
  300. unsigned long any = 0;
  301. r = -EINVAL;
  302. if (log->slot >= KVM_MEMORY_SLOTS)
  303. goto out;
  304. memslot = &kvm->memslots[log->slot];
  305. r = -ENOENT;
  306. if (!memslot->dirty_bitmap)
  307. goto out;
  308. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  309. for (i = 0; !any && i < n/sizeof(long); ++i)
  310. any = memslot->dirty_bitmap[i];
  311. r = -EFAULT;
  312. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  313. goto out;
  314. if (any)
  315. *is_dirty = 1;
  316. r = 0;
  317. out:
  318. return r;
  319. }
  320. int is_error_page(struct page *page)
  321. {
  322. return page == bad_page;
  323. }
  324. EXPORT_SYMBOL_GPL(is_error_page);
  325. static inline unsigned long bad_hva(void)
  326. {
  327. return PAGE_OFFSET;
  328. }
  329. int kvm_is_error_hva(unsigned long addr)
  330. {
  331. return addr == bad_hva();
  332. }
  333. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  334. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  335. {
  336. int i;
  337. struct kvm_mem_alias *alias;
  338. for (i = 0; i < kvm->naliases; ++i) {
  339. alias = &kvm->aliases[i];
  340. if (gfn >= alias->base_gfn
  341. && gfn < alias->base_gfn + alias->npages)
  342. return alias->target_gfn + gfn - alias->base_gfn;
  343. }
  344. return gfn;
  345. }
  346. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  347. {
  348. int i;
  349. for (i = 0; i < kvm->nmemslots; ++i) {
  350. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  351. if (gfn >= memslot->base_gfn
  352. && gfn < memslot->base_gfn + memslot->npages)
  353. return memslot;
  354. }
  355. return NULL;
  356. }
  357. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  358. {
  359. gfn = unalias_gfn(kvm, gfn);
  360. return __gfn_to_memslot(kvm, gfn);
  361. }
  362. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  363. {
  364. int i;
  365. gfn = unalias_gfn(kvm, gfn);
  366. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  367. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  368. if (gfn >= memslot->base_gfn
  369. && gfn < memslot->base_gfn + memslot->npages)
  370. return 1;
  371. }
  372. return 0;
  373. }
  374. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  375. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  376. {
  377. struct kvm_memory_slot *slot;
  378. gfn = unalias_gfn(kvm, gfn);
  379. slot = __gfn_to_memslot(kvm, gfn);
  380. if (!slot)
  381. return bad_hva();
  382. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  383. }
  384. /*
  385. * Requires current->mm->mmap_sem to be held
  386. */
  387. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  388. {
  389. struct page *page[1];
  390. unsigned long addr;
  391. int npages;
  392. might_sleep();
  393. addr = gfn_to_hva(kvm, gfn);
  394. if (kvm_is_error_hva(addr)) {
  395. get_page(bad_page);
  396. return bad_page;
  397. }
  398. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  399. NULL);
  400. if (npages != 1) {
  401. get_page(bad_page);
  402. return bad_page;
  403. }
  404. return page[0];
  405. }
  406. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  407. {
  408. struct page *page;
  409. down_read(&current->mm->mmap_sem);
  410. page = __gfn_to_page(kvm, gfn);
  411. up_read(&current->mm->mmap_sem);
  412. return page;
  413. }
  414. EXPORT_SYMBOL_GPL(gfn_to_page);
  415. void kvm_release_page_clean(struct page *page)
  416. {
  417. put_page(page);
  418. }
  419. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  420. void kvm_release_page_dirty(struct page *page)
  421. {
  422. if (!PageReserved(page))
  423. SetPageDirty(page);
  424. put_page(page);
  425. }
  426. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  427. static int next_segment(unsigned long len, int offset)
  428. {
  429. if (len > PAGE_SIZE - offset)
  430. return PAGE_SIZE - offset;
  431. else
  432. return len;
  433. }
  434. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  435. int len)
  436. {
  437. int r;
  438. unsigned long addr;
  439. addr = gfn_to_hva(kvm, gfn);
  440. if (kvm_is_error_hva(addr))
  441. return -EFAULT;
  442. r = copy_from_user(data, (void __user *)addr + offset, len);
  443. if (r)
  444. return -EFAULT;
  445. return 0;
  446. }
  447. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  448. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  449. {
  450. gfn_t gfn = gpa >> PAGE_SHIFT;
  451. int seg;
  452. int offset = offset_in_page(gpa);
  453. int ret;
  454. while ((seg = next_segment(len, offset)) != 0) {
  455. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  456. if (ret < 0)
  457. return ret;
  458. offset = 0;
  459. len -= seg;
  460. data += seg;
  461. ++gfn;
  462. }
  463. return 0;
  464. }
  465. EXPORT_SYMBOL_GPL(kvm_read_guest);
  466. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  467. int offset, int len)
  468. {
  469. int r;
  470. unsigned long addr;
  471. addr = gfn_to_hva(kvm, gfn);
  472. if (kvm_is_error_hva(addr))
  473. return -EFAULT;
  474. r = copy_to_user((void __user *)addr + offset, data, len);
  475. if (r)
  476. return -EFAULT;
  477. mark_page_dirty(kvm, gfn);
  478. return 0;
  479. }
  480. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  481. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  482. unsigned long len)
  483. {
  484. gfn_t gfn = gpa >> PAGE_SHIFT;
  485. int seg;
  486. int offset = offset_in_page(gpa);
  487. int ret;
  488. while ((seg = next_segment(len, offset)) != 0) {
  489. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  490. if (ret < 0)
  491. return ret;
  492. offset = 0;
  493. len -= seg;
  494. data += seg;
  495. ++gfn;
  496. }
  497. return 0;
  498. }
  499. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  500. {
  501. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  502. }
  503. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  504. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  505. {
  506. gfn_t gfn = gpa >> PAGE_SHIFT;
  507. int seg;
  508. int offset = offset_in_page(gpa);
  509. int ret;
  510. while ((seg = next_segment(len, offset)) != 0) {
  511. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  512. if (ret < 0)
  513. return ret;
  514. offset = 0;
  515. len -= seg;
  516. ++gfn;
  517. }
  518. return 0;
  519. }
  520. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  521. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  522. {
  523. struct kvm_memory_slot *memslot;
  524. gfn = unalias_gfn(kvm, gfn);
  525. memslot = __gfn_to_memslot(kvm, gfn);
  526. if (memslot && memslot->dirty_bitmap) {
  527. unsigned long rel_gfn = gfn - memslot->base_gfn;
  528. /* avoid RMW */
  529. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  530. set_bit(rel_gfn, memslot->dirty_bitmap);
  531. }
  532. }
  533. /*
  534. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  535. */
  536. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  537. {
  538. DECLARE_WAITQUEUE(wait, current);
  539. add_wait_queue(&vcpu->wq, &wait);
  540. /*
  541. * We will block until either an interrupt or a signal wakes us up
  542. */
  543. while (!kvm_cpu_has_interrupt(vcpu)
  544. && !signal_pending(current)
  545. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  546. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  547. set_current_state(TASK_INTERRUPTIBLE);
  548. vcpu_put(vcpu);
  549. schedule();
  550. vcpu_load(vcpu);
  551. }
  552. __set_current_state(TASK_RUNNING);
  553. remove_wait_queue(&vcpu->wq, &wait);
  554. }
  555. void kvm_resched(struct kvm_vcpu *vcpu)
  556. {
  557. if (!need_resched())
  558. return;
  559. cond_resched();
  560. }
  561. EXPORT_SYMBOL_GPL(kvm_resched);
  562. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  563. struct kvm_interrupt *irq)
  564. {
  565. if (irq->irq < 0 || irq->irq >= 256)
  566. return -EINVAL;
  567. if (irqchip_in_kernel(vcpu->kvm))
  568. return -ENXIO;
  569. vcpu_load(vcpu);
  570. set_bit(irq->irq, vcpu->irq_pending);
  571. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  572. vcpu_put(vcpu);
  573. return 0;
  574. }
  575. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  576. unsigned long address,
  577. int *type)
  578. {
  579. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  580. unsigned long pgoff;
  581. struct page *page;
  582. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  583. if (pgoff == 0)
  584. page = virt_to_page(vcpu->run);
  585. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  586. page = virt_to_page(vcpu->pio_data);
  587. else
  588. return NOPAGE_SIGBUS;
  589. get_page(page);
  590. if (type != NULL)
  591. *type = VM_FAULT_MINOR;
  592. return page;
  593. }
  594. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  595. .nopage = kvm_vcpu_nopage,
  596. };
  597. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  598. {
  599. vma->vm_ops = &kvm_vcpu_vm_ops;
  600. return 0;
  601. }
  602. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  603. {
  604. struct kvm_vcpu *vcpu = filp->private_data;
  605. fput(vcpu->kvm->filp);
  606. return 0;
  607. }
  608. static struct file_operations kvm_vcpu_fops = {
  609. .release = kvm_vcpu_release,
  610. .unlocked_ioctl = kvm_vcpu_ioctl,
  611. .compat_ioctl = kvm_vcpu_ioctl,
  612. .mmap = kvm_vcpu_mmap,
  613. };
  614. /*
  615. * Allocates an inode for the vcpu.
  616. */
  617. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  618. {
  619. int fd, r;
  620. struct inode *inode;
  621. struct file *file;
  622. r = anon_inode_getfd(&fd, &inode, &file,
  623. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  624. if (r)
  625. return r;
  626. atomic_inc(&vcpu->kvm->filp->f_count);
  627. return fd;
  628. }
  629. /*
  630. * Creates some virtual cpus. Good luck creating more than one.
  631. */
  632. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  633. {
  634. int r;
  635. struct kvm_vcpu *vcpu;
  636. if (!valid_vcpu(n))
  637. return -EINVAL;
  638. vcpu = kvm_arch_vcpu_create(kvm, n);
  639. if (IS_ERR(vcpu))
  640. return PTR_ERR(vcpu);
  641. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  642. r = kvm_arch_vcpu_setup(vcpu);
  643. if (r)
  644. goto vcpu_destroy;
  645. mutex_lock(&kvm->lock);
  646. if (kvm->vcpus[n]) {
  647. r = -EEXIST;
  648. mutex_unlock(&kvm->lock);
  649. goto vcpu_destroy;
  650. }
  651. kvm->vcpus[n] = vcpu;
  652. mutex_unlock(&kvm->lock);
  653. /* Now it's all set up, let userspace reach it */
  654. r = create_vcpu_fd(vcpu);
  655. if (r < 0)
  656. goto unlink;
  657. return r;
  658. unlink:
  659. mutex_lock(&kvm->lock);
  660. kvm->vcpus[n] = NULL;
  661. mutex_unlock(&kvm->lock);
  662. vcpu_destroy:
  663. kvm_arch_vcpu_destroy(vcpu);
  664. return r;
  665. }
  666. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  667. {
  668. if (sigset) {
  669. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  670. vcpu->sigset_active = 1;
  671. vcpu->sigset = *sigset;
  672. } else
  673. vcpu->sigset_active = 0;
  674. return 0;
  675. }
  676. static long kvm_vcpu_ioctl(struct file *filp,
  677. unsigned int ioctl, unsigned long arg)
  678. {
  679. struct kvm_vcpu *vcpu = filp->private_data;
  680. void __user *argp = (void __user *)arg;
  681. int r;
  682. switch (ioctl) {
  683. case KVM_RUN:
  684. r = -EINVAL;
  685. if (arg)
  686. goto out;
  687. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  688. break;
  689. case KVM_GET_REGS: {
  690. struct kvm_regs kvm_regs;
  691. memset(&kvm_regs, 0, sizeof kvm_regs);
  692. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  693. if (r)
  694. goto out;
  695. r = -EFAULT;
  696. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  697. goto out;
  698. r = 0;
  699. break;
  700. }
  701. case KVM_SET_REGS: {
  702. struct kvm_regs kvm_regs;
  703. r = -EFAULT;
  704. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  705. goto out;
  706. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  707. if (r)
  708. goto out;
  709. r = 0;
  710. break;
  711. }
  712. case KVM_GET_SREGS: {
  713. struct kvm_sregs kvm_sregs;
  714. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  715. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  716. if (r)
  717. goto out;
  718. r = -EFAULT;
  719. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  720. goto out;
  721. r = 0;
  722. break;
  723. }
  724. case KVM_SET_SREGS: {
  725. struct kvm_sregs kvm_sregs;
  726. r = -EFAULT;
  727. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  728. goto out;
  729. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  730. if (r)
  731. goto out;
  732. r = 0;
  733. break;
  734. }
  735. case KVM_TRANSLATE: {
  736. struct kvm_translation tr;
  737. r = -EFAULT;
  738. if (copy_from_user(&tr, argp, sizeof tr))
  739. goto out;
  740. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  741. if (r)
  742. goto out;
  743. r = -EFAULT;
  744. if (copy_to_user(argp, &tr, sizeof tr))
  745. goto out;
  746. r = 0;
  747. break;
  748. }
  749. case KVM_INTERRUPT: {
  750. struct kvm_interrupt irq;
  751. r = -EFAULT;
  752. if (copy_from_user(&irq, argp, sizeof irq))
  753. goto out;
  754. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  755. if (r)
  756. goto out;
  757. r = 0;
  758. break;
  759. }
  760. case KVM_DEBUG_GUEST: {
  761. struct kvm_debug_guest dbg;
  762. r = -EFAULT;
  763. if (copy_from_user(&dbg, argp, sizeof dbg))
  764. goto out;
  765. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  766. if (r)
  767. goto out;
  768. r = 0;
  769. break;
  770. }
  771. case KVM_SET_SIGNAL_MASK: {
  772. struct kvm_signal_mask __user *sigmask_arg = argp;
  773. struct kvm_signal_mask kvm_sigmask;
  774. sigset_t sigset, *p;
  775. p = NULL;
  776. if (argp) {
  777. r = -EFAULT;
  778. if (copy_from_user(&kvm_sigmask, argp,
  779. sizeof kvm_sigmask))
  780. goto out;
  781. r = -EINVAL;
  782. if (kvm_sigmask.len != sizeof sigset)
  783. goto out;
  784. r = -EFAULT;
  785. if (copy_from_user(&sigset, sigmask_arg->sigset,
  786. sizeof sigset))
  787. goto out;
  788. p = &sigset;
  789. }
  790. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  791. break;
  792. }
  793. case KVM_GET_FPU: {
  794. struct kvm_fpu fpu;
  795. memset(&fpu, 0, sizeof fpu);
  796. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  797. if (r)
  798. goto out;
  799. r = -EFAULT;
  800. if (copy_to_user(argp, &fpu, sizeof fpu))
  801. goto out;
  802. r = 0;
  803. break;
  804. }
  805. case KVM_SET_FPU: {
  806. struct kvm_fpu fpu;
  807. r = -EFAULT;
  808. if (copy_from_user(&fpu, argp, sizeof fpu))
  809. goto out;
  810. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  811. if (r)
  812. goto out;
  813. r = 0;
  814. break;
  815. }
  816. default:
  817. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  818. }
  819. out:
  820. return r;
  821. }
  822. static long kvm_vm_ioctl(struct file *filp,
  823. unsigned int ioctl, unsigned long arg)
  824. {
  825. struct kvm *kvm = filp->private_data;
  826. void __user *argp = (void __user *)arg;
  827. int r;
  828. switch (ioctl) {
  829. case KVM_CREATE_VCPU:
  830. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  831. if (r < 0)
  832. goto out;
  833. break;
  834. case KVM_SET_USER_MEMORY_REGION: {
  835. struct kvm_userspace_memory_region kvm_userspace_mem;
  836. r = -EFAULT;
  837. if (copy_from_user(&kvm_userspace_mem, argp,
  838. sizeof kvm_userspace_mem))
  839. goto out;
  840. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  841. if (r)
  842. goto out;
  843. break;
  844. }
  845. case KVM_GET_DIRTY_LOG: {
  846. struct kvm_dirty_log log;
  847. r = -EFAULT;
  848. if (copy_from_user(&log, argp, sizeof log))
  849. goto out;
  850. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  851. if (r)
  852. goto out;
  853. break;
  854. }
  855. default:
  856. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  857. }
  858. out:
  859. return r;
  860. }
  861. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  862. unsigned long address,
  863. int *type)
  864. {
  865. struct kvm *kvm = vma->vm_file->private_data;
  866. unsigned long pgoff;
  867. struct page *page;
  868. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  869. if (!kvm_is_visible_gfn(kvm, pgoff))
  870. return NOPAGE_SIGBUS;
  871. /* current->mm->mmap_sem is already held so call lockless version */
  872. page = __gfn_to_page(kvm, pgoff);
  873. if (is_error_page(page)) {
  874. kvm_release_page_clean(page);
  875. return NOPAGE_SIGBUS;
  876. }
  877. if (type != NULL)
  878. *type = VM_FAULT_MINOR;
  879. return page;
  880. }
  881. static struct vm_operations_struct kvm_vm_vm_ops = {
  882. .nopage = kvm_vm_nopage,
  883. };
  884. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  885. {
  886. vma->vm_ops = &kvm_vm_vm_ops;
  887. return 0;
  888. }
  889. static struct file_operations kvm_vm_fops = {
  890. .release = kvm_vm_release,
  891. .unlocked_ioctl = kvm_vm_ioctl,
  892. .compat_ioctl = kvm_vm_ioctl,
  893. .mmap = kvm_vm_mmap,
  894. };
  895. static int kvm_dev_ioctl_create_vm(void)
  896. {
  897. int fd, r;
  898. struct inode *inode;
  899. struct file *file;
  900. struct kvm *kvm;
  901. kvm = kvm_create_vm();
  902. if (IS_ERR(kvm))
  903. return PTR_ERR(kvm);
  904. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  905. if (r) {
  906. kvm_destroy_vm(kvm);
  907. return r;
  908. }
  909. kvm->filp = file;
  910. return fd;
  911. }
  912. static long kvm_dev_ioctl(struct file *filp,
  913. unsigned int ioctl, unsigned long arg)
  914. {
  915. void __user *argp = (void __user *)arg;
  916. long r = -EINVAL;
  917. switch (ioctl) {
  918. case KVM_GET_API_VERSION:
  919. r = -EINVAL;
  920. if (arg)
  921. goto out;
  922. r = KVM_API_VERSION;
  923. break;
  924. case KVM_CREATE_VM:
  925. r = -EINVAL;
  926. if (arg)
  927. goto out;
  928. r = kvm_dev_ioctl_create_vm();
  929. break;
  930. case KVM_CHECK_EXTENSION:
  931. r = kvm_dev_ioctl_check_extension((long)argp);
  932. break;
  933. case KVM_GET_VCPU_MMAP_SIZE:
  934. r = -EINVAL;
  935. if (arg)
  936. goto out;
  937. r = 2 * PAGE_SIZE;
  938. break;
  939. default:
  940. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  941. }
  942. out:
  943. return r;
  944. }
  945. static struct file_operations kvm_chardev_ops = {
  946. .unlocked_ioctl = kvm_dev_ioctl,
  947. .compat_ioctl = kvm_dev_ioctl,
  948. };
  949. static struct miscdevice kvm_dev = {
  950. KVM_MINOR,
  951. "kvm",
  952. &kvm_chardev_ops,
  953. };
  954. static void hardware_enable(void *junk)
  955. {
  956. int cpu = raw_smp_processor_id();
  957. if (cpu_isset(cpu, cpus_hardware_enabled))
  958. return;
  959. cpu_set(cpu, cpus_hardware_enabled);
  960. kvm_arch_hardware_enable(NULL);
  961. }
  962. static void hardware_disable(void *junk)
  963. {
  964. int cpu = raw_smp_processor_id();
  965. if (!cpu_isset(cpu, cpus_hardware_enabled))
  966. return;
  967. cpu_clear(cpu, cpus_hardware_enabled);
  968. decache_vcpus_on_cpu(cpu);
  969. kvm_arch_hardware_disable(NULL);
  970. }
  971. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  972. void *v)
  973. {
  974. int cpu = (long)v;
  975. val &= ~CPU_TASKS_FROZEN;
  976. switch (val) {
  977. case CPU_DYING:
  978. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  979. cpu);
  980. hardware_disable(NULL);
  981. break;
  982. case CPU_UP_CANCELED:
  983. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  984. cpu);
  985. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  986. break;
  987. case CPU_ONLINE:
  988. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  989. cpu);
  990. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  991. break;
  992. }
  993. return NOTIFY_OK;
  994. }
  995. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  996. void *v)
  997. {
  998. if (val == SYS_RESTART) {
  999. /*
  1000. * Some (well, at least mine) BIOSes hang on reboot if
  1001. * in vmx root mode.
  1002. */
  1003. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1004. on_each_cpu(hardware_disable, NULL, 0, 1);
  1005. }
  1006. return NOTIFY_OK;
  1007. }
  1008. static struct notifier_block kvm_reboot_notifier = {
  1009. .notifier_call = kvm_reboot,
  1010. .priority = 0,
  1011. };
  1012. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1013. {
  1014. memset(bus, 0, sizeof(*bus));
  1015. }
  1016. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1017. {
  1018. int i;
  1019. for (i = 0; i < bus->dev_count; i++) {
  1020. struct kvm_io_device *pos = bus->devs[i];
  1021. kvm_iodevice_destructor(pos);
  1022. }
  1023. }
  1024. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1025. {
  1026. int i;
  1027. for (i = 0; i < bus->dev_count; i++) {
  1028. struct kvm_io_device *pos = bus->devs[i];
  1029. if (pos->in_range(pos, addr))
  1030. return pos;
  1031. }
  1032. return NULL;
  1033. }
  1034. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1035. {
  1036. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1037. bus->devs[bus->dev_count++] = dev;
  1038. }
  1039. static struct notifier_block kvm_cpu_notifier = {
  1040. .notifier_call = kvm_cpu_hotplug,
  1041. .priority = 20, /* must be > scheduler priority */
  1042. };
  1043. static u64 vm_stat_get(void *_offset)
  1044. {
  1045. unsigned offset = (long)_offset;
  1046. u64 total = 0;
  1047. struct kvm *kvm;
  1048. spin_lock(&kvm_lock);
  1049. list_for_each_entry(kvm, &vm_list, vm_list)
  1050. total += *(u32 *)((void *)kvm + offset);
  1051. spin_unlock(&kvm_lock);
  1052. return total;
  1053. }
  1054. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1055. static u64 vcpu_stat_get(void *_offset)
  1056. {
  1057. unsigned offset = (long)_offset;
  1058. u64 total = 0;
  1059. struct kvm *kvm;
  1060. struct kvm_vcpu *vcpu;
  1061. int i;
  1062. spin_lock(&kvm_lock);
  1063. list_for_each_entry(kvm, &vm_list, vm_list)
  1064. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1065. vcpu = kvm->vcpus[i];
  1066. if (vcpu)
  1067. total += *(u32 *)((void *)vcpu + offset);
  1068. }
  1069. spin_unlock(&kvm_lock);
  1070. return total;
  1071. }
  1072. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1073. static struct file_operations *stat_fops[] = {
  1074. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1075. [KVM_STAT_VM] = &vm_stat_fops,
  1076. };
  1077. static void kvm_init_debug(void)
  1078. {
  1079. struct kvm_stats_debugfs_item *p;
  1080. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1081. for (p = debugfs_entries; p->name; ++p)
  1082. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1083. (void *)(long)p->offset,
  1084. stat_fops[p->kind]);
  1085. }
  1086. static void kvm_exit_debug(void)
  1087. {
  1088. struct kvm_stats_debugfs_item *p;
  1089. for (p = debugfs_entries; p->name; ++p)
  1090. debugfs_remove(p->dentry);
  1091. debugfs_remove(debugfs_dir);
  1092. }
  1093. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1094. {
  1095. hardware_disable(NULL);
  1096. return 0;
  1097. }
  1098. static int kvm_resume(struct sys_device *dev)
  1099. {
  1100. hardware_enable(NULL);
  1101. return 0;
  1102. }
  1103. static struct sysdev_class kvm_sysdev_class = {
  1104. .name = "kvm",
  1105. .suspend = kvm_suspend,
  1106. .resume = kvm_resume,
  1107. };
  1108. static struct sys_device kvm_sysdev = {
  1109. .id = 0,
  1110. .cls = &kvm_sysdev_class,
  1111. };
  1112. struct page *bad_page;
  1113. static inline
  1114. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1115. {
  1116. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1117. }
  1118. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1119. {
  1120. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1121. kvm_arch_vcpu_load(vcpu, cpu);
  1122. }
  1123. static void kvm_sched_out(struct preempt_notifier *pn,
  1124. struct task_struct *next)
  1125. {
  1126. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1127. kvm_arch_vcpu_put(vcpu);
  1128. }
  1129. int kvm_init(void *opaque, unsigned int vcpu_size,
  1130. struct module *module)
  1131. {
  1132. int r;
  1133. int cpu;
  1134. kvm_init_debug();
  1135. r = kvm_arch_init(opaque);
  1136. if (r)
  1137. goto out4;
  1138. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1139. if (bad_page == NULL) {
  1140. r = -ENOMEM;
  1141. goto out;
  1142. }
  1143. r = kvm_arch_hardware_setup();
  1144. if (r < 0)
  1145. goto out;
  1146. for_each_online_cpu(cpu) {
  1147. smp_call_function_single(cpu,
  1148. kvm_arch_check_processor_compat,
  1149. &r, 0, 1);
  1150. if (r < 0)
  1151. goto out_free_0;
  1152. }
  1153. on_each_cpu(hardware_enable, NULL, 0, 1);
  1154. r = register_cpu_notifier(&kvm_cpu_notifier);
  1155. if (r)
  1156. goto out_free_1;
  1157. register_reboot_notifier(&kvm_reboot_notifier);
  1158. r = sysdev_class_register(&kvm_sysdev_class);
  1159. if (r)
  1160. goto out_free_2;
  1161. r = sysdev_register(&kvm_sysdev);
  1162. if (r)
  1163. goto out_free_3;
  1164. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1165. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1166. __alignof__(struct kvm_vcpu),
  1167. 0, NULL);
  1168. if (!kvm_vcpu_cache) {
  1169. r = -ENOMEM;
  1170. goto out_free_4;
  1171. }
  1172. kvm_chardev_ops.owner = module;
  1173. r = misc_register(&kvm_dev);
  1174. if (r) {
  1175. printk(KERN_ERR "kvm: misc device register failed\n");
  1176. goto out_free;
  1177. }
  1178. kvm_preempt_ops.sched_in = kvm_sched_in;
  1179. kvm_preempt_ops.sched_out = kvm_sched_out;
  1180. return 0;
  1181. out_free:
  1182. kmem_cache_destroy(kvm_vcpu_cache);
  1183. out_free_4:
  1184. sysdev_unregister(&kvm_sysdev);
  1185. out_free_3:
  1186. sysdev_class_unregister(&kvm_sysdev_class);
  1187. out_free_2:
  1188. unregister_reboot_notifier(&kvm_reboot_notifier);
  1189. unregister_cpu_notifier(&kvm_cpu_notifier);
  1190. out_free_1:
  1191. on_each_cpu(hardware_disable, NULL, 0, 1);
  1192. out_free_0:
  1193. kvm_arch_hardware_unsetup();
  1194. out:
  1195. kvm_arch_exit();
  1196. kvm_exit_debug();
  1197. out4:
  1198. return r;
  1199. }
  1200. EXPORT_SYMBOL_GPL(kvm_init);
  1201. void kvm_exit(void)
  1202. {
  1203. misc_deregister(&kvm_dev);
  1204. kmem_cache_destroy(kvm_vcpu_cache);
  1205. sysdev_unregister(&kvm_sysdev);
  1206. sysdev_class_unregister(&kvm_sysdev_class);
  1207. unregister_reboot_notifier(&kvm_reboot_notifier);
  1208. unregister_cpu_notifier(&kvm_cpu_notifier);
  1209. on_each_cpu(hardware_disable, NULL, 0, 1);
  1210. kvm_arch_hardware_unsetup();
  1211. kvm_arch_exit();
  1212. kvm_exit_debug();
  1213. __free_page(bad_page);
  1214. }
  1215. EXPORT_SYMBOL_GPL(kvm_exit);