i915_gem.c 118 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "intel_drv.h"
  32. #include <linux/swap.h>
  33. #include <linux/pci.h>
  34. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  35. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  37. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  38. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  39. int write);
  40. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  41. uint64_t offset,
  42. uint64_t size);
  43. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  44. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  45. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  46. unsigned alignment);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int handle, ret;
  99. args->size = roundup(args->size, PAGE_SIZE);
  100. /* Allocate the new object */
  101. obj = drm_gem_object_alloc(dev, args->size);
  102. if (obj == NULL)
  103. return -ENOMEM;
  104. ret = drm_gem_handle_create(file_priv, obj, &handle);
  105. mutex_lock(&dev->struct_mutex);
  106. drm_gem_object_handle_unreference(obj);
  107. mutex_unlock(&dev->struct_mutex);
  108. if (ret)
  109. return ret;
  110. args->handle = handle;
  111. return 0;
  112. }
  113. static inline int
  114. fast_shmem_read(struct page **pages,
  115. loff_t page_base, int page_offset,
  116. char __user *data,
  117. int length)
  118. {
  119. char __iomem *vaddr;
  120. int unwritten;
  121. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  122. if (vaddr == NULL)
  123. return -ENOMEM;
  124. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  125. kunmap_atomic(vaddr, KM_USER0);
  126. if (unwritten)
  127. return -EFAULT;
  128. return 0;
  129. }
  130. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  131. {
  132. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  133. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  134. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  135. obj_priv->tiling_mode != I915_TILING_NONE;
  136. }
  137. static inline int
  138. slow_shmem_copy(struct page *dst_page,
  139. int dst_offset,
  140. struct page *src_page,
  141. int src_offset,
  142. int length)
  143. {
  144. char *dst_vaddr, *src_vaddr;
  145. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  146. if (dst_vaddr == NULL)
  147. return -ENOMEM;
  148. src_vaddr = kmap_atomic(src_page, KM_USER1);
  149. if (src_vaddr == NULL) {
  150. kunmap_atomic(dst_vaddr, KM_USER0);
  151. return -ENOMEM;
  152. }
  153. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  154. kunmap_atomic(src_vaddr, KM_USER1);
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return 0;
  157. }
  158. static inline int
  159. slow_shmem_bit17_copy(struct page *gpu_page,
  160. int gpu_offset,
  161. struct page *cpu_page,
  162. int cpu_offset,
  163. int length,
  164. int is_read)
  165. {
  166. char *gpu_vaddr, *cpu_vaddr;
  167. /* Use the unswizzled path if this page isn't affected. */
  168. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  169. if (is_read)
  170. return slow_shmem_copy(cpu_page, cpu_offset,
  171. gpu_page, gpu_offset, length);
  172. else
  173. return slow_shmem_copy(gpu_page, gpu_offset,
  174. cpu_page, cpu_offset, length);
  175. }
  176. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  177. if (gpu_vaddr == NULL)
  178. return -ENOMEM;
  179. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  180. if (cpu_vaddr == NULL) {
  181. kunmap_atomic(gpu_vaddr, KM_USER0);
  182. return -ENOMEM;
  183. }
  184. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  185. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  186. */
  187. while (length > 0) {
  188. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  189. int this_length = min(cacheline_end - gpu_offset, length);
  190. int swizzled_gpu_offset = gpu_offset ^ 64;
  191. if (is_read) {
  192. memcpy(cpu_vaddr + cpu_offset,
  193. gpu_vaddr + swizzled_gpu_offset,
  194. this_length);
  195. } else {
  196. memcpy(gpu_vaddr + swizzled_gpu_offset,
  197. cpu_vaddr + cpu_offset,
  198. this_length);
  199. }
  200. cpu_offset += this_length;
  201. gpu_offset += this_length;
  202. length -= this_length;
  203. }
  204. kunmap_atomic(cpu_vaddr, KM_USER1);
  205. kunmap_atomic(gpu_vaddr, KM_USER0);
  206. return 0;
  207. }
  208. /**
  209. * This is the fast shmem pread path, which attempts to copy_from_user directly
  210. * from the backing pages of the object to the user's address space. On a
  211. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  212. */
  213. static int
  214. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  219. ssize_t remain;
  220. loff_t offset, page_base;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. int ret;
  224. user_data = (char __user *) (uintptr_t) args->data_ptr;
  225. remain = args->size;
  226. mutex_lock(&dev->struct_mutex);
  227. ret = i915_gem_object_get_pages(obj);
  228. if (ret != 0)
  229. goto fail_unlock;
  230. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  231. args->size);
  232. if (ret != 0)
  233. goto fail_put_pages;
  234. obj_priv = obj->driver_private;
  235. offset = args->offset;
  236. while (remain > 0) {
  237. /* Operation in this page
  238. *
  239. * page_base = page offset within aperture
  240. * page_offset = offset within page
  241. * page_length = bytes to copy for this page
  242. */
  243. page_base = (offset & ~(PAGE_SIZE-1));
  244. page_offset = offset & (PAGE_SIZE-1);
  245. page_length = remain;
  246. if ((page_offset + remain) > PAGE_SIZE)
  247. page_length = PAGE_SIZE - page_offset;
  248. ret = fast_shmem_read(obj_priv->pages,
  249. page_base, page_offset,
  250. user_data, page_length);
  251. if (ret)
  252. goto fail_put_pages;
  253. remain -= page_length;
  254. user_data += page_length;
  255. offset += page_length;
  256. }
  257. fail_put_pages:
  258. i915_gem_object_put_pages(obj);
  259. fail_unlock:
  260. mutex_unlock(&dev->struct_mutex);
  261. return ret;
  262. }
  263. /**
  264. * This is the fallback shmem pread path, which allocates temporary storage
  265. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  266. * can copy out of the object's backing pages while holding the struct mutex
  267. * and not take page faults.
  268. */
  269. static int
  270. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  271. struct drm_i915_gem_pread *args,
  272. struct drm_file *file_priv)
  273. {
  274. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  275. struct mm_struct *mm = current->mm;
  276. struct page **user_pages;
  277. ssize_t remain;
  278. loff_t offset, pinned_pages, i;
  279. loff_t first_data_page, last_data_page, num_pages;
  280. int shmem_page_index, shmem_page_offset;
  281. int data_page_index, data_page_offset;
  282. int page_length;
  283. int ret;
  284. uint64_t data_ptr = args->data_ptr;
  285. int do_bit17_swizzling;
  286. remain = args->size;
  287. /* Pin the user pages containing the data. We can't fault while
  288. * holding the struct mutex, yet we want to hold it while
  289. * dereferencing the user data.
  290. */
  291. first_data_page = data_ptr / PAGE_SIZE;
  292. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  293. num_pages = last_data_page - first_data_page + 1;
  294. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  295. if (user_pages == NULL)
  296. return -ENOMEM;
  297. down_read(&mm->mmap_sem);
  298. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  299. num_pages, 1, 0, user_pages, NULL);
  300. up_read(&mm->mmap_sem);
  301. if (pinned_pages < num_pages) {
  302. ret = -EFAULT;
  303. goto fail_put_user_pages;
  304. }
  305. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  306. mutex_lock(&dev->struct_mutex);
  307. ret = i915_gem_object_get_pages(obj);
  308. if (ret != 0)
  309. goto fail_unlock;
  310. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  311. args->size);
  312. if (ret != 0)
  313. goto fail_put_pages;
  314. obj_priv = obj->driver_private;
  315. offset = args->offset;
  316. while (remain > 0) {
  317. /* Operation in this page
  318. *
  319. * shmem_page_index = page number within shmem file
  320. * shmem_page_offset = offset within page in shmem file
  321. * data_page_index = page number in get_user_pages return
  322. * data_page_offset = offset with data_page_index page.
  323. * page_length = bytes to copy for this page
  324. */
  325. shmem_page_index = offset / PAGE_SIZE;
  326. shmem_page_offset = offset & ~PAGE_MASK;
  327. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  328. data_page_offset = data_ptr & ~PAGE_MASK;
  329. page_length = remain;
  330. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  331. page_length = PAGE_SIZE - shmem_page_offset;
  332. if ((data_page_offset + page_length) > PAGE_SIZE)
  333. page_length = PAGE_SIZE - data_page_offset;
  334. if (do_bit17_swizzling) {
  335. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  336. shmem_page_offset,
  337. user_pages[data_page_index],
  338. data_page_offset,
  339. page_length,
  340. 1);
  341. } else {
  342. ret = slow_shmem_copy(user_pages[data_page_index],
  343. data_page_offset,
  344. obj_priv->pages[shmem_page_index],
  345. shmem_page_offset,
  346. page_length);
  347. }
  348. if (ret)
  349. goto fail_put_pages;
  350. remain -= page_length;
  351. data_ptr += page_length;
  352. offset += page_length;
  353. }
  354. fail_put_pages:
  355. i915_gem_object_put_pages(obj);
  356. fail_unlock:
  357. mutex_unlock(&dev->struct_mutex);
  358. fail_put_user_pages:
  359. for (i = 0; i < pinned_pages; i++) {
  360. SetPageDirty(user_pages[i]);
  361. page_cache_release(user_pages[i]);
  362. }
  363. drm_free_large(user_pages);
  364. return ret;
  365. }
  366. /**
  367. * Reads data from the object referenced by handle.
  368. *
  369. * On error, the contents of *data are undefined.
  370. */
  371. int
  372. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  373. struct drm_file *file_priv)
  374. {
  375. struct drm_i915_gem_pread *args = data;
  376. struct drm_gem_object *obj;
  377. struct drm_i915_gem_object *obj_priv;
  378. int ret;
  379. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  380. if (obj == NULL)
  381. return -EBADF;
  382. obj_priv = obj->driver_private;
  383. /* Bounds check source.
  384. *
  385. * XXX: This could use review for overflow issues...
  386. */
  387. if (args->offset > obj->size || args->size > obj->size ||
  388. args->offset + args->size > obj->size) {
  389. drm_gem_object_unreference(obj);
  390. return -EINVAL;
  391. }
  392. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  393. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  394. } else {
  395. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  396. if (ret != 0)
  397. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  398. file_priv);
  399. }
  400. drm_gem_object_unreference(obj);
  401. return ret;
  402. }
  403. /* This is the fast write path which cannot handle
  404. * page faults in the source data
  405. */
  406. static inline int
  407. fast_user_write(struct io_mapping *mapping,
  408. loff_t page_base, int page_offset,
  409. char __user *user_data,
  410. int length)
  411. {
  412. char *vaddr_atomic;
  413. unsigned long unwritten;
  414. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  415. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  416. user_data, length);
  417. io_mapping_unmap_atomic(vaddr_atomic);
  418. if (unwritten)
  419. return -EFAULT;
  420. return 0;
  421. }
  422. /* Here's the write path which can sleep for
  423. * page faults
  424. */
  425. static inline int
  426. slow_kernel_write(struct io_mapping *mapping,
  427. loff_t gtt_base, int gtt_offset,
  428. struct page *user_page, int user_offset,
  429. int length)
  430. {
  431. char *src_vaddr, *dst_vaddr;
  432. unsigned long unwritten;
  433. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  434. src_vaddr = kmap_atomic(user_page, KM_USER1);
  435. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  436. src_vaddr + user_offset,
  437. length);
  438. kunmap_atomic(src_vaddr, KM_USER1);
  439. io_mapping_unmap_atomic(dst_vaddr);
  440. if (unwritten)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. static inline int
  445. fast_shmem_write(struct page **pages,
  446. loff_t page_base, int page_offset,
  447. char __user *data,
  448. int length)
  449. {
  450. char __iomem *vaddr;
  451. unsigned long unwritten;
  452. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  453. if (vaddr == NULL)
  454. return -ENOMEM;
  455. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  456. kunmap_atomic(vaddr, KM_USER0);
  457. if (unwritten)
  458. return -EFAULT;
  459. return 0;
  460. }
  461. /**
  462. * This is the fast pwrite path, where we copy the data directly from the
  463. * user into the GTT, uncached.
  464. */
  465. static int
  466. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  467. struct drm_i915_gem_pwrite *args,
  468. struct drm_file *file_priv)
  469. {
  470. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  471. drm_i915_private_t *dev_priv = dev->dev_private;
  472. ssize_t remain;
  473. loff_t offset, page_base;
  474. char __user *user_data;
  475. int page_offset, page_length;
  476. int ret;
  477. user_data = (char __user *) (uintptr_t) args->data_ptr;
  478. remain = args->size;
  479. if (!access_ok(VERIFY_READ, user_data, remain))
  480. return -EFAULT;
  481. mutex_lock(&dev->struct_mutex);
  482. ret = i915_gem_object_pin(obj, 0);
  483. if (ret) {
  484. mutex_unlock(&dev->struct_mutex);
  485. return ret;
  486. }
  487. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  488. if (ret)
  489. goto fail;
  490. obj_priv = obj->driver_private;
  491. offset = obj_priv->gtt_offset + args->offset;
  492. while (remain > 0) {
  493. /* Operation in this page
  494. *
  495. * page_base = page offset within aperture
  496. * page_offset = offset within page
  497. * page_length = bytes to copy for this page
  498. */
  499. page_base = (offset & ~(PAGE_SIZE-1));
  500. page_offset = offset & (PAGE_SIZE-1);
  501. page_length = remain;
  502. if ((page_offset + remain) > PAGE_SIZE)
  503. page_length = PAGE_SIZE - page_offset;
  504. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  505. page_offset, user_data, page_length);
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (ret)
  511. goto fail;
  512. remain -= page_length;
  513. user_data += page_length;
  514. offset += page_length;
  515. }
  516. fail:
  517. i915_gem_object_unpin(obj);
  518. mutex_unlock(&dev->struct_mutex);
  519. return ret;
  520. }
  521. /**
  522. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  523. * the memory and maps it using kmap_atomic for copying.
  524. *
  525. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  526. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  527. */
  528. static int
  529. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  530. struct drm_i915_gem_pwrite *args,
  531. struct drm_file *file_priv)
  532. {
  533. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  534. drm_i915_private_t *dev_priv = dev->dev_private;
  535. ssize_t remain;
  536. loff_t gtt_page_base, offset;
  537. loff_t first_data_page, last_data_page, num_pages;
  538. loff_t pinned_pages, i;
  539. struct page **user_pages;
  540. struct mm_struct *mm = current->mm;
  541. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  542. int ret;
  543. uint64_t data_ptr = args->data_ptr;
  544. remain = args->size;
  545. /* Pin the user pages containing the data. We can't fault while
  546. * holding the struct mutex, and all of the pwrite implementations
  547. * want to hold it while dereferencing the user data.
  548. */
  549. first_data_page = data_ptr / PAGE_SIZE;
  550. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  551. num_pages = last_data_page - first_data_page + 1;
  552. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  553. if (user_pages == NULL)
  554. return -ENOMEM;
  555. down_read(&mm->mmap_sem);
  556. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  557. num_pages, 0, 0, user_pages, NULL);
  558. up_read(&mm->mmap_sem);
  559. if (pinned_pages < num_pages) {
  560. ret = -EFAULT;
  561. goto out_unpin_pages;
  562. }
  563. mutex_lock(&dev->struct_mutex);
  564. ret = i915_gem_object_pin(obj, 0);
  565. if (ret)
  566. goto out_unlock;
  567. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  568. if (ret)
  569. goto out_unpin_object;
  570. obj_priv = obj->driver_private;
  571. offset = obj_priv->gtt_offset + args->offset;
  572. while (remain > 0) {
  573. /* Operation in this page
  574. *
  575. * gtt_page_base = page offset within aperture
  576. * gtt_page_offset = offset within page in aperture
  577. * data_page_index = page number in get_user_pages return
  578. * data_page_offset = offset with data_page_index page.
  579. * page_length = bytes to copy for this page
  580. */
  581. gtt_page_base = offset & PAGE_MASK;
  582. gtt_page_offset = offset & ~PAGE_MASK;
  583. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  584. data_page_offset = data_ptr & ~PAGE_MASK;
  585. page_length = remain;
  586. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  587. page_length = PAGE_SIZE - gtt_page_offset;
  588. if ((data_page_offset + page_length) > PAGE_SIZE)
  589. page_length = PAGE_SIZE - data_page_offset;
  590. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  591. gtt_page_base, gtt_page_offset,
  592. user_pages[data_page_index],
  593. data_page_offset,
  594. page_length);
  595. /* If we get a fault while copying data, then (presumably) our
  596. * source page isn't available. Return the error and we'll
  597. * retry in the slow path.
  598. */
  599. if (ret)
  600. goto out_unpin_object;
  601. remain -= page_length;
  602. offset += page_length;
  603. data_ptr += page_length;
  604. }
  605. out_unpin_object:
  606. i915_gem_object_unpin(obj);
  607. out_unlock:
  608. mutex_unlock(&dev->struct_mutex);
  609. out_unpin_pages:
  610. for (i = 0; i < pinned_pages; i++)
  611. page_cache_release(user_pages[i]);
  612. drm_free_large(user_pages);
  613. return ret;
  614. }
  615. /**
  616. * This is the fast shmem pwrite path, which attempts to directly
  617. * copy_from_user into the kmapped pages backing the object.
  618. */
  619. static int
  620. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  621. struct drm_i915_gem_pwrite *args,
  622. struct drm_file *file_priv)
  623. {
  624. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  625. ssize_t remain;
  626. loff_t offset, page_base;
  627. char __user *user_data;
  628. int page_offset, page_length;
  629. int ret;
  630. user_data = (char __user *) (uintptr_t) args->data_ptr;
  631. remain = args->size;
  632. mutex_lock(&dev->struct_mutex);
  633. ret = i915_gem_object_get_pages(obj);
  634. if (ret != 0)
  635. goto fail_unlock;
  636. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  637. if (ret != 0)
  638. goto fail_put_pages;
  639. obj_priv = obj->driver_private;
  640. offset = args->offset;
  641. obj_priv->dirty = 1;
  642. while (remain > 0) {
  643. /* Operation in this page
  644. *
  645. * page_base = page offset within aperture
  646. * page_offset = offset within page
  647. * page_length = bytes to copy for this page
  648. */
  649. page_base = (offset & ~(PAGE_SIZE-1));
  650. page_offset = offset & (PAGE_SIZE-1);
  651. page_length = remain;
  652. if ((page_offset + remain) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - page_offset;
  654. ret = fast_shmem_write(obj_priv->pages,
  655. page_base, page_offset,
  656. user_data, page_length);
  657. if (ret)
  658. goto fail_put_pages;
  659. remain -= page_length;
  660. user_data += page_length;
  661. offset += page_length;
  662. }
  663. fail_put_pages:
  664. i915_gem_object_put_pages(obj);
  665. fail_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. return ret;
  668. }
  669. /**
  670. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  671. * the memory and maps it using kmap_atomic for copying.
  672. *
  673. * This avoids taking mmap_sem for faulting on the user's address while the
  674. * struct_mutex is held.
  675. */
  676. static int
  677. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  678. struct drm_i915_gem_pwrite *args,
  679. struct drm_file *file_priv)
  680. {
  681. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  682. struct mm_struct *mm = current->mm;
  683. struct page **user_pages;
  684. ssize_t remain;
  685. loff_t offset, pinned_pages, i;
  686. loff_t first_data_page, last_data_page, num_pages;
  687. int shmem_page_index, shmem_page_offset;
  688. int data_page_index, data_page_offset;
  689. int page_length;
  690. int ret;
  691. uint64_t data_ptr = args->data_ptr;
  692. int do_bit17_swizzling;
  693. remain = args->size;
  694. /* Pin the user pages containing the data. We can't fault while
  695. * holding the struct mutex, and all of the pwrite implementations
  696. * want to hold it while dereferencing the user data.
  697. */
  698. first_data_page = data_ptr / PAGE_SIZE;
  699. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  700. num_pages = last_data_page - first_data_page + 1;
  701. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  702. if (user_pages == NULL)
  703. return -ENOMEM;
  704. down_read(&mm->mmap_sem);
  705. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  706. num_pages, 0, 0, user_pages, NULL);
  707. up_read(&mm->mmap_sem);
  708. if (pinned_pages < num_pages) {
  709. ret = -EFAULT;
  710. goto fail_put_user_pages;
  711. }
  712. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  713. mutex_lock(&dev->struct_mutex);
  714. ret = i915_gem_object_get_pages(obj);
  715. if (ret != 0)
  716. goto fail_unlock;
  717. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  718. if (ret != 0)
  719. goto fail_put_pages;
  720. obj_priv = obj->driver_private;
  721. offset = args->offset;
  722. obj_priv->dirty = 1;
  723. while (remain > 0) {
  724. /* Operation in this page
  725. *
  726. * shmem_page_index = page number within shmem file
  727. * shmem_page_offset = offset within page in shmem file
  728. * data_page_index = page number in get_user_pages return
  729. * data_page_offset = offset with data_page_index page.
  730. * page_length = bytes to copy for this page
  731. */
  732. shmem_page_index = offset / PAGE_SIZE;
  733. shmem_page_offset = offset & ~PAGE_MASK;
  734. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  735. data_page_offset = data_ptr & ~PAGE_MASK;
  736. page_length = remain;
  737. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  738. page_length = PAGE_SIZE - shmem_page_offset;
  739. if ((data_page_offset + page_length) > PAGE_SIZE)
  740. page_length = PAGE_SIZE - data_page_offset;
  741. if (do_bit17_swizzling) {
  742. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  743. shmem_page_offset,
  744. user_pages[data_page_index],
  745. data_page_offset,
  746. page_length,
  747. 0);
  748. } else {
  749. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  750. shmem_page_offset,
  751. user_pages[data_page_index],
  752. data_page_offset,
  753. page_length);
  754. }
  755. if (ret)
  756. goto fail_put_pages;
  757. remain -= page_length;
  758. data_ptr += page_length;
  759. offset += page_length;
  760. }
  761. fail_put_pages:
  762. i915_gem_object_put_pages(obj);
  763. fail_unlock:
  764. mutex_unlock(&dev->struct_mutex);
  765. fail_put_user_pages:
  766. for (i = 0; i < pinned_pages; i++)
  767. page_cache_release(user_pages[i]);
  768. drm_free_large(user_pages);
  769. return ret;
  770. }
  771. /**
  772. * Writes data to the object referenced by handle.
  773. *
  774. * On error, the contents of the buffer that were to be modified are undefined.
  775. */
  776. int
  777. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  778. struct drm_file *file_priv)
  779. {
  780. struct drm_i915_gem_pwrite *args = data;
  781. struct drm_gem_object *obj;
  782. struct drm_i915_gem_object *obj_priv;
  783. int ret = 0;
  784. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  785. if (obj == NULL)
  786. return -EBADF;
  787. obj_priv = obj->driver_private;
  788. /* Bounds check destination.
  789. *
  790. * XXX: This could use review for overflow issues...
  791. */
  792. if (args->offset > obj->size || args->size > obj->size ||
  793. args->offset + args->size > obj->size) {
  794. drm_gem_object_unreference(obj);
  795. return -EINVAL;
  796. }
  797. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  798. * it would end up going through the fenced access, and we'll get
  799. * different detiling behavior between reading and writing.
  800. * pread/pwrite currently are reading and writing from the CPU
  801. * perspective, requiring manual detiling by the client.
  802. */
  803. if (obj_priv->phys_obj)
  804. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  805. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  806. dev->gtt_total != 0) {
  807. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  808. if (ret == -EFAULT) {
  809. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  810. file_priv);
  811. }
  812. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  813. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  814. } else {
  815. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. }
  821. #if WATCH_PWRITE
  822. if (ret)
  823. DRM_INFO("pwrite failed %d\n", ret);
  824. #endif
  825. drm_gem_object_unreference(obj);
  826. return ret;
  827. }
  828. /**
  829. * Called when user space prepares to use an object with the CPU, either
  830. * through the mmap ioctl's mapping or a GTT mapping.
  831. */
  832. int
  833. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  834. struct drm_file *file_priv)
  835. {
  836. struct drm_i915_private *dev_priv = dev->dev_private;
  837. struct drm_i915_gem_set_domain *args = data;
  838. struct drm_gem_object *obj;
  839. struct drm_i915_gem_object *obj_priv;
  840. uint32_t read_domains = args->read_domains;
  841. uint32_t write_domain = args->write_domain;
  842. int ret;
  843. if (!(dev->driver->driver_features & DRIVER_GEM))
  844. return -ENODEV;
  845. /* Only handle setting domains to types used by the CPU. */
  846. if (write_domain & I915_GEM_GPU_DOMAINS)
  847. return -EINVAL;
  848. if (read_domains & I915_GEM_GPU_DOMAINS)
  849. return -EINVAL;
  850. /* Having something in the write domain implies it's in the read
  851. * domain, and only that read domain. Enforce that in the request.
  852. */
  853. if (write_domain != 0 && read_domains != write_domain)
  854. return -EINVAL;
  855. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  856. if (obj == NULL)
  857. return -EBADF;
  858. obj_priv = obj->driver_private;
  859. mutex_lock(&dev->struct_mutex);
  860. intel_mark_busy(dev, obj);
  861. #if WATCH_BUF
  862. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  863. obj, obj->size, read_domains, write_domain);
  864. #endif
  865. if (read_domains & I915_GEM_DOMAIN_GTT) {
  866. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  867. /* Update the LRU on the fence for the CPU access that's
  868. * about to occur.
  869. */
  870. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  871. list_move_tail(&obj_priv->fence_list,
  872. &dev_priv->mm.fence_list);
  873. }
  874. /* Silently promote "you're not bound, there was nothing to do"
  875. * to success, since the client was just asking us to
  876. * make sure everything was done.
  877. */
  878. if (ret == -EINVAL)
  879. ret = 0;
  880. } else {
  881. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  882. }
  883. drm_gem_object_unreference(obj);
  884. mutex_unlock(&dev->struct_mutex);
  885. return ret;
  886. }
  887. /**
  888. * Called when user space has done writes to this buffer
  889. */
  890. int
  891. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  892. struct drm_file *file_priv)
  893. {
  894. struct drm_i915_gem_sw_finish *args = data;
  895. struct drm_gem_object *obj;
  896. struct drm_i915_gem_object *obj_priv;
  897. int ret = 0;
  898. if (!(dev->driver->driver_features & DRIVER_GEM))
  899. return -ENODEV;
  900. mutex_lock(&dev->struct_mutex);
  901. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  902. if (obj == NULL) {
  903. mutex_unlock(&dev->struct_mutex);
  904. return -EBADF;
  905. }
  906. #if WATCH_BUF
  907. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  908. __func__, args->handle, obj, obj->size);
  909. #endif
  910. obj_priv = obj->driver_private;
  911. /* Pinned buffers may be scanout, so flush the cache */
  912. if (obj_priv->pin_count)
  913. i915_gem_object_flush_cpu_write_domain(obj);
  914. drm_gem_object_unreference(obj);
  915. mutex_unlock(&dev->struct_mutex);
  916. return ret;
  917. }
  918. /**
  919. * Maps the contents of an object, returning the address it is mapped
  920. * into.
  921. *
  922. * While the mapping holds a reference on the contents of the object, it doesn't
  923. * imply a ref on the object itself.
  924. */
  925. int
  926. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  927. struct drm_file *file_priv)
  928. {
  929. struct drm_i915_gem_mmap *args = data;
  930. struct drm_gem_object *obj;
  931. loff_t offset;
  932. unsigned long addr;
  933. if (!(dev->driver->driver_features & DRIVER_GEM))
  934. return -ENODEV;
  935. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  936. if (obj == NULL)
  937. return -EBADF;
  938. offset = args->offset;
  939. down_write(&current->mm->mmap_sem);
  940. addr = do_mmap(obj->filp, 0, args->size,
  941. PROT_READ | PROT_WRITE, MAP_SHARED,
  942. args->offset);
  943. up_write(&current->mm->mmap_sem);
  944. mutex_lock(&dev->struct_mutex);
  945. drm_gem_object_unreference(obj);
  946. mutex_unlock(&dev->struct_mutex);
  947. if (IS_ERR((void *)addr))
  948. return addr;
  949. args->addr_ptr = (uint64_t) addr;
  950. return 0;
  951. }
  952. /**
  953. * i915_gem_fault - fault a page into the GTT
  954. * vma: VMA in question
  955. * vmf: fault info
  956. *
  957. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  958. * from userspace. The fault handler takes care of binding the object to
  959. * the GTT (if needed), allocating and programming a fence register (again,
  960. * only if needed based on whether the old reg is still valid or the object
  961. * is tiled) and inserting a new PTE into the faulting process.
  962. *
  963. * Note that the faulting process may involve evicting existing objects
  964. * from the GTT and/or fence registers to make room. So performance may
  965. * suffer if the GTT working set is large or there are few fence registers
  966. * left.
  967. */
  968. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  969. {
  970. struct drm_gem_object *obj = vma->vm_private_data;
  971. struct drm_device *dev = obj->dev;
  972. struct drm_i915_private *dev_priv = dev->dev_private;
  973. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  974. pgoff_t page_offset;
  975. unsigned long pfn;
  976. int ret = 0;
  977. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  978. /* We don't use vmf->pgoff since that has the fake offset */
  979. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  980. PAGE_SHIFT;
  981. /* Now bind it into the GTT if needed */
  982. mutex_lock(&dev->struct_mutex);
  983. if (!obj_priv->gtt_space) {
  984. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  985. if (ret) {
  986. mutex_unlock(&dev->struct_mutex);
  987. return VM_FAULT_SIGBUS;
  988. }
  989. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  990. if (ret) {
  991. mutex_unlock(&dev->struct_mutex);
  992. return VM_FAULT_SIGBUS;
  993. }
  994. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  995. }
  996. /* Need a new fence register? */
  997. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  998. ret = i915_gem_object_get_fence_reg(obj);
  999. if (ret) {
  1000. mutex_unlock(&dev->struct_mutex);
  1001. return VM_FAULT_SIGBUS;
  1002. }
  1003. }
  1004. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1005. page_offset;
  1006. /* Finally, remap it using the new GTT offset */
  1007. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1008. mutex_unlock(&dev->struct_mutex);
  1009. switch (ret) {
  1010. case -ENOMEM:
  1011. case -EAGAIN:
  1012. return VM_FAULT_OOM;
  1013. case -EFAULT:
  1014. case -EINVAL:
  1015. return VM_FAULT_SIGBUS;
  1016. default:
  1017. return VM_FAULT_NOPAGE;
  1018. }
  1019. }
  1020. /**
  1021. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1022. * @obj: obj in question
  1023. *
  1024. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1025. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1026. * up the object based on the offset and sets up the various memory mapping
  1027. * structures.
  1028. *
  1029. * This routine allocates and attaches a fake offset for @obj.
  1030. */
  1031. static int
  1032. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1033. {
  1034. struct drm_device *dev = obj->dev;
  1035. struct drm_gem_mm *mm = dev->mm_private;
  1036. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1037. struct drm_map_list *list;
  1038. struct drm_local_map *map;
  1039. int ret = 0;
  1040. /* Set the object up for mmap'ing */
  1041. list = &obj->map_list;
  1042. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1043. if (!list->map)
  1044. return -ENOMEM;
  1045. map = list->map;
  1046. map->type = _DRM_GEM;
  1047. map->size = obj->size;
  1048. map->handle = obj;
  1049. /* Get a DRM GEM mmap offset allocated... */
  1050. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1051. obj->size / PAGE_SIZE, 0, 0);
  1052. if (!list->file_offset_node) {
  1053. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1054. ret = -ENOMEM;
  1055. goto out_free_list;
  1056. }
  1057. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1058. obj->size / PAGE_SIZE, 0);
  1059. if (!list->file_offset_node) {
  1060. ret = -ENOMEM;
  1061. goto out_free_list;
  1062. }
  1063. list->hash.key = list->file_offset_node->start;
  1064. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1065. DRM_ERROR("failed to add to map hash\n");
  1066. goto out_free_mm;
  1067. }
  1068. /* By now we should be all set, any drm_mmap request on the offset
  1069. * below will get to our mmap & fault handler */
  1070. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1071. return 0;
  1072. out_free_mm:
  1073. drm_mm_put_block(list->file_offset_node);
  1074. out_free_list:
  1075. kfree(list->map);
  1076. return ret;
  1077. }
  1078. /**
  1079. * i915_gem_release_mmap - remove physical page mappings
  1080. * @obj: obj in question
  1081. *
  1082. * Preserve the reservation of the mmaping with the DRM core code, but
  1083. * relinquish ownership of the pages back to the system.
  1084. *
  1085. * It is vital that we remove the page mapping if we have mapped a tiled
  1086. * object through the GTT and then lose the fence register due to
  1087. * resource pressure. Similarly if the object has been moved out of the
  1088. * aperture, than pages mapped into userspace must be revoked. Removing the
  1089. * mapping will then trigger a page fault on the next user access, allowing
  1090. * fixup by i915_gem_fault().
  1091. */
  1092. void
  1093. i915_gem_release_mmap(struct drm_gem_object *obj)
  1094. {
  1095. struct drm_device *dev = obj->dev;
  1096. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1097. if (dev->dev_mapping)
  1098. unmap_mapping_range(dev->dev_mapping,
  1099. obj_priv->mmap_offset, obj->size, 1);
  1100. }
  1101. static void
  1102. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1103. {
  1104. struct drm_device *dev = obj->dev;
  1105. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1106. struct drm_gem_mm *mm = dev->mm_private;
  1107. struct drm_map_list *list;
  1108. list = &obj->map_list;
  1109. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1110. if (list->file_offset_node) {
  1111. drm_mm_put_block(list->file_offset_node);
  1112. list->file_offset_node = NULL;
  1113. }
  1114. if (list->map) {
  1115. kfree(list->map);
  1116. list->map = NULL;
  1117. }
  1118. obj_priv->mmap_offset = 0;
  1119. }
  1120. /**
  1121. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1122. * @obj: object to check
  1123. *
  1124. * Return the required GTT alignment for an object, taking into account
  1125. * potential fence register mapping if needed.
  1126. */
  1127. static uint32_t
  1128. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1129. {
  1130. struct drm_device *dev = obj->dev;
  1131. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1132. int start, i;
  1133. /*
  1134. * Minimum alignment is 4k (GTT page size), but might be greater
  1135. * if a fence register is needed for the object.
  1136. */
  1137. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1138. return 4096;
  1139. /*
  1140. * Previous chips need to be aligned to the size of the smallest
  1141. * fence register that can contain the object.
  1142. */
  1143. if (IS_I9XX(dev))
  1144. start = 1024*1024;
  1145. else
  1146. start = 512*1024;
  1147. for (i = start; i < obj->size; i <<= 1)
  1148. ;
  1149. return i;
  1150. }
  1151. /**
  1152. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1153. * @dev: DRM device
  1154. * @data: GTT mapping ioctl data
  1155. * @file_priv: GEM object info
  1156. *
  1157. * Simply returns the fake offset to userspace so it can mmap it.
  1158. * The mmap call will end up in drm_gem_mmap(), which will set things
  1159. * up so we can get faults in the handler above.
  1160. *
  1161. * The fault handler will take care of binding the object into the GTT
  1162. * (since it may have been evicted to make room for something), allocating
  1163. * a fence register, and mapping the appropriate aperture address into
  1164. * userspace.
  1165. */
  1166. int
  1167. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1168. struct drm_file *file_priv)
  1169. {
  1170. struct drm_i915_gem_mmap_gtt *args = data;
  1171. struct drm_i915_private *dev_priv = dev->dev_private;
  1172. struct drm_gem_object *obj;
  1173. struct drm_i915_gem_object *obj_priv;
  1174. int ret;
  1175. if (!(dev->driver->driver_features & DRIVER_GEM))
  1176. return -ENODEV;
  1177. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1178. if (obj == NULL)
  1179. return -EBADF;
  1180. mutex_lock(&dev->struct_mutex);
  1181. obj_priv = obj->driver_private;
  1182. if (!obj_priv->mmap_offset) {
  1183. ret = i915_gem_create_mmap_offset(obj);
  1184. if (ret) {
  1185. drm_gem_object_unreference(obj);
  1186. mutex_unlock(&dev->struct_mutex);
  1187. return ret;
  1188. }
  1189. }
  1190. args->offset = obj_priv->mmap_offset;
  1191. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1192. /* Make sure the alignment is correct for fence regs etc */
  1193. if (obj_priv->agp_mem &&
  1194. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1195. drm_gem_object_unreference(obj);
  1196. mutex_unlock(&dev->struct_mutex);
  1197. return -EINVAL;
  1198. }
  1199. /*
  1200. * Pull it into the GTT so that we have a page list (makes the
  1201. * initial fault faster and any subsequent flushing possible).
  1202. */
  1203. if (!obj_priv->agp_mem) {
  1204. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1205. if (ret) {
  1206. drm_gem_object_unreference(obj);
  1207. mutex_unlock(&dev->struct_mutex);
  1208. return ret;
  1209. }
  1210. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1211. }
  1212. drm_gem_object_unreference(obj);
  1213. mutex_unlock(&dev->struct_mutex);
  1214. return 0;
  1215. }
  1216. void
  1217. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1218. {
  1219. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1220. int page_count = obj->size / PAGE_SIZE;
  1221. int i;
  1222. BUG_ON(obj_priv->pages_refcount == 0);
  1223. if (--obj_priv->pages_refcount != 0)
  1224. return;
  1225. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1226. i915_gem_object_save_bit_17_swizzle(obj);
  1227. for (i = 0; i < page_count; i++)
  1228. if (obj_priv->pages[i] != NULL) {
  1229. if (obj_priv->dirty)
  1230. set_page_dirty(obj_priv->pages[i]);
  1231. mark_page_accessed(obj_priv->pages[i]);
  1232. page_cache_release(obj_priv->pages[i]);
  1233. }
  1234. obj_priv->dirty = 0;
  1235. drm_free_large(obj_priv->pages);
  1236. obj_priv->pages = NULL;
  1237. }
  1238. static void
  1239. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1240. {
  1241. struct drm_device *dev = obj->dev;
  1242. drm_i915_private_t *dev_priv = dev->dev_private;
  1243. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1244. /* Add a reference if we're newly entering the active list. */
  1245. if (!obj_priv->active) {
  1246. drm_gem_object_reference(obj);
  1247. obj_priv->active = 1;
  1248. }
  1249. /* Move from whatever list we were on to the tail of execution. */
  1250. spin_lock(&dev_priv->mm.active_list_lock);
  1251. list_move_tail(&obj_priv->list,
  1252. &dev_priv->mm.active_list);
  1253. spin_unlock(&dev_priv->mm.active_list_lock);
  1254. obj_priv->last_rendering_seqno = seqno;
  1255. }
  1256. static void
  1257. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1258. {
  1259. struct drm_device *dev = obj->dev;
  1260. drm_i915_private_t *dev_priv = dev->dev_private;
  1261. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1262. BUG_ON(!obj_priv->active);
  1263. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1264. obj_priv->last_rendering_seqno = 0;
  1265. }
  1266. static void
  1267. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1268. {
  1269. struct drm_device *dev = obj->dev;
  1270. drm_i915_private_t *dev_priv = dev->dev_private;
  1271. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1272. i915_verify_inactive(dev, __FILE__, __LINE__);
  1273. if (obj_priv->pin_count != 0)
  1274. list_del_init(&obj_priv->list);
  1275. else
  1276. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1277. obj_priv->last_rendering_seqno = 0;
  1278. if (obj_priv->active) {
  1279. obj_priv->active = 0;
  1280. drm_gem_object_unreference(obj);
  1281. }
  1282. i915_verify_inactive(dev, __FILE__, __LINE__);
  1283. }
  1284. /**
  1285. * Creates a new sequence number, emitting a write of it to the status page
  1286. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1287. *
  1288. * Must be called with struct_lock held.
  1289. *
  1290. * Returned sequence numbers are nonzero on success.
  1291. */
  1292. static uint32_t
  1293. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1294. uint32_t flush_domains)
  1295. {
  1296. drm_i915_private_t *dev_priv = dev->dev_private;
  1297. struct drm_i915_file_private *i915_file_priv = NULL;
  1298. struct drm_i915_gem_request *request;
  1299. uint32_t seqno;
  1300. int was_empty;
  1301. RING_LOCALS;
  1302. if (file_priv != NULL)
  1303. i915_file_priv = file_priv->driver_priv;
  1304. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1305. if (request == NULL)
  1306. return 0;
  1307. /* Grab the seqno we're going to make this request be, and bump the
  1308. * next (skipping 0 so it can be the reserved no-seqno value).
  1309. */
  1310. seqno = dev_priv->mm.next_gem_seqno;
  1311. dev_priv->mm.next_gem_seqno++;
  1312. if (dev_priv->mm.next_gem_seqno == 0)
  1313. dev_priv->mm.next_gem_seqno++;
  1314. BEGIN_LP_RING(4);
  1315. OUT_RING(MI_STORE_DWORD_INDEX);
  1316. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1317. OUT_RING(seqno);
  1318. OUT_RING(MI_USER_INTERRUPT);
  1319. ADVANCE_LP_RING();
  1320. DRM_DEBUG("%d\n", seqno);
  1321. request->seqno = seqno;
  1322. request->emitted_jiffies = jiffies;
  1323. was_empty = list_empty(&dev_priv->mm.request_list);
  1324. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1325. if (i915_file_priv) {
  1326. list_add_tail(&request->client_list,
  1327. &i915_file_priv->mm.request_list);
  1328. } else {
  1329. INIT_LIST_HEAD(&request->client_list);
  1330. }
  1331. /* Associate any objects on the flushing list matching the write
  1332. * domain we're flushing with our flush.
  1333. */
  1334. if (flush_domains != 0) {
  1335. struct drm_i915_gem_object *obj_priv, *next;
  1336. list_for_each_entry_safe(obj_priv, next,
  1337. &dev_priv->mm.flushing_list, list) {
  1338. struct drm_gem_object *obj = obj_priv->obj;
  1339. if ((obj->write_domain & flush_domains) ==
  1340. obj->write_domain) {
  1341. obj->write_domain = 0;
  1342. i915_gem_object_move_to_active(obj, seqno);
  1343. }
  1344. }
  1345. }
  1346. if (was_empty && !dev_priv->mm.suspended)
  1347. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1348. return seqno;
  1349. }
  1350. /**
  1351. * Command execution barrier
  1352. *
  1353. * Ensures that all commands in the ring are finished
  1354. * before signalling the CPU
  1355. */
  1356. static uint32_t
  1357. i915_retire_commands(struct drm_device *dev)
  1358. {
  1359. drm_i915_private_t *dev_priv = dev->dev_private;
  1360. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1361. uint32_t flush_domains = 0;
  1362. RING_LOCALS;
  1363. /* The sampler always gets flushed on i965 (sigh) */
  1364. if (IS_I965G(dev))
  1365. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1366. BEGIN_LP_RING(2);
  1367. OUT_RING(cmd);
  1368. OUT_RING(0); /* noop */
  1369. ADVANCE_LP_RING();
  1370. return flush_domains;
  1371. }
  1372. /**
  1373. * Moves buffers associated only with the given active seqno from the active
  1374. * to inactive list, potentially freeing them.
  1375. */
  1376. static void
  1377. i915_gem_retire_request(struct drm_device *dev,
  1378. struct drm_i915_gem_request *request)
  1379. {
  1380. drm_i915_private_t *dev_priv = dev->dev_private;
  1381. /* Move any buffers on the active list that are no longer referenced
  1382. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1383. */
  1384. spin_lock(&dev_priv->mm.active_list_lock);
  1385. while (!list_empty(&dev_priv->mm.active_list)) {
  1386. struct drm_gem_object *obj;
  1387. struct drm_i915_gem_object *obj_priv;
  1388. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1389. struct drm_i915_gem_object,
  1390. list);
  1391. obj = obj_priv->obj;
  1392. /* If the seqno being retired doesn't match the oldest in the
  1393. * list, then the oldest in the list must still be newer than
  1394. * this seqno.
  1395. */
  1396. if (obj_priv->last_rendering_seqno != request->seqno)
  1397. goto out;
  1398. #if WATCH_LRU
  1399. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1400. __func__, request->seqno, obj);
  1401. #endif
  1402. if (obj->write_domain != 0)
  1403. i915_gem_object_move_to_flushing(obj);
  1404. else {
  1405. /* Take a reference on the object so it won't be
  1406. * freed while the spinlock is held. The list
  1407. * protection for this spinlock is safe when breaking
  1408. * the lock like this since the next thing we do
  1409. * is just get the head of the list again.
  1410. */
  1411. drm_gem_object_reference(obj);
  1412. i915_gem_object_move_to_inactive(obj);
  1413. spin_unlock(&dev_priv->mm.active_list_lock);
  1414. drm_gem_object_unreference(obj);
  1415. spin_lock(&dev_priv->mm.active_list_lock);
  1416. }
  1417. }
  1418. out:
  1419. spin_unlock(&dev_priv->mm.active_list_lock);
  1420. }
  1421. /**
  1422. * Returns true if seq1 is later than seq2.
  1423. */
  1424. static int
  1425. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1426. {
  1427. return (int32_t)(seq1 - seq2) >= 0;
  1428. }
  1429. uint32_t
  1430. i915_get_gem_seqno(struct drm_device *dev)
  1431. {
  1432. drm_i915_private_t *dev_priv = dev->dev_private;
  1433. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1434. }
  1435. /**
  1436. * This function clears the request list as sequence numbers are passed.
  1437. */
  1438. void
  1439. i915_gem_retire_requests(struct drm_device *dev)
  1440. {
  1441. drm_i915_private_t *dev_priv = dev->dev_private;
  1442. uint32_t seqno;
  1443. if (!dev_priv->hw_status_page)
  1444. return;
  1445. seqno = i915_get_gem_seqno(dev);
  1446. while (!list_empty(&dev_priv->mm.request_list)) {
  1447. struct drm_i915_gem_request *request;
  1448. uint32_t retiring_seqno;
  1449. request = list_first_entry(&dev_priv->mm.request_list,
  1450. struct drm_i915_gem_request,
  1451. list);
  1452. retiring_seqno = request->seqno;
  1453. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1454. dev_priv->mm.wedged) {
  1455. i915_gem_retire_request(dev, request);
  1456. list_del(&request->list);
  1457. list_del(&request->client_list);
  1458. kfree(request);
  1459. } else
  1460. break;
  1461. }
  1462. }
  1463. void
  1464. i915_gem_retire_work_handler(struct work_struct *work)
  1465. {
  1466. drm_i915_private_t *dev_priv;
  1467. struct drm_device *dev;
  1468. dev_priv = container_of(work, drm_i915_private_t,
  1469. mm.retire_work.work);
  1470. dev = dev_priv->dev;
  1471. mutex_lock(&dev->struct_mutex);
  1472. i915_gem_retire_requests(dev);
  1473. if (!dev_priv->mm.suspended &&
  1474. !list_empty(&dev_priv->mm.request_list))
  1475. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1476. mutex_unlock(&dev->struct_mutex);
  1477. }
  1478. /**
  1479. * Waits for a sequence number to be signaled, and cleans up the
  1480. * request and object lists appropriately for that event.
  1481. */
  1482. static int
  1483. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1484. {
  1485. drm_i915_private_t *dev_priv = dev->dev_private;
  1486. u32 ier;
  1487. int ret = 0;
  1488. BUG_ON(seqno == 0);
  1489. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1490. if (IS_IGDNG(dev))
  1491. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1492. else
  1493. ier = I915_READ(IER);
  1494. if (!ier) {
  1495. DRM_ERROR("something (likely vbetool) disabled "
  1496. "interrupts, re-enabling\n");
  1497. i915_driver_irq_preinstall(dev);
  1498. i915_driver_irq_postinstall(dev);
  1499. }
  1500. dev_priv->mm.waiting_gem_seqno = seqno;
  1501. i915_user_irq_get(dev);
  1502. ret = wait_event_interruptible(dev_priv->irq_queue,
  1503. i915_seqno_passed(i915_get_gem_seqno(dev),
  1504. seqno) ||
  1505. dev_priv->mm.wedged);
  1506. i915_user_irq_put(dev);
  1507. dev_priv->mm.waiting_gem_seqno = 0;
  1508. }
  1509. if (dev_priv->mm.wedged)
  1510. ret = -EIO;
  1511. if (ret && ret != -ERESTARTSYS)
  1512. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1513. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1514. /* Directly dispatch request retiring. While we have the work queue
  1515. * to handle this, the waiter on a request often wants an associated
  1516. * buffer to have made it to the inactive list, and we would need
  1517. * a separate wait queue to handle that.
  1518. */
  1519. if (ret == 0)
  1520. i915_gem_retire_requests(dev);
  1521. return ret;
  1522. }
  1523. static void
  1524. i915_gem_flush(struct drm_device *dev,
  1525. uint32_t invalidate_domains,
  1526. uint32_t flush_domains)
  1527. {
  1528. drm_i915_private_t *dev_priv = dev->dev_private;
  1529. uint32_t cmd;
  1530. RING_LOCALS;
  1531. #if WATCH_EXEC
  1532. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1533. invalidate_domains, flush_domains);
  1534. #endif
  1535. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1536. drm_agp_chipset_flush(dev);
  1537. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1538. /*
  1539. * read/write caches:
  1540. *
  1541. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1542. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1543. * also flushed at 2d versus 3d pipeline switches.
  1544. *
  1545. * read-only caches:
  1546. *
  1547. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1548. * MI_READ_FLUSH is set, and is always flushed on 965.
  1549. *
  1550. * I915_GEM_DOMAIN_COMMAND may not exist?
  1551. *
  1552. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1553. * invalidated when MI_EXE_FLUSH is set.
  1554. *
  1555. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1556. * invalidated with every MI_FLUSH.
  1557. *
  1558. * TLBs:
  1559. *
  1560. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1561. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1562. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1563. * are flushed at any MI_FLUSH.
  1564. */
  1565. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1566. if ((invalidate_domains|flush_domains) &
  1567. I915_GEM_DOMAIN_RENDER)
  1568. cmd &= ~MI_NO_WRITE_FLUSH;
  1569. if (!IS_I965G(dev)) {
  1570. /*
  1571. * On the 965, the sampler cache always gets flushed
  1572. * and this bit is reserved.
  1573. */
  1574. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1575. cmd |= MI_READ_FLUSH;
  1576. }
  1577. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1578. cmd |= MI_EXE_FLUSH;
  1579. #if WATCH_EXEC
  1580. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1581. #endif
  1582. BEGIN_LP_RING(2);
  1583. OUT_RING(cmd);
  1584. OUT_RING(0); /* noop */
  1585. ADVANCE_LP_RING();
  1586. }
  1587. }
  1588. /**
  1589. * Ensures that all rendering to the object has completed and the object is
  1590. * safe to unbind from the GTT or access from the CPU.
  1591. */
  1592. static int
  1593. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1594. {
  1595. struct drm_device *dev = obj->dev;
  1596. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1597. int ret;
  1598. /* This function only exists to support waiting for existing rendering,
  1599. * not for emitting required flushes.
  1600. */
  1601. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1602. /* If there is rendering queued on the buffer being evicted, wait for
  1603. * it.
  1604. */
  1605. if (obj_priv->active) {
  1606. #if WATCH_BUF
  1607. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1608. __func__, obj, obj_priv->last_rendering_seqno);
  1609. #endif
  1610. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1611. if (ret != 0)
  1612. return ret;
  1613. }
  1614. return 0;
  1615. }
  1616. /**
  1617. * Unbinds an object from the GTT aperture.
  1618. */
  1619. int
  1620. i915_gem_object_unbind(struct drm_gem_object *obj)
  1621. {
  1622. struct drm_device *dev = obj->dev;
  1623. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1624. int ret = 0;
  1625. #if WATCH_BUF
  1626. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1627. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1628. #endif
  1629. if (obj_priv->gtt_space == NULL)
  1630. return 0;
  1631. if (obj_priv->pin_count != 0) {
  1632. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1633. return -EINVAL;
  1634. }
  1635. /* Move the object to the CPU domain to ensure that
  1636. * any possible CPU writes while it's not in the GTT
  1637. * are flushed when we go to remap it. This will
  1638. * also ensure that all pending GPU writes are finished
  1639. * before we unbind.
  1640. */
  1641. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1642. if (ret) {
  1643. if (ret != -ERESTARTSYS)
  1644. DRM_ERROR("set_domain failed: %d\n", ret);
  1645. return ret;
  1646. }
  1647. if (obj_priv->agp_mem != NULL) {
  1648. drm_unbind_agp(obj_priv->agp_mem);
  1649. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1650. obj_priv->agp_mem = NULL;
  1651. }
  1652. BUG_ON(obj_priv->active);
  1653. /* blow away mappings if mapped through GTT */
  1654. i915_gem_release_mmap(obj);
  1655. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1656. i915_gem_clear_fence_reg(obj);
  1657. i915_gem_object_put_pages(obj);
  1658. if (obj_priv->gtt_space) {
  1659. atomic_dec(&dev->gtt_count);
  1660. atomic_sub(obj->size, &dev->gtt_memory);
  1661. drm_mm_put_block(obj_priv->gtt_space);
  1662. obj_priv->gtt_space = NULL;
  1663. }
  1664. /* Remove ourselves from the LRU list if present. */
  1665. if (!list_empty(&obj_priv->list))
  1666. list_del_init(&obj_priv->list);
  1667. return 0;
  1668. }
  1669. static int
  1670. i915_gem_evict_something(struct drm_device *dev)
  1671. {
  1672. drm_i915_private_t *dev_priv = dev->dev_private;
  1673. struct drm_gem_object *obj;
  1674. struct drm_i915_gem_object *obj_priv;
  1675. int ret = 0;
  1676. for (;;) {
  1677. /* If there's an inactive buffer available now, grab it
  1678. * and be done.
  1679. */
  1680. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1681. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1682. struct drm_i915_gem_object,
  1683. list);
  1684. obj = obj_priv->obj;
  1685. BUG_ON(obj_priv->pin_count != 0);
  1686. #if WATCH_LRU
  1687. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1688. #endif
  1689. BUG_ON(obj_priv->active);
  1690. /* Wait on the rendering and unbind the buffer. */
  1691. ret = i915_gem_object_unbind(obj);
  1692. break;
  1693. }
  1694. /* If we didn't get anything, but the ring is still processing
  1695. * things, wait for one of those things to finish and hopefully
  1696. * leave us a buffer to evict.
  1697. */
  1698. if (!list_empty(&dev_priv->mm.request_list)) {
  1699. struct drm_i915_gem_request *request;
  1700. request = list_first_entry(&dev_priv->mm.request_list,
  1701. struct drm_i915_gem_request,
  1702. list);
  1703. ret = i915_wait_request(dev, request->seqno);
  1704. if (ret)
  1705. break;
  1706. /* if waiting caused an object to become inactive,
  1707. * then loop around and wait for it. Otherwise, we
  1708. * assume that waiting freed and unbound something,
  1709. * so there should now be some space in the GTT
  1710. */
  1711. if (!list_empty(&dev_priv->mm.inactive_list))
  1712. continue;
  1713. break;
  1714. }
  1715. /* If we didn't have anything on the request list but there
  1716. * are buffers awaiting a flush, emit one and try again.
  1717. * When we wait on it, those buffers waiting for that flush
  1718. * will get moved to inactive.
  1719. */
  1720. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1721. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1722. struct drm_i915_gem_object,
  1723. list);
  1724. obj = obj_priv->obj;
  1725. i915_gem_flush(dev,
  1726. obj->write_domain,
  1727. obj->write_domain);
  1728. i915_add_request(dev, NULL, obj->write_domain);
  1729. obj = NULL;
  1730. continue;
  1731. }
  1732. DRM_ERROR("inactive empty %d request empty %d "
  1733. "flushing empty %d\n",
  1734. list_empty(&dev_priv->mm.inactive_list),
  1735. list_empty(&dev_priv->mm.request_list),
  1736. list_empty(&dev_priv->mm.flushing_list));
  1737. /* If we didn't do any of the above, there's nothing to be done
  1738. * and we just can't fit it in.
  1739. */
  1740. return -ENOSPC;
  1741. }
  1742. return ret;
  1743. }
  1744. static int
  1745. i915_gem_evict_everything(struct drm_device *dev)
  1746. {
  1747. int ret;
  1748. for (;;) {
  1749. ret = i915_gem_evict_something(dev);
  1750. if (ret != 0)
  1751. break;
  1752. }
  1753. if (ret == -ENOSPC)
  1754. return 0;
  1755. return ret;
  1756. }
  1757. int
  1758. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1759. {
  1760. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1761. int page_count, i;
  1762. struct address_space *mapping;
  1763. struct inode *inode;
  1764. struct page *page;
  1765. int ret;
  1766. if (obj_priv->pages_refcount++ != 0)
  1767. return 0;
  1768. /* Get the list of pages out of our struct file. They'll be pinned
  1769. * at this point until we release them.
  1770. */
  1771. page_count = obj->size / PAGE_SIZE;
  1772. BUG_ON(obj_priv->pages != NULL);
  1773. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1774. if (obj_priv->pages == NULL) {
  1775. DRM_ERROR("Faled to allocate page list\n");
  1776. obj_priv->pages_refcount--;
  1777. return -ENOMEM;
  1778. }
  1779. inode = obj->filp->f_path.dentry->d_inode;
  1780. mapping = inode->i_mapping;
  1781. for (i = 0; i < page_count; i++) {
  1782. page = read_mapping_page(mapping, i, NULL);
  1783. if (IS_ERR(page)) {
  1784. ret = PTR_ERR(page);
  1785. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1786. i915_gem_object_put_pages(obj);
  1787. return ret;
  1788. }
  1789. obj_priv->pages[i] = page;
  1790. }
  1791. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1792. i915_gem_object_do_bit_17_swizzle(obj);
  1793. return 0;
  1794. }
  1795. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1796. {
  1797. struct drm_gem_object *obj = reg->obj;
  1798. struct drm_device *dev = obj->dev;
  1799. drm_i915_private_t *dev_priv = dev->dev_private;
  1800. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1801. int regnum = obj_priv->fence_reg;
  1802. uint64_t val;
  1803. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1804. 0xfffff000) << 32;
  1805. val |= obj_priv->gtt_offset & 0xfffff000;
  1806. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1807. if (obj_priv->tiling_mode == I915_TILING_Y)
  1808. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1809. val |= I965_FENCE_REG_VALID;
  1810. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1811. }
  1812. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1813. {
  1814. struct drm_gem_object *obj = reg->obj;
  1815. struct drm_device *dev = obj->dev;
  1816. drm_i915_private_t *dev_priv = dev->dev_private;
  1817. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1818. int regnum = obj_priv->fence_reg;
  1819. int tile_width;
  1820. uint32_t fence_reg, val;
  1821. uint32_t pitch_val;
  1822. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1823. (obj_priv->gtt_offset & (obj->size - 1))) {
  1824. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1825. __func__, obj_priv->gtt_offset, obj->size);
  1826. return;
  1827. }
  1828. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1829. HAS_128_BYTE_Y_TILING(dev))
  1830. tile_width = 128;
  1831. else
  1832. tile_width = 512;
  1833. /* Note: pitch better be a power of two tile widths */
  1834. pitch_val = obj_priv->stride / tile_width;
  1835. pitch_val = ffs(pitch_val) - 1;
  1836. val = obj_priv->gtt_offset;
  1837. if (obj_priv->tiling_mode == I915_TILING_Y)
  1838. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1839. val |= I915_FENCE_SIZE_BITS(obj->size);
  1840. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1841. val |= I830_FENCE_REG_VALID;
  1842. if (regnum < 8)
  1843. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1844. else
  1845. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1846. I915_WRITE(fence_reg, val);
  1847. }
  1848. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1849. {
  1850. struct drm_gem_object *obj = reg->obj;
  1851. struct drm_device *dev = obj->dev;
  1852. drm_i915_private_t *dev_priv = dev->dev_private;
  1853. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1854. int regnum = obj_priv->fence_reg;
  1855. uint32_t val;
  1856. uint32_t pitch_val;
  1857. uint32_t fence_size_bits;
  1858. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1859. (obj_priv->gtt_offset & (obj->size - 1))) {
  1860. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1861. __func__, obj_priv->gtt_offset);
  1862. return;
  1863. }
  1864. pitch_val = obj_priv->stride / 128;
  1865. pitch_val = ffs(pitch_val) - 1;
  1866. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1867. val = obj_priv->gtt_offset;
  1868. if (obj_priv->tiling_mode == I915_TILING_Y)
  1869. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1870. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1871. WARN_ON(fence_size_bits & ~0x00000f00);
  1872. val |= fence_size_bits;
  1873. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1874. val |= I830_FENCE_REG_VALID;
  1875. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1876. }
  1877. /**
  1878. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1879. * @obj: object to map through a fence reg
  1880. *
  1881. * When mapping objects through the GTT, userspace wants to be able to write
  1882. * to them without having to worry about swizzling if the object is tiled.
  1883. *
  1884. * This function walks the fence regs looking for a free one for @obj,
  1885. * stealing one if it can't find any.
  1886. *
  1887. * It then sets up the reg based on the object's properties: address, pitch
  1888. * and tiling format.
  1889. */
  1890. int
  1891. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1892. {
  1893. struct drm_device *dev = obj->dev;
  1894. struct drm_i915_private *dev_priv = dev->dev_private;
  1895. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1896. struct drm_i915_fence_reg *reg = NULL;
  1897. struct drm_i915_gem_object *old_obj_priv = NULL;
  1898. int i, ret, avail;
  1899. /* Just update our place in the LRU if our fence is getting used. */
  1900. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1901. list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1902. return 0;
  1903. }
  1904. switch (obj_priv->tiling_mode) {
  1905. case I915_TILING_NONE:
  1906. WARN(1, "allocating a fence for non-tiled object?\n");
  1907. break;
  1908. case I915_TILING_X:
  1909. if (!obj_priv->stride)
  1910. return -EINVAL;
  1911. WARN((obj_priv->stride & (512 - 1)),
  1912. "object 0x%08x is X tiled but has non-512B pitch\n",
  1913. obj_priv->gtt_offset);
  1914. break;
  1915. case I915_TILING_Y:
  1916. if (!obj_priv->stride)
  1917. return -EINVAL;
  1918. WARN((obj_priv->stride & (128 - 1)),
  1919. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1920. obj_priv->gtt_offset);
  1921. break;
  1922. }
  1923. /* First try to find a free reg */
  1924. avail = 0;
  1925. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1926. reg = &dev_priv->fence_regs[i];
  1927. if (!reg->obj)
  1928. break;
  1929. old_obj_priv = reg->obj->driver_private;
  1930. if (!old_obj_priv->pin_count)
  1931. avail++;
  1932. }
  1933. /* None available, try to steal one or wait for a user to finish */
  1934. if (i == dev_priv->num_fence_regs) {
  1935. struct drm_gem_object *old_obj = NULL;
  1936. if (avail == 0)
  1937. return -ENOSPC;
  1938. list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
  1939. fence_list) {
  1940. old_obj = old_obj_priv->obj;
  1941. if (old_obj_priv->pin_count)
  1942. continue;
  1943. /* Take a reference, as otherwise the wait_rendering
  1944. * below may cause the object to get freed out from
  1945. * under us.
  1946. */
  1947. drm_gem_object_reference(old_obj);
  1948. /* i915 uses fences for GPU access to tiled buffers */
  1949. if (IS_I965G(dev) || !old_obj_priv->active)
  1950. break;
  1951. /* This brings the object to the head of the LRU if it
  1952. * had been written to. The only way this should
  1953. * result in us waiting longer than the expected
  1954. * optimal amount of time is if there was a
  1955. * fence-using buffer later that was read-only.
  1956. */
  1957. i915_gem_object_flush_gpu_write_domain(old_obj);
  1958. ret = i915_gem_object_wait_rendering(old_obj);
  1959. if (ret != 0) {
  1960. drm_gem_object_unreference(old_obj);
  1961. return ret;
  1962. }
  1963. break;
  1964. }
  1965. /*
  1966. * Zap this virtual mapping so we can set up a fence again
  1967. * for this object next time we need it.
  1968. */
  1969. i915_gem_release_mmap(old_obj);
  1970. i = old_obj_priv->fence_reg;
  1971. reg = &dev_priv->fence_regs[i];
  1972. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1973. list_del_init(&old_obj_priv->fence_list);
  1974. drm_gem_object_unreference(old_obj);
  1975. }
  1976. obj_priv->fence_reg = i;
  1977. list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1978. reg->obj = obj;
  1979. if (IS_I965G(dev))
  1980. i965_write_fence_reg(reg);
  1981. else if (IS_I9XX(dev))
  1982. i915_write_fence_reg(reg);
  1983. else
  1984. i830_write_fence_reg(reg);
  1985. return 0;
  1986. }
  1987. /**
  1988. * i915_gem_clear_fence_reg - clear out fence register info
  1989. * @obj: object to clear
  1990. *
  1991. * Zeroes out the fence register itself and clears out the associated
  1992. * data structures in dev_priv and obj_priv.
  1993. */
  1994. static void
  1995. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1996. {
  1997. struct drm_device *dev = obj->dev;
  1998. drm_i915_private_t *dev_priv = dev->dev_private;
  1999. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2000. if (IS_I965G(dev))
  2001. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2002. else {
  2003. uint32_t fence_reg;
  2004. if (obj_priv->fence_reg < 8)
  2005. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2006. else
  2007. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2008. 8) * 4;
  2009. I915_WRITE(fence_reg, 0);
  2010. }
  2011. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2012. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2013. list_del_init(&obj_priv->fence_list);
  2014. }
  2015. /**
  2016. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2017. * to the buffer to finish, and then resets the fence register.
  2018. * @obj: tiled object holding a fence register.
  2019. *
  2020. * Zeroes out the fence register itself and clears out the associated
  2021. * data structures in dev_priv and obj_priv.
  2022. */
  2023. int
  2024. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2025. {
  2026. struct drm_device *dev = obj->dev;
  2027. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2028. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2029. return 0;
  2030. /* On the i915, GPU access to tiled buffers is via a fence,
  2031. * therefore we must wait for any outstanding access to complete
  2032. * before clearing the fence.
  2033. */
  2034. if (!IS_I965G(dev)) {
  2035. int ret;
  2036. i915_gem_object_flush_gpu_write_domain(obj);
  2037. i915_gem_object_flush_gtt_write_domain(obj);
  2038. ret = i915_gem_object_wait_rendering(obj);
  2039. if (ret != 0)
  2040. return ret;
  2041. }
  2042. i915_gem_clear_fence_reg (obj);
  2043. return 0;
  2044. }
  2045. /**
  2046. * Finds free space in the GTT aperture and binds the object there.
  2047. */
  2048. static int
  2049. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2050. {
  2051. struct drm_device *dev = obj->dev;
  2052. drm_i915_private_t *dev_priv = dev->dev_private;
  2053. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2054. struct drm_mm_node *free_space;
  2055. int page_count, ret;
  2056. if (dev_priv->mm.suspended)
  2057. return -EBUSY;
  2058. if (alignment == 0)
  2059. alignment = i915_gem_get_gtt_alignment(obj);
  2060. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2061. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2062. return -EINVAL;
  2063. }
  2064. search_free:
  2065. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2066. obj->size, alignment, 0);
  2067. if (free_space != NULL) {
  2068. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2069. alignment);
  2070. if (obj_priv->gtt_space != NULL) {
  2071. obj_priv->gtt_space->private = obj;
  2072. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2073. }
  2074. }
  2075. if (obj_priv->gtt_space == NULL) {
  2076. bool lists_empty;
  2077. /* If the gtt is empty and we're still having trouble
  2078. * fitting our object in, we're out of memory.
  2079. */
  2080. #if WATCH_LRU
  2081. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2082. #endif
  2083. spin_lock(&dev_priv->mm.active_list_lock);
  2084. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2085. list_empty(&dev_priv->mm.flushing_list) &&
  2086. list_empty(&dev_priv->mm.active_list));
  2087. spin_unlock(&dev_priv->mm.active_list_lock);
  2088. if (lists_empty) {
  2089. DRM_ERROR("GTT full, but LRU list empty\n");
  2090. return -ENOSPC;
  2091. }
  2092. ret = i915_gem_evict_something(dev);
  2093. if (ret != 0) {
  2094. if (ret != -ERESTARTSYS)
  2095. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2096. return ret;
  2097. }
  2098. goto search_free;
  2099. }
  2100. #if WATCH_BUF
  2101. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2102. obj->size, obj_priv->gtt_offset);
  2103. #endif
  2104. ret = i915_gem_object_get_pages(obj);
  2105. if (ret) {
  2106. drm_mm_put_block(obj_priv->gtt_space);
  2107. obj_priv->gtt_space = NULL;
  2108. return ret;
  2109. }
  2110. page_count = obj->size / PAGE_SIZE;
  2111. /* Create an AGP memory structure pointing at our pages, and bind it
  2112. * into the GTT.
  2113. */
  2114. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2115. obj_priv->pages,
  2116. page_count,
  2117. obj_priv->gtt_offset,
  2118. obj_priv->agp_type);
  2119. if (obj_priv->agp_mem == NULL) {
  2120. i915_gem_object_put_pages(obj);
  2121. drm_mm_put_block(obj_priv->gtt_space);
  2122. obj_priv->gtt_space = NULL;
  2123. return -ENOMEM;
  2124. }
  2125. atomic_inc(&dev->gtt_count);
  2126. atomic_add(obj->size, &dev->gtt_memory);
  2127. /* Assert that the object is not currently in any GPU domain. As it
  2128. * wasn't in the GTT, there shouldn't be any way it could have been in
  2129. * a GPU cache
  2130. */
  2131. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2132. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2133. return 0;
  2134. }
  2135. void
  2136. i915_gem_clflush_object(struct drm_gem_object *obj)
  2137. {
  2138. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2139. /* If we don't have a page list set up, then we're not pinned
  2140. * to GPU, and we can ignore the cache flush because it'll happen
  2141. * again at bind time.
  2142. */
  2143. if (obj_priv->pages == NULL)
  2144. return;
  2145. /* XXX: The 865 in particular appears to be weird in how it handles
  2146. * cache flushing. We haven't figured it out, but the
  2147. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2148. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2149. */
  2150. if (IS_I865G(obj->dev)) {
  2151. wbinvd();
  2152. return;
  2153. }
  2154. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2155. }
  2156. /** Flushes any GPU write domain for the object if it's dirty. */
  2157. static void
  2158. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2159. {
  2160. struct drm_device *dev = obj->dev;
  2161. uint32_t seqno;
  2162. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2163. return;
  2164. /* Queue the GPU write cache flushing we need. */
  2165. i915_gem_flush(dev, 0, obj->write_domain);
  2166. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2167. obj->write_domain = 0;
  2168. i915_gem_object_move_to_active(obj, seqno);
  2169. }
  2170. /** Flushes the GTT write domain for the object if it's dirty. */
  2171. static void
  2172. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2173. {
  2174. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2175. return;
  2176. /* No actual flushing is required for the GTT write domain. Writes
  2177. * to it immediately go to main memory as far as we know, so there's
  2178. * no chipset flush. It also doesn't land in render cache.
  2179. */
  2180. obj->write_domain = 0;
  2181. }
  2182. /** Flushes the CPU write domain for the object if it's dirty. */
  2183. static void
  2184. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2185. {
  2186. struct drm_device *dev = obj->dev;
  2187. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2188. return;
  2189. i915_gem_clflush_object(obj);
  2190. drm_agp_chipset_flush(dev);
  2191. obj->write_domain = 0;
  2192. }
  2193. /**
  2194. * Moves a single object to the GTT read, and possibly write domain.
  2195. *
  2196. * This function returns when the move is complete, including waiting on
  2197. * flushes to occur.
  2198. */
  2199. int
  2200. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2201. {
  2202. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2203. int ret;
  2204. /* Not valid to be called on unbound objects. */
  2205. if (obj_priv->gtt_space == NULL)
  2206. return -EINVAL;
  2207. i915_gem_object_flush_gpu_write_domain(obj);
  2208. /* Wait on any GPU rendering and flushing to occur. */
  2209. ret = i915_gem_object_wait_rendering(obj);
  2210. if (ret != 0)
  2211. return ret;
  2212. /* If we're writing through the GTT domain, then CPU and GPU caches
  2213. * will need to be invalidated at next use.
  2214. */
  2215. if (write)
  2216. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2217. i915_gem_object_flush_cpu_write_domain(obj);
  2218. /* It should now be out of any other write domains, and we can update
  2219. * the domain values for our changes.
  2220. */
  2221. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2222. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2223. if (write) {
  2224. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2225. obj_priv->dirty = 1;
  2226. }
  2227. return 0;
  2228. }
  2229. /**
  2230. * Moves a single object to the CPU read, and possibly write domain.
  2231. *
  2232. * This function returns when the move is complete, including waiting on
  2233. * flushes to occur.
  2234. */
  2235. static int
  2236. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2237. {
  2238. int ret;
  2239. i915_gem_object_flush_gpu_write_domain(obj);
  2240. /* Wait on any GPU rendering and flushing to occur. */
  2241. ret = i915_gem_object_wait_rendering(obj);
  2242. if (ret != 0)
  2243. return ret;
  2244. i915_gem_object_flush_gtt_write_domain(obj);
  2245. /* If we have a partially-valid cache of the object in the CPU,
  2246. * finish invalidating it and free the per-page flags.
  2247. */
  2248. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2249. /* Flush the CPU cache if it's still invalid. */
  2250. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2251. i915_gem_clflush_object(obj);
  2252. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2253. }
  2254. /* It should now be out of any other write domains, and we can update
  2255. * the domain values for our changes.
  2256. */
  2257. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2258. /* If we're writing through the CPU, then the GPU read domains will
  2259. * need to be invalidated at next use.
  2260. */
  2261. if (write) {
  2262. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2263. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2264. }
  2265. return 0;
  2266. }
  2267. /*
  2268. * Set the next domain for the specified object. This
  2269. * may not actually perform the necessary flushing/invaliding though,
  2270. * as that may want to be batched with other set_domain operations
  2271. *
  2272. * This is (we hope) the only really tricky part of gem. The goal
  2273. * is fairly simple -- track which caches hold bits of the object
  2274. * and make sure they remain coherent. A few concrete examples may
  2275. * help to explain how it works. For shorthand, we use the notation
  2276. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2277. * a pair of read and write domain masks.
  2278. *
  2279. * Case 1: the batch buffer
  2280. *
  2281. * 1. Allocated
  2282. * 2. Written by CPU
  2283. * 3. Mapped to GTT
  2284. * 4. Read by GPU
  2285. * 5. Unmapped from GTT
  2286. * 6. Freed
  2287. *
  2288. * Let's take these a step at a time
  2289. *
  2290. * 1. Allocated
  2291. * Pages allocated from the kernel may still have
  2292. * cache contents, so we set them to (CPU, CPU) always.
  2293. * 2. Written by CPU (using pwrite)
  2294. * The pwrite function calls set_domain (CPU, CPU) and
  2295. * this function does nothing (as nothing changes)
  2296. * 3. Mapped by GTT
  2297. * This function asserts that the object is not
  2298. * currently in any GPU-based read or write domains
  2299. * 4. Read by GPU
  2300. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2301. * As write_domain is zero, this function adds in the
  2302. * current read domains (CPU+COMMAND, 0).
  2303. * flush_domains is set to CPU.
  2304. * invalidate_domains is set to COMMAND
  2305. * clflush is run to get data out of the CPU caches
  2306. * then i915_dev_set_domain calls i915_gem_flush to
  2307. * emit an MI_FLUSH and drm_agp_chipset_flush
  2308. * 5. Unmapped from GTT
  2309. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2310. * flush_domains and invalidate_domains end up both zero
  2311. * so no flushing/invalidating happens
  2312. * 6. Freed
  2313. * yay, done
  2314. *
  2315. * Case 2: The shared render buffer
  2316. *
  2317. * 1. Allocated
  2318. * 2. Mapped to GTT
  2319. * 3. Read/written by GPU
  2320. * 4. set_domain to (CPU,CPU)
  2321. * 5. Read/written by CPU
  2322. * 6. Read/written by GPU
  2323. *
  2324. * 1. Allocated
  2325. * Same as last example, (CPU, CPU)
  2326. * 2. Mapped to GTT
  2327. * Nothing changes (assertions find that it is not in the GPU)
  2328. * 3. Read/written by GPU
  2329. * execbuffer calls set_domain (RENDER, RENDER)
  2330. * flush_domains gets CPU
  2331. * invalidate_domains gets GPU
  2332. * clflush (obj)
  2333. * MI_FLUSH and drm_agp_chipset_flush
  2334. * 4. set_domain (CPU, CPU)
  2335. * flush_domains gets GPU
  2336. * invalidate_domains gets CPU
  2337. * wait_rendering (obj) to make sure all drawing is complete.
  2338. * This will include an MI_FLUSH to get the data from GPU
  2339. * to memory
  2340. * clflush (obj) to invalidate the CPU cache
  2341. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2342. * 5. Read/written by CPU
  2343. * cache lines are loaded and dirtied
  2344. * 6. Read written by GPU
  2345. * Same as last GPU access
  2346. *
  2347. * Case 3: The constant buffer
  2348. *
  2349. * 1. Allocated
  2350. * 2. Written by CPU
  2351. * 3. Read by GPU
  2352. * 4. Updated (written) by CPU again
  2353. * 5. Read by GPU
  2354. *
  2355. * 1. Allocated
  2356. * (CPU, CPU)
  2357. * 2. Written by CPU
  2358. * (CPU, CPU)
  2359. * 3. Read by GPU
  2360. * (CPU+RENDER, 0)
  2361. * flush_domains = CPU
  2362. * invalidate_domains = RENDER
  2363. * clflush (obj)
  2364. * MI_FLUSH
  2365. * drm_agp_chipset_flush
  2366. * 4. Updated (written) by CPU again
  2367. * (CPU, CPU)
  2368. * flush_domains = 0 (no previous write domain)
  2369. * invalidate_domains = 0 (no new read domains)
  2370. * 5. Read by GPU
  2371. * (CPU+RENDER, 0)
  2372. * flush_domains = CPU
  2373. * invalidate_domains = RENDER
  2374. * clflush (obj)
  2375. * MI_FLUSH
  2376. * drm_agp_chipset_flush
  2377. */
  2378. static void
  2379. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2380. {
  2381. struct drm_device *dev = obj->dev;
  2382. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2383. uint32_t invalidate_domains = 0;
  2384. uint32_t flush_domains = 0;
  2385. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2386. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2387. intel_mark_busy(dev, obj);
  2388. #if WATCH_BUF
  2389. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2390. __func__, obj,
  2391. obj->read_domains, obj->pending_read_domains,
  2392. obj->write_domain, obj->pending_write_domain);
  2393. #endif
  2394. /*
  2395. * If the object isn't moving to a new write domain,
  2396. * let the object stay in multiple read domains
  2397. */
  2398. if (obj->pending_write_domain == 0)
  2399. obj->pending_read_domains |= obj->read_domains;
  2400. else
  2401. obj_priv->dirty = 1;
  2402. /*
  2403. * Flush the current write domain if
  2404. * the new read domains don't match. Invalidate
  2405. * any read domains which differ from the old
  2406. * write domain
  2407. */
  2408. if (obj->write_domain &&
  2409. obj->write_domain != obj->pending_read_domains) {
  2410. flush_domains |= obj->write_domain;
  2411. invalidate_domains |=
  2412. obj->pending_read_domains & ~obj->write_domain;
  2413. }
  2414. /*
  2415. * Invalidate any read caches which may have
  2416. * stale data. That is, any new read domains.
  2417. */
  2418. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2419. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2420. #if WATCH_BUF
  2421. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2422. __func__, flush_domains, invalidate_domains);
  2423. #endif
  2424. i915_gem_clflush_object(obj);
  2425. }
  2426. /* The actual obj->write_domain will be updated with
  2427. * pending_write_domain after we emit the accumulated flush for all
  2428. * of our domain changes in execbuffers (which clears objects'
  2429. * write_domains). So if we have a current write domain that we
  2430. * aren't changing, set pending_write_domain to that.
  2431. */
  2432. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2433. obj->pending_write_domain = obj->write_domain;
  2434. obj->read_domains = obj->pending_read_domains;
  2435. dev->invalidate_domains |= invalidate_domains;
  2436. dev->flush_domains |= flush_domains;
  2437. #if WATCH_BUF
  2438. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2439. __func__,
  2440. obj->read_domains, obj->write_domain,
  2441. dev->invalidate_domains, dev->flush_domains);
  2442. #endif
  2443. }
  2444. /**
  2445. * Moves the object from a partially CPU read to a full one.
  2446. *
  2447. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2448. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2449. */
  2450. static void
  2451. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2452. {
  2453. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2454. if (!obj_priv->page_cpu_valid)
  2455. return;
  2456. /* If we're partially in the CPU read domain, finish moving it in.
  2457. */
  2458. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2459. int i;
  2460. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2461. if (obj_priv->page_cpu_valid[i])
  2462. continue;
  2463. drm_clflush_pages(obj_priv->pages + i, 1);
  2464. }
  2465. }
  2466. /* Free the page_cpu_valid mappings which are now stale, whether
  2467. * or not we've got I915_GEM_DOMAIN_CPU.
  2468. */
  2469. kfree(obj_priv->page_cpu_valid);
  2470. obj_priv->page_cpu_valid = NULL;
  2471. }
  2472. /**
  2473. * Set the CPU read domain on a range of the object.
  2474. *
  2475. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2476. * not entirely valid. The page_cpu_valid member of the object flags which
  2477. * pages have been flushed, and will be respected by
  2478. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2479. * of the whole object.
  2480. *
  2481. * This function returns when the move is complete, including waiting on
  2482. * flushes to occur.
  2483. */
  2484. static int
  2485. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2486. uint64_t offset, uint64_t size)
  2487. {
  2488. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2489. int i, ret;
  2490. if (offset == 0 && size == obj->size)
  2491. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2492. i915_gem_object_flush_gpu_write_domain(obj);
  2493. /* Wait on any GPU rendering and flushing to occur. */
  2494. ret = i915_gem_object_wait_rendering(obj);
  2495. if (ret != 0)
  2496. return ret;
  2497. i915_gem_object_flush_gtt_write_domain(obj);
  2498. /* If we're already fully in the CPU read domain, we're done. */
  2499. if (obj_priv->page_cpu_valid == NULL &&
  2500. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2501. return 0;
  2502. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2503. * newly adding I915_GEM_DOMAIN_CPU
  2504. */
  2505. if (obj_priv->page_cpu_valid == NULL) {
  2506. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2507. GFP_KERNEL);
  2508. if (obj_priv->page_cpu_valid == NULL)
  2509. return -ENOMEM;
  2510. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2511. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2512. /* Flush the cache on any pages that are still invalid from the CPU's
  2513. * perspective.
  2514. */
  2515. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2516. i++) {
  2517. if (obj_priv->page_cpu_valid[i])
  2518. continue;
  2519. drm_clflush_pages(obj_priv->pages + i, 1);
  2520. obj_priv->page_cpu_valid[i] = 1;
  2521. }
  2522. /* It should now be out of any other write domains, and we can update
  2523. * the domain values for our changes.
  2524. */
  2525. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2526. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2527. return 0;
  2528. }
  2529. /**
  2530. * Pin an object to the GTT and evaluate the relocations landing in it.
  2531. */
  2532. static int
  2533. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2534. struct drm_file *file_priv,
  2535. struct drm_i915_gem_exec_object *entry,
  2536. struct drm_i915_gem_relocation_entry *relocs)
  2537. {
  2538. struct drm_device *dev = obj->dev;
  2539. drm_i915_private_t *dev_priv = dev->dev_private;
  2540. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2541. int i, ret;
  2542. void __iomem *reloc_page;
  2543. /* Choose the GTT offset for our buffer and put it there. */
  2544. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2545. if (ret)
  2546. return ret;
  2547. entry->offset = obj_priv->gtt_offset;
  2548. /* Apply the relocations, using the GTT aperture to avoid cache
  2549. * flushing requirements.
  2550. */
  2551. for (i = 0; i < entry->relocation_count; i++) {
  2552. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2553. struct drm_gem_object *target_obj;
  2554. struct drm_i915_gem_object *target_obj_priv;
  2555. uint32_t reloc_val, reloc_offset;
  2556. uint32_t __iomem *reloc_entry;
  2557. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2558. reloc->target_handle);
  2559. if (target_obj == NULL) {
  2560. i915_gem_object_unpin(obj);
  2561. return -EBADF;
  2562. }
  2563. target_obj_priv = target_obj->driver_private;
  2564. /* The target buffer should have appeared before us in the
  2565. * exec_object list, so it should have a GTT space bound by now.
  2566. */
  2567. if (target_obj_priv->gtt_space == NULL) {
  2568. DRM_ERROR("No GTT space found for object %d\n",
  2569. reloc->target_handle);
  2570. drm_gem_object_unreference(target_obj);
  2571. i915_gem_object_unpin(obj);
  2572. return -EINVAL;
  2573. }
  2574. if (reloc->offset > obj->size - 4) {
  2575. DRM_ERROR("Relocation beyond object bounds: "
  2576. "obj %p target %d offset %d size %d.\n",
  2577. obj, reloc->target_handle,
  2578. (int) reloc->offset, (int) obj->size);
  2579. drm_gem_object_unreference(target_obj);
  2580. i915_gem_object_unpin(obj);
  2581. return -EINVAL;
  2582. }
  2583. if (reloc->offset & 3) {
  2584. DRM_ERROR("Relocation not 4-byte aligned: "
  2585. "obj %p target %d offset %d.\n",
  2586. obj, reloc->target_handle,
  2587. (int) reloc->offset);
  2588. drm_gem_object_unreference(target_obj);
  2589. i915_gem_object_unpin(obj);
  2590. return -EINVAL;
  2591. }
  2592. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2593. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2594. DRM_ERROR("reloc with read/write CPU domains: "
  2595. "obj %p target %d offset %d "
  2596. "read %08x write %08x",
  2597. obj, reloc->target_handle,
  2598. (int) reloc->offset,
  2599. reloc->read_domains,
  2600. reloc->write_domain);
  2601. drm_gem_object_unreference(target_obj);
  2602. i915_gem_object_unpin(obj);
  2603. return -EINVAL;
  2604. }
  2605. if (reloc->write_domain && target_obj->pending_write_domain &&
  2606. reloc->write_domain != target_obj->pending_write_domain) {
  2607. DRM_ERROR("Write domain conflict: "
  2608. "obj %p target %d offset %d "
  2609. "new %08x old %08x\n",
  2610. obj, reloc->target_handle,
  2611. (int) reloc->offset,
  2612. reloc->write_domain,
  2613. target_obj->pending_write_domain);
  2614. drm_gem_object_unreference(target_obj);
  2615. i915_gem_object_unpin(obj);
  2616. return -EINVAL;
  2617. }
  2618. #if WATCH_RELOC
  2619. DRM_INFO("%s: obj %p offset %08x target %d "
  2620. "read %08x write %08x gtt %08x "
  2621. "presumed %08x delta %08x\n",
  2622. __func__,
  2623. obj,
  2624. (int) reloc->offset,
  2625. (int) reloc->target_handle,
  2626. (int) reloc->read_domains,
  2627. (int) reloc->write_domain,
  2628. (int) target_obj_priv->gtt_offset,
  2629. (int) reloc->presumed_offset,
  2630. reloc->delta);
  2631. #endif
  2632. target_obj->pending_read_domains |= reloc->read_domains;
  2633. target_obj->pending_write_domain |= reloc->write_domain;
  2634. /* If the relocation already has the right value in it, no
  2635. * more work needs to be done.
  2636. */
  2637. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2638. drm_gem_object_unreference(target_obj);
  2639. continue;
  2640. }
  2641. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2642. if (ret != 0) {
  2643. drm_gem_object_unreference(target_obj);
  2644. i915_gem_object_unpin(obj);
  2645. return -EINVAL;
  2646. }
  2647. /* Map the page containing the relocation we're going to
  2648. * perform.
  2649. */
  2650. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2651. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2652. (reloc_offset &
  2653. ~(PAGE_SIZE - 1)));
  2654. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2655. (reloc_offset & (PAGE_SIZE - 1)));
  2656. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2657. #if WATCH_BUF
  2658. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2659. obj, (unsigned int) reloc->offset,
  2660. readl(reloc_entry), reloc_val);
  2661. #endif
  2662. writel(reloc_val, reloc_entry);
  2663. io_mapping_unmap_atomic(reloc_page);
  2664. /* The updated presumed offset for this entry will be
  2665. * copied back out to the user.
  2666. */
  2667. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2668. drm_gem_object_unreference(target_obj);
  2669. }
  2670. #if WATCH_BUF
  2671. if (0)
  2672. i915_gem_dump_object(obj, 128, __func__, ~0);
  2673. #endif
  2674. return 0;
  2675. }
  2676. /** Dispatch a batchbuffer to the ring
  2677. */
  2678. static int
  2679. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2680. struct drm_i915_gem_execbuffer *exec,
  2681. struct drm_clip_rect *cliprects,
  2682. uint64_t exec_offset)
  2683. {
  2684. drm_i915_private_t *dev_priv = dev->dev_private;
  2685. int nbox = exec->num_cliprects;
  2686. int i = 0, count;
  2687. uint32_t exec_start, exec_len;
  2688. RING_LOCALS;
  2689. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2690. exec_len = (uint32_t) exec->batch_len;
  2691. count = nbox ? nbox : 1;
  2692. for (i = 0; i < count; i++) {
  2693. if (i < nbox) {
  2694. int ret = i915_emit_box(dev, cliprects, i,
  2695. exec->DR1, exec->DR4);
  2696. if (ret)
  2697. return ret;
  2698. }
  2699. if (IS_I830(dev) || IS_845G(dev)) {
  2700. BEGIN_LP_RING(4);
  2701. OUT_RING(MI_BATCH_BUFFER);
  2702. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2703. OUT_RING(exec_start + exec_len - 4);
  2704. OUT_RING(0);
  2705. ADVANCE_LP_RING();
  2706. } else {
  2707. BEGIN_LP_RING(2);
  2708. if (IS_I965G(dev)) {
  2709. OUT_RING(MI_BATCH_BUFFER_START |
  2710. (2 << 6) |
  2711. MI_BATCH_NON_SECURE_I965);
  2712. OUT_RING(exec_start);
  2713. } else {
  2714. OUT_RING(MI_BATCH_BUFFER_START |
  2715. (2 << 6));
  2716. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2717. }
  2718. ADVANCE_LP_RING();
  2719. }
  2720. }
  2721. /* XXX breadcrumb */
  2722. return 0;
  2723. }
  2724. /* Throttle our rendering by waiting until the ring has completed our requests
  2725. * emitted over 20 msec ago.
  2726. *
  2727. * Note that if we were to use the current jiffies each time around the loop,
  2728. * we wouldn't escape the function with any frames outstanding if the time to
  2729. * render a frame was over 20ms.
  2730. *
  2731. * This should get us reasonable parallelism between CPU and GPU but also
  2732. * relatively low latency when blocking on a particular request to finish.
  2733. */
  2734. static int
  2735. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2736. {
  2737. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2738. int ret = 0;
  2739. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2740. mutex_lock(&dev->struct_mutex);
  2741. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2742. struct drm_i915_gem_request *request;
  2743. request = list_first_entry(&i915_file_priv->mm.request_list,
  2744. struct drm_i915_gem_request,
  2745. client_list);
  2746. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2747. break;
  2748. ret = i915_wait_request(dev, request->seqno);
  2749. if (ret != 0)
  2750. break;
  2751. }
  2752. mutex_unlock(&dev->struct_mutex);
  2753. return ret;
  2754. }
  2755. static int
  2756. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2757. uint32_t buffer_count,
  2758. struct drm_i915_gem_relocation_entry **relocs)
  2759. {
  2760. uint32_t reloc_count = 0, reloc_index = 0, i;
  2761. int ret;
  2762. *relocs = NULL;
  2763. for (i = 0; i < buffer_count; i++) {
  2764. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2765. return -EINVAL;
  2766. reloc_count += exec_list[i].relocation_count;
  2767. }
  2768. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2769. if (*relocs == NULL)
  2770. return -ENOMEM;
  2771. for (i = 0; i < buffer_count; i++) {
  2772. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2773. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2774. ret = copy_from_user(&(*relocs)[reloc_index],
  2775. user_relocs,
  2776. exec_list[i].relocation_count *
  2777. sizeof(**relocs));
  2778. if (ret != 0) {
  2779. drm_free_large(*relocs);
  2780. *relocs = NULL;
  2781. return -EFAULT;
  2782. }
  2783. reloc_index += exec_list[i].relocation_count;
  2784. }
  2785. return 0;
  2786. }
  2787. static int
  2788. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2789. uint32_t buffer_count,
  2790. struct drm_i915_gem_relocation_entry *relocs)
  2791. {
  2792. uint32_t reloc_count = 0, i;
  2793. int ret = 0;
  2794. for (i = 0; i < buffer_count; i++) {
  2795. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2796. int unwritten;
  2797. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2798. unwritten = copy_to_user(user_relocs,
  2799. &relocs[reloc_count],
  2800. exec_list[i].relocation_count *
  2801. sizeof(*relocs));
  2802. if (unwritten) {
  2803. ret = -EFAULT;
  2804. goto err;
  2805. }
  2806. reloc_count += exec_list[i].relocation_count;
  2807. }
  2808. err:
  2809. drm_free_large(relocs);
  2810. return ret;
  2811. }
  2812. static int
  2813. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2814. uint64_t exec_offset)
  2815. {
  2816. uint32_t exec_start, exec_len;
  2817. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2818. exec_len = (uint32_t) exec->batch_len;
  2819. if ((exec_start | exec_len) & 0x7)
  2820. return -EINVAL;
  2821. if (!exec_start)
  2822. return -EINVAL;
  2823. return 0;
  2824. }
  2825. int
  2826. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2827. struct drm_file *file_priv)
  2828. {
  2829. drm_i915_private_t *dev_priv = dev->dev_private;
  2830. struct drm_i915_gem_execbuffer *args = data;
  2831. struct drm_i915_gem_exec_object *exec_list = NULL;
  2832. struct drm_gem_object **object_list = NULL;
  2833. struct drm_gem_object *batch_obj;
  2834. struct drm_i915_gem_object *obj_priv;
  2835. struct drm_clip_rect *cliprects = NULL;
  2836. struct drm_i915_gem_relocation_entry *relocs;
  2837. int ret, ret2, i, pinned = 0;
  2838. uint64_t exec_offset;
  2839. uint32_t seqno, flush_domains, reloc_index;
  2840. int pin_tries;
  2841. #if WATCH_EXEC
  2842. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2843. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2844. #endif
  2845. if (args->buffer_count < 1) {
  2846. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2847. return -EINVAL;
  2848. }
  2849. /* Copy in the exec list from userland */
  2850. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2851. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2852. if (exec_list == NULL || object_list == NULL) {
  2853. DRM_ERROR("Failed to allocate exec or object list "
  2854. "for %d buffers\n",
  2855. args->buffer_count);
  2856. ret = -ENOMEM;
  2857. goto pre_mutex_err;
  2858. }
  2859. ret = copy_from_user(exec_list,
  2860. (struct drm_i915_relocation_entry __user *)
  2861. (uintptr_t) args->buffers_ptr,
  2862. sizeof(*exec_list) * args->buffer_count);
  2863. if (ret != 0) {
  2864. DRM_ERROR("copy %d exec entries failed %d\n",
  2865. args->buffer_count, ret);
  2866. goto pre_mutex_err;
  2867. }
  2868. if (args->num_cliprects != 0) {
  2869. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  2870. GFP_KERNEL);
  2871. if (cliprects == NULL)
  2872. goto pre_mutex_err;
  2873. ret = copy_from_user(cliprects,
  2874. (struct drm_clip_rect __user *)
  2875. (uintptr_t) args->cliprects_ptr,
  2876. sizeof(*cliprects) * args->num_cliprects);
  2877. if (ret != 0) {
  2878. DRM_ERROR("copy %d cliprects failed: %d\n",
  2879. args->num_cliprects, ret);
  2880. goto pre_mutex_err;
  2881. }
  2882. }
  2883. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2884. &relocs);
  2885. if (ret != 0)
  2886. goto pre_mutex_err;
  2887. mutex_lock(&dev->struct_mutex);
  2888. i915_verify_inactive(dev, __FILE__, __LINE__);
  2889. if (dev_priv->mm.wedged) {
  2890. DRM_ERROR("Execbuf while wedged\n");
  2891. mutex_unlock(&dev->struct_mutex);
  2892. ret = -EIO;
  2893. goto pre_mutex_err;
  2894. }
  2895. if (dev_priv->mm.suspended) {
  2896. DRM_ERROR("Execbuf while VT-switched.\n");
  2897. mutex_unlock(&dev->struct_mutex);
  2898. ret = -EBUSY;
  2899. goto pre_mutex_err;
  2900. }
  2901. /* Look up object handles */
  2902. for (i = 0; i < args->buffer_count; i++) {
  2903. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2904. exec_list[i].handle);
  2905. if (object_list[i] == NULL) {
  2906. DRM_ERROR("Invalid object handle %d at index %d\n",
  2907. exec_list[i].handle, i);
  2908. ret = -EBADF;
  2909. goto err;
  2910. }
  2911. obj_priv = object_list[i]->driver_private;
  2912. if (obj_priv->in_execbuffer) {
  2913. DRM_ERROR("Object %p appears more than once in object list\n",
  2914. object_list[i]);
  2915. ret = -EBADF;
  2916. goto err;
  2917. }
  2918. obj_priv->in_execbuffer = true;
  2919. }
  2920. /* Pin and relocate */
  2921. for (pin_tries = 0; ; pin_tries++) {
  2922. ret = 0;
  2923. reloc_index = 0;
  2924. for (i = 0; i < args->buffer_count; i++) {
  2925. object_list[i]->pending_read_domains = 0;
  2926. object_list[i]->pending_write_domain = 0;
  2927. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2928. file_priv,
  2929. &exec_list[i],
  2930. &relocs[reloc_index]);
  2931. if (ret)
  2932. break;
  2933. pinned = i + 1;
  2934. reloc_index += exec_list[i].relocation_count;
  2935. }
  2936. /* success */
  2937. if (ret == 0)
  2938. break;
  2939. /* error other than GTT full, or we've already tried again */
  2940. if (ret != -ENOSPC || pin_tries >= 1) {
  2941. if (ret != -ERESTARTSYS)
  2942. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2943. goto err;
  2944. }
  2945. /* unpin all of our buffers */
  2946. for (i = 0; i < pinned; i++)
  2947. i915_gem_object_unpin(object_list[i]);
  2948. pinned = 0;
  2949. /* evict everyone we can from the aperture */
  2950. ret = i915_gem_evict_everything(dev);
  2951. if (ret)
  2952. goto err;
  2953. }
  2954. /* Set the pending read domains for the batch buffer to COMMAND */
  2955. batch_obj = object_list[args->buffer_count-1];
  2956. if (batch_obj->pending_write_domain) {
  2957. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2958. ret = -EINVAL;
  2959. goto err;
  2960. }
  2961. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2962. /* Sanity check the batch buffer, prior to moving objects */
  2963. exec_offset = exec_list[args->buffer_count - 1].offset;
  2964. ret = i915_gem_check_execbuffer (args, exec_offset);
  2965. if (ret != 0) {
  2966. DRM_ERROR("execbuf with invalid offset/length\n");
  2967. goto err;
  2968. }
  2969. i915_verify_inactive(dev, __FILE__, __LINE__);
  2970. /* Zero the global flush/invalidate flags. These
  2971. * will be modified as new domains are computed
  2972. * for each object
  2973. */
  2974. dev->invalidate_domains = 0;
  2975. dev->flush_domains = 0;
  2976. for (i = 0; i < args->buffer_count; i++) {
  2977. struct drm_gem_object *obj = object_list[i];
  2978. /* Compute new gpu domains and update invalidate/flush */
  2979. i915_gem_object_set_to_gpu_domain(obj);
  2980. }
  2981. i915_verify_inactive(dev, __FILE__, __LINE__);
  2982. if (dev->invalidate_domains | dev->flush_domains) {
  2983. #if WATCH_EXEC
  2984. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2985. __func__,
  2986. dev->invalidate_domains,
  2987. dev->flush_domains);
  2988. #endif
  2989. i915_gem_flush(dev,
  2990. dev->invalidate_domains,
  2991. dev->flush_domains);
  2992. if (dev->flush_domains)
  2993. (void)i915_add_request(dev, file_priv,
  2994. dev->flush_domains);
  2995. }
  2996. for (i = 0; i < args->buffer_count; i++) {
  2997. struct drm_gem_object *obj = object_list[i];
  2998. obj->write_domain = obj->pending_write_domain;
  2999. }
  3000. i915_verify_inactive(dev, __FILE__, __LINE__);
  3001. #if WATCH_COHERENCY
  3002. for (i = 0; i < args->buffer_count; i++) {
  3003. i915_gem_object_check_coherency(object_list[i],
  3004. exec_list[i].handle);
  3005. }
  3006. #endif
  3007. #if WATCH_EXEC
  3008. i915_gem_dump_object(batch_obj,
  3009. args->batch_len,
  3010. __func__,
  3011. ~0);
  3012. #endif
  3013. /* Exec the batchbuffer */
  3014. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3015. if (ret) {
  3016. DRM_ERROR("dispatch failed %d\n", ret);
  3017. goto err;
  3018. }
  3019. /*
  3020. * Ensure that the commands in the batch buffer are
  3021. * finished before the interrupt fires
  3022. */
  3023. flush_domains = i915_retire_commands(dev);
  3024. i915_verify_inactive(dev, __FILE__, __LINE__);
  3025. /*
  3026. * Get a seqno representing the execution of the current buffer,
  3027. * which we can wait on. We would like to mitigate these interrupts,
  3028. * likely by only creating seqnos occasionally (so that we have
  3029. * *some* interrupts representing completion of buffers that we can
  3030. * wait on when trying to clear up gtt space).
  3031. */
  3032. seqno = i915_add_request(dev, file_priv, flush_domains);
  3033. BUG_ON(seqno == 0);
  3034. for (i = 0; i < args->buffer_count; i++) {
  3035. struct drm_gem_object *obj = object_list[i];
  3036. i915_gem_object_move_to_active(obj, seqno);
  3037. #if WATCH_LRU
  3038. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3039. #endif
  3040. }
  3041. #if WATCH_LRU
  3042. i915_dump_lru(dev, __func__);
  3043. #endif
  3044. i915_verify_inactive(dev, __FILE__, __LINE__);
  3045. err:
  3046. for (i = 0; i < pinned; i++)
  3047. i915_gem_object_unpin(object_list[i]);
  3048. for (i = 0; i < args->buffer_count; i++) {
  3049. if (object_list[i]) {
  3050. obj_priv = object_list[i]->driver_private;
  3051. obj_priv->in_execbuffer = false;
  3052. }
  3053. drm_gem_object_unreference(object_list[i]);
  3054. }
  3055. mutex_unlock(&dev->struct_mutex);
  3056. if (!ret) {
  3057. /* Copy the new buffer offsets back to the user's exec list. */
  3058. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3059. (uintptr_t) args->buffers_ptr,
  3060. exec_list,
  3061. sizeof(*exec_list) * args->buffer_count);
  3062. if (ret) {
  3063. ret = -EFAULT;
  3064. DRM_ERROR("failed to copy %d exec entries "
  3065. "back to user (%d)\n",
  3066. args->buffer_count, ret);
  3067. }
  3068. }
  3069. /* Copy the updated relocations out regardless of current error
  3070. * state. Failure to update the relocs would mean that the next
  3071. * time userland calls execbuf, it would do so with presumed offset
  3072. * state that didn't match the actual object state.
  3073. */
  3074. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3075. relocs);
  3076. if (ret2 != 0) {
  3077. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3078. if (ret == 0)
  3079. ret = ret2;
  3080. }
  3081. pre_mutex_err:
  3082. drm_free_large(object_list);
  3083. drm_free_large(exec_list);
  3084. kfree(cliprects);
  3085. return ret;
  3086. }
  3087. int
  3088. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3089. {
  3090. struct drm_device *dev = obj->dev;
  3091. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3092. int ret;
  3093. i915_verify_inactive(dev, __FILE__, __LINE__);
  3094. if (obj_priv->gtt_space == NULL) {
  3095. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3096. if (ret != 0) {
  3097. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3098. DRM_ERROR("Failure to bind: %d\n", ret);
  3099. return ret;
  3100. }
  3101. }
  3102. /*
  3103. * Pre-965 chips need a fence register set up in order to
  3104. * properly handle tiled surfaces.
  3105. */
  3106. if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
  3107. ret = i915_gem_object_get_fence_reg(obj);
  3108. if (ret != 0) {
  3109. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3110. DRM_ERROR("Failure to install fence: %d\n",
  3111. ret);
  3112. return ret;
  3113. }
  3114. }
  3115. obj_priv->pin_count++;
  3116. /* If the object is not active and not pending a flush,
  3117. * remove it from the inactive list
  3118. */
  3119. if (obj_priv->pin_count == 1) {
  3120. atomic_inc(&dev->pin_count);
  3121. atomic_add(obj->size, &dev->pin_memory);
  3122. if (!obj_priv->active &&
  3123. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3124. !list_empty(&obj_priv->list))
  3125. list_del_init(&obj_priv->list);
  3126. }
  3127. i915_verify_inactive(dev, __FILE__, __LINE__);
  3128. return 0;
  3129. }
  3130. void
  3131. i915_gem_object_unpin(struct drm_gem_object *obj)
  3132. {
  3133. struct drm_device *dev = obj->dev;
  3134. drm_i915_private_t *dev_priv = dev->dev_private;
  3135. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3136. i915_verify_inactive(dev, __FILE__, __LINE__);
  3137. obj_priv->pin_count--;
  3138. BUG_ON(obj_priv->pin_count < 0);
  3139. BUG_ON(obj_priv->gtt_space == NULL);
  3140. /* If the object is no longer pinned, and is
  3141. * neither active nor being flushed, then stick it on
  3142. * the inactive list
  3143. */
  3144. if (obj_priv->pin_count == 0) {
  3145. if (!obj_priv->active &&
  3146. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3147. list_move_tail(&obj_priv->list,
  3148. &dev_priv->mm.inactive_list);
  3149. atomic_dec(&dev->pin_count);
  3150. atomic_sub(obj->size, &dev->pin_memory);
  3151. }
  3152. i915_verify_inactive(dev, __FILE__, __LINE__);
  3153. }
  3154. int
  3155. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3156. struct drm_file *file_priv)
  3157. {
  3158. struct drm_i915_gem_pin *args = data;
  3159. struct drm_gem_object *obj;
  3160. struct drm_i915_gem_object *obj_priv;
  3161. int ret;
  3162. mutex_lock(&dev->struct_mutex);
  3163. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3164. if (obj == NULL) {
  3165. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3166. args->handle);
  3167. mutex_unlock(&dev->struct_mutex);
  3168. return -EBADF;
  3169. }
  3170. obj_priv = obj->driver_private;
  3171. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3172. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3173. args->handle);
  3174. drm_gem_object_unreference(obj);
  3175. mutex_unlock(&dev->struct_mutex);
  3176. return -EINVAL;
  3177. }
  3178. obj_priv->user_pin_count++;
  3179. obj_priv->pin_filp = file_priv;
  3180. if (obj_priv->user_pin_count == 1) {
  3181. ret = i915_gem_object_pin(obj, args->alignment);
  3182. if (ret != 0) {
  3183. drm_gem_object_unreference(obj);
  3184. mutex_unlock(&dev->struct_mutex);
  3185. return ret;
  3186. }
  3187. }
  3188. /* XXX - flush the CPU caches for pinned objects
  3189. * as the X server doesn't manage domains yet
  3190. */
  3191. i915_gem_object_flush_cpu_write_domain(obj);
  3192. args->offset = obj_priv->gtt_offset;
  3193. drm_gem_object_unreference(obj);
  3194. mutex_unlock(&dev->struct_mutex);
  3195. return 0;
  3196. }
  3197. int
  3198. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3199. struct drm_file *file_priv)
  3200. {
  3201. struct drm_i915_gem_pin *args = data;
  3202. struct drm_gem_object *obj;
  3203. struct drm_i915_gem_object *obj_priv;
  3204. mutex_lock(&dev->struct_mutex);
  3205. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3206. if (obj == NULL) {
  3207. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3208. args->handle);
  3209. mutex_unlock(&dev->struct_mutex);
  3210. return -EBADF;
  3211. }
  3212. obj_priv = obj->driver_private;
  3213. if (obj_priv->pin_filp != file_priv) {
  3214. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3215. args->handle);
  3216. drm_gem_object_unreference(obj);
  3217. mutex_unlock(&dev->struct_mutex);
  3218. return -EINVAL;
  3219. }
  3220. obj_priv->user_pin_count--;
  3221. if (obj_priv->user_pin_count == 0) {
  3222. obj_priv->pin_filp = NULL;
  3223. i915_gem_object_unpin(obj);
  3224. }
  3225. drm_gem_object_unreference(obj);
  3226. mutex_unlock(&dev->struct_mutex);
  3227. return 0;
  3228. }
  3229. int
  3230. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3231. struct drm_file *file_priv)
  3232. {
  3233. struct drm_i915_gem_busy *args = data;
  3234. struct drm_gem_object *obj;
  3235. struct drm_i915_gem_object *obj_priv;
  3236. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3237. if (obj == NULL) {
  3238. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3239. args->handle);
  3240. return -EBADF;
  3241. }
  3242. mutex_lock(&dev->struct_mutex);
  3243. /* Update the active list for the hardware's current position.
  3244. * Otherwise this only updates on a delayed timer or when irqs are
  3245. * actually unmasked, and our working set ends up being larger than
  3246. * required.
  3247. */
  3248. i915_gem_retire_requests(dev);
  3249. obj_priv = obj->driver_private;
  3250. /* Don't count being on the flushing list against the object being
  3251. * done. Otherwise, a buffer left on the flushing list but not getting
  3252. * flushed (because nobody's flushing that domain) won't ever return
  3253. * unbusy and get reused by libdrm's bo cache. The other expected
  3254. * consumer of this interface, OpenGL's occlusion queries, also specs
  3255. * that the objects get unbusy "eventually" without any interference.
  3256. */
  3257. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3258. drm_gem_object_unreference(obj);
  3259. mutex_unlock(&dev->struct_mutex);
  3260. return 0;
  3261. }
  3262. int
  3263. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3264. struct drm_file *file_priv)
  3265. {
  3266. return i915_gem_ring_throttle(dev, file_priv);
  3267. }
  3268. int i915_gem_init_object(struct drm_gem_object *obj)
  3269. {
  3270. struct drm_i915_gem_object *obj_priv;
  3271. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3272. if (obj_priv == NULL)
  3273. return -ENOMEM;
  3274. /*
  3275. * We've just allocated pages from the kernel,
  3276. * so they've just been written by the CPU with
  3277. * zeros. They'll need to be clflushed before we
  3278. * use them with the GPU.
  3279. */
  3280. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3281. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3282. obj_priv->agp_type = AGP_USER_MEMORY;
  3283. obj->driver_private = obj_priv;
  3284. obj_priv->obj = obj;
  3285. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3286. INIT_LIST_HEAD(&obj_priv->list);
  3287. INIT_LIST_HEAD(&obj_priv->fence_list);
  3288. return 0;
  3289. }
  3290. void i915_gem_free_object(struct drm_gem_object *obj)
  3291. {
  3292. struct drm_device *dev = obj->dev;
  3293. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3294. while (obj_priv->pin_count > 0)
  3295. i915_gem_object_unpin(obj);
  3296. if (obj_priv->phys_obj)
  3297. i915_gem_detach_phys_object(dev, obj);
  3298. i915_gem_object_unbind(obj);
  3299. i915_gem_free_mmap_offset(obj);
  3300. kfree(obj_priv->page_cpu_valid);
  3301. kfree(obj_priv->bit_17);
  3302. kfree(obj->driver_private);
  3303. }
  3304. /** Unbinds all objects that are on the given buffer list. */
  3305. static int
  3306. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3307. {
  3308. struct drm_gem_object *obj;
  3309. struct drm_i915_gem_object *obj_priv;
  3310. int ret;
  3311. while (!list_empty(head)) {
  3312. obj_priv = list_first_entry(head,
  3313. struct drm_i915_gem_object,
  3314. list);
  3315. obj = obj_priv->obj;
  3316. if (obj_priv->pin_count != 0) {
  3317. DRM_ERROR("Pinned object in unbind list\n");
  3318. mutex_unlock(&dev->struct_mutex);
  3319. return -EINVAL;
  3320. }
  3321. ret = i915_gem_object_unbind(obj);
  3322. if (ret != 0) {
  3323. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3324. ret);
  3325. mutex_unlock(&dev->struct_mutex);
  3326. return ret;
  3327. }
  3328. }
  3329. return 0;
  3330. }
  3331. int
  3332. i915_gem_idle(struct drm_device *dev)
  3333. {
  3334. drm_i915_private_t *dev_priv = dev->dev_private;
  3335. uint32_t seqno, cur_seqno, last_seqno;
  3336. int stuck, ret;
  3337. mutex_lock(&dev->struct_mutex);
  3338. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3339. mutex_unlock(&dev->struct_mutex);
  3340. return 0;
  3341. }
  3342. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3343. * We need to replace this with a semaphore, or something.
  3344. */
  3345. dev_priv->mm.suspended = 1;
  3346. /* Cancel the retire work handler, wait for it to finish if running
  3347. */
  3348. mutex_unlock(&dev->struct_mutex);
  3349. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3350. mutex_lock(&dev->struct_mutex);
  3351. i915_kernel_lost_context(dev);
  3352. /* Flush the GPU along with all non-CPU write domains
  3353. */
  3354. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3355. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3356. if (seqno == 0) {
  3357. mutex_unlock(&dev->struct_mutex);
  3358. return -ENOMEM;
  3359. }
  3360. dev_priv->mm.waiting_gem_seqno = seqno;
  3361. last_seqno = 0;
  3362. stuck = 0;
  3363. for (;;) {
  3364. cur_seqno = i915_get_gem_seqno(dev);
  3365. if (i915_seqno_passed(cur_seqno, seqno))
  3366. break;
  3367. if (last_seqno == cur_seqno) {
  3368. if (stuck++ > 100) {
  3369. DRM_ERROR("hardware wedged\n");
  3370. dev_priv->mm.wedged = 1;
  3371. DRM_WAKEUP(&dev_priv->irq_queue);
  3372. break;
  3373. }
  3374. }
  3375. msleep(10);
  3376. last_seqno = cur_seqno;
  3377. }
  3378. dev_priv->mm.waiting_gem_seqno = 0;
  3379. i915_gem_retire_requests(dev);
  3380. spin_lock(&dev_priv->mm.active_list_lock);
  3381. if (!dev_priv->mm.wedged) {
  3382. /* Active and flushing should now be empty as we've
  3383. * waited for a sequence higher than any pending execbuffer
  3384. */
  3385. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3386. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3387. /* Request should now be empty as we've also waited
  3388. * for the last request in the list
  3389. */
  3390. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3391. }
  3392. /* Empty the active and flushing lists to inactive. If there's
  3393. * anything left at this point, it means that we're wedged and
  3394. * nothing good's going to happen by leaving them there. So strip
  3395. * the GPU domains and just stuff them onto inactive.
  3396. */
  3397. while (!list_empty(&dev_priv->mm.active_list)) {
  3398. struct drm_i915_gem_object *obj_priv;
  3399. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3400. struct drm_i915_gem_object,
  3401. list);
  3402. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3403. i915_gem_object_move_to_inactive(obj_priv->obj);
  3404. }
  3405. spin_unlock(&dev_priv->mm.active_list_lock);
  3406. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3407. struct drm_i915_gem_object *obj_priv;
  3408. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3409. struct drm_i915_gem_object,
  3410. list);
  3411. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3412. i915_gem_object_move_to_inactive(obj_priv->obj);
  3413. }
  3414. /* Move all inactive buffers out of the GTT. */
  3415. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3416. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3417. if (ret) {
  3418. mutex_unlock(&dev->struct_mutex);
  3419. return ret;
  3420. }
  3421. i915_gem_cleanup_ringbuffer(dev);
  3422. mutex_unlock(&dev->struct_mutex);
  3423. return 0;
  3424. }
  3425. static int
  3426. i915_gem_init_hws(struct drm_device *dev)
  3427. {
  3428. drm_i915_private_t *dev_priv = dev->dev_private;
  3429. struct drm_gem_object *obj;
  3430. struct drm_i915_gem_object *obj_priv;
  3431. int ret;
  3432. /* If we need a physical address for the status page, it's already
  3433. * initialized at driver load time.
  3434. */
  3435. if (!I915_NEED_GFX_HWS(dev))
  3436. return 0;
  3437. obj = drm_gem_object_alloc(dev, 4096);
  3438. if (obj == NULL) {
  3439. DRM_ERROR("Failed to allocate status page\n");
  3440. return -ENOMEM;
  3441. }
  3442. obj_priv = obj->driver_private;
  3443. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3444. ret = i915_gem_object_pin(obj, 4096);
  3445. if (ret != 0) {
  3446. drm_gem_object_unreference(obj);
  3447. return ret;
  3448. }
  3449. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3450. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3451. if (dev_priv->hw_status_page == NULL) {
  3452. DRM_ERROR("Failed to map status page.\n");
  3453. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3454. i915_gem_object_unpin(obj);
  3455. drm_gem_object_unreference(obj);
  3456. return -EINVAL;
  3457. }
  3458. dev_priv->hws_obj = obj;
  3459. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3460. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3461. I915_READ(HWS_PGA); /* posting read */
  3462. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3463. return 0;
  3464. }
  3465. static void
  3466. i915_gem_cleanup_hws(struct drm_device *dev)
  3467. {
  3468. drm_i915_private_t *dev_priv = dev->dev_private;
  3469. struct drm_gem_object *obj;
  3470. struct drm_i915_gem_object *obj_priv;
  3471. if (dev_priv->hws_obj == NULL)
  3472. return;
  3473. obj = dev_priv->hws_obj;
  3474. obj_priv = obj->driver_private;
  3475. kunmap(obj_priv->pages[0]);
  3476. i915_gem_object_unpin(obj);
  3477. drm_gem_object_unreference(obj);
  3478. dev_priv->hws_obj = NULL;
  3479. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3480. dev_priv->hw_status_page = NULL;
  3481. /* Write high address into HWS_PGA when disabling. */
  3482. I915_WRITE(HWS_PGA, 0x1ffff000);
  3483. }
  3484. int
  3485. i915_gem_init_ringbuffer(struct drm_device *dev)
  3486. {
  3487. drm_i915_private_t *dev_priv = dev->dev_private;
  3488. struct drm_gem_object *obj;
  3489. struct drm_i915_gem_object *obj_priv;
  3490. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3491. int ret;
  3492. u32 head;
  3493. ret = i915_gem_init_hws(dev);
  3494. if (ret != 0)
  3495. return ret;
  3496. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3497. if (obj == NULL) {
  3498. DRM_ERROR("Failed to allocate ringbuffer\n");
  3499. i915_gem_cleanup_hws(dev);
  3500. return -ENOMEM;
  3501. }
  3502. obj_priv = obj->driver_private;
  3503. ret = i915_gem_object_pin(obj, 4096);
  3504. if (ret != 0) {
  3505. drm_gem_object_unreference(obj);
  3506. i915_gem_cleanup_hws(dev);
  3507. return ret;
  3508. }
  3509. /* Set up the kernel mapping for the ring. */
  3510. ring->Size = obj->size;
  3511. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3512. ring->map.size = obj->size;
  3513. ring->map.type = 0;
  3514. ring->map.flags = 0;
  3515. ring->map.mtrr = 0;
  3516. drm_core_ioremap_wc(&ring->map, dev);
  3517. if (ring->map.handle == NULL) {
  3518. DRM_ERROR("Failed to map ringbuffer.\n");
  3519. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3520. i915_gem_object_unpin(obj);
  3521. drm_gem_object_unreference(obj);
  3522. i915_gem_cleanup_hws(dev);
  3523. return -EINVAL;
  3524. }
  3525. ring->ring_obj = obj;
  3526. ring->virtual_start = ring->map.handle;
  3527. /* Stop the ring if it's running. */
  3528. I915_WRITE(PRB0_CTL, 0);
  3529. I915_WRITE(PRB0_TAIL, 0);
  3530. I915_WRITE(PRB0_HEAD, 0);
  3531. /* Initialize the ring. */
  3532. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3533. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3534. /* G45 ring initialization fails to reset head to zero */
  3535. if (head != 0) {
  3536. DRM_ERROR("Ring head not reset to zero "
  3537. "ctl %08x head %08x tail %08x start %08x\n",
  3538. I915_READ(PRB0_CTL),
  3539. I915_READ(PRB0_HEAD),
  3540. I915_READ(PRB0_TAIL),
  3541. I915_READ(PRB0_START));
  3542. I915_WRITE(PRB0_HEAD, 0);
  3543. DRM_ERROR("Ring head forced to zero "
  3544. "ctl %08x head %08x tail %08x start %08x\n",
  3545. I915_READ(PRB0_CTL),
  3546. I915_READ(PRB0_HEAD),
  3547. I915_READ(PRB0_TAIL),
  3548. I915_READ(PRB0_START));
  3549. }
  3550. I915_WRITE(PRB0_CTL,
  3551. ((obj->size - 4096) & RING_NR_PAGES) |
  3552. RING_NO_REPORT |
  3553. RING_VALID);
  3554. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3555. /* If the head is still not zero, the ring is dead */
  3556. if (head != 0) {
  3557. DRM_ERROR("Ring initialization failed "
  3558. "ctl %08x head %08x tail %08x start %08x\n",
  3559. I915_READ(PRB0_CTL),
  3560. I915_READ(PRB0_HEAD),
  3561. I915_READ(PRB0_TAIL),
  3562. I915_READ(PRB0_START));
  3563. return -EIO;
  3564. }
  3565. /* Update our cache of the ring state */
  3566. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3567. i915_kernel_lost_context(dev);
  3568. else {
  3569. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3570. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3571. ring->space = ring->head - (ring->tail + 8);
  3572. if (ring->space < 0)
  3573. ring->space += ring->Size;
  3574. }
  3575. return 0;
  3576. }
  3577. void
  3578. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3579. {
  3580. drm_i915_private_t *dev_priv = dev->dev_private;
  3581. if (dev_priv->ring.ring_obj == NULL)
  3582. return;
  3583. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3584. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3585. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3586. dev_priv->ring.ring_obj = NULL;
  3587. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3588. i915_gem_cleanup_hws(dev);
  3589. }
  3590. int
  3591. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3592. struct drm_file *file_priv)
  3593. {
  3594. drm_i915_private_t *dev_priv = dev->dev_private;
  3595. int ret;
  3596. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3597. return 0;
  3598. if (dev_priv->mm.wedged) {
  3599. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3600. dev_priv->mm.wedged = 0;
  3601. }
  3602. mutex_lock(&dev->struct_mutex);
  3603. dev_priv->mm.suspended = 0;
  3604. ret = i915_gem_init_ringbuffer(dev);
  3605. if (ret != 0) {
  3606. mutex_unlock(&dev->struct_mutex);
  3607. return ret;
  3608. }
  3609. spin_lock(&dev_priv->mm.active_list_lock);
  3610. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3611. spin_unlock(&dev_priv->mm.active_list_lock);
  3612. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3613. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3614. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3615. mutex_unlock(&dev->struct_mutex);
  3616. drm_irq_install(dev);
  3617. return 0;
  3618. }
  3619. int
  3620. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3621. struct drm_file *file_priv)
  3622. {
  3623. int ret;
  3624. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3625. return 0;
  3626. ret = i915_gem_idle(dev);
  3627. drm_irq_uninstall(dev);
  3628. return ret;
  3629. }
  3630. void
  3631. i915_gem_lastclose(struct drm_device *dev)
  3632. {
  3633. int ret;
  3634. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3635. return;
  3636. ret = i915_gem_idle(dev);
  3637. if (ret)
  3638. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3639. }
  3640. void
  3641. i915_gem_load(struct drm_device *dev)
  3642. {
  3643. int i;
  3644. drm_i915_private_t *dev_priv = dev->dev_private;
  3645. spin_lock_init(&dev_priv->mm.active_list_lock);
  3646. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3647. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3648. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3649. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3650. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3651. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3652. i915_gem_retire_work_handler);
  3653. dev_priv->mm.next_gem_seqno = 1;
  3654. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3655. dev_priv->fence_reg_start = 3;
  3656. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3657. dev_priv->num_fence_regs = 16;
  3658. else
  3659. dev_priv->num_fence_regs = 8;
  3660. /* Initialize fence registers to zero */
  3661. if (IS_I965G(dev)) {
  3662. for (i = 0; i < 16; i++)
  3663. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3664. } else {
  3665. for (i = 0; i < 8; i++)
  3666. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3667. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3668. for (i = 0; i < 8; i++)
  3669. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3670. }
  3671. i915_gem_detect_bit_6_swizzle(dev);
  3672. }
  3673. /*
  3674. * Create a physically contiguous memory object for this object
  3675. * e.g. for cursor + overlay regs
  3676. */
  3677. int i915_gem_init_phys_object(struct drm_device *dev,
  3678. int id, int size)
  3679. {
  3680. drm_i915_private_t *dev_priv = dev->dev_private;
  3681. struct drm_i915_gem_phys_object *phys_obj;
  3682. int ret;
  3683. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3684. return 0;
  3685. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3686. if (!phys_obj)
  3687. return -ENOMEM;
  3688. phys_obj->id = id;
  3689. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3690. if (!phys_obj->handle) {
  3691. ret = -ENOMEM;
  3692. goto kfree_obj;
  3693. }
  3694. #ifdef CONFIG_X86
  3695. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3696. #endif
  3697. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3698. return 0;
  3699. kfree_obj:
  3700. kfree(phys_obj);
  3701. return ret;
  3702. }
  3703. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3704. {
  3705. drm_i915_private_t *dev_priv = dev->dev_private;
  3706. struct drm_i915_gem_phys_object *phys_obj;
  3707. if (!dev_priv->mm.phys_objs[id - 1])
  3708. return;
  3709. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3710. if (phys_obj->cur_obj) {
  3711. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3712. }
  3713. #ifdef CONFIG_X86
  3714. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3715. #endif
  3716. drm_pci_free(dev, phys_obj->handle);
  3717. kfree(phys_obj);
  3718. dev_priv->mm.phys_objs[id - 1] = NULL;
  3719. }
  3720. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3721. {
  3722. int i;
  3723. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3724. i915_gem_free_phys_object(dev, i);
  3725. }
  3726. void i915_gem_detach_phys_object(struct drm_device *dev,
  3727. struct drm_gem_object *obj)
  3728. {
  3729. struct drm_i915_gem_object *obj_priv;
  3730. int i;
  3731. int ret;
  3732. int page_count;
  3733. obj_priv = obj->driver_private;
  3734. if (!obj_priv->phys_obj)
  3735. return;
  3736. ret = i915_gem_object_get_pages(obj);
  3737. if (ret)
  3738. goto out;
  3739. page_count = obj->size / PAGE_SIZE;
  3740. for (i = 0; i < page_count; i++) {
  3741. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3742. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3743. memcpy(dst, src, PAGE_SIZE);
  3744. kunmap_atomic(dst, KM_USER0);
  3745. }
  3746. drm_clflush_pages(obj_priv->pages, page_count);
  3747. drm_agp_chipset_flush(dev);
  3748. i915_gem_object_put_pages(obj);
  3749. out:
  3750. obj_priv->phys_obj->cur_obj = NULL;
  3751. obj_priv->phys_obj = NULL;
  3752. }
  3753. int
  3754. i915_gem_attach_phys_object(struct drm_device *dev,
  3755. struct drm_gem_object *obj, int id)
  3756. {
  3757. drm_i915_private_t *dev_priv = dev->dev_private;
  3758. struct drm_i915_gem_object *obj_priv;
  3759. int ret = 0;
  3760. int page_count;
  3761. int i;
  3762. if (id > I915_MAX_PHYS_OBJECT)
  3763. return -EINVAL;
  3764. obj_priv = obj->driver_private;
  3765. if (obj_priv->phys_obj) {
  3766. if (obj_priv->phys_obj->id == id)
  3767. return 0;
  3768. i915_gem_detach_phys_object(dev, obj);
  3769. }
  3770. /* create a new object */
  3771. if (!dev_priv->mm.phys_objs[id - 1]) {
  3772. ret = i915_gem_init_phys_object(dev, id,
  3773. obj->size);
  3774. if (ret) {
  3775. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3776. goto out;
  3777. }
  3778. }
  3779. /* bind to the object */
  3780. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3781. obj_priv->phys_obj->cur_obj = obj;
  3782. ret = i915_gem_object_get_pages(obj);
  3783. if (ret) {
  3784. DRM_ERROR("failed to get page list\n");
  3785. goto out;
  3786. }
  3787. page_count = obj->size / PAGE_SIZE;
  3788. for (i = 0; i < page_count; i++) {
  3789. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3790. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3791. memcpy(dst, src, PAGE_SIZE);
  3792. kunmap_atomic(src, KM_USER0);
  3793. }
  3794. i915_gem_object_put_pages(obj);
  3795. return 0;
  3796. out:
  3797. return ret;
  3798. }
  3799. static int
  3800. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3801. struct drm_i915_gem_pwrite *args,
  3802. struct drm_file *file_priv)
  3803. {
  3804. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3805. void *obj_addr;
  3806. int ret;
  3807. char __user *user_data;
  3808. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3809. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3810. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3811. ret = copy_from_user(obj_addr, user_data, args->size);
  3812. if (ret)
  3813. return -EFAULT;
  3814. drm_agp_chipset_flush(dev);
  3815. return 0;
  3816. }
  3817. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3818. {
  3819. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3820. /* Clean up our request list when the client is going away, so that
  3821. * later retire_requests won't dereference our soon-to-be-gone
  3822. * file_priv.
  3823. */
  3824. mutex_lock(&dev->struct_mutex);
  3825. while (!list_empty(&i915_file_priv->mm.request_list))
  3826. list_del_init(i915_file_priv->mm.request_list.next);
  3827. mutex_unlock(&dev->struct_mutex);
  3828. }