common.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/mmu_context.h>
  16. #include <asm/hypervisor.h>
  17. #include <asm/processor.h>
  18. #include <asm/sections.h>
  19. #include <asm/topology.h>
  20. #include <asm/cpumask.h>
  21. #include <asm/pgtable.h>
  22. #include <asm/atomic.h>
  23. #include <asm/proto.h>
  24. #include <asm/setup.h>
  25. #include <asm/apic.h>
  26. #include <asm/desc.h>
  27. #include <asm/i387.h>
  28. #include <asm/mtrr.h>
  29. #include <asm/numa.h>
  30. #include <asm/asm.h>
  31. #include <asm/cpu.h>
  32. #include <asm/mce.h>
  33. #include <asm/msr.h>
  34. #include <asm/pat.h>
  35. #include <asm/smp.h>
  36. #ifdef CONFIG_X86_LOCAL_APIC
  37. #include <asm/uv/uv.h>
  38. #endif
  39. #include "cpu.h"
  40. #ifdef CONFIG_X86_64
  41. /* all of these masks are initialized in setup_cpu_local_masks() */
  42. cpumask_var_t cpu_initialized_mask;
  43. cpumask_var_t cpu_callout_mask;
  44. cpumask_var_t cpu_callin_mask;
  45. /* representing cpus for which sibling maps can be computed */
  46. cpumask_var_t cpu_sibling_setup_mask;
  47. /* correctly size the local cpu masks */
  48. void __init setup_cpu_local_masks(void)
  49. {
  50. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  52. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  53. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  54. }
  55. #else /* CONFIG_X86_32 */
  56. cpumask_t cpu_sibling_setup_map;
  57. cpumask_t cpu_callout_map;
  58. cpumask_t cpu_initialized;
  59. cpumask_t cpu_callin_map;
  60. #endif /* CONFIG_X86_32 */
  61. static struct cpu_dev *this_cpu __cpuinitdata;
  62. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  63. #ifdef CONFIG_X86_64
  64. /*
  65. * We need valid kernel segments for data and code in long mode too
  66. * IRET will check the segment types kkeil 2000/10/28
  67. * Also sysret mandates a special GDT layout
  68. *
  69. * TLS descriptors are currently at a different place compared to i386.
  70. * Hopefully nobody expects them at a fixed place (Wine?)
  71. */
  72. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  73. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  74. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  75. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  76. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  77. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  78. #else
  79. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  80. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  81. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  82. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  83. /*
  84. * Segments used for calling PnP BIOS have byte granularity.
  85. * They code segments and data segments have fixed 64k limits,
  86. * the transfer segment sizes are set at run time.
  87. */
  88. /* 32-bit code */
  89. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  90. /* 16-bit code */
  91. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  92. /* 16-bit data */
  93. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  94. /* 16-bit data */
  95. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  96. /* 16-bit data */
  97. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  98. /*
  99. * The APM segments have byte granularity and their bases
  100. * are set at run time. All have 64k limits.
  101. */
  102. /* 32-bit code */
  103. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  104. /* 16-bit code */
  105. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  106. /* data */
  107. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  108. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  109. [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
  110. GDT_STACK_CANARY_INIT
  111. #endif
  112. } };
  113. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  114. #ifdef CONFIG_X86_32
  115. static int cachesize_override __cpuinitdata = -1;
  116. static int disable_x86_serial_nr __cpuinitdata = 1;
  117. static int __init cachesize_setup(char *str)
  118. {
  119. get_option(&str, &cachesize_override);
  120. return 1;
  121. }
  122. __setup("cachesize=", cachesize_setup);
  123. static int __init x86_fxsr_setup(char *s)
  124. {
  125. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  126. setup_clear_cpu_cap(X86_FEATURE_XMM);
  127. return 1;
  128. }
  129. __setup("nofxsr", x86_fxsr_setup);
  130. static int __init x86_sep_setup(char *s)
  131. {
  132. setup_clear_cpu_cap(X86_FEATURE_SEP);
  133. return 1;
  134. }
  135. __setup("nosep", x86_sep_setup);
  136. /* Standard macro to see if a specific flag is changeable */
  137. static inline int flag_is_changeable_p(u32 flag)
  138. {
  139. u32 f1, f2;
  140. /*
  141. * Cyrix and IDT cpus allow disabling of CPUID
  142. * so the code below may return different results
  143. * when it is executed before and after enabling
  144. * the CPUID. Add "volatile" to not allow gcc to
  145. * optimize the subsequent calls to this function.
  146. */
  147. asm volatile ("pushfl \n\t"
  148. "pushfl \n\t"
  149. "popl %0 \n\t"
  150. "movl %0, %1 \n\t"
  151. "xorl %2, %0 \n\t"
  152. "pushl %0 \n\t"
  153. "popfl \n\t"
  154. "pushfl \n\t"
  155. "popl %0 \n\t"
  156. "popfl \n\t"
  157. : "=&r" (f1), "=&r" (f2)
  158. : "ir" (flag));
  159. return ((f1^f2) & flag) != 0;
  160. }
  161. /* Probe for the CPUID instruction */
  162. static int __cpuinit have_cpuid_p(void)
  163. {
  164. return flag_is_changeable_p(X86_EFLAGS_ID);
  165. }
  166. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  167. {
  168. unsigned long lo, hi;
  169. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  170. return;
  171. /* Disable processor serial number: */
  172. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  173. lo |= 0x200000;
  174. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  175. printk(KERN_NOTICE "CPU serial number disabled.\n");
  176. clear_cpu_cap(c, X86_FEATURE_PN);
  177. /* Disabling the serial number may affect the cpuid level */
  178. c->cpuid_level = cpuid_eax(0);
  179. }
  180. static int __init x86_serial_nr_setup(char *s)
  181. {
  182. disable_x86_serial_nr = 0;
  183. return 1;
  184. }
  185. __setup("serialnumber", x86_serial_nr_setup);
  186. #else
  187. static inline int flag_is_changeable_p(u32 flag)
  188. {
  189. return 1;
  190. }
  191. /* Probe for the CPUID instruction */
  192. static inline int have_cpuid_p(void)
  193. {
  194. return 1;
  195. }
  196. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  197. {
  198. }
  199. #endif
  200. /*
  201. * Some CPU features depend on higher CPUID levels, which may not always
  202. * be available due to CPUID level capping or broken virtualization
  203. * software. Add those features to this table to auto-disable them.
  204. */
  205. struct cpuid_dependent_feature {
  206. u32 feature;
  207. u32 level;
  208. };
  209. static const struct cpuid_dependent_feature __cpuinitconst
  210. cpuid_dependent_features[] = {
  211. { X86_FEATURE_MWAIT, 0x00000005 },
  212. { X86_FEATURE_DCA, 0x00000009 },
  213. { X86_FEATURE_XSAVE, 0x0000000d },
  214. { 0, 0 }
  215. };
  216. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  217. {
  218. const struct cpuid_dependent_feature *df;
  219. for (df = cpuid_dependent_features; df->feature; df++) {
  220. if (!cpu_has(c, df->feature))
  221. continue;
  222. /*
  223. * Note: cpuid_level is set to -1 if unavailable, but
  224. * extended_extended_level is set to 0 if unavailable
  225. * and the legitimate extended levels are all negative
  226. * when signed; hence the weird messing around with
  227. * signs here...
  228. */
  229. if (!((s32)df->level < 0 ?
  230. (u32)df->level > (u32)c->extended_cpuid_level :
  231. (s32)df->level > (s32)c->cpuid_level))
  232. continue;
  233. clear_cpu_cap(c, df->feature);
  234. if (!warn)
  235. continue;
  236. printk(KERN_WARNING
  237. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  238. x86_cap_flags[df->feature], df->level);
  239. }
  240. }
  241. /*
  242. * Naming convention should be: <Name> [(<Codename>)]
  243. * This table only is used unless init_<vendor>() below doesn't set it;
  244. * in particular, if CPUID levels 0x80000002..4 are supported, this
  245. * isn't used
  246. */
  247. /* Look up CPU names by table lookup. */
  248. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  249. {
  250. struct cpu_model_info *info;
  251. if (c->x86_model >= 16)
  252. return NULL; /* Range check */
  253. if (!this_cpu)
  254. return NULL;
  255. info = this_cpu->c_models;
  256. while (info && info->family) {
  257. if (info->family == c->x86)
  258. return info->model_names[c->x86_model];
  259. info++;
  260. }
  261. return NULL; /* Not found */
  262. }
  263. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  264. void load_percpu_segment(int cpu)
  265. {
  266. #ifdef CONFIG_X86_32
  267. loadsegment(fs, __KERNEL_PERCPU);
  268. #else
  269. loadsegment(gs, 0);
  270. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  271. #endif
  272. load_stack_canary_segment();
  273. }
  274. /*
  275. * Current gdt points %fs at the "master" per-cpu area: after this,
  276. * it's on the real one.
  277. */
  278. void switch_to_new_gdt(int cpu)
  279. {
  280. struct desc_ptr gdt_descr;
  281. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  282. gdt_descr.size = GDT_SIZE - 1;
  283. load_gdt(&gdt_descr);
  284. /* Reload the per-cpu base */
  285. load_percpu_segment(cpu);
  286. }
  287. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  288. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  289. {
  290. #ifdef CONFIG_X86_64
  291. display_cacheinfo(c);
  292. #else
  293. /* Not much we can do here... */
  294. /* Check if at least it has cpuid */
  295. if (c->cpuid_level == -1) {
  296. /* No cpuid. It must be an ancient CPU */
  297. if (c->x86 == 4)
  298. strcpy(c->x86_model_id, "486");
  299. else if (c->x86 == 3)
  300. strcpy(c->x86_model_id, "386");
  301. }
  302. #endif
  303. }
  304. static struct cpu_dev __cpuinitdata default_cpu = {
  305. .c_init = default_init,
  306. .c_vendor = "Unknown",
  307. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  308. };
  309. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  310. {
  311. unsigned int *v;
  312. char *p, *q;
  313. if (c->extended_cpuid_level < 0x80000004)
  314. return;
  315. v = (unsigned int *)c->x86_model_id;
  316. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  317. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  318. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  319. c->x86_model_id[48] = 0;
  320. /*
  321. * Intel chips right-justify this string for some dumb reason;
  322. * undo that brain damage:
  323. */
  324. p = q = &c->x86_model_id[0];
  325. while (*p == ' ')
  326. p++;
  327. if (p != q) {
  328. while (*p)
  329. *q++ = *p++;
  330. while (q <= &c->x86_model_id[48])
  331. *q++ = '\0'; /* Zero-pad the rest */
  332. }
  333. }
  334. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  335. {
  336. unsigned int n, dummy, ebx, ecx, edx, l2size;
  337. n = c->extended_cpuid_level;
  338. if (n >= 0x80000005) {
  339. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  340. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  341. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  342. c->x86_cache_size = (ecx>>24) + (edx>>24);
  343. #ifdef CONFIG_X86_64
  344. /* On K8 L1 TLB is inclusive, so don't count it */
  345. c->x86_tlbsize = 0;
  346. #endif
  347. }
  348. if (n < 0x80000006) /* Some chips just has a large L1. */
  349. return;
  350. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  351. l2size = ecx >> 16;
  352. #ifdef CONFIG_X86_64
  353. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  354. #else
  355. /* do processor-specific cache resizing */
  356. if (this_cpu->c_size_cache)
  357. l2size = this_cpu->c_size_cache(c, l2size);
  358. /* Allow user to override all this if necessary. */
  359. if (cachesize_override != -1)
  360. l2size = cachesize_override;
  361. if (l2size == 0)
  362. return; /* Again, no L2 cache is possible */
  363. #endif
  364. c->x86_cache_size = l2size;
  365. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  366. l2size, ecx & 0xFF);
  367. }
  368. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  369. {
  370. #ifdef CONFIG_X86_HT
  371. u32 eax, ebx, ecx, edx;
  372. int index_msb, core_bits;
  373. if (!cpu_has(c, X86_FEATURE_HT))
  374. return;
  375. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  376. goto out;
  377. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  378. return;
  379. cpuid(1, &eax, &ebx, &ecx, &edx);
  380. smp_num_siblings = (ebx & 0xff0000) >> 16;
  381. if (smp_num_siblings == 1) {
  382. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  383. goto out;
  384. }
  385. if (smp_num_siblings <= 1)
  386. goto out;
  387. if (smp_num_siblings > nr_cpu_ids) {
  388. pr_warning("CPU: Unsupported number of siblings %d",
  389. smp_num_siblings);
  390. smp_num_siblings = 1;
  391. return;
  392. }
  393. index_msb = get_count_order(smp_num_siblings);
  394. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  395. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  396. index_msb = get_count_order(smp_num_siblings);
  397. core_bits = get_count_order(c->x86_max_cores);
  398. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  399. ((1 << core_bits) - 1);
  400. out:
  401. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  402. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  403. c->phys_proc_id);
  404. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  405. c->cpu_core_id);
  406. }
  407. #endif
  408. }
  409. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  410. {
  411. char *v = c->x86_vendor_id;
  412. static int printed;
  413. int i;
  414. for (i = 0; i < X86_VENDOR_NUM; i++) {
  415. if (!cpu_devs[i])
  416. break;
  417. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  418. (cpu_devs[i]->c_ident[1] &&
  419. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  420. this_cpu = cpu_devs[i];
  421. c->x86_vendor = this_cpu->c_x86_vendor;
  422. return;
  423. }
  424. }
  425. if (!printed) {
  426. printed++;
  427. printk(KERN_ERR
  428. "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  429. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  430. }
  431. c->x86_vendor = X86_VENDOR_UNKNOWN;
  432. this_cpu = &default_cpu;
  433. }
  434. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  435. {
  436. /* Get vendor name */
  437. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  438. (unsigned int *)&c->x86_vendor_id[0],
  439. (unsigned int *)&c->x86_vendor_id[8],
  440. (unsigned int *)&c->x86_vendor_id[4]);
  441. c->x86 = 4;
  442. /* Intel-defined flags: level 0x00000001 */
  443. if (c->cpuid_level >= 0x00000001) {
  444. u32 junk, tfms, cap0, misc;
  445. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  446. c->x86 = (tfms >> 8) & 0xf;
  447. c->x86_model = (tfms >> 4) & 0xf;
  448. c->x86_mask = tfms & 0xf;
  449. if (c->x86 == 0xf)
  450. c->x86 += (tfms >> 20) & 0xff;
  451. if (c->x86 >= 0x6)
  452. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  453. if (cap0 & (1<<19)) {
  454. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  455. c->x86_cache_alignment = c->x86_clflush_size;
  456. }
  457. }
  458. }
  459. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  460. {
  461. u32 tfms, xlvl;
  462. u32 ebx;
  463. /* Intel-defined flags: level 0x00000001 */
  464. if (c->cpuid_level >= 0x00000001) {
  465. u32 capability, excap;
  466. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  467. c->x86_capability[0] = capability;
  468. c->x86_capability[4] = excap;
  469. }
  470. /* AMD-defined flags: level 0x80000001 */
  471. xlvl = cpuid_eax(0x80000000);
  472. c->extended_cpuid_level = xlvl;
  473. if ((xlvl & 0xffff0000) == 0x80000000) {
  474. if (xlvl >= 0x80000001) {
  475. c->x86_capability[1] = cpuid_edx(0x80000001);
  476. c->x86_capability[6] = cpuid_ecx(0x80000001);
  477. }
  478. }
  479. #ifdef CONFIG_X86_64
  480. if (c->extended_cpuid_level >= 0x80000008) {
  481. u32 eax = cpuid_eax(0x80000008);
  482. c->x86_virt_bits = (eax >> 8) & 0xff;
  483. c->x86_phys_bits = eax & 0xff;
  484. }
  485. #endif
  486. if (c->extended_cpuid_level >= 0x80000007)
  487. c->x86_power = cpuid_edx(0x80000007);
  488. }
  489. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  490. {
  491. #ifdef CONFIG_X86_32
  492. int i;
  493. /*
  494. * First of all, decide if this is a 486 or higher
  495. * It's a 486 if we can modify the AC flag
  496. */
  497. if (flag_is_changeable_p(X86_EFLAGS_AC))
  498. c->x86 = 4;
  499. else
  500. c->x86 = 3;
  501. for (i = 0; i < X86_VENDOR_NUM; i++)
  502. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  503. c->x86_vendor_id[0] = 0;
  504. cpu_devs[i]->c_identify(c);
  505. if (c->x86_vendor_id[0]) {
  506. get_cpu_vendor(c);
  507. break;
  508. }
  509. }
  510. #endif
  511. }
  512. /*
  513. * Do minimum CPU detection early.
  514. * Fields really needed: vendor, cpuid_level, family, model, mask,
  515. * cache alignment.
  516. * The others are not touched to avoid unwanted side effects.
  517. *
  518. * WARNING: this function is only called on the BP. Don't add code here
  519. * that is supposed to run on all CPUs.
  520. */
  521. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  522. {
  523. #ifdef CONFIG_X86_64
  524. c->x86_clflush_size = 64;
  525. #else
  526. c->x86_clflush_size = 32;
  527. #endif
  528. c->x86_cache_alignment = c->x86_clflush_size;
  529. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  530. c->extended_cpuid_level = 0;
  531. if (!have_cpuid_p())
  532. identify_cpu_without_cpuid(c);
  533. /* cyrix could have cpuid enabled via c_identify()*/
  534. if (!have_cpuid_p())
  535. return;
  536. cpu_detect(c);
  537. get_cpu_vendor(c);
  538. get_cpu_cap(c);
  539. if (this_cpu->c_early_init)
  540. this_cpu->c_early_init(c);
  541. #ifdef CONFIG_SMP
  542. c->cpu_index = boot_cpu_id;
  543. #endif
  544. filter_cpuid_features(c, false);
  545. }
  546. void __init early_cpu_init(void)
  547. {
  548. struct cpu_dev **cdev;
  549. int count = 0;
  550. printk(KERN_INFO "KERNEL supported cpus:\n");
  551. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  552. struct cpu_dev *cpudev = *cdev;
  553. unsigned int j;
  554. if (count >= X86_VENDOR_NUM)
  555. break;
  556. cpu_devs[count] = cpudev;
  557. count++;
  558. for (j = 0; j < 2; j++) {
  559. if (!cpudev->c_ident[j])
  560. continue;
  561. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  562. cpudev->c_ident[j]);
  563. }
  564. }
  565. early_identify_cpu(&boot_cpu_data);
  566. }
  567. /*
  568. * The NOPL instruction is supposed to exist on all CPUs with
  569. * family >= 6; unfortunately, that's not true in practice because
  570. * of early VIA chips and (more importantly) broken virtualizers that
  571. * are not easy to detect. In the latter case it doesn't even *fail*
  572. * reliably, so probing for it doesn't even work. Disable it completely
  573. * unless we can find a reliable way to detect all the broken cases.
  574. */
  575. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  576. {
  577. clear_cpu_cap(c, X86_FEATURE_NOPL);
  578. }
  579. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  580. {
  581. c->extended_cpuid_level = 0;
  582. if (!have_cpuid_p())
  583. identify_cpu_without_cpuid(c);
  584. /* cyrix could have cpuid enabled via c_identify()*/
  585. if (!have_cpuid_p())
  586. return;
  587. cpu_detect(c);
  588. get_cpu_vendor(c);
  589. get_cpu_cap(c);
  590. if (c->cpuid_level >= 0x00000001) {
  591. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  592. #ifdef CONFIG_X86_32
  593. # ifdef CONFIG_X86_HT
  594. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  595. # else
  596. c->apicid = c->initial_apicid;
  597. # endif
  598. #endif
  599. #ifdef CONFIG_X86_HT
  600. c->phys_proc_id = c->initial_apicid;
  601. #endif
  602. }
  603. get_model_name(c); /* Default name */
  604. init_scattered_cpuid_features(c);
  605. detect_nopl(c);
  606. }
  607. /*
  608. * This does the hard work of actually picking apart the CPU stuff...
  609. */
  610. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  611. {
  612. int i;
  613. c->loops_per_jiffy = loops_per_jiffy;
  614. c->x86_cache_size = -1;
  615. c->x86_vendor = X86_VENDOR_UNKNOWN;
  616. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  617. c->x86_vendor_id[0] = '\0'; /* Unset */
  618. c->x86_model_id[0] = '\0'; /* Unset */
  619. c->x86_max_cores = 1;
  620. c->x86_coreid_bits = 0;
  621. #ifdef CONFIG_X86_64
  622. c->x86_clflush_size = 64;
  623. #else
  624. c->cpuid_level = -1; /* CPUID not detected */
  625. c->x86_clflush_size = 32;
  626. #endif
  627. c->x86_cache_alignment = c->x86_clflush_size;
  628. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  629. generic_identify(c);
  630. if (this_cpu->c_identify)
  631. this_cpu->c_identify(c);
  632. #ifdef CONFIG_X86_64
  633. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  634. #endif
  635. /*
  636. * Vendor-specific initialization. In this section we
  637. * canonicalize the feature flags, meaning if there are
  638. * features a certain CPU supports which CPUID doesn't
  639. * tell us, CPUID claiming incorrect flags, or other bugs,
  640. * we handle them here.
  641. *
  642. * At the end of this section, c->x86_capability better
  643. * indicate the features this CPU genuinely supports!
  644. */
  645. if (this_cpu->c_init)
  646. this_cpu->c_init(c);
  647. /* Disable the PN if appropriate */
  648. squash_the_stupid_serial_number(c);
  649. /*
  650. * The vendor-specific functions might have changed features.
  651. * Now we do "generic changes."
  652. */
  653. /* Filter out anything that depends on CPUID levels we don't have */
  654. filter_cpuid_features(c, true);
  655. /* If the model name is still unset, do table lookup. */
  656. if (!c->x86_model_id[0]) {
  657. char *p;
  658. p = table_lookup_model(c);
  659. if (p)
  660. strcpy(c->x86_model_id, p);
  661. else
  662. /* Last resort... */
  663. sprintf(c->x86_model_id, "%02x/%02x",
  664. c->x86, c->x86_model);
  665. }
  666. #ifdef CONFIG_X86_64
  667. detect_ht(c);
  668. #endif
  669. init_hypervisor(c);
  670. /*
  671. * On SMP, boot_cpu_data holds the common feature set between
  672. * all CPUs; so make sure that we indicate which features are
  673. * common between the CPUs. The first time this routine gets
  674. * executed, c == &boot_cpu_data.
  675. */
  676. if (c != &boot_cpu_data) {
  677. /* AND the already accumulated flags with these */
  678. for (i = 0; i < NCAPINTS; i++)
  679. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  680. }
  681. /* Clear all flags overriden by options */
  682. for (i = 0; i < NCAPINTS; i++)
  683. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  684. #ifdef CONFIG_X86_MCE
  685. /* Init Machine Check Exception if available. */
  686. mcheck_init(c);
  687. #endif
  688. select_idle_routine(c);
  689. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  690. numa_add_cpu(smp_processor_id());
  691. #endif
  692. }
  693. #ifdef CONFIG_X86_64
  694. static void vgetcpu_set_mode(void)
  695. {
  696. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  697. vgetcpu_mode = VGETCPU_RDTSCP;
  698. else
  699. vgetcpu_mode = VGETCPU_LSL;
  700. }
  701. #endif
  702. void __init identify_boot_cpu(void)
  703. {
  704. identify_cpu(&boot_cpu_data);
  705. #ifdef CONFIG_X86_32
  706. sysenter_setup();
  707. enable_sep_cpu();
  708. #else
  709. vgetcpu_set_mode();
  710. #endif
  711. }
  712. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  713. {
  714. BUG_ON(c == &boot_cpu_data);
  715. identify_cpu(c);
  716. #ifdef CONFIG_X86_32
  717. enable_sep_cpu();
  718. #endif
  719. mtrr_ap_init();
  720. }
  721. struct msr_range {
  722. unsigned min;
  723. unsigned max;
  724. };
  725. static struct msr_range msr_range_array[] __cpuinitdata = {
  726. { 0x00000000, 0x00000418},
  727. { 0xc0000000, 0xc000040b},
  728. { 0xc0010000, 0xc0010142},
  729. { 0xc0011000, 0xc001103b},
  730. };
  731. static void __cpuinit print_cpu_msr(void)
  732. {
  733. unsigned index_min, index_max;
  734. unsigned index;
  735. u64 val;
  736. int i;
  737. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  738. index_min = msr_range_array[i].min;
  739. index_max = msr_range_array[i].max;
  740. for (index = index_min; index < index_max; index++) {
  741. if (rdmsrl_amd_safe(index, &val))
  742. continue;
  743. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  744. }
  745. }
  746. }
  747. static int show_msr __cpuinitdata;
  748. static __init int setup_show_msr(char *arg)
  749. {
  750. int num;
  751. get_option(&arg, &num);
  752. if (num > 0)
  753. show_msr = num;
  754. return 1;
  755. }
  756. __setup("show_msr=", setup_show_msr);
  757. static __init int setup_noclflush(char *arg)
  758. {
  759. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  760. return 1;
  761. }
  762. __setup("noclflush", setup_noclflush);
  763. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  764. {
  765. char *vendor = NULL;
  766. if (c->x86_vendor < X86_VENDOR_NUM) {
  767. vendor = this_cpu->c_vendor;
  768. } else {
  769. if (c->cpuid_level >= 0)
  770. vendor = c->x86_vendor_id;
  771. }
  772. if (vendor && !strstr(c->x86_model_id, vendor))
  773. printk(KERN_CONT "%s ", vendor);
  774. if (c->x86_model_id[0])
  775. printk(KERN_CONT "%s", c->x86_model_id);
  776. else
  777. printk(KERN_CONT "%d86", c->x86);
  778. if (c->x86_mask || c->cpuid_level >= 0)
  779. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  780. else
  781. printk(KERN_CONT "\n");
  782. #ifdef CONFIG_SMP
  783. if (c->cpu_index < show_msr)
  784. print_cpu_msr();
  785. #else
  786. if (show_msr)
  787. print_cpu_msr();
  788. #endif
  789. }
  790. static __init int setup_disablecpuid(char *arg)
  791. {
  792. int bit;
  793. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  794. setup_clear_cpu_cap(bit);
  795. else
  796. return 0;
  797. return 1;
  798. }
  799. __setup("clearcpuid=", setup_disablecpuid);
  800. #ifdef CONFIG_X86_64
  801. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  802. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  803. irq_stack_union) __aligned(PAGE_SIZE);
  804. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  805. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  806. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  807. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  808. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  809. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  810. /*
  811. * Special IST stacks which the CPU switches to when it calls
  812. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  813. * limit), all of them are 4K, except the debug stack which
  814. * is 8K.
  815. */
  816. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  817. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  818. [DEBUG_STACK - 1] = DEBUG_STKSZ
  819. };
  820. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  821. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
  822. __aligned(PAGE_SIZE);
  823. /* May not be marked __init: used by software suspend */
  824. void syscall_init(void)
  825. {
  826. /*
  827. * LSTAR and STAR live in a bit strange symbiosis.
  828. * They both write to the same internal register. STAR allows to
  829. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  830. */
  831. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  832. wrmsrl(MSR_LSTAR, system_call);
  833. wrmsrl(MSR_CSTAR, ignore_sysret);
  834. #ifdef CONFIG_IA32_EMULATION
  835. syscall32_cpu_init();
  836. #endif
  837. /* Flags to clear on syscall */
  838. wrmsrl(MSR_SYSCALL_MASK,
  839. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  840. }
  841. unsigned long kernel_eflags;
  842. /*
  843. * Copies of the original ist values from the tss are only accessed during
  844. * debugging, no special alignment required.
  845. */
  846. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  847. #else /* CONFIG_X86_64 */
  848. #ifdef CONFIG_CC_STACKPROTECTOR
  849. DEFINE_PER_CPU(unsigned long, stack_canary);
  850. #endif
  851. /* Make sure %fs and %gs are initialized properly in idle threads */
  852. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  853. {
  854. memset(regs, 0, sizeof(struct pt_regs));
  855. regs->fs = __KERNEL_PERCPU;
  856. regs->gs = __KERNEL_STACK_CANARY;
  857. return regs;
  858. }
  859. #endif /* CONFIG_X86_64 */
  860. /*
  861. * Clear all 6 debug registers:
  862. */
  863. static void clear_all_debug_regs(void)
  864. {
  865. int i;
  866. for (i = 0; i < 8; i++) {
  867. /* Ignore db4, db5 */
  868. if ((i == 4) || (i == 5))
  869. continue;
  870. set_debugreg(0, i);
  871. }
  872. }
  873. /*
  874. * cpu_init() initializes state that is per-CPU. Some data is already
  875. * initialized (naturally) in the bootstrap process, such as the GDT
  876. * and IDT. We reload them nevertheless, this function acts as a
  877. * 'CPU state barrier', nothing should get across.
  878. * A lot of state is already set up in PDA init for 64 bit
  879. */
  880. #ifdef CONFIG_X86_64
  881. void __cpuinit cpu_init(void)
  882. {
  883. struct orig_ist *orig_ist;
  884. struct task_struct *me;
  885. struct tss_struct *t;
  886. unsigned long v;
  887. int cpu;
  888. int i;
  889. cpu = stack_smp_processor_id();
  890. t = &per_cpu(init_tss, cpu);
  891. orig_ist = &per_cpu(orig_ist, cpu);
  892. #ifdef CONFIG_NUMA
  893. if (cpu != 0 && percpu_read(node_number) == 0 &&
  894. cpu_to_node(cpu) != NUMA_NO_NODE)
  895. percpu_write(node_number, cpu_to_node(cpu));
  896. #endif
  897. me = current;
  898. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  899. panic("CPU#%d already initialized!\n", cpu);
  900. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  901. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  902. /*
  903. * Initialize the per-CPU GDT with the boot GDT,
  904. * and set up the GDT descriptor:
  905. */
  906. switch_to_new_gdt(cpu);
  907. loadsegment(fs, 0);
  908. load_idt((const struct desc_ptr *)&idt_descr);
  909. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  910. syscall_init();
  911. wrmsrl(MSR_FS_BASE, 0);
  912. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  913. barrier();
  914. check_efer();
  915. if (cpu != 0)
  916. enable_x2apic();
  917. /*
  918. * set up and load the per-CPU TSS
  919. */
  920. if (!orig_ist->ist[0]) {
  921. char *estacks = per_cpu(exception_stacks, cpu);
  922. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  923. estacks += exception_stack_sizes[v];
  924. orig_ist->ist[v] = t->x86_tss.ist[v] =
  925. (unsigned long)estacks;
  926. }
  927. }
  928. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  929. /*
  930. * <= is required because the CPU will access up to
  931. * 8 bits beyond the end of the IO permission bitmap.
  932. */
  933. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  934. t->io_bitmap[i] = ~0UL;
  935. atomic_inc(&init_mm.mm_count);
  936. me->active_mm = &init_mm;
  937. if (me->mm)
  938. BUG();
  939. enter_lazy_tlb(&init_mm, me);
  940. load_sp0(t, &current->thread);
  941. set_tss_desc(cpu, t);
  942. load_TR_desc();
  943. load_LDT(&init_mm.context);
  944. #ifdef CONFIG_KGDB
  945. /*
  946. * If the kgdb is connected no debug regs should be altered. This
  947. * is only applicable when KGDB and a KGDB I/O module are built
  948. * into the kernel and you are using early debugging with
  949. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  950. */
  951. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  952. arch_kgdb_ops.correct_hw_break();
  953. else
  954. #endif
  955. clear_all_debug_regs();
  956. fpu_init();
  957. raw_local_save_flags(kernel_eflags);
  958. if (is_uv_system())
  959. uv_cpu_init();
  960. }
  961. #else
  962. void __cpuinit cpu_init(void)
  963. {
  964. int cpu = smp_processor_id();
  965. struct task_struct *curr = current;
  966. struct tss_struct *t = &per_cpu(init_tss, cpu);
  967. struct thread_struct *thread = &curr->thread;
  968. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  969. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  970. for (;;)
  971. local_irq_enable();
  972. }
  973. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  974. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  975. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  976. load_idt(&idt_descr);
  977. switch_to_new_gdt(cpu);
  978. /*
  979. * Set up and load the per-CPU TSS and LDT
  980. */
  981. atomic_inc(&init_mm.mm_count);
  982. curr->active_mm = &init_mm;
  983. if (curr->mm)
  984. BUG();
  985. enter_lazy_tlb(&init_mm, curr);
  986. load_sp0(t, thread);
  987. set_tss_desc(cpu, t);
  988. load_TR_desc();
  989. load_LDT(&init_mm.context);
  990. #ifdef CONFIG_DOUBLEFAULT
  991. /* Set up doublefault TSS pointer in the GDT */
  992. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  993. #endif
  994. clear_all_debug_regs();
  995. /*
  996. * Force FPU initialization:
  997. */
  998. if (cpu_has_xsave)
  999. current_thread_info()->status = TS_XSAVE;
  1000. else
  1001. current_thread_info()->status = 0;
  1002. clear_used_math();
  1003. mxcsr_feature_mask_init();
  1004. /*
  1005. * Boot processor to setup the FP and extended state context info.
  1006. */
  1007. if (smp_processor_id() == boot_cpu_id)
  1008. init_thread_xstate();
  1009. xsave_init();
  1010. }
  1011. #endif