sched.c 230 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. struct cpupri cpupri;
  359. };
  360. /*
  361. * By default the system creates a single root-domain with all cpus as
  362. * members (mimicking the global state we have today).
  363. */
  364. static struct root_domain def_root_domain;
  365. #endif /* CONFIG_SMP */
  366. /*
  367. * This is the main, per-CPU runqueue data structure.
  368. *
  369. * Locking rule: those places that want to lock multiple runqueues
  370. * (such as the load balancing or the thread migration code), lock
  371. * acquire operations must be ordered by ascending &runqueue.
  372. */
  373. struct rq {
  374. /* runqueue lock: */
  375. raw_spinlock_t lock;
  376. /*
  377. * nr_running and cpu_load should be in the same cacheline because
  378. * remote CPUs use both these fields when doing load calculation.
  379. */
  380. unsigned long nr_running;
  381. #define CPU_LOAD_IDX_MAX 5
  382. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  383. unsigned long last_load_update_tick;
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char nohz_balance_kick;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle, *stop;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. u64 clock_task;
  414. atomic_t nr_iowait;
  415. #ifdef CONFIG_SMP
  416. struct root_domain *rd;
  417. struct sched_domain *sd;
  418. unsigned long cpu_power;
  419. unsigned char idle_at_tick;
  420. /* For active balancing */
  421. int post_schedule;
  422. int active_balance;
  423. int push_cpu;
  424. struct cpu_stop_work active_balance_work;
  425. /* cpu of this runqueue: */
  426. int cpu;
  427. int online;
  428. unsigned long avg_load_per_task;
  429. u64 rt_avg;
  430. u64 age_stamp;
  431. u64 idle_stamp;
  432. u64 avg_idle;
  433. #endif
  434. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  435. u64 prev_irq_time;
  436. #endif
  437. /* calc_load related fields */
  438. unsigned long calc_load_update;
  439. long calc_load_active;
  440. #ifdef CONFIG_SCHED_HRTICK
  441. #ifdef CONFIG_SMP
  442. int hrtick_csd_pending;
  443. struct call_single_data hrtick_csd;
  444. #endif
  445. struct hrtimer hrtick_timer;
  446. #endif
  447. #ifdef CONFIG_SCHEDSTATS
  448. /* latency stats */
  449. struct sched_info rq_sched_info;
  450. unsigned long long rq_cpu_time;
  451. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  452. /* sys_sched_yield() stats */
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. /* BKL stats */
  462. unsigned int bkl_count;
  463. #endif
  464. };
  465. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  466. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  467. static inline int cpu_of(struct rq *rq)
  468. {
  469. #ifdef CONFIG_SMP
  470. return rq->cpu;
  471. #else
  472. return 0;
  473. #endif
  474. }
  475. #define rcu_dereference_check_sched_domain(p) \
  476. rcu_dereference_check((p), \
  477. rcu_read_lock_sched_held() || \
  478. lockdep_is_held(&sched_domains_mutex))
  479. /*
  480. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  481. * See detach_destroy_domains: synchronize_sched for details.
  482. *
  483. * The domain tree of any CPU may only be accessed from within
  484. * preempt-disabled sections.
  485. */
  486. #define for_each_domain(cpu, __sd) \
  487. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  488. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  489. #define this_rq() (&__get_cpu_var(runqueues))
  490. #define task_rq(p) cpu_rq(task_cpu(p))
  491. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  492. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  493. #ifdef CONFIG_CGROUP_SCHED
  494. /*
  495. * Return the group to which this tasks belongs.
  496. *
  497. * We use task_subsys_state_check() and extend the RCU verification
  498. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  499. * holds that lock for each task it moves into the cgroup. Therefore
  500. * by holding that lock, we pin the task to the current cgroup.
  501. */
  502. static inline struct task_group *task_group(struct task_struct *p)
  503. {
  504. struct cgroup_subsys_state *css;
  505. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  506. lockdep_is_held(&task_rq(p)->lock));
  507. return container_of(css, struct task_group, css);
  508. }
  509. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  510. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  511. {
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  514. p->se.parent = task_group(p)->se[cpu];
  515. #endif
  516. #ifdef CONFIG_RT_GROUP_SCHED
  517. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  518. p->rt.parent = task_group(p)->rt_se[cpu];
  519. #endif
  520. }
  521. #else /* CONFIG_CGROUP_SCHED */
  522. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  523. static inline struct task_group *task_group(struct task_struct *p)
  524. {
  525. return NULL;
  526. }
  527. #endif /* CONFIG_CGROUP_SCHED */
  528. static u64 irq_time_cpu(int cpu);
  529. static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
  530. inline void update_rq_clock(struct rq *rq)
  531. {
  532. if (!rq->skip_clock_update) {
  533. int cpu = cpu_of(rq);
  534. u64 irq_time;
  535. rq->clock = sched_clock_cpu(cpu);
  536. irq_time = irq_time_cpu(cpu);
  537. if (rq->clock - irq_time > rq->clock_task)
  538. rq->clock_task = rq->clock - irq_time;
  539. sched_irq_time_avg_update(rq, irq_time);
  540. }
  541. }
  542. /*
  543. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  544. */
  545. #ifdef CONFIG_SCHED_DEBUG
  546. # define const_debug __read_mostly
  547. #else
  548. # define const_debug static const
  549. #endif
  550. /**
  551. * runqueue_is_locked
  552. * @cpu: the processor in question.
  553. *
  554. * Returns true if the current cpu runqueue is locked.
  555. * This interface allows printk to be called with the runqueue lock
  556. * held and know whether or not it is OK to wake up the klogd.
  557. */
  558. int runqueue_is_locked(int cpu)
  559. {
  560. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  561. }
  562. /*
  563. * Debugging: various feature bits
  564. */
  565. #define SCHED_FEAT(name, enabled) \
  566. __SCHED_FEAT_##name ,
  567. enum {
  568. #include "sched_features.h"
  569. };
  570. #undef SCHED_FEAT
  571. #define SCHED_FEAT(name, enabled) \
  572. (1UL << __SCHED_FEAT_##name) * enabled |
  573. const_debug unsigned int sysctl_sched_features =
  574. #include "sched_features.h"
  575. 0;
  576. #undef SCHED_FEAT
  577. #ifdef CONFIG_SCHED_DEBUG
  578. #define SCHED_FEAT(name, enabled) \
  579. #name ,
  580. static __read_mostly char *sched_feat_names[] = {
  581. #include "sched_features.h"
  582. NULL
  583. };
  584. #undef SCHED_FEAT
  585. static int sched_feat_show(struct seq_file *m, void *v)
  586. {
  587. int i;
  588. for (i = 0; sched_feat_names[i]; i++) {
  589. if (!(sysctl_sched_features & (1UL << i)))
  590. seq_puts(m, "NO_");
  591. seq_printf(m, "%s ", sched_feat_names[i]);
  592. }
  593. seq_puts(m, "\n");
  594. return 0;
  595. }
  596. static ssize_t
  597. sched_feat_write(struct file *filp, const char __user *ubuf,
  598. size_t cnt, loff_t *ppos)
  599. {
  600. char buf[64];
  601. char *cmp;
  602. int neg = 0;
  603. int i;
  604. if (cnt > 63)
  605. cnt = 63;
  606. if (copy_from_user(&buf, ubuf, cnt))
  607. return -EFAULT;
  608. buf[cnt] = 0;
  609. cmp = strstrip(buf);
  610. if (strncmp(buf, "NO_", 3) == 0) {
  611. neg = 1;
  612. cmp += 3;
  613. }
  614. for (i = 0; sched_feat_names[i]; i++) {
  615. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  616. if (neg)
  617. sysctl_sched_features &= ~(1UL << i);
  618. else
  619. sysctl_sched_features |= (1UL << i);
  620. break;
  621. }
  622. }
  623. if (!sched_feat_names[i])
  624. return -EINVAL;
  625. *ppos += cnt;
  626. return cnt;
  627. }
  628. static int sched_feat_open(struct inode *inode, struct file *filp)
  629. {
  630. return single_open(filp, sched_feat_show, NULL);
  631. }
  632. static const struct file_operations sched_feat_fops = {
  633. .open = sched_feat_open,
  634. .write = sched_feat_write,
  635. .read = seq_read,
  636. .llseek = seq_lseek,
  637. .release = single_release,
  638. };
  639. static __init int sched_init_debug(void)
  640. {
  641. debugfs_create_file("sched_features", 0644, NULL, NULL,
  642. &sched_feat_fops);
  643. return 0;
  644. }
  645. late_initcall(sched_init_debug);
  646. #endif
  647. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  648. /*
  649. * Number of tasks to iterate in a single balance run.
  650. * Limited because this is done with IRQs disabled.
  651. */
  652. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  653. /*
  654. * ratelimit for updating the group shares.
  655. * default: 0.25ms
  656. */
  657. unsigned int sysctl_sched_shares_ratelimit = 250000;
  658. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  659. /*
  660. * Inject some fuzzyness into changing the per-cpu group shares
  661. * this avoids remote rq-locks at the expense of fairness.
  662. * default: 4
  663. */
  664. unsigned int sysctl_sched_shares_thresh = 4;
  665. /*
  666. * period over which we average the RT time consumption, measured
  667. * in ms.
  668. *
  669. * default: 1s
  670. */
  671. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  672. /*
  673. * period over which we measure -rt task cpu usage in us.
  674. * default: 1s
  675. */
  676. unsigned int sysctl_sched_rt_period = 1000000;
  677. static __read_mostly int scheduler_running;
  678. /*
  679. * part of the period that we allow rt tasks to run in us.
  680. * default: 0.95s
  681. */
  682. int sysctl_sched_rt_runtime = 950000;
  683. static inline u64 global_rt_period(void)
  684. {
  685. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  686. }
  687. static inline u64 global_rt_runtime(void)
  688. {
  689. if (sysctl_sched_rt_runtime < 0)
  690. return RUNTIME_INF;
  691. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  692. }
  693. #ifndef prepare_arch_switch
  694. # define prepare_arch_switch(next) do { } while (0)
  695. #endif
  696. #ifndef finish_arch_switch
  697. # define finish_arch_switch(prev) do { } while (0)
  698. #endif
  699. static inline int task_current(struct rq *rq, struct task_struct *p)
  700. {
  701. return rq->curr == p;
  702. }
  703. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  704. static inline int task_running(struct rq *rq, struct task_struct *p)
  705. {
  706. return task_current(rq, p);
  707. }
  708. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  709. {
  710. }
  711. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  712. {
  713. #ifdef CONFIG_DEBUG_SPINLOCK
  714. /* this is a valid case when another task releases the spinlock */
  715. rq->lock.owner = current;
  716. #endif
  717. /*
  718. * If we are tracking spinlock dependencies then we have to
  719. * fix up the runqueue lock - which gets 'carried over' from
  720. * prev into current:
  721. */
  722. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  723. raw_spin_unlock_irq(&rq->lock);
  724. }
  725. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  726. static inline int task_running(struct rq *rq, struct task_struct *p)
  727. {
  728. #ifdef CONFIG_SMP
  729. return p->oncpu;
  730. #else
  731. return task_current(rq, p);
  732. #endif
  733. }
  734. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * We can optimise this out completely for !SMP, because the
  739. * SMP rebalancing from interrupt is the only thing that cares
  740. * here.
  741. */
  742. next->oncpu = 1;
  743. #endif
  744. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. raw_spin_unlock_irq(&rq->lock);
  746. #else
  747. raw_spin_unlock(&rq->lock);
  748. #endif
  749. }
  750. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * After ->oncpu is cleared, the task can be moved to a different CPU.
  755. * We must ensure this doesn't happen until the switch is completely
  756. * finished.
  757. */
  758. smp_wmb();
  759. prev->oncpu = 0;
  760. #endif
  761. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. local_irq_enable();
  763. #endif
  764. }
  765. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  766. /*
  767. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  768. * against ttwu().
  769. */
  770. static inline int task_is_waking(struct task_struct *p)
  771. {
  772. return unlikely(p->state == TASK_WAKING);
  773. }
  774. /*
  775. * __task_rq_lock - lock the runqueue a given task resides on.
  776. * Must be called interrupts disabled.
  777. */
  778. static inline struct rq *__task_rq_lock(struct task_struct *p)
  779. __acquires(rq->lock)
  780. {
  781. struct rq *rq;
  782. for (;;) {
  783. rq = task_rq(p);
  784. raw_spin_lock(&rq->lock);
  785. if (likely(rq == task_rq(p)))
  786. return rq;
  787. raw_spin_unlock(&rq->lock);
  788. }
  789. }
  790. /*
  791. * task_rq_lock - lock the runqueue a given task resides on and disable
  792. * interrupts. Note the ordering: we can safely lookup the task_rq without
  793. * explicitly disabling preemption.
  794. */
  795. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  796. __acquires(rq->lock)
  797. {
  798. struct rq *rq;
  799. for (;;) {
  800. local_irq_save(*flags);
  801. rq = task_rq(p);
  802. raw_spin_lock(&rq->lock);
  803. if (likely(rq == task_rq(p)))
  804. return rq;
  805. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  806. }
  807. }
  808. static void __task_rq_unlock(struct rq *rq)
  809. __releases(rq->lock)
  810. {
  811. raw_spin_unlock(&rq->lock);
  812. }
  813. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  814. __releases(rq->lock)
  815. {
  816. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  817. }
  818. /*
  819. * this_rq_lock - lock this runqueue and disable interrupts.
  820. */
  821. static struct rq *this_rq_lock(void)
  822. __acquires(rq->lock)
  823. {
  824. struct rq *rq;
  825. local_irq_disable();
  826. rq = this_rq();
  827. raw_spin_lock(&rq->lock);
  828. return rq;
  829. }
  830. #ifdef CONFIG_SCHED_HRTICK
  831. /*
  832. * Use HR-timers to deliver accurate preemption points.
  833. *
  834. * Its all a bit involved since we cannot program an hrt while holding the
  835. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  836. * reschedule event.
  837. *
  838. * When we get rescheduled we reprogram the hrtick_timer outside of the
  839. * rq->lock.
  840. */
  841. /*
  842. * Use hrtick when:
  843. * - enabled by features
  844. * - hrtimer is actually high res
  845. */
  846. static inline int hrtick_enabled(struct rq *rq)
  847. {
  848. if (!sched_feat(HRTICK))
  849. return 0;
  850. if (!cpu_active(cpu_of(rq)))
  851. return 0;
  852. return hrtimer_is_hres_active(&rq->hrtick_timer);
  853. }
  854. static void hrtick_clear(struct rq *rq)
  855. {
  856. if (hrtimer_active(&rq->hrtick_timer))
  857. hrtimer_cancel(&rq->hrtick_timer);
  858. }
  859. /*
  860. * High-resolution timer tick.
  861. * Runs from hardirq context with interrupts disabled.
  862. */
  863. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  864. {
  865. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  866. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  867. raw_spin_lock(&rq->lock);
  868. update_rq_clock(rq);
  869. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  870. raw_spin_unlock(&rq->lock);
  871. return HRTIMER_NORESTART;
  872. }
  873. #ifdef CONFIG_SMP
  874. /*
  875. * called from hardirq (IPI) context
  876. */
  877. static void __hrtick_start(void *arg)
  878. {
  879. struct rq *rq = arg;
  880. raw_spin_lock(&rq->lock);
  881. hrtimer_restart(&rq->hrtick_timer);
  882. rq->hrtick_csd_pending = 0;
  883. raw_spin_unlock(&rq->lock);
  884. }
  885. /*
  886. * Called to set the hrtick timer state.
  887. *
  888. * called with rq->lock held and irqs disabled
  889. */
  890. static void hrtick_start(struct rq *rq, u64 delay)
  891. {
  892. struct hrtimer *timer = &rq->hrtick_timer;
  893. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  894. hrtimer_set_expires(timer, time);
  895. if (rq == this_rq()) {
  896. hrtimer_restart(timer);
  897. } else if (!rq->hrtick_csd_pending) {
  898. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  899. rq->hrtick_csd_pending = 1;
  900. }
  901. }
  902. static int
  903. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  904. {
  905. int cpu = (int)(long)hcpu;
  906. switch (action) {
  907. case CPU_UP_CANCELED:
  908. case CPU_UP_CANCELED_FROZEN:
  909. case CPU_DOWN_PREPARE:
  910. case CPU_DOWN_PREPARE_FROZEN:
  911. case CPU_DEAD:
  912. case CPU_DEAD_FROZEN:
  913. hrtick_clear(cpu_rq(cpu));
  914. return NOTIFY_OK;
  915. }
  916. return NOTIFY_DONE;
  917. }
  918. static __init void init_hrtick(void)
  919. {
  920. hotcpu_notifier(hotplug_hrtick, 0);
  921. }
  922. #else
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  931. HRTIMER_MODE_REL_PINNED, 0);
  932. }
  933. static inline void init_hrtick(void)
  934. {
  935. }
  936. #endif /* CONFIG_SMP */
  937. static void init_rq_hrtick(struct rq *rq)
  938. {
  939. #ifdef CONFIG_SMP
  940. rq->hrtick_csd_pending = 0;
  941. rq->hrtick_csd.flags = 0;
  942. rq->hrtick_csd.func = __hrtick_start;
  943. rq->hrtick_csd.info = rq;
  944. #endif
  945. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  946. rq->hrtick_timer.function = hrtick;
  947. }
  948. #else /* CONFIG_SCHED_HRTICK */
  949. static inline void hrtick_clear(struct rq *rq)
  950. {
  951. }
  952. static inline void init_rq_hrtick(struct rq *rq)
  953. {
  954. }
  955. static inline void init_hrtick(void)
  956. {
  957. }
  958. #endif /* CONFIG_SCHED_HRTICK */
  959. /*
  960. * resched_task - mark a task 'to be rescheduled now'.
  961. *
  962. * On UP this means the setting of the need_resched flag, on SMP it
  963. * might also involve a cross-CPU call to trigger the scheduler on
  964. * the target CPU.
  965. */
  966. #ifdef CONFIG_SMP
  967. #ifndef tsk_is_polling
  968. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  969. #endif
  970. static void resched_task(struct task_struct *p)
  971. {
  972. int cpu;
  973. assert_raw_spin_locked(&task_rq(p)->lock);
  974. if (test_tsk_need_resched(p))
  975. return;
  976. set_tsk_need_resched(p);
  977. cpu = task_cpu(p);
  978. if (cpu == smp_processor_id())
  979. return;
  980. /* NEED_RESCHED must be visible before we test polling */
  981. smp_mb();
  982. if (!tsk_is_polling(p))
  983. smp_send_reschedule(cpu);
  984. }
  985. static void resched_cpu(int cpu)
  986. {
  987. struct rq *rq = cpu_rq(cpu);
  988. unsigned long flags;
  989. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  990. return;
  991. resched_task(cpu_curr(cpu));
  992. raw_spin_unlock_irqrestore(&rq->lock, flags);
  993. }
  994. #ifdef CONFIG_NO_HZ
  995. /*
  996. * In the semi idle case, use the nearest busy cpu for migrating timers
  997. * from an idle cpu. This is good for power-savings.
  998. *
  999. * We don't do similar optimization for completely idle system, as
  1000. * selecting an idle cpu will add more delays to the timers than intended
  1001. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1002. */
  1003. int get_nohz_timer_target(void)
  1004. {
  1005. int cpu = smp_processor_id();
  1006. int i;
  1007. struct sched_domain *sd;
  1008. for_each_domain(cpu, sd) {
  1009. for_each_cpu(i, sched_domain_span(sd))
  1010. if (!idle_cpu(i))
  1011. return i;
  1012. }
  1013. return cpu;
  1014. }
  1015. /*
  1016. * When add_timer_on() enqueues a timer into the timer wheel of an
  1017. * idle CPU then this timer might expire before the next timer event
  1018. * which is scheduled to wake up that CPU. In case of a completely
  1019. * idle system the next event might even be infinite time into the
  1020. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1021. * leaves the inner idle loop so the newly added timer is taken into
  1022. * account when the CPU goes back to idle and evaluates the timer
  1023. * wheel for the next timer event.
  1024. */
  1025. void wake_up_idle_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. if (cpu == smp_processor_id())
  1029. return;
  1030. /*
  1031. * This is safe, as this function is called with the timer
  1032. * wheel base lock of (cpu) held. When the CPU is on the way
  1033. * to idle and has not yet set rq->curr to idle then it will
  1034. * be serialized on the timer wheel base lock and take the new
  1035. * timer into account automatically.
  1036. */
  1037. if (rq->curr != rq->idle)
  1038. return;
  1039. /*
  1040. * We can set TIF_RESCHED on the idle task of the other CPU
  1041. * lockless. The worst case is that the other CPU runs the
  1042. * idle task through an additional NOOP schedule()
  1043. */
  1044. set_tsk_need_resched(rq->idle);
  1045. /* NEED_RESCHED must be visible before we test polling */
  1046. smp_mb();
  1047. if (!tsk_is_polling(rq->idle))
  1048. smp_send_reschedule(cpu);
  1049. }
  1050. #endif /* CONFIG_NO_HZ */
  1051. static u64 sched_avg_period(void)
  1052. {
  1053. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1054. }
  1055. static void sched_avg_update(struct rq *rq)
  1056. {
  1057. s64 period = sched_avg_period();
  1058. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1059. /*
  1060. * Inline assembly required to prevent the compiler
  1061. * optimising this loop into a divmod call.
  1062. * See __iter_div_u64_rem() for another example of this.
  1063. */
  1064. asm("" : "+rm" (rq->age_stamp));
  1065. rq->age_stamp += period;
  1066. rq->rt_avg /= 2;
  1067. }
  1068. }
  1069. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1070. {
  1071. rq->rt_avg += rt_delta;
  1072. sched_avg_update(rq);
  1073. }
  1074. #else /* !CONFIG_SMP */
  1075. static void resched_task(struct task_struct *p)
  1076. {
  1077. assert_raw_spin_locked(&task_rq(p)->lock);
  1078. set_tsk_need_resched(p);
  1079. }
  1080. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1081. {
  1082. }
  1083. static void sched_avg_update(struct rq *rq)
  1084. {
  1085. }
  1086. #endif /* CONFIG_SMP */
  1087. #if BITS_PER_LONG == 32
  1088. # define WMULT_CONST (~0UL)
  1089. #else
  1090. # define WMULT_CONST (1UL << 32)
  1091. #endif
  1092. #define WMULT_SHIFT 32
  1093. /*
  1094. * Shift right and round:
  1095. */
  1096. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1097. /*
  1098. * delta *= weight / lw
  1099. */
  1100. static unsigned long
  1101. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1102. struct load_weight *lw)
  1103. {
  1104. u64 tmp;
  1105. if (!lw->inv_weight) {
  1106. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1107. lw->inv_weight = 1;
  1108. else
  1109. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1110. / (lw->weight+1);
  1111. }
  1112. tmp = (u64)delta_exec * weight;
  1113. /*
  1114. * Check whether we'd overflow the 64-bit multiplication:
  1115. */
  1116. if (unlikely(tmp > WMULT_CONST))
  1117. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1118. WMULT_SHIFT/2);
  1119. else
  1120. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1121. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1122. }
  1123. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1124. {
  1125. lw->weight += inc;
  1126. lw->inv_weight = 0;
  1127. }
  1128. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1129. {
  1130. lw->weight -= dec;
  1131. lw->inv_weight = 0;
  1132. }
  1133. /*
  1134. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1135. * of tasks with abnormal "nice" values across CPUs the contribution that
  1136. * each task makes to its run queue's load is weighted according to its
  1137. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1138. * scaled version of the new time slice allocation that they receive on time
  1139. * slice expiry etc.
  1140. */
  1141. #define WEIGHT_IDLEPRIO 3
  1142. #define WMULT_IDLEPRIO 1431655765
  1143. /*
  1144. * Nice levels are multiplicative, with a gentle 10% change for every
  1145. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1146. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1147. * that remained on nice 0.
  1148. *
  1149. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1150. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1151. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1152. * If a task goes up by ~10% and another task goes down by ~10% then
  1153. * the relative distance between them is ~25%.)
  1154. */
  1155. static const int prio_to_weight[40] = {
  1156. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1157. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1158. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1159. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1160. /* 0 */ 1024, 820, 655, 526, 423,
  1161. /* 5 */ 335, 272, 215, 172, 137,
  1162. /* 10 */ 110, 87, 70, 56, 45,
  1163. /* 15 */ 36, 29, 23, 18, 15,
  1164. };
  1165. /*
  1166. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1167. *
  1168. * In cases where the weight does not change often, we can use the
  1169. * precalculated inverse to speed up arithmetics by turning divisions
  1170. * into multiplications:
  1171. */
  1172. static const u32 prio_to_wmult[40] = {
  1173. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1174. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1175. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1176. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1177. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1178. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1179. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1180. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1181. };
  1182. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1183. enum cpuacct_stat_index {
  1184. CPUACCT_STAT_USER, /* ... user mode */
  1185. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1186. CPUACCT_STAT_NSTATS,
  1187. };
  1188. #ifdef CONFIG_CGROUP_CPUACCT
  1189. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1190. static void cpuacct_update_stats(struct task_struct *tsk,
  1191. enum cpuacct_stat_index idx, cputime_t val);
  1192. #else
  1193. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1194. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1195. enum cpuacct_stat_index idx, cputime_t val) {}
  1196. #endif
  1197. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1198. {
  1199. update_load_add(&rq->load, load);
  1200. }
  1201. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1202. {
  1203. update_load_sub(&rq->load, load);
  1204. }
  1205. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1206. typedef int (*tg_visitor)(struct task_group *, void *);
  1207. /*
  1208. * Iterate the full tree, calling @down when first entering a node and @up when
  1209. * leaving it for the final time.
  1210. */
  1211. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1212. {
  1213. struct task_group *parent, *child;
  1214. int ret;
  1215. rcu_read_lock();
  1216. parent = &root_task_group;
  1217. down:
  1218. ret = (*down)(parent, data);
  1219. if (ret)
  1220. goto out_unlock;
  1221. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1222. parent = child;
  1223. goto down;
  1224. up:
  1225. continue;
  1226. }
  1227. ret = (*up)(parent, data);
  1228. if (ret)
  1229. goto out_unlock;
  1230. child = parent;
  1231. parent = parent->parent;
  1232. if (parent)
  1233. goto up;
  1234. out_unlock:
  1235. rcu_read_unlock();
  1236. return ret;
  1237. }
  1238. static int tg_nop(struct task_group *tg, void *data)
  1239. {
  1240. return 0;
  1241. }
  1242. #endif
  1243. #ifdef CONFIG_SMP
  1244. /* Used instead of source_load when we know the type == 0 */
  1245. static unsigned long weighted_cpuload(const int cpu)
  1246. {
  1247. return cpu_rq(cpu)->load.weight;
  1248. }
  1249. /*
  1250. * Return a low guess at the load of a migration-source cpu weighted
  1251. * according to the scheduling class and "nice" value.
  1252. *
  1253. * We want to under-estimate the load of migration sources, to
  1254. * balance conservatively.
  1255. */
  1256. static unsigned long source_load(int cpu, int type)
  1257. {
  1258. struct rq *rq = cpu_rq(cpu);
  1259. unsigned long total = weighted_cpuload(cpu);
  1260. if (type == 0 || !sched_feat(LB_BIAS))
  1261. return total;
  1262. return min(rq->cpu_load[type-1], total);
  1263. }
  1264. /*
  1265. * Return a high guess at the load of a migration-target cpu weighted
  1266. * according to the scheduling class and "nice" value.
  1267. */
  1268. static unsigned long target_load(int cpu, int type)
  1269. {
  1270. struct rq *rq = cpu_rq(cpu);
  1271. unsigned long total = weighted_cpuload(cpu);
  1272. if (type == 0 || !sched_feat(LB_BIAS))
  1273. return total;
  1274. return max(rq->cpu_load[type-1], total);
  1275. }
  1276. static unsigned long power_of(int cpu)
  1277. {
  1278. return cpu_rq(cpu)->cpu_power;
  1279. }
  1280. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1281. static unsigned long cpu_avg_load_per_task(int cpu)
  1282. {
  1283. struct rq *rq = cpu_rq(cpu);
  1284. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1285. if (nr_running)
  1286. rq->avg_load_per_task = rq->load.weight / nr_running;
  1287. else
  1288. rq->avg_load_per_task = 0;
  1289. return rq->avg_load_per_task;
  1290. }
  1291. #ifdef CONFIG_FAIR_GROUP_SCHED
  1292. static __read_mostly unsigned long __percpu *update_shares_data;
  1293. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1294. /*
  1295. * Calculate and set the cpu's group shares.
  1296. */
  1297. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1298. unsigned long sd_shares,
  1299. unsigned long sd_rq_weight,
  1300. unsigned long *usd_rq_weight)
  1301. {
  1302. unsigned long shares, rq_weight;
  1303. int boost = 0;
  1304. rq_weight = usd_rq_weight[cpu];
  1305. if (!rq_weight) {
  1306. boost = 1;
  1307. rq_weight = NICE_0_LOAD;
  1308. }
  1309. /*
  1310. * \Sum_j shares_j * rq_weight_i
  1311. * shares_i = -----------------------------
  1312. * \Sum_j rq_weight_j
  1313. */
  1314. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1315. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1316. if (abs(shares - tg->se[cpu]->load.weight) >
  1317. sysctl_sched_shares_thresh) {
  1318. struct rq *rq = cpu_rq(cpu);
  1319. unsigned long flags;
  1320. raw_spin_lock_irqsave(&rq->lock, flags);
  1321. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1322. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1323. __set_se_shares(tg->se[cpu], shares);
  1324. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1325. }
  1326. }
  1327. /*
  1328. * Re-compute the task group their per cpu shares over the given domain.
  1329. * This needs to be done in a bottom-up fashion because the rq weight of a
  1330. * parent group depends on the shares of its child groups.
  1331. */
  1332. static int tg_shares_up(struct task_group *tg, void *data)
  1333. {
  1334. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1335. unsigned long *usd_rq_weight;
  1336. struct sched_domain *sd = data;
  1337. unsigned long flags;
  1338. int i;
  1339. if (!tg->se[0])
  1340. return 0;
  1341. local_irq_save(flags);
  1342. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1343. for_each_cpu(i, sched_domain_span(sd)) {
  1344. weight = tg->cfs_rq[i]->load.weight;
  1345. usd_rq_weight[i] = weight;
  1346. rq_weight += weight;
  1347. /*
  1348. * If there are currently no tasks on the cpu pretend there
  1349. * is one of average load so that when a new task gets to
  1350. * run here it will not get delayed by group starvation.
  1351. */
  1352. if (!weight)
  1353. weight = NICE_0_LOAD;
  1354. sum_weight += weight;
  1355. shares += tg->cfs_rq[i]->shares;
  1356. }
  1357. if (!rq_weight)
  1358. rq_weight = sum_weight;
  1359. if ((!shares && rq_weight) || shares > tg->shares)
  1360. shares = tg->shares;
  1361. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1362. shares = tg->shares;
  1363. for_each_cpu(i, sched_domain_span(sd))
  1364. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1365. local_irq_restore(flags);
  1366. return 0;
  1367. }
  1368. /*
  1369. * Compute the cpu's hierarchical load factor for each task group.
  1370. * This needs to be done in a top-down fashion because the load of a child
  1371. * group is a fraction of its parents load.
  1372. */
  1373. static int tg_load_down(struct task_group *tg, void *data)
  1374. {
  1375. unsigned long load;
  1376. long cpu = (long)data;
  1377. if (!tg->parent) {
  1378. load = cpu_rq(cpu)->load.weight;
  1379. } else {
  1380. load = tg->parent->cfs_rq[cpu]->h_load;
  1381. load *= tg->cfs_rq[cpu]->shares;
  1382. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1383. }
  1384. tg->cfs_rq[cpu]->h_load = load;
  1385. return 0;
  1386. }
  1387. static void update_shares(struct sched_domain *sd)
  1388. {
  1389. s64 elapsed;
  1390. u64 now;
  1391. if (root_task_group_empty())
  1392. return;
  1393. now = local_clock();
  1394. elapsed = now - sd->last_update;
  1395. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1396. sd->last_update = now;
  1397. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1398. }
  1399. }
  1400. static void update_h_load(long cpu)
  1401. {
  1402. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1403. }
  1404. #else
  1405. static inline void update_shares(struct sched_domain *sd)
  1406. {
  1407. }
  1408. #endif
  1409. #ifdef CONFIG_PREEMPT
  1410. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1411. /*
  1412. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1413. * way at the expense of forcing extra atomic operations in all
  1414. * invocations. This assures that the double_lock is acquired using the
  1415. * same underlying policy as the spinlock_t on this architecture, which
  1416. * reduces latency compared to the unfair variant below. However, it
  1417. * also adds more overhead and therefore may reduce throughput.
  1418. */
  1419. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1420. __releases(this_rq->lock)
  1421. __acquires(busiest->lock)
  1422. __acquires(this_rq->lock)
  1423. {
  1424. raw_spin_unlock(&this_rq->lock);
  1425. double_rq_lock(this_rq, busiest);
  1426. return 1;
  1427. }
  1428. #else
  1429. /*
  1430. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1431. * latency by eliminating extra atomic operations when the locks are
  1432. * already in proper order on entry. This favors lower cpu-ids and will
  1433. * grant the double lock to lower cpus over higher ids under contention,
  1434. * regardless of entry order into the function.
  1435. */
  1436. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1437. __releases(this_rq->lock)
  1438. __acquires(busiest->lock)
  1439. __acquires(this_rq->lock)
  1440. {
  1441. int ret = 0;
  1442. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1443. if (busiest < this_rq) {
  1444. raw_spin_unlock(&this_rq->lock);
  1445. raw_spin_lock(&busiest->lock);
  1446. raw_spin_lock_nested(&this_rq->lock,
  1447. SINGLE_DEPTH_NESTING);
  1448. ret = 1;
  1449. } else
  1450. raw_spin_lock_nested(&busiest->lock,
  1451. SINGLE_DEPTH_NESTING);
  1452. }
  1453. return ret;
  1454. }
  1455. #endif /* CONFIG_PREEMPT */
  1456. /*
  1457. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1458. */
  1459. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1460. {
  1461. if (unlikely(!irqs_disabled())) {
  1462. /* printk() doesn't work good under rq->lock */
  1463. raw_spin_unlock(&this_rq->lock);
  1464. BUG_ON(1);
  1465. }
  1466. return _double_lock_balance(this_rq, busiest);
  1467. }
  1468. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1469. __releases(busiest->lock)
  1470. {
  1471. raw_spin_unlock(&busiest->lock);
  1472. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1473. }
  1474. /*
  1475. * double_rq_lock - safely lock two runqueues
  1476. *
  1477. * Note this does not disable interrupts like task_rq_lock,
  1478. * you need to do so manually before calling.
  1479. */
  1480. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1481. __acquires(rq1->lock)
  1482. __acquires(rq2->lock)
  1483. {
  1484. BUG_ON(!irqs_disabled());
  1485. if (rq1 == rq2) {
  1486. raw_spin_lock(&rq1->lock);
  1487. __acquire(rq2->lock); /* Fake it out ;) */
  1488. } else {
  1489. if (rq1 < rq2) {
  1490. raw_spin_lock(&rq1->lock);
  1491. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1492. } else {
  1493. raw_spin_lock(&rq2->lock);
  1494. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1495. }
  1496. }
  1497. }
  1498. /*
  1499. * double_rq_unlock - safely unlock two runqueues
  1500. *
  1501. * Note this does not restore interrupts like task_rq_unlock,
  1502. * you need to do so manually after calling.
  1503. */
  1504. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1505. __releases(rq1->lock)
  1506. __releases(rq2->lock)
  1507. {
  1508. raw_spin_unlock(&rq1->lock);
  1509. if (rq1 != rq2)
  1510. raw_spin_unlock(&rq2->lock);
  1511. else
  1512. __release(rq2->lock);
  1513. }
  1514. #endif
  1515. #ifdef CONFIG_FAIR_GROUP_SCHED
  1516. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1517. {
  1518. #ifdef CONFIG_SMP
  1519. cfs_rq->shares = shares;
  1520. #endif
  1521. }
  1522. #endif
  1523. static void calc_load_account_idle(struct rq *this_rq);
  1524. static void update_sysctl(void);
  1525. static int get_update_sysctl_factor(void);
  1526. static void update_cpu_load(struct rq *this_rq);
  1527. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1528. {
  1529. set_task_rq(p, cpu);
  1530. #ifdef CONFIG_SMP
  1531. /*
  1532. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1533. * successfuly executed on another CPU. We must ensure that updates of
  1534. * per-task data have been completed by this moment.
  1535. */
  1536. smp_wmb();
  1537. task_thread_info(p)->cpu = cpu;
  1538. #endif
  1539. }
  1540. static const struct sched_class rt_sched_class;
  1541. #define sched_class_highest (&stop_sched_class)
  1542. #define for_each_class(class) \
  1543. for (class = sched_class_highest; class; class = class->next)
  1544. #include "sched_stats.h"
  1545. static void inc_nr_running(struct rq *rq)
  1546. {
  1547. rq->nr_running++;
  1548. }
  1549. static void dec_nr_running(struct rq *rq)
  1550. {
  1551. rq->nr_running--;
  1552. }
  1553. static void set_load_weight(struct task_struct *p)
  1554. {
  1555. /*
  1556. * SCHED_IDLE tasks get minimal weight:
  1557. */
  1558. if (p->policy == SCHED_IDLE) {
  1559. p->se.load.weight = WEIGHT_IDLEPRIO;
  1560. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1561. return;
  1562. }
  1563. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1564. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1565. }
  1566. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1567. {
  1568. update_rq_clock(rq);
  1569. sched_info_queued(p);
  1570. p->sched_class->enqueue_task(rq, p, flags);
  1571. p->se.on_rq = 1;
  1572. }
  1573. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1574. {
  1575. update_rq_clock(rq);
  1576. sched_info_dequeued(p);
  1577. p->sched_class->dequeue_task(rq, p, flags);
  1578. p->se.on_rq = 0;
  1579. }
  1580. /*
  1581. * activate_task - move a task to the runqueue.
  1582. */
  1583. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1584. {
  1585. if (task_contributes_to_load(p))
  1586. rq->nr_uninterruptible--;
  1587. enqueue_task(rq, p, flags);
  1588. inc_nr_running(rq);
  1589. }
  1590. /*
  1591. * deactivate_task - remove a task from the runqueue.
  1592. */
  1593. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1594. {
  1595. if (task_contributes_to_load(p))
  1596. rq->nr_uninterruptible++;
  1597. dequeue_task(rq, p, flags);
  1598. dec_nr_running(rq);
  1599. }
  1600. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1601. /*
  1602. * There are no locks covering percpu hardirq/softirq time.
  1603. * They are only modified in account_system_vtime, on corresponding CPU
  1604. * with interrupts disabled. So, writes are safe.
  1605. * They are read and saved off onto struct rq in update_rq_clock().
  1606. * This may result in other CPU reading this CPU's irq time and can
  1607. * race with irq/account_system_vtime on this CPU. We would either get old
  1608. * or new value (or semi updated value on 32 bit) with a side effect of
  1609. * accounting a slice of irq time to wrong task when irq is in progress
  1610. * while we read rq->clock. That is a worthy compromise in place of having
  1611. * locks on each irq in account_system_time.
  1612. */
  1613. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1614. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1615. static DEFINE_PER_CPU(u64, irq_start_time);
  1616. static int sched_clock_irqtime;
  1617. void enable_sched_clock_irqtime(void)
  1618. {
  1619. sched_clock_irqtime = 1;
  1620. }
  1621. void disable_sched_clock_irqtime(void)
  1622. {
  1623. sched_clock_irqtime = 0;
  1624. }
  1625. static u64 irq_time_cpu(int cpu)
  1626. {
  1627. if (!sched_clock_irqtime)
  1628. return 0;
  1629. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1630. }
  1631. void account_system_vtime(struct task_struct *curr)
  1632. {
  1633. unsigned long flags;
  1634. int cpu;
  1635. u64 now, delta;
  1636. if (!sched_clock_irqtime)
  1637. return;
  1638. local_irq_save(flags);
  1639. cpu = smp_processor_id();
  1640. now = sched_clock_cpu(cpu);
  1641. delta = now - per_cpu(irq_start_time, cpu);
  1642. per_cpu(irq_start_time, cpu) = now;
  1643. /*
  1644. * We do not account for softirq time from ksoftirqd here.
  1645. * We want to continue accounting softirq time to ksoftirqd thread
  1646. * in that case, so as not to confuse scheduler with a special task
  1647. * that do not consume any time, but still wants to run.
  1648. */
  1649. if (hardirq_count())
  1650. per_cpu(cpu_hardirq_time, cpu) += delta;
  1651. else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
  1652. per_cpu(cpu_softirq_time, cpu) += delta;
  1653. local_irq_restore(flags);
  1654. }
  1655. EXPORT_SYMBOL_GPL(account_system_vtime);
  1656. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
  1657. {
  1658. if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
  1659. u64 delta_irq = curr_irq_time - rq->prev_irq_time;
  1660. rq->prev_irq_time = curr_irq_time;
  1661. sched_rt_avg_update(rq, delta_irq);
  1662. }
  1663. }
  1664. #else
  1665. static u64 irq_time_cpu(int cpu)
  1666. {
  1667. return 0;
  1668. }
  1669. static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
  1670. #endif
  1671. #include "sched_idletask.c"
  1672. #include "sched_fair.c"
  1673. #include "sched_rt.c"
  1674. #include "sched_stoptask.c"
  1675. #ifdef CONFIG_SCHED_DEBUG
  1676. # include "sched_debug.c"
  1677. #endif
  1678. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1679. {
  1680. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1681. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1682. if (stop) {
  1683. /*
  1684. * Make it appear like a SCHED_FIFO task, its something
  1685. * userspace knows about and won't get confused about.
  1686. *
  1687. * Also, it will make PI more or less work without too
  1688. * much confusion -- but then, stop work should not
  1689. * rely on PI working anyway.
  1690. */
  1691. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1692. stop->sched_class = &stop_sched_class;
  1693. }
  1694. cpu_rq(cpu)->stop = stop;
  1695. if (old_stop) {
  1696. /*
  1697. * Reset it back to a normal scheduling class so that
  1698. * it can die in pieces.
  1699. */
  1700. old_stop->sched_class = &rt_sched_class;
  1701. }
  1702. }
  1703. /*
  1704. * __normal_prio - return the priority that is based on the static prio
  1705. */
  1706. static inline int __normal_prio(struct task_struct *p)
  1707. {
  1708. return p->static_prio;
  1709. }
  1710. /*
  1711. * Calculate the expected normal priority: i.e. priority
  1712. * without taking RT-inheritance into account. Might be
  1713. * boosted by interactivity modifiers. Changes upon fork,
  1714. * setprio syscalls, and whenever the interactivity
  1715. * estimator recalculates.
  1716. */
  1717. static inline int normal_prio(struct task_struct *p)
  1718. {
  1719. int prio;
  1720. if (task_has_rt_policy(p))
  1721. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1722. else
  1723. prio = __normal_prio(p);
  1724. return prio;
  1725. }
  1726. /*
  1727. * Calculate the current priority, i.e. the priority
  1728. * taken into account by the scheduler. This value might
  1729. * be boosted by RT tasks, or might be boosted by
  1730. * interactivity modifiers. Will be RT if the task got
  1731. * RT-boosted. If not then it returns p->normal_prio.
  1732. */
  1733. static int effective_prio(struct task_struct *p)
  1734. {
  1735. p->normal_prio = normal_prio(p);
  1736. /*
  1737. * If we are RT tasks or we were boosted to RT priority,
  1738. * keep the priority unchanged. Otherwise, update priority
  1739. * to the normal priority:
  1740. */
  1741. if (!rt_prio(p->prio))
  1742. return p->normal_prio;
  1743. return p->prio;
  1744. }
  1745. /**
  1746. * task_curr - is this task currently executing on a CPU?
  1747. * @p: the task in question.
  1748. */
  1749. inline int task_curr(const struct task_struct *p)
  1750. {
  1751. return cpu_curr(task_cpu(p)) == p;
  1752. }
  1753. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1754. const struct sched_class *prev_class,
  1755. int oldprio, int running)
  1756. {
  1757. if (prev_class != p->sched_class) {
  1758. if (prev_class->switched_from)
  1759. prev_class->switched_from(rq, p, running);
  1760. p->sched_class->switched_to(rq, p, running);
  1761. } else
  1762. p->sched_class->prio_changed(rq, p, oldprio, running);
  1763. }
  1764. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1765. {
  1766. const struct sched_class *class;
  1767. if (p->sched_class == rq->curr->sched_class) {
  1768. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1769. } else {
  1770. for_each_class(class) {
  1771. if (class == rq->curr->sched_class)
  1772. break;
  1773. if (class == p->sched_class) {
  1774. resched_task(rq->curr);
  1775. break;
  1776. }
  1777. }
  1778. }
  1779. /*
  1780. * A queue event has occurred, and we're going to schedule. In
  1781. * this case, we can save a useless back to back clock update.
  1782. */
  1783. if (test_tsk_need_resched(rq->curr))
  1784. rq->skip_clock_update = 1;
  1785. }
  1786. #ifdef CONFIG_SMP
  1787. /*
  1788. * Is this task likely cache-hot:
  1789. */
  1790. static int
  1791. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1792. {
  1793. s64 delta;
  1794. if (p->sched_class != &fair_sched_class)
  1795. return 0;
  1796. if (unlikely(p->policy == SCHED_IDLE))
  1797. return 0;
  1798. /*
  1799. * Buddy candidates are cache hot:
  1800. */
  1801. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1802. (&p->se == cfs_rq_of(&p->se)->next ||
  1803. &p->se == cfs_rq_of(&p->se)->last))
  1804. return 1;
  1805. if (sysctl_sched_migration_cost == -1)
  1806. return 1;
  1807. if (sysctl_sched_migration_cost == 0)
  1808. return 0;
  1809. delta = now - p->se.exec_start;
  1810. return delta < (s64)sysctl_sched_migration_cost;
  1811. }
  1812. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1813. {
  1814. #ifdef CONFIG_SCHED_DEBUG
  1815. /*
  1816. * We should never call set_task_cpu() on a blocked task,
  1817. * ttwu() will sort out the placement.
  1818. */
  1819. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1820. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1821. #endif
  1822. trace_sched_migrate_task(p, new_cpu);
  1823. if (task_cpu(p) != new_cpu) {
  1824. p->se.nr_migrations++;
  1825. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1826. }
  1827. __set_task_cpu(p, new_cpu);
  1828. }
  1829. struct migration_arg {
  1830. struct task_struct *task;
  1831. int dest_cpu;
  1832. };
  1833. static int migration_cpu_stop(void *data);
  1834. /*
  1835. * The task's runqueue lock must be held.
  1836. * Returns true if you have to wait for migration thread.
  1837. */
  1838. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1839. {
  1840. struct rq *rq = task_rq(p);
  1841. /*
  1842. * If the task is not on a runqueue (and not running), then
  1843. * the next wake-up will properly place the task.
  1844. */
  1845. return p->se.on_rq || task_running(rq, p);
  1846. }
  1847. /*
  1848. * wait_task_inactive - wait for a thread to unschedule.
  1849. *
  1850. * If @match_state is nonzero, it's the @p->state value just checked and
  1851. * not expected to change. If it changes, i.e. @p might have woken up,
  1852. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1853. * we return a positive number (its total switch count). If a second call
  1854. * a short while later returns the same number, the caller can be sure that
  1855. * @p has remained unscheduled the whole time.
  1856. *
  1857. * The caller must ensure that the task *will* unschedule sometime soon,
  1858. * else this function might spin for a *long* time. This function can't
  1859. * be called with interrupts off, or it may introduce deadlock with
  1860. * smp_call_function() if an IPI is sent by the same process we are
  1861. * waiting to become inactive.
  1862. */
  1863. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1864. {
  1865. unsigned long flags;
  1866. int running, on_rq;
  1867. unsigned long ncsw;
  1868. struct rq *rq;
  1869. for (;;) {
  1870. /*
  1871. * We do the initial early heuristics without holding
  1872. * any task-queue locks at all. We'll only try to get
  1873. * the runqueue lock when things look like they will
  1874. * work out!
  1875. */
  1876. rq = task_rq(p);
  1877. /*
  1878. * If the task is actively running on another CPU
  1879. * still, just relax and busy-wait without holding
  1880. * any locks.
  1881. *
  1882. * NOTE! Since we don't hold any locks, it's not
  1883. * even sure that "rq" stays as the right runqueue!
  1884. * But we don't care, since "task_running()" will
  1885. * return false if the runqueue has changed and p
  1886. * is actually now running somewhere else!
  1887. */
  1888. while (task_running(rq, p)) {
  1889. if (match_state && unlikely(p->state != match_state))
  1890. return 0;
  1891. cpu_relax();
  1892. }
  1893. /*
  1894. * Ok, time to look more closely! We need the rq
  1895. * lock now, to be *sure*. If we're wrong, we'll
  1896. * just go back and repeat.
  1897. */
  1898. rq = task_rq_lock(p, &flags);
  1899. trace_sched_wait_task(p);
  1900. running = task_running(rq, p);
  1901. on_rq = p->se.on_rq;
  1902. ncsw = 0;
  1903. if (!match_state || p->state == match_state)
  1904. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1905. task_rq_unlock(rq, &flags);
  1906. /*
  1907. * If it changed from the expected state, bail out now.
  1908. */
  1909. if (unlikely(!ncsw))
  1910. break;
  1911. /*
  1912. * Was it really running after all now that we
  1913. * checked with the proper locks actually held?
  1914. *
  1915. * Oops. Go back and try again..
  1916. */
  1917. if (unlikely(running)) {
  1918. cpu_relax();
  1919. continue;
  1920. }
  1921. /*
  1922. * It's not enough that it's not actively running,
  1923. * it must be off the runqueue _entirely_, and not
  1924. * preempted!
  1925. *
  1926. * So if it was still runnable (but just not actively
  1927. * running right now), it's preempted, and we should
  1928. * yield - it could be a while.
  1929. */
  1930. if (unlikely(on_rq)) {
  1931. schedule_timeout_uninterruptible(1);
  1932. continue;
  1933. }
  1934. /*
  1935. * Ahh, all good. It wasn't running, and it wasn't
  1936. * runnable, which means that it will never become
  1937. * running in the future either. We're all done!
  1938. */
  1939. break;
  1940. }
  1941. return ncsw;
  1942. }
  1943. /***
  1944. * kick_process - kick a running thread to enter/exit the kernel
  1945. * @p: the to-be-kicked thread
  1946. *
  1947. * Cause a process which is running on another CPU to enter
  1948. * kernel-mode, without any delay. (to get signals handled.)
  1949. *
  1950. * NOTE: this function doesnt have to take the runqueue lock,
  1951. * because all it wants to ensure is that the remote task enters
  1952. * the kernel. If the IPI races and the task has been migrated
  1953. * to another CPU then no harm is done and the purpose has been
  1954. * achieved as well.
  1955. */
  1956. void kick_process(struct task_struct *p)
  1957. {
  1958. int cpu;
  1959. preempt_disable();
  1960. cpu = task_cpu(p);
  1961. if ((cpu != smp_processor_id()) && task_curr(p))
  1962. smp_send_reschedule(cpu);
  1963. preempt_enable();
  1964. }
  1965. EXPORT_SYMBOL_GPL(kick_process);
  1966. #endif /* CONFIG_SMP */
  1967. /**
  1968. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1969. * @p: the task to evaluate
  1970. * @func: the function to be called
  1971. * @info: the function call argument
  1972. *
  1973. * Calls the function @func when the task is currently running. This might
  1974. * be on the current CPU, which just calls the function directly
  1975. */
  1976. void task_oncpu_function_call(struct task_struct *p,
  1977. void (*func) (void *info), void *info)
  1978. {
  1979. int cpu;
  1980. preempt_disable();
  1981. cpu = task_cpu(p);
  1982. if (task_curr(p))
  1983. smp_call_function_single(cpu, func, info, 1);
  1984. preempt_enable();
  1985. }
  1986. #ifdef CONFIG_SMP
  1987. /*
  1988. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1989. */
  1990. static int select_fallback_rq(int cpu, struct task_struct *p)
  1991. {
  1992. int dest_cpu;
  1993. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1994. /* Look for allowed, online CPU in same node. */
  1995. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1996. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1997. return dest_cpu;
  1998. /* Any allowed, online CPU? */
  1999. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2000. if (dest_cpu < nr_cpu_ids)
  2001. return dest_cpu;
  2002. /* No more Mr. Nice Guy. */
  2003. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  2004. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2005. /*
  2006. * Don't tell them about moving exiting tasks or
  2007. * kernel threads (both mm NULL), since they never
  2008. * leave kernel.
  2009. */
  2010. if (p->mm && printk_ratelimit()) {
  2011. printk(KERN_INFO "process %d (%s) no "
  2012. "longer affine to cpu%d\n",
  2013. task_pid_nr(p), p->comm, cpu);
  2014. }
  2015. }
  2016. return dest_cpu;
  2017. }
  2018. /*
  2019. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  2020. */
  2021. static inline
  2022. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  2023. {
  2024. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2025. /*
  2026. * In order not to call set_task_cpu() on a blocking task we need
  2027. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2028. * cpu.
  2029. *
  2030. * Since this is common to all placement strategies, this lives here.
  2031. *
  2032. * [ this allows ->select_task() to simply return task_cpu(p) and
  2033. * not worry about this generic constraint ]
  2034. */
  2035. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2036. !cpu_online(cpu)))
  2037. cpu = select_fallback_rq(task_cpu(p), p);
  2038. return cpu;
  2039. }
  2040. static void update_avg(u64 *avg, u64 sample)
  2041. {
  2042. s64 diff = sample - *avg;
  2043. *avg += diff >> 3;
  2044. }
  2045. #endif
  2046. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2047. bool is_sync, bool is_migrate, bool is_local,
  2048. unsigned long en_flags)
  2049. {
  2050. schedstat_inc(p, se.statistics.nr_wakeups);
  2051. if (is_sync)
  2052. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2053. if (is_migrate)
  2054. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2055. if (is_local)
  2056. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2057. else
  2058. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2059. activate_task(rq, p, en_flags);
  2060. }
  2061. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2062. int wake_flags, bool success)
  2063. {
  2064. trace_sched_wakeup(p, success);
  2065. check_preempt_curr(rq, p, wake_flags);
  2066. p->state = TASK_RUNNING;
  2067. #ifdef CONFIG_SMP
  2068. if (p->sched_class->task_woken)
  2069. p->sched_class->task_woken(rq, p);
  2070. if (unlikely(rq->idle_stamp)) {
  2071. u64 delta = rq->clock - rq->idle_stamp;
  2072. u64 max = 2*sysctl_sched_migration_cost;
  2073. if (delta > max)
  2074. rq->avg_idle = max;
  2075. else
  2076. update_avg(&rq->avg_idle, delta);
  2077. rq->idle_stamp = 0;
  2078. }
  2079. #endif
  2080. /* if a worker is waking up, notify workqueue */
  2081. if ((p->flags & PF_WQ_WORKER) && success)
  2082. wq_worker_waking_up(p, cpu_of(rq));
  2083. }
  2084. /**
  2085. * try_to_wake_up - wake up a thread
  2086. * @p: the thread to be awakened
  2087. * @state: the mask of task states that can be woken
  2088. * @wake_flags: wake modifier flags (WF_*)
  2089. *
  2090. * Put it on the run-queue if it's not already there. The "current"
  2091. * thread is always on the run-queue (except when the actual
  2092. * re-schedule is in progress), and as such you're allowed to do
  2093. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2094. * runnable without the overhead of this.
  2095. *
  2096. * Returns %true if @p was woken up, %false if it was already running
  2097. * or @state didn't match @p's state.
  2098. */
  2099. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2100. int wake_flags)
  2101. {
  2102. int cpu, orig_cpu, this_cpu, success = 0;
  2103. unsigned long flags;
  2104. unsigned long en_flags = ENQUEUE_WAKEUP;
  2105. struct rq *rq;
  2106. this_cpu = get_cpu();
  2107. smp_wmb();
  2108. rq = task_rq_lock(p, &flags);
  2109. if (!(p->state & state))
  2110. goto out;
  2111. if (p->se.on_rq)
  2112. goto out_running;
  2113. cpu = task_cpu(p);
  2114. orig_cpu = cpu;
  2115. #ifdef CONFIG_SMP
  2116. if (unlikely(task_running(rq, p)))
  2117. goto out_activate;
  2118. /*
  2119. * In order to handle concurrent wakeups and release the rq->lock
  2120. * we put the task in TASK_WAKING state.
  2121. *
  2122. * First fix up the nr_uninterruptible count:
  2123. */
  2124. if (task_contributes_to_load(p)) {
  2125. if (likely(cpu_online(orig_cpu)))
  2126. rq->nr_uninterruptible--;
  2127. else
  2128. this_rq()->nr_uninterruptible--;
  2129. }
  2130. p->state = TASK_WAKING;
  2131. if (p->sched_class->task_waking) {
  2132. p->sched_class->task_waking(rq, p);
  2133. en_flags |= ENQUEUE_WAKING;
  2134. }
  2135. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2136. if (cpu != orig_cpu)
  2137. set_task_cpu(p, cpu);
  2138. __task_rq_unlock(rq);
  2139. rq = cpu_rq(cpu);
  2140. raw_spin_lock(&rq->lock);
  2141. /*
  2142. * We migrated the task without holding either rq->lock, however
  2143. * since the task is not on the task list itself, nobody else
  2144. * will try and migrate the task, hence the rq should match the
  2145. * cpu we just moved it to.
  2146. */
  2147. WARN_ON(task_cpu(p) != cpu);
  2148. WARN_ON(p->state != TASK_WAKING);
  2149. #ifdef CONFIG_SCHEDSTATS
  2150. schedstat_inc(rq, ttwu_count);
  2151. if (cpu == this_cpu)
  2152. schedstat_inc(rq, ttwu_local);
  2153. else {
  2154. struct sched_domain *sd;
  2155. for_each_domain(this_cpu, sd) {
  2156. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2157. schedstat_inc(sd, ttwu_wake_remote);
  2158. break;
  2159. }
  2160. }
  2161. }
  2162. #endif /* CONFIG_SCHEDSTATS */
  2163. out_activate:
  2164. #endif /* CONFIG_SMP */
  2165. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2166. cpu == this_cpu, en_flags);
  2167. success = 1;
  2168. out_running:
  2169. ttwu_post_activation(p, rq, wake_flags, success);
  2170. out:
  2171. task_rq_unlock(rq, &flags);
  2172. put_cpu();
  2173. return success;
  2174. }
  2175. /**
  2176. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2177. * @p: the thread to be awakened
  2178. *
  2179. * Put @p on the run-queue if it's not alredy there. The caller must
  2180. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2181. * the current task. this_rq() stays locked over invocation.
  2182. */
  2183. static void try_to_wake_up_local(struct task_struct *p)
  2184. {
  2185. struct rq *rq = task_rq(p);
  2186. bool success = false;
  2187. BUG_ON(rq != this_rq());
  2188. BUG_ON(p == current);
  2189. lockdep_assert_held(&rq->lock);
  2190. if (!(p->state & TASK_NORMAL))
  2191. return;
  2192. if (!p->se.on_rq) {
  2193. if (likely(!task_running(rq, p))) {
  2194. schedstat_inc(rq, ttwu_count);
  2195. schedstat_inc(rq, ttwu_local);
  2196. }
  2197. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2198. success = true;
  2199. }
  2200. ttwu_post_activation(p, rq, 0, success);
  2201. }
  2202. /**
  2203. * wake_up_process - Wake up a specific process
  2204. * @p: The process to be woken up.
  2205. *
  2206. * Attempt to wake up the nominated process and move it to the set of runnable
  2207. * processes. Returns 1 if the process was woken up, 0 if it was already
  2208. * running.
  2209. *
  2210. * It may be assumed that this function implies a write memory barrier before
  2211. * changing the task state if and only if any tasks are woken up.
  2212. */
  2213. int wake_up_process(struct task_struct *p)
  2214. {
  2215. return try_to_wake_up(p, TASK_ALL, 0);
  2216. }
  2217. EXPORT_SYMBOL(wake_up_process);
  2218. int wake_up_state(struct task_struct *p, unsigned int state)
  2219. {
  2220. return try_to_wake_up(p, state, 0);
  2221. }
  2222. /*
  2223. * Perform scheduler related setup for a newly forked process p.
  2224. * p is forked by current.
  2225. *
  2226. * __sched_fork() is basic setup used by init_idle() too:
  2227. */
  2228. static void __sched_fork(struct task_struct *p)
  2229. {
  2230. p->se.exec_start = 0;
  2231. p->se.sum_exec_runtime = 0;
  2232. p->se.prev_sum_exec_runtime = 0;
  2233. p->se.nr_migrations = 0;
  2234. #ifdef CONFIG_SCHEDSTATS
  2235. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2236. #endif
  2237. INIT_LIST_HEAD(&p->rt.run_list);
  2238. p->se.on_rq = 0;
  2239. INIT_LIST_HEAD(&p->se.group_node);
  2240. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2241. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2242. #endif
  2243. }
  2244. /*
  2245. * fork()/clone()-time setup:
  2246. */
  2247. void sched_fork(struct task_struct *p, int clone_flags)
  2248. {
  2249. int cpu = get_cpu();
  2250. __sched_fork(p);
  2251. /*
  2252. * We mark the process as running here. This guarantees that
  2253. * nobody will actually run it, and a signal or other external
  2254. * event cannot wake it up and insert it on the runqueue either.
  2255. */
  2256. p->state = TASK_RUNNING;
  2257. /*
  2258. * Revert to default priority/policy on fork if requested.
  2259. */
  2260. if (unlikely(p->sched_reset_on_fork)) {
  2261. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2262. p->policy = SCHED_NORMAL;
  2263. p->normal_prio = p->static_prio;
  2264. }
  2265. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2266. p->static_prio = NICE_TO_PRIO(0);
  2267. p->normal_prio = p->static_prio;
  2268. set_load_weight(p);
  2269. }
  2270. /*
  2271. * We don't need the reset flag anymore after the fork. It has
  2272. * fulfilled its duty:
  2273. */
  2274. p->sched_reset_on_fork = 0;
  2275. }
  2276. /*
  2277. * Make sure we do not leak PI boosting priority to the child.
  2278. */
  2279. p->prio = current->normal_prio;
  2280. if (!rt_prio(p->prio))
  2281. p->sched_class = &fair_sched_class;
  2282. if (p->sched_class->task_fork)
  2283. p->sched_class->task_fork(p);
  2284. /*
  2285. * The child is not yet in the pid-hash so no cgroup attach races,
  2286. * and the cgroup is pinned to this child due to cgroup_fork()
  2287. * is ran before sched_fork().
  2288. *
  2289. * Silence PROVE_RCU.
  2290. */
  2291. rcu_read_lock();
  2292. set_task_cpu(p, cpu);
  2293. rcu_read_unlock();
  2294. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2295. if (likely(sched_info_on()))
  2296. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2297. #endif
  2298. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2299. p->oncpu = 0;
  2300. #endif
  2301. #ifdef CONFIG_PREEMPT
  2302. /* Want to start with kernel preemption disabled. */
  2303. task_thread_info(p)->preempt_count = 1;
  2304. #endif
  2305. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2306. put_cpu();
  2307. }
  2308. /*
  2309. * wake_up_new_task - wake up a newly created task for the first time.
  2310. *
  2311. * This function will do some initial scheduler statistics housekeeping
  2312. * that must be done for every newly created context, then puts the task
  2313. * on the runqueue and wakes it.
  2314. */
  2315. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2316. {
  2317. unsigned long flags;
  2318. struct rq *rq;
  2319. int cpu __maybe_unused = get_cpu();
  2320. #ifdef CONFIG_SMP
  2321. rq = task_rq_lock(p, &flags);
  2322. p->state = TASK_WAKING;
  2323. /*
  2324. * Fork balancing, do it here and not earlier because:
  2325. * - cpus_allowed can change in the fork path
  2326. * - any previously selected cpu might disappear through hotplug
  2327. *
  2328. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2329. * without people poking at ->cpus_allowed.
  2330. */
  2331. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2332. set_task_cpu(p, cpu);
  2333. p->state = TASK_RUNNING;
  2334. task_rq_unlock(rq, &flags);
  2335. #endif
  2336. rq = task_rq_lock(p, &flags);
  2337. activate_task(rq, p, 0);
  2338. trace_sched_wakeup_new(p, 1);
  2339. check_preempt_curr(rq, p, WF_FORK);
  2340. #ifdef CONFIG_SMP
  2341. if (p->sched_class->task_woken)
  2342. p->sched_class->task_woken(rq, p);
  2343. #endif
  2344. task_rq_unlock(rq, &flags);
  2345. put_cpu();
  2346. }
  2347. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2348. /**
  2349. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2350. * @notifier: notifier struct to register
  2351. */
  2352. void preempt_notifier_register(struct preempt_notifier *notifier)
  2353. {
  2354. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2355. }
  2356. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2357. /**
  2358. * preempt_notifier_unregister - no longer interested in preemption notifications
  2359. * @notifier: notifier struct to unregister
  2360. *
  2361. * This is safe to call from within a preemption notifier.
  2362. */
  2363. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2364. {
  2365. hlist_del(&notifier->link);
  2366. }
  2367. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2368. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2369. {
  2370. struct preempt_notifier *notifier;
  2371. struct hlist_node *node;
  2372. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2373. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2374. }
  2375. static void
  2376. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2377. struct task_struct *next)
  2378. {
  2379. struct preempt_notifier *notifier;
  2380. struct hlist_node *node;
  2381. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2382. notifier->ops->sched_out(notifier, next);
  2383. }
  2384. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2385. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2386. {
  2387. }
  2388. static void
  2389. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2390. struct task_struct *next)
  2391. {
  2392. }
  2393. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2394. /**
  2395. * prepare_task_switch - prepare to switch tasks
  2396. * @rq: the runqueue preparing to switch
  2397. * @prev: the current task that is being switched out
  2398. * @next: the task we are going to switch to.
  2399. *
  2400. * This is called with the rq lock held and interrupts off. It must
  2401. * be paired with a subsequent finish_task_switch after the context
  2402. * switch.
  2403. *
  2404. * prepare_task_switch sets up locking and calls architecture specific
  2405. * hooks.
  2406. */
  2407. static inline void
  2408. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2409. struct task_struct *next)
  2410. {
  2411. fire_sched_out_preempt_notifiers(prev, next);
  2412. prepare_lock_switch(rq, next);
  2413. prepare_arch_switch(next);
  2414. }
  2415. /**
  2416. * finish_task_switch - clean up after a task-switch
  2417. * @rq: runqueue associated with task-switch
  2418. * @prev: the thread we just switched away from.
  2419. *
  2420. * finish_task_switch must be called after the context switch, paired
  2421. * with a prepare_task_switch call before the context switch.
  2422. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2423. * and do any other architecture-specific cleanup actions.
  2424. *
  2425. * Note that we may have delayed dropping an mm in context_switch(). If
  2426. * so, we finish that here outside of the runqueue lock. (Doing it
  2427. * with the lock held can cause deadlocks; see schedule() for
  2428. * details.)
  2429. */
  2430. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2431. __releases(rq->lock)
  2432. {
  2433. struct mm_struct *mm = rq->prev_mm;
  2434. long prev_state;
  2435. rq->prev_mm = NULL;
  2436. /*
  2437. * A task struct has one reference for the use as "current".
  2438. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2439. * schedule one last time. The schedule call will never return, and
  2440. * the scheduled task must drop that reference.
  2441. * The test for TASK_DEAD must occur while the runqueue locks are
  2442. * still held, otherwise prev could be scheduled on another cpu, die
  2443. * there before we look at prev->state, and then the reference would
  2444. * be dropped twice.
  2445. * Manfred Spraul <manfred@colorfullife.com>
  2446. */
  2447. prev_state = prev->state;
  2448. finish_arch_switch(prev);
  2449. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2450. local_irq_disable();
  2451. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2452. perf_event_task_sched_in(current);
  2453. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2454. local_irq_enable();
  2455. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2456. finish_lock_switch(rq, prev);
  2457. fire_sched_in_preempt_notifiers(current);
  2458. if (mm)
  2459. mmdrop(mm);
  2460. if (unlikely(prev_state == TASK_DEAD)) {
  2461. /*
  2462. * Remove function-return probe instances associated with this
  2463. * task and put them back on the free list.
  2464. */
  2465. kprobe_flush_task(prev);
  2466. put_task_struct(prev);
  2467. }
  2468. }
  2469. #ifdef CONFIG_SMP
  2470. /* assumes rq->lock is held */
  2471. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2472. {
  2473. if (prev->sched_class->pre_schedule)
  2474. prev->sched_class->pre_schedule(rq, prev);
  2475. }
  2476. /* rq->lock is NOT held, but preemption is disabled */
  2477. static inline void post_schedule(struct rq *rq)
  2478. {
  2479. if (rq->post_schedule) {
  2480. unsigned long flags;
  2481. raw_spin_lock_irqsave(&rq->lock, flags);
  2482. if (rq->curr->sched_class->post_schedule)
  2483. rq->curr->sched_class->post_schedule(rq);
  2484. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2485. rq->post_schedule = 0;
  2486. }
  2487. }
  2488. #else
  2489. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2490. {
  2491. }
  2492. static inline void post_schedule(struct rq *rq)
  2493. {
  2494. }
  2495. #endif
  2496. /**
  2497. * schedule_tail - first thing a freshly forked thread must call.
  2498. * @prev: the thread we just switched away from.
  2499. */
  2500. asmlinkage void schedule_tail(struct task_struct *prev)
  2501. __releases(rq->lock)
  2502. {
  2503. struct rq *rq = this_rq();
  2504. finish_task_switch(rq, prev);
  2505. /*
  2506. * FIXME: do we need to worry about rq being invalidated by the
  2507. * task_switch?
  2508. */
  2509. post_schedule(rq);
  2510. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2511. /* In this case, finish_task_switch does not reenable preemption */
  2512. preempt_enable();
  2513. #endif
  2514. if (current->set_child_tid)
  2515. put_user(task_pid_vnr(current), current->set_child_tid);
  2516. }
  2517. /*
  2518. * context_switch - switch to the new MM and the new
  2519. * thread's register state.
  2520. */
  2521. static inline void
  2522. context_switch(struct rq *rq, struct task_struct *prev,
  2523. struct task_struct *next)
  2524. {
  2525. struct mm_struct *mm, *oldmm;
  2526. prepare_task_switch(rq, prev, next);
  2527. trace_sched_switch(prev, next);
  2528. mm = next->mm;
  2529. oldmm = prev->active_mm;
  2530. /*
  2531. * For paravirt, this is coupled with an exit in switch_to to
  2532. * combine the page table reload and the switch backend into
  2533. * one hypercall.
  2534. */
  2535. arch_start_context_switch(prev);
  2536. if (!mm) {
  2537. next->active_mm = oldmm;
  2538. atomic_inc(&oldmm->mm_count);
  2539. enter_lazy_tlb(oldmm, next);
  2540. } else
  2541. switch_mm(oldmm, mm, next);
  2542. if (!prev->mm) {
  2543. prev->active_mm = NULL;
  2544. rq->prev_mm = oldmm;
  2545. }
  2546. /*
  2547. * Since the runqueue lock will be released by the next
  2548. * task (which is an invalid locking op but in the case
  2549. * of the scheduler it's an obvious special-case), so we
  2550. * do an early lockdep release here:
  2551. */
  2552. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2553. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2554. #endif
  2555. /* Here we just switch the register state and the stack. */
  2556. switch_to(prev, next, prev);
  2557. barrier();
  2558. /*
  2559. * this_rq must be evaluated again because prev may have moved
  2560. * CPUs since it called schedule(), thus the 'rq' on its stack
  2561. * frame will be invalid.
  2562. */
  2563. finish_task_switch(this_rq(), prev);
  2564. }
  2565. /*
  2566. * nr_running, nr_uninterruptible and nr_context_switches:
  2567. *
  2568. * externally visible scheduler statistics: current number of runnable
  2569. * threads, current number of uninterruptible-sleeping threads, total
  2570. * number of context switches performed since bootup.
  2571. */
  2572. unsigned long nr_running(void)
  2573. {
  2574. unsigned long i, sum = 0;
  2575. for_each_online_cpu(i)
  2576. sum += cpu_rq(i)->nr_running;
  2577. return sum;
  2578. }
  2579. unsigned long nr_uninterruptible(void)
  2580. {
  2581. unsigned long i, sum = 0;
  2582. for_each_possible_cpu(i)
  2583. sum += cpu_rq(i)->nr_uninterruptible;
  2584. /*
  2585. * Since we read the counters lockless, it might be slightly
  2586. * inaccurate. Do not allow it to go below zero though:
  2587. */
  2588. if (unlikely((long)sum < 0))
  2589. sum = 0;
  2590. return sum;
  2591. }
  2592. unsigned long long nr_context_switches(void)
  2593. {
  2594. int i;
  2595. unsigned long long sum = 0;
  2596. for_each_possible_cpu(i)
  2597. sum += cpu_rq(i)->nr_switches;
  2598. return sum;
  2599. }
  2600. unsigned long nr_iowait(void)
  2601. {
  2602. unsigned long i, sum = 0;
  2603. for_each_possible_cpu(i)
  2604. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2605. return sum;
  2606. }
  2607. unsigned long nr_iowait_cpu(int cpu)
  2608. {
  2609. struct rq *this = cpu_rq(cpu);
  2610. return atomic_read(&this->nr_iowait);
  2611. }
  2612. unsigned long this_cpu_load(void)
  2613. {
  2614. struct rq *this = this_rq();
  2615. return this->cpu_load[0];
  2616. }
  2617. /* Variables and functions for calc_load */
  2618. static atomic_long_t calc_load_tasks;
  2619. static unsigned long calc_load_update;
  2620. unsigned long avenrun[3];
  2621. EXPORT_SYMBOL(avenrun);
  2622. static long calc_load_fold_active(struct rq *this_rq)
  2623. {
  2624. long nr_active, delta = 0;
  2625. nr_active = this_rq->nr_running;
  2626. nr_active += (long) this_rq->nr_uninterruptible;
  2627. if (nr_active != this_rq->calc_load_active) {
  2628. delta = nr_active - this_rq->calc_load_active;
  2629. this_rq->calc_load_active = nr_active;
  2630. }
  2631. return delta;
  2632. }
  2633. static unsigned long
  2634. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2635. {
  2636. load *= exp;
  2637. load += active * (FIXED_1 - exp);
  2638. load += 1UL << (FSHIFT - 1);
  2639. return load >> FSHIFT;
  2640. }
  2641. #ifdef CONFIG_NO_HZ
  2642. /*
  2643. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2644. *
  2645. * When making the ILB scale, we should try to pull this in as well.
  2646. */
  2647. static atomic_long_t calc_load_tasks_idle;
  2648. static void calc_load_account_idle(struct rq *this_rq)
  2649. {
  2650. long delta;
  2651. delta = calc_load_fold_active(this_rq);
  2652. if (delta)
  2653. atomic_long_add(delta, &calc_load_tasks_idle);
  2654. }
  2655. static long calc_load_fold_idle(void)
  2656. {
  2657. long delta = 0;
  2658. /*
  2659. * Its got a race, we don't care...
  2660. */
  2661. if (atomic_long_read(&calc_load_tasks_idle))
  2662. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2663. return delta;
  2664. }
  2665. /**
  2666. * fixed_power_int - compute: x^n, in O(log n) time
  2667. *
  2668. * @x: base of the power
  2669. * @frac_bits: fractional bits of @x
  2670. * @n: power to raise @x to.
  2671. *
  2672. * By exploiting the relation between the definition of the natural power
  2673. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2674. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2675. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2676. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2677. * of course trivially computable in O(log_2 n), the length of our binary
  2678. * vector.
  2679. */
  2680. static unsigned long
  2681. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2682. {
  2683. unsigned long result = 1UL << frac_bits;
  2684. if (n) for (;;) {
  2685. if (n & 1) {
  2686. result *= x;
  2687. result += 1UL << (frac_bits - 1);
  2688. result >>= frac_bits;
  2689. }
  2690. n >>= 1;
  2691. if (!n)
  2692. break;
  2693. x *= x;
  2694. x += 1UL << (frac_bits - 1);
  2695. x >>= frac_bits;
  2696. }
  2697. return result;
  2698. }
  2699. /*
  2700. * a1 = a0 * e + a * (1 - e)
  2701. *
  2702. * a2 = a1 * e + a * (1 - e)
  2703. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2704. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2705. *
  2706. * a3 = a2 * e + a * (1 - e)
  2707. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2708. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2709. *
  2710. * ...
  2711. *
  2712. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2713. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2714. * = a0 * e^n + a * (1 - e^n)
  2715. *
  2716. * [1] application of the geometric series:
  2717. *
  2718. * n 1 - x^(n+1)
  2719. * S_n := \Sum x^i = -------------
  2720. * i=0 1 - x
  2721. */
  2722. static unsigned long
  2723. calc_load_n(unsigned long load, unsigned long exp,
  2724. unsigned long active, unsigned int n)
  2725. {
  2726. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2727. }
  2728. /*
  2729. * NO_HZ can leave us missing all per-cpu ticks calling
  2730. * calc_load_account_active(), but since an idle CPU folds its delta into
  2731. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2732. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2733. *
  2734. * Once we've updated the global active value, we need to apply the exponential
  2735. * weights adjusted to the number of cycles missed.
  2736. */
  2737. static void calc_global_nohz(unsigned long ticks)
  2738. {
  2739. long delta, active, n;
  2740. if (time_before(jiffies, calc_load_update))
  2741. return;
  2742. /*
  2743. * If we crossed a calc_load_update boundary, make sure to fold
  2744. * any pending idle changes, the respective CPUs might have
  2745. * missed the tick driven calc_load_account_active() update
  2746. * due to NO_HZ.
  2747. */
  2748. delta = calc_load_fold_idle();
  2749. if (delta)
  2750. atomic_long_add(delta, &calc_load_tasks);
  2751. /*
  2752. * If we were idle for multiple load cycles, apply them.
  2753. */
  2754. if (ticks >= LOAD_FREQ) {
  2755. n = ticks / LOAD_FREQ;
  2756. active = atomic_long_read(&calc_load_tasks);
  2757. active = active > 0 ? active * FIXED_1 : 0;
  2758. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2759. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2760. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2761. calc_load_update += n * LOAD_FREQ;
  2762. }
  2763. /*
  2764. * Its possible the remainder of the above division also crosses
  2765. * a LOAD_FREQ period, the regular check in calc_global_load()
  2766. * which comes after this will take care of that.
  2767. *
  2768. * Consider us being 11 ticks before a cycle completion, and us
  2769. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2770. * age us 4 cycles, and the test in calc_global_load() will
  2771. * pick up the final one.
  2772. */
  2773. }
  2774. #else
  2775. static void calc_load_account_idle(struct rq *this_rq)
  2776. {
  2777. }
  2778. static inline long calc_load_fold_idle(void)
  2779. {
  2780. return 0;
  2781. }
  2782. static void calc_global_nohz(unsigned long ticks)
  2783. {
  2784. }
  2785. #endif
  2786. /**
  2787. * get_avenrun - get the load average array
  2788. * @loads: pointer to dest load array
  2789. * @offset: offset to add
  2790. * @shift: shift count to shift the result left
  2791. *
  2792. * These values are estimates at best, so no need for locking.
  2793. */
  2794. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2795. {
  2796. loads[0] = (avenrun[0] + offset) << shift;
  2797. loads[1] = (avenrun[1] + offset) << shift;
  2798. loads[2] = (avenrun[2] + offset) << shift;
  2799. }
  2800. /*
  2801. * calc_load - update the avenrun load estimates 10 ticks after the
  2802. * CPUs have updated calc_load_tasks.
  2803. */
  2804. void calc_global_load(unsigned long ticks)
  2805. {
  2806. long active;
  2807. calc_global_nohz(ticks);
  2808. if (time_before(jiffies, calc_load_update + 10))
  2809. return;
  2810. active = atomic_long_read(&calc_load_tasks);
  2811. active = active > 0 ? active * FIXED_1 : 0;
  2812. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2813. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2814. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2815. calc_load_update += LOAD_FREQ;
  2816. }
  2817. /*
  2818. * Called from update_cpu_load() to periodically update this CPU's
  2819. * active count.
  2820. */
  2821. static void calc_load_account_active(struct rq *this_rq)
  2822. {
  2823. long delta;
  2824. if (time_before(jiffies, this_rq->calc_load_update))
  2825. return;
  2826. delta = calc_load_fold_active(this_rq);
  2827. delta += calc_load_fold_idle();
  2828. if (delta)
  2829. atomic_long_add(delta, &calc_load_tasks);
  2830. this_rq->calc_load_update += LOAD_FREQ;
  2831. }
  2832. /*
  2833. * The exact cpuload at various idx values, calculated at every tick would be
  2834. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2835. *
  2836. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2837. * on nth tick when cpu may be busy, then we have:
  2838. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2839. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2840. *
  2841. * decay_load_missed() below does efficient calculation of
  2842. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2843. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2844. *
  2845. * The calculation is approximated on a 128 point scale.
  2846. * degrade_zero_ticks is the number of ticks after which load at any
  2847. * particular idx is approximated to be zero.
  2848. * degrade_factor is a precomputed table, a row for each load idx.
  2849. * Each column corresponds to degradation factor for a power of two ticks,
  2850. * based on 128 point scale.
  2851. * Example:
  2852. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2853. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2854. *
  2855. * With this power of 2 load factors, we can degrade the load n times
  2856. * by looking at 1 bits in n and doing as many mult/shift instead of
  2857. * n mult/shifts needed by the exact degradation.
  2858. */
  2859. #define DEGRADE_SHIFT 7
  2860. static const unsigned char
  2861. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2862. static const unsigned char
  2863. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2864. {0, 0, 0, 0, 0, 0, 0, 0},
  2865. {64, 32, 8, 0, 0, 0, 0, 0},
  2866. {96, 72, 40, 12, 1, 0, 0},
  2867. {112, 98, 75, 43, 15, 1, 0},
  2868. {120, 112, 98, 76, 45, 16, 2} };
  2869. /*
  2870. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2871. * would be when CPU is idle and so we just decay the old load without
  2872. * adding any new load.
  2873. */
  2874. static unsigned long
  2875. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2876. {
  2877. int j = 0;
  2878. if (!missed_updates)
  2879. return load;
  2880. if (missed_updates >= degrade_zero_ticks[idx])
  2881. return 0;
  2882. if (idx == 1)
  2883. return load >> missed_updates;
  2884. while (missed_updates) {
  2885. if (missed_updates % 2)
  2886. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2887. missed_updates >>= 1;
  2888. j++;
  2889. }
  2890. return load;
  2891. }
  2892. /*
  2893. * Update rq->cpu_load[] statistics. This function is usually called every
  2894. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2895. * every tick. We fix it up based on jiffies.
  2896. */
  2897. static void update_cpu_load(struct rq *this_rq)
  2898. {
  2899. unsigned long this_load = this_rq->load.weight;
  2900. unsigned long curr_jiffies = jiffies;
  2901. unsigned long pending_updates;
  2902. int i, scale;
  2903. this_rq->nr_load_updates++;
  2904. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2905. if (curr_jiffies == this_rq->last_load_update_tick)
  2906. return;
  2907. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2908. this_rq->last_load_update_tick = curr_jiffies;
  2909. /* Update our load: */
  2910. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2911. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2912. unsigned long old_load, new_load;
  2913. /* scale is effectively 1 << i now, and >> i divides by scale */
  2914. old_load = this_rq->cpu_load[i];
  2915. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2916. new_load = this_load;
  2917. /*
  2918. * Round up the averaging division if load is increasing. This
  2919. * prevents us from getting stuck on 9 if the load is 10, for
  2920. * example.
  2921. */
  2922. if (new_load > old_load)
  2923. new_load += scale - 1;
  2924. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2925. }
  2926. sched_avg_update(this_rq);
  2927. }
  2928. static void update_cpu_load_active(struct rq *this_rq)
  2929. {
  2930. update_cpu_load(this_rq);
  2931. calc_load_account_active(this_rq);
  2932. }
  2933. #ifdef CONFIG_SMP
  2934. /*
  2935. * sched_exec - execve() is a valuable balancing opportunity, because at
  2936. * this point the task has the smallest effective memory and cache footprint.
  2937. */
  2938. void sched_exec(void)
  2939. {
  2940. struct task_struct *p = current;
  2941. unsigned long flags;
  2942. struct rq *rq;
  2943. int dest_cpu;
  2944. rq = task_rq_lock(p, &flags);
  2945. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2946. if (dest_cpu == smp_processor_id())
  2947. goto unlock;
  2948. /*
  2949. * select_task_rq() can race against ->cpus_allowed
  2950. */
  2951. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2952. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2953. struct migration_arg arg = { p, dest_cpu };
  2954. task_rq_unlock(rq, &flags);
  2955. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2956. return;
  2957. }
  2958. unlock:
  2959. task_rq_unlock(rq, &flags);
  2960. }
  2961. #endif
  2962. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2963. EXPORT_PER_CPU_SYMBOL(kstat);
  2964. /*
  2965. * Return any ns on the sched_clock that have not yet been accounted in
  2966. * @p in case that task is currently running.
  2967. *
  2968. * Called with task_rq_lock() held on @rq.
  2969. */
  2970. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2971. {
  2972. u64 ns = 0;
  2973. if (task_current(rq, p)) {
  2974. update_rq_clock(rq);
  2975. ns = rq->clock_task - p->se.exec_start;
  2976. if ((s64)ns < 0)
  2977. ns = 0;
  2978. }
  2979. return ns;
  2980. }
  2981. unsigned long long task_delta_exec(struct task_struct *p)
  2982. {
  2983. unsigned long flags;
  2984. struct rq *rq;
  2985. u64 ns = 0;
  2986. rq = task_rq_lock(p, &flags);
  2987. ns = do_task_delta_exec(p, rq);
  2988. task_rq_unlock(rq, &flags);
  2989. return ns;
  2990. }
  2991. /*
  2992. * Return accounted runtime for the task.
  2993. * In case the task is currently running, return the runtime plus current's
  2994. * pending runtime that have not been accounted yet.
  2995. */
  2996. unsigned long long task_sched_runtime(struct task_struct *p)
  2997. {
  2998. unsigned long flags;
  2999. struct rq *rq;
  3000. u64 ns = 0;
  3001. rq = task_rq_lock(p, &flags);
  3002. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3003. task_rq_unlock(rq, &flags);
  3004. return ns;
  3005. }
  3006. /*
  3007. * Return sum_exec_runtime for the thread group.
  3008. * In case the task is currently running, return the sum plus current's
  3009. * pending runtime that have not been accounted yet.
  3010. *
  3011. * Note that the thread group might have other running tasks as well,
  3012. * so the return value not includes other pending runtime that other
  3013. * running tasks might have.
  3014. */
  3015. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3016. {
  3017. struct task_cputime totals;
  3018. unsigned long flags;
  3019. struct rq *rq;
  3020. u64 ns;
  3021. rq = task_rq_lock(p, &flags);
  3022. thread_group_cputime(p, &totals);
  3023. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3024. task_rq_unlock(rq, &flags);
  3025. return ns;
  3026. }
  3027. /*
  3028. * Account user cpu time to a process.
  3029. * @p: the process that the cpu time gets accounted to
  3030. * @cputime: the cpu time spent in user space since the last update
  3031. * @cputime_scaled: cputime scaled by cpu frequency
  3032. */
  3033. void account_user_time(struct task_struct *p, cputime_t cputime,
  3034. cputime_t cputime_scaled)
  3035. {
  3036. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3037. cputime64_t tmp;
  3038. /* Add user time to process. */
  3039. p->utime = cputime_add(p->utime, cputime);
  3040. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3041. account_group_user_time(p, cputime);
  3042. /* Add user time to cpustat. */
  3043. tmp = cputime_to_cputime64(cputime);
  3044. if (TASK_NICE(p) > 0)
  3045. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3046. else
  3047. cpustat->user = cputime64_add(cpustat->user, tmp);
  3048. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3049. /* Account for user time used */
  3050. acct_update_integrals(p);
  3051. }
  3052. /*
  3053. * Account guest cpu time to a process.
  3054. * @p: the process that the cpu time gets accounted to
  3055. * @cputime: the cpu time spent in virtual machine since the last update
  3056. * @cputime_scaled: cputime scaled by cpu frequency
  3057. */
  3058. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3059. cputime_t cputime_scaled)
  3060. {
  3061. cputime64_t tmp;
  3062. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3063. tmp = cputime_to_cputime64(cputime);
  3064. /* Add guest time to process. */
  3065. p->utime = cputime_add(p->utime, cputime);
  3066. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3067. account_group_user_time(p, cputime);
  3068. p->gtime = cputime_add(p->gtime, cputime);
  3069. /* Add guest time to cpustat. */
  3070. if (TASK_NICE(p) > 0) {
  3071. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3072. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3073. } else {
  3074. cpustat->user = cputime64_add(cpustat->user, tmp);
  3075. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3076. }
  3077. }
  3078. /*
  3079. * Account system cpu time to a process.
  3080. * @p: the process that the cpu time gets accounted to
  3081. * @hardirq_offset: the offset to subtract from hardirq_count()
  3082. * @cputime: the cpu time spent in kernel space since the last update
  3083. * @cputime_scaled: cputime scaled by cpu frequency
  3084. */
  3085. void account_system_time(struct task_struct *p, int hardirq_offset,
  3086. cputime_t cputime, cputime_t cputime_scaled)
  3087. {
  3088. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3089. cputime64_t tmp;
  3090. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3091. account_guest_time(p, cputime, cputime_scaled);
  3092. return;
  3093. }
  3094. /* Add system time to process. */
  3095. p->stime = cputime_add(p->stime, cputime);
  3096. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3097. account_group_system_time(p, cputime);
  3098. /* Add system time to cpustat. */
  3099. tmp = cputime_to_cputime64(cputime);
  3100. if (hardirq_count() - hardirq_offset)
  3101. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3102. else if (in_serving_softirq())
  3103. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3104. else
  3105. cpustat->system = cputime64_add(cpustat->system, tmp);
  3106. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3107. /* Account for system time used */
  3108. acct_update_integrals(p);
  3109. }
  3110. /*
  3111. * Account for involuntary wait time.
  3112. * @steal: the cpu time spent in involuntary wait
  3113. */
  3114. void account_steal_time(cputime_t cputime)
  3115. {
  3116. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3117. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3118. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3119. }
  3120. /*
  3121. * Account for idle time.
  3122. * @cputime: the cpu time spent in idle wait
  3123. */
  3124. void account_idle_time(cputime_t cputime)
  3125. {
  3126. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3127. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3128. struct rq *rq = this_rq();
  3129. if (atomic_read(&rq->nr_iowait) > 0)
  3130. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3131. else
  3132. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3133. }
  3134. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3135. /*
  3136. * Account a single tick of cpu time.
  3137. * @p: the process that the cpu time gets accounted to
  3138. * @user_tick: indicates if the tick is a user or a system tick
  3139. */
  3140. void account_process_tick(struct task_struct *p, int user_tick)
  3141. {
  3142. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3143. struct rq *rq = this_rq();
  3144. if (user_tick)
  3145. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3146. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3147. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3148. one_jiffy_scaled);
  3149. else
  3150. account_idle_time(cputime_one_jiffy);
  3151. }
  3152. /*
  3153. * Account multiple ticks of steal time.
  3154. * @p: the process from which the cpu time has been stolen
  3155. * @ticks: number of stolen ticks
  3156. */
  3157. void account_steal_ticks(unsigned long ticks)
  3158. {
  3159. account_steal_time(jiffies_to_cputime(ticks));
  3160. }
  3161. /*
  3162. * Account multiple ticks of idle time.
  3163. * @ticks: number of stolen ticks
  3164. */
  3165. void account_idle_ticks(unsigned long ticks)
  3166. {
  3167. account_idle_time(jiffies_to_cputime(ticks));
  3168. }
  3169. #endif
  3170. /*
  3171. * Use precise platform statistics if available:
  3172. */
  3173. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3174. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3175. {
  3176. *ut = p->utime;
  3177. *st = p->stime;
  3178. }
  3179. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3180. {
  3181. struct task_cputime cputime;
  3182. thread_group_cputime(p, &cputime);
  3183. *ut = cputime.utime;
  3184. *st = cputime.stime;
  3185. }
  3186. #else
  3187. #ifndef nsecs_to_cputime
  3188. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3189. #endif
  3190. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3191. {
  3192. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3193. /*
  3194. * Use CFS's precise accounting:
  3195. */
  3196. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3197. if (total) {
  3198. u64 temp = rtime;
  3199. temp *= utime;
  3200. do_div(temp, total);
  3201. utime = (cputime_t)temp;
  3202. } else
  3203. utime = rtime;
  3204. /*
  3205. * Compare with previous values, to keep monotonicity:
  3206. */
  3207. p->prev_utime = max(p->prev_utime, utime);
  3208. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3209. *ut = p->prev_utime;
  3210. *st = p->prev_stime;
  3211. }
  3212. /*
  3213. * Must be called with siglock held.
  3214. */
  3215. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3216. {
  3217. struct signal_struct *sig = p->signal;
  3218. struct task_cputime cputime;
  3219. cputime_t rtime, utime, total;
  3220. thread_group_cputime(p, &cputime);
  3221. total = cputime_add(cputime.utime, cputime.stime);
  3222. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3223. if (total) {
  3224. u64 temp = rtime;
  3225. temp *= cputime.utime;
  3226. do_div(temp, total);
  3227. utime = (cputime_t)temp;
  3228. } else
  3229. utime = rtime;
  3230. sig->prev_utime = max(sig->prev_utime, utime);
  3231. sig->prev_stime = max(sig->prev_stime,
  3232. cputime_sub(rtime, sig->prev_utime));
  3233. *ut = sig->prev_utime;
  3234. *st = sig->prev_stime;
  3235. }
  3236. #endif
  3237. /*
  3238. * This function gets called by the timer code, with HZ frequency.
  3239. * We call it with interrupts disabled.
  3240. *
  3241. * It also gets called by the fork code, when changing the parent's
  3242. * timeslices.
  3243. */
  3244. void scheduler_tick(void)
  3245. {
  3246. int cpu = smp_processor_id();
  3247. struct rq *rq = cpu_rq(cpu);
  3248. struct task_struct *curr = rq->curr;
  3249. sched_clock_tick();
  3250. raw_spin_lock(&rq->lock);
  3251. update_rq_clock(rq);
  3252. update_cpu_load_active(rq);
  3253. curr->sched_class->task_tick(rq, curr, 0);
  3254. raw_spin_unlock(&rq->lock);
  3255. perf_event_task_tick();
  3256. #ifdef CONFIG_SMP
  3257. rq->idle_at_tick = idle_cpu(cpu);
  3258. trigger_load_balance(rq, cpu);
  3259. #endif
  3260. }
  3261. notrace unsigned long get_parent_ip(unsigned long addr)
  3262. {
  3263. if (in_lock_functions(addr)) {
  3264. addr = CALLER_ADDR2;
  3265. if (in_lock_functions(addr))
  3266. addr = CALLER_ADDR3;
  3267. }
  3268. return addr;
  3269. }
  3270. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3271. defined(CONFIG_PREEMPT_TRACER))
  3272. void __kprobes add_preempt_count(int val)
  3273. {
  3274. #ifdef CONFIG_DEBUG_PREEMPT
  3275. /*
  3276. * Underflow?
  3277. */
  3278. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3279. return;
  3280. #endif
  3281. preempt_count() += val;
  3282. #ifdef CONFIG_DEBUG_PREEMPT
  3283. /*
  3284. * Spinlock count overflowing soon?
  3285. */
  3286. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3287. PREEMPT_MASK - 10);
  3288. #endif
  3289. if (preempt_count() == val)
  3290. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3291. }
  3292. EXPORT_SYMBOL(add_preempt_count);
  3293. void __kprobes sub_preempt_count(int val)
  3294. {
  3295. #ifdef CONFIG_DEBUG_PREEMPT
  3296. /*
  3297. * Underflow?
  3298. */
  3299. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3300. return;
  3301. /*
  3302. * Is the spinlock portion underflowing?
  3303. */
  3304. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3305. !(preempt_count() & PREEMPT_MASK)))
  3306. return;
  3307. #endif
  3308. if (preempt_count() == val)
  3309. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3310. preempt_count() -= val;
  3311. }
  3312. EXPORT_SYMBOL(sub_preempt_count);
  3313. #endif
  3314. /*
  3315. * Print scheduling while atomic bug:
  3316. */
  3317. static noinline void __schedule_bug(struct task_struct *prev)
  3318. {
  3319. struct pt_regs *regs = get_irq_regs();
  3320. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3321. prev->comm, prev->pid, preempt_count());
  3322. debug_show_held_locks(prev);
  3323. print_modules();
  3324. if (irqs_disabled())
  3325. print_irqtrace_events(prev);
  3326. if (regs)
  3327. show_regs(regs);
  3328. else
  3329. dump_stack();
  3330. }
  3331. /*
  3332. * Various schedule()-time debugging checks and statistics:
  3333. */
  3334. static inline void schedule_debug(struct task_struct *prev)
  3335. {
  3336. /*
  3337. * Test if we are atomic. Since do_exit() needs to call into
  3338. * schedule() atomically, we ignore that path for now.
  3339. * Otherwise, whine if we are scheduling when we should not be.
  3340. */
  3341. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3342. __schedule_bug(prev);
  3343. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3344. schedstat_inc(this_rq(), sched_count);
  3345. #ifdef CONFIG_SCHEDSTATS
  3346. if (unlikely(prev->lock_depth >= 0)) {
  3347. schedstat_inc(this_rq(), bkl_count);
  3348. schedstat_inc(prev, sched_info.bkl_count);
  3349. }
  3350. #endif
  3351. }
  3352. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3353. {
  3354. if (prev->se.on_rq)
  3355. update_rq_clock(rq);
  3356. rq->skip_clock_update = 0;
  3357. prev->sched_class->put_prev_task(rq, prev);
  3358. }
  3359. /*
  3360. * Pick up the highest-prio task:
  3361. */
  3362. static inline struct task_struct *
  3363. pick_next_task(struct rq *rq)
  3364. {
  3365. const struct sched_class *class;
  3366. struct task_struct *p;
  3367. /*
  3368. * Optimization: we know that if all tasks are in
  3369. * the fair class we can call that function directly:
  3370. */
  3371. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3372. p = fair_sched_class.pick_next_task(rq);
  3373. if (likely(p))
  3374. return p;
  3375. }
  3376. for_each_class(class) {
  3377. p = class->pick_next_task(rq);
  3378. if (p)
  3379. return p;
  3380. }
  3381. BUG(); /* the idle class will always have a runnable task */
  3382. }
  3383. /*
  3384. * schedule() is the main scheduler function.
  3385. */
  3386. asmlinkage void __sched schedule(void)
  3387. {
  3388. struct task_struct *prev, *next;
  3389. unsigned long *switch_count;
  3390. struct rq *rq;
  3391. int cpu;
  3392. need_resched:
  3393. preempt_disable();
  3394. cpu = smp_processor_id();
  3395. rq = cpu_rq(cpu);
  3396. rcu_note_context_switch(cpu);
  3397. prev = rq->curr;
  3398. release_kernel_lock(prev);
  3399. need_resched_nonpreemptible:
  3400. schedule_debug(prev);
  3401. if (sched_feat(HRTICK))
  3402. hrtick_clear(rq);
  3403. raw_spin_lock_irq(&rq->lock);
  3404. clear_tsk_need_resched(prev);
  3405. switch_count = &prev->nivcsw;
  3406. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3407. if (unlikely(signal_pending_state(prev->state, prev))) {
  3408. prev->state = TASK_RUNNING;
  3409. } else {
  3410. /*
  3411. * If a worker is going to sleep, notify and
  3412. * ask workqueue whether it wants to wake up a
  3413. * task to maintain concurrency. If so, wake
  3414. * up the task.
  3415. */
  3416. if (prev->flags & PF_WQ_WORKER) {
  3417. struct task_struct *to_wakeup;
  3418. to_wakeup = wq_worker_sleeping(prev, cpu);
  3419. if (to_wakeup)
  3420. try_to_wake_up_local(to_wakeup);
  3421. }
  3422. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3423. }
  3424. switch_count = &prev->nvcsw;
  3425. }
  3426. pre_schedule(rq, prev);
  3427. if (unlikely(!rq->nr_running))
  3428. idle_balance(cpu, rq);
  3429. put_prev_task(rq, prev);
  3430. next = pick_next_task(rq);
  3431. if (likely(prev != next)) {
  3432. sched_info_switch(prev, next);
  3433. perf_event_task_sched_out(prev, next);
  3434. rq->nr_switches++;
  3435. rq->curr = next;
  3436. ++*switch_count;
  3437. context_switch(rq, prev, next); /* unlocks the rq */
  3438. /*
  3439. * The context switch have flipped the stack from under us
  3440. * and restored the local variables which were saved when
  3441. * this task called schedule() in the past. prev == current
  3442. * is still correct, but it can be moved to another cpu/rq.
  3443. */
  3444. cpu = smp_processor_id();
  3445. rq = cpu_rq(cpu);
  3446. } else
  3447. raw_spin_unlock_irq(&rq->lock);
  3448. post_schedule(rq);
  3449. if (unlikely(reacquire_kernel_lock(prev)))
  3450. goto need_resched_nonpreemptible;
  3451. preempt_enable_no_resched();
  3452. if (need_resched())
  3453. goto need_resched;
  3454. }
  3455. EXPORT_SYMBOL(schedule);
  3456. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3457. /*
  3458. * Look out! "owner" is an entirely speculative pointer
  3459. * access and not reliable.
  3460. */
  3461. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3462. {
  3463. unsigned int cpu;
  3464. struct rq *rq;
  3465. if (!sched_feat(OWNER_SPIN))
  3466. return 0;
  3467. #ifdef CONFIG_DEBUG_PAGEALLOC
  3468. /*
  3469. * Need to access the cpu field knowing that
  3470. * DEBUG_PAGEALLOC could have unmapped it if
  3471. * the mutex owner just released it and exited.
  3472. */
  3473. if (probe_kernel_address(&owner->cpu, cpu))
  3474. return 0;
  3475. #else
  3476. cpu = owner->cpu;
  3477. #endif
  3478. /*
  3479. * Even if the access succeeded (likely case),
  3480. * the cpu field may no longer be valid.
  3481. */
  3482. if (cpu >= nr_cpumask_bits)
  3483. return 0;
  3484. /*
  3485. * We need to validate that we can do a
  3486. * get_cpu() and that we have the percpu area.
  3487. */
  3488. if (!cpu_online(cpu))
  3489. return 0;
  3490. rq = cpu_rq(cpu);
  3491. for (;;) {
  3492. /*
  3493. * Owner changed, break to re-assess state.
  3494. */
  3495. if (lock->owner != owner) {
  3496. /*
  3497. * If the lock has switched to a different owner,
  3498. * we likely have heavy contention. Return 0 to quit
  3499. * optimistic spinning and not contend further:
  3500. */
  3501. if (lock->owner)
  3502. return 0;
  3503. break;
  3504. }
  3505. /*
  3506. * Is that owner really running on that cpu?
  3507. */
  3508. if (task_thread_info(rq->curr) != owner || need_resched())
  3509. return 0;
  3510. cpu_relax();
  3511. }
  3512. return 1;
  3513. }
  3514. #endif
  3515. #ifdef CONFIG_PREEMPT
  3516. /*
  3517. * this is the entry point to schedule() from in-kernel preemption
  3518. * off of preempt_enable. Kernel preemptions off return from interrupt
  3519. * occur there and call schedule directly.
  3520. */
  3521. asmlinkage void __sched notrace preempt_schedule(void)
  3522. {
  3523. struct thread_info *ti = current_thread_info();
  3524. /*
  3525. * If there is a non-zero preempt_count or interrupts are disabled,
  3526. * we do not want to preempt the current task. Just return..
  3527. */
  3528. if (likely(ti->preempt_count || irqs_disabled()))
  3529. return;
  3530. do {
  3531. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3532. schedule();
  3533. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3534. /*
  3535. * Check again in case we missed a preemption opportunity
  3536. * between schedule and now.
  3537. */
  3538. barrier();
  3539. } while (need_resched());
  3540. }
  3541. EXPORT_SYMBOL(preempt_schedule);
  3542. /*
  3543. * this is the entry point to schedule() from kernel preemption
  3544. * off of irq context.
  3545. * Note, that this is called and return with irqs disabled. This will
  3546. * protect us against recursive calling from irq.
  3547. */
  3548. asmlinkage void __sched preempt_schedule_irq(void)
  3549. {
  3550. struct thread_info *ti = current_thread_info();
  3551. /* Catch callers which need to be fixed */
  3552. BUG_ON(ti->preempt_count || !irqs_disabled());
  3553. do {
  3554. add_preempt_count(PREEMPT_ACTIVE);
  3555. local_irq_enable();
  3556. schedule();
  3557. local_irq_disable();
  3558. sub_preempt_count(PREEMPT_ACTIVE);
  3559. /*
  3560. * Check again in case we missed a preemption opportunity
  3561. * between schedule and now.
  3562. */
  3563. barrier();
  3564. } while (need_resched());
  3565. }
  3566. #endif /* CONFIG_PREEMPT */
  3567. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3568. void *key)
  3569. {
  3570. return try_to_wake_up(curr->private, mode, wake_flags);
  3571. }
  3572. EXPORT_SYMBOL(default_wake_function);
  3573. /*
  3574. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3575. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3576. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3577. *
  3578. * There are circumstances in which we can try to wake a task which has already
  3579. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3580. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3581. */
  3582. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3583. int nr_exclusive, int wake_flags, void *key)
  3584. {
  3585. wait_queue_t *curr, *next;
  3586. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3587. unsigned flags = curr->flags;
  3588. if (curr->func(curr, mode, wake_flags, key) &&
  3589. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3590. break;
  3591. }
  3592. }
  3593. /**
  3594. * __wake_up - wake up threads blocked on a waitqueue.
  3595. * @q: the waitqueue
  3596. * @mode: which threads
  3597. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3598. * @key: is directly passed to the wakeup function
  3599. *
  3600. * It may be assumed that this function implies a write memory barrier before
  3601. * changing the task state if and only if any tasks are woken up.
  3602. */
  3603. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3604. int nr_exclusive, void *key)
  3605. {
  3606. unsigned long flags;
  3607. spin_lock_irqsave(&q->lock, flags);
  3608. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3609. spin_unlock_irqrestore(&q->lock, flags);
  3610. }
  3611. EXPORT_SYMBOL(__wake_up);
  3612. /*
  3613. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3614. */
  3615. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3616. {
  3617. __wake_up_common(q, mode, 1, 0, NULL);
  3618. }
  3619. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3620. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3621. {
  3622. __wake_up_common(q, mode, 1, 0, key);
  3623. }
  3624. /**
  3625. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3626. * @q: the waitqueue
  3627. * @mode: which threads
  3628. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3629. * @key: opaque value to be passed to wakeup targets
  3630. *
  3631. * The sync wakeup differs that the waker knows that it will schedule
  3632. * away soon, so while the target thread will be woken up, it will not
  3633. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3634. * with each other. This can prevent needless bouncing between CPUs.
  3635. *
  3636. * On UP it can prevent extra preemption.
  3637. *
  3638. * It may be assumed that this function implies a write memory barrier before
  3639. * changing the task state if and only if any tasks are woken up.
  3640. */
  3641. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3642. int nr_exclusive, void *key)
  3643. {
  3644. unsigned long flags;
  3645. int wake_flags = WF_SYNC;
  3646. if (unlikely(!q))
  3647. return;
  3648. if (unlikely(!nr_exclusive))
  3649. wake_flags = 0;
  3650. spin_lock_irqsave(&q->lock, flags);
  3651. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3652. spin_unlock_irqrestore(&q->lock, flags);
  3653. }
  3654. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3655. /*
  3656. * __wake_up_sync - see __wake_up_sync_key()
  3657. */
  3658. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3659. {
  3660. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3661. }
  3662. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3663. /**
  3664. * complete: - signals a single thread waiting on this completion
  3665. * @x: holds the state of this particular completion
  3666. *
  3667. * This will wake up a single thread waiting on this completion. Threads will be
  3668. * awakened in the same order in which they were queued.
  3669. *
  3670. * See also complete_all(), wait_for_completion() and related routines.
  3671. *
  3672. * It may be assumed that this function implies a write memory barrier before
  3673. * changing the task state if and only if any tasks are woken up.
  3674. */
  3675. void complete(struct completion *x)
  3676. {
  3677. unsigned long flags;
  3678. spin_lock_irqsave(&x->wait.lock, flags);
  3679. x->done++;
  3680. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3681. spin_unlock_irqrestore(&x->wait.lock, flags);
  3682. }
  3683. EXPORT_SYMBOL(complete);
  3684. /**
  3685. * complete_all: - signals all threads waiting on this completion
  3686. * @x: holds the state of this particular completion
  3687. *
  3688. * This will wake up all threads waiting on this particular completion event.
  3689. *
  3690. * It may be assumed that this function implies a write memory barrier before
  3691. * changing the task state if and only if any tasks are woken up.
  3692. */
  3693. void complete_all(struct completion *x)
  3694. {
  3695. unsigned long flags;
  3696. spin_lock_irqsave(&x->wait.lock, flags);
  3697. x->done += UINT_MAX/2;
  3698. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3699. spin_unlock_irqrestore(&x->wait.lock, flags);
  3700. }
  3701. EXPORT_SYMBOL(complete_all);
  3702. static inline long __sched
  3703. do_wait_for_common(struct completion *x, long timeout, int state)
  3704. {
  3705. if (!x->done) {
  3706. DECLARE_WAITQUEUE(wait, current);
  3707. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3708. do {
  3709. if (signal_pending_state(state, current)) {
  3710. timeout = -ERESTARTSYS;
  3711. break;
  3712. }
  3713. __set_current_state(state);
  3714. spin_unlock_irq(&x->wait.lock);
  3715. timeout = schedule_timeout(timeout);
  3716. spin_lock_irq(&x->wait.lock);
  3717. } while (!x->done && timeout);
  3718. __remove_wait_queue(&x->wait, &wait);
  3719. if (!x->done)
  3720. return timeout;
  3721. }
  3722. x->done--;
  3723. return timeout ?: 1;
  3724. }
  3725. static long __sched
  3726. wait_for_common(struct completion *x, long timeout, int state)
  3727. {
  3728. might_sleep();
  3729. spin_lock_irq(&x->wait.lock);
  3730. timeout = do_wait_for_common(x, timeout, state);
  3731. spin_unlock_irq(&x->wait.lock);
  3732. return timeout;
  3733. }
  3734. /**
  3735. * wait_for_completion: - waits for completion of a task
  3736. * @x: holds the state of this particular completion
  3737. *
  3738. * This waits to be signaled for completion of a specific task. It is NOT
  3739. * interruptible and there is no timeout.
  3740. *
  3741. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3742. * and interrupt capability. Also see complete().
  3743. */
  3744. void __sched wait_for_completion(struct completion *x)
  3745. {
  3746. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3747. }
  3748. EXPORT_SYMBOL(wait_for_completion);
  3749. /**
  3750. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3751. * @x: holds the state of this particular completion
  3752. * @timeout: timeout value in jiffies
  3753. *
  3754. * This waits for either a completion of a specific task to be signaled or for a
  3755. * specified timeout to expire. The timeout is in jiffies. It is not
  3756. * interruptible.
  3757. */
  3758. unsigned long __sched
  3759. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3760. {
  3761. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3762. }
  3763. EXPORT_SYMBOL(wait_for_completion_timeout);
  3764. /**
  3765. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3766. * @x: holds the state of this particular completion
  3767. *
  3768. * This waits for completion of a specific task to be signaled. It is
  3769. * interruptible.
  3770. */
  3771. int __sched wait_for_completion_interruptible(struct completion *x)
  3772. {
  3773. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3774. if (t == -ERESTARTSYS)
  3775. return t;
  3776. return 0;
  3777. }
  3778. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3779. /**
  3780. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3781. * @x: holds the state of this particular completion
  3782. * @timeout: timeout value in jiffies
  3783. *
  3784. * This waits for either a completion of a specific task to be signaled or for a
  3785. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3786. */
  3787. unsigned long __sched
  3788. wait_for_completion_interruptible_timeout(struct completion *x,
  3789. unsigned long timeout)
  3790. {
  3791. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3792. }
  3793. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3794. /**
  3795. * wait_for_completion_killable: - waits for completion of a task (killable)
  3796. * @x: holds the state of this particular completion
  3797. *
  3798. * This waits to be signaled for completion of a specific task. It can be
  3799. * interrupted by a kill signal.
  3800. */
  3801. int __sched wait_for_completion_killable(struct completion *x)
  3802. {
  3803. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3804. if (t == -ERESTARTSYS)
  3805. return t;
  3806. return 0;
  3807. }
  3808. EXPORT_SYMBOL(wait_for_completion_killable);
  3809. /**
  3810. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3811. * @x: holds the state of this particular completion
  3812. * @timeout: timeout value in jiffies
  3813. *
  3814. * This waits for either a completion of a specific task to be
  3815. * signaled or for a specified timeout to expire. It can be
  3816. * interrupted by a kill signal. The timeout is in jiffies.
  3817. */
  3818. unsigned long __sched
  3819. wait_for_completion_killable_timeout(struct completion *x,
  3820. unsigned long timeout)
  3821. {
  3822. return wait_for_common(x, timeout, TASK_KILLABLE);
  3823. }
  3824. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3825. /**
  3826. * try_wait_for_completion - try to decrement a completion without blocking
  3827. * @x: completion structure
  3828. *
  3829. * Returns: 0 if a decrement cannot be done without blocking
  3830. * 1 if a decrement succeeded.
  3831. *
  3832. * If a completion is being used as a counting completion,
  3833. * attempt to decrement the counter without blocking. This
  3834. * enables us to avoid waiting if the resource the completion
  3835. * is protecting is not available.
  3836. */
  3837. bool try_wait_for_completion(struct completion *x)
  3838. {
  3839. unsigned long flags;
  3840. int ret = 1;
  3841. spin_lock_irqsave(&x->wait.lock, flags);
  3842. if (!x->done)
  3843. ret = 0;
  3844. else
  3845. x->done--;
  3846. spin_unlock_irqrestore(&x->wait.lock, flags);
  3847. return ret;
  3848. }
  3849. EXPORT_SYMBOL(try_wait_for_completion);
  3850. /**
  3851. * completion_done - Test to see if a completion has any waiters
  3852. * @x: completion structure
  3853. *
  3854. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3855. * 1 if there are no waiters.
  3856. *
  3857. */
  3858. bool completion_done(struct completion *x)
  3859. {
  3860. unsigned long flags;
  3861. int ret = 1;
  3862. spin_lock_irqsave(&x->wait.lock, flags);
  3863. if (!x->done)
  3864. ret = 0;
  3865. spin_unlock_irqrestore(&x->wait.lock, flags);
  3866. return ret;
  3867. }
  3868. EXPORT_SYMBOL(completion_done);
  3869. static long __sched
  3870. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3871. {
  3872. unsigned long flags;
  3873. wait_queue_t wait;
  3874. init_waitqueue_entry(&wait, current);
  3875. __set_current_state(state);
  3876. spin_lock_irqsave(&q->lock, flags);
  3877. __add_wait_queue(q, &wait);
  3878. spin_unlock(&q->lock);
  3879. timeout = schedule_timeout(timeout);
  3880. spin_lock_irq(&q->lock);
  3881. __remove_wait_queue(q, &wait);
  3882. spin_unlock_irqrestore(&q->lock, flags);
  3883. return timeout;
  3884. }
  3885. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3886. {
  3887. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3888. }
  3889. EXPORT_SYMBOL(interruptible_sleep_on);
  3890. long __sched
  3891. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3892. {
  3893. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3894. }
  3895. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3896. void __sched sleep_on(wait_queue_head_t *q)
  3897. {
  3898. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3899. }
  3900. EXPORT_SYMBOL(sleep_on);
  3901. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3902. {
  3903. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3904. }
  3905. EXPORT_SYMBOL(sleep_on_timeout);
  3906. #ifdef CONFIG_RT_MUTEXES
  3907. /*
  3908. * rt_mutex_setprio - set the current priority of a task
  3909. * @p: task
  3910. * @prio: prio value (kernel-internal form)
  3911. *
  3912. * This function changes the 'effective' priority of a task. It does
  3913. * not touch ->normal_prio like __setscheduler().
  3914. *
  3915. * Used by the rt_mutex code to implement priority inheritance logic.
  3916. */
  3917. void rt_mutex_setprio(struct task_struct *p, int prio)
  3918. {
  3919. unsigned long flags;
  3920. int oldprio, on_rq, running;
  3921. struct rq *rq;
  3922. const struct sched_class *prev_class;
  3923. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3924. rq = task_rq_lock(p, &flags);
  3925. trace_sched_pi_setprio(p, prio);
  3926. oldprio = p->prio;
  3927. prev_class = p->sched_class;
  3928. on_rq = p->se.on_rq;
  3929. running = task_current(rq, p);
  3930. if (on_rq)
  3931. dequeue_task(rq, p, 0);
  3932. if (running)
  3933. p->sched_class->put_prev_task(rq, p);
  3934. if (rt_prio(prio))
  3935. p->sched_class = &rt_sched_class;
  3936. else
  3937. p->sched_class = &fair_sched_class;
  3938. p->prio = prio;
  3939. if (running)
  3940. p->sched_class->set_curr_task(rq);
  3941. if (on_rq) {
  3942. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3943. check_class_changed(rq, p, prev_class, oldprio, running);
  3944. }
  3945. task_rq_unlock(rq, &flags);
  3946. }
  3947. #endif
  3948. void set_user_nice(struct task_struct *p, long nice)
  3949. {
  3950. int old_prio, delta, on_rq;
  3951. unsigned long flags;
  3952. struct rq *rq;
  3953. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3954. return;
  3955. /*
  3956. * We have to be careful, if called from sys_setpriority(),
  3957. * the task might be in the middle of scheduling on another CPU.
  3958. */
  3959. rq = task_rq_lock(p, &flags);
  3960. /*
  3961. * The RT priorities are set via sched_setscheduler(), but we still
  3962. * allow the 'normal' nice value to be set - but as expected
  3963. * it wont have any effect on scheduling until the task is
  3964. * SCHED_FIFO/SCHED_RR:
  3965. */
  3966. if (task_has_rt_policy(p)) {
  3967. p->static_prio = NICE_TO_PRIO(nice);
  3968. goto out_unlock;
  3969. }
  3970. on_rq = p->se.on_rq;
  3971. if (on_rq)
  3972. dequeue_task(rq, p, 0);
  3973. p->static_prio = NICE_TO_PRIO(nice);
  3974. set_load_weight(p);
  3975. old_prio = p->prio;
  3976. p->prio = effective_prio(p);
  3977. delta = p->prio - old_prio;
  3978. if (on_rq) {
  3979. enqueue_task(rq, p, 0);
  3980. /*
  3981. * If the task increased its priority or is running and
  3982. * lowered its priority, then reschedule its CPU:
  3983. */
  3984. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3985. resched_task(rq->curr);
  3986. }
  3987. out_unlock:
  3988. task_rq_unlock(rq, &flags);
  3989. }
  3990. EXPORT_SYMBOL(set_user_nice);
  3991. /*
  3992. * can_nice - check if a task can reduce its nice value
  3993. * @p: task
  3994. * @nice: nice value
  3995. */
  3996. int can_nice(const struct task_struct *p, const int nice)
  3997. {
  3998. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3999. int nice_rlim = 20 - nice;
  4000. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4001. capable(CAP_SYS_NICE));
  4002. }
  4003. #ifdef __ARCH_WANT_SYS_NICE
  4004. /*
  4005. * sys_nice - change the priority of the current process.
  4006. * @increment: priority increment
  4007. *
  4008. * sys_setpriority is a more generic, but much slower function that
  4009. * does similar things.
  4010. */
  4011. SYSCALL_DEFINE1(nice, int, increment)
  4012. {
  4013. long nice, retval;
  4014. /*
  4015. * Setpriority might change our priority at the same moment.
  4016. * We don't have to worry. Conceptually one call occurs first
  4017. * and we have a single winner.
  4018. */
  4019. if (increment < -40)
  4020. increment = -40;
  4021. if (increment > 40)
  4022. increment = 40;
  4023. nice = TASK_NICE(current) + increment;
  4024. if (nice < -20)
  4025. nice = -20;
  4026. if (nice > 19)
  4027. nice = 19;
  4028. if (increment < 0 && !can_nice(current, nice))
  4029. return -EPERM;
  4030. retval = security_task_setnice(current, nice);
  4031. if (retval)
  4032. return retval;
  4033. set_user_nice(current, nice);
  4034. return 0;
  4035. }
  4036. #endif
  4037. /**
  4038. * task_prio - return the priority value of a given task.
  4039. * @p: the task in question.
  4040. *
  4041. * This is the priority value as seen by users in /proc.
  4042. * RT tasks are offset by -200. Normal tasks are centered
  4043. * around 0, value goes from -16 to +15.
  4044. */
  4045. int task_prio(const struct task_struct *p)
  4046. {
  4047. return p->prio - MAX_RT_PRIO;
  4048. }
  4049. /**
  4050. * task_nice - return the nice value of a given task.
  4051. * @p: the task in question.
  4052. */
  4053. int task_nice(const struct task_struct *p)
  4054. {
  4055. return TASK_NICE(p);
  4056. }
  4057. EXPORT_SYMBOL(task_nice);
  4058. /**
  4059. * idle_cpu - is a given cpu idle currently?
  4060. * @cpu: the processor in question.
  4061. */
  4062. int idle_cpu(int cpu)
  4063. {
  4064. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4065. }
  4066. /**
  4067. * idle_task - return the idle task for a given cpu.
  4068. * @cpu: the processor in question.
  4069. */
  4070. struct task_struct *idle_task(int cpu)
  4071. {
  4072. return cpu_rq(cpu)->idle;
  4073. }
  4074. /**
  4075. * find_process_by_pid - find a process with a matching PID value.
  4076. * @pid: the pid in question.
  4077. */
  4078. static struct task_struct *find_process_by_pid(pid_t pid)
  4079. {
  4080. return pid ? find_task_by_vpid(pid) : current;
  4081. }
  4082. /* Actually do priority change: must hold rq lock. */
  4083. static void
  4084. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4085. {
  4086. BUG_ON(p->se.on_rq);
  4087. p->policy = policy;
  4088. p->rt_priority = prio;
  4089. p->normal_prio = normal_prio(p);
  4090. /* we are holding p->pi_lock already */
  4091. p->prio = rt_mutex_getprio(p);
  4092. if (rt_prio(p->prio))
  4093. p->sched_class = &rt_sched_class;
  4094. else
  4095. p->sched_class = &fair_sched_class;
  4096. set_load_weight(p);
  4097. }
  4098. /*
  4099. * check the target process has a UID that matches the current process's
  4100. */
  4101. static bool check_same_owner(struct task_struct *p)
  4102. {
  4103. const struct cred *cred = current_cred(), *pcred;
  4104. bool match;
  4105. rcu_read_lock();
  4106. pcred = __task_cred(p);
  4107. match = (cred->euid == pcred->euid ||
  4108. cred->euid == pcred->uid);
  4109. rcu_read_unlock();
  4110. return match;
  4111. }
  4112. static int __sched_setscheduler(struct task_struct *p, int policy,
  4113. struct sched_param *param, bool user)
  4114. {
  4115. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4116. unsigned long flags;
  4117. const struct sched_class *prev_class;
  4118. struct rq *rq;
  4119. int reset_on_fork;
  4120. /* may grab non-irq protected spin_locks */
  4121. BUG_ON(in_interrupt());
  4122. recheck:
  4123. /* double check policy once rq lock held */
  4124. if (policy < 0) {
  4125. reset_on_fork = p->sched_reset_on_fork;
  4126. policy = oldpolicy = p->policy;
  4127. } else {
  4128. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4129. policy &= ~SCHED_RESET_ON_FORK;
  4130. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4131. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4132. policy != SCHED_IDLE)
  4133. return -EINVAL;
  4134. }
  4135. /*
  4136. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4137. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4138. * SCHED_BATCH and SCHED_IDLE is 0.
  4139. */
  4140. if (param->sched_priority < 0 ||
  4141. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4142. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4143. return -EINVAL;
  4144. if (rt_policy(policy) != (param->sched_priority != 0))
  4145. return -EINVAL;
  4146. /*
  4147. * Allow unprivileged RT tasks to decrease priority:
  4148. */
  4149. if (user && !capable(CAP_SYS_NICE)) {
  4150. if (rt_policy(policy)) {
  4151. unsigned long rlim_rtprio =
  4152. task_rlimit(p, RLIMIT_RTPRIO);
  4153. /* can't set/change the rt policy */
  4154. if (policy != p->policy && !rlim_rtprio)
  4155. return -EPERM;
  4156. /* can't increase priority */
  4157. if (param->sched_priority > p->rt_priority &&
  4158. param->sched_priority > rlim_rtprio)
  4159. return -EPERM;
  4160. }
  4161. /*
  4162. * Like positive nice levels, dont allow tasks to
  4163. * move out of SCHED_IDLE either:
  4164. */
  4165. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4166. return -EPERM;
  4167. /* can't change other user's priorities */
  4168. if (!check_same_owner(p))
  4169. return -EPERM;
  4170. /* Normal users shall not reset the sched_reset_on_fork flag */
  4171. if (p->sched_reset_on_fork && !reset_on_fork)
  4172. return -EPERM;
  4173. }
  4174. if (user) {
  4175. retval = security_task_setscheduler(p);
  4176. if (retval)
  4177. return retval;
  4178. }
  4179. /*
  4180. * make sure no PI-waiters arrive (or leave) while we are
  4181. * changing the priority of the task:
  4182. */
  4183. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4184. /*
  4185. * To be able to change p->policy safely, the apropriate
  4186. * runqueue lock must be held.
  4187. */
  4188. rq = __task_rq_lock(p);
  4189. /*
  4190. * Changing the policy of the stop threads its a very bad idea
  4191. */
  4192. if (p == rq->stop) {
  4193. __task_rq_unlock(rq);
  4194. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4195. return -EINVAL;
  4196. }
  4197. #ifdef CONFIG_RT_GROUP_SCHED
  4198. if (user) {
  4199. /*
  4200. * Do not allow realtime tasks into groups that have no runtime
  4201. * assigned.
  4202. */
  4203. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4204. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  4205. __task_rq_unlock(rq);
  4206. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4207. return -EPERM;
  4208. }
  4209. }
  4210. #endif
  4211. /* recheck policy now with rq lock held */
  4212. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4213. policy = oldpolicy = -1;
  4214. __task_rq_unlock(rq);
  4215. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4216. goto recheck;
  4217. }
  4218. on_rq = p->se.on_rq;
  4219. running = task_current(rq, p);
  4220. if (on_rq)
  4221. deactivate_task(rq, p, 0);
  4222. if (running)
  4223. p->sched_class->put_prev_task(rq, p);
  4224. p->sched_reset_on_fork = reset_on_fork;
  4225. oldprio = p->prio;
  4226. prev_class = p->sched_class;
  4227. __setscheduler(rq, p, policy, param->sched_priority);
  4228. if (running)
  4229. p->sched_class->set_curr_task(rq);
  4230. if (on_rq) {
  4231. activate_task(rq, p, 0);
  4232. check_class_changed(rq, p, prev_class, oldprio, running);
  4233. }
  4234. __task_rq_unlock(rq);
  4235. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4236. rt_mutex_adjust_pi(p);
  4237. return 0;
  4238. }
  4239. /**
  4240. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4241. * @p: the task in question.
  4242. * @policy: new policy.
  4243. * @param: structure containing the new RT priority.
  4244. *
  4245. * NOTE that the task may be already dead.
  4246. */
  4247. int sched_setscheduler(struct task_struct *p, int policy,
  4248. struct sched_param *param)
  4249. {
  4250. return __sched_setscheduler(p, policy, param, true);
  4251. }
  4252. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4253. /**
  4254. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4255. * @p: the task in question.
  4256. * @policy: new policy.
  4257. * @param: structure containing the new RT priority.
  4258. *
  4259. * Just like sched_setscheduler, only don't bother checking if the
  4260. * current context has permission. For example, this is needed in
  4261. * stop_machine(): we create temporary high priority worker threads,
  4262. * but our caller might not have that capability.
  4263. */
  4264. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4265. struct sched_param *param)
  4266. {
  4267. return __sched_setscheduler(p, policy, param, false);
  4268. }
  4269. static int
  4270. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4271. {
  4272. struct sched_param lparam;
  4273. struct task_struct *p;
  4274. int retval;
  4275. if (!param || pid < 0)
  4276. return -EINVAL;
  4277. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4278. return -EFAULT;
  4279. rcu_read_lock();
  4280. retval = -ESRCH;
  4281. p = find_process_by_pid(pid);
  4282. if (p != NULL)
  4283. retval = sched_setscheduler(p, policy, &lparam);
  4284. rcu_read_unlock();
  4285. return retval;
  4286. }
  4287. /**
  4288. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4289. * @pid: the pid in question.
  4290. * @policy: new policy.
  4291. * @param: structure containing the new RT priority.
  4292. */
  4293. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4294. struct sched_param __user *, param)
  4295. {
  4296. /* negative values for policy are not valid */
  4297. if (policy < 0)
  4298. return -EINVAL;
  4299. return do_sched_setscheduler(pid, policy, param);
  4300. }
  4301. /**
  4302. * sys_sched_setparam - set/change the RT priority of a thread
  4303. * @pid: the pid in question.
  4304. * @param: structure containing the new RT priority.
  4305. */
  4306. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4307. {
  4308. return do_sched_setscheduler(pid, -1, param);
  4309. }
  4310. /**
  4311. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4312. * @pid: the pid in question.
  4313. */
  4314. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4315. {
  4316. struct task_struct *p;
  4317. int retval;
  4318. if (pid < 0)
  4319. return -EINVAL;
  4320. retval = -ESRCH;
  4321. rcu_read_lock();
  4322. p = find_process_by_pid(pid);
  4323. if (p) {
  4324. retval = security_task_getscheduler(p);
  4325. if (!retval)
  4326. retval = p->policy
  4327. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4328. }
  4329. rcu_read_unlock();
  4330. return retval;
  4331. }
  4332. /**
  4333. * sys_sched_getparam - get the RT priority of a thread
  4334. * @pid: the pid in question.
  4335. * @param: structure containing the RT priority.
  4336. */
  4337. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4338. {
  4339. struct sched_param lp;
  4340. struct task_struct *p;
  4341. int retval;
  4342. if (!param || pid < 0)
  4343. return -EINVAL;
  4344. rcu_read_lock();
  4345. p = find_process_by_pid(pid);
  4346. retval = -ESRCH;
  4347. if (!p)
  4348. goto out_unlock;
  4349. retval = security_task_getscheduler(p);
  4350. if (retval)
  4351. goto out_unlock;
  4352. lp.sched_priority = p->rt_priority;
  4353. rcu_read_unlock();
  4354. /*
  4355. * This one might sleep, we cannot do it with a spinlock held ...
  4356. */
  4357. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4358. return retval;
  4359. out_unlock:
  4360. rcu_read_unlock();
  4361. return retval;
  4362. }
  4363. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4364. {
  4365. cpumask_var_t cpus_allowed, new_mask;
  4366. struct task_struct *p;
  4367. int retval;
  4368. get_online_cpus();
  4369. rcu_read_lock();
  4370. p = find_process_by_pid(pid);
  4371. if (!p) {
  4372. rcu_read_unlock();
  4373. put_online_cpus();
  4374. return -ESRCH;
  4375. }
  4376. /* Prevent p going away */
  4377. get_task_struct(p);
  4378. rcu_read_unlock();
  4379. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4380. retval = -ENOMEM;
  4381. goto out_put_task;
  4382. }
  4383. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4384. retval = -ENOMEM;
  4385. goto out_free_cpus_allowed;
  4386. }
  4387. retval = -EPERM;
  4388. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4389. goto out_unlock;
  4390. retval = security_task_setscheduler(p);
  4391. if (retval)
  4392. goto out_unlock;
  4393. cpuset_cpus_allowed(p, cpus_allowed);
  4394. cpumask_and(new_mask, in_mask, cpus_allowed);
  4395. again:
  4396. retval = set_cpus_allowed_ptr(p, new_mask);
  4397. if (!retval) {
  4398. cpuset_cpus_allowed(p, cpus_allowed);
  4399. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4400. /*
  4401. * We must have raced with a concurrent cpuset
  4402. * update. Just reset the cpus_allowed to the
  4403. * cpuset's cpus_allowed
  4404. */
  4405. cpumask_copy(new_mask, cpus_allowed);
  4406. goto again;
  4407. }
  4408. }
  4409. out_unlock:
  4410. free_cpumask_var(new_mask);
  4411. out_free_cpus_allowed:
  4412. free_cpumask_var(cpus_allowed);
  4413. out_put_task:
  4414. put_task_struct(p);
  4415. put_online_cpus();
  4416. return retval;
  4417. }
  4418. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4419. struct cpumask *new_mask)
  4420. {
  4421. if (len < cpumask_size())
  4422. cpumask_clear(new_mask);
  4423. else if (len > cpumask_size())
  4424. len = cpumask_size();
  4425. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4426. }
  4427. /**
  4428. * sys_sched_setaffinity - set the cpu affinity of a process
  4429. * @pid: pid of the process
  4430. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4431. * @user_mask_ptr: user-space pointer to the new cpu mask
  4432. */
  4433. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4434. unsigned long __user *, user_mask_ptr)
  4435. {
  4436. cpumask_var_t new_mask;
  4437. int retval;
  4438. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4439. return -ENOMEM;
  4440. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4441. if (retval == 0)
  4442. retval = sched_setaffinity(pid, new_mask);
  4443. free_cpumask_var(new_mask);
  4444. return retval;
  4445. }
  4446. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4447. {
  4448. struct task_struct *p;
  4449. unsigned long flags;
  4450. struct rq *rq;
  4451. int retval;
  4452. get_online_cpus();
  4453. rcu_read_lock();
  4454. retval = -ESRCH;
  4455. p = find_process_by_pid(pid);
  4456. if (!p)
  4457. goto out_unlock;
  4458. retval = security_task_getscheduler(p);
  4459. if (retval)
  4460. goto out_unlock;
  4461. rq = task_rq_lock(p, &flags);
  4462. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4463. task_rq_unlock(rq, &flags);
  4464. out_unlock:
  4465. rcu_read_unlock();
  4466. put_online_cpus();
  4467. return retval;
  4468. }
  4469. /**
  4470. * sys_sched_getaffinity - get the cpu affinity of a process
  4471. * @pid: pid of the process
  4472. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4473. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4474. */
  4475. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4476. unsigned long __user *, user_mask_ptr)
  4477. {
  4478. int ret;
  4479. cpumask_var_t mask;
  4480. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4481. return -EINVAL;
  4482. if (len & (sizeof(unsigned long)-1))
  4483. return -EINVAL;
  4484. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4485. return -ENOMEM;
  4486. ret = sched_getaffinity(pid, mask);
  4487. if (ret == 0) {
  4488. size_t retlen = min_t(size_t, len, cpumask_size());
  4489. if (copy_to_user(user_mask_ptr, mask, retlen))
  4490. ret = -EFAULT;
  4491. else
  4492. ret = retlen;
  4493. }
  4494. free_cpumask_var(mask);
  4495. return ret;
  4496. }
  4497. /**
  4498. * sys_sched_yield - yield the current processor to other threads.
  4499. *
  4500. * This function yields the current CPU to other tasks. If there are no
  4501. * other threads running on this CPU then this function will return.
  4502. */
  4503. SYSCALL_DEFINE0(sched_yield)
  4504. {
  4505. struct rq *rq = this_rq_lock();
  4506. schedstat_inc(rq, yld_count);
  4507. current->sched_class->yield_task(rq);
  4508. /*
  4509. * Since we are going to call schedule() anyway, there's
  4510. * no need to preempt or enable interrupts:
  4511. */
  4512. __release(rq->lock);
  4513. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4514. do_raw_spin_unlock(&rq->lock);
  4515. preempt_enable_no_resched();
  4516. schedule();
  4517. return 0;
  4518. }
  4519. static inline int should_resched(void)
  4520. {
  4521. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4522. }
  4523. static void __cond_resched(void)
  4524. {
  4525. add_preempt_count(PREEMPT_ACTIVE);
  4526. schedule();
  4527. sub_preempt_count(PREEMPT_ACTIVE);
  4528. }
  4529. int __sched _cond_resched(void)
  4530. {
  4531. if (should_resched()) {
  4532. __cond_resched();
  4533. return 1;
  4534. }
  4535. return 0;
  4536. }
  4537. EXPORT_SYMBOL(_cond_resched);
  4538. /*
  4539. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4540. * call schedule, and on return reacquire the lock.
  4541. *
  4542. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4543. * operations here to prevent schedule() from being called twice (once via
  4544. * spin_unlock(), once by hand).
  4545. */
  4546. int __cond_resched_lock(spinlock_t *lock)
  4547. {
  4548. int resched = should_resched();
  4549. int ret = 0;
  4550. lockdep_assert_held(lock);
  4551. if (spin_needbreak(lock) || resched) {
  4552. spin_unlock(lock);
  4553. if (resched)
  4554. __cond_resched();
  4555. else
  4556. cpu_relax();
  4557. ret = 1;
  4558. spin_lock(lock);
  4559. }
  4560. return ret;
  4561. }
  4562. EXPORT_SYMBOL(__cond_resched_lock);
  4563. int __sched __cond_resched_softirq(void)
  4564. {
  4565. BUG_ON(!in_softirq());
  4566. if (should_resched()) {
  4567. local_bh_enable();
  4568. __cond_resched();
  4569. local_bh_disable();
  4570. return 1;
  4571. }
  4572. return 0;
  4573. }
  4574. EXPORT_SYMBOL(__cond_resched_softirq);
  4575. /**
  4576. * yield - yield the current processor to other threads.
  4577. *
  4578. * This is a shortcut for kernel-space yielding - it marks the
  4579. * thread runnable and calls sys_sched_yield().
  4580. */
  4581. void __sched yield(void)
  4582. {
  4583. set_current_state(TASK_RUNNING);
  4584. sys_sched_yield();
  4585. }
  4586. EXPORT_SYMBOL(yield);
  4587. /*
  4588. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4589. * that process accounting knows that this is a task in IO wait state.
  4590. */
  4591. void __sched io_schedule(void)
  4592. {
  4593. struct rq *rq = raw_rq();
  4594. delayacct_blkio_start();
  4595. atomic_inc(&rq->nr_iowait);
  4596. current->in_iowait = 1;
  4597. schedule();
  4598. current->in_iowait = 0;
  4599. atomic_dec(&rq->nr_iowait);
  4600. delayacct_blkio_end();
  4601. }
  4602. EXPORT_SYMBOL(io_schedule);
  4603. long __sched io_schedule_timeout(long timeout)
  4604. {
  4605. struct rq *rq = raw_rq();
  4606. long ret;
  4607. delayacct_blkio_start();
  4608. atomic_inc(&rq->nr_iowait);
  4609. current->in_iowait = 1;
  4610. ret = schedule_timeout(timeout);
  4611. current->in_iowait = 0;
  4612. atomic_dec(&rq->nr_iowait);
  4613. delayacct_blkio_end();
  4614. return ret;
  4615. }
  4616. /**
  4617. * sys_sched_get_priority_max - return maximum RT priority.
  4618. * @policy: scheduling class.
  4619. *
  4620. * this syscall returns the maximum rt_priority that can be used
  4621. * by a given scheduling class.
  4622. */
  4623. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4624. {
  4625. int ret = -EINVAL;
  4626. switch (policy) {
  4627. case SCHED_FIFO:
  4628. case SCHED_RR:
  4629. ret = MAX_USER_RT_PRIO-1;
  4630. break;
  4631. case SCHED_NORMAL:
  4632. case SCHED_BATCH:
  4633. case SCHED_IDLE:
  4634. ret = 0;
  4635. break;
  4636. }
  4637. return ret;
  4638. }
  4639. /**
  4640. * sys_sched_get_priority_min - return minimum RT priority.
  4641. * @policy: scheduling class.
  4642. *
  4643. * this syscall returns the minimum rt_priority that can be used
  4644. * by a given scheduling class.
  4645. */
  4646. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4647. {
  4648. int ret = -EINVAL;
  4649. switch (policy) {
  4650. case SCHED_FIFO:
  4651. case SCHED_RR:
  4652. ret = 1;
  4653. break;
  4654. case SCHED_NORMAL:
  4655. case SCHED_BATCH:
  4656. case SCHED_IDLE:
  4657. ret = 0;
  4658. }
  4659. return ret;
  4660. }
  4661. /**
  4662. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4663. * @pid: pid of the process.
  4664. * @interval: userspace pointer to the timeslice value.
  4665. *
  4666. * this syscall writes the default timeslice value of a given process
  4667. * into the user-space timespec buffer. A value of '0' means infinity.
  4668. */
  4669. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4670. struct timespec __user *, interval)
  4671. {
  4672. struct task_struct *p;
  4673. unsigned int time_slice;
  4674. unsigned long flags;
  4675. struct rq *rq;
  4676. int retval;
  4677. struct timespec t;
  4678. if (pid < 0)
  4679. return -EINVAL;
  4680. retval = -ESRCH;
  4681. rcu_read_lock();
  4682. p = find_process_by_pid(pid);
  4683. if (!p)
  4684. goto out_unlock;
  4685. retval = security_task_getscheduler(p);
  4686. if (retval)
  4687. goto out_unlock;
  4688. rq = task_rq_lock(p, &flags);
  4689. time_slice = p->sched_class->get_rr_interval(rq, p);
  4690. task_rq_unlock(rq, &flags);
  4691. rcu_read_unlock();
  4692. jiffies_to_timespec(time_slice, &t);
  4693. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4694. return retval;
  4695. out_unlock:
  4696. rcu_read_unlock();
  4697. return retval;
  4698. }
  4699. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4700. void sched_show_task(struct task_struct *p)
  4701. {
  4702. unsigned long free = 0;
  4703. unsigned state;
  4704. state = p->state ? __ffs(p->state) + 1 : 0;
  4705. printk(KERN_INFO "%-13.13s %c", p->comm,
  4706. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4707. #if BITS_PER_LONG == 32
  4708. if (state == TASK_RUNNING)
  4709. printk(KERN_CONT " running ");
  4710. else
  4711. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4712. #else
  4713. if (state == TASK_RUNNING)
  4714. printk(KERN_CONT " running task ");
  4715. else
  4716. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4717. #endif
  4718. #ifdef CONFIG_DEBUG_STACK_USAGE
  4719. free = stack_not_used(p);
  4720. #endif
  4721. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4722. task_pid_nr(p), task_pid_nr(p->real_parent),
  4723. (unsigned long)task_thread_info(p)->flags);
  4724. show_stack(p, NULL);
  4725. }
  4726. void show_state_filter(unsigned long state_filter)
  4727. {
  4728. struct task_struct *g, *p;
  4729. #if BITS_PER_LONG == 32
  4730. printk(KERN_INFO
  4731. " task PC stack pid father\n");
  4732. #else
  4733. printk(KERN_INFO
  4734. " task PC stack pid father\n");
  4735. #endif
  4736. read_lock(&tasklist_lock);
  4737. do_each_thread(g, p) {
  4738. /*
  4739. * reset the NMI-timeout, listing all files on a slow
  4740. * console might take alot of time:
  4741. */
  4742. touch_nmi_watchdog();
  4743. if (!state_filter || (p->state & state_filter))
  4744. sched_show_task(p);
  4745. } while_each_thread(g, p);
  4746. touch_all_softlockup_watchdogs();
  4747. #ifdef CONFIG_SCHED_DEBUG
  4748. sysrq_sched_debug_show();
  4749. #endif
  4750. read_unlock(&tasklist_lock);
  4751. /*
  4752. * Only show locks if all tasks are dumped:
  4753. */
  4754. if (!state_filter)
  4755. debug_show_all_locks();
  4756. }
  4757. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4758. {
  4759. idle->sched_class = &idle_sched_class;
  4760. }
  4761. /**
  4762. * init_idle - set up an idle thread for a given CPU
  4763. * @idle: task in question
  4764. * @cpu: cpu the idle task belongs to
  4765. *
  4766. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4767. * flag, to make booting more robust.
  4768. */
  4769. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4770. {
  4771. struct rq *rq = cpu_rq(cpu);
  4772. unsigned long flags;
  4773. raw_spin_lock_irqsave(&rq->lock, flags);
  4774. __sched_fork(idle);
  4775. idle->state = TASK_RUNNING;
  4776. idle->se.exec_start = sched_clock();
  4777. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4778. /*
  4779. * We're having a chicken and egg problem, even though we are
  4780. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4781. * lockdep check in task_group() will fail.
  4782. *
  4783. * Similar case to sched_fork(). / Alternatively we could
  4784. * use task_rq_lock() here and obtain the other rq->lock.
  4785. *
  4786. * Silence PROVE_RCU
  4787. */
  4788. rcu_read_lock();
  4789. __set_task_cpu(idle, cpu);
  4790. rcu_read_unlock();
  4791. rq->curr = rq->idle = idle;
  4792. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4793. idle->oncpu = 1;
  4794. #endif
  4795. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4796. /* Set the preempt count _outside_ the spinlocks! */
  4797. #if defined(CONFIG_PREEMPT)
  4798. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4799. #else
  4800. task_thread_info(idle)->preempt_count = 0;
  4801. #endif
  4802. /*
  4803. * The idle tasks have their own, simple scheduling class:
  4804. */
  4805. idle->sched_class = &idle_sched_class;
  4806. ftrace_graph_init_task(idle);
  4807. }
  4808. /*
  4809. * In a system that switches off the HZ timer nohz_cpu_mask
  4810. * indicates which cpus entered this state. This is used
  4811. * in the rcu update to wait only for active cpus. For system
  4812. * which do not switch off the HZ timer nohz_cpu_mask should
  4813. * always be CPU_BITS_NONE.
  4814. */
  4815. cpumask_var_t nohz_cpu_mask;
  4816. /*
  4817. * Increase the granularity value when there are more CPUs,
  4818. * because with more CPUs the 'effective latency' as visible
  4819. * to users decreases. But the relationship is not linear,
  4820. * so pick a second-best guess by going with the log2 of the
  4821. * number of CPUs.
  4822. *
  4823. * This idea comes from the SD scheduler of Con Kolivas:
  4824. */
  4825. static int get_update_sysctl_factor(void)
  4826. {
  4827. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4828. unsigned int factor;
  4829. switch (sysctl_sched_tunable_scaling) {
  4830. case SCHED_TUNABLESCALING_NONE:
  4831. factor = 1;
  4832. break;
  4833. case SCHED_TUNABLESCALING_LINEAR:
  4834. factor = cpus;
  4835. break;
  4836. case SCHED_TUNABLESCALING_LOG:
  4837. default:
  4838. factor = 1 + ilog2(cpus);
  4839. break;
  4840. }
  4841. return factor;
  4842. }
  4843. static void update_sysctl(void)
  4844. {
  4845. unsigned int factor = get_update_sysctl_factor();
  4846. #define SET_SYSCTL(name) \
  4847. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4848. SET_SYSCTL(sched_min_granularity);
  4849. SET_SYSCTL(sched_latency);
  4850. SET_SYSCTL(sched_wakeup_granularity);
  4851. SET_SYSCTL(sched_shares_ratelimit);
  4852. #undef SET_SYSCTL
  4853. }
  4854. static inline void sched_init_granularity(void)
  4855. {
  4856. update_sysctl();
  4857. }
  4858. #ifdef CONFIG_SMP
  4859. /*
  4860. * This is how migration works:
  4861. *
  4862. * 1) we invoke migration_cpu_stop() on the target CPU using
  4863. * stop_one_cpu().
  4864. * 2) stopper starts to run (implicitly forcing the migrated thread
  4865. * off the CPU)
  4866. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4867. * 4) if it's in the wrong runqueue then the migration thread removes
  4868. * it and puts it into the right queue.
  4869. * 5) stopper completes and stop_one_cpu() returns and the migration
  4870. * is done.
  4871. */
  4872. /*
  4873. * Change a given task's CPU affinity. Migrate the thread to a
  4874. * proper CPU and schedule it away if the CPU it's executing on
  4875. * is removed from the allowed bitmask.
  4876. *
  4877. * NOTE: the caller must have a valid reference to the task, the
  4878. * task must not exit() & deallocate itself prematurely. The
  4879. * call is not atomic; no spinlocks may be held.
  4880. */
  4881. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4882. {
  4883. unsigned long flags;
  4884. struct rq *rq;
  4885. unsigned int dest_cpu;
  4886. int ret = 0;
  4887. /*
  4888. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4889. * drop the rq->lock and still rely on ->cpus_allowed.
  4890. */
  4891. again:
  4892. while (task_is_waking(p))
  4893. cpu_relax();
  4894. rq = task_rq_lock(p, &flags);
  4895. if (task_is_waking(p)) {
  4896. task_rq_unlock(rq, &flags);
  4897. goto again;
  4898. }
  4899. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4900. ret = -EINVAL;
  4901. goto out;
  4902. }
  4903. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4904. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4905. ret = -EINVAL;
  4906. goto out;
  4907. }
  4908. if (p->sched_class->set_cpus_allowed)
  4909. p->sched_class->set_cpus_allowed(p, new_mask);
  4910. else {
  4911. cpumask_copy(&p->cpus_allowed, new_mask);
  4912. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4913. }
  4914. /* Can the task run on the task's current CPU? If so, we're done */
  4915. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4916. goto out;
  4917. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4918. if (migrate_task(p, dest_cpu)) {
  4919. struct migration_arg arg = { p, dest_cpu };
  4920. /* Need help from migration thread: drop lock and wait. */
  4921. task_rq_unlock(rq, &flags);
  4922. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4923. tlb_migrate_finish(p->mm);
  4924. return 0;
  4925. }
  4926. out:
  4927. task_rq_unlock(rq, &flags);
  4928. return ret;
  4929. }
  4930. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4931. /*
  4932. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4933. * this because either it can't run here any more (set_cpus_allowed()
  4934. * away from this CPU, or CPU going down), or because we're
  4935. * attempting to rebalance this task on exec (sched_exec).
  4936. *
  4937. * So we race with normal scheduler movements, but that's OK, as long
  4938. * as the task is no longer on this CPU.
  4939. *
  4940. * Returns non-zero if task was successfully migrated.
  4941. */
  4942. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4943. {
  4944. struct rq *rq_dest, *rq_src;
  4945. int ret = 0;
  4946. if (unlikely(!cpu_active(dest_cpu)))
  4947. return ret;
  4948. rq_src = cpu_rq(src_cpu);
  4949. rq_dest = cpu_rq(dest_cpu);
  4950. double_rq_lock(rq_src, rq_dest);
  4951. /* Already moved. */
  4952. if (task_cpu(p) != src_cpu)
  4953. goto done;
  4954. /* Affinity changed (again). */
  4955. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4956. goto fail;
  4957. /*
  4958. * If we're not on a rq, the next wake-up will ensure we're
  4959. * placed properly.
  4960. */
  4961. if (p->se.on_rq) {
  4962. deactivate_task(rq_src, p, 0);
  4963. set_task_cpu(p, dest_cpu);
  4964. activate_task(rq_dest, p, 0);
  4965. check_preempt_curr(rq_dest, p, 0);
  4966. }
  4967. done:
  4968. ret = 1;
  4969. fail:
  4970. double_rq_unlock(rq_src, rq_dest);
  4971. return ret;
  4972. }
  4973. /*
  4974. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4975. * and performs thread migration by bumping thread off CPU then
  4976. * 'pushing' onto another runqueue.
  4977. */
  4978. static int migration_cpu_stop(void *data)
  4979. {
  4980. struct migration_arg *arg = data;
  4981. /*
  4982. * The original target cpu might have gone down and we might
  4983. * be on another cpu but it doesn't matter.
  4984. */
  4985. local_irq_disable();
  4986. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4987. local_irq_enable();
  4988. return 0;
  4989. }
  4990. #ifdef CONFIG_HOTPLUG_CPU
  4991. /*
  4992. * Figure out where task on dead CPU should go, use force if necessary.
  4993. */
  4994. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4995. {
  4996. struct rq *rq = cpu_rq(dead_cpu);
  4997. int needs_cpu, uninitialized_var(dest_cpu);
  4998. unsigned long flags;
  4999. local_irq_save(flags);
  5000. raw_spin_lock(&rq->lock);
  5001. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  5002. if (needs_cpu)
  5003. dest_cpu = select_fallback_rq(dead_cpu, p);
  5004. raw_spin_unlock(&rq->lock);
  5005. /*
  5006. * It can only fail if we race with set_cpus_allowed(),
  5007. * in the racer should migrate the task anyway.
  5008. */
  5009. if (needs_cpu)
  5010. __migrate_task(p, dead_cpu, dest_cpu);
  5011. local_irq_restore(flags);
  5012. }
  5013. /*
  5014. * While a dead CPU has no uninterruptible tasks queued at this point,
  5015. * it might still have a nonzero ->nr_uninterruptible counter, because
  5016. * for performance reasons the counter is not stricly tracking tasks to
  5017. * their home CPUs. So we just add the counter to another CPU's counter,
  5018. * to keep the global sum constant after CPU-down:
  5019. */
  5020. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5021. {
  5022. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5023. unsigned long flags;
  5024. local_irq_save(flags);
  5025. double_rq_lock(rq_src, rq_dest);
  5026. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5027. rq_src->nr_uninterruptible = 0;
  5028. double_rq_unlock(rq_src, rq_dest);
  5029. local_irq_restore(flags);
  5030. }
  5031. /* Run through task list and migrate tasks from the dead cpu. */
  5032. static void migrate_live_tasks(int src_cpu)
  5033. {
  5034. struct task_struct *p, *t;
  5035. read_lock(&tasklist_lock);
  5036. do_each_thread(t, p) {
  5037. if (p == current)
  5038. continue;
  5039. if (task_cpu(p) == src_cpu)
  5040. move_task_off_dead_cpu(src_cpu, p);
  5041. } while_each_thread(t, p);
  5042. read_unlock(&tasklist_lock);
  5043. }
  5044. /*
  5045. * Schedules idle task to be the next runnable task on current CPU.
  5046. * It does so by boosting its priority to highest possible.
  5047. * Used by CPU offline code.
  5048. */
  5049. void sched_idle_next(void)
  5050. {
  5051. int this_cpu = smp_processor_id();
  5052. struct rq *rq = cpu_rq(this_cpu);
  5053. struct task_struct *p = rq->idle;
  5054. unsigned long flags;
  5055. /* cpu has to be offline */
  5056. BUG_ON(cpu_online(this_cpu));
  5057. /*
  5058. * Strictly not necessary since rest of the CPUs are stopped by now
  5059. * and interrupts disabled on the current cpu.
  5060. */
  5061. raw_spin_lock_irqsave(&rq->lock, flags);
  5062. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5063. activate_task(rq, p, 0);
  5064. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5065. }
  5066. /*
  5067. * Ensures that the idle task is using init_mm right before its cpu goes
  5068. * offline.
  5069. */
  5070. void idle_task_exit(void)
  5071. {
  5072. struct mm_struct *mm = current->active_mm;
  5073. BUG_ON(cpu_online(smp_processor_id()));
  5074. if (mm != &init_mm)
  5075. switch_mm(mm, &init_mm, current);
  5076. mmdrop(mm);
  5077. }
  5078. /* called under rq->lock with disabled interrupts */
  5079. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5080. {
  5081. struct rq *rq = cpu_rq(dead_cpu);
  5082. /* Must be exiting, otherwise would be on tasklist. */
  5083. BUG_ON(!p->exit_state);
  5084. /* Cannot have done final schedule yet: would have vanished. */
  5085. BUG_ON(p->state == TASK_DEAD);
  5086. get_task_struct(p);
  5087. /*
  5088. * Drop lock around migration; if someone else moves it,
  5089. * that's OK. No task can be added to this CPU, so iteration is
  5090. * fine.
  5091. */
  5092. raw_spin_unlock_irq(&rq->lock);
  5093. move_task_off_dead_cpu(dead_cpu, p);
  5094. raw_spin_lock_irq(&rq->lock);
  5095. put_task_struct(p);
  5096. }
  5097. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5098. static void migrate_dead_tasks(unsigned int dead_cpu)
  5099. {
  5100. struct rq *rq = cpu_rq(dead_cpu);
  5101. struct task_struct *next;
  5102. for ( ; ; ) {
  5103. if (!rq->nr_running)
  5104. break;
  5105. next = pick_next_task(rq);
  5106. if (!next)
  5107. break;
  5108. next->sched_class->put_prev_task(rq, next);
  5109. migrate_dead(dead_cpu, next);
  5110. }
  5111. }
  5112. /*
  5113. * remove the tasks which were accounted by rq from calc_load_tasks.
  5114. */
  5115. static void calc_global_load_remove(struct rq *rq)
  5116. {
  5117. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5118. rq->calc_load_active = 0;
  5119. }
  5120. #endif /* CONFIG_HOTPLUG_CPU */
  5121. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5122. static struct ctl_table sd_ctl_dir[] = {
  5123. {
  5124. .procname = "sched_domain",
  5125. .mode = 0555,
  5126. },
  5127. {}
  5128. };
  5129. static struct ctl_table sd_ctl_root[] = {
  5130. {
  5131. .procname = "kernel",
  5132. .mode = 0555,
  5133. .child = sd_ctl_dir,
  5134. },
  5135. {}
  5136. };
  5137. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5138. {
  5139. struct ctl_table *entry =
  5140. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5141. return entry;
  5142. }
  5143. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5144. {
  5145. struct ctl_table *entry;
  5146. /*
  5147. * In the intermediate directories, both the child directory and
  5148. * procname are dynamically allocated and could fail but the mode
  5149. * will always be set. In the lowest directory the names are
  5150. * static strings and all have proc handlers.
  5151. */
  5152. for (entry = *tablep; entry->mode; entry++) {
  5153. if (entry->child)
  5154. sd_free_ctl_entry(&entry->child);
  5155. if (entry->proc_handler == NULL)
  5156. kfree(entry->procname);
  5157. }
  5158. kfree(*tablep);
  5159. *tablep = NULL;
  5160. }
  5161. static void
  5162. set_table_entry(struct ctl_table *entry,
  5163. const char *procname, void *data, int maxlen,
  5164. mode_t mode, proc_handler *proc_handler)
  5165. {
  5166. entry->procname = procname;
  5167. entry->data = data;
  5168. entry->maxlen = maxlen;
  5169. entry->mode = mode;
  5170. entry->proc_handler = proc_handler;
  5171. }
  5172. static struct ctl_table *
  5173. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5174. {
  5175. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5176. if (table == NULL)
  5177. return NULL;
  5178. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5179. sizeof(long), 0644, proc_doulongvec_minmax);
  5180. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5181. sizeof(long), 0644, proc_doulongvec_minmax);
  5182. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5183. sizeof(int), 0644, proc_dointvec_minmax);
  5184. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5185. sizeof(int), 0644, proc_dointvec_minmax);
  5186. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5187. sizeof(int), 0644, proc_dointvec_minmax);
  5188. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5189. sizeof(int), 0644, proc_dointvec_minmax);
  5190. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5191. sizeof(int), 0644, proc_dointvec_minmax);
  5192. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5193. sizeof(int), 0644, proc_dointvec_minmax);
  5194. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5195. sizeof(int), 0644, proc_dointvec_minmax);
  5196. set_table_entry(&table[9], "cache_nice_tries",
  5197. &sd->cache_nice_tries,
  5198. sizeof(int), 0644, proc_dointvec_minmax);
  5199. set_table_entry(&table[10], "flags", &sd->flags,
  5200. sizeof(int), 0644, proc_dointvec_minmax);
  5201. set_table_entry(&table[11], "name", sd->name,
  5202. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5203. /* &table[12] is terminator */
  5204. return table;
  5205. }
  5206. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5207. {
  5208. struct ctl_table *entry, *table;
  5209. struct sched_domain *sd;
  5210. int domain_num = 0, i;
  5211. char buf[32];
  5212. for_each_domain(cpu, sd)
  5213. domain_num++;
  5214. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5215. if (table == NULL)
  5216. return NULL;
  5217. i = 0;
  5218. for_each_domain(cpu, sd) {
  5219. snprintf(buf, 32, "domain%d", i);
  5220. entry->procname = kstrdup(buf, GFP_KERNEL);
  5221. entry->mode = 0555;
  5222. entry->child = sd_alloc_ctl_domain_table(sd);
  5223. entry++;
  5224. i++;
  5225. }
  5226. return table;
  5227. }
  5228. static struct ctl_table_header *sd_sysctl_header;
  5229. static void register_sched_domain_sysctl(void)
  5230. {
  5231. int i, cpu_num = num_possible_cpus();
  5232. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5233. char buf[32];
  5234. WARN_ON(sd_ctl_dir[0].child);
  5235. sd_ctl_dir[0].child = entry;
  5236. if (entry == NULL)
  5237. return;
  5238. for_each_possible_cpu(i) {
  5239. snprintf(buf, 32, "cpu%d", i);
  5240. entry->procname = kstrdup(buf, GFP_KERNEL);
  5241. entry->mode = 0555;
  5242. entry->child = sd_alloc_ctl_cpu_table(i);
  5243. entry++;
  5244. }
  5245. WARN_ON(sd_sysctl_header);
  5246. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5247. }
  5248. /* may be called multiple times per register */
  5249. static void unregister_sched_domain_sysctl(void)
  5250. {
  5251. if (sd_sysctl_header)
  5252. unregister_sysctl_table(sd_sysctl_header);
  5253. sd_sysctl_header = NULL;
  5254. if (sd_ctl_dir[0].child)
  5255. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5256. }
  5257. #else
  5258. static void register_sched_domain_sysctl(void)
  5259. {
  5260. }
  5261. static void unregister_sched_domain_sysctl(void)
  5262. {
  5263. }
  5264. #endif
  5265. static void set_rq_online(struct rq *rq)
  5266. {
  5267. if (!rq->online) {
  5268. const struct sched_class *class;
  5269. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5270. rq->online = 1;
  5271. for_each_class(class) {
  5272. if (class->rq_online)
  5273. class->rq_online(rq);
  5274. }
  5275. }
  5276. }
  5277. static void set_rq_offline(struct rq *rq)
  5278. {
  5279. if (rq->online) {
  5280. const struct sched_class *class;
  5281. for_each_class(class) {
  5282. if (class->rq_offline)
  5283. class->rq_offline(rq);
  5284. }
  5285. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5286. rq->online = 0;
  5287. }
  5288. }
  5289. /*
  5290. * migration_call - callback that gets triggered when a CPU is added.
  5291. * Here we can start up the necessary migration thread for the new CPU.
  5292. */
  5293. static int __cpuinit
  5294. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5295. {
  5296. int cpu = (long)hcpu;
  5297. unsigned long flags;
  5298. struct rq *rq = cpu_rq(cpu);
  5299. switch (action) {
  5300. case CPU_UP_PREPARE:
  5301. case CPU_UP_PREPARE_FROZEN:
  5302. rq->calc_load_update = calc_load_update;
  5303. break;
  5304. case CPU_ONLINE:
  5305. case CPU_ONLINE_FROZEN:
  5306. /* Update our root-domain */
  5307. raw_spin_lock_irqsave(&rq->lock, flags);
  5308. if (rq->rd) {
  5309. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5310. set_rq_online(rq);
  5311. }
  5312. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5313. break;
  5314. #ifdef CONFIG_HOTPLUG_CPU
  5315. case CPU_DEAD:
  5316. case CPU_DEAD_FROZEN:
  5317. migrate_live_tasks(cpu);
  5318. /* Idle task back to normal (off runqueue, low prio) */
  5319. raw_spin_lock_irq(&rq->lock);
  5320. deactivate_task(rq, rq->idle, 0);
  5321. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5322. rq->idle->sched_class = &idle_sched_class;
  5323. migrate_dead_tasks(cpu);
  5324. raw_spin_unlock_irq(&rq->lock);
  5325. migrate_nr_uninterruptible(rq);
  5326. BUG_ON(rq->nr_running != 0);
  5327. calc_global_load_remove(rq);
  5328. break;
  5329. case CPU_DYING:
  5330. case CPU_DYING_FROZEN:
  5331. /* Update our root-domain */
  5332. raw_spin_lock_irqsave(&rq->lock, flags);
  5333. if (rq->rd) {
  5334. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5335. set_rq_offline(rq);
  5336. }
  5337. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5338. break;
  5339. #endif
  5340. }
  5341. return NOTIFY_OK;
  5342. }
  5343. /*
  5344. * Register at high priority so that task migration (migrate_all_tasks)
  5345. * happens before everything else. This has to be lower priority than
  5346. * the notifier in the perf_event subsystem, though.
  5347. */
  5348. static struct notifier_block __cpuinitdata migration_notifier = {
  5349. .notifier_call = migration_call,
  5350. .priority = CPU_PRI_MIGRATION,
  5351. };
  5352. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5353. unsigned long action, void *hcpu)
  5354. {
  5355. switch (action & ~CPU_TASKS_FROZEN) {
  5356. case CPU_ONLINE:
  5357. case CPU_DOWN_FAILED:
  5358. set_cpu_active((long)hcpu, true);
  5359. return NOTIFY_OK;
  5360. default:
  5361. return NOTIFY_DONE;
  5362. }
  5363. }
  5364. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5365. unsigned long action, void *hcpu)
  5366. {
  5367. switch (action & ~CPU_TASKS_FROZEN) {
  5368. case CPU_DOWN_PREPARE:
  5369. set_cpu_active((long)hcpu, false);
  5370. return NOTIFY_OK;
  5371. default:
  5372. return NOTIFY_DONE;
  5373. }
  5374. }
  5375. static int __init migration_init(void)
  5376. {
  5377. void *cpu = (void *)(long)smp_processor_id();
  5378. int err;
  5379. /* Initialize migration for the boot CPU */
  5380. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5381. BUG_ON(err == NOTIFY_BAD);
  5382. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5383. register_cpu_notifier(&migration_notifier);
  5384. /* Register cpu active notifiers */
  5385. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5386. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5387. return 0;
  5388. }
  5389. early_initcall(migration_init);
  5390. #endif
  5391. #ifdef CONFIG_SMP
  5392. #ifdef CONFIG_SCHED_DEBUG
  5393. static __read_mostly int sched_domain_debug_enabled;
  5394. static int __init sched_domain_debug_setup(char *str)
  5395. {
  5396. sched_domain_debug_enabled = 1;
  5397. return 0;
  5398. }
  5399. early_param("sched_debug", sched_domain_debug_setup);
  5400. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5401. struct cpumask *groupmask)
  5402. {
  5403. struct sched_group *group = sd->groups;
  5404. char str[256];
  5405. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5406. cpumask_clear(groupmask);
  5407. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5408. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5409. printk("does not load-balance\n");
  5410. if (sd->parent)
  5411. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5412. " has parent");
  5413. return -1;
  5414. }
  5415. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5416. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5417. printk(KERN_ERR "ERROR: domain->span does not contain "
  5418. "CPU%d\n", cpu);
  5419. }
  5420. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5421. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5422. " CPU%d\n", cpu);
  5423. }
  5424. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5425. do {
  5426. if (!group) {
  5427. printk("\n");
  5428. printk(KERN_ERR "ERROR: group is NULL\n");
  5429. break;
  5430. }
  5431. if (!group->cpu_power) {
  5432. printk(KERN_CONT "\n");
  5433. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5434. "set\n");
  5435. break;
  5436. }
  5437. if (!cpumask_weight(sched_group_cpus(group))) {
  5438. printk(KERN_CONT "\n");
  5439. printk(KERN_ERR "ERROR: empty group\n");
  5440. break;
  5441. }
  5442. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5443. printk(KERN_CONT "\n");
  5444. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5445. break;
  5446. }
  5447. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5448. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5449. printk(KERN_CONT " %s", str);
  5450. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5451. printk(KERN_CONT " (cpu_power = %d)",
  5452. group->cpu_power);
  5453. }
  5454. group = group->next;
  5455. } while (group != sd->groups);
  5456. printk(KERN_CONT "\n");
  5457. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5458. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5459. if (sd->parent &&
  5460. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5461. printk(KERN_ERR "ERROR: parent span is not a superset "
  5462. "of domain->span\n");
  5463. return 0;
  5464. }
  5465. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5466. {
  5467. cpumask_var_t groupmask;
  5468. int level = 0;
  5469. if (!sched_domain_debug_enabled)
  5470. return;
  5471. if (!sd) {
  5472. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5473. return;
  5474. }
  5475. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5476. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5477. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5478. return;
  5479. }
  5480. for (;;) {
  5481. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5482. break;
  5483. level++;
  5484. sd = sd->parent;
  5485. if (!sd)
  5486. break;
  5487. }
  5488. free_cpumask_var(groupmask);
  5489. }
  5490. #else /* !CONFIG_SCHED_DEBUG */
  5491. # define sched_domain_debug(sd, cpu) do { } while (0)
  5492. #endif /* CONFIG_SCHED_DEBUG */
  5493. static int sd_degenerate(struct sched_domain *sd)
  5494. {
  5495. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5496. return 1;
  5497. /* Following flags need at least 2 groups */
  5498. if (sd->flags & (SD_LOAD_BALANCE |
  5499. SD_BALANCE_NEWIDLE |
  5500. SD_BALANCE_FORK |
  5501. SD_BALANCE_EXEC |
  5502. SD_SHARE_CPUPOWER |
  5503. SD_SHARE_PKG_RESOURCES)) {
  5504. if (sd->groups != sd->groups->next)
  5505. return 0;
  5506. }
  5507. /* Following flags don't use groups */
  5508. if (sd->flags & (SD_WAKE_AFFINE))
  5509. return 0;
  5510. return 1;
  5511. }
  5512. static int
  5513. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5514. {
  5515. unsigned long cflags = sd->flags, pflags = parent->flags;
  5516. if (sd_degenerate(parent))
  5517. return 1;
  5518. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5519. return 0;
  5520. /* Flags needing groups don't count if only 1 group in parent */
  5521. if (parent->groups == parent->groups->next) {
  5522. pflags &= ~(SD_LOAD_BALANCE |
  5523. SD_BALANCE_NEWIDLE |
  5524. SD_BALANCE_FORK |
  5525. SD_BALANCE_EXEC |
  5526. SD_SHARE_CPUPOWER |
  5527. SD_SHARE_PKG_RESOURCES);
  5528. if (nr_node_ids == 1)
  5529. pflags &= ~SD_SERIALIZE;
  5530. }
  5531. if (~cflags & pflags)
  5532. return 0;
  5533. return 1;
  5534. }
  5535. static void free_rootdomain(struct root_domain *rd)
  5536. {
  5537. synchronize_sched();
  5538. cpupri_cleanup(&rd->cpupri);
  5539. free_cpumask_var(rd->rto_mask);
  5540. free_cpumask_var(rd->online);
  5541. free_cpumask_var(rd->span);
  5542. kfree(rd);
  5543. }
  5544. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5545. {
  5546. struct root_domain *old_rd = NULL;
  5547. unsigned long flags;
  5548. raw_spin_lock_irqsave(&rq->lock, flags);
  5549. if (rq->rd) {
  5550. old_rd = rq->rd;
  5551. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5552. set_rq_offline(rq);
  5553. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5554. /*
  5555. * If we dont want to free the old_rt yet then
  5556. * set old_rd to NULL to skip the freeing later
  5557. * in this function:
  5558. */
  5559. if (!atomic_dec_and_test(&old_rd->refcount))
  5560. old_rd = NULL;
  5561. }
  5562. atomic_inc(&rd->refcount);
  5563. rq->rd = rd;
  5564. cpumask_set_cpu(rq->cpu, rd->span);
  5565. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5566. set_rq_online(rq);
  5567. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5568. if (old_rd)
  5569. free_rootdomain(old_rd);
  5570. }
  5571. static int init_rootdomain(struct root_domain *rd)
  5572. {
  5573. memset(rd, 0, sizeof(*rd));
  5574. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5575. goto out;
  5576. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5577. goto free_span;
  5578. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5579. goto free_online;
  5580. if (cpupri_init(&rd->cpupri) != 0)
  5581. goto free_rto_mask;
  5582. return 0;
  5583. free_rto_mask:
  5584. free_cpumask_var(rd->rto_mask);
  5585. free_online:
  5586. free_cpumask_var(rd->online);
  5587. free_span:
  5588. free_cpumask_var(rd->span);
  5589. out:
  5590. return -ENOMEM;
  5591. }
  5592. static void init_defrootdomain(void)
  5593. {
  5594. init_rootdomain(&def_root_domain);
  5595. atomic_set(&def_root_domain.refcount, 1);
  5596. }
  5597. static struct root_domain *alloc_rootdomain(void)
  5598. {
  5599. struct root_domain *rd;
  5600. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5601. if (!rd)
  5602. return NULL;
  5603. if (init_rootdomain(rd) != 0) {
  5604. kfree(rd);
  5605. return NULL;
  5606. }
  5607. return rd;
  5608. }
  5609. /*
  5610. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5611. * hold the hotplug lock.
  5612. */
  5613. static void
  5614. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5615. {
  5616. struct rq *rq = cpu_rq(cpu);
  5617. struct sched_domain *tmp;
  5618. for (tmp = sd; tmp; tmp = tmp->parent)
  5619. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5620. /* Remove the sched domains which do not contribute to scheduling. */
  5621. for (tmp = sd; tmp; ) {
  5622. struct sched_domain *parent = tmp->parent;
  5623. if (!parent)
  5624. break;
  5625. if (sd_parent_degenerate(tmp, parent)) {
  5626. tmp->parent = parent->parent;
  5627. if (parent->parent)
  5628. parent->parent->child = tmp;
  5629. } else
  5630. tmp = tmp->parent;
  5631. }
  5632. if (sd && sd_degenerate(sd)) {
  5633. sd = sd->parent;
  5634. if (sd)
  5635. sd->child = NULL;
  5636. }
  5637. sched_domain_debug(sd, cpu);
  5638. rq_attach_root(rq, rd);
  5639. rcu_assign_pointer(rq->sd, sd);
  5640. }
  5641. /* cpus with isolated domains */
  5642. static cpumask_var_t cpu_isolated_map;
  5643. /* Setup the mask of cpus configured for isolated domains */
  5644. static int __init isolated_cpu_setup(char *str)
  5645. {
  5646. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5647. cpulist_parse(str, cpu_isolated_map);
  5648. return 1;
  5649. }
  5650. __setup("isolcpus=", isolated_cpu_setup);
  5651. /*
  5652. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5653. * to a function which identifies what group(along with sched group) a CPU
  5654. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5655. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5656. *
  5657. * init_sched_build_groups will build a circular linked list of the groups
  5658. * covered by the given span, and will set each group's ->cpumask correctly,
  5659. * and ->cpu_power to 0.
  5660. */
  5661. static void
  5662. init_sched_build_groups(const struct cpumask *span,
  5663. const struct cpumask *cpu_map,
  5664. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5665. struct sched_group **sg,
  5666. struct cpumask *tmpmask),
  5667. struct cpumask *covered, struct cpumask *tmpmask)
  5668. {
  5669. struct sched_group *first = NULL, *last = NULL;
  5670. int i;
  5671. cpumask_clear(covered);
  5672. for_each_cpu(i, span) {
  5673. struct sched_group *sg;
  5674. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5675. int j;
  5676. if (cpumask_test_cpu(i, covered))
  5677. continue;
  5678. cpumask_clear(sched_group_cpus(sg));
  5679. sg->cpu_power = 0;
  5680. for_each_cpu(j, span) {
  5681. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5682. continue;
  5683. cpumask_set_cpu(j, covered);
  5684. cpumask_set_cpu(j, sched_group_cpus(sg));
  5685. }
  5686. if (!first)
  5687. first = sg;
  5688. if (last)
  5689. last->next = sg;
  5690. last = sg;
  5691. }
  5692. last->next = first;
  5693. }
  5694. #define SD_NODES_PER_DOMAIN 16
  5695. #ifdef CONFIG_NUMA
  5696. /**
  5697. * find_next_best_node - find the next node to include in a sched_domain
  5698. * @node: node whose sched_domain we're building
  5699. * @used_nodes: nodes already in the sched_domain
  5700. *
  5701. * Find the next node to include in a given scheduling domain. Simply
  5702. * finds the closest node not already in the @used_nodes map.
  5703. *
  5704. * Should use nodemask_t.
  5705. */
  5706. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5707. {
  5708. int i, n, val, min_val, best_node = 0;
  5709. min_val = INT_MAX;
  5710. for (i = 0; i < nr_node_ids; i++) {
  5711. /* Start at @node */
  5712. n = (node + i) % nr_node_ids;
  5713. if (!nr_cpus_node(n))
  5714. continue;
  5715. /* Skip already used nodes */
  5716. if (node_isset(n, *used_nodes))
  5717. continue;
  5718. /* Simple min distance search */
  5719. val = node_distance(node, n);
  5720. if (val < min_val) {
  5721. min_val = val;
  5722. best_node = n;
  5723. }
  5724. }
  5725. node_set(best_node, *used_nodes);
  5726. return best_node;
  5727. }
  5728. /**
  5729. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5730. * @node: node whose cpumask we're constructing
  5731. * @span: resulting cpumask
  5732. *
  5733. * Given a node, construct a good cpumask for its sched_domain to span. It
  5734. * should be one that prevents unnecessary balancing, but also spreads tasks
  5735. * out optimally.
  5736. */
  5737. static void sched_domain_node_span(int node, struct cpumask *span)
  5738. {
  5739. nodemask_t used_nodes;
  5740. int i;
  5741. cpumask_clear(span);
  5742. nodes_clear(used_nodes);
  5743. cpumask_or(span, span, cpumask_of_node(node));
  5744. node_set(node, used_nodes);
  5745. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5746. int next_node = find_next_best_node(node, &used_nodes);
  5747. cpumask_or(span, span, cpumask_of_node(next_node));
  5748. }
  5749. }
  5750. #endif /* CONFIG_NUMA */
  5751. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5752. /*
  5753. * The cpus mask in sched_group and sched_domain hangs off the end.
  5754. *
  5755. * ( See the the comments in include/linux/sched.h:struct sched_group
  5756. * and struct sched_domain. )
  5757. */
  5758. struct static_sched_group {
  5759. struct sched_group sg;
  5760. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5761. };
  5762. struct static_sched_domain {
  5763. struct sched_domain sd;
  5764. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5765. };
  5766. struct s_data {
  5767. #ifdef CONFIG_NUMA
  5768. int sd_allnodes;
  5769. cpumask_var_t domainspan;
  5770. cpumask_var_t covered;
  5771. cpumask_var_t notcovered;
  5772. #endif
  5773. cpumask_var_t nodemask;
  5774. cpumask_var_t this_sibling_map;
  5775. cpumask_var_t this_core_map;
  5776. cpumask_var_t this_book_map;
  5777. cpumask_var_t send_covered;
  5778. cpumask_var_t tmpmask;
  5779. struct sched_group **sched_group_nodes;
  5780. struct root_domain *rd;
  5781. };
  5782. enum s_alloc {
  5783. sa_sched_groups = 0,
  5784. sa_rootdomain,
  5785. sa_tmpmask,
  5786. sa_send_covered,
  5787. sa_this_book_map,
  5788. sa_this_core_map,
  5789. sa_this_sibling_map,
  5790. sa_nodemask,
  5791. sa_sched_group_nodes,
  5792. #ifdef CONFIG_NUMA
  5793. sa_notcovered,
  5794. sa_covered,
  5795. sa_domainspan,
  5796. #endif
  5797. sa_none,
  5798. };
  5799. /*
  5800. * SMT sched-domains:
  5801. */
  5802. #ifdef CONFIG_SCHED_SMT
  5803. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5804. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5805. static int
  5806. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5807. struct sched_group **sg, struct cpumask *unused)
  5808. {
  5809. if (sg)
  5810. *sg = &per_cpu(sched_groups, cpu).sg;
  5811. return cpu;
  5812. }
  5813. #endif /* CONFIG_SCHED_SMT */
  5814. /*
  5815. * multi-core sched-domains:
  5816. */
  5817. #ifdef CONFIG_SCHED_MC
  5818. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5819. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5820. static int
  5821. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5822. struct sched_group **sg, struct cpumask *mask)
  5823. {
  5824. int group;
  5825. #ifdef CONFIG_SCHED_SMT
  5826. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5827. group = cpumask_first(mask);
  5828. #else
  5829. group = cpu;
  5830. #endif
  5831. if (sg)
  5832. *sg = &per_cpu(sched_group_core, group).sg;
  5833. return group;
  5834. }
  5835. #endif /* CONFIG_SCHED_MC */
  5836. /*
  5837. * book sched-domains:
  5838. */
  5839. #ifdef CONFIG_SCHED_BOOK
  5840. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5841. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5842. static int
  5843. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5844. struct sched_group **sg, struct cpumask *mask)
  5845. {
  5846. int group = cpu;
  5847. #ifdef CONFIG_SCHED_MC
  5848. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5849. group = cpumask_first(mask);
  5850. #elif defined(CONFIG_SCHED_SMT)
  5851. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5852. group = cpumask_first(mask);
  5853. #endif
  5854. if (sg)
  5855. *sg = &per_cpu(sched_group_book, group).sg;
  5856. return group;
  5857. }
  5858. #endif /* CONFIG_SCHED_BOOK */
  5859. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5860. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5861. static int
  5862. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5863. struct sched_group **sg, struct cpumask *mask)
  5864. {
  5865. int group;
  5866. #ifdef CONFIG_SCHED_BOOK
  5867. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5868. group = cpumask_first(mask);
  5869. #elif defined(CONFIG_SCHED_MC)
  5870. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5871. group = cpumask_first(mask);
  5872. #elif defined(CONFIG_SCHED_SMT)
  5873. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5874. group = cpumask_first(mask);
  5875. #else
  5876. group = cpu;
  5877. #endif
  5878. if (sg)
  5879. *sg = &per_cpu(sched_group_phys, group).sg;
  5880. return group;
  5881. }
  5882. #ifdef CONFIG_NUMA
  5883. /*
  5884. * The init_sched_build_groups can't handle what we want to do with node
  5885. * groups, so roll our own. Now each node has its own list of groups which
  5886. * gets dynamically allocated.
  5887. */
  5888. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5889. static struct sched_group ***sched_group_nodes_bycpu;
  5890. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5891. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5892. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5893. struct sched_group **sg,
  5894. struct cpumask *nodemask)
  5895. {
  5896. int group;
  5897. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5898. group = cpumask_first(nodemask);
  5899. if (sg)
  5900. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5901. return group;
  5902. }
  5903. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5904. {
  5905. struct sched_group *sg = group_head;
  5906. int j;
  5907. if (!sg)
  5908. return;
  5909. do {
  5910. for_each_cpu(j, sched_group_cpus(sg)) {
  5911. struct sched_domain *sd;
  5912. sd = &per_cpu(phys_domains, j).sd;
  5913. if (j != group_first_cpu(sd->groups)) {
  5914. /*
  5915. * Only add "power" once for each
  5916. * physical package.
  5917. */
  5918. continue;
  5919. }
  5920. sg->cpu_power += sd->groups->cpu_power;
  5921. }
  5922. sg = sg->next;
  5923. } while (sg != group_head);
  5924. }
  5925. static int build_numa_sched_groups(struct s_data *d,
  5926. const struct cpumask *cpu_map, int num)
  5927. {
  5928. struct sched_domain *sd;
  5929. struct sched_group *sg, *prev;
  5930. int n, j;
  5931. cpumask_clear(d->covered);
  5932. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5933. if (cpumask_empty(d->nodemask)) {
  5934. d->sched_group_nodes[num] = NULL;
  5935. goto out;
  5936. }
  5937. sched_domain_node_span(num, d->domainspan);
  5938. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5939. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5940. GFP_KERNEL, num);
  5941. if (!sg) {
  5942. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5943. num);
  5944. return -ENOMEM;
  5945. }
  5946. d->sched_group_nodes[num] = sg;
  5947. for_each_cpu(j, d->nodemask) {
  5948. sd = &per_cpu(node_domains, j).sd;
  5949. sd->groups = sg;
  5950. }
  5951. sg->cpu_power = 0;
  5952. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5953. sg->next = sg;
  5954. cpumask_or(d->covered, d->covered, d->nodemask);
  5955. prev = sg;
  5956. for (j = 0; j < nr_node_ids; j++) {
  5957. n = (num + j) % nr_node_ids;
  5958. cpumask_complement(d->notcovered, d->covered);
  5959. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5960. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5961. if (cpumask_empty(d->tmpmask))
  5962. break;
  5963. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5964. if (cpumask_empty(d->tmpmask))
  5965. continue;
  5966. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5967. GFP_KERNEL, num);
  5968. if (!sg) {
  5969. printk(KERN_WARNING
  5970. "Can not alloc domain group for node %d\n", j);
  5971. return -ENOMEM;
  5972. }
  5973. sg->cpu_power = 0;
  5974. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5975. sg->next = prev->next;
  5976. cpumask_or(d->covered, d->covered, d->tmpmask);
  5977. prev->next = sg;
  5978. prev = sg;
  5979. }
  5980. out:
  5981. return 0;
  5982. }
  5983. #endif /* CONFIG_NUMA */
  5984. #ifdef CONFIG_NUMA
  5985. /* Free memory allocated for various sched_group structures */
  5986. static void free_sched_groups(const struct cpumask *cpu_map,
  5987. struct cpumask *nodemask)
  5988. {
  5989. int cpu, i;
  5990. for_each_cpu(cpu, cpu_map) {
  5991. struct sched_group **sched_group_nodes
  5992. = sched_group_nodes_bycpu[cpu];
  5993. if (!sched_group_nodes)
  5994. continue;
  5995. for (i = 0; i < nr_node_ids; i++) {
  5996. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5997. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5998. if (cpumask_empty(nodemask))
  5999. continue;
  6000. if (sg == NULL)
  6001. continue;
  6002. sg = sg->next;
  6003. next_sg:
  6004. oldsg = sg;
  6005. sg = sg->next;
  6006. kfree(oldsg);
  6007. if (oldsg != sched_group_nodes[i])
  6008. goto next_sg;
  6009. }
  6010. kfree(sched_group_nodes);
  6011. sched_group_nodes_bycpu[cpu] = NULL;
  6012. }
  6013. }
  6014. #else /* !CONFIG_NUMA */
  6015. static void free_sched_groups(const struct cpumask *cpu_map,
  6016. struct cpumask *nodemask)
  6017. {
  6018. }
  6019. #endif /* CONFIG_NUMA */
  6020. /*
  6021. * Initialize sched groups cpu_power.
  6022. *
  6023. * cpu_power indicates the capacity of sched group, which is used while
  6024. * distributing the load between different sched groups in a sched domain.
  6025. * Typically cpu_power for all the groups in a sched domain will be same unless
  6026. * there are asymmetries in the topology. If there are asymmetries, group
  6027. * having more cpu_power will pickup more load compared to the group having
  6028. * less cpu_power.
  6029. */
  6030. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6031. {
  6032. struct sched_domain *child;
  6033. struct sched_group *group;
  6034. long power;
  6035. int weight;
  6036. WARN_ON(!sd || !sd->groups);
  6037. if (cpu != group_first_cpu(sd->groups))
  6038. return;
  6039. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6040. child = sd->child;
  6041. sd->groups->cpu_power = 0;
  6042. if (!child) {
  6043. power = SCHED_LOAD_SCALE;
  6044. weight = cpumask_weight(sched_domain_span(sd));
  6045. /*
  6046. * SMT siblings share the power of a single core.
  6047. * Usually multiple threads get a better yield out of
  6048. * that one core than a single thread would have,
  6049. * reflect that in sd->smt_gain.
  6050. */
  6051. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6052. power *= sd->smt_gain;
  6053. power /= weight;
  6054. power >>= SCHED_LOAD_SHIFT;
  6055. }
  6056. sd->groups->cpu_power += power;
  6057. return;
  6058. }
  6059. /*
  6060. * Add cpu_power of each child group to this groups cpu_power.
  6061. */
  6062. group = child->groups;
  6063. do {
  6064. sd->groups->cpu_power += group->cpu_power;
  6065. group = group->next;
  6066. } while (group != child->groups);
  6067. }
  6068. /*
  6069. * Initializers for schedule domains
  6070. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6071. */
  6072. #ifdef CONFIG_SCHED_DEBUG
  6073. # define SD_INIT_NAME(sd, type) sd->name = #type
  6074. #else
  6075. # define SD_INIT_NAME(sd, type) do { } while (0)
  6076. #endif
  6077. #define SD_INIT(sd, type) sd_init_##type(sd)
  6078. #define SD_INIT_FUNC(type) \
  6079. static noinline void sd_init_##type(struct sched_domain *sd) \
  6080. { \
  6081. memset(sd, 0, sizeof(*sd)); \
  6082. *sd = SD_##type##_INIT; \
  6083. sd->level = SD_LV_##type; \
  6084. SD_INIT_NAME(sd, type); \
  6085. }
  6086. SD_INIT_FUNC(CPU)
  6087. #ifdef CONFIG_NUMA
  6088. SD_INIT_FUNC(ALLNODES)
  6089. SD_INIT_FUNC(NODE)
  6090. #endif
  6091. #ifdef CONFIG_SCHED_SMT
  6092. SD_INIT_FUNC(SIBLING)
  6093. #endif
  6094. #ifdef CONFIG_SCHED_MC
  6095. SD_INIT_FUNC(MC)
  6096. #endif
  6097. #ifdef CONFIG_SCHED_BOOK
  6098. SD_INIT_FUNC(BOOK)
  6099. #endif
  6100. static int default_relax_domain_level = -1;
  6101. static int __init setup_relax_domain_level(char *str)
  6102. {
  6103. unsigned long val;
  6104. val = simple_strtoul(str, NULL, 0);
  6105. if (val < SD_LV_MAX)
  6106. default_relax_domain_level = val;
  6107. return 1;
  6108. }
  6109. __setup("relax_domain_level=", setup_relax_domain_level);
  6110. static void set_domain_attribute(struct sched_domain *sd,
  6111. struct sched_domain_attr *attr)
  6112. {
  6113. int request;
  6114. if (!attr || attr->relax_domain_level < 0) {
  6115. if (default_relax_domain_level < 0)
  6116. return;
  6117. else
  6118. request = default_relax_domain_level;
  6119. } else
  6120. request = attr->relax_domain_level;
  6121. if (request < sd->level) {
  6122. /* turn off idle balance on this domain */
  6123. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6124. } else {
  6125. /* turn on idle balance on this domain */
  6126. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6127. }
  6128. }
  6129. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6130. const struct cpumask *cpu_map)
  6131. {
  6132. switch (what) {
  6133. case sa_sched_groups:
  6134. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6135. d->sched_group_nodes = NULL;
  6136. case sa_rootdomain:
  6137. free_rootdomain(d->rd); /* fall through */
  6138. case sa_tmpmask:
  6139. free_cpumask_var(d->tmpmask); /* fall through */
  6140. case sa_send_covered:
  6141. free_cpumask_var(d->send_covered); /* fall through */
  6142. case sa_this_book_map:
  6143. free_cpumask_var(d->this_book_map); /* fall through */
  6144. case sa_this_core_map:
  6145. free_cpumask_var(d->this_core_map); /* fall through */
  6146. case sa_this_sibling_map:
  6147. free_cpumask_var(d->this_sibling_map); /* fall through */
  6148. case sa_nodemask:
  6149. free_cpumask_var(d->nodemask); /* fall through */
  6150. case sa_sched_group_nodes:
  6151. #ifdef CONFIG_NUMA
  6152. kfree(d->sched_group_nodes); /* fall through */
  6153. case sa_notcovered:
  6154. free_cpumask_var(d->notcovered); /* fall through */
  6155. case sa_covered:
  6156. free_cpumask_var(d->covered); /* fall through */
  6157. case sa_domainspan:
  6158. free_cpumask_var(d->domainspan); /* fall through */
  6159. #endif
  6160. case sa_none:
  6161. break;
  6162. }
  6163. }
  6164. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6165. const struct cpumask *cpu_map)
  6166. {
  6167. #ifdef CONFIG_NUMA
  6168. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6169. return sa_none;
  6170. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6171. return sa_domainspan;
  6172. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6173. return sa_covered;
  6174. /* Allocate the per-node list of sched groups */
  6175. d->sched_group_nodes = kcalloc(nr_node_ids,
  6176. sizeof(struct sched_group *), GFP_KERNEL);
  6177. if (!d->sched_group_nodes) {
  6178. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6179. return sa_notcovered;
  6180. }
  6181. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6182. #endif
  6183. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6184. return sa_sched_group_nodes;
  6185. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6186. return sa_nodemask;
  6187. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6188. return sa_this_sibling_map;
  6189. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6190. return sa_this_core_map;
  6191. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6192. return sa_this_book_map;
  6193. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6194. return sa_send_covered;
  6195. d->rd = alloc_rootdomain();
  6196. if (!d->rd) {
  6197. printk(KERN_WARNING "Cannot alloc root domain\n");
  6198. return sa_tmpmask;
  6199. }
  6200. return sa_rootdomain;
  6201. }
  6202. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6203. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6204. {
  6205. struct sched_domain *sd = NULL;
  6206. #ifdef CONFIG_NUMA
  6207. struct sched_domain *parent;
  6208. d->sd_allnodes = 0;
  6209. if (cpumask_weight(cpu_map) >
  6210. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6211. sd = &per_cpu(allnodes_domains, i).sd;
  6212. SD_INIT(sd, ALLNODES);
  6213. set_domain_attribute(sd, attr);
  6214. cpumask_copy(sched_domain_span(sd), cpu_map);
  6215. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6216. d->sd_allnodes = 1;
  6217. }
  6218. parent = sd;
  6219. sd = &per_cpu(node_domains, i).sd;
  6220. SD_INIT(sd, NODE);
  6221. set_domain_attribute(sd, attr);
  6222. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6223. sd->parent = parent;
  6224. if (parent)
  6225. parent->child = sd;
  6226. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6227. #endif
  6228. return sd;
  6229. }
  6230. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6231. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6232. struct sched_domain *parent, int i)
  6233. {
  6234. struct sched_domain *sd;
  6235. sd = &per_cpu(phys_domains, i).sd;
  6236. SD_INIT(sd, CPU);
  6237. set_domain_attribute(sd, attr);
  6238. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6239. sd->parent = parent;
  6240. if (parent)
  6241. parent->child = sd;
  6242. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6243. return sd;
  6244. }
  6245. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6246. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6247. struct sched_domain *parent, int i)
  6248. {
  6249. struct sched_domain *sd = parent;
  6250. #ifdef CONFIG_SCHED_BOOK
  6251. sd = &per_cpu(book_domains, i).sd;
  6252. SD_INIT(sd, BOOK);
  6253. set_domain_attribute(sd, attr);
  6254. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6255. sd->parent = parent;
  6256. parent->child = sd;
  6257. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6258. #endif
  6259. return sd;
  6260. }
  6261. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6262. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6263. struct sched_domain *parent, int i)
  6264. {
  6265. struct sched_domain *sd = parent;
  6266. #ifdef CONFIG_SCHED_MC
  6267. sd = &per_cpu(core_domains, i).sd;
  6268. SD_INIT(sd, MC);
  6269. set_domain_attribute(sd, attr);
  6270. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6271. sd->parent = parent;
  6272. parent->child = sd;
  6273. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6274. #endif
  6275. return sd;
  6276. }
  6277. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6278. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6279. struct sched_domain *parent, int i)
  6280. {
  6281. struct sched_domain *sd = parent;
  6282. #ifdef CONFIG_SCHED_SMT
  6283. sd = &per_cpu(cpu_domains, i).sd;
  6284. SD_INIT(sd, SIBLING);
  6285. set_domain_attribute(sd, attr);
  6286. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6287. sd->parent = parent;
  6288. parent->child = sd;
  6289. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6290. #endif
  6291. return sd;
  6292. }
  6293. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6294. const struct cpumask *cpu_map, int cpu)
  6295. {
  6296. switch (l) {
  6297. #ifdef CONFIG_SCHED_SMT
  6298. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6299. cpumask_and(d->this_sibling_map, cpu_map,
  6300. topology_thread_cpumask(cpu));
  6301. if (cpu == cpumask_first(d->this_sibling_map))
  6302. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6303. &cpu_to_cpu_group,
  6304. d->send_covered, d->tmpmask);
  6305. break;
  6306. #endif
  6307. #ifdef CONFIG_SCHED_MC
  6308. case SD_LV_MC: /* set up multi-core groups */
  6309. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6310. if (cpu == cpumask_first(d->this_core_map))
  6311. init_sched_build_groups(d->this_core_map, cpu_map,
  6312. &cpu_to_core_group,
  6313. d->send_covered, d->tmpmask);
  6314. break;
  6315. #endif
  6316. #ifdef CONFIG_SCHED_BOOK
  6317. case SD_LV_BOOK: /* set up book groups */
  6318. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6319. if (cpu == cpumask_first(d->this_book_map))
  6320. init_sched_build_groups(d->this_book_map, cpu_map,
  6321. &cpu_to_book_group,
  6322. d->send_covered, d->tmpmask);
  6323. break;
  6324. #endif
  6325. case SD_LV_CPU: /* set up physical groups */
  6326. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6327. if (!cpumask_empty(d->nodemask))
  6328. init_sched_build_groups(d->nodemask, cpu_map,
  6329. &cpu_to_phys_group,
  6330. d->send_covered, d->tmpmask);
  6331. break;
  6332. #ifdef CONFIG_NUMA
  6333. case SD_LV_ALLNODES:
  6334. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6335. d->send_covered, d->tmpmask);
  6336. break;
  6337. #endif
  6338. default:
  6339. break;
  6340. }
  6341. }
  6342. /*
  6343. * Build sched domains for a given set of cpus and attach the sched domains
  6344. * to the individual cpus
  6345. */
  6346. static int __build_sched_domains(const struct cpumask *cpu_map,
  6347. struct sched_domain_attr *attr)
  6348. {
  6349. enum s_alloc alloc_state = sa_none;
  6350. struct s_data d;
  6351. struct sched_domain *sd;
  6352. int i;
  6353. #ifdef CONFIG_NUMA
  6354. d.sd_allnodes = 0;
  6355. #endif
  6356. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6357. if (alloc_state != sa_rootdomain)
  6358. goto error;
  6359. alloc_state = sa_sched_groups;
  6360. /*
  6361. * Set up domains for cpus specified by the cpu_map.
  6362. */
  6363. for_each_cpu(i, cpu_map) {
  6364. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6365. cpu_map);
  6366. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6367. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6368. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6369. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6370. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6371. }
  6372. for_each_cpu(i, cpu_map) {
  6373. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6374. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6375. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6376. }
  6377. /* Set up physical groups */
  6378. for (i = 0; i < nr_node_ids; i++)
  6379. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6380. #ifdef CONFIG_NUMA
  6381. /* Set up node groups */
  6382. if (d.sd_allnodes)
  6383. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6384. for (i = 0; i < nr_node_ids; i++)
  6385. if (build_numa_sched_groups(&d, cpu_map, i))
  6386. goto error;
  6387. #endif
  6388. /* Calculate CPU power for physical packages and nodes */
  6389. #ifdef CONFIG_SCHED_SMT
  6390. for_each_cpu(i, cpu_map) {
  6391. sd = &per_cpu(cpu_domains, i).sd;
  6392. init_sched_groups_power(i, sd);
  6393. }
  6394. #endif
  6395. #ifdef CONFIG_SCHED_MC
  6396. for_each_cpu(i, cpu_map) {
  6397. sd = &per_cpu(core_domains, i).sd;
  6398. init_sched_groups_power(i, sd);
  6399. }
  6400. #endif
  6401. #ifdef CONFIG_SCHED_BOOK
  6402. for_each_cpu(i, cpu_map) {
  6403. sd = &per_cpu(book_domains, i).sd;
  6404. init_sched_groups_power(i, sd);
  6405. }
  6406. #endif
  6407. for_each_cpu(i, cpu_map) {
  6408. sd = &per_cpu(phys_domains, i).sd;
  6409. init_sched_groups_power(i, sd);
  6410. }
  6411. #ifdef CONFIG_NUMA
  6412. for (i = 0; i < nr_node_ids; i++)
  6413. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6414. if (d.sd_allnodes) {
  6415. struct sched_group *sg;
  6416. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6417. d.tmpmask);
  6418. init_numa_sched_groups_power(sg);
  6419. }
  6420. #endif
  6421. /* Attach the domains */
  6422. for_each_cpu(i, cpu_map) {
  6423. #ifdef CONFIG_SCHED_SMT
  6424. sd = &per_cpu(cpu_domains, i).sd;
  6425. #elif defined(CONFIG_SCHED_MC)
  6426. sd = &per_cpu(core_domains, i).sd;
  6427. #elif defined(CONFIG_SCHED_BOOK)
  6428. sd = &per_cpu(book_domains, i).sd;
  6429. #else
  6430. sd = &per_cpu(phys_domains, i).sd;
  6431. #endif
  6432. cpu_attach_domain(sd, d.rd, i);
  6433. }
  6434. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6435. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6436. return 0;
  6437. error:
  6438. __free_domain_allocs(&d, alloc_state, cpu_map);
  6439. return -ENOMEM;
  6440. }
  6441. static int build_sched_domains(const struct cpumask *cpu_map)
  6442. {
  6443. return __build_sched_domains(cpu_map, NULL);
  6444. }
  6445. static cpumask_var_t *doms_cur; /* current sched domains */
  6446. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6447. static struct sched_domain_attr *dattr_cur;
  6448. /* attribues of custom domains in 'doms_cur' */
  6449. /*
  6450. * Special case: If a kmalloc of a doms_cur partition (array of
  6451. * cpumask) fails, then fallback to a single sched domain,
  6452. * as determined by the single cpumask fallback_doms.
  6453. */
  6454. static cpumask_var_t fallback_doms;
  6455. /*
  6456. * arch_update_cpu_topology lets virtualized architectures update the
  6457. * cpu core maps. It is supposed to return 1 if the topology changed
  6458. * or 0 if it stayed the same.
  6459. */
  6460. int __attribute__((weak)) arch_update_cpu_topology(void)
  6461. {
  6462. return 0;
  6463. }
  6464. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6465. {
  6466. int i;
  6467. cpumask_var_t *doms;
  6468. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6469. if (!doms)
  6470. return NULL;
  6471. for (i = 0; i < ndoms; i++) {
  6472. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6473. free_sched_domains(doms, i);
  6474. return NULL;
  6475. }
  6476. }
  6477. return doms;
  6478. }
  6479. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6480. {
  6481. unsigned int i;
  6482. for (i = 0; i < ndoms; i++)
  6483. free_cpumask_var(doms[i]);
  6484. kfree(doms);
  6485. }
  6486. /*
  6487. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6488. * For now this just excludes isolated cpus, but could be used to
  6489. * exclude other special cases in the future.
  6490. */
  6491. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6492. {
  6493. int err;
  6494. arch_update_cpu_topology();
  6495. ndoms_cur = 1;
  6496. doms_cur = alloc_sched_domains(ndoms_cur);
  6497. if (!doms_cur)
  6498. doms_cur = &fallback_doms;
  6499. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6500. dattr_cur = NULL;
  6501. err = build_sched_domains(doms_cur[0]);
  6502. register_sched_domain_sysctl();
  6503. return err;
  6504. }
  6505. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6506. struct cpumask *tmpmask)
  6507. {
  6508. free_sched_groups(cpu_map, tmpmask);
  6509. }
  6510. /*
  6511. * Detach sched domains from a group of cpus specified in cpu_map
  6512. * These cpus will now be attached to the NULL domain
  6513. */
  6514. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6515. {
  6516. /* Save because hotplug lock held. */
  6517. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6518. int i;
  6519. for_each_cpu(i, cpu_map)
  6520. cpu_attach_domain(NULL, &def_root_domain, i);
  6521. synchronize_sched();
  6522. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6523. }
  6524. /* handle null as "default" */
  6525. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6526. struct sched_domain_attr *new, int idx_new)
  6527. {
  6528. struct sched_domain_attr tmp;
  6529. /* fast path */
  6530. if (!new && !cur)
  6531. return 1;
  6532. tmp = SD_ATTR_INIT;
  6533. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6534. new ? (new + idx_new) : &tmp,
  6535. sizeof(struct sched_domain_attr));
  6536. }
  6537. /*
  6538. * Partition sched domains as specified by the 'ndoms_new'
  6539. * cpumasks in the array doms_new[] of cpumasks. This compares
  6540. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6541. * It destroys each deleted domain and builds each new domain.
  6542. *
  6543. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6544. * The masks don't intersect (don't overlap.) We should setup one
  6545. * sched domain for each mask. CPUs not in any of the cpumasks will
  6546. * not be load balanced. If the same cpumask appears both in the
  6547. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6548. * it as it is.
  6549. *
  6550. * The passed in 'doms_new' should be allocated using
  6551. * alloc_sched_domains. This routine takes ownership of it and will
  6552. * free_sched_domains it when done with it. If the caller failed the
  6553. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6554. * and partition_sched_domains() will fallback to the single partition
  6555. * 'fallback_doms', it also forces the domains to be rebuilt.
  6556. *
  6557. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6558. * ndoms_new == 0 is a special case for destroying existing domains,
  6559. * and it will not create the default domain.
  6560. *
  6561. * Call with hotplug lock held
  6562. */
  6563. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6564. struct sched_domain_attr *dattr_new)
  6565. {
  6566. int i, j, n;
  6567. int new_topology;
  6568. mutex_lock(&sched_domains_mutex);
  6569. /* always unregister in case we don't destroy any domains */
  6570. unregister_sched_domain_sysctl();
  6571. /* Let architecture update cpu core mappings. */
  6572. new_topology = arch_update_cpu_topology();
  6573. n = doms_new ? ndoms_new : 0;
  6574. /* Destroy deleted domains */
  6575. for (i = 0; i < ndoms_cur; i++) {
  6576. for (j = 0; j < n && !new_topology; j++) {
  6577. if (cpumask_equal(doms_cur[i], doms_new[j])
  6578. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6579. goto match1;
  6580. }
  6581. /* no match - a current sched domain not in new doms_new[] */
  6582. detach_destroy_domains(doms_cur[i]);
  6583. match1:
  6584. ;
  6585. }
  6586. if (doms_new == NULL) {
  6587. ndoms_cur = 0;
  6588. doms_new = &fallback_doms;
  6589. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6590. WARN_ON_ONCE(dattr_new);
  6591. }
  6592. /* Build new domains */
  6593. for (i = 0; i < ndoms_new; i++) {
  6594. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6595. if (cpumask_equal(doms_new[i], doms_cur[j])
  6596. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6597. goto match2;
  6598. }
  6599. /* no match - add a new doms_new */
  6600. __build_sched_domains(doms_new[i],
  6601. dattr_new ? dattr_new + i : NULL);
  6602. match2:
  6603. ;
  6604. }
  6605. /* Remember the new sched domains */
  6606. if (doms_cur != &fallback_doms)
  6607. free_sched_domains(doms_cur, ndoms_cur);
  6608. kfree(dattr_cur); /* kfree(NULL) is safe */
  6609. doms_cur = doms_new;
  6610. dattr_cur = dattr_new;
  6611. ndoms_cur = ndoms_new;
  6612. register_sched_domain_sysctl();
  6613. mutex_unlock(&sched_domains_mutex);
  6614. }
  6615. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6616. static void arch_reinit_sched_domains(void)
  6617. {
  6618. get_online_cpus();
  6619. /* Destroy domains first to force the rebuild */
  6620. partition_sched_domains(0, NULL, NULL);
  6621. rebuild_sched_domains();
  6622. put_online_cpus();
  6623. }
  6624. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6625. {
  6626. unsigned int level = 0;
  6627. if (sscanf(buf, "%u", &level) != 1)
  6628. return -EINVAL;
  6629. /*
  6630. * level is always be positive so don't check for
  6631. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6632. * What happens on 0 or 1 byte write,
  6633. * need to check for count as well?
  6634. */
  6635. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6636. return -EINVAL;
  6637. if (smt)
  6638. sched_smt_power_savings = level;
  6639. else
  6640. sched_mc_power_savings = level;
  6641. arch_reinit_sched_domains();
  6642. return count;
  6643. }
  6644. #ifdef CONFIG_SCHED_MC
  6645. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6646. struct sysdev_class_attribute *attr,
  6647. char *page)
  6648. {
  6649. return sprintf(page, "%u\n", sched_mc_power_savings);
  6650. }
  6651. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6652. struct sysdev_class_attribute *attr,
  6653. const char *buf, size_t count)
  6654. {
  6655. return sched_power_savings_store(buf, count, 0);
  6656. }
  6657. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6658. sched_mc_power_savings_show,
  6659. sched_mc_power_savings_store);
  6660. #endif
  6661. #ifdef CONFIG_SCHED_SMT
  6662. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6663. struct sysdev_class_attribute *attr,
  6664. char *page)
  6665. {
  6666. return sprintf(page, "%u\n", sched_smt_power_savings);
  6667. }
  6668. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6669. struct sysdev_class_attribute *attr,
  6670. const char *buf, size_t count)
  6671. {
  6672. return sched_power_savings_store(buf, count, 1);
  6673. }
  6674. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6675. sched_smt_power_savings_show,
  6676. sched_smt_power_savings_store);
  6677. #endif
  6678. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6679. {
  6680. int err = 0;
  6681. #ifdef CONFIG_SCHED_SMT
  6682. if (smt_capable())
  6683. err = sysfs_create_file(&cls->kset.kobj,
  6684. &attr_sched_smt_power_savings.attr);
  6685. #endif
  6686. #ifdef CONFIG_SCHED_MC
  6687. if (!err && mc_capable())
  6688. err = sysfs_create_file(&cls->kset.kobj,
  6689. &attr_sched_mc_power_savings.attr);
  6690. #endif
  6691. return err;
  6692. }
  6693. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6694. /*
  6695. * Update cpusets according to cpu_active mask. If cpusets are
  6696. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6697. * around partition_sched_domains().
  6698. */
  6699. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6700. void *hcpu)
  6701. {
  6702. switch (action & ~CPU_TASKS_FROZEN) {
  6703. case CPU_ONLINE:
  6704. case CPU_DOWN_FAILED:
  6705. cpuset_update_active_cpus();
  6706. return NOTIFY_OK;
  6707. default:
  6708. return NOTIFY_DONE;
  6709. }
  6710. }
  6711. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6712. void *hcpu)
  6713. {
  6714. switch (action & ~CPU_TASKS_FROZEN) {
  6715. case CPU_DOWN_PREPARE:
  6716. cpuset_update_active_cpus();
  6717. return NOTIFY_OK;
  6718. default:
  6719. return NOTIFY_DONE;
  6720. }
  6721. }
  6722. static int update_runtime(struct notifier_block *nfb,
  6723. unsigned long action, void *hcpu)
  6724. {
  6725. int cpu = (int)(long)hcpu;
  6726. switch (action) {
  6727. case CPU_DOWN_PREPARE:
  6728. case CPU_DOWN_PREPARE_FROZEN:
  6729. disable_runtime(cpu_rq(cpu));
  6730. return NOTIFY_OK;
  6731. case CPU_DOWN_FAILED:
  6732. case CPU_DOWN_FAILED_FROZEN:
  6733. case CPU_ONLINE:
  6734. case CPU_ONLINE_FROZEN:
  6735. enable_runtime(cpu_rq(cpu));
  6736. return NOTIFY_OK;
  6737. default:
  6738. return NOTIFY_DONE;
  6739. }
  6740. }
  6741. void __init sched_init_smp(void)
  6742. {
  6743. cpumask_var_t non_isolated_cpus;
  6744. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6745. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6746. #if defined(CONFIG_NUMA)
  6747. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6748. GFP_KERNEL);
  6749. BUG_ON(sched_group_nodes_bycpu == NULL);
  6750. #endif
  6751. get_online_cpus();
  6752. mutex_lock(&sched_domains_mutex);
  6753. arch_init_sched_domains(cpu_active_mask);
  6754. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6755. if (cpumask_empty(non_isolated_cpus))
  6756. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6757. mutex_unlock(&sched_domains_mutex);
  6758. put_online_cpus();
  6759. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6760. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6761. /* RT runtime code needs to handle some hotplug events */
  6762. hotcpu_notifier(update_runtime, 0);
  6763. init_hrtick();
  6764. /* Move init over to a non-isolated CPU */
  6765. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6766. BUG();
  6767. sched_init_granularity();
  6768. free_cpumask_var(non_isolated_cpus);
  6769. init_sched_rt_class();
  6770. }
  6771. #else
  6772. void __init sched_init_smp(void)
  6773. {
  6774. sched_init_granularity();
  6775. }
  6776. #endif /* CONFIG_SMP */
  6777. const_debug unsigned int sysctl_timer_migration = 1;
  6778. int in_sched_functions(unsigned long addr)
  6779. {
  6780. return in_lock_functions(addr) ||
  6781. (addr >= (unsigned long)__sched_text_start
  6782. && addr < (unsigned long)__sched_text_end);
  6783. }
  6784. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6785. {
  6786. cfs_rq->tasks_timeline = RB_ROOT;
  6787. INIT_LIST_HEAD(&cfs_rq->tasks);
  6788. #ifdef CONFIG_FAIR_GROUP_SCHED
  6789. cfs_rq->rq = rq;
  6790. #endif
  6791. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6792. }
  6793. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6794. {
  6795. struct rt_prio_array *array;
  6796. int i;
  6797. array = &rt_rq->active;
  6798. for (i = 0; i < MAX_RT_PRIO; i++) {
  6799. INIT_LIST_HEAD(array->queue + i);
  6800. __clear_bit(i, array->bitmap);
  6801. }
  6802. /* delimiter for bitsearch: */
  6803. __set_bit(MAX_RT_PRIO, array->bitmap);
  6804. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6805. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6806. #ifdef CONFIG_SMP
  6807. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6808. #endif
  6809. #endif
  6810. #ifdef CONFIG_SMP
  6811. rt_rq->rt_nr_migratory = 0;
  6812. rt_rq->overloaded = 0;
  6813. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6814. #endif
  6815. rt_rq->rt_time = 0;
  6816. rt_rq->rt_throttled = 0;
  6817. rt_rq->rt_runtime = 0;
  6818. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6819. #ifdef CONFIG_RT_GROUP_SCHED
  6820. rt_rq->rt_nr_boosted = 0;
  6821. rt_rq->rq = rq;
  6822. #endif
  6823. }
  6824. #ifdef CONFIG_FAIR_GROUP_SCHED
  6825. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6826. struct sched_entity *se, int cpu, int add,
  6827. struct sched_entity *parent)
  6828. {
  6829. struct rq *rq = cpu_rq(cpu);
  6830. tg->cfs_rq[cpu] = cfs_rq;
  6831. init_cfs_rq(cfs_rq, rq);
  6832. cfs_rq->tg = tg;
  6833. if (add)
  6834. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6835. tg->se[cpu] = se;
  6836. /* se could be NULL for init_task_group */
  6837. if (!se)
  6838. return;
  6839. if (!parent)
  6840. se->cfs_rq = &rq->cfs;
  6841. else
  6842. se->cfs_rq = parent->my_q;
  6843. se->my_q = cfs_rq;
  6844. se->load.weight = tg->shares;
  6845. se->load.inv_weight = 0;
  6846. se->parent = parent;
  6847. }
  6848. #endif
  6849. #ifdef CONFIG_RT_GROUP_SCHED
  6850. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6851. struct sched_rt_entity *rt_se, int cpu, int add,
  6852. struct sched_rt_entity *parent)
  6853. {
  6854. struct rq *rq = cpu_rq(cpu);
  6855. tg->rt_rq[cpu] = rt_rq;
  6856. init_rt_rq(rt_rq, rq);
  6857. rt_rq->tg = tg;
  6858. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6859. if (add)
  6860. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6861. tg->rt_se[cpu] = rt_se;
  6862. if (!rt_se)
  6863. return;
  6864. if (!parent)
  6865. rt_se->rt_rq = &rq->rt;
  6866. else
  6867. rt_se->rt_rq = parent->my_q;
  6868. rt_se->my_q = rt_rq;
  6869. rt_se->parent = parent;
  6870. INIT_LIST_HEAD(&rt_se->run_list);
  6871. }
  6872. #endif
  6873. void __init sched_init(void)
  6874. {
  6875. int i, j;
  6876. unsigned long alloc_size = 0, ptr;
  6877. #ifdef CONFIG_FAIR_GROUP_SCHED
  6878. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6879. #endif
  6880. #ifdef CONFIG_RT_GROUP_SCHED
  6881. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6882. #endif
  6883. #ifdef CONFIG_CPUMASK_OFFSTACK
  6884. alloc_size += num_possible_cpus() * cpumask_size();
  6885. #endif
  6886. if (alloc_size) {
  6887. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6888. #ifdef CONFIG_FAIR_GROUP_SCHED
  6889. init_task_group.se = (struct sched_entity **)ptr;
  6890. ptr += nr_cpu_ids * sizeof(void **);
  6891. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6892. ptr += nr_cpu_ids * sizeof(void **);
  6893. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6894. #ifdef CONFIG_RT_GROUP_SCHED
  6895. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6896. ptr += nr_cpu_ids * sizeof(void **);
  6897. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6898. ptr += nr_cpu_ids * sizeof(void **);
  6899. #endif /* CONFIG_RT_GROUP_SCHED */
  6900. #ifdef CONFIG_CPUMASK_OFFSTACK
  6901. for_each_possible_cpu(i) {
  6902. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6903. ptr += cpumask_size();
  6904. }
  6905. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6906. }
  6907. #ifdef CONFIG_SMP
  6908. init_defrootdomain();
  6909. #endif
  6910. init_rt_bandwidth(&def_rt_bandwidth,
  6911. global_rt_period(), global_rt_runtime());
  6912. #ifdef CONFIG_RT_GROUP_SCHED
  6913. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6914. global_rt_period(), global_rt_runtime());
  6915. #endif /* CONFIG_RT_GROUP_SCHED */
  6916. #ifdef CONFIG_CGROUP_SCHED
  6917. list_add(&init_task_group.list, &task_groups);
  6918. INIT_LIST_HEAD(&init_task_group.children);
  6919. #endif /* CONFIG_CGROUP_SCHED */
  6920. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6921. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6922. __alignof__(unsigned long));
  6923. #endif
  6924. for_each_possible_cpu(i) {
  6925. struct rq *rq;
  6926. rq = cpu_rq(i);
  6927. raw_spin_lock_init(&rq->lock);
  6928. rq->nr_running = 0;
  6929. rq->calc_load_active = 0;
  6930. rq->calc_load_update = jiffies + LOAD_FREQ;
  6931. init_cfs_rq(&rq->cfs, rq);
  6932. init_rt_rq(&rq->rt, rq);
  6933. #ifdef CONFIG_FAIR_GROUP_SCHED
  6934. init_task_group.shares = init_task_group_load;
  6935. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6936. #ifdef CONFIG_CGROUP_SCHED
  6937. /*
  6938. * How much cpu bandwidth does init_task_group get?
  6939. *
  6940. * In case of task-groups formed thr' the cgroup filesystem, it
  6941. * gets 100% of the cpu resources in the system. This overall
  6942. * system cpu resource is divided among the tasks of
  6943. * init_task_group and its child task-groups in a fair manner,
  6944. * based on each entity's (task or task-group's) weight
  6945. * (se->load.weight).
  6946. *
  6947. * In other words, if init_task_group has 10 tasks of weight
  6948. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6949. * then A0's share of the cpu resource is:
  6950. *
  6951. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6952. *
  6953. * We achieve this by letting init_task_group's tasks sit
  6954. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6955. */
  6956. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6957. #endif
  6958. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6959. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6960. #ifdef CONFIG_RT_GROUP_SCHED
  6961. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6962. #ifdef CONFIG_CGROUP_SCHED
  6963. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6964. #endif
  6965. #endif
  6966. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6967. rq->cpu_load[j] = 0;
  6968. rq->last_load_update_tick = jiffies;
  6969. #ifdef CONFIG_SMP
  6970. rq->sd = NULL;
  6971. rq->rd = NULL;
  6972. rq->cpu_power = SCHED_LOAD_SCALE;
  6973. rq->post_schedule = 0;
  6974. rq->active_balance = 0;
  6975. rq->next_balance = jiffies;
  6976. rq->push_cpu = 0;
  6977. rq->cpu = i;
  6978. rq->online = 0;
  6979. rq->idle_stamp = 0;
  6980. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6981. rq_attach_root(rq, &def_root_domain);
  6982. #ifdef CONFIG_NO_HZ
  6983. rq->nohz_balance_kick = 0;
  6984. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6985. #endif
  6986. #endif
  6987. init_rq_hrtick(rq);
  6988. atomic_set(&rq->nr_iowait, 0);
  6989. }
  6990. set_load_weight(&init_task);
  6991. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6992. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6993. #endif
  6994. #ifdef CONFIG_SMP
  6995. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6996. #endif
  6997. #ifdef CONFIG_RT_MUTEXES
  6998. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6999. #endif
  7000. /*
  7001. * The boot idle thread does lazy MMU switching as well:
  7002. */
  7003. atomic_inc(&init_mm.mm_count);
  7004. enter_lazy_tlb(&init_mm, current);
  7005. /*
  7006. * Make us the idle thread. Technically, schedule() should not be
  7007. * called from this thread, however somewhere below it might be,
  7008. * but because we are the idle thread, we just pick up running again
  7009. * when this runqueue becomes "idle".
  7010. */
  7011. init_idle(current, smp_processor_id());
  7012. calc_load_update = jiffies + LOAD_FREQ;
  7013. /*
  7014. * During early bootup we pretend to be a normal task:
  7015. */
  7016. current->sched_class = &fair_sched_class;
  7017. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7018. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7019. #ifdef CONFIG_SMP
  7020. #ifdef CONFIG_NO_HZ
  7021. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7022. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7023. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7024. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7025. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7026. #endif
  7027. /* May be allocated at isolcpus cmdline parse time */
  7028. if (cpu_isolated_map == NULL)
  7029. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7030. #endif /* SMP */
  7031. perf_event_init();
  7032. scheduler_running = 1;
  7033. }
  7034. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7035. static inline int preempt_count_equals(int preempt_offset)
  7036. {
  7037. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7038. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  7039. }
  7040. void __might_sleep(const char *file, int line, int preempt_offset)
  7041. {
  7042. #ifdef in_atomic
  7043. static unsigned long prev_jiffy; /* ratelimiting */
  7044. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7045. system_state != SYSTEM_RUNNING || oops_in_progress)
  7046. return;
  7047. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7048. return;
  7049. prev_jiffy = jiffies;
  7050. printk(KERN_ERR
  7051. "BUG: sleeping function called from invalid context at %s:%d\n",
  7052. file, line);
  7053. printk(KERN_ERR
  7054. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7055. in_atomic(), irqs_disabled(),
  7056. current->pid, current->comm);
  7057. debug_show_held_locks(current);
  7058. if (irqs_disabled())
  7059. print_irqtrace_events(current);
  7060. dump_stack();
  7061. #endif
  7062. }
  7063. EXPORT_SYMBOL(__might_sleep);
  7064. #endif
  7065. #ifdef CONFIG_MAGIC_SYSRQ
  7066. static void normalize_task(struct rq *rq, struct task_struct *p)
  7067. {
  7068. int on_rq;
  7069. on_rq = p->se.on_rq;
  7070. if (on_rq)
  7071. deactivate_task(rq, p, 0);
  7072. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7073. if (on_rq) {
  7074. activate_task(rq, p, 0);
  7075. resched_task(rq->curr);
  7076. }
  7077. }
  7078. void normalize_rt_tasks(void)
  7079. {
  7080. struct task_struct *g, *p;
  7081. unsigned long flags;
  7082. struct rq *rq;
  7083. read_lock_irqsave(&tasklist_lock, flags);
  7084. do_each_thread(g, p) {
  7085. /*
  7086. * Only normalize user tasks:
  7087. */
  7088. if (!p->mm)
  7089. continue;
  7090. p->se.exec_start = 0;
  7091. #ifdef CONFIG_SCHEDSTATS
  7092. p->se.statistics.wait_start = 0;
  7093. p->se.statistics.sleep_start = 0;
  7094. p->se.statistics.block_start = 0;
  7095. #endif
  7096. if (!rt_task(p)) {
  7097. /*
  7098. * Renice negative nice level userspace
  7099. * tasks back to 0:
  7100. */
  7101. if (TASK_NICE(p) < 0 && p->mm)
  7102. set_user_nice(p, 0);
  7103. continue;
  7104. }
  7105. raw_spin_lock(&p->pi_lock);
  7106. rq = __task_rq_lock(p);
  7107. normalize_task(rq, p);
  7108. __task_rq_unlock(rq);
  7109. raw_spin_unlock(&p->pi_lock);
  7110. } while_each_thread(g, p);
  7111. read_unlock_irqrestore(&tasklist_lock, flags);
  7112. }
  7113. #endif /* CONFIG_MAGIC_SYSRQ */
  7114. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7115. /*
  7116. * These functions are only useful for the IA64 MCA handling, or kdb.
  7117. *
  7118. * They can only be called when the whole system has been
  7119. * stopped - every CPU needs to be quiescent, and no scheduling
  7120. * activity can take place. Using them for anything else would
  7121. * be a serious bug, and as a result, they aren't even visible
  7122. * under any other configuration.
  7123. */
  7124. /**
  7125. * curr_task - return the current task for a given cpu.
  7126. * @cpu: the processor in question.
  7127. *
  7128. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7129. */
  7130. struct task_struct *curr_task(int cpu)
  7131. {
  7132. return cpu_curr(cpu);
  7133. }
  7134. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7135. #ifdef CONFIG_IA64
  7136. /**
  7137. * set_curr_task - set the current task for a given cpu.
  7138. * @cpu: the processor in question.
  7139. * @p: the task pointer to set.
  7140. *
  7141. * Description: This function must only be used when non-maskable interrupts
  7142. * are serviced on a separate stack. It allows the architecture to switch the
  7143. * notion of the current task on a cpu in a non-blocking manner. This function
  7144. * must be called with all CPU's synchronized, and interrupts disabled, the
  7145. * and caller must save the original value of the current task (see
  7146. * curr_task() above) and restore that value before reenabling interrupts and
  7147. * re-starting the system.
  7148. *
  7149. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7150. */
  7151. void set_curr_task(int cpu, struct task_struct *p)
  7152. {
  7153. cpu_curr(cpu) = p;
  7154. }
  7155. #endif
  7156. #ifdef CONFIG_FAIR_GROUP_SCHED
  7157. static void free_fair_sched_group(struct task_group *tg)
  7158. {
  7159. int i;
  7160. for_each_possible_cpu(i) {
  7161. if (tg->cfs_rq)
  7162. kfree(tg->cfs_rq[i]);
  7163. if (tg->se)
  7164. kfree(tg->se[i]);
  7165. }
  7166. kfree(tg->cfs_rq);
  7167. kfree(tg->se);
  7168. }
  7169. static
  7170. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7171. {
  7172. struct cfs_rq *cfs_rq;
  7173. struct sched_entity *se;
  7174. struct rq *rq;
  7175. int i;
  7176. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7177. if (!tg->cfs_rq)
  7178. goto err;
  7179. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7180. if (!tg->se)
  7181. goto err;
  7182. tg->shares = NICE_0_LOAD;
  7183. for_each_possible_cpu(i) {
  7184. rq = cpu_rq(i);
  7185. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7186. GFP_KERNEL, cpu_to_node(i));
  7187. if (!cfs_rq)
  7188. goto err;
  7189. se = kzalloc_node(sizeof(struct sched_entity),
  7190. GFP_KERNEL, cpu_to_node(i));
  7191. if (!se)
  7192. goto err_free_rq;
  7193. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7194. }
  7195. return 1;
  7196. err_free_rq:
  7197. kfree(cfs_rq);
  7198. err:
  7199. return 0;
  7200. }
  7201. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7202. {
  7203. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7204. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7205. }
  7206. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7207. {
  7208. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7209. }
  7210. #else /* !CONFG_FAIR_GROUP_SCHED */
  7211. static inline void free_fair_sched_group(struct task_group *tg)
  7212. {
  7213. }
  7214. static inline
  7215. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7216. {
  7217. return 1;
  7218. }
  7219. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7220. {
  7221. }
  7222. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7223. {
  7224. }
  7225. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7226. #ifdef CONFIG_RT_GROUP_SCHED
  7227. static void free_rt_sched_group(struct task_group *tg)
  7228. {
  7229. int i;
  7230. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7231. for_each_possible_cpu(i) {
  7232. if (tg->rt_rq)
  7233. kfree(tg->rt_rq[i]);
  7234. if (tg->rt_se)
  7235. kfree(tg->rt_se[i]);
  7236. }
  7237. kfree(tg->rt_rq);
  7238. kfree(tg->rt_se);
  7239. }
  7240. static
  7241. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7242. {
  7243. struct rt_rq *rt_rq;
  7244. struct sched_rt_entity *rt_se;
  7245. struct rq *rq;
  7246. int i;
  7247. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7248. if (!tg->rt_rq)
  7249. goto err;
  7250. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7251. if (!tg->rt_se)
  7252. goto err;
  7253. init_rt_bandwidth(&tg->rt_bandwidth,
  7254. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7255. for_each_possible_cpu(i) {
  7256. rq = cpu_rq(i);
  7257. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7258. GFP_KERNEL, cpu_to_node(i));
  7259. if (!rt_rq)
  7260. goto err;
  7261. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7262. GFP_KERNEL, cpu_to_node(i));
  7263. if (!rt_se)
  7264. goto err_free_rq;
  7265. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7266. }
  7267. return 1;
  7268. err_free_rq:
  7269. kfree(rt_rq);
  7270. err:
  7271. return 0;
  7272. }
  7273. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7274. {
  7275. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7276. &cpu_rq(cpu)->leaf_rt_rq_list);
  7277. }
  7278. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7279. {
  7280. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7281. }
  7282. #else /* !CONFIG_RT_GROUP_SCHED */
  7283. static inline void free_rt_sched_group(struct task_group *tg)
  7284. {
  7285. }
  7286. static inline
  7287. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7288. {
  7289. return 1;
  7290. }
  7291. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7292. {
  7293. }
  7294. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7295. {
  7296. }
  7297. #endif /* CONFIG_RT_GROUP_SCHED */
  7298. #ifdef CONFIG_CGROUP_SCHED
  7299. static void free_sched_group(struct task_group *tg)
  7300. {
  7301. free_fair_sched_group(tg);
  7302. free_rt_sched_group(tg);
  7303. kfree(tg);
  7304. }
  7305. /* allocate runqueue etc for a new task group */
  7306. struct task_group *sched_create_group(struct task_group *parent)
  7307. {
  7308. struct task_group *tg;
  7309. unsigned long flags;
  7310. int i;
  7311. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7312. if (!tg)
  7313. return ERR_PTR(-ENOMEM);
  7314. if (!alloc_fair_sched_group(tg, parent))
  7315. goto err;
  7316. if (!alloc_rt_sched_group(tg, parent))
  7317. goto err;
  7318. spin_lock_irqsave(&task_group_lock, flags);
  7319. for_each_possible_cpu(i) {
  7320. register_fair_sched_group(tg, i);
  7321. register_rt_sched_group(tg, i);
  7322. }
  7323. list_add_rcu(&tg->list, &task_groups);
  7324. WARN_ON(!parent); /* root should already exist */
  7325. tg->parent = parent;
  7326. INIT_LIST_HEAD(&tg->children);
  7327. list_add_rcu(&tg->siblings, &parent->children);
  7328. spin_unlock_irqrestore(&task_group_lock, flags);
  7329. return tg;
  7330. err:
  7331. free_sched_group(tg);
  7332. return ERR_PTR(-ENOMEM);
  7333. }
  7334. /* rcu callback to free various structures associated with a task group */
  7335. static void free_sched_group_rcu(struct rcu_head *rhp)
  7336. {
  7337. /* now it should be safe to free those cfs_rqs */
  7338. free_sched_group(container_of(rhp, struct task_group, rcu));
  7339. }
  7340. /* Destroy runqueue etc associated with a task group */
  7341. void sched_destroy_group(struct task_group *tg)
  7342. {
  7343. unsigned long flags;
  7344. int i;
  7345. spin_lock_irqsave(&task_group_lock, flags);
  7346. for_each_possible_cpu(i) {
  7347. unregister_fair_sched_group(tg, i);
  7348. unregister_rt_sched_group(tg, i);
  7349. }
  7350. list_del_rcu(&tg->list);
  7351. list_del_rcu(&tg->siblings);
  7352. spin_unlock_irqrestore(&task_group_lock, flags);
  7353. /* wait for possible concurrent references to cfs_rqs complete */
  7354. call_rcu(&tg->rcu, free_sched_group_rcu);
  7355. }
  7356. /* change task's runqueue when it moves between groups.
  7357. * The caller of this function should have put the task in its new group
  7358. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7359. * reflect its new group.
  7360. */
  7361. void sched_move_task(struct task_struct *tsk)
  7362. {
  7363. int on_rq, running;
  7364. unsigned long flags;
  7365. struct rq *rq;
  7366. rq = task_rq_lock(tsk, &flags);
  7367. running = task_current(rq, tsk);
  7368. on_rq = tsk->se.on_rq;
  7369. if (on_rq)
  7370. dequeue_task(rq, tsk, 0);
  7371. if (unlikely(running))
  7372. tsk->sched_class->put_prev_task(rq, tsk);
  7373. #ifdef CONFIG_FAIR_GROUP_SCHED
  7374. if (tsk->sched_class->task_move_group)
  7375. tsk->sched_class->task_move_group(tsk, on_rq);
  7376. else
  7377. #endif
  7378. set_task_rq(tsk, task_cpu(tsk));
  7379. if (unlikely(running))
  7380. tsk->sched_class->set_curr_task(rq);
  7381. if (on_rq)
  7382. enqueue_task(rq, tsk, 0);
  7383. task_rq_unlock(rq, &flags);
  7384. }
  7385. #endif /* CONFIG_CGROUP_SCHED */
  7386. #ifdef CONFIG_FAIR_GROUP_SCHED
  7387. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7388. {
  7389. struct cfs_rq *cfs_rq = se->cfs_rq;
  7390. int on_rq;
  7391. on_rq = se->on_rq;
  7392. if (on_rq)
  7393. dequeue_entity(cfs_rq, se, 0);
  7394. se->load.weight = shares;
  7395. se->load.inv_weight = 0;
  7396. if (on_rq)
  7397. enqueue_entity(cfs_rq, se, 0);
  7398. }
  7399. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7400. {
  7401. struct cfs_rq *cfs_rq = se->cfs_rq;
  7402. struct rq *rq = cfs_rq->rq;
  7403. unsigned long flags;
  7404. raw_spin_lock_irqsave(&rq->lock, flags);
  7405. __set_se_shares(se, shares);
  7406. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7407. }
  7408. static DEFINE_MUTEX(shares_mutex);
  7409. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7410. {
  7411. int i;
  7412. unsigned long flags;
  7413. /*
  7414. * We can't change the weight of the root cgroup.
  7415. */
  7416. if (!tg->se[0])
  7417. return -EINVAL;
  7418. if (shares < MIN_SHARES)
  7419. shares = MIN_SHARES;
  7420. else if (shares > MAX_SHARES)
  7421. shares = MAX_SHARES;
  7422. mutex_lock(&shares_mutex);
  7423. if (tg->shares == shares)
  7424. goto done;
  7425. spin_lock_irqsave(&task_group_lock, flags);
  7426. for_each_possible_cpu(i)
  7427. unregister_fair_sched_group(tg, i);
  7428. list_del_rcu(&tg->siblings);
  7429. spin_unlock_irqrestore(&task_group_lock, flags);
  7430. /* wait for any ongoing reference to this group to finish */
  7431. synchronize_sched();
  7432. /*
  7433. * Now we are free to modify the group's share on each cpu
  7434. * w/o tripping rebalance_share or load_balance_fair.
  7435. */
  7436. tg->shares = shares;
  7437. for_each_possible_cpu(i) {
  7438. /*
  7439. * force a rebalance
  7440. */
  7441. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7442. set_se_shares(tg->se[i], shares);
  7443. }
  7444. /*
  7445. * Enable load balance activity on this group, by inserting it back on
  7446. * each cpu's rq->leaf_cfs_rq_list.
  7447. */
  7448. spin_lock_irqsave(&task_group_lock, flags);
  7449. for_each_possible_cpu(i)
  7450. register_fair_sched_group(tg, i);
  7451. list_add_rcu(&tg->siblings, &tg->parent->children);
  7452. spin_unlock_irqrestore(&task_group_lock, flags);
  7453. done:
  7454. mutex_unlock(&shares_mutex);
  7455. return 0;
  7456. }
  7457. unsigned long sched_group_shares(struct task_group *tg)
  7458. {
  7459. return tg->shares;
  7460. }
  7461. #endif
  7462. #ifdef CONFIG_RT_GROUP_SCHED
  7463. /*
  7464. * Ensure that the real time constraints are schedulable.
  7465. */
  7466. static DEFINE_MUTEX(rt_constraints_mutex);
  7467. static unsigned long to_ratio(u64 period, u64 runtime)
  7468. {
  7469. if (runtime == RUNTIME_INF)
  7470. return 1ULL << 20;
  7471. return div64_u64(runtime << 20, period);
  7472. }
  7473. /* Must be called with tasklist_lock held */
  7474. static inline int tg_has_rt_tasks(struct task_group *tg)
  7475. {
  7476. struct task_struct *g, *p;
  7477. do_each_thread(g, p) {
  7478. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7479. return 1;
  7480. } while_each_thread(g, p);
  7481. return 0;
  7482. }
  7483. struct rt_schedulable_data {
  7484. struct task_group *tg;
  7485. u64 rt_period;
  7486. u64 rt_runtime;
  7487. };
  7488. static int tg_schedulable(struct task_group *tg, void *data)
  7489. {
  7490. struct rt_schedulable_data *d = data;
  7491. struct task_group *child;
  7492. unsigned long total, sum = 0;
  7493. u64 period, runtime;
  7494. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7495. runtime = tg->rt_bandwidth.rt_runtime;
  7496. if (tg == d->tg) {
  7497. period = d->rt_period;
  7498. runtime = d->rt_runtime;
  7499. }
  7500. /*
  7501. * Cannot have more runtime than the period.
  7502. */
  7503. if (runtime > period && runtime != RUNTIME_INF)
  7504. return -EINVAL;
  7505. /*
  7506. * Ensure we don't starve existing RT tasks.
  7507. */
  7508. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7509. return -EBUSY;
  7510. total = to_ratio(period, runtime);
  7511. /*
  7512. * Nobody can have more than the global setting allows.
  7513. */
  7514. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7515. return -EINVAL;
  7516. /*
  7517. * The sum of our children's runtime should not exceed our own.
  7518. */
  7519. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7520. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7521. runtime = child->rt_bandwidth.rt_runtime;
  7522. if (child == d->tg) {
  7523. period = d->rt_period;
  7524. runtime = d->rt_runtime;
  7525. }
  7526. sum += to_ratio(period, runtime);
  7527. }
  7528. if (sum > total)
  7529. return -EINVAL;
  7530. return 0;
  7531. }
  7532. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7533. {
  7534. struct rt_schedulable_data data = {
  7535. .tg = tg,
  7536. .rt_period = period,
  7537. .rt_runtime = runtime,
  7538. };
  7539. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7540. }
  7541. static int tg_set_bandwidth(struct task_group *tg,
  7542. u64 rt_period, u64 rt_runtime)
  7543. {
  7544. int i, err = 0;
  7545. mutex_lock(&rt_constraints_mutex);
  7546. read_lock(&tasklist_lock);
  7547. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7548. if (err)
  7549. goto unlock;
  7550. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7551. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7552. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7553. for_each_possible_cpu(i) {
  7554. struct rt_rq *rt_rq = tg->rt_rq[i];
  7555. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7556. rt_rq->rt_runtime = rt_runtime;
  7557. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7558. }
  7559. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7560. unlock:
  7561. read_unlock(&tasklist_lock);
  7562. mutex_unlock(&rt_constraints_mutex);
  7563. return err;
  7564. }
  7565. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7566. {
  7567. u64 rt_runtime, rt_period;
  7568. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7569. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7570. if (rt_runtime_us < 0)
  7571. rt_runtime = RUNTIME_INF;
  7572. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7573. }
  7574. long sched_group_rt_runtime(struct task_group *tg)
  7575. {
  7576. u64 rt_runtime_us;
  7577. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7578. return -1;
  7579. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7580. do_div(rt_runtime_us, NSEC_PER_USEC);
  7581. return rt_runtime_us;
  7582. }
  7583. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7584. {
  7585. u64 rt_runtime, rt_period;
  7586. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7587. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7588. if (rt_period == 0)
  7589. return -EINVAL;
  7590. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7591. }
  7592. long sched_group_rt_period(struct task_group *tg)
  7593. {
  7594. u64 rt_period_us;
  7595. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7596. do_div(rt_period_us, NSEC_PER_USEC);
  7597. return rt_period_us;
  7598. }
  7599. static int sched_rt_global_constraints(void)
  7600. {
  7601. u64 runtime, period;
  7602. int ret = 0;
  7603. if (sysctl_sched_rt_period <= 0)
  7604. return -EINVAL;
  7605. runtime = global_rt_runtime();
  7606. period = global_rt_period();
  7607. /*
  7608. * Sanity check on the sysctl variables.
  7609. */
  7610. if (runtime > period && runtime != RUNTIME_INF)
  7611. return -EINVAL;
  7612. mutex_lock(&rt_constraints_mutex);
  7613. read_lock(&tasklist_lock);
  7614. ret = __rt_schedulable(NULL, 0, 0);
  7615. read_unlock(&tasklist_lock);
  7616. mutex_unlock(&rt_constraints_mutex);
  7617. return ret;
  7618. }
  7619. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7620. {
  7621. /* Don't accept realtime tasks when there is no way for them to run */
  7622. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7623. return 0;
  7624. return 1;
  7625. }
  7626. #else /* !CONFIG_RT_GROUP_SCHED */
  7627. static int sched_rt_global_constraints(void)
  7628. {
  7629. unsigned long flags;
  7630. int i;
  7631. if (sysctl_sched_rt_period <= 0)
  7632. return -EINVAL;
  7633. /*
  7634. * There's always some RT tasks in the root group
  7635. * -- migration, kstopmachine etc..
  7636. */
  7637. if (sysctl_sched_rt_runtime == 0)
  7638. return -EBUSY;
  7639. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7640. for_each_possible_cpu(i) {
  7641. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7642. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7643. rt_rq->rt_runtime = global_rt_runtime();
  7644. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7645. }
  7646. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7647. return 0;
  7648. }
  7649. #endif /* CONFIG_RT_GROUP_SCHED */
  7650. int sched_rt_handler(struct ctl_table *table, int write,
  7651. void __user *buffer, size_t *lenp,
  7652. loff_t *ppos)
  7653. {
  7654. int ret;
  7655. int old_period, old_runtime;
  7656. static DEFINE_MUTEX(mutex);
  7657. mutex_lock(&mutex);
  7658. old_period = sysctl_sched_rt_period;
  7659. old_runtime = sysctl_sched_rt_runtime;
  7660. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7661. if (!ret && write) {
  7662. ret = sched_rt_global_constraints();
  7663. if (ret) {
  7664. sysctl_sched_rt_period = old_period;
  7665. sysctl_sched_rt_runtime = old_runtime;
  7666. } else {
  7667. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7668. def_rt_bandwidth.rt_period =
  7669. ns_to_ktime(global_rt_period());
  7670. }
  7671. }
  7672. mutex_unlock(&mutex);
  7673. return ret;
  7674. }
  7675. #ifdef CONFIG_CGROUP_SCHED
  7676. /* return corresponding task_group object of a cgroup */
  7677. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7678. {
  7679. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7680. struct task_group, css);
  7681. }
  7682. static struct cgroup_subsys_state *
  7683. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7684. {
  7685. struct task_group *tg, *parent;
  7686. if (!cgrp->parent) {
  7687. /* This is early initialization for the top cgroup */
  7688. return &init_task_group.css;
  7689. }
  7690. parent = cgroup_tg(cgrp->parent);
  7691. tg = sched_create_group(parent);
  7692. if (IS_ERR(tg))
  7693. return ERR_PTR(-ENOMEM);
  7694. return &tg->css;
  7695. }
  7696. static void
  7697. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7698. {
  7699. struct task_group *tg = cgroup_tg(cgrp);
  7700. sched_destroy_group(tg);
  7701. }
  7702. static int
  7703. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7704. {
  7705. #ifdef CONFIG_RT_GROUP_SCHED
  7706. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7707. return -EINVAL;
  7708. #else
  7709. /* We don't support RT-tasks being in separate groups */
  7710. if (tsk->sched_class != &fair_sched_class)
  7711. return -EINVAL;
  7712. #endif
  7713. return 0;
  7714. }
  7715. static int
  7716. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7717. struct task_struct *tsk, bool threadgroup)
  7718. {
  7719. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7720. if (retval)
  7721. return retval;
  7722. if (threadgroup) {
  7723. struct task_struct *c;
  7724. rcu_read_lock();
  7725. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7726. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7727. if (retval) {
  7728. rcu_read_unlock();
  7729. return retval;
  7730. }
  7731. }
  7732. rcu_read_unlock();
  7733. }
  7734. return 0;
  7735. }
  7736. static void
  7737. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7738. struct cgroup *old_cont, struct task_struct *tsk,
  7739. bool threadgroup)
  7740. {
  7741. sched_move_task(tsk);
  7742. if (threadgroup) {
  7743. struct task_struct *c;
  7744. rcu_read_lock();
  7745. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7746. sched_move_task(c);
  7747. }
  7748. rcu_read_unlock();
  7749. }
  7750. }
  7751. #ifdef CONFIG_FAIR_GROUP_SCHED
  7752. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7753. u64 shareval)
  7754. {
  7755. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7756. }
  7757. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7758. {
  7759. struct task_group *tg = cgroup_tg(cgrp);
  7760. return (u64) tg->shares;
  7761. }
  7762. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7763. #ifdef CONFIG_RT_GROUP_SCHED
  7764. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7765. s64 val)
  7766. {
  7767. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7768. }
  7769. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7770. {
  7771. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7772. }
  7773. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7774. u64 rt_period_us)
  7775. {
  7776. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7777. }
  7778. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7779. {
  7780. return sched_group_rt_period(cgroup_tg(cgrp));
  7781. }
  7782. #endif /* CONFIG_RT_GROUP_SCHED */
  7783. static struct cftype cpu_files[] = {
  7784. #ifdef CONFIG_FAIR_GROUP_SCHED
  7785. {
  7786. .name = "shares",
  7787. .read_u64 = cpu_shares_read_u64,
  7788. .write_u64 = cpu_shares_write_u64,
  7789. },
  7790. #endif
  7791. #ifdef CONFIG_RT_GROUP_SCHED
  7792. {
  7793. .name = "rt_runtime_us",
  7794. .read_s64 = cpu_rt_runtime_read,
  7795. .write_s64 = cpu_rt_runtime_write,
  7796. },
  7797. {
  7798. .name = "rt_period_us",
  7799. .read_u64 = cpu_rt_period_read_uint,
  7800. .write_u64 = cpu_rt_period_write_uint,
  7801. },
  7802. #endif
  7803. };
  7804. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7805. {
  7806. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7807. }
  7808. struct cgroup_subsys cpu_cgroup_subsys = {
  7809. .name = "cpu",
  7810. .create = cpu_cgroup_create,
  7811. .destroy = cpu_cgroup_destroy,
  7812. .can_attach = cpu_cgroup_can_attach,
  7813. .attach = cpu_cgroup_attach,
  7814. .populate = cpu_cgroup_populate,
  7815. .subsys_id = cpu_cgroup_subsys_id,
  7816. .early_init = 1,
  7817. };
  7818. #endif /* CONFIG_CGROUP_SCHED */
  7819. #ifdef CONFIG_CGROUP_CPUACCT
  7820. /*
  7821. * CPU accounting code for task groups.
  7822. *
  7823. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7824. * (balbir@in.ibm.com).
  7825. */
  7826. /* track cpu usage of a group of tasks and its child groups */
  7827. struct cpuacct {
  7828. struct cgroup_subsys_state css;
  7829. /* cpuusage holds pointer to a u64-type object on every cpu */
  7830. u64 __percpu *cpuusage;
  7831. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7832. struct cpuacct *parent;
  7833. };
  7834. struct cgroup_subsys cpuacct_subsys;
  7835. /* return cpu accounting group corresponding to this container */
  7836. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7837. {
  7838. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7839. struct cpuacct, css);
  7840. }
  7841. /* return cpu accounting group to which this task belongs */
  7842. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7843. {
  7844. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7845. struct cpuacct, css);
  7846. }
  7847. /* create a new cpu accounting group */
  7848. static struct cgroup_subsys_state *cpuacct_create(
  7849. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7850. {
  7851. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7852. int i;
  7853. if (!ca)
  7854. goto out;
  7855. ca->cpuusage = alloc_percpu(u64);
  7856. if (!ca->cpuusage)
  7857. goto out_free_ca;
  7858. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7859. if (percpu_counter_init(&ca->cpustat[i], 0))
  7860. goto out_free_counters;
  7861. if (cgrp->parent)
  7862. ca->parent = cgroup_ca(cgrp->parent);
  7863. return &ca->css;
  7864. out_free_counters:
  7865. while (--i >= 0)
  7866. percpu_counter_destroy(&ca->cpustat[i]);
  7867. free_percpu(ca->cpuusage);
  7868. out_free_ca:
  7869. kfree(ca);
  7870. out:
  7871. return ERR_PTR(-ENOMEM);
  7872. }
  7873. /* destroy an existing cpu accounting group */
  7874. static void
  7875. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7876. {
  7877. struct cpuacct *ca = cgroup_ca(cgrp);
  7878. int i;
  7879. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7880. percpu_counter_destroy(&ca->cpustat[i]);
  7881. free_percpu(ca->cpuusage);
  7882. kfree(ca);
  7883. }
  7884. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7885. {
  7886. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7887. u64 data;
  7888. #ifndef CONFIG_64BIT
  7889. /*
  7890. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7891. */
  7892. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7893. data = *cpuusage;
  7894. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7895. #else
  7896. data = *cpuusage;
  7897. #endif
  7898. return data;
  7899. }
  7900. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7901. {
  7902. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7903. #ifndef CONFIG_64BIT
  7904. /*
  7905. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7906. */
  7907. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7908. *cpuusage = val;
  7909. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7910. #else
  7911. *cpuusage = val;
  7912. #endif
  7913. }
  7914. /* return total cpu usage (in nanoseconds) of a group */
  7915. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7916. {
  7917. struct cpuacct *ca = cgroup_ca(cgrp);
  7918. u64 totalcpuusage = 0;
  7919. int i;
  7920. for_each_present_cpu(i)
  7921. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7922. return totalcpuusage;
  7923. }
  7924. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7925. u64 reset)
  7926. {
  7927. struct cpuacct *ca = cgroup_ca(cgrp);
  7928. int err = 0;
  7929. int i;
  7930. if (reset) {
  7931. err = -EINVAL;
  7932. goto out;
  7933. }
  7934. for_each_present_cpu(i)
  7935. cpuacct_cpuusage_write(ca, i, 0);
  7936. out:
  7937. return err;
  7938. }
  7939. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7940. struct seq_file *m)
  7941. {
  7942. struct cpuacct *ca = cgroup_ca(cgroup);
  7943. u64 percpu;
  7944. int i;
  7945. for_each_present_cpu(i) {
  7946. percpu = cpuacct_cpuusage_read(ca, i);
  7947. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7948. }
  7949. seq_printf(m, "\n");
  7950. return 0;
  7951. }
  7952. static const char *cpuacct_stat_desc[] = {
  7953. [CPUACCT_STAT_USER] = "user",
  7954. [CPUACCT_STAT_SYSTEM] = "system",
  7955. };
  7956. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7957. struct cgroup_map_cb *cb)
  7958. {
  7959. struct cpuacct *ca = cgroup_ca(cgrp);
  7960. int i;
  7961. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7962. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7963. val = cputime64_to_clock_t(val);
  7964. cb->fill(cb, cpuacct_stat_desc[i], val);
  7965. }
  7966. return 0;
  7967. }
  7968. static struct cftype files[] = {
  7969. {
  7970. .name = "usage",
  7971. .read_u64 = cpuusage_read,
  7972. .write_u64 = cpuusage_write,
  7973. },
  7974. {
  7975. .name = "usage_percpu",
  7976. .read_seq_string = cpuacct_percpu_seq_read,
  7977. },
  7978. {
  7979. .name = "stat",
  7980. .read_map = cpuacct_stats_show,
  7981. },
  7982. };
  7983. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7984. {
  7985. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7986. }
  7987. /*
  7988. * charge this task's execution time to its accounting group.
  7989. *
  7990. * called with rq->lock held.
  7991. */
  7992. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7993. {
  7994. struct cpuacct *ca;
  7995. int cpu;
  7996. if (unlikely(!cpuacct_subsys.active))
  7997. return;
  7998. cpu = task_cpu(tsk);
  7999. rcu_read_lock();
  8000. ca = task_ca(tsk);
  8001. for (; ca; ca = ca->parent) {
  8002. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8003. *cpuusage += cputime;
  8004. }
  8005. rcu_read_unlock();
  8006. }
  8007. /*
  8008. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8009. * in cputime_t units. As a result, cpuacct_update_stats calls
  8010. * percpu_counter_add with values large enough to always overflow the
  8011. * per cpu batch limit causing bad SMP scalability.
  8012. *
  8013. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8014. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8015. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8016. */
  8017. #ifdef CONFIG_SMP
  8018. #define CPUACCT_BATCH \
  8019. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8020. #else
  8021. #define CPUACCT_BATCH 0
  8022. #endif
  8023. /*
  8024. * Charge the system/user time to the task's accounting group.
  8025. */
  8026. static void cpuacct_update_stats(struct task_struct *tsk,
  8027. enum cpuacct_stat_index idx, cputime_t val)
  8028. {
  8029. struct cpuacct *ca;
  8030. int batch = CPUACCT_BATCH;
  8031. if (unlikely(!cpuacct_subsys.active))
  8032. return;
  8033. rcu_read_lock();
  8034. ca = task_ca(tsk);
  8035. do {
  8036. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8037. ca = ca->parent;
  8038. } while (ca);
  8039. rcu_read_unlock();
  8040. }
  8041. struct cgroup_subsys cpuacct_subsys = {
  8042. .name = "cpuacct",
  8043. .create = cpuacct_create,
  8044. .destroy = cpuacct_destroy,
  8045. .populate = cpuacct_populate,
  8046. .subsys_id = cpuacct_subsys_id,
  8047. };
  8048. #endif /* CONFIG_CGROUP_CPUACCT */
  8049. #ifndef CONFIG_SMP
  8050. void synchronize_sched_expedited(void)
  8051. {
  8052. barrier();
  8053. }
  8054. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  8055. #else /* #ifndef CONFIG_SMP */
  8056. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  8057. static int synchronize_sched_expedited_cpu_stop(void *data)
  8058. {
  8059. /*
  8060. * There must be a full memory barrier on each affected CPU
  8061. * between the time that try_stop_cpus() is called and the
  8062. * time that it returns.
  8063. *
  8064. * In the current initial implementation of cpu_stop, the
  8065. * above condition is already met when the control reaches
  8066. * this point and the following smp_mb() is not strictly
  8067. * necessary. Do smp_mb() anyway for documentation and
  8068. * robustness against future implementation changes.
  8069. */
  8070. smp_mb(); /* See above comment block. */
  8071. return 0;
  8072. }
  8073. /*
  8074. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  8075. * approach to force grace period to end quickly. This consumes
  8076. * significant time on all CPUs, and is thus not recommended for
  8077. * any sort of common-case code.
  8078. *
  8079. * Note that it is illegal to call this function while holding any
  8080. * lock that is acquired by a CPU-hotplug notifier. Failing to
  8081. * observe this restriction will result in deadlock.
  8082. */
  8083. void synchronize_sched_expedited(void)
  8084. {
  8085. int snap, trycount = 0;
  8086. smp_mb(); /* ensure prior mod happens before capturing snap. */
  8087. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  8088. get_online_cpus();
  8089. while (try_stop_cpus(cpu_online_mask,
  8090. synchronize_sched_expedited_cpu_stop,
  8091. NULL) == -EAGAIN) {
  8092. put_online_cpus();
  8093. if (trycount++ < 10)
  8094. udelay(trycount * num_online_cpus());
  8095. else {
  8096. synchronize_sched();
  8097. return;
  8098. }
  8099. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  8100. smp_mb(); /* ensure test happens before caller kfree */
  8101. return;
  8102. }
  8103. get_online_cpus();
  8104. }
  8105. atomic_inc(&synchronize_sched_expedited_count);
  8106. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  8107. put_online_cpus();
  8108. }
  8109. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  8110. #endif /* #else #ifndef CONFIG_SMP */