session.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include <sys/mman.h>
  7. #include "session.h"
  8. #include "sort.h"
  9. #include "util.h"
  10. static int perf_session__open(struct perf_session *self, bool force)
  11. {
  12. struct stat input_stat;
  13. if (!strcmp(self->filename, "-")) {
  14. self->fd_pipe = true;
  15. self->fd = STDIN_FILENO;
  16. if (perf_header__read(self, self->fd) < 0)
  17. pr_err("incompatible file format");
  18. return 0;
  19. }
  20. self->fd = open(self->filename, O_RDONLY);
  21. if (self->fd < 0) {
  22. int err = errno;
  23. pr_err("failed to open %s: %s", self->filename, strerror(err));
  24. if (err == ENOENT && !strcmp(self->filename, "perf.data"))
  25. pr_err(" (try 'perf record' first)");
  26. pr_err("\n");
  27. return -errno;
  28. }
  29. if (fstat(self->fd, &input_stat) < 0)
  30. goto out_close;
  31. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  32. pr_err("file %s not owned by current user or root\n",
  33. self->filename);
  34. goto out_close;
  35. }
  36. if (!input_stat.st_size) {
  37. pr_info("zero-sized file (%s), nothing to do!\n",
  38. self->filename);
  39. goto out_close;
  40. }
  41. if (perf_header__read(self, self->fd) < 0) {
  42. pr_err("incompatible file format");
  43. goto out_close;
  44. }
  45. self->size = input_stat.st_size;
  46. return 0;
  47. out_close:
  48. close(self->fd);
  49. self->fd = -1;
  50. return -1;
  51. }
  52. void perf_session__update_sample_type(struct perf_session *self)
  53. {
  54. self->sample_type = perf_header__sample_type(&self->header);
  55. }
  56. int perf_session__create_kernel_maps(struct perf_session *self)
  57. {
  58. int ret = machine__create_kernel_maps(&self->host_machine);
  59. if (ret >= 0)
  60. ret = machines__create_guest_kernel_maps(&self->machines);
  61. return ret;
  62. }
  63. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  64. {
  65. size_t len = filename ? strlen(filename) + 1 : 0;
  66. struct perf_session *self = zalloc(sizeof(*self) + len);
  67. if (self == NULL)
  68. goto out;
  69. if (perf_header__init(&self->header) < 0)
  70. goto out_free;
  71. memcpy(self->filename, filename, len);
  72. self->threads = RB_ROOT;
  73. self->hists_tree = RB_ROOT;
  74. self->last_match = NULL;
  75. self->mmap_window = 32;
  76. self->cwd = NULL;
  77. self->cwdlen = 0;
  78. self->machines = RB_ROOT;
  79. self->repipe = repipe;
  80. INIT_LIST_HEAD(&self->ordered_samples.samples_head);
  81. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  82. if (mode == O_RDONLY) {
  83. if (perf_session__open(self, force) < 0)
  84. goto out_delete;
  85. } else if (mode == O_WRONLY) {
  86. /*
  87. * In O_RDONLY mode this will be performed when reading the
  88. * kernel MMAP event, in event__process_mmap().
  89. */
  90. if (perf_session__create_kernel_maps(self) < 0)
  91. goto out_delete;
  92. }
  93. perf_session__update_sample_type(self);
  94. out:
  95. return self;
  96. out_free:
  97. free(self);
  98. return NULL;
  99. out_delete:
  100. perf_session__delete(self);
  101. return NULL;
  102. }
  103. void perf_session__delete(struct perf_session *self)
  104. {
  105. perf_header__exit(&self->header);
  106. close(self->fd);
  107. free(self->cwd);
  108. free(self);
  109. }
  110. static bool symbol__match_parent_regex(struct symbol *sym)
  111. {
  112. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  113. return 1;
  114. return 0;
  115. }
  116. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  117. struct thread *thread,
  118. struct ip_callchain *chain,
  119. struct symbol **parent)
  120. {
  121. u8 cpumode = PERF_RECORD_MISC_USER;
  122. unsigned int i;
  123. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  124. if (!syms)
  125. return NULL;
  126. for (i = 0; i < chain->nr; i++) {
  127. u64 ip = chain->ips[i];
  128. struct addr_location al;
  129. if (ip >= PERF_CONTEXT_MAX) {
  130. switch (ip) {
  131. case PERF_CONTEXT_HV:
  132. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  133. case PERF_CONTEXT_KERNEL:
  134. cpumode = PERF_RECORD_MISC_KERNEL; break;
  135. case PERF_CONTEXT_USER:
  136. cpumode = PERF_RECORD_MISC_USER; break;
  137. default:
  138. break;
  139. }
  140. continue;
  141. }
  142. al.filtered = false;
  143. thread__find_addr_location(thread, self, cpumode,
  144. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  145. if (al.sym != NULL) {
  146. if (sort__has_parent && !*parent &&
  147. symbol__match_parent_regex(al.sym))
  148. *parent = al.sym;
  149. if (!symbol_conf.use_callchain)
  150. break;
  151. syms[i].map = al.map;
  152. syms[i].sym = al.sym;
  153. }
  154. }
  155. return syms;
  156. }
  157. static int process_event_stub(event_t *event __used,
  158. struct perf_session *session __used)
  159. {
  160. dump_printf(": unhandled!\n");
  161. return 0;
  162. }
  163. static int process_finished_round_stub(event_t *event __used,
  164. struct perf_session *session __used,
  165. struct perf_event_ops *ops __used)
  166. {
  167. dump_printf(": unhandled!\n");
  168. return 0;
  169. }
  170. static int process_finished_round(event_t *event,
  171. struct perf_session *session,
  172. struct perf_event_ops *ops);
  173. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  174. {
  175. if (handler->sample == NULL)
  176. handler->sample = process_event_stub;
  177. if (handler->mmap == NULL)
  178. handler->mmap = process_event_stub;
  179. if (handler->comm == NULL)
  180. handler->comm = process_event_stub;
  181. if (handler->fork == NULL)
  182. handler->fork = process_event_stub;
  183. if (handler->exit == NULL)
  184. handler->exit = process_event_stub;
  185. if (handler->lost == NULL)
  186. handler->lost = process_event_stub;
  187. if (handler->read == NULL)
  188. handler->read = process_event_stub;
  189. if (handler->throttle == NULL)
  190. handler->throttle = process_event_stub;
  191. if (handler->unthrottle == NULL)
  192. handler->unthrottle = process_event_stub;
  193. if (handler->attr == NULL)
  194. handler->attr = process_event_stub;
  195. if (handler->event_type == NULL)
  196. handler->event_type = process_event_stub;
  197. if (handler->tracing_data == NULL)
  198. handler->tracing_data = process_event_stub;
  199. if (handler->build_id == NULL)
  200. handler->build_id = process_event_stub;
  201. if (handler->finished_round == NULL) {
  202. if (handler->ordered_samples)
  203. handler->finished_round = process_finished_round;
  204. else
  205. handler->finished_round = process_finished_round_stub;
  206. }
  207. }
  208. void mem_bswap_64(void *src, int byte_size)
  209. {
  210. u64 *m = src;
  211. while (byte_size > 0) {
  212. *m = bswap_64(*m);
  213. byte_size -= sizeof(u64);
  214. ++m;
  215. }
  216. }
  217. static void event__all64_swap(event_t *self)
  218. {
  219. struct perf_event_header *hdr = &self->header;
  220. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  221. }
  222. static void event__comm_swap(event_t *self)
  223. {
  224. self->comm.pid = bswap_32(self->comm.pid);
  225. self->comm.tid = bswap_32(self->comm.tid);
  226. }
  227. static void event__mmap_swap(event_t *self)
  228. {
  229. self->mmap.pid = bswap_32(self->mmap.pid);
  230. self->mmap.tid = bswap_32(self->mmap.tid);
  231. self->mmap.start = bswap_64(self->mmap.start);
  232. self->mmap.len = bswap_64(self->mmap.len);
  233. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  234. }
  235. static void event__task_swap(event_t *self)
  236. {
  237. self->fork.pid = bswap_32(self->fork.pid);
  238. self->fork.tid = bswap_32(self->fork.tid);
  239. self->fork.ppid = bswap_32(self->fork.ppid);
  240. self->fork.ptid = bswap_32(self->fork.ptid);
  241. self->fork.time = bswap_64(self->fork.time);
  242. }
  243. static void event__read_swap(event_t *self)
  244. {
  245. self->read.pid = bswap_32(self->read.pid);
  246. self->read.tid = bswap_32(self->read.tid);
  247. self->read.value = bswap_64(self->read.value);
  248. self->read.time_enabled = bswap_64(self->read.time_enabled);
  249. self->read.time_running = bswap_64(self->read.time_running);
  250. self->read.id = bswap_64(self->read.id);
  251. }
  252. static void event__attr_swap(event_t *self)
  253. {
  254. size_t size;
  255. self->attr.attr.type = bswap_32(self->attr.attr.type);
  256. self->attr.attr.size = bswap_32(self->attr.attr.size);
  257. self->attr.attr.config = bswap_64(self->attr.attr.config);
  258. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  259. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  260. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  261. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  262. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  263. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  264. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  265. size = self->header.size;
  266. size -= (void *)&self->attr.id - (void *)self;
  267. mem_bswap_64(self->attr.id, size);
  268. }
  269. static void event__event_type_swap(event_t *self)
  270. {
  271. self->event_type.event_type.event_id =
  272. bswap_64(self->event_type.event_type.event_id);
  273. }
  274. static void event__tracing_data_swap(event_t *self)
  275. {
  276. self->tracing_data.size = bswap_32(self->tracing_data.size);
  277. }
  278. typedef void (*event__swap_op)(event_t *self);
  279. static event__swap_op event__swap_ops[] = {
  280. [PERF_RECORD_MMAP] = event__mmap_swap,
  281. [PERF_RECORD_COMM] = event__comm_swap,
  282. [PERF_RECORD_FORK] = event__task_swap,
  283. [PERF_RECORD_EXIT] = event__task_swap,
  284. [PERF_RECORD_LOST] = event__all64_swap,
  285. [PERF_RECORD_READ] = event__read_swap,
  286. [PERF_RECORD_SAMPLE] = event__all64_swap,
  287. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  288. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  289. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  290. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  291. [PERF_RECORD_HEADER_MAX] = NULL,
  292. };
  293. struct sample_queue {
  294. u64 timestamp;
  295. struct sample_event *event;
  296. struct list_head list;
  297. };
  298. static void flush_sample_queue(struct perf_session *s,
  299. struct perf_event_ops *ops)
  300. {
  301. struct list_head *head = &s->ordered_samples.samples_head;
  302. u64 limit = s->ordered_samples.next_flush;
  303. struct sample_queue *tmp, *iter;
  304. if (!ops->ordered_samples || !limit)
  305. return;
  306. list_for_each_entry_safe(iter, tmp, head, list) {
  307. if (iter->timestamp > limit)
  308. return;
  309. if (iter == s->ordered_samples.last_inserted)
  310. s->ordered_samples.last_inserted = NULL;
  311. ops->sample((event_t *)iter->event, s);
  312. s->ordered_samples.last_flush = iter->timestamp;
  313. list_del(&iter->list);
  314. free(iter->event);
  315. free(iter);
  316. }
  317. }
  318. /*
  319. * When perf record finishes a pass on every buffers, it records this pseudo
  320. * event.
  321. * We record the max timestamp t found in the pass n.
  322. * Assuming these timestamps are monotonic across cpus, we know that if
  323. * a buffer still has events with timestamps below t, they will be all
  324. * available and then read in the pass n + 1.
  325. * Hence when we start to read the pass n + 2, we can safely flush every
  326. * events with timestamps below t.
  327. *
  328. * ============ PASS n =================
  329. * CPU 0 | CPU 1
  330. * |
  331. * cnt1 timestamps | cnt2 timestamps
  332. * 1 | 2
  333. * 2 | 3
  334. * - | 4 <--- max recorded
  335. *
  336. * ============ PASS n + 1 ==============
  337. * CPU 0 | CPU 1
  338. * |
  339. * cnt1 timestamps | cnt2 timestamps
  340. * 3 | 5
  341. * 4 | 6
  342. * 5 | 7 <---- max recorded
  343. *
  344. * Flush every events below timestamp 4
  345. *
  346. * ============ PASS n + 2 ==============
  347. * CPU 0 | CPU 1
  348. * |
  349. * cnt1 timestamps | cnt2 timestamps
  350. * 6 | 8
  351. * 7 | 9
  352. * - | 10
  353. *
  354. * Flush every events below timestamp 7
  355. * etc...
  356. */
  357. static int process_finished_round(event_t *event __used,
  358. struct perf_session *session,
  359. struct perf_event_ops *ops)
  360. {
  361. flush_sample_queue(session, ops);
  362. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  363. return 0;
  364. }
  365. static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
  366. {
  367. struct sample_queue *iter;
  368. list_for_each_entry_reverse(iter, head, list) {
  369. if (iter->timestamp < new->timestamp) {
  370. list_add(&new->list, &iter->list);
  371. return;
  372. }
  373. }
  374. list_add(&new->list, head);
  375. }
  376. static void __queue_sample_before(struct sample_queue *new,
  377. struct sample_queue *iter,
  378. struct list_head *head)
  379. {
  380. list_for_each_entry_continue_reverse(iter, head, list) {
  381. if (iter->timestamp < new->timestamp) {
  382. list_add(&new->list, &iter->list);
  383. return;
  384. }
  385. }
  386. list_add(&new->list, head);
  387. }
  388. static void __queue_sample_after(struct sample_queue *new,
  389. struct sample_queue *iter,
  390. struct list_head *head)
  391. {
  392. list_for_each_entry_continue(iter, head, list) {
  393. if (iter->timestamp > new->timestamp) {
  394. list_add_tail(&new->list, &iter->list);
  395. return;
  396. }
  397. }
  398. list_add_tail(&new->list, head);
  399. }
  400. /* The queue is ordered by time */
  401. static void __queue_sample_event(struct sample_queue *new,
  402. struct perf_session *s)
  403. {
  404. struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
  405. struct list_head *head = &s->ordered_samples.samples_head;
  406. if (!last_inserted) {
  407. __queue_sample_end(new, head);
  408. return;
  409. }
  410. /*
  411. * Most of the time the current event has a timestamp
  412. * very close to the last event inserted, unless we just switched
  413. * to another event buffer. Having a sorting based on a list and
  414. * on the last inserted event that is close to the current one is
  415. * probably more efficient than an rbtree based sorting.
  416. */
  417. if (last_inserted->timestamp >= new->timestamp)
  418. __queue_sample_before(new, last_inserted, head);
  419. else
  420. __queue_sample_after(new, last_inserted, head);
  421. }
  422. static int queue_sample_event(event_t *event, struct sample_data *data,
  423. struct perf_session *s)
  424. {
  425. u64 timestamp = data->time;
  426. struct sample_queue *new;
  427. if (timestamp < s->ordered_samples.last_flush) {
  428. printf("Warning: Timestamp below last timeslice flush\n");
  429. return -EINVAL;
  430. }
  431. new = malloc(sizeof(*new));
  432. if (!new)
  433. return -ENOMEM;
  434. new->timestamp = timestamp;
  435. new->event = malloc(event->header.size);
  436. if (!new->event) {
  437. free(new);
  438. return -ENOMEM;
  439. }
  440. memcpy(new->event, event, event->header.size);
  441. __queue_sample_event(new, s);
  442. s->ordered_samples.last_inserted = new;
  443. if (new->timestamp > s->ordered_samples.max_timestamp)
  444. s->ordered_samples.max_timestamp = new->timestamp;
  445. return 0;
  446. }
  447. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  448. struct perf_event_ops *ops)
  449. {
  450. struct sample_data data;
  451. if (!ops->ordered_samples)
  452. return ops->sample(event, s);
  453. bzero(&data, sizeof(struct sample_data));
  454. event__parse_sample(event, s->sample_type, &data);
  455. queue_sample_event(event, &data, s);
  456. return 0;
  457. }
  458. static int perf_session__process_event(struct perf_session *self,
  459. event_t *event,
  460. struct perf_event_ops *ops,
  461. u64 offset, u64 head)
  462. {
  463. trace_event(event);
  464. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  465. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  466. offset + head, event->header.size,
  467. event__name[event->header.type]);
  468. hists__inc_nr_events(&self->hists, event->header.type);
  469. }
  470. if (self->header.needs_swap && event__swap_ops[event->header.type])
  471. event__swap_ops[event->header.type](event);
  472. switch (event->header.type) {
  473. case PERF_RECORD_SAMPLE:
  474. return perf_session__process_sample(event, self, ops);
  475. case PERF_RECORD_MMAP:
  476. return ops->mmap(event, self);
  477. case PERF_RECORD_COMM:
  478. return ops->comm(event, self);
  479. case PERF_RECORD_FORK:
  480. return ops->fork(event, self);
  481. case PERF_RECORD_EXIT:
  482. return ops->exit(event, self);
  483. case PERF_RECORD_LOST:
  484. return ops->lost(event, self);
  485. case PERF_RECORD_READ:
  486. return ops->read(event, self);
  487. case PERF_RECORD_THROTTLE:
  488. return ops->throttle(event, self);
  489. case PERF_RECORD_UNTHROTTLE:
  490. return ops->unthrottle(event, self);
  491. case PERF_RECORD_HEADER_ATTR:
  492. return ops->attr(event, self);
  493. case PERF_RECORD_HEADER_EVENT_TYPE:
  494. return ops->event_type(event, self);
  495. case PERF_RECORD_HEADER_TRACING_DATA:
  496. /* setup for reading amidst mmap */
  497. lseek(self->fd, offset + head, SEEK_SET);
  498. return ops->tracing_data(event, self);
  499. case PERF_RECORD_HEADER_BUILD_ID:
  500. return ops->build_id(event, self);
  501. case PERF_RECORD_FINISHED_ROUND:
  502. return ops->finished_round(event, self, ops);
  503. default:
  504. ++self->hists.stats.nr_unknown_events;
  505. return -1;
  506. }
  507. }
  508. void perf_event_header__bswap(struct perf_event_header *self)
  509. {
  510. self->type = bswap_32(self->type);
  511. self->misc = bswap_16(self->misc);
  512. self->size = bswap_16(self->size);
  513. }
  514. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  515. {
  516. struct thread *thread = perf_session__findnew(self, 0);
  517. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  518. pr_err("problem inserting idle task.\n");
  519. thread = NULL;
  520. }
  521. return thread;
  522. }
  523. int do_read(int fd, void *buf, size_t size)
  524. {
  525. void *buf_start = buf;
  526. while (size) {
  527. int ret = read(fd, buf, size);
  528. if (ret <= 0)
  529. return ret;
  530. size -= ret;
  531. buf += ret;
  532. }
  533. return buf - buf_start;
  534. }
  535. #define session_done() (*(volatile int *)(&session_done))
  536. volatile int session_done;
  537. static int __perf_session__process_pipe_events(struct perf_session *self,
  538. struct perf_event_ops *ops)
  539. {
  540. event_t event;
  541. uint32_t size;
  542. int skip = 0;
  543. u64 head;
  544. int err;
  545. void *p;
  546. perf_event_ops__fill_defaults(ops);
  547. head = 0;
  548. more:
  549. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  550. if (err <= 0) {
  551. if (err == 0)
  552. goto done;
  553. pr_err("failed to read event header\n");
  554. goto out_err;
  555. }
  556. if (self->header.needs_swap)
  557. perf_event_header__bswap(&event.header);
  558. size = event.header.size;
  559. if (size == 0)
  560. size = 8;
  561. p = &event;
  562. p += sizeof(struct perf_event_header);
  563. if (size - sizeof(struct perf_event_header)) {
  564. err = do_read(self->fd, p,
  565. size - sizeof(struct perf_event_header));
  566. if (err <= 0) {
  567. if (err == 0) {
  568. pr_err("unexpected end of event stream\n");
  569. goto done;
  570. }
  571. pr_err("failed to read event data\n");
  572. goto out_err;
  573. }
  574. }
  575. if (size == 0 ||
  576. (skip = perf_session__process_event(self, &event, ops,
  577. 0, head)) < 0) {
  578. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  579. head, event.header.size, event.header.type);
  580. /*
  581. * assume we lost track of the stream, check alignment, and
  582. * increment a single u64 in the hope to catch on again 'soon'.
  583. */
  584. if (unlikely(head & 7))
  585. head &= ~7ULL;
  586. size = 8;
  587. }
  588. head += size;
  589. dump_printf("\n%#Lx [%#x]: event: %d\n",
  590. head, event.header.size, event.header.type);
  591. if (skip > 0)
  592. head += skip;
  593. if (!session_done())
  594. goto more;
  595. done:
  596. err = 0;
  597. out_err:
  598. return err;
  599. }
  600. int __perf_session__process_events(struct perf_session *self,
  601. u64 data_offset, u64 data_size,
  602. u64 file_size, struct perf_event_ops *ops)
  603. {
  604. int err, mmap_prot, mmap_flags;
  605. u64 head, shift;
  606. u64 offset = 0;
  607. size_t page_size;
  608. event_t *event;
  609. uint32_t size;
  610. char *buf;
  611. struct ui_progress *progress = ui_progress__new("Processing events...",
  612. self->size);
  613. if (progress == NULL)
  614. return -1;
  615. perf_event_ops__fill_defaults(ops);
  616. page_size = sysconf(_SC_PAGESIZE);
  617. head = data_offset;
  618. shift = page_size * (head / page_size);
  619. offset += shift;
  620. head -= shift;
  621. mmap_prot = PROT_READ;
  622. mmap_flags = MAP_SHARED;
  623. if (self->header.needs_swap) {
  624. mmap_prot |= PROT_WRITE;
  625. mmap_flags = MAP_PRIVATE;
  626. }
  627. remap:
  628. buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
  629. mmap_flags, self->fd, offset);
  630. if (buf == MAP_FAILED) {
  631. pr_err("failed to mmap file\n");
  632. err = -errno;
  633. goto out_err;
  634. }
  635. more:
  636. event = (event_t *)(buf + head);
  637. ui_progress__update(progress, offset);
  638. if (self->header.needs_swap)
  639. perf_event_header__bswap(&event->header);
  640. size = event->header.size;
  641. if (size == 0)
  642. size = 8;
  643. if (head + event->header.size >= page_size * self->mmap_window) {
  644. int munmap_ret;
  645. shift = page_size * (head / page_size);
  646. munmap_ret = munmap(buf, page_size * self->mmap_window);
  647. assert(munmap_ret == 0);
  648. offset += shift;
  649. head -= shift;
  650. goto remap;
  651. }
  652. size = event->header.size;
  653. dump_printf("\n%#Lx [%#x]: event: %d\n",
  654. offset + head, event->header.size, event->header.type);
  655. if (size == 0 ||
  656. perf_session__process_event(self, event, ops, offset, head) < 0) {
  657. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  658. offset + head, event->header.size,
  659. event->header.type);
  660. /*
  661. * assume we lost track of the stream, check alignment, and
  662. * increment a single u64 in the hope to catch on again 'soon'.
  663. */
  664. if (unlikely(head & 7))
  665. head &= ~7ULL;
  666. size = 8;
  667. }
  668. head += size;
  669. if (offset + head >= data_offset + data_size)
  670. goto done;
  671. if (offset + head < file_size)
  672. goto more;
  673. done:
  674. err = 0;
  675. /* do the final flush for ordered samples */
  676. self->ordered_samples.next_flush = ULLONG_MAX;
  677. flush_sample_queue(self, ops);
  678. out_err:
  679. ui_progress__delete(progress);
  680. return err;
  681. }
  682. int perf_session__process_events(struct perf_session *self,
  683. struct perf_event_ops *ops)
  684. {
  685. int err;
  686. if (perf_session__register_idle_thread(self) == NULL)
  687. return -ENOMEM;
  688. if (!symbol_conf.full_paths) {
  689. char bf[PATH_MAX];
  690. if (getcwd(bf, sizeof(bf)) == NULL) {
  691. err = -errno;
  692. out_getcwd_err:
  693. pr_err("failed to get the current directory\n");
  694. goto out_err;
  695. }
  696. self->cwd = strdup(bf);
  697. if (self->cwd == NULL) {
  698. err = -ENOMEM;
  699. goto out_getcwd_err;
  700. }
  701. self->cwdlen = strlen(self->cwd);
  702. }
  703. if (!self->fd_pipe)
  704. err = __perf_session__process_events(self,
  705. self->header.data_offset,
  706. self->header.data_size,
  707. self->size, ops);
  708. else
  709. err = __perf_session__process_pipe_events(self, ops);
  710. out_err:
  711. return err;
  712. }
  713. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  714. {
  715. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  716. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  717. return false;
  718. }
  719. return true;
  720. }
  721. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  722. const char *symbol_name,
  723. u64 addr)
  724. {
  725. char *bracket;
  726. enum map_type i;
  727. struct ref_reloc_sym *ref;
  728. ref = zalloc(sizeof(struct ref_reloc_sym));
  729. if (ref == NULL)
  730. return -ENOMEM;
  731. ref->name = strdup(symbol_name);
  732. if (ref->name == NULL) {
  733. free(ref);
  734. return -ENOMEM;
  735. }
  736. bracket = strchr(ref->name, ']');
  737. if (bracket)
  738. *bracket = '\0';
  739. ref->addr = addr;
  740. for (i = 0; i < MAP__NR_TYPES; ++i) {
  741. struct kmap *kmap = map__kmap(maps[i]);
  742. kmap->ref_reloc_sym = ref;
  743. }
  744. return 0;
  745. }
  746. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  747. {
  748. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  749. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  750. machines__fprintf_dsos(&self->machines, fp);
  751. }
  752. size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
  753. bool with_hits)
  754. {
  755. size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
  756. return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
  757. }