ordered-data.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/gfp.h>
  19. #include <linux/slab.h>
  20. #include <linux/blkdev.h>
  21. #include <linux/writeback.h>
  22. #include <linux/pagevec.h>
  23. #include "ctree.h"
  24. #include "transaction.h"
  25. #include "btrfs_inode.h"
  26. #include "extent_io.h"
  27. static u64 entry_end(struct btrfs_ordered_extent *entry)
  28. {
  29. if (entry->file_offset + entry->len < entry->file_offset)
  30. return (u64)-1;
  31. return entry->file_offset + entry->len;
  32. }
  33. /* returns NULL if the insertion worked, or it returns the node it did find
  34. * in the tree
  35. */
  36. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  37. struct rb_node *node)
  38. {
  39. struct rb_node **p = &root->rb_node;
  40. struct rb_node *parent = NULL;
  41. struct btrfs_ordered_extent *entry;
  42. while (*p) {
  43. parent = *p;
  44. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  45. if (file_offset < entry->file_offset)
  46. p = &(*p)->rb_left;
  47. else if (file_offset >= entry_end(entry))
  48. p = &(*p)->rb_right;
  49. else
  50. return parent;
  51. }
  52. rb_link_node(node, parent, p);
  53. rb_insert_color(node, root);
  54. return NULL;
  55. }
  56. /*
  57. * look for a given offset in the tree, and if it can't be found return the
  58. * first lesser offset
  59. */
  60. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  61. struct rb_node **prev_ret)
  62. {
  63. struct rb_node *n = root->rb_node;
  64. struct rb_node *prev = NULL;
  65. struct rb_node *test;
  66. struct btrfs_ordered_extent *entry;
  67. struct btrfs_ordered_extent *prev_entry = NULL;
  68. while (n) {
  69. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  70. prev = n;
  71. prev_entry = entry;
  72. if (file_offset < entry->file_offset)
  73. n = n->rb_left;
  74. else if (file_offset >= entry_end(entry))
  75. n = n->rb_right;
  76. else
  77. return n;
  78. }
  79. if (!prev_ret)
  80. return NULL;
  81. while (prev && file_offset >= entry_end(prev_entry)) {
  82. test = rb_next(prev);
  83. if (!test)
  84. break;
  85. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  86. rb_node);
  87. if (file_offset < entry_end(prev_entry))
  88. break;
  89. prev = test;
  90. }
  91. if (prev)
  92. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  93. rb_node);
  94. while (prev && file_offset < entry_end(prev_entry)) {
  95. test = rb_prev(prev);
  96. if (!test)
  97. break;
  98. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  99. rb_node);
  100. prev = test;
  101. }
  102. *prev_ret = prev;
  103. return NULL;
  104. }
  105. /*
  106. * helper to check if a given offset is inside a given entry
  107. */
  108. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  109. {
  110. if (file_offset < entry->file_offset ||
  111. entry->file_offset + entry->len <= file_offset)
  112. return 0;
  113. return 1;
  114. }
  115. /*
  116. * look find the first ordered struct that has this offset, otherwise
  117. * the first one less than this offset
  118. */
  119. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  120. u64 file_offset)
  121. {
  122. struct rb_root *root = &tree->tree;
  123. struct rb_node *prev;
  124. struct rb_node *ret;
  125. struct btrfs_ordered_extent *entry;
  126. if (tree->last) {
  127. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  128. rb_node);
  129. if (offset_in_entry(entry, file_offset))
  130. return tree->last;
  131. }
  132. ret = __tree_search(root, file_offset, &prev);
  133. if (!ret)
  134. ret = prev;
  135. if (ret)
  136. tree->last = ret;
  137. return ret;
  138. }
  139. /* allocate and add a new ordered_extent into the per-inode tree.
  140. * file_offset is the logical offset in the file
  141. *
  142. * start is the disk block number of an extent already reserved in the
  143. * extent allocation tree
  144. *
  145. * len is the length of the extent
  146. *
  147. * The tree is given a single reference on the ordered extent that was
  148. * inserted.
  149. */
  150. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  151. u64 start, u64 len, u64 disk_len, int type)
  152. {
  153. struct btrfs_ordered_inode_tree *tree;
  154. struct rb_node *node;
  155. struct btrfs_ordered_extent *entry;
  156. tree = &BTRFS_I(inode)->ordered_tree;
  157. entry = kzalloc(sizeof(*entry), GFP_NOFS);
  158. if (!entry)
  159. return -ENOMEM;
  160. mutex_lock(&tree->mutex);
  161. entry->file_offset = file_offset;
  162. entry->start = start;
  163. entry->len = len;
  164. entry->disk_len = disk_len;
  165. entry->bytes_left = len;
  166. entry->inode = inode;
  167. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  168. set_bit(type, &entry->flags);
  169. /* one ref for the tree */
  170. atomic_set(&entry->refs, 1);
  171. init_waitqueue_head(&entry->wait);
  172. INIT_LIST_HEAD(&entry->list);
  173. INIT_LIST_HEAD(&entry->root_extent_list);
  174. node = tree_insert(&tree->tree, file_offset,
  175. &entry->rb_node);
  176. BUG_ON(node);
  177. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  178. list_add_tail(&entry->root_extent_list,
  179. &BTRFS_I(inode)->root->fs_info->ordered_extents);
  180. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  181. mutex_unlock(&tree->mutex);
  182. BUG_ON(node);
  183. return 0;
  184. }
  185. /*
  186. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  187. * when an ordered extent is finished. If the list covers more than one
  188. * ordered extent, it is split across multiples.
  189. */
  190. int btrfs_add_ordered_sum(struct inode *inode,
  191. struct btrfs_ordered_extent *entry,
  192. struct btrfs_ordered_sum *sum)
  193. {
  194. struct btrfs_ordered_inode_tree *tree;
  195. tree = &BTRFS_I(inode)->ordered_tree;
  196. mutex_lock(&tree->mutex);
  197. list_add_tail(&sum->list, &entry->list);
  198. mutex_unlock(&tree->mutex);
  199. return 0;
  200. }
  201. /*
  202. * this is used to account for finished IO across a given range
  203. * of the file. The IO should not span ordered extents. If
  204. * a given ordered_extent is completely done, 1 is returned, otherwise
  205. * 0.
  206. *
  207. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  208. * to make sure this function only returns 1 once for a given ordered extent.
  209. */
  210. int btrfs_dec_test_ordered_pending(struct inode *inode,
  211. u64 file_offset, u64 io_size)
  212. {
  213. struct btrfs_ordered_inode_tree *tree;
  214. struct rb_node *node;
  215. struct btrfs_ordered_extent *entry;
  216. int ret;
  217. tree = &BTRFS_I(inode)->ordered_tree;
  218. mutex_lock(&tree->mutex);
  219. node = tree_search(tree, file_offset);
  220. if (!node) {
  221. ret = 1;
  222. goto out;
  223. }
  224. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  225. if (!offset_in_entry(entry, file_offset)) {
  226. ret = 1;
  227. goto out;
  228. }
  229. if (io_size > entry->bytes_left) {
  230. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  231. (unsigned long long)entry->bytes_left,
  232. (unsigned long long)io_size);
  233. }
  234. entry->bytes_left -= io_size;
  235. if (entry->bytes_left == 0)
  236. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  237. else
  238. ret = 1;
  239. out:
  240. mutex_unlock(&tree->mutex);
  241. return ret == 0;
  242. }
  243. /*
  244. * used to drop a reference on an ordered extent. This will free
  245. * the extent if the last reference is dropped
  246. */
  247. int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  248. {
  249. struct list_head *cur;
  250. struct btrfs_ordered_sum *sum;
  251. if (atomic_dec_and_test(&entry->refs)) {
  252. while (!list_empty(&entry->list)) {
  253. cur = entry->list.next;
  254. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  255. list_del(&sum->list);
  256. kfree(sum);
  257. }
  258. kfree(entry);
  259. }
  260. return 0;
  261. }
  262. /*
  263. * remove an ordered extent from the tree. No references are dropped
  264. * but, anyone waiting on this extent is woken up.
  265. */
  266. int btrfs_remove_ordered_extent(struct inode *inode,
  267. struct btrfs_ordered_extent *entry)
  268. {
  269. struct btrfs_ordered_inode_tree *tree;
  270. struct rb_node *node;
  271. tree = &BTRFS_I(inode)->ordered_tree;
  272. mutex_lock(&tree->mutex);
  273. node = &entry->rb_node;
  274. rb_erase(node, &tree->tree);
  275. tree->last = NULL;
  276. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  277. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  278. list_del_init(&entry->root_extent_list);
  279. /*
  280. * we have no more ordered extents for this inode and
  281. * no dirty pages. We can safely remove it from the
  282. * list of ordered extents
  283. */
  284. if (RB_EMPTY_ROOT(&tree->tree) &&
  285. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  286. list_del_init(&BTRFS_I(inode)->ordered_operations);
  287. }
  288. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  289. mutex_unlock(&tree->mutex);
  290. wake_up(&entry->wait);
  291. return 0;
  292. }
  293. /*
  294. * wait for all the ordered extents in a root. This is done when balancing
  295. * space between drives.
  296. */
  297. int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
  298. {
  299. struct list_head splice;
  300. struct list_head *cur;
  301. struct btrfs_ordered_extent *ordered;
  302. struct inode *inode;
  303. INIT_LIST_HEAD(&splice);
  304. spin_lock(&root->fs_info->ordered_extent_lock);
  305. list_splice_init(&root->fs_info->ordered_extents, &splice);
  306. while (!list_empty(&splice)) {
  307. cur = splice.next;
  308. ordered = list_entry(cur, struct btrfs_ordered_extent,
  309. root_extent_list);
  310. if (nocow_only &&
  311. !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
  312. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
  313. list_move(&ordered->root_extent_list,
  314. &root->fs_info->ordered_extents);
  315. cond_resched_lock(&root->fs_info->ordered_extent_lock);
  316. continue;
  317. }
  318. list_del_init(&ordered->root_extent_list);
  319. atomic_inc(&ordered->refs);
  320. /*
  321. * the inode may be getting freed (in sys_unlink path).
  322. */
  323. inode = igrab(ordered->inode);
  324. spin_unlock(&root->fs_info->ordered_extent_lock);
  325. if (inode) {
  326. btrfs_start_ordered_extent(inode, ordered, 1);
  327. btrfs_put_ordered_extent(ordered);
  328. iput(inode);
  329. } else {
  330. btrfs_put_ordered_extent(ordered);
  331. }
  332. spin_lock(&root->fs_info->ordered_extent_lock);
  333. }
  334. spin_unlock(&root->fs_info->ordered_extent_lock);
  335. return 0;
  336. }
  337. /*
  338. * this is used during transaction commit to write all the inodes
  339. * added to the ordered operation list. These files must be fully on
  340. * disk before the transaction commits.
  341. *
  342. * we have two modes here, one is to just start the IO via filemap_flush
  343. * and the other is to wait for all the io. When we wait, we have an
  344. * extra check to make sure the ordered operation list really is empty
  345. * before we return
  346. */
  347. int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
  348. {
  349. struct btrfs_inode *btrfs_inode;
  350. struct inode *inode;
  351. struct list_head splice;
  352. INIT_LIST_HEAD(&splice);
  353. mutex_lock(&root->fs_info->ordered_operations_mutex);
  354. spin_lock(&root->fs_info->ordered_extent_lock);
  355. again:
  356. list_splice_init(&root->fs_info->ordered_operations, &splice);
  357. while (!list_empty(&splice)) {
  358. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  359. ordered_operations);
  360. inode = &btrfs_inode->vfs_inode;
  361. list_del_init(&btrfs_inode->ordered_operations);
  362. /*
  363. * the inode may be getting freed (in sys_unlink path).
  364. */
  365. inode = igrab(inode);
  366. if (!wait && inode) {
  367. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  368. &root->fs_info->ordered_operations);
  369. }
  370. spin_unlock(&root->fs_info->ordered_extent_lock);
  371. if (inode) {
  372. if (wait)
  373. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  374. else
  375. filemap_flush(inode->i_mapping);
  376. iput(inode);
  377. }
  378. cond_resched();
  379. spin_lock(&root->fs_info->ordered_extent_lock);
  380. }
  381. if (wait && !list_empty(&root->fs_info->ordered_operations))
  382. goto again;
  383. spin_unlock(&root->fs_info->ordered_extent_lock);
  384. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  385. return 0;
  386. }
  387. /*
  388. * Used to start IO or wait for a given ordered extent to finish.
  389. *
  390. * If wait is one, this effectively waits on page writeback for all the pages
  391. * in the extent, and it waits on the io completion code to insert
  392. * metadata into the btree corresponding to the extent
  393. */
  394. void btrfs_start_ordered_extent(struct inode *inode,
  395. struct btrfs_ordered_extent *entry,
  396. int wait)
  397. {
  398. u64 start = entry->file_offset;
  399. u64 end = start + entry->len - 1;
  400. /*
  401. * pages in the range can be dirty, clean or writeback. We
  402. * start IO on any dirty ones so the wait doesn't stall waiting
  403. * for pdflush to find them
  404. */
  405. filemap_fdatawrite_range(inode->i_mapping, start, end);
  406. if (wait) {
  407. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  408. &entry->flags));
  409. }
  410. }
  411. /*
  412. * Used to wait on ordered extents across a large range of bytes.
  413. */
  414. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  415. {
  416. u64 end;
  417. u64 orig_end;
  418. u64 wait_end;
  419. struct btrfs_ordered_extent *ordered;
  420. int found;
  421. if (start + len < start) {
  422. orig_end = INT_LIMIT(loff_t);
  423. } else {
  424. orig_end = start + len - 1;
  425. if (orig_end > INT_LIMIT(loff_t))
  426. orig_end = INT_LIMIT(loff_t);
  427. }
  428. wait_end = orig_end;
  429. again:
  430. /* start IO across the range first to instantiate any delalloc
  431. * extents
  432. */
  433. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  434. /* The compression code will leave pages locked but return from
  435. * writepage without setting the page writeback. Starting again
  436. * with WB_SYNC_ALL will end up waiting for the IO to actually start.
  437. */
  438. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  439. filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  440. end = orig_end;
  441. found = 0;
  442. while (1) {
  443. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  444. if (!ordered)
  445. break;
  446. if (ordered->file_offset > orig_end) {
  447. btrfs_put_ordered_extent(ordered);
  448. break;
  449. }
  450. if (ordered->file_offset + ordered->len < start) {
  451. btrfs_put_ordered_extent(ordered);
  452. break;
  453. }
  454. found++;
  455. btrfs_start_ordered_extent(inode, ordered, 1);
  456. end = ordered->file_offset;
  457. btrfs_put_ordered_extent(ordered);
  458. if (end == 0 || end == start)
  459. break;
  460. end--;
  461. }
  462. if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
  463. EXTENT_DELALLOC, 0, NULL)) {
  464. schedule_timeout(1);
  465. goto again;
  466. }
  467. return 0;
  468. }
  469. /*
  470. * find an ordered extent corresponding to file_offset. return NULL if
  471. * nothing is found, otherwise take a reference on the extent and return it
  472. */
  473. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  474. u64 file_offset)
  475. {
  476. struct btrfs_ordered_inode_tree *tree;
  477. struct rb_node *node;
  478. struct btrfs_ordered_extent *entry = NULL;
  479. tree = &BTRFS_I(inode)->ordered_tree;
  480. mutex_lock(&tree->mutex);
  481. node = tree_search(tree, file_offset);
  482. if (!node)
  483. goto out;
  484. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  485. if (!offset_in_entry(entry, file_offset))
  486. entry = NULL;
  487. if (entry)
  488. atomic_inc(&entry->refs);
  489. out:
  490. mutex_unlock(&tree->mutex);
  491. return entry;
  492. }
  493. /*
  494. * lookup and return any extent before 'file_offset'. NULL is returned
  495. * if none is found
  496. */
  497. struct btrfs_ordered_extent *
  498. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  499. {
  500. struct btrfs_ordered_inode_tree *tree;
  501. struct rb_node *node;
  502. struct btrfs_ordered_extent *entry = NULL;
  503. tree = &BTRFS_I(inode)->ordered_tree;
  504. mutex_lock(&tree->mutex);
  505. node = tree_search(tree, file_offset);
  506. if (!node)
  507. goto out;
  508. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  509. atomic_inc(&entry->refs);
  510. out:
  511. mutex_unlock(&tree->mutex);
  512. return entry;
  513. }
  514. /*
  515. * After an extent is done, call this to conditionally update the on disk
  516. * i_size. i_size is updated to cover any fully written part of the file.
  517. */
  518. int btrfs_ordered_update_i_size(struct inode *inode,
  519. struct btrfs_ordered_extent *ordered)
  520. {
  521. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  522. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  523. u64 disk_i_size;
  524. u64 new_i_size;
  525. u64 i_size_test;
  526. struct rb_node *node;
  527. struct btrfs_ordered_extent *test;
  528. mutex_lock(&tree->mutex);
  529. disk_i_size = BTRFS_I(inode)->disk_i_size;
  530. /*
  531. * if the disk i_size is already at the inode->i_size, or
  532. * this ordered extent is inside the disk i_size, we're done
  533. */
  534. if (disk_i_size >= inode->i_size ||
  535. ordered->file_offset + ordered->len <= disk_i_size) {
  536. goto out;
  537. }
  538. /*
  539. * we can't update the disk_isize if there are delalloc bytes
  540. * between disk_i_size and this ordered extent
  541. */
  542. if (test_range_bit(io_tree, disk_i_size,
  543. ordered->file_offset + ordered->len - 1,
  544. EXTENT_DELALLOC, 0, NULL)) {
  545. goto out;
  546. }
  547. /*
  548. * walk backward from this ordered extent to disk_i_size.
  549. * if we find an ordered extent then we can't update disk i_size
  550. * yet
  551. */
  552. node = &ordered->rb_node;
  553. while (1) {
  554. node = rb_prev(node);
  555. if (!node)
  556. break;
  557. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  558. if (test->file_offset + test->len <= disk_i_size)
  559. break;
  560. if (test->file_offset >= inode->i_size)
  561. break;
  562. if (test->file_offset >= disk_i_size)
  563. goto out;
  564. }
  565. new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
  566. /*
  567. * at this point, we know we can safely update i_size to at least
  568. * the offset from this ordered extent. But, we need to
  569. * walk forward and see if ios from higher up in the file have
  570. * finished.
  571. */
  572. node = rb_next(&ordered->rb_node);
  573. i_size_test = 0;
  574. if (node) {
  575. /*
  576. * do we have an area where IO might have finished
  577. * between our ordered extent and the next one.
  578. */
  579. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  580. if (test->file_offset > entry_end(ordered))
  581. i_size_test = test->file_offset;
  582. } else {
  583. i_size_test = i_size_read(inode);
  584. }
  585. /*
  586. * i_size_test is the end of a region after this ordered
  587. * extent where there are no ordered extents. As long as there
  588. * are no delalloc bytes in this area, it is safe to update
  589. * disk_i_size to the end of the region.
  590. */
  591. if (i_size_test > entry_end(ordered) &&
  592. !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
  593. EXTENT_DELALLOC, 0, NULL)) {
  594. new_i_size = min_t(u64, i_size_test, i_size_read(inode));
  595. }
  596. BTRFS_I(inode)->disk_i_size = new_i_size;
  597. out:
  598. mutex_unlock(&tree->mutex);
  599. return 0;
  600. }
  601. /*
  602. * search the ordered extents for one corresponding to 'offset' and
  603. * try to find a checksum. This is used because we allow pages to
  604. * be reclaimed before their checksum is actually put into the btree
  605. */
  606. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  607. u32 *sum)
  608. {
  609. struct btrfs_ordered_sum *ordered_sum;
  610. struct btrfs_sector_sum *sector_sums;
  611. struct btrfs_ordered_extent *ordered;
  612. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  613. unsigned long num_sectors;
  614. unsigned long i;
  615. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  616. int ret = 1;
  617. ordered = btrfs_lookup_ordered_extent(inode, offset);
  618. if (!ordered)
  619. return 1;
  620. mutex_lock(&tree->mutex);
  621. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  622. if (disk_bytenr >= ordered_sum->bytenr) {
  623. num_sectors = ordered_sum->len / sectorsize;
  624. sector_sums = ordered_sum->sums;
  625. for (i = 0; i < num_sectors; i++) {
  626. if (sector_sums[i].bytenr == disk_bytenr) {
  627. *sum = sector_sums[i].sum;
  628. ret = 0;
  629. goto out;
  630. }
  631. }
  632. }
  633. }
  634. out:
  635. mutex_unlock(&tree->mutex);
  636. btrfs_put_ordered_extent(ordered);
  637. return ret;
  638. }
  639. /*
  640. * add a given inode to the list of inodes that must be fully on
  641. * disk before a transaction commit finishes.
  642. *
  643. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  644. * used to make sure renamed files are fully on disk.
  645. *
  646. * It is a noop if the inode is already fully on disk.
  647. *
  648. * If trans is not null, we'll do a friendly check for a transaction that
  649. * is already flushing things and force the IO down ourselves.
  650. */
  651. int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  652. struct btrfs_root *root,
  653. struct inode *inode)
  654. {
  655. u64 last_mod;
  656. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  657. /*
  658. * if this file hasn't been changed since the last transaction
  659. * commit, we can safely return without doing anything
  660. */
  661. if (last_mod < root->fs_info->last_trans_committed)
  662. return 0;
  663. /*
  664. * the transaction is already committing. Just start the IO and
  665. * don't bother with all of this list nonsense
  666. */
  667. if (trans && root->fs_info->running_transaction->blocked) {
  668. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  669. return 0;
  670. }
  671. spin_lock(&root->fs_info->ordered_extent_lock);
  672. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  673. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  674. &root->fs_info->ordered_operations);
  675. }
  676. spin_unlock(&root->fs_info->ordered_extent_lock);
  677. return 0;
  678. }