ieee80211_sta.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <net/iw_handler.h>
  27. #include <asm/types.h>
  28. #include <net/mac80211.h>
  29. #include "ieee80211_i.h"
  30. #include "ieee80211_rate.h"
  31. #include "ieee80211_led.h"
  32. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  33. #define IEEE80211_AUTH_MAX_TRIES 3
  34. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  35. #define IEEE80211_ASSOC_MAX_TRIES 3
  36. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  37. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  38. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  39. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  40. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  41. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  42. #define IEEE80211_PROBE_DELAY (HZ / 33)
  43. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  44. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  45. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  46. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  47. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  48. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  49. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  50. #define ERP_INFO_USE_PROTECTION BIT(1)
  51. /* mgmt header + 1 byte action code */
  52. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  53. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  54. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  55. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  56. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  57. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  58. /* next values represent the buffer size for A-MPDU frame.
  59. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  60. #define IEEE80211_MIN_AMPDU_BUF 0x8
  61. #define IEEE80211_MAX_AMPDU_BUF 0x40
  62. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  63. u8 *ssid, size_t ssid_len);
  64. static struct ieee80211_sta_bss *
  65. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  66. u8 *ssid, u8 ssid_len);
  67. static void ieee80211_rx_bss_put(struct net_device *dev,
  68. struct ieee80211_sta_bss *bss);
  69. static int ieee80211_sta_find_ibss(struct net_device *dev,
  70. struct ieee80211_if_sta *ifsta);
  71. static int ieee80211_sta_wep_configured(struct net_device *dev);
  72. static int ieee80211_sta_start_scan(struct net_device *dev,
  73. u8 *ssid, size_t ssid_len);
  74. static int ieee80211_sta_config_auth(struct net_device *dev,
  75. struct ieee80211_if_sta *ifsta);
  76. /* Parsed Information Elements */
  77. struct ieee802_11_elems {
  78. /* pointers to IEs */
  79. u8 *ssid;
  80. u8 *supp_rates;
  81. u8 *fh_params;
  82. u8 *ds_params;
  83. u8 *cf_params;
  84. u8 *tim;
  85. u8 *ibss_params;
  86. u8 *challenge;
  87. u8 *wpa;
  88. u8 *rsn;
  89. u8 *erp_info;
  90. u8 *ext_supp_rates;
  91. u8 *wmm_info;
  92. u8 *wmm_param;
  93. u8 *ht_cap_elem;
  94. u8 *ht_info_elem;
  95. /* length of them, respectively */
  96. u8 ssid_len;
  97. u8 supp_rates_len;
  98. u8 fh_params_len;
  99. u8 ds_params_len;
  100. u8 cf_params_len;
  101. u8 tim_len;
  102. u8 ibss_params_len;
  103. u8 challenge_len;
  104. u8 wpa_len;
  105. u8 rsn_len;
  106. u8 erp_info_len;
  107. u8 ext_supp_rates_len;
  108. u8 wmm_info_len;
  109. u8 wmm_param_len;
  110. u8 ht_cap_elem_len;
  111. u8 ht_info_elem_len;
  112. };
  113. static void ieee802_11_parse_elems(u8 *start, size_t len,
  114. struct ieee802_11_elems *elems)
  115. {
  116. size_t left = len;
  117. u8 *pos = start;
  118. memset(elems, 0, sizeof(*elems));
  119. while (left >= 2) {
  120. u8 id, elen;
  121. id = *pos++;
  122. elen = *pos++;
  123. left -= 2;
  124. if (elen > left)
  125. return;
  126. switch (id) {
  127. case WLAN_EID_SSID:
  128. elems->ssid = pos;
  129. elems->ssid_len = elen;
  130. break;
  131. case WLAN_EID_SUPP_RATES:
  132. elems->supp_rates = pos;
  133. elems->supp_rates_len = elen;
  134. break;
  135. case WLAN_EID_FH_PARAMS:
  136. elems->fh_params = pos;
  137. elems->fh_params_len = elen;
  138. break;
  139. case WLAN_EID_DS_PARAMS:
  140. elems->ds_params = pos;
  141. elems->ds_params_len = elen;
  142. break;
  143. case WLAN_EID_CF_PARAMS:
  144. elems->cf_params = pos;
  145. elems->cf_params_len = elen;
  146. break;
  147. case WLAN_EID_TIM:
  148. elems->tim = pos;
  149. elems->tim_len = elen;
  150. break;
  151. case WLAN_EID_IBSS_PARAMS:
  152. elems->ibss_params = pos;
  153. elems->ibss_params_len = elen;
  154. break;
  155. case WLAN_EID_CHALLENGE:
  156. elems->challenge = pos;
  157. elems->challenge_len = elen;
  158. break;
  159. case WLAN_EID_WPA:
  160. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  161. pos[2] == 0xf2) {
  162. /* Microsoft OUI (00:50:F2) */
  163. if (pos[3] == 1) {
  164. /* OUI Type 1 - WPA IE */
  165. elems->wpa = pos;
  166. elems->wpa_len = elen;
  167. } else if (elen >= 5 && pos[3] == 2) {
  168. if (pos[4] == 0) {
  169. elems->wmm_info = pos;
  170. elems->wmm_info_len = elen;
  171. } else if (pos[4] == 1) {
  172. elems->wmm_param = pos;
  173. elems->wmm_param_len = elen;
  174. }
  175. }
  176. }
  177. break;
  178. case WLAN_EID_RSN:
  179. elems->rsn = pos;
  180. elems->rsn_len = elen;
  181. break;
  182. case WLAN_EID_ERP_INFO:
  183. elems->erp_info = pos;
  184. elems->erp_info_len = elen;
  185. break;
  186. case WLAN_EID_EXT_SUPP_RATES:
  187. elems->ext_supp_rates = pos;
  188. elems->ext_supp_rates_len = elen;
  189. break;
  190. case WLAN_EID_HT_CAPABILITY:
  191. elems->ht_cap_elem = pos;
  192. elems->ht_cap_elem_len = elen;
  193. break;
  194. case WLAN_EID_HT_EXTRA_INFO:
  195. elems->ht_info_elem = pos;
  196. elems->ht_info_elem_len = elen;
  197. break;
  198. default:
  199. break;
  200. }
  201. left -= elen;
  202. pos += elen;
  203. }
  204. }
  205. static int ecw2cw(int ecw)
  206. {
  207. int cw = 1;
  208. while (ecw > 0) {
  209. cw <<= 1;
  210. ecw--;
  211. }
  212. return cw - 1;
  213. }
  214. static void ieee80211_sta_wmm_params(struct net_device *dev,
  215. struct ieee80211_if_sta *ifsta,
  216. u8 *wmm_param, size_t wmm_param_len)
  217. {
  218. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  219. struct ieee80211_tx_queue_params params;
  220. size_t left;
  221. int count;
  222. u8 *pos;
  223. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  224. return;
  225. count = wmm_param[6] & 0x0f;
  226. if (count == ifsta->wmm_last_param_set)
  227. return;
  228. ifsta->wmm_last_param_set = count;
  229. pos = wmm_param + 8;
  230. left = wmm_param_len - 8;
  231. memset(&params, 0, sizeof(params));
  232. if (!local->ops->conf_tx)
  233. return;
  234. local->wmm_acm = 0;
  235. for (; left >= 4; left -= 4, pos += 4) {
  236. int aci = (pos[0] >> 5) & 0x03;
  237. int acm = (pos[0] >> 4) & 0x01;
  238. int queue;
  239. switch (aci) {
  240. case 1:
  241. queue = IEEE80211_TX_QUEUE_DATA3;
  242. if (acm) {
  243. local->wmm_acm |= BIT(0) | BIT(3);
  244. }
  245. break;
  246. case 2:
  247. queue = IEEE80211_TX_QUEUE_DATA1;
  248. if (acm) {
  249. local->wmm_acm |= BIT(4) | BIT(5);
  250. }
  251. break;
  252. case 3:
  253. queue = IEEE80211_TX_QUEUE_DATA0;
  254. if (acm) {
  255. local->wmm_acm |= BIT(6) | BIT(7);
  256. }
  257. break;
  258. case 0:
  259. default:
  260. queue = IEEE80211_TX_QUEUE_DATA2;
  261. if (acm) {
  262. local->wmm_acm |= BIT(1) | BIT(2);
  263. }
  264. break;
  265. }
  266. params.aifs = pos[0] & 0x0f;
  267. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  268. params.cw_min = ecw2cw(pos[1] & 0x0f);
  269. /* TXOP is in units of 32 usec; burst_time in 0.1 ms */
  270. params.burst_time = (pos[2] | (pos[3] << 8)) * 32 / 100;
  271. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  272. "cWmin=%d cWmax=%d burst=%d\n",
  273. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  274. params.cw_max, params.burst_time);
  275. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  276. * AC for now) */
  277. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  278. printk(KERN_DEBUG "%s: failed to set TX queue "
  279. "parameters for queue %d\n", dev->name, queue);
  280. }
  281. }
  282. }
  283. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  284. u8 erp_value)
  285. {
  286. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  287. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  288. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  289. bool preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  290. DECLARE_MAC_BUF(mac);
  291. u32 changed = 0;
  292. if (use_protection != bss_conf->use_cts_prot) {
  293. if (net_ratelimit()) {
  294. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  295. "%s)\n",
  296. sdata->dev->name,
  297. use_protection ? "enabled" : "disabled",
  298. print_mac(mac, ifsta->bssid));
  299. }
  300. bss_conf->use_cts_prot = use_protection;
  301. changed |= BSS_CHANGED_ERP_CTS_PROT;
  302. }
  303. if (preamble_mode != bss_conf->use_short_preamble) {
  304. if (net_ratelimit()) {
  305. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  306. " (BSSID=%s)\n",
  307. sdata->dev->name,
  308. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  309. "short" : "long",
  310. print_mac(mac, ifsta->bssid));
  311. }
  312. bss_conf->use_short_preamble = preamble_mode;
  313. changed |= BSS_CHANGED_ERP_PREAMBLE;
  314. }
  315. return changed;
  316. }
  317. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  318. struct ieee80211_ht_info *ht_info)
  319. {
  320. if (ht_info == NULL)
  321. return -EINVAL;
  322. memset(ht_info, 0, sizeof(*ht_info));
  323. if (ht_cap_ie) {
  324. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  325. ht_info->ht_supported = 1;
  326. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  327. ht_info->ampdu_factor =
  328. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  329. ht_info->ampdu_density =
  330. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  331. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  332. } else
  333. ht_info->ht_supported = 0;
  334. return 0;
  335. }
  336. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  337. struct ieee80211_ht_addt_info *ht_add_info_ie,
  338. struct ieee80211_ht_bss_info *bss_info)
  339. {
  340. if (bss_info == NULL)
  341. return -EINVAL;
  342. memset(bss_info, 0, sizeof(*bss_info));
  343. if (ht_add_info_ie) {
  344. u16 op_mode;
  345. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  346. bss_info->primary_channel = ht_add_info_ie->control_chan;
  347. bss_info->bss_cap = ht_add_info_ie->ht_param;
  348. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  349. }
  350. return 0;
  351. }
  352. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  353. struct ieee80211_if_sta *ifsta)
  354. {
  355. char *buf;
  356. size_t len;
  357. int i;
  358. union iwreq_data wrqu;
  359. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  360. return;
  361. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  362. ifsta->assocresp_ies_len), GFP_KERNEL);
  363. if (!buf)
  364. return;
  365. len = sprintf(buf, "ASSOCINFO(");
  366. if (ifsta->assocreq_ies) {
  367. len += sprintf(buf + len, "ReqIEs=");
  368. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  369. len += sprintf(buf + len, "%02x",
  370. ifsta->assocreq_ies[i]);
  371. }
  372. }
  373. if (ifsta->assocresp_ies) {
  374. if (ifsta->assocreq_ies)
  375. len += sprintf(buf + len, " ");
  376. len += sprintf(buf + len, "RespIEs=");
  377. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  378. len += sprintf(buf + len, "%02x",
  379. ifsta->assocresp_ies[i]);
  380. }
  381. }
  382. len += sprintf(buf + len, ")");
  383. if (len > IW_CUSTOM_MAX) {
  384. len = sprintf(buf, "ASSOCRESPIE=");
  385. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  386. len += sprintf(buf + len, "%02x",
  387. ifsta->assocresp_ies[i]);
  388. }
  389. }
  390. memset(&wrqu, 0, sizeof(wrqu));
  391. wrqu.data.length = len;
  392. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  393. kfree(buf);
  394. }
  395. static void ieee80211_set_associated(struct net_device *dev,
  396. struct ieee80211_if_sta *ifsta,
  397. bool assoc)
  398. {
  399. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  400. struct ieee80211_local *local = sdata->local;
  401. union iwreq_data wrqu;
  402. u32 changed = BSS_CHANGED_ASSOC;
  403. if (assoc) {
  404. struct ieee80211_sta_bss *bss;
  405. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  406. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  407. return;
  408. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  409. local->hw.conf.channel,
  410. ifsta->ssid, ifsta->ssid_len);
  411. if (bss) {
  412. if (bss->has_erp_value)
  413. changed |= ieee80211_handle_erp_ie(
  414. sdata, bss->erp_value);
  415. ieee80211_rx_bss_put(dev, bss);
  416. }
  417. netif_carrier_on(dev);
  418. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  419. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  420. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  421. ieee80211_sta_send_associnfo(dev, ifsta);
  422. } else {
  423. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  424. netif_carrier_off(dev);
  425. ieee80211_reset_erp_info(dev);
  426. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  427. }
  428. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  429. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  430. ifsta->last_probe = jiffies;
  431. ieee80211_led_assoc(local, assoc);
  432. ieee80211_bss_info_change_notify(sdata, changed);
  433. }
  434. static void ieee80211_set_disassoc(struct net_device *dev,
  435. struct ieee80211_if_sta *ifsta, int deauth)
  436. {
  437. if (deauth)
  438. ifsta->auth_tries = 0;
  439. ifsta->assoc_tries = 0;
  440. ieee80211_set_associated(dev, ifsta, 0);
  441. }
  442. static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  443. int encrypt)
  444. {
  445. struct ieee80211_sub_if_data *sdata;
  446. struct ieee80211_tx_packet_data *pkt_data;
  447. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  448. skb->dev = sdata->local->mdev;
  449. skb_set_mac_header(skb, 0);
  450. skb_set_network_header(skb, 0);
  451. skb_set_transport_header(skb, 0);
  452. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  453. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  454. pkt_data->ifindex = sdata->dev->ifindex;
  455. if (!encrypt)
  456. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  457. dev_queue_xmit(skb);
  458. }
  459. static void ieee80211_send_auth(struct net_device *dev,
  460. struct ieee80211_if_sta *ifsta,
  461. int transaction, u8 *extra, size_t extra_len,
  462. int encrypt)
  463. {
  464. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  465. struct sk_buff *skb;
  466. struct ieee80211_mgmt *mgmt;
  467. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  468. sizeof(*mgmt) + 6 + extra_len);
  469. if (!skb) {
  470. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  471. "frame\n", dev->name);
  472. return;
  473. }
  474. skb_reserve(skb, local->hw.extra_tx_headroom);
  475. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  476. memset(mgmt, 0, 24 + 6);
  477. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  478. IEEE80211_STYPE_AUTH);
  479. if (encrypt)
  480. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  481. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  482. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  483. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  484. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  485. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  486. ifsta->auth_transaction = transaction + 1;
  487. mgmt->u.auth.status_code = cpu_to_le16(0);
  488. if (extra)
  489. memcpy(skb_put(skb, extra_len), extra, extra_len);
  490. ieee80211_sta_tx(dev, skb, encrypt);
  491. }
  492. static void ieee80211_authenticate(struct net_device *dev,
  493. struct ieee80211_if_sta *ifsta)
  494. {
  495. DECLARE_MAC_BUF(mac);
  496. ifsta->auth_tries++;
  497. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  498. printk(KERN_DEBUG "%s: authentication with AP %s"
  499. " timed out\n",
  500. dev->name, print_mac(mac, ifsta->bssid));
  501. ifsta->state = IEEE80211_DISABLED;
  502. return;
  503. }
  504. ifsta->state = IEEE80211_AUTHENTICATE;
  505. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  506. dev->name, print_mac(mac, ifsta->bssid));
  507. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  508. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  509. }
  510. static void ieee80211_send_assoc(struct net_device *dev,
  511. struct ieee80211_if_sta *ifsta)
  512. {
  513. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  514. struct ieee80211_hw_mode *mode;
  515. struct sk_buff *skb;
  516. struct ieee80211_mgmt *mgmt;
  517. u8 *pos, *ies;
  518. int i, len;
  519. u16 capab;
  520. struct ieee80211_sta_bss *bss;
  521. int wmm = 0;
  522. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  523. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  524. ifsta->ssid_len);
  525. if (!skb) {
  526. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  527. "frame\n", dev->name);
  528. return;
  529. }
  530. skb_reserve(skb, local->hw.extra_tx_headroom);
  531. mode = local->oper_hw_mode;
  532. capab = ifsta->capab;
  533. if (mode->mode == MODE_IEEE80211G) {
  534. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME |
  535. WLAN_CAPABILITY_SHORT_PREAMBLE;
  536. }
  537. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  538. ifsta->ssid, ifsta->ssid_len);
  539. if (bss) {
  540. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  541. capab |= WLAN_CAPABILITY_PRIVACY;
  542. if (bss->wmm_ie) {
  543. wmm = 1;
  544. }
  545. ieee80211_rx_bss_put(dev, bss);
  546. }
  547. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  548. memset(mgmt, 0, 24);
  549. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  550. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  551. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  552. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  553. skb_put(skb, 10);
  554. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  555. IEEE80211_STYPE_REASSOC_REQ);
  556. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  557. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  558. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  559. ETH_ALEN);
  560. } else {
  561. skb_put(skb, 4);
  562. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  563. IEEE80211_STYPE_ASSOC_REQ);
  564. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  565. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  566. }
  567. /* SSID */
  568. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  569. *pos++ = WLAN_EID_SSID;
  570. *pos++ = ifsta->ssid_len;
  571. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  572. len = mode->num_rates;
  573. if (len > 8)
  574. len = 8;
  575. pos = skb_put(skb, len + 2);
  576. *pos++ = WLAN_EID_SUPP_RATES;
  577. *pos++ = len;
  578. for (i = 0; i < len; i++) {
  579. int rate = mode->rates[i].rate;
  580. *pos++ = (u8) (rate / 5);
  581. }
  582. if (mode->num_rates > len) {
  583. pos = skb_put(skb, mode->num_rates - len + 2);
  584. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  585. *pos++ = mode->num_rates - len;
  586. for (i = len; i < mode->num_rates; i++) {
  587. int rate = mode->rates[i].rate;
  588. *pos++ = (u8) (rate / 5);
  589. }
  590. }
  591. if (ifsta->extra_ie) {
  592. pos = skb_put(skb, ifsta->extra_ie_len);
  593. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  594. }
  595. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  596. pos = skb_put(skb, 9);
  597. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  598. *pos++ = 7; /* len */
  599. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  600. *pos++ = 0x50;
  601. *pos++ = 0xf2;
  602. *pos++ = 2; /* WME */
  603. *pos++ = 0; /* WME info */
  604. *pos++ = 1; /* WME ver */
  605. *pos++ = 0;
  606. }
  607. /* wmm support is a must to HT */
  608. if (wmm && mode->ht_info.ht_supported) {
  609. __le16 tmp = cpu_to_le16(mode->ht_info.cap);
  610. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  611. *pos++ = WLAN_EID_HT_CAPABILITY;
  612. *pos++ = sizeof(struct ieee80211_ht_cap);
  613. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  614. memcpy(pos, &tmp, sizeof(u16));
  615. pos += sizeof(u16);
  616. *pos++ = (mode->ht_info.ampdu_factor |
  617. (mode->ht_info.ampdu_density << 2));
  618. memcpy(pos, mode->ht_info.supp_mcs_set, 16);
  619. }
  620. kfree(ifsta->assocreq_ies);
  621. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  622. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  623. if (ifsta->assocreq_ies)
  624. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  625. ieee80211_sta_tx(dev, skb, 0);
  626. }
  627. static void ieee80211_send_deauth(struct net_device *dev,
  628. struct ieee80211_if_sta *ifsta, u16 reason)
  629. {
  630. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  631. struct sk_buff *skb;
  632. struct ieee80211_mgmt *mgmt;
  633. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  634. if (!skb) {
  635. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  636. "frame\n", dev->name);
  637. return;
  638. }
  639. skb_reserve(skb, local->hw.extra_tx_headroom);
  640. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  641. memset(mgmt, 0, 24);
  642. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  643. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  644. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  645. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  646. IEEE80211_STYPE_DEAUTH);
  647. skb_put(skb, 2);
  648. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  649. ieee80211_sta_tx(dev, skb, 0);
  650. }
  651. static void ieee80211_send_disassoc(struct net_device *dev,
  652. struct ieee80211_if_sta *ifsta, u16 reason)
  653. {
  654. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  655. struct sk_buff *skb;
  656. struct ieee80211_mgmt *mgmt;
  657. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  658. if (!skb) {
  659. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  660. "frame\n", dev->name);
  661. return;
  662. }
  663. skb_reserve(skb, local->hw.extra_tx_headroom);
  664. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  665. memset(mgmt, 0, 24);
  666. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  667. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  668. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  669. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  670. IEEE80211_STYPE_DISASSOC);
  671. skb_put(skb, 2);
  672. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  673. ieee80211_sta_tx(dev, skb, 0);
  674. }
  675. static int ieee80211_privacy_mismatch(struct net_device *dev,
  676. struct ieee80211_if_sta *ifsta)
  677. {
  678. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  679. struct ieee80211_sta_bss *bss;
  680. int bss_privacy;
  681. int wep_privacy;
  682. int privacy_invoked;
  683. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  684. return 0;
  685. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  686. ifsta->ssid, ifsta->ssid_len);
  687. if (!bss)
  688. return 0;
  689. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  690. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  691. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  692. ieee80211_rx_bss_put(dev, bss);
  693. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  694. return 0;
  695. return 1;
  696. }
  697. static void ieee80211_associate(struct net_device *dev,
  698. struct ieee80211_if_sta *ifsta)
  699. {
  700. DECLARE_MAC_BUF(mac);
  701. ifsta->assoc_tries++;
  702. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  703. printk(KERN_DEBUG "%s: association with AP %s"
  704. " timed out\n",
  705. dev->name, print_mac(mac, ifsta->bssid));
  706. ifsta->state = IEEE80211_DISABLED;
  707. return;
  708. }
  709. ifsta->state = IEEE80211_ASSOCIATE;
  710. printk(KERN_DEBUG "%s: associate with AP %s\n",
  711. dev->name, print_mac(mac, ifsta->bssid));
  712. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  713. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  714. "mixed-cell disabled - abort association\n", dev->name);
  715. ifsta->state = IEEE80211_DISABLED;
  716. return;
  717. }
  718. ieee80211_send_assoc(dev, ifsta);
  719. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  720. }
  721. static void ieee80211_associated(struct net_device *dev,
  722. struct ieee80211_if_sta *ifsta)
  723. {
  724. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  725. struct sta_info *sta;
  726. int disassoc;
  727. DECLARE_MAC_BUF(mac);
  728. /* TODO: start monitoring current AP signal quality and number of
  729. * missed beacons. Scan other channels every now and then and search
  730. * for better APs. */
  731. /* TODO: remove expired BSSes */
  732. ifsta->state = IEEE80211_ASSOCIATED;
  733. sta = sta_info_get(local, ifsta->bssid);
  734. if (!sta) {
  735. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  736. dev->name, print_mac(mac, ifsta->bssid));
  737. disassoc = 1;
  738. } else {
  739. disassoc = 0;
  740. if (time_after(jiffies,
  741. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  742. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  743. printk(KERN_DEBUG "%s: No ProbeResp from "
  744. "current AP %s - assume out of "
  745. "range\n",
  746. dev->name, print_mac(mac, ifsta->bssid));
  747. disassoc = 1;
  748. sta_info_free(sta);
  749. } else
  750. ieee80211_send_probe_req(dev, ifsta->bssid,
  751. local->scan_ssid,
  752. local->scan_ssid_len);
  753. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  754. } else {
  755. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  756. if (time_after(jiffies, ifsta->last_probe +
  757. IEEE80211_PROBE_INTERVAL)) {
  758. ifsta->last_probe = jiffies;
  759. ieee80211_send_probe_req(dev, ifsta->bssid,
  760. ifsta->ssid,
  761. ifsta->ssid_len);
  762. }
  763. }
  764. sta_info_put(sta);
  765. }
  766. if (disassoc) {
  767. ifsta->state = IEEE80211_DISABLED;
  768. ieee80211_set_associated(dev, ifsta, 0);
  769. } else {
  770. mod_timer(&ifsta->timer, jiffies +
  771. IEEE80211_MONITORING_INTERVAL);
  772. }
  773. }
  774. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  775. u8 *ssid, size_t ssid_len)
  776. {
  777. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  778. struct ieee80211_hw_mode *mode;
  779. struct sk_buff *skb;
  780. struct ieee80211_mgmt *mgmt;
  781. u8 *pos, *supp_rates, *esupp_rates = NULL;
  782. int i;
  783. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  784. if (!skb) {
  785. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  786. "request\n", dev->name);
  787. return;
  788. }
  789. skb_reserve(skb, local->hw.extra_tx_headroom);
  790. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  791. memset(mgmt, 0, 24);
  792. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  793. IEEE80211_STYPE_PROBE_REQ);
  794. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  795. if (dst) {
  796. memcpy(mgmt->da, dst, ETH_ALEN);
  797. memcpy(mgmt->bssid, dst, ETH_ALEN);
  798. } else {
  799. memset(mgmt->da, 0xff, ETH_ALEN);
  800. memset(mgmt->bssid, 0xff, ETH_ALEN);
  801. }
  802. pos = skb_put(skb, 2 + ssid_len);
  803. *pos++ = WLAN_EID_SSID;
  804. *pos++ = ssid_len;
  805. memcpy(pos, ssid, ssid_len);
  806. supp_rates = skb_put(skb, 2);
  807. supp_rates[0] = WLAN_EID_SUPP_RATES;
  808. supp_rates[1] = 0;
  809. mode = local->oper_hw_mode;
  810. for (i = 0; i < mode->num_rates; i++) {
  811. struct ieee80211_rate *rate = &mode->rates[i];
  812. if (!(rate->flags & IEEE80211_RATE_SUPPORTED))
  813. continue;
  814. if (esupp_rates) {
  815. pos = skb_put(skb, 1);
  816. esupp_rates[1]++;
  817. } else if (supp_rates[1] == 8) {
  818. esupp_rates = skb_put(skb, 3);
  819. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  820. esupp_rates[1] = 1;
  821. pos = &esupp_rates[2];
  822. } else {
  823. pos = skb_put(skb, 1);
  824. supp_rates[1]++;
  825. }
  826. *pos = rate->rate / 5;
  827. }
  828. ieee80211_sta_tx(dev, skb, 0);
  829. }
  830. static int ieee80211_sta_wep_configured(struct net_device *dev)
  831. {
  832. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  833. if (!sdata || !sdata->default_key ||
  834. sdata->default_key->conf.alg != ALG_WEP)
  835. return 0;
  836. return 1;
  837. }
  838. static void ieee80211_auth_completed(struct net_device *dev,
  839. struct ieee80211_if_sta *ifsta)
  840. {
  841. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  842. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  843. ieee80211_associate(dev, ifsta);
  844. }
  845. static void ieee80211_auth_challenge(struct net_device *dev,
  846. struct ieee80211_if_sta *ifsta,
  847. struct ieee80211_mgmt *mgmt,
  848. size_t len)
  849. {
  850. u8 *pos;
  851. struct ieee802_11_elems elems;
  852. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  853. pos = mgmt->u.auth.variable;
  854. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  855. if (!elems.challenge) {
  856. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  857. "frame\n", dev->name);
  858. return;
  859. }
  860. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  861. elems.challenge_len + 2, 1);
  862. }
  863. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  864. u8 dialog_token, u16 status, u16 policy,
  865. u16 buf_size, u16 timeout)
  866. {
  867. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  868. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  869. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  870. struct sk_buff *skb;
  871. struct ieee80211_mgmt *mgmt;
  872. u16 capab;
  873. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  874. sizeof(mgmt->u.action.u.addba_resp));
  875. if (!skb) {
  876. printk(KERN_DEBUG "%s: failed to allocate buffer "
  877. "for addba resp frame\n", dev->name);
  878. return;
  879. }
  880. skb_reserve(skb, local->hw.extra_tx_headroom);
  881. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  882. memset(mgmt, 0, 24);
  883. memcpy(mgmt->da, da, ETH_ALEN);
  884. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  885. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  886. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  887. else
  888. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  889. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  890. IEEE80211_STYPE_ACTION);
  891. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  892. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  893. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  894. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  895. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  896. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  897. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  898. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  899. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  900. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  901. ieee80211_sta_tx(dev, skb, 0);
  902. return;
  903. }
  904. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  905. struct ieee80211_mgmt *mgmt,
  906. size_t len)
  907. {
  908. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  909. struct ieee80211_hw *hw = &local->hw;
  910. struct ieee80211_conf *conf = &hw->conf;
  911. struct sta_info *sta;
  912. struct tid_ampdu_rx *tid_agg_rx;
  913. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  914. u8 dialog_token;
  915. int ret = -EOPNOTSUPP;
  916. DECLARE_MAC_BUF(mac);
  917. sta = sta_info_get(local, mgmt->sa);
  918. if (!sta)
  919. return;
  920. /* extract session parameters from addba request frame */
  921. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  922. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  923. start_seq_num =
  924. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  925. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  926. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  927. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  928. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  929. status = WLAN_STATUS_REQUEST_DECLINED;
  930. /* sanity check for incoming parameters:
  931. * check if configuration can support the BA policy
  932. * and if buffer size does not exceeds max value */
  933. if (((ba_policy != 1)
  934. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  935. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  936. status = WLAN_STATUS_INVALID_QOS_PARAM;
  937. #ifdef CONFIG_MAC80211_HT_DEBUG
  938. if (net_ratelimit())
  939. printk(KERN_DEBUG "Block Ack Req with bad params from "
  940. "%s on tid %u. policy %d, buffer size %d\n",
  941. print_mac(mac, mgmt->sa), tid, ba_policy,
  942. buf_size);
  943. #endif /* CONFIG_MAC80211_HT_DEBUG */
  944. goto end_no_lock;
  945. }
  946. /* determine default buffer size */
  947. if (buf_size == 0) {
  948. struct ieee80211_hw_mode *mode = conf->mode;
  949. buf_size = IEEE80211_MIN_AMPDU_BUF;
  950. buf_size = buf_size << mode->ht_info.ampdu_factor;
  951. }
  952. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  953. /* examine state machine */
  954. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  955. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  956. #ifdef CONFIG_MAC80211_HT_DEBUG
  957. if (net_ratelimit())
  958. printk(KERN_DEBUG "unexpected Block Ack Req from "
  959. "%s on tid %u\n",
  960. print_mac(mac, mgmt->sa), tid);
  961. #endif /* CONFIG_MAC80211_HT_DEBUG */
  962. goto end;
  963. }
  964. /* prepare reordering buffer */
  965. tid_agg_rx->reorder_buf =
  966. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  967. if ((!tid_agg_rx->reorder_buf) && net_ratelimit()) {
  968. printk(KERN_ERR "can not allocate reordering buffer "
  969. "to tid %d\n", tid);
  970. goto end;
  971. }
  972. memset(tid_agg_rx->reorder_buf, 0,
  973. buf_size * sizeof(struct sk_buf *));
  974. if (local->ops->ampdu_action)
  975. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  976. sta->addr, tid, start_seq_num);
  977. #ifdef CONFIG_MAC80211_HT_DEBUG
  978. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  979. #endif /* CONFIG_MAC80211_HT_DEBUG */
  980. if (ret) {
  981. kfree(tid_agg_rx->reorder_buf);
  982. goto end;
  983. }
  984. /* change state and send addba resp */
  985. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  986. tid_agg_rx->dialog_token = dialog_token;
  987. tid_agg_rx->ssn = start_seq_num;
  988. tid_agg_rx->head_seq_num = start_seq_num;
  989. tid_agg_rx->buf_size = buf_size;
  990. tid_agg_rx->timeout = timeout;
  991. tid_agg_rx->stored_mpdu_num = 0;
  992. status = WLAN_STATUS_SUCCESS;
  993. end:
  994. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  995. end_no_lock:
  996. ieee80211_send_addba_resp(sta->dev, sta->addr, tid, dialog_token,
  997. status, 1, buf_size, timeout);
  998. sta_info_put(sta);
  999. }
  1000. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1001. u16 initiator, u16 reason_code)
  1002. {
  1003. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1004. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1005. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1006. struct sk_buff *skb;
  1007. struct ieee80211_mgmt *mgmt;
  1008. u16 params;
  1009. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1010. sizeof(mgmt->u.action.u.delba));
  1011. if (!skb) {
  1012. printk(KERN_ERR "%s: failed to allocate buffer "
  1013. "for delba frame\n", dev->name);
  1014. return;
  1015. }
  1016. skb_reserve(skb, local->hw.extra_tx_headroom);
  1017. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1018. memset(mgmt, 0, 24);
  1019. memcpy(mgmt->da, da, ETH_ALEN);
  1020. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1021. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1022. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1023. else
  1024. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1025. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1026. IEEE80211_STYPE_ACTION);
  1027. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1028. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1029. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1030. params = (u16)(initiator << 11); /* bit 11 initiator */
  1031. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1032. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1033. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1034. ieee80211_sta_tx(dev, skb, 0);
  1035. }
  1036. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1037. u16 initiator, u16 reason)
  1038. {
  1039. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1040. struct ieee80211_hw *hw = &local->hw;
  1041. struct sta_info *sta;
  1042. int ret, i;
  1043. sta = sta_info_get(local, ra);
  1044. if (!sta)
  1045. return;
  1046. /* check if TID is in operational state */
  1047. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1048. if (sta->ampdu_mlme.tid_rx[tid].state
  1049. != HT_AGG_STATE_OPERATIONAL) {
  1050. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1051. if (net_ratelimit())
  1052. printk(KERN_DEBUG "rx BA session requested to stop on "
  1053. "inactive tid %d\n", tid);
  1054. sta_info_put(sta);
  1055. return;
  1056. }
  1057. sta->ampdu_mlme.tid_rx[tid].state =
  1058. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1059. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1060. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1061. /* stop HW Rx aggregation. ampdu_action existence
  1062. * already verified in session init so we add the BUG_ON */
  1063. BUG_ON(!local->ops->ampdu_action);
  1064. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1065. ra, tid, EINVAL);
  1066. if (ret)
  1067. printk(KERN_DEBUG "HW problem - can not stop rx "
  1068. "aggergation for tid %d\n", tid);
  1069. /* shutdown timer has not expired */
  1070. if (initiator != WLAN_BACK_TIMER)
  1071. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1072. session_timer);
  1073. /* check if this is a self generated aggregation halt */
  1074. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1075. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1076. /* free the reordering buffer */
  1077. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid].buf_size; i++) {
  1078. if (sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]) {
  1079. /* release the reordered frames */
  1080. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid].reorder_buf[i]);
  1081. sta->ampdu_mlme.tid_rx[tid].stored_mpdu_num--;
  1082. sta->ampdu_mlme.tid_rx[tid].reorder_buf[i] = NULL;
  1083. }
  1084. }
  1085. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1086. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1087. sta_info_put(sta);
  1088. }
  1089. static void ieee80211_sta_process_delba(struct net_device *dev,
  1090. struct ieee80211_mgmt *mgmt, size_t len)
  1091. {
  1092. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1093. struct sta_info *sta;
  1094. u16 tid, params;
  1095. u16 initiator;
  1096. DECLARE_MAC_BUF(mac);
  1097. sta = sta_info_get(local, mgmt->sa);
  1098. if (!sta)
  1099. return;
  1100. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1101. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1102. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1103. #ifdef CONFIG_MAC80211_HT_DEBUG
  1104. if (net_ratelimit())
  1105. printk(KERN_DEBUG "delba from %s on tid %d reason code %d\n",
  1106. print_mac(mac, mgmt->sa), tid,
  1107. mgmt->u.action.u.delba.reason_code);
  1108. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1109. if (initiator == WLAN_BACK_INITIATOR)
  1110. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1111. WLAN_BACK_INITIATOR, 0);
  1112. sta_info_put(sta);
  1113. }
  1114. /*
  1115. * After receiving Block Ack Request (BAR) we activated a
  1116. * timer after each frame arrives from the originator.
  1117. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1118. */
  1119. void sta_rx_agg_session_timer_expired(unsigned long data)
  1120. {
  1121. /* not an elegant detour, but there is no choice as the timer passes
  1122. * only one argument, and verious sta_info are needed here, so init
  1123. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1124. * array gives the sta through container_of */
  1125. u8 *ptid = (u8 *)data;
  1126. u8 *timer_to_id = ptid - *ptid;
  1127. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1128. timer_to_tid[0]);
  1129. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1130. ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, (u16)*ptid,
  1131. WLAN_BACK_TIMER,
  1132. WLAN_REASON_QSTA_TIMEOUT);
  1133. }
  1134. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1135. struct ieee80211_if_sta *ifsta,
  1136. struct ieee80211_mgmt *mgmt,
  1137. size_t len)
  1138. {
  1139. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1140. u16 auth_alg, auth_transaction, status_code;
  1141. DECLARE_MAC_BUF(mac);
  1142. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1143. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1144. printk(KERN_DEBUG "%s: authentication frame received from "
  1145. "%s, but not in authenticate state - ignored\n",
  1146. dev->name, print_mac(mac, mgmt->sa));
  1147. return;
  1148. }
  1149. if (len < 24 + 6) {
  1150. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1151. "received from %s - ignored\n",
  1152. dev->name, len, print_mac(mac, mgmt->sa));
  1153. return;
  1154. }
  1155. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1156. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1157. printk(KERN_DEBUG "%s: authentication frame received from "
  1158. "unknown AP (SA=%s BSSID=%s) - "
  1159. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1160. print_mac(mac, mgmt->bssid));
  1161. return;
  1162. }
  1163. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1164. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1165. printk(KERN_DEBUG "%s: authentication frame received from "
  1166. "unknown BSSID (SA=%s BSSID=%s) - "
  1167. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1168. print_mac(mac, mgmt->bssid));
  1169. return;
  1170. }
  1171. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1172. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1173. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1174. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1175. "transaction=%d status=%d)\n",
  1176. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1177. auth_transaction, status_code);
  1178. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1179. /* IEEE 802.11 standard does not require authentication in IBSS
  1180. * networks and most implementations do not seem to use it.
  1181. * However, try to reply to authentication attempts if someone
  1182. * has actually implemented this.
  1183. * TODO: Could implement shared key authentication. */
  1184. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1185. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1186. "frame (alg=%d transaction=%d)\n",
  1187. dev->name, auth_alg, auth_transaction);
  1188. return;
  1189. }
  1190. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1191. }
  1192. if (auth_alg != ifsta->auth_alg ||
  1193. auth_transaction != ifsta->auth_transaction) {
  1194. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1195. "(alg=%d transaction=%d)\n",
  1196. dev->name, auth_alg, auth_transaction);
  1197. return;
  1198. }
  1199. if (status_code != WLAN_STATUS_SUCCESS) {
  1200. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1201. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1202. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1203. u8 algs[3];
  1204. const int num_algs = ARRAY_SIZE(algs);
  1205. int i, pos;
  1206. algs[0] = algs[1] = algs[2] = 0xff;
  1207. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1208. algs[0] = WLAN_AUTH_OPEN;
  1209. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1210. algs[1] = WLAN_AUTH_SHARED_KEY;
  1211. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1212. algs[2] = WLAN_AUTH_LEAP;
  1213. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1214. pos = 0;
  1215. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1216. pos = 1;
  1217. else
  1218. pos = 2;
  1219. for (i = 0; i < num_algs; i++) {
  1220. pos++;
  1221. if (pos >= num_algs)
  1222. pos = 0;
  1223. if (algs[pos] == ifsta->auth_alg ||
  1224. algs[pos] == 0xff)
  1225. continue;
  1226. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1227. !ieee80211_sta_wep_configured(dev))
  1228. continue;
  1229. ifsta->auth_alg = algs[pos];
  1230. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1231. "next try\n",
  1232. dev->name, ifsta->auth_alg);
  1233. break;
  1234. }
  1235. }
  1236. return;
  1237. }
  1238. switch (ifsta->auth_alg) {
  1239. case WLAN_AUTH_OPEN:
  1240. case WLAN_AUTH_LEAP:
  1241. ieee80211_auth_completed(dev, ifsta);
  1242. break;
  1243. case WLAN_AUTH_SHARED_KEY:
  1244. if (ifsta->auth_transaction == 4)
  1245. ieee80211_auth_completed(dev, ifsta);
  1246. else
  1247. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1248. break;
  1249. }
  1250. }
  1251. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1252. struct ieee80211_if_sta *ifsta,
  1253. struct ieee80211_mgmt *mgmt,
  1254. size_t len)
  1255. {
  1256. u16 reason_code;
  1257. DECLARE_MAC_BUF(mac);
  1258. if (len < 24 + 2) {
  1259. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1260. "received from %s - ignored\n",
  1261. dev->name, len, print_mac(mac, mgmt->sa));
  1262. return;
  1263. }
  1264. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1265. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1266. "unknown AP (SA=%s BSSID=%s) - "
  1267. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1268. print_mac(mac, mgmt->bssid));
  1269. return;
  1270. }
  1271. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1272. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1273. " (reason=%d)\n",
  1274. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1275. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1276. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1277. }
  1278. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1279. ifsta->state == IEEE80211_ASSOCIATE ||
  1280. ifsta->state == IEEE80211_ASSOCIATED) {
  1281. ifsta->state = IEEE80211_AUTHENTICATE;
  1282. mod_timer(&ifsta->timer, jiffies +
  1283. IEEE80211_RETRY_AUTH_INTERVAL);
  1284. }
  1285. ieee80211_set_disassoc(dev, ifsta, 1);
  1286. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1287. }
  1288. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1289. struct ieee80211_if_sta *ifsta,
  1290. struct ieee80211_mgmt *mgmt,
  1291. size_t len)
  1292. {
  1293. u16 reason_code;
  1294. DECLARE_MAC_BUF(mac);
  1295. if (len < 24 + 2) {
  1296. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1297. "received from %s - ignored\n",
  1298. dev->name, len, print_mac(mac, mgmt->sa));
  1299. return;
  1300. }
  1301. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1302. printk(KERN_DEBUG "%s: disassociation frame received from "
  1303. "unknown AP (SA=%s BSSID=%s) - "
  1304. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1305. print_mac(mac, mgmt->bssid));
  1306. return;
  1307. }
  1308. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1309. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1310. " (reason=%d)\n",
  1311. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1312. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1313. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1314. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1315. ifsta->state = IEEE80211_ASSOCIATE;
  1316. mod_timer(&ifsta->timer, jiffies +
  1317. IEEE80211_RETRY_AUTH_INTERVAL);
  1318. }
  1319. ieee80211_set_disassoc(dev, ifsta, 0);
  1320. }
  1321. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1322. struct ieee80211_if_sta *ifsta,
  1323. struct ieee80211_mgmt *mgmt,
  1324. size_t len,
  1325. int reassoc)
  1326. {
  1327. struct ieee80211_local *local = sdata->local;
  1328. struct net_device *dev = sdata->dev;
  1329. struct ieee80211_hw_mode *mode;
  1330. struct sta_info *sta;
  1331. u32 rates;
  1332. u16 capab_info, status_code, aid;
  1333. struct ieee802_11_elems elems;
  1334. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1335. u8 *pos;
  1336. int i, j;
  1337. DECLARE_MAC_BUF(mac);
  1338. /* AssocResp and ReassocResp have identical structure, so process both
  1339. * of them in this function. */
  1340. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1341. printk(KERN_DEBUG "%s: association frame received from "
  1342. "%s, but not in associate state - ignored\n",
  1343. dev->name, print_mac(mac, mgmt->sa));
  1344. return;
  1345. }
  1346. if (len < 24 + 6) {
  1347. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1348. "received from %s - ignored\n",
  1349. dev->name, len, print_mac(mac, mgmt->sa));
  1350. return;
  1351. }
  1352. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1353. printk(KERN_DEBUG "%s: association frame received from "
  1354. "unknown AP (SA=%s BSSID=%s) - "
  1355. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1356. print_mac(mac, mgmt->bssid));
  1357. return;
  1358. }
  1359. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1360. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1361. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1362. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1363. "status=%d aid=%d)\n",
  1364. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1365. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1366. if (status_code != WLAN_STATUS_SUCCESS) {
  1367. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1368. dev->name, status_code);
  1369. /* if this was a reassociation, ensure we try a "full"
  1370. * association next time. This works around some broken APs
  1371. * which do not correctly reject reassociation requests. */
  1372. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1373. return;
  1374. }
  1375. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1376. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1377. "set\n", dev->name, aid);
  1378. aid &= ~(BIT(15) | BIT(14));
  1379. pos = mgmt->u.assoc_resp.variable;
  1380. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1381. if (!elems.supp_rates) {
  1382. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1383. dev->name);
  1384. return;
  1385. }
  1386. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1387. ifsta->aid = aid;
  1388. ifsta->ap_capab = capab_info;
  1389. kfree(ifsta->assocresp_ies);
  1390. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1391. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1392. if (ifsta->assocresp_ies)
  1393. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1394. /* set AID, ieee80211_set_associated() will tell the driver */
  1395. bss_conf->aid = aid;
  1396. ieee80211_set_associated(dev, ifsta, 1);
  1397. /* Add STA entry for the AP */
  1398. sta = sta_info_get(local, ifsta->bssid);
  1399. if (!sta) {
  1400. struct ieee80211_sta_bss *bss;
  1401. sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL);
  1402. if (!sta) {
  1403. printk(KERN_DEBUG "%s: failed to add STA entry for the"
  1404. " AP\n", dev->name);
  1405. return;
  1406. }
  1407. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1408. local->hw.conf.channel,
  1409. ifsta->ssid, ifsta->ssid_len);
  1410. if (bss) {
  1411. sta->last_rssi = bss->rssi;
  1412. sta->last_signal = bss->signal;
  1413. sta->last_noise = bss->noise;
  1414. ieee80211_rx_bss_put(dev, bss);
  1415. }
  1416. }
  1417. sta->dev = dev;
  1418. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP;
  1419. rates = 0;
  1420. mode = local->oper_hw_mode;
  1421. for (i = 0; i < elems.supp_rates_len; i++) {
  1422. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1423. for (j = 0; j < mode->num_rates; j++)
  1424. if (mode->rates[j].rate == rate)
  1425. rates |= BIT(j);
  1426. }
  1427. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1428. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1429. for (j = 0; j < mode->num_rates; j++)
  1430. if (mode->rates[j].rate == rate)
  1431. rates |= BIT(j);
  1432. }
  1433. sta->supp_rates = rates;
  1434. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1435. local->ops->conf_ht) {
  1436. struct ieee80211_ht_bss_info bss_info;
  1437. ieee80211_ht_cap_ie_to_ht_info(
  1438. (struct ieee80211_ht_cap *)
  1439. elems.ht_cap_elem, &sta->ht_info);
  1440. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1441. (struct ieee80211_ht_addt_info *)
  1442. elems.ht_info_elem, &bss_info);
  1443. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1444. }
  1445. rate_control_rate_init(sta, local);
  1446. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1447. sta->flags |= WLAN_STA_WME;
  1448. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1449. elems.wmm_param_len);
  1450. }
  1451. sta_info_put(sta);
  1452. ieee80211_associated(dev, ifsta);
  1453. }
  1454. /* Caller must hold local->sta_bss_lock */
  1455. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1456. struct ieee80211_sta_bss *bss)
  1457. {
  1458. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1459. bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1460. local->sta_bss_hash[STA_HASH(bss->bssid)] = bss;
  1461. }
  1462. /* Caller must hold local->sta_bss_lock */
  1463. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1464. struct ieee80211_sta_bss *bss)
  1465. {
  1466. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1467. struct ieee80211_sta_bss *b, *prev = NULL;
  1468. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1469. while (b) {
  1470. if (b == bss) {
  1471. if (!prev)
  1472. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1473. bss->hnext;
  1474. else
  1475. prev->hnext = bss->hnext;
  1476. break;
  1477. }
  1478. prev = b;
  1479. b = b->hnext;
  1480. }
  1481. }
  1482. static struct ieee80211_sta_bss *
  1483. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int channel,
  1484. u8 *ssid, u8 ssid_len)
  1485. {
  1486. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1487. struct ieee80211_sta_bss *bss;
  1488. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1489. if (!bss)
  1490. return NULL;
  1491. atomic_inc(&bss->users);
  1492. atomic_inc(&bss->users);
  1493. memcpy(bss->bssid, bssid, ETH_ALEN);
  1494. bss->channel = channel;
  1495. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1496. memcpy(bss->ssid, ssid, ssid_len);
  1497. bss->ssid_len = ssid_len;
  1498. }
  1499. spin_lock_bh(&local->sta_bss_lock);
  1500. /* TODO: order by RSSI? */
  1501. list_add_tail(&bss->list, &local->sta_bss_list);
  1502. __ieee80211_rx_bss_hash_add(dev, bss);
  1503. spin_unlock_bh(&local->sta_bss_lock);
  1504. return bss;
  1505. }
  1506. static struct ieee80211_sta_bss *
  1507. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  1508. u8 *ssid, u8 ssid_len)
  1509. {
  1510. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1511. struct ieee80211_sta_bss *bss;
  1512. spin_lock_bh(&local->sta_bss_lock);
  1513. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1514. while (bss) {
  1515. if (!memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1516. bss->channel == channel &&
  1517. bss->ssid_len == ssid_len &&
  1518. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1519. atomic_inc(&bss->users);
  1520. break;
  1521. }
  1522. bss = bss->hnext;
  1523. }
  1524. spin_unlock_bh(&local->sta_bss_lock);
  1525. return bss;
  1526. }
  1527. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1528. {
  1529. kfree(bss->wpa_ie);
  1530. kfree(bss->rsn_ie);
  1531. kfree(bss->wmm_ie);
  1532. kfree(bss->ht_ie);
  1533. kfree(bss);
  1534. }
  1535. static void ieee80211_rx_bss_put(struct net_device *dev,
  1536. struct ieee80211_sta_bss *bss)
  1537. {
  1538. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1539. if (!atomic_dec_and_test(&bss->users))
  1540. return;
  1541. spin_lock_bh(&local->sta_bss_lock);
  1542. __ieee80211_rx_bss_hash_del(dev, bss);
  1543. list_del(&bss->list);
  1544. spin_unlock_bh(&local->sta_bss_lock);
  1545. ieee80211_rx_bss_free(bss);
  1546. }
  1547. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1548. {
  1549. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1550. spin_lock_init(&local->sta_bss_lock);
  1551. INIT_LIST_HEAD(&local->sta_bss_list);
  1552. }
  1553. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1554. {
  1555. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1556. struct ieee80211_sta_bss *bss, *tmp;
  1557. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1558. ieee80211_rx_bss_put(dev, bss);
  1559. }
  1560. static void ieee80211_rx_bss_info(struct net_device *dev,
  1561. struct ieee80211_mgmt *mgmt,
  1562. size_t len,
  1563. struct ieee80211_rx_status *rx_status,
  1564. int beacon)
  1565. {
  1566. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1567. struct ieee802_11_elems elems;
  1568. size_t baselen;
  1569. int channel, clen;
  1570. struct ieee80211_sta_bss *bss;
  1571. struct sta_info *sta;
  1572. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1573. u64 timestamp;
  1574. DECLARE_MAC_BUF(mac);
  1575. DECLARE_MAC_BUF(mac2);
  1576. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  1577. return; /* ignore ProbeResp to foreign address */
  1578. #if 0
  1579. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  1580. dev->name, beacon ? "Beacon" : "Probe Response",
  1581. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  1582. #endif
  1583. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1584. if (baselen > len)
  1585. return;
  1586. timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1587. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  1588. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0) {
  1589. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1590. static unsigned long last_tsf_debug = 0;
  1591. u64 tsf;
  1592. if (local->ops->get_tsf)
  1593. tsf = local->ops->get_tsf(local_to_hw(local));
  1594. else
  1595. tsf = -1LLU;
  1596. if (time_after(jiffies, last_tsf_debug + 5 * HZ)) {
  1597. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  1598. "%s TSF=0x%llx BCN=0x%llx diff=%lld "
  1599. "@%lu\n",
  1600. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->bssid),
  1601. (unsigned long long)tsf,
  1602. (unsigned long long)timestamp,
  1603. (unsigned long long)(tsf - timestamp),
  1604. jiffies);
  1605. last_tsf_debug = jiffies;
  1606. }
  1607. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1608. }
  1609. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1610. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  1611. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  1612. (sta = sta_info_get(local, mgmt->sa))) {
  1613. struct ieee80211_hw_mode *mode;
  1614. struct ieee80211_rate *rates;
  1615. size_t num_rates;
  1616. u32 supp_rates, prev_rates;
  1617. int i, j;
  1618. mode = local->sta_sw_scanning ?
  1619. local->scan_hw_mode : local->oper_hw_mode;
  1620. if (local->sta_hw_scanning) {
  1621. /* search for the correct mode matches the beacon */
  1622. list_for_each_entry(mode, &local->modes_list, list)
  1623. if (mode->mode == rx_status->phymode)
  1624. break;
  1625. if (mode == NULL)
  1626. mode = local->oper_hw_mode;
  1627. }
  1628. rates = mode->rates;
  1629. num_rates = mode->num_rates;
  1630. supp_rates = 0;
  1631. for (i = 0; i < elems.supp_rates_len +
  1632. elems.ext_supp_rates_len; i++) {
  1633. u8 rate = 0;
  1634. int own_rate;
  1635. if (i < elems.supp_rates_len)
  1636. rate = elems.supp_rates[i];
  1637. else if (elems.ext_supp_rates)
  1638. rate = elems.ext_supp_rates
  1639. [i - elems.supp_rates_len];
  1640. own_rate = 5 * (rate & 0x7f);
  1641. for (j = 0; j < num_rates; j++)
  1642. if (rates[j].rate == own_rate)
  1643. supp_rates |= BIT(j);
  1644. }
  1645. prev_rates = sta->supp_rates;
  1646. sta->supp_rates &= supp_rates;
  1647. if (sta->supp_rates == 0) {
  1648. /* No matching rates - this should not really happen.
  1649. * Make sure that at least one rate is marked
  1650. * supported to avoid issues with TX rate ctrl. */
  1651. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  1652. }
  1653. if (sta->supp_rates != prev_rates) {
  1654. printk(KERN_DEBUG "%s: updated supp_rates set for "
  1655. "%s based on beacon info (0x%x & 0x%x -> "
  1656. "0x%x)\n",
  1657. dev->name, print_mac(mac, sta->addr), prev_rates,
  1658. supp_rates, sta->supp_rates);
  1659. }
  1660. sta_info_put(sta);
  1661. }
  1662. if (!elems.ssid)
  1663. return;
  1664. if (elems.ds_params && elems.ds_params_len == 1)
  1665. channel = elems.ds_params[0];
  1666. else
  1667. channel = rx_status->channel;
  1668. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, channel,
  1669. elems.ssid, elems.ssid_len);
  1670. if (!bss) {
  1671. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, channel,
  1672. elems.ssid, elems.ssid_len);
  1673. if (!bss)
  1674. return;
  1675. } else {
  1676. #if 0
  1677. /* TODO: order by RSSI? */
  1678. spin_lock_bh(&local->sta_bss_lock);
  1679. list_move_tail(&bss->list, &local->sta_bss_list);
  1680. spin_unlock_bh(&local->sta_bss_lock);
  1681. #endif
  1682. }
  1683. if (bss->probe_resp && beacon) {
  1684. /* Do not allow beacon to override data from Probe Response. */
  1685. ieee80211_rx_bss_put(dev, bss);
  1686. return;
  1687. }
  1688. /* save the ERP value so that it is available at association time */
  1689. if (elems.erp_info && elems.erp_info_len >= 1) {
  1690. bss->erp_value = elems.erp_info[0];
  1691. bss->has_erp_value = 1;
  1692. }
  1693. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  1694. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  1695. bss->supp_rates_len = 0;
  1696. if (elems.supp_rates) {
  1697. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1698. if (clen > elems.supp_rates_len)
  1699. clen = elems.supp_rates_len;
  1700. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  1701. clen);
  1702. bss->supp_rates_len += clen;
  1703. }
  1704. if (elems.ext_supp_rates) {
  1705. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1706. if (clen > elems.ext_supp_rates_len)
  1707. clen = elems.ext_supp_rates_len;
  1708. memcpy(&bss->supp_rates[bss->supp_rates_len],
  1709. elems.ext_supp_rates, clen);
  1710. bss->supp_rates_len += clen;
  1711. }
  1712. if (elems.wpa &&
  1713. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  1714. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  1715. kfree(bss->wpa_ie);
  1716. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  1717. if (bss->wpa_ie) {
  1718. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  1719. bss->wpa_ie_len = elems.wpa_len + 2;
  1720. } else
  1721. bss->wpa_ie_len = 0;
  1722. } else if (!elems.wpa && bss->wpa_ie) {
  1723. kfree(bss->wpa_ie);
  1724. bss->wpa_ie = NULL;
  1725. bss->wpa_ie_len = 0;
  1726. }
  1727. if (elems.rsn &&
  1728. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  1729. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  1730. kfree(bss->rsn_ie);
  1731. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  1732. if (bss->rsn_ie) {
  1733. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  1734. bss->rsn_ie_len = elems.rsn_len + 2;
  1735. } else
  1736. bss->rsn_ie_len = 0;
  1737. } else if (!elems.rsn && bss->rsn_ie) {
  1738. kfree(bss->rsn_ie);
  1739. bss->rsn_ie = NULL;
  1740. bss->rsn_ie_len = 0;
  1741. }
  1742. if (elems.wmm_param &&
  1743. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  1744. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  1745. kfree(bss->wmm_ie);
  1746. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  1747. if (bss->wmm_ie) {
  1748. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  1749. elems.wmm_param_len + 2);
  1750. bss->wmm_ie_len = elems.wmm_param_len + 2;
  1751. } else
  1752. bss->wmm_ie_len = 0;
  1753. } else if (!elems.wmm_param && bss->wmm_ie) {
  1754. kfree(bss->wmm_ie);
  1755. bss->wmm_ie = NULL;
  1756. bss->wmm_ie_len = 0;
  1757. }
  1758. if (elems.ht_cap_elem &&
  1759. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  1760. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  1761. kfree(bss->ht_ie);
  1762. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  1763. if (bss->ht_ie) {
  1764. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  1765. elems.ht_cap_elem_len + 2);
  1766. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  1767. } else
  1768. bss->ht_ie_len = 0;
  1769. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  1770. kfree(bss->ht_ie);
  1771. bss->ht_ie = NULL;
  1772. bss->ht_ie_len = 0;
  1773. }
  1774. bss->hw_mode = rx_status->phymode;
  1775. bss->freq = rx_status->freq;
  1776. if (channel != rx_status->channel &&
  1777. (bss->hw_mode == MODE_IEEE80211G ||
  1778. bss->hw_mode == MODE_IEEE80211B) &&
  1779. channel >= 1 && channel <= 14) {
  1780. static const int freq_list[] = {
  1781. 2412, 2417, 2422, 2427, 2432, 2437, 2442,
  1782. 2447, 2452, 2457, 2462, 2467, 2472, 2484
  1783. };
  1784. /* IEEE 802.11g/b mode can receive packets from neighboring
  1785. * channels, so map the channel into frequency. */
  1786. bss->freq = freq_list[channel - 1];
  1787. }
  1788. bss->timestamp = timestamp;
  1789. bss->last_update = jiffies;
  1790. bss->rssi = rx_status->ssi;
  1791. bss->signal = rx_status->signal;
  1792. bss->noise = rx_status->noise;
  1793. if (!beacon)
  1794. bss->probe_resp++;
  1795. ieee80211_rx_bss_put(dev, bss);
  1796. }
  1797. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  1798. struct ieee80211_mgmt *mgmt,
  1799. size_t len,
  1800. struct ieee80211_rx_status *rx_status)
  1801. {
  1802. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  1803. }
  1804. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  1805. struct ieee80211_mgmt *mgmt,
  1806. size_t len,
  1807. struct ieee80211_rx_status *rx_status)
  1808. {
  1809. struct ieee80211_sub_if_data *sdata;
  1810. struct ieee80211_if_sta *ifsta;
  1811. size_t baselen;
  1812. struct ieee802_11_elems elems;
  1813. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1814. struct ieee80211_conf *conf = &local->hw.conf;
  1815. u32 changed = 0;
  1816. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  1817. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1818. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  1819. return;
  1820. ifsta = &sdata->u.sta;
  1821. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  1822. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  1823. return;
  1824. /* Process beacon from the current BSS */
  1825. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1826. if (baselen > len)
  1827. return;
  1828. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1829. if (elems.erp_info && elems.erp_info_len >= 1)
  1830. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  1831. if (elems.ht_cap_elem && elems.ht_info_elem &&
  1832. elems.wmm_param && local->ops->conf_ht &&
  1833. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  1834. struct ieee80211_ht_bss_info bss_info;
  1835. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1836. (struct ieee80211_ht_addt_info *)
  1837. elems.ht_info_elem, &bss_info);
  1838. /* check if AP changed bss inforamation */
  1839. if ((conf->ht_bss_conf.primary_channel !=
  1840. bss_info.primary_channel) ||
  1841. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  1842. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  1843. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  1844. &bss_info);
  1845. }
  1846. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1847. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1848. elems.wmm_param_len);
  1849. }
  1850. ieee80211_bss_info_change_notify(sdata, changed);
  1851. }
  1852. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  1853. struct ieee80211_if_sta *ifsta,
  1854. struct ieee80211_mgmt *mgmt,
  1855. size_t len,
  1856. struct ieee80211_rx_status *rx_status)
  1857. {
  1858. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1859. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1860. int tx_last_beacon;
  1861. struct sk_buff *skb;
  1862. struct ieee80211_mgmt *resp;
  1863. u8 *pos, *end;
  1864. DECLARE_MAC_BUF(mac);
  1865. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1866. DECLARE_MAC_BUF(mac2);
  1867. DECLARE_MAC_BUF(mac3);
  1868. #endif
  1869. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  1870. ifsta->state != IEEE80211_IBSS_JOINED ||
  1871. len < 24 + 2 || !ifsta->probe_resp)
  1872. return;
  1873. if (local->ops->tx_last_beacon)
  1874. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  1875. else
  1876. tx_last_beacon = 1;
  1877. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1878. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  1879. "%s (tx_last_beacon=%d)\n",
  1880. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  1881. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  1882. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1883. if (!tx_last_beacon)
  1884. return;
  1885. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  1886. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  1887. return;
  1888. end = ((u8 *) mgmt) + len;
  1889. pos = mgmt->u.probe_req.variable;
  1890. if (pos[0] != WLAN_EID_SSID ||
  1891. pos + 2 + pos[1] > end) {
  1892. if (net_ratelimit()) {
  1893. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  1894. "from %s\n",
  1895. dev->name, print_mac(mac, mgmt->sa));
  1896. }
  1897. return;
  1898. }
  1899. if (pos[1] != 0 &&
  1900. (pos[1] != ifsta->ssid_len ||
  1901. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  1902. /* Ignore ProbeReq for foreign SSID */
  1903. return;
  1904. }
  1905. /* Reply with ProbeResp */
  1906. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  1907. if (!skb)
  1908. return;
  1909. resp = (struct ieee80211_mgmt *) skb->data;
  1910. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  1911. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1912. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  1913. dev->name, print_mac(mac, resp->da));
  1914. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1915. ieee80211_sta_tx(dev, skb, 0);
  1916. }
  1917. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  1918. struct ieee80211_if_sta *ifsta,
  1919. struct ieee80211_mgmt *mgmt,
  1920. size_t len)
  1921. {
  1922. if (len < IEEE80211_MIN_ACTION_SIZE)
  1923. return;
  1924. switch (mgmt->u.action.category) {
  1925. case WLAN_CATEGORY_BACK:
  1926. switch (mgmt->u.action.u.addba_req.action_code) {
  1927. case WLAN_ACTION_ADDBA_REQ:
  1928. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1929. sizeof(mgmt->u.action.u.addba_req)))
  1930. break;
  1931. ieee80211_sta_process_addba_request(dev, mgmt, len);
  1932. break;
  1933. case WLAN_ACTION_DELBA:
  1934. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1935. sizeof(mgmt->u.action.u.delba)))
  1936. break;
  1937. ieee80211_sta_process_delba(dev, mgmt, len);
  1938. break;
  1939. default:
  1940. if (net_ratelimit())
  1941. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  1942. dev->name);
  1943. break;
  1944. }
  1945. break;
  1946. default:
  1947. break;
  1948. }
  1949. }
  1950. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  1951. struct ieee80211_rx_status *rx_status)
  1952. {
  1953. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1954. struct ieee80211_sub_if_data *sdata;
  1955. struct ieee80211_if_sta *ifsta;
  1956. struct ieee80211_mgmt *mgmt;
  1957. u16 fc;
  1958. if (skb->len < 24)
  1959. goto fail;
  1960. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1961. ifsta = &sdata->u.sta;
  1962. mgmt = (struct ieee80211_mgmt *) skb->data;
  1963. fc = le16_to_cpu(mgmt->frame_control);
  1964. switch (fc & IEEE80211_FCTL_STYPE) {
  1965. case IEEE80211_STYPE_PROBE_REQ:
  1966. case IEEE80211_STYPE_PROBE_RESP:
  1967. case IEEE80211_STYPE_BEACON:
  1968. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  1969. case IEEE80211_STYPE_AUTH:
  1970. case IEEE80211_STYPE_ASSOC_RESP:
  1971. case IEEE80211_STYPE_REASSOC_RESP:
  1972. case IEEE80211_STYPE_DEAUTH:
  1973. case IEEE80211_STYPE_DISASSOC:
  1974. case IEEE80211_STYPE_ACTION:
  1975. skb_queue_tail(&ifsta->skb_queue, skb);
  1976. queue_work(local->hw.workqueue, &ifsta->work);
  1977. return;
  1978. default:
  1979. printk(KERN_DEBUG "%s: received unknown management frame - "
  1980. "stype=%d\n", dev->name,
  1981. (fc & IEEE80211_FCTL_STYPE) >> 4);
  1982. break;
  1983. }
  1984. fail:
  1985. kfree_skb(skb);
  1986. }
  1987. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  1988. struct sk_buff *skb)
  1989. {
  1990. struct ieee80211_rx_status *rx_status;
  1991. struct ieee80211_sub_if_data *sdata;
  1992. struct ieee80211_if_sta *ifsta;
  1993. struct ieee80211_mgmt *mgmt;
  1994. u16 fc;
  1995. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1996. ifsta = &sdata->u.sta;
  1997. rx_status = (struct ieee80211_rx_status *) skb->cb;
  1998. mgmt = (struct ieee80211_mgmt *) skb->data;
  1999. fc = le16_to_cpu(mgmt->frame_control);
  2000. switch (fc & IEEE80211_FCTL_STYPE) {
  2001. case IEEE80211_STYPE_PROBE_REQ:
  2002. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2003. rx_status);
  2004. break;
  2005. case IEEE80211_STYPE_PROBE_RESP:
  2006. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2007. break;
  2008. case IEEE80211_STYPE_BEACON:
  2009. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2010. break;
  2011. case IEEE80211_STYPE_AUTH:
  2012. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2013. break;
  2014. case IEEE80211_STYPE_ASSOC_RESP:
  2015. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2016. break;
  2017. case IEEE80211_STYPE_REASSOC_RESP:
  2018. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2019. break;
  2020. case IEEE80211_STYPE_DEAUTH:
  2021. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2022. break;
  2023. case IEEE80211_STYPE_DISASSOC:
  2024. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2025. break;
  2026. case IEEE80211_STYPE_ACTION:
  2027. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len);
  2028. break;
  2029. }
  2030. kfree_skb(skb);
  2031. }
  2032. ieee80211_txrx_result
  2033. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2034. struct ieee80211_rx_status *rx_status)
  2035. {
  2036. struct ieee80211_mgmt *mgmt;
  2037. u16 fc;
  2038. if (skb->len < 2)
  2039. return TXRX_DROP;
  2040. mgmt = (struct ieee80211_mgmt *) skb->data;
  2041. fc = le16_to_cpu(mgmt->frame_control);
  2042. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2043. return TXRX_CONTINUE;
  2044. if (skb->len < 24)
  2045. return TXRX_DROP;
  2046. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2047. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2048. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2049. skb->len, rx_status);
  2050. dev_kfree_skb(skb);
  2051. return TXRX_QUEUED;
  2052. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2053. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2054. rx_status);
  2055. dev_kfree_skb(skb);
  2056. return TXRX_QUEUED;
  2057. }
  2058. }
  2059. return TXRX_CONTINUE;
  2060. }
  2061. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2062. {
  2063. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2064. int active = 0;
  2065. struct sta_info *sta;
  2066. read_lock_bh(&local->sta_lock);
  2067. list_for_each_entry(sta, &local->sta_list, list) {
  2068. if (sta->dev == dev &&
  2069. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2070. jiffies)) {
  2071. active++;
  2072. break;
  2073. }
  2074. }
  2075. read_unlock_bh(&local->sta_lock);
  2076. return active;
  2077. }
  2078. static void ieee80211_sta_expire(struct net_device *dev)
  2079. {
  2080. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2081. struct sta_info *sta, *tmp;
  2082. LIST_HEAD(tmp_list);
  2083. DECLARE_MAC_BUF(mac);
  2084. write_lock_bh(&local->sta_lock);
  2085. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2086. if (time_after(jiffies, sta->last_rx +
  2087. IEEE80211_IBSS_INACTIVITY_LIMIT)) {
  2088. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2089. dev->name, print_mac(mac, sta->addr));
  2090. __sta_info_get(sta);
  2091. sta_info_remove(sta);
  2092. list_add(&sta->list, &tmp_list);
  2093. }
  2094. write_unlock_bh(&local->sta_lock);
  2095. list_for_each_entry_safe(sta, tmp, &tmp_list, list) {
  2096. sta_info_free(sta);
  2097. sta_info_put(sta);
  2098. }
  2099. }
  2100. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2101. struct ieee80211_if_sta *ifsta)
  2102. {
  2103. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2104. ieee80211_sta_expire(dev);
  2105. if (ieee80211_sta_active_ibss(dev))
  2106. return;
  2107. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2108. "IBSS networks with same SSID (merge)\n", dev->name);
  2109. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2110. }
  2111. void ieee80211_sta_timer(unsigned long data)
  2112. {
  2113. struct ieee80211_sub_if_data *sdata =
  2114. (struct ieee80211_sub_if_data *) data;
  2115. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2116. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2117. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2118. queue_work(local->hw.workqueue, &ifsta->work);
  2119. }
  2120. void ieee80211_sta_work(struct work_struct *work)
  2121. {
  2122. struct ieee80211_sub_if_data *sdata =
  2123. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2124. struct net_device *dev = sdata->dev;
  2125. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2126. struct ieee80211_if_sta *ifsta;
  2127. struct sk_buff *skb;
  2128. if (!netif_running(dev))
  2129. return;
  2130. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2131. return;
  2132. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2133. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  2134. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2135. "(type=%d)\n", dev->name, sdata->vif.type);
  2136. return;
  2137. }
  2138. ifsta = &sdata->u.sta;
  2139. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2140. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2141. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2142. ifsta->state != IEEE80211_ASSOCIATE &&
  2143. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2144. if (ifsta->scan_ssid_len)
  2145. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2146. else
  2147. ieee80211_sta_start_scan(dev, NULL, 0);
  2148. return;
  2149. }
  2150. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2151. if (ieee80211_sta_config_auth(dev, ifsta))
  2152. return;
  2153. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2154. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2155. return;
  2156. switch (ifsta->state) {
  2157. case IEEE80211_DISABLED:
  2158. break;
  2159. case IEEE80211_AUTHENTICATE:
  2160. ieee80211_authenticate(dev, ifsta);
  2161. break;
  2162. case IEEE80211_ASSOCIATE:
  2163. ieee80211_associate(dev, ifsta);
  2164. break;
  2165. case IEEE80211_ASSOCIATED:
  2166. ieee80211_associated(dev, ifsta);
  2167. break;
  2168. case IEEE80211_IBSS_SEARCH:
  2169. ieee80211_sta_find_ibss(dev, ifsta);
  2170. break;
  2171. case IEEE80211_IBSS_JOINED:
  2172. ieee80211_sta_merge_ibss(dev, ifsta);
  2173. break;
  2174. default:
  2175. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2176. ifsta->state);
  2177. break;
  2178. }
  2179. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2180. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2181. "mixed-cell disabled - disassociate\n", dev->name);
  2182. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2183. ieee80211_set_disassoc(dev, ifsta, 0);
  2184. }
  2185. }
  2186. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2187. struct ieee80211_if_sta *ifsta)
  2188. {
  2189. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2190. if (local->ops->reset_tsf) {
  2191. /* Reset own TSF to allow time synchronization work. */
  2192. local->ops->reset_tsf(local_to_hw(local));
  2193. }
  2194. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2195. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2196. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2197. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2198. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2199. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2200. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2201. else
  2202. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2203. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2204. ifsta->auth_alg);
  2205. ifsta->auth_transaction = -1;
  2206. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2207. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2208. netif_carrier_off(dev);
  2209. }
  2210. void ieee80211_sta_req_auth(struct net_device *dev,
  2211. struct ieee80211_if_sta *ifsta)
  2212. {
  2213. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2214. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2215. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2216. return;
  2217. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2218. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2219. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2220. IEEE80211_STA_AUTO_SSID_SEL))) {
  2221. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2222. queue_work(local->hw.workqueue, &ifsta->work);
  2223. }
  2224. }
  2225. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2226. const char *ssid, int ssid_len)
  2227. {
  2228. int tmp, hidden_ssid;
  2229. if (ssid_len == ifsta->ssid_len &&
  2230. !memcmp(ifsta->ssid, ssid, ssid_len))
  2231. return 1;
  2232. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2233. return 0;
  2234. hidden_ssid = 1;
  2235. tmp = ssid_len;
  2236. while (tmp--) {
  2237. if (ssid[tmp] != '\0') {
  2238. hidden_ssid = 0;
  2239. break;
  2240. }
  2241. }
  2242. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2243. return 1;
  2244. if (ssid_len == 1 && ssid[0] == ' ')
  2245. return 1;
  2246. return 0;
  2247. }
  2248. static int ieee80211_sta_config_auth(struct net_device *dev,
  2249. struct ieee80211_if_sta *ifsta)
  2250. {
  2251. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2252. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2253. struct ieee80211_sta_bss *bss, *selected = NULL;
  2254. int top_rssi = 0, freq;
  2255. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2256. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2257. ifsta->state = IEEE80211_AUTHENTICATE;
  2258. ieee80211_sta_reset_auth(dev, ifsta);
  2259. return 0;
  2260. }
  2261. spin_lock_bh(&local->sta_bss_lock);
  2262. freq = local->oper_channel->freq;
  2263. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2264. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2265. continue;
  2266. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2267. !!sdata->default_key)
  2268. continue;
  2269. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2270. bss->freq != freq)
  2271. continue;
  2272. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2273. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2274. continue;
  2275. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2276. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2277. continue;
  2278. if (!selected || top_rssi < bss->rssi) {
  2279. selected = bss;
  2280. top_rssi = bss->rssi;
  2281. }
  2282. }
  2283. if (selected)
  2284. atomic_inc(&selected->users);
  2285. spin_unlock_bh(&local->sta_bss_lock);
  2286. if (selected) {
  2287. ieee80211_set_channel(local, -1, selected->freq);
  2288. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2289. ieee80211_sta_set_ssid(dev, selected->ssid,
  2290. selected->ssid_len);
  2291. ieee80211_sta_set_bssid(dev, selected->bssid);
  2292. ieee80211_rx_bss_put(dev, selected);
  2293. ifsta->state = IEEE80211_AUTHENTICATE;
  2294. ieee80211_sta_reset_auth(dev, ifsta);
  2295. return 0;
  2296. } else {
  2297. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2298. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2299. ieee80211_sta_start_scan(dev, NULL, 0);
  2300. else
  2301. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2302. ifsta->ssid_len);
  2303. ifsta->state = IEEE80211_AUTHENTICATE;
  2304. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2305. } else
  2306. ifsta->state = IEEE80211_DISABLED;
  2307. }
  2308. return -1;
  2309. }
  2310. static int ieee80211_sta_join_ibss(struct net_device *dev,
  2311. struct ieee80211_if_sta *ifsta,
  2312. struct ieee80211_sta_bss *bss)
  2313. {
  2314. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2315. int res, rates, i, j;
  2316. struct sk_buff *skb;
  2317. struct ieee80211_mgmt *mgmt;
  2318. struct ieee80211_tx_control control;
  2319. struct ieee80211_hw_mode *mode;
  2320. struct rate_selection ratesel;
  2321. u8 *pos;
  2322. struct ieee80211_sub_if_data *sdata;
  2323. /* Remove possible STA entries from other IBSS networks. */
  2324. sta_info_flush(local, NULL);
  2325. if (local->ops->reset_tsf) {
  2326. /* Reset own TSF to allow time synchronization work. */
  2327. local->ops->reset_tsf(local_to_hw(local));
  2328. }
  2329. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  2330. res = ieee80211_if_config(dev);
  2331. if (res)
  2332. return res;
  2333. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2334. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2335. sdata->drop_unencrypted = bss->capability &
  2336. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2337. res = ieee80211_set_channel(local, -1, bss->freq);
  2338. if (!(local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)) {
  2339. printk(KERN_DEBUG "%s: IBSS not allowed on channel %d "
  2340. "(%d MHz)\n", dev->name, local->hw.conf.channel,
  2341. local->hw.conf.freq);
  2342. return -1;
  2343. }
  2344. /* Set beacon template based on scan results */
  2345. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2346. do {
  2347. if (!skb)
  2348. break;
  2349. skb_reserve(skb, local->hw.extra_tx_headroom);
  2350. mgmt = (struct ieee80211_mgmt *)
  2351. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2352. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2353. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2354. IEEE80211_STYPE_BEACON);
  2355. memset(mgmt->da, 0xff, ETH_ALEN);
  2356. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2357. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2358. mgmt->u.beacon.beacon_int =
  2359. cpu_to_le16(local->hw.conf.beacon_int);
  2360. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2361. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2362. *pos++ = WLAN_EID_SSID;
  2363. *pos++ = ifsta->ssid_len;
  2364. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2365. rates = bss->supp_rates_len;
  2366. if (rates > 8)
  2367. rates = 8;
  2368. pos = skb_put(skb, 2 + rates);
  2369. *pos++ = WLAN_EID_SUPP_RATES;
  2370. *pos++ = rates;
  2371. memcpy(pos, bss->supp_rates, rates);
  2372. pos = skb_put(skb, 2 + 1);
  2373. *pos++ = WLAN_EID_DS_PARAMS;
  2374. *pos++ = 1;
  2375. *pos++ = bss->channel;
  2376. pos = skb_put(skb, 2 + 2);
  2377. *pos++ = WLAN_EID_IBSS_PARAMS;
  2378. *pos++ = 2;
  2379. /* FIX: set ATIM window based on scan results */
  2380. *pos++ = 0;
  2381. *pos++ = 0;
  2382. if (bss->supp_rates_len > 8) {
  2383. rates = bss->supp_rates_len - 8;
  2384. pos = skb_put(skb, 2 + rates);
  2385. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2386. *pos++ = rates;
  2387. memcpy(pos, &bss->supp_rates[8], rates);
  2388. }
  2389. memset(&control, 0, sizeof(control));
  2390. rate_control_get_rate(dev, local->oper_hw_mode, skb, &ratesel);
  2391. if (!ratesel.rate) {
  2392. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2393. "for IBSS beacon\n", dev->name);
  2394. break;
  2395. }
  2396. control.vif = &sdata->vif;
  2397. control.tx_rate =
  2398. (sdata->bss_conf.use_short_preamble &&
  2399. (ratesel.rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
  2400. ratesel.rate->val2 : ratesel.rate->val;
  2401. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2402. control.power_level = local->hw.conf.power_level;
  2403. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2404. control.retry_limit = 1;
  2405. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2406. if (ifsta->probe_resp) {
  2407. mgmt = (struct ieee80211_mgmt *)
  2408. ifsta->probe_resp->data;
  2409. mgmt->frame_control =
  2410. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2411. IEEE80211_STYPE_PROBE_RESP);
  2412. } else {
  2413. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2414. "template for IBSS\n", dev->name);
  2415. }
  2416. if (local->ops->beacon_update &&
  2417. local->ops->beacon_update(local_to_hw(local),
  2418. skb, &control) == 0) {
  2419. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2420. "template based on scan results\n", dev->name);
  2421. skb = NULL;
  2422. }
  2423. rates = 0;
  2424. mode = local->oper_hw_mode;
  2425. for (i = 0; i < bss->supp_rates_len; i++) {
  2426. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2427. for (j = 0; j < mode->num_rates; j++)
  2428. if (mode->rates[j].rate == bitrate)
  2429. rates |= BIT(j);
  2430. }
  2431. ifsta->supp_rates_bits = rates;
  2432. } while (0);
  2433. if (skb) {
  2434. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2435. "template\n", dev->name);
  2436. dev_kfree_skb(skb);
  2437. }
  2438. ifsta->state = IEEE80211_IBSS_JOINED;
  2439. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2440. ieee80211_rx_bss_put(dev, bss);
  2441. return res;
  2442. }
  2443. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2444. struct ieee80211_if_sta *ifsta)
  2445. {
  2446. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2447. struct ieee80211_sta_bss *bss;
  2448. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2449. struct ieee80211_hw_mode *mode;
  2450. u8 bssid[ETH_ALEN], *pos;
  2451. int i;
  2452. DECLARE_MAC_BUF(mac);
  2453. #if 0
  2454. /* Easier testing, use fixed BSSID. */
  2455. memset(bssid, 0xfe, ETH_ALEN);
  2456. #else
  2457. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2458. * own MAC address to make sure that devices that do not have proper
  2459. * random number generator get different BSSID. */
  2460. get_random_bytes(bssid, ETH_ALEN);
  2461. for (i = 0; i < ETH_ALEN; i++)
  2462. bssid[i] ^= dev->dev_addr[i];
  2463. bssid[0] &= ~0x01;
  2464. bssid[0] |= 0x02;
  2465. #endif
  2466. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2467. dev->name, print_mac(mac, bssid));
  2468. bss = ieee80211_rx_bss_add(dev, bssid, local->hw.conf.channel,
  2469. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2470. if (!bss)
  2471. return -ENOMEM;
  2472. mode = local->oper_hw_mode;
  2473. if (local->hw.conf.beacon_int == 0)
  2474. local->hw.conf.beacon_int = 100;
  2475. bss->beacon_int = local->hw.conf.beacon_int;
  2476. bss->hw_mode = local->hw.conf.phymode;
  2477. bss->freq = local->hw.conf.freq;
  2478. bss->last_update = jiffies;
  2479. bss->capability = WLAN_CAPABILITY_IBSS;
  2480. if (sdata->default_key) {
  2481. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2482. } else
  2483. sdata->drop_unencrypted = 0;
  2484. bss->supp_rates_len = mode->num_rates;
  2485. pos = bss->supp_rates;
  2486. for (i = 0; i < mode->num_rates; i++) {
  2487. int rate = mode->rates[i].rate;
  2488. *pos++ = (u8) (rate / 5);
  2489. }
  2490. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2491. }
  2492. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2493. struct ieee80211_if_sta *ifsta)
  2494. {
  2495. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2496. struct ieee80211_sta_bss *bss;
  2497. int found = 0;
  2498. u8 bssid[ETH_ALEN];
  2499. int active_ibss;
  2500. DECLARE_MAC_BUF(mac);
  2501. DECLARE_MAC_BUF(mac2);
  2502. if (ifsta->ssid_len == 0)
  2503. return -EINVAL;
  2504. active_ibss = ieee80211_sta_active_ibss(dev);
  2505. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2506. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2507. dev->name, active_ibss);
  2508. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2509. spin_lock_bh(&local->sta_bss_lock);
  2510. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2511. if (ifsta->ssid_len != bss->ssid_len ||
  2512. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2513. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2514. continue;
  2515. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2516. printk(KERN_DEBUG " bssid=%s found\n",
  2517. print_mac(mac, bss->bssid));
  2518. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2519. memcpy(bssid, bss->bssid, ETH_ALEN);
  2520. found = 1;
  2521. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2522. break;
  2523. }
  2524. spin_unlock_bh(&local->sta_bss_lock);
  2525. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2526. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2527. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2528. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2529. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2530. (bss = ieee80211_rx_bss_get(dev, bssid, local->hw.conf.channel,
  2531. ifsta->ssid, ifsta->ssid_len))) {
  2532. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2533. " based on configured SSID\n",
  2534. dev->name, print_mac(mac, bssid));
  2535. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2536. }
  2537. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2538. printk(KERN_DEBUG " did not try to join ibss\n");
  2539. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2540. /* Selected IBSS not found in current scan results - try to scan */
  2541. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2542. !ieee80211_sta_active_ibss(dev)) {
  2543. mod_timer(&ifsta->timer, jiffies +
  2544. IEEE80211_IBSS_MERGE_INTERVAL);
  2545. } else if (time_after(jiffies, local->last_scan_completed +
  2546. IEEE80211_SCAN_INTERVAL)) {
  2547. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2548. "join\n", dev->name);
  2549. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2550. ifsta->ssid_len);
  2551. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2552. int interval = IEEE80211_SCAN_INTERVAL;
  2553. if (time_after(jiffies, ifsta->ibss_join_req +
  2554. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2555. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2556. local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)
  2557. return ieee80211_sta_create_ibss(dev, ifsta);
  2558. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2559. printk(KERN_DEBUG "%s: IBSS not allowed on the"
  2560. " configured channel %d (%d MHz)\n",
  2561. dev->name, local->hw.conf.channel,
  2562. local->hw.conf.freq);
  2563. }
  2564. /* No IBSS found - decrease scan interval and continue
  2565. * scanning. */
  2566. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2567. }
  2568. ifsta->state = IEEE80211_IBSS_SEARCH;
  2569. mod_timer(&ifsta->timer, jiffies + interval);
  2570. return 0;
  2571. }
  2572. return 0;
  2573. }
  2574. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2575. {
  2576. struct ieee80211_sub_if_data *sdata;
  2577. struct ieee80211_if_sta *ifsta;
  2578. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2579. if (len > IEEE80211_MAX_SSID_LEN)
  2580. return -EINVAL;
  2581. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2582. * not defined. */
  2583. if (local->ops->conf_tx) {
  2584. struct ieee80211_tx_queue_params qparam;
  2585. int i;
  2586. memset(&qparam, 0, sizeof(qparam));
  2587. /* TODO: are these ok defaults for all hw_modes? */
  2588. qparam.aifs = 2;
  2589. qparam.cw_min =
  2590. local->hw.conf.phymode == MODE_IEEE80211B ? 31 : 15;
  2591. qparam.cw_max = 1023;
  2592. qparam.burst_time = 0;
  2593. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2594. {
  2595. local->ops->conf_tx(local_to_hw(local),
  2596. i + IEEE80211_TX_QUEUE_DATA0,
  2597. &qparam);
  2598. }
  2599. /* IBSS uses different parameters for Beacon sending */
  2600. qparam.cw_min++;
  2601. qparam.cw_min *= 2;
  2602. qparam.cw_min--;
  2603. local->ops->conf_tx(local_to_hw(local),
  2604. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2605. }
  2606. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2607. ifsta = &sdata->u.sta;
  2608. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2609. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2610. memcpy(ifsta->ssid, ssid, len);
  2611. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2612. ifsta->ssid_len = len;
  2613. if (len)
  2614. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2615. else
  2616. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2617. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2618. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2619. ifsta->ibss_join_req = jiffies;
  2620. ifsta->state = IEEE80211_IBSS_SEARCH;
  2621. return ieee80211_sta_find_ibss(dev, ifsta);
  2622. }
  2623. return 0;
  2624. }
  2625. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  2626. {
  2627. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2628. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2629. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  2630. *len = ifsta->ssid_len;
  2631. return 0;
  2632. }
  2633. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  2634. {
  2635. struct ieee80211_sub_if_data *sdata;
  2636. struct ieee80211_if_sta *ifsta;
  2637. int res;
  2638. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2639. ifsta = &sdata->u.sta;
  2640. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  2641. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  2642. res = ieee80211_if_config(dev);
  2643. if (res) {
  2644. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  2645. "the low-level driver\n", dev->name);
  2646. return res;
  2647. }
  2648. }
  2649. if (is_valid_ether_addr(bssid))
  2650. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  2651. else
  2652. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  2653. return 0;
  2654. }
  2655. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  2656. struct ieee80211_sub_if_data *sdata,
  2657. int powersave)
  2658. {
  2659. struct sk_buff *skb;
  2660. struct ieee80211_hdr *nullfunc;
  2661. u16 fc;
  2662. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  2663. if (!skb) {
  2664. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  2665. "frame\n", sdata->dev->name);
  2666. return;
  2667. }
  2668. skb_reserve(skb, local->hw.extra_tx_headroom);
  2669. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  2670. memset(nullfunc, 0, 24);
  2671. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  2672. IEEE80211_FCTL_TODS;
  2673. if (powersave)
  2674. fc |= IEEE80211_FCTL_PM;
  2675. nullfunc->frame_control = cpu_to_le16(fc);
  2676. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  2677. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  2678. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  2679. ieee80211_sta_tx(sdata->dev, skb, 0);
  2680. }
  2681. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  2682. {
  2683. struct ieee80211_local *local = hw_to_local(hw);
  2684. struct net_device *dev = local->scan_dev;
  2685. struct ieee80211_sub_if_data *sdata;
  2686. union iwreq_data wrqu;
  2687. local->last_scan_completed = jiffies;
  2688. memset(&wrqu, 0, sizeof(wrqu));
  2689. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  2690. if (local->sta_hw_scanning) {
  2691. local->sta_hw_scanning = 0;
  2692. goto done;
  2693. }
  2694. local->sta_sw_scanning = 0;
  2695. if (ieee80211_hw_config(local))
  2696. printk(KERN_DEBUG "%s: failed to restore operational "
  2697. "channel after scan\n", dev->name);
  2698. netif_tx_lock_bh(local->mdev);
  2699. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  2700. local->ops->configure_filter(local_to_hw(local),
  2701. FIF_BCN_PRBRESP_PROMISC,
  2702. &local->filter_flags,
  2703. local->mdev->mc_count,
  2704. local->mdev->mc_list);
  2705. netif_tx_unlock_bh(local->mdev);
  2706. rcu_read_lock();
  2707. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2708. /* No need to wake the master device. */
  2709. if (sdata->dev == local->mdev)
  2710. continue;
  2711. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  2712. if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  2713. ieee80211_send_nullfunc(local, sdata, 0);
  2714. ieee80211_sta_timer((unsigned long)sdata);
  2715. }
  2716. netif_wake_queue(sdata->dev);
  2717. }
  2718. rcu_read_unlock();
  2719. done:
  2720. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2721. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  2722. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2723. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  2724. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  2725. !ieee80211_sta_active_ibss(dev)))
  2726. ieee80211_sta_find_ibss(dev, ifsta);
  2727. }
  2728. }
  2729. EXPORT_SYMBOL(ieee80211_scan_completed);
  2730. void ieee80211_sta_scan_work(struct work_struct *work)
  2731. {
  2732. struct ieee80211_local *local =
  2733. container_of(work, struct ieee80211_local, scan_work.work);
  2734. struct net_device *dev = local->scan_dev;
  2735. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2736. struct ieee80211_hw_mode *mode;
  2737. struct ieee80211_channel *chan;
  2738. int skip;
  2739. unsigned long next_delay = 0;
  2740. if (!local->sta_sw_scanning)
  2741. return;
  2742. switch (local->scan_state) {
  2743. case SCAN_SET_CHANNEL:
  2744. mode = local->scan_hw_mode;
  2745. if (local->scan_hw_mode->list.next == &local->modes_list &&
  2746. local->scan_channel_idx >= mode->num_channels) {
  2747. ieee80211_scan_completed(local_to_hw(local));
  2748. return;
  2749. }
  2750. skip = !(local->enabled_modes & (1 << mode->mode));
  2751. chan = &mode->channels[local->scan_channel_idx];
  2752. if (!(chan->flag & IEEE80211_CHAN_W_SCAN) ||
  2753. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  2754. !(chan->flag & IEEE80211_CHAN_W_IBSS)) ||
  2755. (local->hw_modes & local->enabled_modes &
  2756. (1 << MODE_IEEE80211G) && mode->mode == MODE_IEEE80211B))
  2757. skip = 1;
  2758. if (!skip) {
  2759. #if 0
  2760. printk(KERN_DEBUG "%s: scan channel %d (%d MHz)\n",
  2761. dev->name, chan->chan, chan->freq);
  2762. #endif
  2763. local->scan_channel = chan;
  2764. if (ieee80211_hw_config(local)) {
  2765. printk(KERN_DEBUG "%s: failed to set channel "
  2766. "%d (%d MHz) for scan\n", dev->name,
  2767. chan->chan, chan->freq);
  2768. skip = 1;
  2769. }
  2770. }
  2771. local->scan_channel_idx++;
  2772. if (local->scan_channel_idx >= local->scan_hw_mode->num_channels) {
  2773. if (local->scan_hw_mode->list.next != &local->modes_list) {
  2774. local->scan_hw_mode = list_entry(local->scan_hw_mode->list.next,
  2775. struct ieee80211_hw_mode,
  2776. list);
  2777. local->scan_channel_idx = 0;
  2778. }
  2779. }
  2780. if (skip)
  2781. break;
  2782. next_delay = IEEE80211_PROBE_DELAY +
  2783. usecs_to_jiffies(local->hw.channel_change_time);
  2784. local->scan_state = SCAN_SEND_PROBE;
  2785. break;
  2786. case SCAN_SEND_PROBE:
  2787. if (local->scan_channel->flag & IEEE80211_CHAN_W_ACTIVE_SCAN) {
  2788. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  2789. local->scan_ssid_len);
  2790. next_delay = IEEE80211_CHANNEL_TIME;
  2791. } else
  2792. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  2793. local->scan_state = SCAN_SET_CHANNEL;
  2794. break;
  2795. }
  2796. if (local->sta_sw_scanning)
  2797. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2798. next_delay);
  2799. }
  2800. static int ieee80211_sta_start_scan(struct net_device *dev,
  2801. u8 *ssid, size_t ssid_len)
  2802. {
  2803. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2804. struct ieee80211_sub_if_data *sdata;
  2805. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  2806. return -EINVAL;
  2807. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  2808. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  2809. * BSSID: MACAddress
  2810. * SSID
  2811. * ScanType: ACTIVE, PASSIVE
  2812. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  2813. * a Probe frame during active scanning
  2814. * ChannelList
  2815. * MinChannelTime (>= ProbeDelay), in TU
  2816. * MaxChannelTime: (>= MinChannelTime), in TU
  2817. */
  2818. /* MLME-SCAN.confirm
  2819. * BSSDescriptionSet
  2820. * ResultCode: SUCCESS, INVALID_PARAMETERS
  2821. */
  2822. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2823. if (local->scan_dev == dev)
  2824. return 0;
  2825. return -EBUSY;
  2826. }
  2827. if (local->ops->hw_scan) {
  2828. int rc = local->ops->hw_scan(local_to_hw(local),
  2829. ssid, ssid_len);
  2830. if (!rc) {
  2831. local->sta_hw_scanning = 1;
  2832. local->scan_dev = dev;
  2833. }
  2834. return rc;
  2835. }
  2836. local->sta_sw_scanning = 1;
  2837. rcu_read_lock();
  2838. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2839. /* Don't stop the master interface, otherwise we can't transmit
  2840. * probes! */
  2841. if (sdata->dev == local->mdev)
  2842. continue;
  2843. netif_stop_queue(sdata->dev);
  2844. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  2845. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  2846. ieee80211_send_nullfunc(local, sdata, 1);
  2847. }
  2848. rcu_read_unlock();
  2849. if (ssid) {
  2850. local->scan_ssid_len = ssid_len;
  2851. memcpy(local->scan_ssid, ssid, ssid_len);
  2852. } else
  2853. local->scan_ssid_len = 0;
  2854. local->scan_state = SCAN_SET_CHANNEL;
  2855. local->scan_hw_mode = list_entry(local->modes_list.next,
  2856. struct ieee80211_hw_mode,
  2857. list);
  2858. local->scan_channel_idx = 0;
  2859. local->scan_dev = dev;
  2860. netif_tx_lock_bh(local->mdev);
  2861. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  2862. local->ops->configure_filter(local_to_hw(local),
  2863. FIF_BCN_PRBRESP_PROMISC,
  2864. &local->filter_flags,
  2865. local->mdev->mc_count,
  2866. local->mdev->mc_list);
  2867. netif_tx_unlock_bh(local->mdev);
  2868. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  2869. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2870. IEEE80211_CHANNEL_TIME);
  2871. return 0;
  2872. }
  2873. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  2874. {
  2875. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2876. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2877. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2878. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2879. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  2880. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2881. if (local->scan_dev == dev)
  2882. return 0;
  2883. return -EBUSY;
  2884. }
  2885. ifsta->scan_ssid_len = ssid_len;
  2886. if (ssid_len)
  2887. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  2888. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  2889. queue_work(local->hw.workqueue, &ifsta->work);
  2890. return 0;
  2891. }
  2892. static char *
  2893. ieee80211_sta_scan_result(struct net_device *dev,
  2894. struct ieee80211_sta_bss *bss,
  2895. char *current_ev, char *end_buf)
  2896. {
  2897. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2898. struct iw_event iwe;
  2899. if (time_after(jiffies,
  2900. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  2901. return current_ev;
  2902. if (!(local->enabled_modes & (1 << bss->hw_mode)))
  2903. return current_ev;
  2904. memset(&iwe, 0, sizeof(iwe));
  2905. iwe.cmd = SIOCGIWAP;
  2906. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  2907. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  2908. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2909. IW_EV_ADDR_LEN);
  2910. memset(&iwe, 0, sizeof(iwe));
  2911. iwe.cmd = SIOCGIWESSID;
  2912. iwe.u.data.length = bss->ssid_len;
  2913. iwe.u.data.flags = 1;
  2914. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2915. bss->ssid);
  2916. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) {
  2917. memset(&iwe, 0, sizeof(iwe));
  2918. iwe.cmd = SIOCGIWMODE;
  2919. if (bss->capability & WLAN_CAPABILITY_ESS)
  2920. iwe.u.mode = IW_MODE_MASTER;
  2921. else
  2922. iwe.u.mode = IW_MODE_ADHOC;
  2923. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2924. IW_EV_UINT_LEN);
  2925. }
  2926. memset(&iwe, 0, sizeof(iwe));
  2927. iwe.cmd = SIOCGIWFREQ;
  2928. iwe.u.freq.m = bss->channel;
  2929. iwe.u.freq.e = 0;
  2930. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2931. IW_EV_FREQ_LEN);
  2932. iwe.u.freq.m = bss->freq * 100000;
  2933. iwe.u.freq.e = 1;
  2934. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2935. IW_EV_FREQ_LEN);
  2936. memset(&iwe, 0, sizeof(iwe));
  2937. iwe.cmd = IWEVQUAL;
  2938. iwe.u.qual.qual = bss->signal;
  2939. iwe.u.qual.level = bss->rssi;
  2940. iwe.u.qual.noise = bss->noise;
  2941. iwe.u.qual.updated = local->wstats_flags;
  2942. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2943. IW_EV_QUAL_LEN);
  2944. memset(&iwe, 0, sizeof(iwe));
  2945. iwe.cmd = SIOCGIWENCODE;
  2946. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  2947. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  2948. else
  2949. iwe.u.data.flags = IW_ENCODE_DISABLED;
  2950. iwe.u.data.length = 0;
  2951. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  2952. if (bss && bss->wpa_ie) {
  2953. memset(&iwe, 0, sizeof(iwe));
  2954. iwe.cmd = IWEVGENIE;
  2955. iwe.u.data.length = bss->wpa_ie_len;
  2956. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2957. bss->wpa_ie);
  2958. }
  2959. if (bss && bss->rsn_ie) {
  2960. memset(&iwe, 0, sizeof(iwe));
  2961. iwe.cmd = IWEVGENIE;
  2962. iwe.u.data.length = bss->rsn_ie_len;
  2963. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2964. bss->rsn_ie);
  2965. }
  2966. if (bss && bss->supp_rates_len > 0) {
  2967. /* display all supported rates in readable format */
  2968. char *p = current_ev + IW_EV_LCP_LEN;
  2969. int i;
  2970. memset(&iwe, 0, sizeof(iwe));
  2971. iwe.cmd = SIOCGIWRATE;
  2972. /* Those two flags are ignored... */
  2973. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  2974. for (i = 0; i < bss->supp_rates_len; i++) {
  2975. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  2976. 0x7f) * 500000);
  2977. p = iwe_stream_add_value(current_ev, p,
  2978. end_buf, &iwe, IW_EV_PARAM_LEN);
  2979. }
  2980. current_ev = p;
  2981. }
  2982. if (bss) {
  2983. char *buf;
  2984. buf = kmalloc(30, GFP_ATOMIC);
  2985. if (buf) {
  2986. memset(&iwe, 0, sizeof(iwe));
  2987. iwe.cmd = IWEVCUSTOM;
  2988. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  2989. iwe.u.data.length = strlen(buf);
  2990. current_ev = iwe_stream_add_point(current_ev, end_buf,
  2991. &iwe, buf);
  2992. kfree(buf);
  2993. }
  2994. }
  2995. return current_ev;
  2996. }
  2997. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  2998. {
  2999. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3000. char *current_ev = buf;
  3001. char *end_buf = buf + len;
  3002. struct ieee80211_sta_bss *bss;
  3003. spin_lock_bh(&local->sta_bss_lock);
  3004. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3005. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3006. spin_unlock_bh(&local->sta_bss_lock);
  3007. return -E2BIG;
  3008. }
  3009. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3010. end_buf);
  3011. }
  3012. spin_unlock_bh(&local->sta_bss_lock);
  3013. return current_ev - buf;
  3014. }
  3015. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3016. {
  3017. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3018. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3019. kfree(ifsta->extra_ie);
  3020. if (len == 0) {
  3021. ifsta->extra_ie = NULL;
  3022. ifsta->extra_ie_len = 0;
  3023. return 0;
  3024. }
  3025. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3026. if (!ifsta->extra_ie) {
  3027. ifsta->extra_ie_len = 0;
  3028. return -ENOMEM;
  3029. }
  3030. memcpy(ifsta->extra_ie, ie, len);
  3031. ifsta->extra_ie_len = len;
  3032. return 0;
  3033. }
  3034. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3035. struct sk_buff *skb, u8 *bssid,
  3036. u8 *addr)
  3037. {
  3038. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3039. struct sta_info *sta;
  3040. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3041. DECLARE_MAC_BUF(mac);
  3042. /* TODO: Could consider removing the least recently used entry and
  3043. * allow new one to be added. */
  3044. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3045. if (net_ratelimit()) {
  3046. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3047. "entry %s\n", dev->name, print_mac(mac, addr));
  3048. }
  3049. return NULL;
  3050. }
  3051. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3052. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3053. sta = sta_info_add(local, dev, addr, GFP_ATOMIC);
  3054. if (!sta)
  3055. return NULL;
  3056. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  3057. rate_control_rate_init(sta, local);
  3058. return sta; /* caller will call sta_info_put() */
  3059. }
  3060. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3061. {
  3062. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3063. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3064. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3065. dev->name, reason);
  3066. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3067. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3068. return -EINVAL;
  3069. ieee80211_send_deauth(dev, ifsta, reason);
  3070. ieee80211_set_disassoc(dev, ifsta, 1);
  3071. return 0;
  3072. }
  3073. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3074. {
  3075. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3076. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3077. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3078. dev->name, reason);
  3079. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3080. return -EINVAL;
  3081. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3082. return -1;
  3083. ieee80211_send_disassoc(dev, ifsta, reason);
  3084. ieee80211_set_disassoc(dev, ifsta, 0);
  3085. return 0;
  3086. }