lguest.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include <signal.h>
  40. #include "linux/lguest_launcher.h"
  41. #include "linux/virtio_config.h"
  42. #include "linux/virtio_net.h"
  43. #include "linux/virtio_blk.h"
  44. #include "linux/virtio_console.h"
  45. #include "linux/virtio_rng.h"
  46. #include "linux/virtio_ring.h"
  47. #include "asm-x86/bootparam.h"
  48. /*L:110 We can ignore the 39 include files we need for this program, but I do
  49. * want to draw attention to the use of kernel-style types.
  50. *
  51. * As Linus said, "C is a Spartan language, and so should your naming be." I
  52. * like these abbreviations, so we define them here. Note that u64 is always
  53. * unsigned long long, which works on all Linux systems: this means that we can
  54. * use %llu in printf for any u64. */
  55. typedef unsigned long long u64;
  56. typedef uint32_t u32;
  57. typedef uint16_t u16;
  58. typedef uint8_t u8;
  59. /*:*/
  60. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  61. #define NET_PEERNUM 1
  62. #define BRIDGE_PFX "bridge:"
  63. #ifndef SIOCBRADDIF
  64. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  65. #endif
  66. /* We can have up to 256 pages for devices. */
  67. #define DEVICE_PAGES 256
  68. /* This will occupy 3 pages: it must be a power of 2. */
  69. #define VIRTQUEUE_NUM 256
  70. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  71. * this, and although I wouldn't recommend it, it works quite nicely here. */
  72. static bool verbose;
  73. #define verbose(args...) \
  74. do { if (verbose) printf(args); } while(0)
  75. /*:*/
  76. /* The pipe to send commands to the waker process */
  77. static int waker_fd;
  78. /* The pointer to the start of guest memory. */
  79. static void *guest_base;
  80. /* The maximum guest physical address allowed, and maximum possible. */
  81. static unsigned long guest_limit, guest_max;
  82. /* The pipe for signal hander to write to. */
  83. static int timeoutpipe[2];
  84. static unsigned int timeout_usec = 500;
  85. /* a per-cpu variable indicating whose vcpu is currently running */
  86. static unsigned int __thread cpu_id;
  87. /* This is our list of devices. */
  88. struct device_list
  89. {
  90. /* Summary information about the devices in our list: ready to pass to
  91. * select() to ask which need servicing.*/
  92. fd_set infds;
  93. int max_infd;
  94. /* Counter to assign interrupt numbers. */
  95. unsigned int next_irq;
  96. /* Counter to print out convenient device numbers. */
  97. unsigned int device_num;
  98. /* The descriptor page for the devices. */
  99. u8 *descpage;
  100. /* A single linked list of devices. */
  101. struct device *dev;
  102. /* And a pointer to the last device for easy append and also for
  103. * configuration appending. */
  104. struct device *lastdev;
  105. };
  106. /* The list of Guest devices, based on command line arguments. */
  107. static struct device_list devices;
  108. /* The device structure describes a single device. */
  109. struct device
  110. {
  111. /* The linked-list pointer. */
  112. struct device *next;
  113. /* The this device's descriptor, as mapped into the Guest. */
  114. struct lguest_device_desc *desc;
  115. /* The name of this device, for --verbose. */
  116. const char *name;
  117. /* If handle_input is set, it wants to be called when this file
  118. * descriptor is ready. */
  119. int fd;
  120. bool (*handle_input)(int fd, struct device *me);
  121. /* Any queues attached to this device */
  122. struct virtqueue *vq;
  123. /* Handle status being finalized (ie. feature bits stable). */
  124. void (*ready)(struct device *me);
  125. /* Device-specific data. */
  126. void *priv;
  127. };
  128. /* The virtqueue structure describes a queue attached to a device. */
  129. struct virtqueue
  130. {
  131. struct virtqueue *next;
  132. /* Which device owns me. */
  133. struct device *dev;
  134. /* The configuration for this queue. */
  135. struct lguest_vqconfig config;
  136. /* The actual ring of buffers. */
  137. struct vring vring;
  138. /* Last available index we saw. */
  139. u16 last_avail_idx;
  140. /* The routine to call when the Guest pings us, or timeout. */
  141. void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
  142. /* Outstanding buffers */
  143. unsigned int inflight;
  144. /* Is this blocked awaiting a timer? */
  145. bool blocked;
  146. };
  147. /* Remember the arguments to the program so we can "reboot" */
  148. static char **main_args;
  149. /* Since guest is UP and we don't run at the same time, we don't need barriers.
  150. * But I include them in the code in case others copy it. */
  151. #define wmb()
  152. /* Convert an iovec element to the given type.
  153. *
  154. * This is a fairly ugly trick: we need to know the size of the type and
  155. * alignment requirement to check the pointer is kosher. It's also nice to
  156. * have the name of the type in case we report failure.
  157. *
  158. * Typing those three things all the time is cumbersome and error prone, so we
  159. * have a macro which sets them all up and passes to the real function. */
  160. #define convert(iov, type) \
  161. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  162. static void *_convert(struct iovec *iov, size_t size, size_t align,
  163. const char *name)
  164. {
  165. if (iov->iov_len != size)
  166. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  167. if ((unsigned long)iov->iov_base % align != 0)
  168. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  169. return iov->iov_base;
  170. }
  171. /* Wrapper for the last available index. Makes it easier to change. */
  172. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  173. /* The virtio configuration space is defined to be little-endian. x86 is
  174. * little-endian too, but it's nice to be explicit so we have these helpers. */
  175. #define cpu_to_le16(v16) (v16)
  176. #define cpu_to_le32(v32) (v32)
  177. #define cpu_to_le64(v64) (v64)
  178. #define le16_to_cpu(v16) (v16)
  179. #define le32_to_cpu(v32) (v32)
  180. #define le64_to_cpu(v64) (v64)
  181. /* Is this iovec empty? */
  182. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  183. {
  184. unsigned int i;
  185. for (i = 0; i < num_iov; i++)
  186. if (iov[i].iov_len)
  187. return false;
  188. return true;
  189. }
  190. /* Take len bytes from the front of this iovec. */
  191. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  192. {
  193. unsigned int i;
  194. for (i = 0; i < num_iov; i++) {
  195. unsigned int used;
  196. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  197. iov[i].iov_base += used;
  198. iov[i].iov_len -= used;
  199. len -= used;
  200. }
  201. assert(len == 0);
  202. }
  203. /* The device virtqueue descriptors are followed by feature bitmasks. */
  204. static u8 *get_feature_bits(struct device *dev)
  205. {
  206. return (u8 *)(dev->desc + 1)
  207. + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
  208. }
  209. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  210. * where pointers run wild and free! Unfortunately, like most userspace
  211. * programs, it's quite boring (which is why everyone likes to hack on the
  212. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  213. * will get you through this section. Or, maybe not.
  214. *
  215. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  216. * memory and stores it in "guest_base". In other words, Guest physical ==
  217. * Launcher virtual with an offset.
  218. *
  219. * This can be tough to get your head around, but usually it just means that we
  220. * use these trivial conversion functions when the Guest gives us it's
  221. * "physical" addresses: */
  222. static void *from_guest_phys(unsigned long addr)
  223. {
  224. return guest_base + addr;
  225. }
  226. static unsigned long to_guest_phys(const void *addr)
  227. {
  228. return (addr - guest_base);
  229. }
  230. /*L:130
  231. * Loading the Kernel.
  232. *
  233. * We start with couple of simple helper routines. open_or_die() avoids
  234. * error-checking code cluttering the callers: */
  235. static int open_or_die(const char *name, int flags)
  236. {
  237. int fd = open(name, flags);
  238. if (fd < 0)
  239. err(1, "Failed to open %s", name);
  240. return fd;
  241. }
  242. /* map_zeroed_pages() takes a number of pages. */
  243. static void *map_zeroed_pages(unsigned int num)
  244. {
  245. int fd = open_or_die("/dev/zero", O_RDONLY);
  246. void *addr;
  247. /* We use a private mapping (ie. if we write to the page, it will be
  248. * copied). */
  249. addr = mmap(NULL, getpagesize() * num,
  250. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  251. if (addr == MAP_FAILED)
  252. err(1, "Mmaping %u pages of /dev/zero", num);
  253. close(fd);
  254. return addr;
  255. }
  256. /* Get some more pages for a device. */
  257. static void *get_pages(unsigned int num)
  258. {
  259. void *addr = from_guest_phys(guest_limit);
  260. guest_limit += num * getpagesize();
  261. if (guest_limit > guest_max)
  262. errx(1, "Not enough memory for devices");
  263. return addr;
  264. }
  265. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  266. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  267. * it falls back to reading the memory in. */
  268. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  269. {
  270. ssize_t r;
  271. /* We map writable even though for some segments are marked read-only.
  272. * The kernel really wants to be writable: it patches its own
  273. * instructions.
  274. *
  275. * MAP_PRIVATE means that the page won't be copied until a write is
  276. * done to it. This allows us to share untouched memory between
  277. * Guests. */
  278. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  279. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  280. return;
  281. /* pread does a seek and a read in one shot: saves a few lines. */
  282. r = pread(fd, addr, len, offset);
  283. if (r != len)
  284. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  285. }
  286. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  287. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  288. * by all modern binaries on Linux including the kernel.
  289. *
  290. * The ELF headers give *two* addresses: a physical address, and a virtual
  291. * address. We use the physical address; the Guest will map itself to the
  292. * virtual address.
  293. *
  294. * We return the starting address. */
  295. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  296. {
  297. Elf32_Phdr phdr[ehdr->e_phnum];
  298. unsigned int i;
  299. /* Sanity checks on the main ELF header: an x86 executable with a
  300. * reasonable number of correctly-sized program headers. */
  301. if (ehdr->e_type != ET_EXEC
  302. || ehdr->e_machine != EM_386
  303. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  304. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  305. errx(1, "Malformed elf header");
  306. /* An ELF executable contains an ELF header and a number of "program"
  307. * headers which indicate which parts ("segments") of the program to
  308. * load where. */
  309. /* We read in all the program headers at once: */
  310. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  311. err(1, "Seeking to program headers");
  312. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  313. err(1, "Reading program headers");
  314. /* Try all the headers: there are usually only three. A read-only one,
  315. * a read-write one, and a "note" section which we don't load. */
  316. for (i = 0; i < ehdr->e_phnum; i++) {
  317. /* If this isn't a loadable segment, we ignore it */
  318. if (phdr[i].p_type != PT_LOAD)
  319. continue;
  320. verbose("Section %i: size %i addr %p\n",
  321. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  322. /* We map this section of the file at its physical address. */
  323. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  324. phdr[i].p_offset, phdr[i].p_filesz);
  325. }
  326. /* The entry point is given in the ELF header. */
  327. return ehdr->e_entry;
  328. }
  329. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  330. * supposed to jump into it and it will unpack itself. We used to have to
  331. * perform some hairy magic because the unpacking code scared me.
  332. *
  333. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  334. * a small patch to jump over the tricky bits in the Guest, so now we just read
  335. * the funky header so we know where in the file to load, and away we go! */
  336. static unsigned long load_bzimage(int fd)
  337. {
  338. struct boot_params boot;
  339. int r;
  340. /* Modern bzImages get loaded at 1M. */
  341. void *p = from_guest_phys(0x100000);
  342. /* Go back to the start of the file and read the header. It should be
  343. * a Linux boot header (see Documentation/i386/boot.txt) */
  344. lseek(fd, 0, SEEK_SET);
  345. read(fd, &boot, sizeof(boot));
  346. /* Inside the setup_hdr, we expect the magic "HdrS" */
  347. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  348. errx(1, "This doesn't look like a bzImage to me");
  349. /* Skip over the extra sectors of the header. */
  350. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  351. /* Now read everything into memory. in nice big chunks. */
  352. while ((r = read(fd, p, 65536)) > 0)
  353. p += r;
  354. /* Finally, code32_start tells us where to enter the kernel. */
  355. return boot.hdr.code32_start;
  356. }
  357. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  358. * come wrapped up in the self-decompressing "bzImage" format. With a little
  359. * work, we can load those, too. */
  360. static unsigned long load_kernel(int fd)
  361. {
  362. Elf32_Ehdr hdr;
  363. /* Read in the first few bytes. */
  364. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  365. err(1, "Reading kernel");
  366. /* If it's an ELF file, it starts with "\177ELF" */
  367. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  368. return map_elf(fd, &hdr);
  369. /* Otherwise we assume it's a bzImage, and try to load it. */
  370. return load_bzimage(fd);
  371. }
  372. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  373. * it calls getpagesize() twice: "it's dumb code."
  374. *
  375. * Kernel guys get really het up about optimization, even when it's not
  376. * necessary. I leave this code as a reaction against that. */
  377. static inline unsigned long page_align(unsigned long addr)
  378. {
  379. /* Add upwards and truncate downwards. */
  380. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  381. }
  382. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  383. * the kernel which the kernel can use to boot from without needing any
  384. * drivers. Most distributions now use this as standard: the initrd contains
  385. * the code to load the appropriate driver modules for the current machine.
  386. *
  387. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  388. * kernels. He sent me this (and tells me when I break it). */
  389. static unsigned long load_initrd(const char *name, unsigned long mem)
  390. {
  391. int ifd;
  392. struct stat st;
  393. unsigned long len;
  394. ifd = open_or_die(name, O_RDONLY);
  395. /* fstat() is needed to get the file size. */
  396. if (fstat(ifd, &st) < 0)
  397. err(1, "fstat() on initrd '%s'", name);
  398. /* We map the initrd at the top of memory, but mmap wants it to be
  399. * page-aligned, so we round the size up for that. */
  400. len = page_align(st.st_size);
  401. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  402. /* Once a file is mapped, you can close the file descriptor. It's a
  403. * little odd, but quite useful. */
  404. close(ifd);
  405. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  406. /* We return the initrd size. */
  407. return len;
  408. }
  409. /* Once we know how much memory we have we can construct simple linear page
  410. * tables which set virtual == physical which will get the Guest far enough
  411. * into the boot to create its own.
  412. *
  413. * We lay them out of the way, just below the initrd (which is why we need to
  414. * know its size here). */
  415. static unsigned long setup_pagetables(unsigned long mem,
  416. unsigned long initrd_size)
  417. {
  418. unsigned long *pgdir, *linear;
  419. unsigned int mapped_pages, i, linear_pages;
  420. unsigned int ptes_per_page = getpagesize()/sizeof(void *);
  421. mapped_pages = mem/getpagesize();
  422. /* Each PTE page can map ptes_per_page pages: how many do we need? */
  423. linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
  424. /* We put the toplevel page directory page at the top of memory. */
  425. pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
  426. /* Now we use the next linear_pages pages as pte pages */
  427. linear = (void *)pgdir - linear_pages*getpagesize();
  428. /* Linear mapping is easy: put every page's address into the mapping in
  429. * order. PAGE_PRESENT contains the flags Present, Writable and
  430. * Executable. */
  431. for (i = 0; i < mapped_pages; i++)
  432. linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
  433. /* The top level points to the linear page table pages above. */
  434. for (i = 0; i < mapped_pages; i += ptes_per_page) {
  435. pgdir[i/ptes_per_page]
  436. = ((to_guest_phys(linear) + i*sizeof(void *))
  437. | PAGE_PRESENT);
  438. }
  439. verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
  440. mapped_pages, linear_pages, to_guest_phys(linear));
  441. /* We return the top level (guest-physical) address: the kernel needs
  442. * to know where it is. */
  443. return to_guest_phys(pgdir);
  444. }
  445. /*:*/
  446. /* Simple routine to roll all the commandline arguments together with spaces
  447. * between them. */
  448. static void concat(char *dst, char *args[])
  449. {
  450. unsigned int i, len = 0;
  451. for (i = 0; args[i]; i++) {
  452. if (i) {
  453. strcat(dst+len, " ");
  454. len++;
  455. }
  456. strcpy(dst+len, args[i]);
  457. len += strlen(args[i]);
  458. }
  459. /* In case it's empty. */
  460. dst[len] = '\0';
  461. }
  462. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  463. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  464. * the base of Guest "physical" memory, the top physical page to allow, the
  465. * top level pagetable and the entry point for the Guest. */
  466. static int tell_kernel(unsigned long pgdir, unsigned long start)
  467. {
  468. unsigned long args[] = { LHREQ_INITIALIZE,
  469. (unsigned long)guest_base,
  470. guest_limit / getpagesize(), pgdir, start };
  471. int fd;
  472. verbose("Guest: %p - %p (%#lx)\n",
  473. guest_base, guest_base + guest_limit, guest_limit);
  474. fd = open_or_die("/dev/lguest", O_RDWR);
  475. if (write(fd, args, sizeof(args)) < 0)
  476. err(1, "Writing to /dev/lguest");
  477. /* We return the /dev/lguest file descriptor to control this Guest */
  478. return fd;
  479. }
  480. /*:*/
  481. static void add_device_fd(int fd)
  482. {
  483. FD_SET(fd, &devices.infds);
  484. if (fd > devices.max_infd)
  485. devices.max_infd = fd;
  486. }
  487. /*L:200
  488. * The Waker.
  489. *
  490. * With console, block and network devices, we can have lots of input which we
  491. * need to process. We could try to tell the kernel what file descriptors to
  492. * watch, but handing a file descriptor mask through to the kernel is fairly
  493. * icky.
  494. *
  495. * Instead, we fork off a process which watches the file descriptors and writes
  496. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  497. * stop running the Guest. This causes the Launcher to return from the
  498. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  499. * the LHREQ_BREAK and wake us up again.
  500. *
  501. * This, of course, is merely a different *kind* of icky.
  502. */
  503. static void wake_parent(int pipefd, int lguest_fd)
  504. {
  505. /* Add the pipe from the Launcher to the fdset in the device_list, so
  506. * we watch it, too. */
  507. add_device_fd(pipefd);
  508. for (;;) {
  509. fd_set rfds = devices.infds;
  510. unsigned long args[] = { LHREQ_BREAK, 1 };
  511. /* Wait until input is ready from one of the devices. */
  512. select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
  513. /* Is it a message from the Launcher? */
  514. if (FD_ISSET(pipefd, &rfds)) {
  515. int fd;
  516. /* If read() returns 0, it means the Launcher has
  517. * exited. We silently follow. */
  518. if (read(pipefd, &fd, sizeof(fd)) == 0)
  519. exit(0);
  520. /* Otherwise it's telling us to change what file
  521. * descriptors we're to listen to. Positive means
  522. * listen to a new one, negative means stop
  523. * listening. */
  524. if (fd >= 0)
  525. FD_SET(fd, &devices.infds);
  526. else
  527. FD_CLR(-fd - 1, &devices.infds);
  528. } else /* Send LHREQ_BREAK command. */
  529. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  530. }
  531. }
  532. /* This routine just sets up a pipe to the Waker process. */
  533. static int setup_waker(int lguest_fd)
  534. {
  535. int pipefd[2], child;
  536. /* We create a pipe to talk to the Waker, and also so it knows when the
  537. * Launcher dies (and closes pipe). */
  538. pipe(pipefd);
  539. child = fork();
  540. if (child == -1)
  541. err(1, "forking");
  542. if (child == 0) {
  543. /* We are the Waker: close the "writing" end of our copy of the
  544. * pipe and start waiting for input. */
  545. close(pipefd[1]);
  546. wake_parent(pipefd[0], lguest_fd);
  547. }
  548. /* Close the reading end of our copy of the pipe. */
  549. close(pipefd[0]);
  550. /* Here is the fd used to talk to the waker. */
  551. return pipefd[1];
  552. }
  553. /*
  554. * Device Handling.
  555. *
  556. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  557. * We need to make sure it's not trying to reach into the Launcher itself, so
  558. * we have a convenient routine which checks it and exits with an error message
  559. * if something funny is going on:
  560. */
  561. static void *_check_pointer(unsigned long addr, unsigned int size,
  562. unsigned int line)
  563. {
  564. /* We have to separately check addr and addr+size, because size could
  565. * be huge and addr + size might wrap around. */
  566. if (addr >= guest_limit || addr + size >= guest_limit)
  567. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  568. /* We return a pointer for the caller's convenience, now we know it's
  569. * safe to use. */
  570. return from_guest_phys(addr);
  571. }
  572. /* A macro which transparently hands the line number to the real function. */
  573. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  574. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  575. * function returns the next descriptor in the chain, or vq->vring.num if we're
  576. * at the end. */
  577. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  578. {
  579. unsigned int next;
  580. /* If this descriptor says it doesn't chain, we're done. */
  581. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  582. return vq->vring.num;
  583. /* Check they're not leading us off end of descriptors. */
  584. next = vq->vring.desc[i].next;
  585. /* Make sure compiler knows to grab that: we don't want it changing! */
  586. wmb();
  587. if (next >= vq->vring.num)
  588. errx(1, "Desc next is %u", next);
  589. return next;
  590. }
  591. /* This looks in the virtqueue and for the first available buffer, and converts
  592. * it to an iovec for convenient access. Since descriptors consist of some
  593. * number of output then some number of input descriptors, it's actually two
  594. * iovecs, but we pack them into one and note how many of each there were.
  595. *
  596. * This function returns the descriptor number found, or vq->vring.num (which
  597. * is never a valid descriptor number) if none was found. */
  598. static unsigned get_vq_desc(struct virtqueue *vq,
  599. struct iovec iov[],
  600. unsigned int *out_num, unsigned int *in_num)
  601. {
  602. unsigned int i, head;
  603. u16 last_avail;
  604. /* Check it isn't doing very strange things with descriptor numbers. */
  605. last_avail = lg_last_avail(vq);
  606. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  607. errx(1, "Guest moved used index from %u to %u",
  608. last_avail, vq->vring.avail->idx);
  609. /* If there's nothing new since last we looked, return invalid. */
  610. if (vq->vring.avail->idx == last_avail)
  611. return vq->vring.num;
  612. /* Grab the next descriptor number they're advertising, and increment
  613. * the index we've seen. */
  614. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  615. lg_last_avail(vq)++;
  616. /* If their number is silly, that's a fatal mistake. */
  617. if (head >= vq->vring.num)
  618. errx(1, "Guest says index %u is available", head);
  619. /* When we start there are none of either input nor output. */
  620. *out_num = *in_num = 0;
  621. i = head;
  622. do {
  623. /* Grab the first descriptor, and check it's OK. */
  624. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  625. iov[*out_num + *in_num].iov_base
  626. = check_pointer(vq->vring.desc[i].addr,
  627. vq->vring.desc[i].len);
  628. /* If this is an input descriptor, increment that count. */
  629. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  630. (*in_num)++;
  631. else {
  632. /* If it's an output descriptor, they're all supposed
  633. * to come before any input descriptors. */
  634. if (*in_num)
  635. errx(1, "Descriptor has out after in");
  636. (*out_num)++;
  637. }
  638. /* If we've got too many, that implies a descriptor loop. */
  639. if (*out_num + *in_num > vq->vring.num)
  640. errx(1, "Looped descriptor");
  641. } while ((i = next_desc(vq, i)) != vq->vring.num);
  642. vq->inflight++;
  643. return head;
  644. }
  645. /* After we've used one of their buffers, we tell them about it. We'll then
  646. * want to send them an interrupt, using trigger_irq(). */
  647. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  648. {
  649. struct vring_used_elem *used;
  650. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  651. * next entry in that used ring. */
  652. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  653. used->id = head;
  654. used->len = len;
  655. /* Make sure buffer is written before we update index. */
  656. wmb();
  657. vq->vring.used->idx++;
  658. vq->inflight--;
  659. }
  660. /* This actually sends the interrupt for this virtqueue */
  661. static void trigger_irq(int fd, struct virtqueue *vq)
  662. {
  663. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  664. /* If they don't want an interrupt, don't send one, unless empty. */
  665. if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  666. && vq->inflight)
  667. return;
  668. /* Send the Guest an interrupt tell them we used something up. */
  669. if (write(fd, buf, sizeof(buf)) != 0)
  670. err(1, "Triggering irq %i", vq->config.irq);
  671. }
  672. /* And here's the combo meal deal. Supersize me! */
  673. static void add_used_and_trigger(int fd, struct virtqueue *vq,
  674. unsigned int head, int len)
  675. {
  676. add_used(vq, head, len);
  677. trigger_irq(fd, vq);
  678. }
  679. /*
  680. * The Console
  681. *
  682. * Here is the input terminal setting we save, and the routine to restore them
  683. * on exit so the user gets their terminal back. */
  684. static struct termios orig_term;
  685. static void restore_term(void)
  686. {
  687. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  688. }
  689. /* We associate some data with the console for our exit hack. */
  690. struct console_abort
  691. {
  692. /* How many times have they hit ^C? */
  693. int count;
  694. /* When did they start? */
  695. struct timeval start;
  696. };
  697. /* This is the routine which handles console input (ie. stdin). */
  698. static bool handle_console_input(int fd, struct device *dev)
  699. {
  700. int len;
  701. unsigned int head, in_num, out_num;
  702. struct iovec iov[dev->vq->vring.num];
  703. struct console_abort *abort = dev->priv;
  704. /* First we need a console buffer from the Guests's input virtqueue. */
  705. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  706. /* If they're not ready for input, stop listening to this file
  707. * descriptor. We'll start again once they add an input buffer. */
  708. if (head == dev->vq->vring.num)
  709. return false;
  710. if (out_num)
  711. errx(1, "Output buffers in console in queue?");
  712. /* This is why we convert to iovecs: the readv() call uses them, and so
  713. * it reads straight into the Guest's buffer. */
  714. len = readv(dev->fd, iov, in_num);
  715. if (len <= 0) {
  716. /* This implies that the console is closed, is /dev/null, or
  717. * something went terribly wrong. */
  718. warnx("Failed to get console input, ignoring console.");
  719. /* Put the input terminal back. */
  720. restore_term();
  721. /* Remove callback from input vq, so it doesn't restart us. */
  722. dev->vq->handle_output = NULL;
  723. /* Stop listening to this fd: don't call us again. */
  724. return false;
  725. }
  726. /* Tell the Guest about the new input. */
  727. add_used_and_trigger(fd, dev->vq, head, len);
  728. /* Three ^C within one second? Exit.
  729. *
  730. * This is such a hack, but works surprisingly well. Each ^C has to be
  731. * in a buffer by itself, so they can't be too fast. But we check that
  732. * we get three within about a second, so they can't be too slow. */
  733. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  734. if (!abort->count++)
  735. gettimeofday(&abort->start, NULL);
  736. else if (abort->count == 3) {
  737. struct timeval now;
  738. gettimeofday(&now, NULL);
  739. if (now.tv_sec <= abort->start.tv_sec+1) {
  740. unsigned long args[] = { LHREQ_BREAK, 0 };
  741. /* Close the fd so Waker will know it has to
  742. * exit. */
  743. close(waker_fd);
  744. /* Just in case waker is blocked in BREAK, send
  745. * unbreak now. */
  746. write(fd, args, sizeof(args));
  747. exit(2);
  748. }
  749. abort->count = 0;
  750. }
  751. } else
  752. /* Any other key resets the abort counter. */
  753. abort->count = 0;
  754. /* Everything went OK! */
  755. return true;
  756. }
  757. /* Handling output for console is simple: we just get all the output buffers
  758. * and write them to stdout. */
  759. static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
  760. {
  761. unsigned int head, out, in;
  762. int len;
  763. struct iovec iov[vq->vring.num];
  764. /* Keep getting output buffers from the Guest until we run out. */
  765. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  766. if (in)
  767. errx(1, "Input buffers in output queue?");
  768. len = writev(STDOUT_FILENO, iov, out);
  769. add_used_and_trigger(fd, vq, head, len);
  770. }
  771. }
  772. static void block_vq(struct virtqueue *vq)
  773. {
  774. struct itimerval itm;
  775. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  776. vq->blocked = true;
  777. itm.it_interval.tv_sec = 0;
  778. itm.it_interval.tv_usec = 0;
  779. itm.it_value.tv_sec = 0;
  780. itm.it_value.tv_usec = timeout_usec;
  781. setitimer(ITIMER_REAL, &itm, NULL);
  782. }
  783. /*
  784. * The Network
  785. *
  786. * Handling output for network is also simple: we get all the output buffers
  787. * and write them (ignoring the first element) to this device's file descriptor
  788. * (/dev/net/tun).
  789. */
  790. static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
  791. {
  792. unsigned int head, out, in, num = 0;
  793. int len;
  794. struct iovec iov[vq->vring.num];
  795. static int last_timeout_num;
  796. /* Keep getting output buffers from the Guest until we run out. */
  797. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  798. if (in)
  799. errx(1, "Input buffers in output queue?");
  800. len = writev(vq->dev->fd, iov, out);
  801. if (len < 0)
  802. err(1, "Writing network packet to tun");
  803. add_used_and_trigger(fd, vq, head, len);
  804. num++;
  805. }
  806. /* Block further kicks and set up a timer if we saw anything. */
  807. if (!timeout && num)
  808. block_vq(vq);
  809. if (timeout) {
  810. if (num < last_timeout_num)
  811. timeout_usec += 10;
  812. else if (timeout_usec > 1)
  813. timeout_usec--;
  814. last_timeout_num = num;
  815. }
  816. }
  817. /* This is where we handle a packet coming in from the tun device to our
  818. * Guest. */
  819. static bool handle_tun_input(int fd, struct device *dev)
  820. {
  821. unsigned int head, in_num, out_num;
  822. int len;
  823. struct iovec iov[dev->vq->vring.num];
  824. /* First we need a network buffer from the Guests's recv virtqueue. */
  825. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  826. if (head == dev->vq->vring.num) {
  827. /* Now, it's expected that if we try to send a packet too
  828. * early, the Guest won't be ready yet. Wait until the device
  829. * status says it's ready. */
  830. /* FIXME: Actually want DRIVER_ACTIVE here. */
  831. /* Now tell it we want to know if new things appear. */
  832. dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  833. wmb();
  834. /* We'll turn this back on if input buffers are registered. */
  835. return false;
  836. } else if (out_num)
  837. errx(1, "Output buffers in network recv queue?");
  838. /* Read the packet from the device directly into the Guest's buffer. */
  839. len = readv(dev->fd, iov, in_num);
  840. if (len <= 0)
  841. err(1, "reading network");
  842. /* Tell the Guest about the new packet. */
  843. add_used_and_trigger(fd, dev->vq, head, len);
  844. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  845. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  846. head != dev->vq->vring.num ? "sent" : "discarded");
  847. /* All good. */
  848. return true;
  849. }
  850. /*L:215 This is the callback attached to the network and console input
  851. * virtqueues: it ensures we try again, in case we stopped console or net
  852. * delivery because Guest didn't have any buffers. */
  853. static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
  854. {
  855. add_device_fd(vq->dev->fd);
  856. /* Tell waker to listen to it again */
  857. write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
  858. }
  859. static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
  860. {
  861. /* We don't need to know again when Guest refills receive buffer. */
  862. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  863. enable_fd(fd, vq, timeout);
  864. }
  865. /* When the Guest tells us they updated the status field, we handle it. */
  866. static void update_device_status(struct device *dev)
  867. {
  868. struct virtqueue *vq;
  869. /* This is a reset. */
  870. if (dev->desc->status == 0) {
  871. verbose("Resetting device %s\n", dev->name);
  872. /* Clear any features they've acked. */
  873. memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
  874. dev->desc->feature_len);
  875. /* Zero out the virtqueues. */
  876. for (vq = dev->vq; vq; vq = vq->next) {
  877. memset(vq->vring.desc, 0,
  878. vring_size(vq->config.num, getpagesize()));
  879. lg_last_avail(vq) = 0;
  880. }
  881. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  882. warnx("Device %s configuration FAILED", dev->name);
  883. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  884. unsigned int i;
  885. verbose("Device %s OK: offered", dev->name);
  886. for (i = 0; i < dev->desc->feature_len; i++)
  887. verbose(" %02x", get_feature_bits(dev)[i]);
  888. verbose(", accepted");
  889. for (i = 0; i < dev->desc->feature_len; i++)
  890. verbose(" %02x", get_feature_bits(dev)
  891. [dev->desc->feature_len+i]);
  892. if (dev->ready)
  893. dev->ready(dev);
  894. }
  895. }
  896. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  897. static void handle_output(int fd, unsigned long addr)
  898. {
  899. struct device *i;
  900. struct virtqueue *vq;
  901. /* Check each device and virtqueue. */
  902. for (i = devices.dev; i; i = i->next) {
  903. /* Notifications to device descriptors update device status. */
  904. if (from_guest_phys(addr) == i->desc) {
  905. update_device_status(i);
  906. return;
  907. }
  908. /* Notifications to virtqueues mean output has occurred. */
  909. for (vq = i->vq; vq; vq = vq->next) {
  910. if (vq->config.pfn != addr/getpagesize())
  911. continue;
  912. /* Guest should acknowledge (and set features!) before
  913. * using the device. */
  914. if (i->desc->status == 0) {
  915. warnx("%s gave early output", i->name);
  916. return;
  917. }
  918. if (strcmp(vq->dev->name, "console") != 0)
  919. verbose("Output to %s\n", vq->dev->name);
  920. if (vq->handle_output)
  921. vq->handle_output(fd, vq, false);
  922. return;
  923. }
  924. }
  925. /* Early console write is done using notify on a nul-terminated string
  926. * in Guest memory. */
  927. if (addr >= guest_limit)
  928. errx(1, "Bad NOTIFY %#lx", addr);
  929. write(STDOUT_FILENO, from_guest_phys(addr),
  930. strnlen(from_guest_phys(addr), guest_limit - addr));
  931. }
  932. static void handle_timeout(int fd)
  933. {
  934. char buf[32];
  935. struct device *i;
  936. struct virtqueue *vq;
  937. /* Clear the pipe */
  938. read(timeoutpipe[0], buf, sizeof(buf));
  939. /* Check each device and virtqueue: flush blocked ones. */
  940. for (i = devices.dev; i; i = i->next) {
  941. for (vq = i->vq; vq; vq = vq->next) {
  942. if (!vq->blocked)
  943. continue;
  944. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  945. vq->blocked = false;
  946. if (vq->handle_output)
  947. vq->handle_output(fd, vq, true);
  948. }
  949. }
  950. }
  951. /* This is called when the Waker wakes us up: check for incoming file
  952. * descriptors. */
  953. static void handle_input(int fd)
  954. {
  955. /* select() wants a zeroed timeval to mean "don't wait". */
  956. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  957. for (;;) {
  958. struct device *i;
  959. fd_set fds = devices.infds;
  960. int num;
  961. num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
  962. /* Could get interrupted */
  963. if (num < 0)
  964. continue;
  965. /* If nothing is ready, we're done. */
  966. if (num == 0)
  967. break;
  968. /* Otherwise, call the device(s) which have readable file
  969. * descriptors and a method of handling them. */
  970. for (i = devices.dev; i; i = i->next) {
  971. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  972. int dev_fd;
  973. if (i->handle_input(fd, i))
  974. continue;
  975. /* If handle_input() returns false, it means we
  976. * should no longer service it. Networking and
  977. * console do this when there's no input
  978. * buffers to deliver into. Console also uses
  979. * it when it discovers that stdin is closed. */
  980. FD_CLR(i->fd, &devices.infds);
  981. /* Tell waker to ignore it too, by sending a
  982. * negative fd number (-1, since 0 is a valid
  983. * FD number). */
  984. dev_fd = -i->fd - 1;
  985. write(waker_fd, &dev_fd, sizeof(dev_fd));
  986. }
  987. }
  988. /* Is this the timeout fd? */
  989. if (FD_ISSET(timeoutpipe[0], &fds))
  990. handle_timeout(fd);
  991. }
  992. }
  993. /*L:190
  994. * Device Setup
  995. *
  996. * All devices need a descriptor so the Guest knows it exists, and a "struct
  997. * device" so the Launcher can keep track of it. We have common helper
  998. * routines to allocate and manage them.
  999. */
  1000. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  1001. * number of virtqueue descriptors, then two sets of feature bits, then an
  1002. * array of configuration bytes. This routine returns the configuration
  1003. * pointer. */
  1004. static u8 *device_config(const struct device *dev)
  1005. {
  1006. return (void *)(dev->desc + 1)
  1007. + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
  1008. + dev->desc->feature_len * 2;
  1009. }
  1010. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  1011. * table page just above the Guest's normal memory. It returns a pointer to
  1012. * that descriptor. */
  1013. static struct lguest_device_desc *new_dev_desc(u16 type)
  1014. {
  1015. struct lguest_device_desc d = { .type = type };
  1016. void *p;
  1017. /* Figure out where the next device config is, based on the last one. */
  1018. if (devices.lastdev)
  1019. p = device_config(devices.lastdev)
  1020. + devices.lastdev->desc->config_len;
  1021. else
  1022. p = devices.descpage;
  1023. /* We only have one page for all the descriptors. */
  1024. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  1025. errx(1, "Too many devices");
  1026. /* p might not be aligned, so we memcpy in. */
  1027. return memcpy(p, &d, sizeof(d));
  1028. }
  1029. /* Each device descriptor is followed by the description of its virtqueues. We
  1030. * specify how many descriptors the virtqueue is to have. */
  1031. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  1032. void (*handle_output)(int, struct virtqueue *, bool))
  1033. {
  1034. unsigned int pages;
  1035. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  1036. void *p;
  1037. /* First we need some memory for this virtqueue. */
  1038. pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
  1039. / getpagesize();
  1040. p = get_pages(pages);
  1041. /* Initialize the virtqueue */
  1042. vq->next = NULL;
  1043. vq->last_avail_idx = 0;
  1044. vq->dev = dev;
  1045. vq->inflight = 0;
  1046. vq->blocked = false;
  1047. /* Initialize the configuration. */
  1048. vq->config.num = num_descs;
  1049. vq->config.irq = devices.next_irq++;
  1050. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1051. /* Initialize the vring. */
  1052. vring_init(&vq->vring, num_descs, p, getpagesize());
  1053. /* Append virtqueue to this device's descriptor. We use
  1054. * device_config() to get the end of the device's current virtqueues;
  1055. * we check that we haven't added any config or feature information
  1056. * yet, otherwise we'd be overwriting them. */
  1057. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1058. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1059. dev->desc->num_vq++;
  1060. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1061. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1062. * second. */
  1063. for (i = &dev->vq; *i; i = &(*i)->next);
  1064. *i = vq;
  1065. /* Set the routine to call when the Guest does something to this
  1066. * virtqueue. */
  1067. vq->handle_output = handle_output;
  1068. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  1069. * don't have a handler */
  1070. if (!handle_output)
  1071. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  1072. }
  1073. /* The first half of the feature bitmask is for us to advertise features. The
  1074. * second half is for the Guest to accept features. */
  1075. static void add_feature(struct device *dev, unsigned bit)
  1076. {
  1077. u8 *features = get_feature_bits(dev);
  1078. /* We can't extend the feature bits once we've added config bytes */
  1079. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1080. assert(dev->desc->config_len == 0);
  1081. dev->desc->feature_len = (bit / CHAR_BIT) + 1;
  1082. }
  1083. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1084. }
  1085. /* This routine sets the configuration fields for an existing device's
  1086. * descriptor. It only works for the last device, but that's OK because that's
  1087. * how we use it. */
  1088. static void set_config(struct device *dev, unsigned len, const void *conf)
  1089. {
  1090. /* Check we haven't overflowed our single page. */
  1091. if (device_config(dev) + len > devices.descpage + getpagesize())
  1092. errx(1, "Too many devices");
  1093. /* Copy in the config information, and store the length. */
  1094. memcpy(device_config(dev), conf, len);
  1095. dev->desc->config_len = len;
  1096. }
  1097. /* This routine does all the creation and setup of a new device, including
  1098. * calling new_dev_desc() to allocate the descriptor and device memory.
  1099. *
  1100. * See what I mean about userspace being boring? */
  1101. static struct device *new_device(const char *name, u16 type, int fd,
  1102. bool (*handle_input)(int, struct device *))
  1103. {
  1104. struct device *dev = malloc(sizeof(*dev));
  1105. /* Now we populate the fields one at a time. */
  1106. dev->fd = fd;
  1107. /* If we have an input handler for this file descriptor, then we add it
  1108. * to the device_list's fdset and maxfd. */
  1109. if (handle_input)
  1110. add_device_fd(dev->fd);
  1111. dev->desc = new_dev_desc(type);
  1112. dev->handle_input = handle_input;
  1113. dev->name = name;
  1114. dev->vq = NULL;
  1115. dev->ready = NULL;
  1116. /* Append to device list. Prepending to a single-linked list is
  1117. * easier, but the user expects the devices to be arranged on the bus
  1118. * in command-line order. The first network device on the command line
  1119. * is eth0, the first block device /dev/vda, etc. */
  1120. if (devices.lastdev)
  1121. devices.lastdev->next = dev;
  1122. else
  1123. devices.dev = dev;
  1124. devices.lastdev = dev;
  1125. return dev;
  1126. }
  1127. /* Our first setup routine is the console. It's a fairly simple device, but
  1128. * UNIX tty handling makes it uglier than it could be. */
  1129. static void setup_console(void)
  1130. {
  1131. struct device *dev;
  1132. /* If we can save the initial standard input settings... */
  1133. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1134. struct termios term = orig_term;
  1135. /* Then we turn off echo, line buffering and ^C etc. We want a
  1136. * raw input stream to the Guest. */
  1137. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1138. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1139. /* If we exit gracefully, the original settings will be
  1140. * restored so the user can see what they're typing. */
  1141. atexit(restore_term);
  1142. }
  1143. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1144. STDIN_FILENO, handle_console_input);
  1145. /* We store the console state in dev->priv, and initialize it. */
  1146. dev->priv = malloc(sizeof(struct console_abort));
  1147. ((struct console_abort *)dev->priv)->count = 0;
  1148. /* The console needs two virtqueues: the input then the output. When
  1149. * they put something the input queue, we make sure we're listening to
  1150. * stdin. When they put something in the output queue, we write it to
  1151. * stdout. */
  1152. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1153. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1154. verbose("device %u: console\n", devices.device_num++);
  1155. }
  1156. /*:*/
  1157. static void timeout_alarm(int sig)
  1158. {
  1159. write(timeoutpipe[1], "", 1);
  1160. }
  1161. static void setup_timeout(void)
  1162. {
  1163. if (pipe(timeoutpipe) != 0)
  1164. err(1, "Creating timeout pipe");
  1165. if (fcntl(timeoutpipe[1], F_SETFL,
  1166. fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
  1167. err(1, "Making timeout pipe nonblocking");
  1168. add_device_fd(timeoutpipe[0]);
  1169. signal(SIGALRM, timeout_alarm);
  1170. }
  1171. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1172. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1173. * used to send packets to another guest in a 1:1 manner.
  1174. *
  1175. * More sopisticated is to use one of the tools developed for project like UML
  1176. * to do networking.
  1177. *
  1178. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1179. * completely generic ("here's my vring, attach to your vring") and would work
  1180. * for any traffic. Of course, namespace and permissions issues need to be
  1181. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1182. * multiple inter-guest channels behind one interface, although it would
  1183. * require some manner of hotplugging new virtio channels.
  1184. *
  1185. * Finally, we could implement a virtio network switch in the kernel. :*/
  1186. static u32 str2ip(const char *ipaddr)
  1187. {
  1188. unsigned int b[4];
  1189. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1190. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1191. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1192. }
  1193. static void str2mac(const char *macaddr, unsigned char mac[6])
  1194. {
  1195. unsigned int m[6];
  1196. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1197. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1198. errx(1, "Failed to parse mac address '%s'", macaddr);
  1199. mac[0] = m[0];
  1200. mac[1] = m[1];
  1201. mac[2] = m[2];
  1202. mac[3] = m[3];
  1203. mac[4] = m[4];
  1204. mac[5] = m[5];
  1205. }
  1206. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1207. * network device to the bridge device specified by the command line.
  1208. *
  1209. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1210. * dislike bridging), and I just try not to break it. */
  1211. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1212. {
  1213. int ifidx;
  1214. struct ifreq ifr;
  1215. if (!*br_name)
  1216. errx(1, "must specify bridge name");
  1217. ifidx = if_nametoindex(if_name);
  1218. if (!ifidx)
  1219. errx(1, "interface %s does not exist!", if_name);
  1220. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1221. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1222. ifr.ifr_ifindex = ifidx;
  1223. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1224. err(1, "can't add %s to bridge %s", if_name, br_name);
  1225. }
  1226. /* This sets up the Host end of the network device with an IP address, brings
  1227. * it up so packets will flow, the copies the MAC address into the hwaddr
  1228. * pointer. */
  1229. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1230. {
  1231. struct ifreq ifr;
  1232. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1233. memset(&ifr, 0, sizeof(ifr));
  1234. strcpy(ifr.ifr_name, tapif);
  1235. /* Don't read these incantations. Just cut & paste them like I did! */
  1236. sin->sin_family = AF_INET;
  1237. sin->sin_addr.s_addr = htonl(ipaddr);
  1238. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1239. err(1, "Setting %s interface address", tapif);
  1240. ifr.ifr_flags = IFF_UP;
  1241. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1242. err(1, "Bringing interface %s up", tapif);
  1243. }
  1244. static void get_mac(int fd, const char *tapif, unsigned char hwaddr[6])
  1245. {
  1246. struct ifreq ifr;
  1247. memset(&ifr, 0, sizeof(ifr));
  1248. strcpy(ifr.ifr_name, tapif);
  1249. /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
  1250. * above). IF means Interface, and HWADDR is hardware address.
  1251. * Simple! */
  1252. if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
  1253. err(1, "getting hw address for %s", tapif);
  1254. memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
  1255. }
  1256. static int get_tun_device(char tapif[IFNAMSIZ])
  1257. {
  1258. struct ifreq ifr;
  1259. int netfd;
  1260. /* Start with this zeroed. Messy but sure. */
  1261. memset(&ifr, 0, sizeof(ifr));
  1262. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1263. * tap device is like a tun device, only somehow different. To tell
  1264. * the truth, I completely blundered my way through this code, but it
  1265. * works now! */
  1266. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1267. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1268. strcpy(ifr.ifr_name, "tap%d");
  1269. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1270. err(1, "configuring /dev/net/tun");
  1271. if (ioctl(netfd, TUNSETOFFLOAD,
  1272. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1273. err(1, "Could not set features for tun device");
  1274. /* We don't need checksums calculated for packets coming in this
  1275. * device: trust us! */
  1276. ioctl(netfd, TUNSETNOCSUM, 1);
  1277. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1278. return netfd;
  1279. }
  1280. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1281. * routing, but the principle is the same: it uses the "tun" device to inject
  1282. * packets into the Host as if they came in from a normal network card. We
  1283. * just shunt packets between the Guest and the tun device. */
  1284. static void setup_tun_net(char *arg)
  1285. {
  1286. struct device *dev;
  1287. int netfd, ipfd;
  1288. u32 ip = INADDR_ANY;
  1289. bool bridging = false;
  1290. char tapif[IFNAMSIZ], *p;
  1291. struct virtio_net_config conf;
  1292. netfd = get_tun_device(tapif);
  1293. /* First we create a new network device. */
  1294. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1295. /* Network devices need a receive and a send queue, just like
  1296. * console. */
  1297. add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
  1298. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1299. /* We need a socket to perform the magic network ioctls to bring up the
  1300. * tap interface, connect to the bridge etc. Any socket will do! */
  1301. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1302. if (ipfd < 0)
  1303. err(1, "opening IP socket");
  1304. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1305. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1306. arg += strlen(BRIDGE_PFX);
  1307. bridging = true;
  1308. }
  1309. /* A mac address may follow the bridge name or IP address */
  1310. p = strchr(arg, ':');
  1311. if (p) {
  1312. str2mac(p+1, conf.mac);
  1313. *p = '\0';
  1314. } else {
  1315. p = arg + strlen(arg);
  1316. /* None supplied; query the randomly assigned mac. */
  1317. get_mac(ipfd, tapif, conf.mac);
  1318. }
  1319. /* arg is now either an IP address or a bridge name */
  1320. if (bridging)
  1321. add_to_bridge(ipfd, tapif, arg);
  1322. else
  1323. ip = str2ip(arg);
  1324. /* Set up the tun device. */
  1325. configure_device(ipfd, tapif, ip);
  1326. /* Tell Guest what MAC address to use. */
  1327. add_feature(dev, VIRTIO_NET_F_MAC);
  1328. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1329. /* Expect Guest to handle everything except UFO */
  1330. add_feature(dev, VIRTIO_NET_F_CSUM);
  1331. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1332. add_feature(dev, VIRTIO_NET_F_MAC);
  1333. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1334. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1335. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1336. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1337. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1338. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1339. set_config(dev, sizeof(conf), &conf);
  1340. /* We don't need the socket any more; setup is done. */
  1341. close(ipfd);
  1342. devices.device_num++;
  1343. if (bridging)
  1344. verbose("device %u: tun %s attached to bridge: %s\n",
  1345. devices.device_num, tapif, arg);
  1346. else
  1347. verbose("device %u: tun %s: %s\n",
  1348. devices.device_num, tapif, arg);
  1349. }
  1350. /* Our block (disk) device should be really simple: the Guest asks for a block
  1351. * number and we read or write that position in the file. Unfortunately, that
  1352. * was amazingly slow: the Guest waits until the read is finished before
  1353. * running anything else, even if it could have been doing useful work.
  1354. *
  1355. * We could use async I/O, except it's reputed to suck so hard that characters
  1356. * actually go missing from your code when you try to use it.
  1357. *
  1358. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1359. /* This hangs off device->priv. */
  1360. struct vblk_info
  1361. {
  1362. /* The size of the file. */
  1363. off64_t len;
  1364. /* The file descriptor for the file. */
  1365. int fd;
  1366. /* IO thread listens on this file descriptor [0]. */
  1367. int workpipe[2];
  1368. /* IO thread writes to this file descriptor to mark it done, then
  1369. * Launcher triggers interrupt to Guest. */
  1370. int done_fd;
  1371. };
  1372. /*L:210
  1373. * The Disk
  1374. *
  1375. * Remember that the block device is handled by a separate I/O thread. We head
  1376. * straight into the core of that thread here:
  1377. */
  1378. static bool service_io(struct device *dev)
  1379. {
  1380. struct vblk_info *vblk = dev->priv;
  1381. unsigned int head, out_num, in_num, wlen;
  1382. int ret;
  1383. u8 *in;
  1384. struct virtio_blk_outhdr *out;
  1385. struct iovec iov[dev->vq->vring.num];
  1386. off64_t off;
  1387. /* See if there's a request waiting. If not, nothing to do. */
  1388. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1389. if (head == dev->vq->vring.num)
  1390. return false;
  1391. /* Every block request should contain at least one output buffer
  1392. * (detailing the location on disk and the type of request) and one
  1393. * input buffer (to hold the result). */
  1394. if (out_num == 0 || in_num == 0)
  1395. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1396. head, out_num, in_num);
  1397. out = convert(&iov[0], struct virtio_blk_outhdr);
  1398. in = convert(&iov[out_num+in_num-1], u8);
  1399. off = out->sector * 512;
  1400. /* The block device implements "barriers", where the Guest indicates
  1401. * that it wants all previous writes to occur before this write. We
  1402. * don't have a way of asking our kernel to do a barrier, so we just
  1403. * synchronize all the data in the file. Pretty poor, no? */
  1404. if (out->type & VIRTIO_BLK_T_BARRIER)
  1405. fdatasync(vblk->fd);
  1406. /* In general the virtio block driver is allowed to try SCSI commands.
  1407. * It'd be nice if we supported eject, for example, but we don't. */
  1408. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1409. fprintf(stderr, "Scsi commands unsupported\n");
  1410. *in = VIRTIO_BLK_S_UNSUPP;
  1411. wlen = sizeof(*in);
  1412. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1413. /* Write */
  1414. /* Move to the right location in the block file. This can fail
  1415. * if they try to write past end. */
  1416. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1417. err(1, "Bad seek to sector %llu", out->sector);
  1418. ret = writev(vblk->fd, iov+1, out_num-1);
  1419. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1420. /* Grr... Now we know how long the descriptor they sent was, we
  1421. * make sure they didn't try to write over the end of the block
  1422. * file (possibly extending it). */
  1423. if (ret > 0 && off + ret > vblk->len) {
  1424. /* Trim it back to the correct length */
  1425. ftruncate64(vblk->fd, vblk->len);
  1426. /* Die, bad Guest, die. */
  1427. errx(1, "Write past end %llu+%u", off, ret);
  1428. }
  1429. wlen = sizeof(*in);
  1430. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1431. } else {
  1432. /* Read */
  1433. /* Move to the right location in the block file. This can fail
  1434. * if they try to read past end. */
  1435. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1436. err(1, "Bad seek to sector %llu", out->sector);
  1437. ret = readv(vblk->fd, iov+1, in_num-1);
  1438. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1439. if (ret >= 0) {
  1440. wlen = sizeof(*in) + ret;
  1441. *in = VIRTIO_BLK_S_OK;
  1442. } else {
  1443. wlen = sizeof(*in);
  1444. *in = VIRTIO_BLK_S_IOERR;
  1445. }
  1446. }
  1447. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1448. * that when we tell it we're done. */
  1449. add_used(dev->vq, head, wlen);
  1450. return true;
  1451. }
  1452. /* This is the thread which actually services the I/O. */
  1453. static int io_thread(void *_dev)
  1454. {
  1455. struct device *dev = _dev;
  1456. struct vblk_info *vblk = dev->priv;
  1457. char c;
  1458. /* Close other side of workpipe so we get 0 read when main dies. */
  1459. close(vblk->workpipe[1]);
  1460. /* Close the other side of the done_fd pipe. */
  1461. close(dev->fd);
  1462. /* When this read fails, it means Launcher died, so we follow. */
  1463. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1464. /* We acknowledge each request immediately to reduce latency,
  1465. * rather than waiting until we've done them all. I haven't
  1466. * measured to see if it makes any difference.
  1467. *
  1468. * That would be an interesting test, wouldn't it? You could
  1469. * also try having more than one I/O thread. */
  1470. while (service_io(dev))
  1471. write(vblk->done_fd, &c, 1);
  1472. }
  1473. return 0;
  1474. }
  1475. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1476. * when that thread tells us it's completed some I/O. */
  1477. static bool handle_io_finish(int fd, struct device *dev)
  1478. {
  1479. char c;
  1480. /* If the I/O thread died, presumably it printed the error, so we
  1481. * simply exit. */
  1482. if (read(dev->fd, &c, 1) != 1)
  1483. exit(1);
  1484. /* It did some work, so trigger the irq. */
  1485. trigger_irq(fd, dev->vq);
  1486. return true;
  1487. }
  1488. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1489. static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
  1490. {
  1491. struct vblk_info *vblk = vq->dev->priv;
  1492. char c = 0;
  1493. /* Wake up I/O thread and tell it to go to work! */
  1494. if (write(vblk->workpipe[1], &c, 1) != 1)
  1495. /* Presumably it indicated why it died. */
  1496. exit(1);
  1497. }
  1498. /*L:198 This actually sets up a virtual block device. */
  1499. static void setup_block_file(const char *filename)
  1500. {
  1501. int p[2];
  1502. struct device *dev;
  1503. struct vblk_info *vblk;
  1504. void *stack;
  1505. struct virtio_blk_config conf;
  1506. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1507. pipe(p);
  1508. /* The device responds to return from I/O thread. */
  1509. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1510. /* The device has one virtqueue, where the Guest places requests. */
  1511. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1512. /* Allocate the room for our own bookkeeping */
  1513. vblk = dev->priv = malloc(sizeof(*vblk));
  1514. /* First we open the file and store the length. */
  1515. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1516. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1517. /* We support barriers. */
  1518. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1519. /* Tell Guest how many sectors this device has. */
  1520. conf.capacity = cpu_to_le64(vblk->len / 512);
  1521. /* Tell Guest not to put in too many descriptors at once: two are used
  1522. * for the in and out elements. */
  1523. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1524. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1525. set_config(dev, sizeof(conf), &conf);
  1526. /* The I/O thread writes to this end of the pipe when done. */
  1527. vblk->done_fd = p[1];
  1528. /* This is the second pipe, which is how we tell the I/O thread about
  1529. * more work. */
  1530. pipe(vblk->workpipe);
  1531. /* Create stack for thread and run it. Since stack grows upwards, we
  1532. * point the stack pointer to the end of this region. */
  1533. stack = malloc(32768);
  1534. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1535. * becoming a zombie. */
  1536. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1537. err(1, "Creating clone");
  1538. /* We don't need to keep the I/O thread's end of the pipes open. */
  1539. close(vblk->done_fd);
  1540. close(vblk->workpipe[0]);
  1541. verbose("device %u: virtblock %llu sectors\n",
  1542. devices.device_num, le64_to_cpu(conf.capacity));
  1543. }
  1544. /* Our random number generator device reads from /dev/random into the Guest's
  1545. * input buffers. The usual case is that the Guest doesn't want random numbers
  1546. * and so has no buffers although /dev/random is still readable, whereas
  1547. * console is the reverse.
  1548. *
  1549. * The same logic applies, however. */
  1550. static bool handle_rng_input(int fd, struct device *dev)
  1551. {
  1552. int len;
  1553. unsigned int head, in_num, out_num, totlen = 0;
  1554. struct iovec iov[dev->vq->vring.num];
  1555. /* First we need a buffer from the Guests's virtqueue. */
  1556. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1557. /* If they're not ready for input, stop listening to this file
  1558. * descriptor. We'll start again once they add an input buffer. */
  1559. if (head == dev->vq->vring.num)
  1560. return false;
  1561. if (out_num)
  1562. errx(1, "Output buffers in rng?");
  1563. /* This is why we convert to iovecs: the readv() call uses them, and so
  1564. * it reads straight into the Guest's buffer. We loop to make sure we
  1565. * fill it. */
  1566. while (!iov_empty(iov, in_num)) {
  1567. len = readv(dev->fd, iov, in_num);
  1568. if (len <= 0)
  1569. err(1, "Read from /dev/random gave %i", len);
  1570. iov_consume(iov, in_num, len);
  1571. totlen += len;
  1572. }
  1573. /* Tell the Guest about the new input. */
  1574. add_used_and_trigger(fd, dev->vq, head, totlen);
  1575. /* Everything went OK! */
  1576. return true;
  1577. }
  1578. /* And this creates a "hardware" random number device for the Guest. */
  1579. static void setup_rng(void)
  1580. {
  1581. struct device *dev;
  1582. int fd;
  1583. fd = open_or_die("/dev/random", O_RDONLY);
  1584. /* The device responds to return from I/O thread. */
  1585. dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
  1586. /* The device has one virtqueue, where the Guest places inbufs. */
  1587. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1588. verbose("device %u: rng\n", devices.device_num++);
  1589. }
  1590. /* That's the end of device setup. */
  1591. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1592. static void __attribute__((noreturn)) restart_guest(void)
  1593. {
  1594. unsigned int i;
  1595. /* Closing pipes causes the Waker thread and io_threads to die, and
  1596. * closing /dev/lguest cleans up the Guest. Since we don't track all
  1597. * open fds, we simply close everything beyond stderr. */
  1598. for (i = 3; i < FD_SETSIZE; i++)
  1599. close(i);
  1600. execv(main_args[0], main_args);
  1601. err(1, "Could not exec %s", main_args[0]);
  1602. }
  1603. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1604. * its input and output, and finally, lays it to rest. */
  1605. static void __attribute__((noreturn)) run_guest(int lguest_fd)
  1606. {
  1607. for (;;) {
  1608. unsigned long args[] = { LHREQ_BREAK, 0 };
  1609. unsigned long notify_addr;
  1610. int readval;
  1611. /* We read from the /dev/lguest device to run the Guest. */
  1612. readval = pread(lguest_fd, &notify_addr,
  1613. sizeof(notify_addr), cpu_id);
  1614. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1615. if (readval == sizeof(notify_addr)) {
  1616. verbose("Notify on address %#lx\n", notify_addr);
  1617. handle_output(lguest_fd, notify_addr);
  1618. continue;
  1619. /* ENOENT means the Guest died. Reading tells us why. */
  1620. } else if (errno == ENOENT) {
  1621. char reason[1024] = { 0 };
  1622. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1623. errx(1, "%s", reason);
  1624. /* ERESTART means that we need to reboot the guest */
  1625. } else if (errno == ERESTART) {
  1626. restart_guest();
  1627. /* EAGAIN means a signal (timeout).
  1628. * Anything else means a bug or incompatible change. */
  1629. } else if (errno != EAGAIN)
  1630. err(1, "Running guest failed");
  1631. /* Only service input on thread for CPU 0. */
  1632. if (cpu_id != 0)
  1633. continue;
  1634. /* Service input, then unset the BREAK to release the Waker. */
  1635. handle_input(lguest_fd);
  1636. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1637. err(1, "Resetting break");
  1638. }
  1639. }
  1640. /*L:240
  1641. * This is the end of the Launcher. The good news: we are over halfway
  1642. * through! The bad news: the most fiendish part of the code still lies ahead
  1643. * of us.
  1644. *
  1645. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1646. * "make Host".
  1647. :*/
  1648. static struct option opts[] = {
  1649. { "verbose", 0, NULL, 'v' },
  1650. { "tunnet", 1, NULL, 't' },
  1651. { "block", 1, NULL, 'b' },
  1652. { "rng", 0, NULL, 'r' },
  1653. { "initrd", 1, NULL, 'i' },
  1654. { NULL },
  1655. };
  1656. static void usage(void)
  1657. {
  1658. errx(1, "Usage: lguest [--verbose] "
  1659. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1660. "|--block=<filename>|--initrd=<filename>]...\n"
  1661. "<mem-in-mb> vmlinux [args...]");
  1662. }
  1663. /*L:105 The main routine is where the real work begins: */
  1664. int main(int argc, char *argv[])
  1665. {
  1666. /* Memory, top-level pagetable, code startpoint and size of the
  1667. * (optional) initrd. */
  1668. unsigned long mem = 0, pgdir, start, initrd_size = 0;
  1669. /* Two temporaries and the /dev/lguest file descriptor. */
  1670. int i, c, lguest_fd;
  1671. /* The boot information for the Guest. */
  1672. struct boot_params *boot;
  1673. /* If they specify an initrd file to load. */
  1674. const char *initrd_name = NULL;
  1675. /* Save the args: we "reboot" by execing ourselves again. */
  1676. main_args = argv;
  1677. /* We don't "wait" for the children, so prevent them from becoming
  1678. * zombies. */
  1679. signal(SIGCHLD, SIG_IGN);
  1680. /* First we initialize the device list. Since console and network
  1681. * device receive input from a file descriptor, we keep an fdset
  1682. * (infds) and the maximum fd number (max_infd) with the head of the
  1683. * list. We also keep a pointer to the last device. Finally, we keep
  1684. * the next interrupt number to use for devices (1: remember that 0 is
  1685. * used by the timer). */
  1686. FD_ZERO(&devices.infds);
  1687. devices.max_infd = -1;
  1688. devices.lastdev = NULL;
  1689. devices.next_irq = 1;
  1690. cpu_id = 0;
  1691. /* We need to know how much memory so we can set up the device
  1692. * descriptor and memory pages for the devices as we parse the command
  1693. * line. So we quickly look through the arguments to find the amount
  1694. * of memory now. */
  1695. for (i = 1; i < argc; i++) {
  1696. if (argv[i][0] != '-') {
  1697. mem = atoi(argv[i]) * 1024 * 1024;
  1698. /* We start by mapping anonymous pages over all of
  1699. * guest-physical memory range. This fills it with 0,
  1700. * and ensures that the Guest won't be killed when it
  1701. * tries to access it. */
  1702. guest_base = map_zeroed_pages(mem / getpagesize()
  1703. + DEVICE_PAGES);
  1704. guest_limit = mem;
  1705. guest_max = mem + DEVICE_PAGES*getpagesize();
  1706. devices.descpage = get_pages(1);
  1707. break;
  1708. }
  1709. }
  1710. /* The options are fairly straight-forward */
  1711. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1712. switch (c) {
  1713. case 'v':
  1714. verbose = true;
  1715. break;
  1716. case 't':
  1717. setup_tun_net(optarg);
  1718. break;
  1719. case 'b':
  1720. setup_block_file(optarg);
  1721. break;
  1722. case 'r':
  1723. setup_rng();
  1724. break;
  1725. case 'i':
  1726. initrd_name = optarg;
  1727. break;
  1728. default:
  1729. warnx("Unknown argument %s", argv[optind]);
  1730. usage();
  1731. }
  1732. }
  1733. /* After the other arguments we expect memory and kernel image name,
  1734. * followed by command line arguments for the kernel. */
  1735. if (optind + 2 > argc)
  1736. usage();
  1737. verbose("Guest base is at %p\n", guest_base);
  1738. /* We always have a console device */
  1739. setup_console();
  1740. /* We can timeout waiting for Guest network transmit. */
  1741. setup_timeout();
  1742. /* Now we load the kernel */
  1743. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1744. /* Boot information is stashed at physical address 0 */
  1745. boot = from_guest_phys(0);
  1746. /* Map the initrd image if requested (at top of physical memory) */
  1747. if (initrd_name) {
  1748. initrd_size = load_initrd(initrd_name, mem);
  1749. /* These are the location in the Linux boot header where the
  1750. * start and size of the initrd are expected to be found. */
  1751. boot->hdr.ramdisk_image = mem - initrd_size;
  1752. boot->hdr.ramdisk_size = initrd_size;
  1753. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1754. boot->hdr.type_of_loader = 0xFF;
  1755. }
  1756. /* Set up the initial linear pagetables, starting below the initrd. */
  1757. pgdir = setup_pagetables(mem, initrd_size);
  1758. /* The Linux boot header contains an "E820" memory map: ours is a
  1759. * simple, single region. */
  1760. boot->e820_entries = 1;
  1761. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1762. /* The boot header contains a command line pointer: we put the command
  1763. * line after the boot header. */
  1764. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1765. /* We use a simple helper to copy the arguments separated by spaces. */
  1766. concat((char *)(boot + 1), argv+optind+2);
  1767. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1768. boot->hdr.version = 0x207;
  1769. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1770. boot->hdr.hardware_subarch = 1;
  1771. /* Tell the entry path not to try to reload segment registers. */
  1772. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1773. /* We tell the kernel to initialize the Guest: this returns the open
  1774. * /dev/lguest file descriptor. */
  1775. lguest_fd = tell_kernel(pgdir, start);
  1776. /* We fork off a child process, which wakes the Launcher whenever one
  1777. * of the input file descriptors needs attention. We call this the
  1778. * Waker, and we'll cover it in a moment. */
  1779. waker_fd = setup_waker(lguest_fd);
  1780. /* Finally, run the Guest. This doesn't return. */
  1781. run_guest(lguest_fd);
  1782. }
  1783. /*:*/
  1784. /*M:999
  1785. * Mastery is done: you now know everything I do.
  1786. *
  1787. * But surely you have seen code, features and bugs in your wanderings which
  1788. * you now yearn to attack? That is the real game, and I look forward to you
  1789. * patching and forking lguest into the Your-Name-Here-visor.
  1790. *
  1791. * Farewell, and good coding!
  1792. * Rusty Russell.
  1793. */